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Abstract

Background: Risk stratification based on cytogenetics of acute myeloid leukemia (AML) remains imprecise. The

introduction of novel genetic and epigenetic markers has helped to close this gap and increased the specificity

of risk stratification, although most studies have been conducted in specific AML subpopulations. In order to

overcome this limitation, we used a genome-wide approach in multiple AML populations to develop a robust

prediction model for AML survival.

Methods: We conducted a genome-wide expression analysis of two data sets from AML patients enrolled into the

AMLCG-1999 trial and from the Tumor Cancer Genome Atlas (TCGA) to develop a prognostic score to refine current

risk classification and performed a validation on two data sets of the National Taiwan University Hospital (NTUH)

and an independent AMLCG cohort.

Results: In our training set, using a stringent multi-step approach, we identified a small three-gene prognostic

scoring system, named Tri-AML score (TriAS) which highly correlated with overall survival (OS). Multivariate analysis

revealed TriAS to be an independent prognostic factor in all tested training and additional validation sets, even

including age, current cytogenetic-based risk stratification, and three other recently developed expression-based

scoring models for AML.

Conclusions: The Tri-AML score allows robust and clinically practical risk stratification for the outcome of AML

patients. TriAS substantially refined current ELN risk stratification assigning 44.5 % of the patients into a different

risk category.

Abbreviations: AML, Acute myeloid leukemia; TCGA, Tumor Cancer Genome Atlas; NTUH, National Taiwan

University Hospital; TriAS, Tri-AML score; CN-AML, Cytogenetically normal AML; FDR, False discovery rate;

GO, Gene ontology; RFS, Relapse-free survival; pts, Points; OS, Overall survival; ELN, European LeukemiaNet;

HCC, Hepatocellular carcinoma; ALL, Acute lymphoblastic leukemia

Key points

� TriAS improves risk stratification in AML

� TriAS is robust in multivariate analysis compared to

established risk factors

Background
The biological heterogeneity of acute myeloid leukemia

(AML) in combination with patient-related risk factors

such as age or co-morbidities result in a wide range of

clinical outcomes making it a continuous challenge for

clinicians to assess individual patients’ risk. Currently

applied risk-prognostication models mainly rely on a

combination of pre-treatment karyotype and molecular

mutations. Recent improvements have been made in prog-

nostication, e.g., by adding individual molecular markers

to conventional cytogenetics—particularly in patients with
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normal karyotype AML. The large variability of outcomes

within these individual risk groups suggests that more

sophisticated approaches including epigenetics [1, 2],

microRNA [3], or scoring models based on individual

genes [4, 5] are required to provide a more personalized

risk assessment. While these studies represent a great leap

forward, several of these studies contain certain limita-

tions, often analyzing only a specific AML subset [3, 5],

such as cytogenetically normal AML (CN-AML), which

only counts for 40 to 50 % of adult and 25 % of pediatric

AML patients [6, 7].

In this regard, improved risk stratification is still an

unmet clinical need also in elderly AML patients with still

poor long-term overall survival (OS) [8]. In order to over-

come some of these limitations, we used an unbiased

genome-wide approach to identify reliable genetic markers

and developed a prognostic scoring system named Tri-

AML score (TriAS).

Methods
Patients and treatment

In total, four data sets were used in this study. Two inde-

pendent data sets comprising of total 242 patients served

as training sets, including 163 patients from the TCGA

portal investigated using RNAseq technology [9] and 79

patients from which 62 were enrolled in the German

AML Cooperative Group (AMLCG) 1999 trial [10], while

17 had received therapy outside of the trial [4] using the

Affymetrix 133 Plus 2.0 platform (GSE12417-GPL570).

