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Zusammenfassung

Die Entdeckung von Turbo-Codes in den 1990er Jahren hat den Entwurf von Kommuni-
kationssystemen revolutioniert. Im Gegensatz zu herkommlichen Kanalcodes zeichnen
sie sich durch eine komplexe, pseudozufillige Struktur aus, die Datenraten nah an der
Kanalkapazitat ermoglicht. Die entscheidende Innovation von Turbo-Codes ist der neuar-
tige Aufbau ihres Decoders: Er besteht aus zwei Teildecodern, die mehrfach abwechselnd
aufgerufen werden und im Laufe dieses Prozesses Informationen tiber die gesendeten
Daten austauschen. Es wurde empirisch beobachtet, dass dieses iterative Verfahren
trotz fehlender theoretischer Garantien mit hoher Wahrscheinlichkeit gegen die korrekte
Losung konvergiert. Nach dem bemerkenswerten Erfolg von Turbo-Codes wurde das
Konzept der iterativen Informationsverarbeitung auch auf andere Aspekte von draht-
losen Empfangern angewendet, wobei Techniken wie codegestiitzte Synchronisation
sowie iterative Detektion und Decodierung entstanden sind.

Zu Beginn waren die vorgeschlagenen Algorithmen noch eher heuristisch, aber
im Laufe der Zeit wurde viel Forschungsarbeit in die Entwicklung von theoretischen
Grundlagen investiert. Ein wichtiger Schritt war die Herleitung des Turbo-Decoders
als Instanz von Belief Propagation (BP), einer Methode zur Losung von Bayes’schen
Inferenzproblemen. Es stellte sich jedoch heraus, dass BP fiir andere Aufgaben jenseits
des Kanaldecoders weniger gut geeignet ist. Beispielsweise fiihrt die Verwendung von
BP fiir die Herleitung von codegestiitzten Synchronisationsverfahren, die die Schatzung
von kontinuierlichen Variablen erfordern, zu Integralen, welche typischerweise keine
geschlossene Losung besitzen. Fiir diese Klasse von Problemen hat sich der Expectation-
Maximization Algorithmus (EM) als bessere Alternative herausgestellt, die jedoch ihre
eigenen Nachteile besitzt. Des Weiteren fiihren hochdimensionale Detektionsprobleme,
wie sie beispielsweise im Zusammenhang mit Mehrantennensystemen (MIMO) auftreten,
zu Summen mit exponentiell vielen Termen, deren Berechnung praktisch unmoglich ist.

In dieser Arbeit untersuchen wir den Entwurf von iterativen drahtlosen Empfan-
gern auf der Grundlage eines generischen Verfahrens zur ndherungsweisen Losung
Bayes’scher Inferenzprobleme, das vor Kurzem im Bereich Machine Learning entwickelt
wurde. Seine zentrale Idee ist die Umwandlung des urspriinglichen Summations- oder
Integrationsproblems in ein dquivalentes Optimierungsproblem, welches anschlieffend



durch einen iterativen Algorithmus ndherungsweise gelost wird. Da es sich um die
Minimierung eines Divergenzmafles zwischen dem probabilistischen Systemmodell
und einer einfacheren Hilfsverteilung handelt, bezeichnen wir diesen Ansatz als Diver-
gence Minimization (DM). Aufgrund seiner Allgemeinheit bietet DM dem Designer viel
Flexibilitdt, und es beinhaltet spezifische Algorithmen wie BP und EM als Sonderfille.

Diese Arbeit beginnt mit einer systematischen Herleitung eines kombinierten EM-
und BP-basierten Empfangers, der in der Literatur zuvor eher ad hoc beschrieben wurde.
Anschlieend nutzen wir die Flexibilitit von DM zur Entwicklung von mehreren neuar-
tigen Schitz- und Detektionsalgorithmen, die aufgrund ihrer guten Leistung und ihrer
geringen Rechenkomplexitit interessante Optionen fiir praktische Implementierungen
sind. Dartiber hinaus trégt diese Arbeit auch zum theoretischen Verstandnis von itera-
tiven Methoden bei. In fritheren Arbeiten wurden die Unterkomponenten oft separat
entworfen und dann heuristisch miteinander verbunden. Im Gegensatz dazu besteht der
Vorteil des vorgeschlagenen Ansatzes zum Empfingerdesign darin, dass er nicht nur
die einzelnen Funktionseinheiten, sondern auch ihre Verbindungen spezifiziert. Insbe-
sondere herrscht in der Literatur Unklarheit dariiber, ob die Komponenten extrinsische
Information wie im Turbo-Decoder austauschen sollten, oder ob der Austausch der
vollstandigen a posteriori Information vorzuziehen ist. Die Herleitungen, die in dieser
Arbeit vorgestellt werden, beleuchten diese wichtige Frage.



