| 001 | 681713 | ||
| 005 | 20230408005017.0 | ||
| 024 | 7 | _ | |2 URN |a urn:nbn:de:hbz:82-rwth-2017-003753 |
| 024 | 7 | _ | |2 datacite_doi |a 10.18154/RWTH-2017-00375 |
| 024 | 7 | _ | |2 HBZ |a HT019209083 |
| 024 | 7 | _ | |2 Laufende Nummer |a 35585 |
| 037 | _ | _ | |a RWTH-2017-00375 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 510 |
| 100 | 1 | _ | |0 P:(DE-82)687005 |a Lange, Corinna |b 0 |
| 245 | _ | _ | |a Lifting properties of blocks |c vorgelegt von Diplom-Mathematikerin Corinna Lange |h online |
| 246 | _ | 3 | |a Blockliftungseigenschaften |y German |
| 260 | _ | _ | |a Aachen |c 2016 |
| 260 | _ | _ | |c 2017 |
| 300 | _ | _ | |a 1 Online-Ressource (141 Seiten) |
| 336 | 7 | _ | |2 DataCite |a Output Types/Dissertation |
| 336 | 7 | _ | |2 ORCID |a DISSERTATION |
| 336 | 7 | _ | |2 BibTeX |a PHDTHESIS |
| 336 | 7 | _ | |0 2 |2 EndNote |a Thesis |
| 336 | 7 | _ | |0 PUB:(DE-HGF)11 |2 PUB:(DE-HGF) |a Dissertation / PhD Thesis |b phd |m phd |
| 336 | 7 | _ | |2 DRIVER |a doctoralThesis |
| 500 | _ | _ | |a Veröffentlicht auf dem Publikationsserver der RWTH Aachen University 2017 |
| 502 | _ | _ | |a Dissertation, RWTH Aachen University, 2016 |b Dissertation |c RWTH Aachen University |d 2016 |g Fak01 |o 2016-12-19 |
| 520 | 3 | _ | |a Wir beschäftigen uns mit Blöcken von Gruppenalgebren endlicher Gruppen über einem vollständigen diskreten Bewertungsring R mit dem Ziel eine explizite Beschreibung der Basisalgebra des Blocks anzugeben. In den untersuchten Fällen nutzen wir die Struktur der zugehörigen Algebra über dem Restklassenkörper in positiver Charakteristik und konstruieren Lifts dieser Algebra. Wir fordern zusätzlich bestimmte rationale Bedingungen, die der Block über R erfüllt. Wir zeigen dann, dass der konstruierte Lift eindeutig ist und sehen somit, dass er isomorph zu der Basisalgebra ist. Wir wenden diese Methode auf Blöcke von Semidiederdefekt und Defekt 3 Blöcke symmetrischer Gruppen an. |l ger |
| 520 | _ | _ | |a We consider blocks of group algebras of finite groups over a complete discrete valuation ring R with the goal of giving an explicit description of the basic algebra of the block. In the cases we study, we use the structure of the corresponding algebra over the residue field in positive characteristic and construct lifts of that algebra. We also impose certain rational conditions fulfilled by the block over R on the lift. Subsequently we show that the constructed lift is the unique lift fulfilling those conditions and thereby know that it is isomorphic to the basic algebra. We apply this method to blocks of semidihedral defect and to defect 3 blocks of symmetric groups. |l eng |
| 591 | _ | _ | |a Germany |
| 653 | _ | 7 | |a modulary representation theory |
| 653 | _ | 7 | |a tame blocks |
| 653 | _ | 7 | |a defect 3 blocks |
| 653 | _ | 7 | |a lifting |
| 700 | 1 | _ | |0 P:(DE-82)IDM01288 |a Nebe, Gabriele Charlotte |b 1 |e Thesis advisor |u rwth |
| 700 | 1 | _ | |0 P:(DE-82)196333 |a Plesken, Wilhelm |b 2 |e Thesis advisor |
| 856 | 4 | _ | |u https://publications.rwth-aachen.de/record/681713/files/681713.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://publications.rwth-aachen.de/record/681713/files/681713_source.zip |y Restricted |
| 856 | 4 | _ | |u https://publications.rwth-aachen.de/record/681713/files/681713.gif?subformat=icon |x icon |y OpenAccess |
| 856 | 4 | _ | |u https://publications.rwth-aachen.de/record/681713/files/681713.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
| 856 | 4 | _ | |u https://publications.rwth-aachen.de/record/681713/files/681713.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
| 856 | 4 | _ | |u https://publications.rwth-aachen.de/record/681713/files/681713.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
| 856 | 4 | _ | |u https://publications.rwth-aachen.de/record/681713/files/681713.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:publications.rwth-aachen.de:681713 |p openaire |p open_access |p urn |p driver |p VDB |p dnbdelivery |
| 910 | 1 | _ | |0 I:(DE-588b)36225-6 |6 P:(DE-82)IDM01288 |a RWTH Aachen |b 1 |k RWTH |
| 914 | 1 | _ | |y 2016 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0510 |2 StatID |a OpenAccess |
| 920 | 1 | _ | |0 I:(DE-82)114820_20140620 |k 114820 |l Lehr- und Forschungsgebiet Mathematik (Algebra) |x 0 |
| 920 | 1 | _ | |0 I:(DE-82)110000_20140620 |k 110000 |l Fachgruppe Mathematik |x 1 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a phd |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-82)114820_20140620 |
| 980 | _ | _ | |a I:(DE-82)110000_20140620 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|