Two additional independent validation sets were derived

from either 227 patients at the National Taiwan University

Hospital (NTUH) [11] (validation set 1) using the Illumina

HumanHT-12 v4 Expression BeadChip platform as well as

a second set derived from additional 163 patients enrolled

in the AMLCG 1999 trial (GSE12417-GPL96A and B,

validation set 2) using the Affymetrix 133 Plus 2.0 plat-

form. Clinical characteristics and survival endpoints were

used as described in the individual gene expression data

sets [4, 9, 11]. Cytogenetic risk groups were available for

all data sets, even though the AMLCG data set included

CN-AML patients only.

Identification of prognostic genes

We used a multi-step approach in order to identify the

most reliable combination of expression-based markers

(Fig. 1). In order to facilitate generation and validation of a

score, only transcripts were included in the analysis where

the corresponding gene was available in all four data sets.

First, univariate Cox regression analysis using the dicho-

tomized expression (higher or lower compared to the

median of the corresponding data set) was conducted to

identify all genes with significant impact on OS in the

training sets (TCGA and GSE570). Next, age was included

as a confounding factor into a multivariate Cox regression

model of each training subset. Selection of those genes

with significant impact on OS in uni- and multivariate ana-

lysis including age in both subsets of the training set with

the same effect direction and expression of the transcripts

in all patient samples led to a candidate list of 30 genes.

Development of expression-based scoring models

In order to systematically evaluate the prediction ability

in the combined training set (TCGA + GSE570) while

reducing the number of genes in our model, we calculated

each best predicting combination of n = 30, n = 29… down

to n = 1 genes using multivariate Cox regression analysis

keeping age >65 years and the cytogenetic risk group

within the model. The model with the highest likelihood

score was identified using the branch-and-bound algo-

rithm of Furnival and Wilson as included in the SAS

software package version 9.3.

An individual score was then created for each n-gene-

combination: For each of the n-genes included in the

score, 1 point was added if expression of the gene was

above the median expression of the data set in case of

genes with a hazard ratio >1 in the multivariate n-gene-

model, whereas 1 point was subtracted in case of a hazard

ratio <1 in the multivariate n-gene-model.

Gene ontology studies

Gene ontology studies were analyzed using the software

platform Cytoscape (Version 3.2.1) [12] and the plugin

BiNGO (Version 2.4.4) [13]. Testing for significant path-

way enrichment in BiNGO was performed using hypergeo-

metric distribution testing and multiple testing correction

by Benjamini & Hochberg False Discovery Rate (FDR) with

a significance cutoff value of p = 0.05.

Computing previously published AML scores (Marcucci

et al., Chuang et al., Li et al.)

For each data set, three recently published expression-

based AML scores have been additionally calculated as

previously described: the dichotomized Marcucci score [5],

the continuous Chuang score[11], and the dichotomized Li

score [14].

Statistical analysis

Gene expression data of each patient was dichotomized

based either on a higher (GeneHI) or lower (GeneLOW)

expression value compared to the median of the cohort of

the individual data set as a cutoff. For the identification of

prognostic genes, univariate Cox regression analysis of

overall survival was performed for each single gene using

the dichotomized expression of each gene. The median

expression for each gene of each microarray data set

served as the cutoff between high and low expression.

Additionally, multivariate Cox regression was performed

including the dichotomized expression and age.
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Fig. 1 Genome-wide approach to identify a robust prognostic clinical score in AML patients. The schematic overview how to identify a robust

AML scoring model using four different expression data sets from TCGA, NTUH, and two independent data sets of the AMLCG-1999 trial

(GSE12417-GPL96 and GSE12417-GPL570) is shown. Statistical analysis was conducted either by uni- or multivariate Cox regression analysis
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Multivariate Cox regression analysis including several

competing risk factors was performed to estimate hazard

ratios and 95 % confidence intervals of our scores in

different data sets. Categorized scores were additionally

plotted using the Kaplan-Meier method. All statistical

tests were two-sided and performed using SAS 9.3 (SAS

Institute Inc., Cary, NC, USA). For all tests, the level of

significance was p < 0.05.