Abstract

The discovery of turbo codes in the 1990s has revolutionized the design of communi-
cation systems. Unlike traditional channel codes, they are characterized by a complex,
pseudo-random structure which enables datarates close to the channel capacity. The
key innovation of turbo codes has been their novel approach to decoding: it consists of
two constituent decoders which run alternately several times and exchange information
about the transmitted data during this process. It has been observed empirically that
this iterative scheme converges with a high probability to the correct solution, despite
the lack of any theoretical guarantees. Following the remarkable success of turbo codes,
the concept of iterative information processing has also been applied to other tasks of
wireless receivers, yielding techniques like code-aided synchronization and iterative
detection and decoding.

Initially, the proposed algorithms were rather heuristic, but a significant research
effort has been invested into the development of a theoretical foundation. An important
step has been the derivation of the turbo decoder as an instance of belief propagation
(BP), a framework for solving Bayesian inference problems. Unfortunately, it turns
out that BP is less suitable for other tasks beyond the channel decoder. For example,
using BP for the design of code-aided synchronization schemes, which require the
estimation of continuous variables, gives rise to integrals that typically do not admit
a closed-form solution. For this class of problems, the expectation-maximization (EM)
algorithm has emerged as a better alternative, which however has its own drawbacks.
Additionally, high-dimensional detection problems, which arise for example in the
context of multi-antenna (MIMO) systems, involve sums with exponentially many terms
whose evaluation is practically infeasible.

In this thesis, we investigate the design of iterative wireless receivers based on a
generic framework for approximate Bayesian inference that has recently been developed
in the machine learning community. Its key idea is the conversion of the original
summation or integration problem into an equivalent optimization problem, which is
then solved approximately by an iterative algorithm. As it consists of the minimization
of a divergence measure between the probabilistic system model and a simpler auxiliary
distribution, we refer to this approach as divergence minimization (DM). Due to its



generality, DM provides the designer with a great deal of flexibility, and it contains
specific algorithms like BP and EM as special cases.

This thesis begins with a systematic derivation of a combined EM- and BP-based
receiver, which has been proposed earlier in the literature in a rather ad-hoc way.
We then utilize the flexibility of DM for the development of several novel parameter
estimation and MIMO detection algorithms, which due to their good performance and
low computational complexity are interesting options for practical implementations.
Further, this thesis also contributes to the theoretical understanding of iterative methods.
In earlier work, the subcomponents were often designed separately and then connected
heuristically. In contrast, the virtue of the proposed holistic approach to receiver design
is that it does not only specify the individual functional units but also their interactions.
In particular, there has been some confusion in the literature on whether the components
should exchange extrinsic information as in the turbo decoder, or whether exchanging
the full posterior information is preferable. The derivations that are presented in this
thesis shed light on this important question.
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Notation

The mathematical notation in this thesis adheres to the conventions that are established
in the communications literature. Lower- and uppercase italics denote scalar variables
and constants, respectively, while lower- and uppercase boldface letters denote vectors
and matrices. Augmented quantities (see page 205) are underlined, and continuous-time
signals are written in a sans-serif font.

The common probability distributions are written in a calligraphic font. We distin-
guish between a distribution and its density function in the following way: N (,0?),
for example, denotes the Gaussian distribution with mean yp and variance o2, whereas

N(x|p,0?) 2 \/227 exp(— 5= (x — #)?) is shorthand for its PDF. Thus, we would write

x ~ N (u,0%),but p(x) = N'(x | u,0?). Finally, N without arguments represents the set
of all Gaussian distributions.

All indices start at zero rather than one. All norms, written || - ||, are 2-norms, and
the inner products of complex quantities are conjugate linear in the second argument.