Results
Using a genome-wide approach to identify robust prog-

nostic markers in AML

In order to identify the most reliable genes for a prediction

model, we analyzed 15.939 individual genes and 31.479

sequences available in all four data set (Fig. 1). We found

2.080 genes of the TCGA and 2.001 sequences in 1.752

genes of the GSE12417-GPL570 data set with significant

impact on OS using univariate Cox regression analysis.

When we included age, one of the strongest predictors of

AML survival [15] as a confounding factor, 1.090 genes of

the TCGA and 1.374 sequences in 1.231 genes of the

GSE570 data set remained significant using multivariate

analysis. Of these, 30 genes showed significant impact

on OS with the same effect direction in univariate and

multivariate analysis in both subsets of the training set

(Additional file 1: Table S1).

To assess the functional relevance of these genes, we

conducted gene ontology (GO) analysis which revealed

significant enrichment in pathways related to cell stress,

apoptosis, tyrosine kinase signaling, endocytosis, and cell

cycle (Additional file 1: Table S2).

Computing a prognostic weighted three-gene expression

score led to the Tri-AML score

Several studies have already developed large-gene signa-

tures ranging from 7- to 86-gene prognostic signatures or

weighted scoring models in AML [3–5, 14]. However,

such multi-gene signatures remain difficult to implement

into routine clinical application, as we even considered a

30-gene signature less practical for routine use.

To find an appropriately predictive expression signature,

while using the lowest number of genes, we first merged

both training subsets into one combined training set

including 242 patients (Fig. 1). We then calculated all best

predicting n-out-of-30-gene-scores comprising n = 1, up

to all of our 30 candidate genes. While the number of

possible n-out-of-30-gene-scores dramatically increased up

to 15 genes included (Additional file 1: Figure S1a), the

predictive value of the scores as measured by the multiva-

riate significance level in the combined training set reached

a plateau after eight genes (Additional file 1: Figure S1b).

For further routine use, we propose a 3-gene-combination

to be most appropriate including a reasonable low number

of genes still preserving very high prediction ability. The best

predicting 3-gene-score in our training set included the

genes, C-X-C chemokine receptor type 6 (CXCR6), family

with sequence similarity 124B (FAM124B), and adenylyl

cyclase-associated protein 1 (CAP1) (Fig. 1). While a higher

gene expression of CAP1 and FAM124B was associated with

adverse survival, a higher expression of CXCR6 led to a

better survival. Taking the hazard ratios of the individual

genes in multivariate analysis into account and to end up

with positive values only, a score ranging from 1 to 4 points

(pts) can be calculated as:

þ1 point; if the expression of CAP1 is > than the median
−1 point; if the expression of CXCR6 is > than the median
þ1 point; if the expression of FAM124B is > than the median
þ2 points in order to end up with positive values onlyð Þ

This score, named Tri-AML score (TriAS) highly pre-

dicted OS in the training set in multivariate Cox analysis

including age as a competing risk factor (p < 0.0001). To

further simplify, TriAS could also be categorized into

low-, intermediate-, and high-risk groups allowing reliable

segregation (1 pts: low risk, n = 31, 2/3 pts: intermediate

risk, n = 181, 4 pts: high risk n = 30, p < 0.0001, Fig. 2a).

TriAS remained independently significant in multivariate

Cox analysis including age in the NTUH validation set 1

(p < 0.0001) and showed a trend in the GSE12417-GPL96

validation set 2 (p = 0.1028). Kaplan-Meier plots are

shown in Fig. 2b, c).

TriAS predicts survival independently of established risk

factors

Current AML risk stratification is based on age and

cytogenetic risk group [16]. While the publicly available

patient data sets enrolled in the AMLCG-1999 trial only

included CN-AML patients with intermediate risk and

no further genetic discrimination, this information was

readily available in the TCGA and NTUH data sets as

previously described [9, 11].