M Conjugate transpose of a complex vector or matrix
x Transpose of a vector or matrix

X\n Vector without the nth element

X\ Matrix without the nth column

(x,y) Inner vector product: (x,y) = yHx

X Augmented vector: x = (xT xH)T

On All-zero vector of length N

1[A] Indicator function; returns 1 if A is true, and 0 otherwise
A(0) Log-partition function of an exponential family

A State-transition matrix in state space models

a(t) Stochastic time shift of noisy oscillator

B(p) Bernoulli distribution on F, with P[b =1] = p

b Transmitted message, a sequence of Ny, bits



X Notation

C Set of complex numbers
C Codebook, the set of legal codewords
CN(u,L) Proper Gaussian distribution with mean y and covariance
c Codeword, a sequence of N, bits
T

Output vector in state space models
Dkr(pllg) Kullback-Leibler divergence

D Time instants used for transmission of payload data symbols
5(x) Dirac distribution, assigns all probability mass to x = 0
Es Received energy per symbol duration and Rx antenna

EE,(x)[f (x)] Expectation with respect to the distribution p(x): E, () [f(x)] = [ p(x)f(x) dxt

EN(u,X,£) Improper Gaussian dist. with mean g, cov. £ and complementary cov. &

€ Normalized timing offset

F Galois field of order 2

F Set of fully factorized distributions

f Frequency

fe Carrier frequency

f Anti-aliasing filter

G(a, B) Gamma distribution

g Real and positive channel gain

g Transmit pulse

r Inverse covariance matrix of Gaussian distribution: I = £~
v Precision (inverse variance) of the AWGN

h Complex channel gain: h = gel®

H, MIMO channel matrix at time n

In Identity matrix of size N x N

j Imaginary unit: 2 = —1

K Number of code bits per complex symbol: K = log, M

K In Appendix B: Number of factors in factorization of p

Kx Autocovariance function of stochastic process x

Ly Integrable functions from R to C

Ly Square-integrable (energy-limited) functions from R to C
L(Af) Single-sided PSD of phase noise process, where Af = f — f.
Ly(x) Ratio of posterior to prior probability of x: £, (x) = %
X Intrinsic L-values, passed from demapper to decoder
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xi

—
D!
~

ZEREFEEZZT IR ™

ZEEZ

N(nX)

Extrinsic L-values, passed from decoder to demapper

Approximation of the posterior L-values: A = A+A

Size of the modulation alphabet: M = | X|

Mapper; converts blocks of code bits into data symbols

Von Mises distribution

Mean vector of Gaussian distribution

Total number of channel uses per data packet: N = Ny + Np
In Appendix B: Number of unobserved variables in p

Power spectral density of the AWGN process at each Rx antenna
Number of information bits per codeword

Number of code bits per codeword

Number of payload data symbols per data packet

Number of pilot symbols per data packet

Number of receive antennas

Number of spatially multiplexed data streams

Number of transmit antennas

Real Gaussian distribution with mean p and covariance
Discrete time, normalized to symbol duration: n = t/T
Scaled mean vector of Gaussian distribution: v = Z ™1
Doppler shift

Probability of the event A

Time instants used for transmission of pilot symbols

Set of all probability distributions for a random variable x
Probability mass or density function of x*

Probability mass or density function of x, conditioned on y*
Sufficient statistics of an exponential family

Characteristic function of random variable x

Set of allowed, sufficiently simple distributions for x; g, € Qx
Belief of x; approximation of the posterior p(x |y) for some observation y
Sampling rate

Self-similarity function of the deterministic signal x

Set of real numbers

Code rate: ¥ = N,/ N

Received signal without noise

Received signal: r =¥+ v



xii Notation

re Received signal after anti-aliasing filter

r Received signal after A/D conversion

On Estimate of transmitted energy at time n: p;, = E [|x,|?]

Sx Power spectral density of the stochastic process x

Sn State vector in state space models

s Transmitted signal

z Covariance matrix of Gaussian distribution

T Symbol period

T Sample period

TN (m,s) Truncated Gaussian distribution, which assigns zero probability to x < 0
tr Trace of a square matrix

t Time

T Delay

0 Collection of all synchronization parameters

0 Natural parameters of an exponential family

¢ Phase offset

U(a,b) Uniform distribution over the interval (a,b)

uy Process noise in state space models

v Additive white Gaussian noise process

v; Interference-plus-noise experienced by the ith data stream

Wy White Gaussian noise samples at time n

X Modulation alphabet, e. g. QAM or PSK

Xn Complex data symbols transmitted at time n

Y, Received signal after A/D conversion and matched filtering: y,, = Hyx,, + wy,
V4 A generic normalization constant

z Set of integers

4 Extrinsic phase information, passed from phase estimator to demapper
Z Intrinsic phase information, passed from soft mapper to phase estimator
4 Soft phase estimates: { = Z + Z

t As is common practice, we drop the subscript if the notation remains unambiguous.