In a direct multivariate analysis of both the TCGA

training and the NTUH validation set including cytogen-

etic risk group and age >65 years, TriAS remained inde-

pendently predictive for OS in both data sets (Table 1),

while clinical parameters were mainly similarly distrib-

uted within the different risk groups according to TriAS

(Additional file 1: Table S3).

In particular, since the older patients (age > 65 years)

remain a difficult-to-treat subpopulation, we then applied

TriAS to this age population using the combined four data

sets (n = 632). Even within the older patient cohort (n =

166), TriAS also allowed clear segregation of different risk

groups (median OS TriAS 1: 26.8 months, TriAS 2/3:

8.3 months, TriAS 4: 4.1 months; p < 0.0001).

Similarly, TriAS was also able to predict relapse-free

survival (RFS) in direct multivariate analysis including

age, gender, and molecular and cytogenetic risk factors,
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only available in the NTUH validation set 1 (p = 0.03;

Additional file 1: Table S4).

TriAS predicts independently of previously identified

gene expression scores

Recently, three highly predictive scoring models were

developed, such as a 7-gene score by Marcucci et al. [5]

and an 11-gene expression score both developed for

CN-AML patients proposed by Chuang et al. [11] or a

24-gene score by Li et al. [14] including several cytogeneti-

cally defined subsets. All three models were able to predict

survival in our applied data sets in univariate analysis

(data not shown). Notably, including cytogenetic risk,

gender, and age >65 as well as all four expression-based

risk scores into one multivariate Cox regression model,

only age >65 years and TriAS remained independently

predictive in the TCGA training set as well as the NTUH

validation set (Table 2).

Since all four scoring models have been developed in dif-

ferent training data sets, we then evaluated the prediction

ability in all data sets. While the score proposed by Li et al.

included patients with favorable and adverse cytogenetics,

both scores proposed by Chuang et al. and Marcucci et al.

were developed for CN-AML only. We nevertheless tested

their fitness in both the CN-AML and non-CN AML

subcohorts: Including age >65 and gender as competing

risk factors, only TriAS remained independently signifi-

cant in the CN patients of the TCGA training set, and

TriAS and the Chuang score remained significant in the

CN patients of the NTUH validation set 1 (Additional file

1: Table S5).

However, in the non-CN patients of the TCGA training

set, only TriAS remained significant, whereas in the sub-

cohort of non-CN patients of the NTUH validation set 1,

all four expression-based scoring models were able to

significantly predict survival independently of age >65,

gender, and the cytogenetic risk group (Additional file 1:

Table S6).

In order to test if expression-based scoring models could

be used synergistically, we sequentially combined TriAS

with each of the other three scores. Comparing “double low

risk” (TriAS = 1 and additional other low risk score),

“double high risk” (TriAS = 4 and additional other high risk

score), and “remaining” patients, each combination (TriAS/
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Fig. 2 Categorized TriAS predicts overall survival of AML patients. Kaplan-Meier survival analysis of pooled patients from the TCGA data set and

enrolled into AMLCG-1999 (GSE12417-GPL570) (training set) (a) and two additional validation sets from either NTUH (b) or AMLCG-1999 (c) based

on TriAS categories are shown

Wilop et al. Journal of Hematology & Oncology  (2016) 9:78 Page 5 of 10



Marcucci, TriAS/Chuang, TriAS/Li) also allowed significant

segregation in both the training and validation set 1

(Additional file 1: Figure S2a-f). Moreover, comparison

of “quadruple low risk,” “quadruple high risk,” and

“remaining” patients utilizing all four scores also identified

subgroups with significant difference in OS (Additional

file 1: Figure S3a-c). But as expected, the addition of

several scores only partially improved the prognostic

segregation ability.

TriAS can further refine the European LeukemiaNet AML

classification

Current risk stratification of AML patients is mainly based

on the European LeukemiaNet (ELN) classification [17].