Chapter 1

Introduction

The ultimate task of transmitters in wireless digital communication systems is to convert
a message, which could be an analog waveform or some data that is already available in
digital form, into an RF signal which is suitable for transmission over a radio channel.
This process can typically be broken down into functions like source coding, channel
coding, mapping to modulation symbols, and D/A conversion, which are executed one
after the other. Conventional receiver designs used to mirror this sequential transmission
structure: they processed the received signal step by step, essentially inverting the
functional units of the transmitter in reverse order.

In the 1990s, information theory was revolutionized by the invention of turbo codes
and the subsequent rediscovery of LDPC codes. For the first time, these so-called
“modern channel codes” allowed for digital communication over noisy channels with
data rates close to the channel capacity, which constitutes a fundamental upper limit. The
essential characteristic of these codes is a complex, pseudo-random internal structure,
which makes them similar to the capacity-achieving (but impractical) random codes that
have been used by Shannon in the proof of his celebrated noisy-channel coding theorem.

The downside of this structural complexity, however, is that it renders optimum
decoding (in the sense of minimal error probability) virtually impossible. The receiver
must therefore resort to heuristic decoding algorithms. In practice, these usually
consist of several interconnected subdecoders which are invoked alternately, exchanging
information about the transmitted message during this process. Despite the lack of
theoretical performance guarantees, experience has shown that such iterative schemes
can yield surprisingly good results. As long as the channel quality exceeds a certain
information-theoretic threshold, even if just by a small margin, there is a high probability
that the algorithm will converge to the correct solution.

The concept of iterative information processing caused nothing short of a paradigm
shift in receiver design. Soon after the development of modern channel codes, the idea



2 Chapter 1. Introduction

was also applied to other functional units of the receiver. Two important families of
iterative receiver algorithms, which we will study in greater detail within this work, are

o code-aided synchronization: In coherent communication systems, the receiver must
be synchronized to the symbol timing of the transmitted signal, and it must
compensate for any carrier phase and frequency offsets. This is conventionally
achieved with the aid of some training data that is known a priori to the receiver, for
example in the form of a preamble, or as pilot symbols that are multiplexed into
the data stream. However, training data has the obvious drawback that it decreases
the net data rate, since it occupies resources which are not available anymore for
the transmission of payload data. Code-aided synchronization attempts to reduce
the required amount of training data to a bare minimum, which is necessary to
bootstrap the algorithm. The intuitive idea is that after the receiver has processed
a block of data once, the detected message (which may still contain some bit
errors) can be re-modulated to data symbols, which are then passed back to the
synchronization unit where they are treated as “virtual” pilot symbols. Now, the
receiver processes the same block of data a second time. Due to the increased
amount of available training data, the synchronization parameters can be re-
estimated with higher accuracy, which will ultimately lead to a lower bit error rate
after decoding. If required, this procedure can be iterated until convergence.

o iterative detection and decoding: This technique can be used in systems which
combine a binary channel code with a non-binary modulation scheme. If K code
bits are transmitted per channel use, there are M = 2K possible data symbols
which the demapper must choose from. However, if the decoder is able to provide
the demapper with prior information about K’ bits after it has processed the data
once, only the oK-K' hypotheses that are compatible with the reliably decoded
bits remain. This may assist the demapper in making a better choice about the
remaining K — K’ bits, which will in turn improve the decoding result. Again, this
process can be iterated several times.

As these examples demonstrate, the idea behind iterative receivers is fairly intuitive,
and it is easy to devise heuristic algorithms in accordance with the general concept.
But inventing algorithms in an ad hoc way is unsatisfying, even if they appear to work
well. In order to realize the potential benefits of iterative techniques to their full extent,
developing a solid theoretical understanding is indispensable.

An important step towards this goal has been the insight that the turbo decoder is
an instance of belief propagation (BP), also known as the sum-product algorithm, which
was developed in the machine learning community in the 1980s. It is a generic method
for solving Bayesian inference problems (i. e., updating a priori to a posteriori probability
distributions in the light of new data) which typically involve the computation of sums
with many terms. BP reduces the required number of operations by exploiting the



distributive law, which is applicable whenever two random variables are conditionally
independent (i.e., when there is no immediate interaction between them). A central
concept of BP is the so-called belief network, a graphical representation of the statistical
dependencies between all variables, which is usually rather sparse in practice. If the
underlying belief network is free of cycles, BP terminates in finite time and gives exact
answers. Unfortunately, modern pseudo-random channel codes do not admit a simple
tree-structured representation. Strictly speaking, BP is thus inapplicable to the problem
of decoding random-like codes, but it has been recognized that the turbo decoder can
be derived by simply ignoring the loops and applying BP nonetheless. This is possible
because the algorithm only consists of local computations that are unaware of the global
graph structure. However, the presence of loops has the consequence that the exactness
guarantees of plain BP get lost. Instead, the local computations are iterated several times,
in the hope that the preliminary results will converge towards the correct solution.