Patients are classified into four risk groups (favorable,

intermediate 1/2, and adverse) according to cytogenetics

and molecular profile based on mutational status of C/

EBPα, NPM1, and FLT3. Applying the ELN classification

in the combined data sets with cytogenetic and molecular

data allowed robust segregation of OS (Fig. 3a).

In each ELN risk group, high TriAS identified a substan-

tial number of patients with shorter survival allowing a

more refined definition of patient’s risk (Fig. 3b). Based on

median as well as 3-year OS, we developed a combined

ELN +TriAS risk stratification which allowed improved

risk segregation (Table 3; Fig. 3c). Overall, 167 (44.5 %) of

375 patients in our data sets with ELN risk available were

classified into a different risk category if TriAS was

included.

Discussion
In this study, we used genome-wide expression and clinical

data of multiple independent patient cohorts to propose a

simple three-gene expression-based scoring system named

TriAS. Although a variety of different risk factors have been

described in AML including patient-based factors, genetic

and epigenetic changes, and response to therapy [18], age

and karyotype remain the most important factors currently

used in clinical routine. TriAS showed to be a reliable inde-

pendent predictor of OS and RFS even in combination with

established risk factors and previously published scores in

our training sets as well in our validation sets.

The ELN recommendation is a commonly used risk

classification scheme for adult AML patients [17]. While

Table 1 Multivariate Cox regression analysis for OS including

age >65 years, cytogenetic and molecular risk factors, gender,

and TriAS in the TCGA training and all validation sets if available

are shown

HR multivariate p value
multivariate

TCGA training set (n = 154)

Cytogenetic risk group poor 1.505 (0.896–2.527) 0.1222

Cytogenetic risk group favorable 0.448 (0.228–0.881) 0.0200

FLT3 mutated 1.590 (0.946–2.672) 0.0799

NPM1 mutated 0.718 (0.419–1.229) 0.2267

Gender (female) 1.192 (0.790–1.797) 0.4033

Age > 65 4.472 (2.818–7.098) <0.0001

TriAS 1.978 (1.505–2.600) <0.0001

GPL570 training set (n = 79)

Age > 65 1.683 (0.943–3.007) 0.0784

TriAS 2.147 (1.557–2.961) <0.0001

NTUH validation set 1 (n = 221)

Cytogenetic risk group poor 2.504 (1.547–4.052) 0.0002

Cytogenetic risk group favorable 0.434 (0.234–0.802) 0.0077

CEBPA mutated 0.248 (0.098–0.629) 0.0033

FLT3 mutated 2.034 (1.320–3.135) 0.0013

NPM1 mutated 0.801 (0.483–1.328) 0.3893

Gender (female) 0.779 (0.526–1.152) 0.2109

Age > 65 2.064 (1.258–3.389) 0.0042

TriAS 1.393 (1.097–1.769) 0.0066

GPL96 validation set 2 (n = 163)

Age > 65 1.639 (1.097–2.449) 0.0159

TriAS 1.239 (1.014–1.515) 0.0361

italic p-values relate to significant findings (p<0.05)

Table 2 TriAS independently segregates survival of AML

patients even including other expression-based risk scores:

multivariate Cox regression analysis for OS of AML patients

from the TCGA training and the NTUH validation set 1 using

cytogenetic risk, gender, age >65 years, and TriAS as well as

scores developed by Marcucci, Chuang, and Li

HR multivariate p value
multivariate

TCGA training set (n = 161)

Cytogenetic risk group poor 1.516 (0.887–2.594) 0.1284

Cytogenetic risk group favorable 0.651 (0.329–1.290) 0.2186

Gender (female) 1.343 (0.894–2.018) 0.1557

Age > 65 3.817 (2.429–5.999) <0.0001

Marcucci score 1.090 (0.661–1.800) 0.7349

Chuang score 0.993 (0.949–1.039) 0.7603

Li score 1.432 (0.861–2.380) 0.1661

TriAS 2.148 (1.659–2.782) <0.0001

NTUH validation set (n = 221)

Cytogenetic risk group poor 2.229 (1.424–3.489) 0.0005

Cytogenetic risk group favorable 0.473 (0.256–0.873) 0.0167

Gender (female) 0.856 (0.583–1.257) 0.4283

Age > 65 2.252 (1.378–3.680) 0.0012

Marcucci score 0.952 (0.591–1.533) 0.8402

Chuang score 1.081 (1.040–1.124) <0.0001

Li score 1.126 (0.710–1.786) 0.6133

TriAS 1.337 (1.031–1.733) 0.0285

italic p-values relate to significant findings (p<0.05)
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ELN risk classification has substantially improved our

understanding how to identify high-risk patients with poor

overall survival, a subset of these patients is not properly

identified by this approach. Therefore, there have been

several approaches to further redefine patients at higher

risk. As such, a benchmark score proposed by Li et al.

similarly redefined poor (adverse) patients using their

24-gene score. This approach allowed to expand the iden-

tified high-risk cohort from 27 % (ELN alone) to 52 %

(ELN+ 24 gene score). Applying TriAS, we were able to

distinguish the individual patients’ risk in more detail.

Only 58.8 % of prior ELN favorable patients remained in

the favorable cohort when TriAS was applied. Subse-

quently, the ELN intermediate risk groups (1 and 2) can

be further segregated between a favorable, intermediate,

and adverse risk profile. In particular, within this group,

62.1 % were actually of adverse risk. This is also supported

by the findings by Li et al., who showed that a substantial

number of patients are of significant higher clinical risk

with a substantially shorter overall survival. Applying

TriAS could help to identify patients with ELN favorable

or intermediate prognosis who nonetheless may benefit

from intensified treatment regimens.

For prediction of OS in AML patients, several other

studies used a genome-wide approach. An 86-gene signa-

ture for CN-AML patients was described by Metzeler

et al., which despite its predictive value remains difficult

to implement due to the large gene number and has also

not been evaluated in non-CN AML subsets so far [4]. In

comparison, a more recent study used both genetic and
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Fig. 3 TriAS refines the ELN classification to better segregate AML survival. Overall survival of the AML patients from the TCGA and NUTH data

sets according to current ELN classification is shown (a) or after implementation of the ELN and TriAS classification (ELN + TriAS) (c). The fraction

of patients reclassified based on original ELN and ELN + TriAS risk classification is shown (b)

Wilop et al. Journal of Hematology & Oncology  (2016) 9:78 Page 7 of 10



also epigenetic information to predict survival of AML.

While this elegant study by Marcucci et al. showed a highly

attractive approach to improve risk stratification, again this

study was only conducted in the CN-AML subset [5].

Additionally, an 11-gene score for CN-AML patients was

developed by Chuang et al. [11] and a 24-gene score by Li

et al. for both CN and non-CN AML patients. The score

developed by Li et al. allowed an excellent segregation also

in combination with established cytogenetic risk stratifi-

cation [14]. The combined use of the Li and TriAS score

led to a further discrimination of OS, notably using only

three additional genes. Moreover, the scores did not mark-

edly overlap as combining multiple expression-based risk

scores allowed further segregation of patient cohorts. This

supports the notion that several gene expression-based

prediction scores can be used synergistically and opens an

important novel avenue how scoring models could be

used in clinical application.

However, our calculations of multiple n-out-of-30 scores

clearly demonstrated that including a larger number of

genes into a scoring model holds an advantage for its

predictive value, but this improvement is saturated after a

limited number of genes. Since most algorithms include

the strongest predictors into a model first, the absolute

improvement naturally decreases with each additionally

predictor added. In our model, inclusion of more than

eight genes did not lead to any relevant further impro-

vement. However, weighing the number of genes to be

analyzed in clinical practice and the ability of prediction, a

3-gene-score remained most reasonable in this respect.

Functionally, the three most prognostic genes are only

partially described. CXCLR6 has shown to be the cognate

receptor of its natural ligand CXCL16 and was initially

described on peripheral blood leukocytes and to be present

in the bone marrow and prostate [19, 20]. CXCR6/CXCL16

has also been described as an oncogenic axis in a variety of

solid cancers, such as papillary thyroid carcinoma, gastric,

prostate, and breast cancer, through positive regulation of

survival pathways such as ERK [21–25]. Surprisingly, in our

data sets, a high expression of CXCR6 led to an improved

survival of AML patients. Therefore, subsequent functional

studies have to show if this axis might have cancer-type

specific functions suggesting to act either oncogenic or

tumor suppressive.

The second gene in our scoring model, FAM124B, has

just recently been identified, and its function remains to be

still fully understood. So far, FAM124B has been shown to

be an interaction partner for the chromodomain helicase

DNA binding protein 7 and 8 genes (CHD7 and CHD8).

Mutations of CHD7 are the major cause for the CHARGE

syndrome [26]. On note, it has to be mentioned that so far,

there are no studies showing a direct link between the

CHARGE syndrome and the onset of leukemia, except one

case study describing the co-existence of myelodysplastic

syndrome (MDS) [27] and the CHARGE syndrome in an

infant. For the interaction partner of FAM124B, CHD8,

one study so far described an oncogenic role in a mouse

model for BCR-ABL1+ acute lymphoblastic leukemia [28],

while neither the role of FAM124B nor its interaction with

CHD7/8 have been described so far in AML.

The third identified gene, CAP1, is an actin-regulating

protein which has been shown to promote tumor growth

and migration of solid cancers such as HCC, glioma, or

breast cancer [29–32]. These oncogenic functions are

mediated also by the ERK pathway as shown in breast

cancer cells [33]. While no direct oncogenic role for CAP1

was so far described in AML, one study [34] elucidated its

role as direct interacting partner for the insulin resistance

protein resistin which is secreted by monocytes [35].

Relevant to mention is that the model which was used to

study this interaction was based on the human monocytic

THP-1 cell line, which was derived from an AML patient

[36]. While these findings indicate a potential role for

CAP1 in AML, direct functional evidence so far is miss-

ing. In contrast to CXCR6, high expression of CAP1 and/

or FAM124B led to impaired overall survival in our data

sets in accordance to a suspected oncogenic role of these

two genes.

Conclusions
In summary, our 3-gene expression-based score TriAS

allowed robust prediction of AML survival independently

of previously identified risk factors with a reasonable low

number of genes to be analyzed in clinical practice. The

addition of TriAS to the current ELN risk classification

allowed a refined risk classification and might help to

identify patients who may benefit from intensified

Table 3 Combination of current ELN risk classification with

TriAS leads to a refined ELN + TriAS classification showing three

groups with adverse (≤25 %), intermediate (50–60 %), and

favorable (>60 %) survival after 3 years

ELN risk TriAS Number
of patients

3-year
OS (%)

Median OS
(days)

Refined
ELN + TriAS

Favorable 1 24 77.4 Not reached Favorable

Favorable 2 59 75.4 3555 Favorable

Intermediate 1/2 1 7 68.6 Not reached Favorable

Favorable 3 46 58.1 1805 Intermediate

Favorable 4 12 52.1 Not reached Intermediate

Intermediate 1/2 2 54 50.9 1193 Intermediate

Adverse 1 2 50.0 Not reached Intermediate

Intermediate 1/2 3 78 25.6 366 Adverse

Intermediate 1/2 4 22 23.9 214 Adverse

Adverse 2 24 21.4 368 Adverse

Adverse 3 30 18.2 347 Adverse

Adverse 4 17 0.0 214 Adverse
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treatment. However, future research is required to validate

the robustness of the score prospectively in clinical trials.

So far, all published scoring models including our own rely

on microarray data. With our simple 3-gene-score, future

routine clinical application may come within reach if our

results can be confirmed using harmonized quantitative

real-time PCR.
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