While BP has emerged as the standard algorithmic framework for the derivation of
modern channel decoders, it is insufficient for other receiver tasks like detection and
synchronization, which, as motivated above, can also benefit from iterative techniques.
There are no theoretical obstacles which prevent the application of BP to these tasks, but
some practical ones. In the context of detection, the number of hypotheses is often so
large that the resulting sums cannot be evaluated in real-time anymore. This problem
arises for example in multi-antenna systems, where the number of signals which need to
be distinguished at the receiver grows exponentially with the number of transmitted data
streams. And when BP is applied to the estimation of continuous channel parameters,
those sums turn into integrals, which usually do not admit a closed-form solution.

Several authors have proposed the expectation maximization (EM) algorithm as an
alternative theoretical framework for code-aided synchronization. EM is an iterative
method for solving maximum likelihood estimation problems in the presence of un-
observed “latent” variables, which in the case of code-aided synchronization are the
unknown data symbols. The EM algorithm has been successfully used to generalize
conventional parameter estimators, which solely rely on training data, to code-aided
algorithms. But while EM indeed avoids some issues of BP, it is not a panacea either.
One of its problems is its origin in orthodox statistics, which leads to two undesirable
consequences. On the one hand, it treats the unknown parameters as deterministic.
The algorithm is therefore unable to exploit prior knowledge that might be available
from earlier observations or because of physical constraints. And on the other hand, the
output of EM is a “hard” estimate, a single and almost surely incorrect value. In contrast,
modern Bayesian methods use the observed data to convert prior into posterior distribu-
tions; i. e., they consume and produce “soft” probabilistic information. Another issue is
that EM is only used for the derivation of synchronization and estimation algorithms,
while the detector and decoder remain instances of belief propagation. Connecting the
two parts is possible, but only heuristically, and the resulting estimators are, strictly
speaking, not EM algorithms anymore.
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The preceding discussion motivates our interest in a unifying algorithmic framework
for statistical inference, which is sufficiently expressive to allow for a joint derivation
of all functional units of a receiver. The method needs to be practically applicable to
mixed belief networks, which contain both discrete and continuous variables, and it
should contain BP and EM as special cases. It should be fully Bayesian, in that it treats
all unobserved quantities as random variables, whose distributions encode the available
incomplete probabilistic knowledge about their state. And in order to keep the com-
putational complexity manageable, it should be possible to introduce approximations
in a controlled way. This requirement, however, gives rise to an interesting problem:
statistical inference fundamentally reduces to solving sums and integrals, and it is far
from obvious how these kinds of computations can be systematically approximated.

An interesting approach to approximate statistical inference, which fulfills these
conditions, has been developed in the machine learning community in 2005. Its key idea
is to replace the complex posterior with an auxiliary distribution that is simple enough to
allow for exact inference. Now, the problem consists of finding an auxiliary distribution
which, informally, resembles the true posterior as closely as possible. In order to
formalize this task, a divergence measure that quantifies the dissimilarity between two
probability distributions is introduced. The original summation or integration problem
then turns into an optimization problem: finding the particular element of a given set of
simple distributions which minimizes the divergence with respect to the true posterior.
We will therefore refer to this approach as divergence minimization (DM) in the following.

It can be shown that, for a particular choice of divergence measure and feasible set,
the new optimization problem is equivalent to the original inference task, in the sense
that its solution allows us to recover the marginal posterior distributions that we are
interested in, and whose naive computation gave rise to the infeasible sums and integrals
in the first place. Unfortunately, finding the exact solution of the optimization problem
is also infeasible in general, so this equivalence might seem like a moot point. However,
the optimization perspective turns out to be valuable nonetheless, because it enables us
to introduce approximations in a more systematic way than the original formulation
would have allowed. First of all, the global optimization problem can be broken down
into interconnected local subproblems, whose preliminary solutions are alternately
updated by means of a fixed-point iteration scheme. And specific subproblems can
furthermore be simplified by modifying their objective function and/or the feasible set.

In this thesis, we will study the applicability of the divergence minimization approach
to the systematic design of iterative receiver structures. The aim of this work is twofold.
On the one hand, it contributes to the theoretical understanding of iterative methods,
particularly the interaction between the individual algorithmic components. And on the
other hand, it develops several novel estimation and detection algorithms, which, due to
their good algorithmic performance and low computational complexity, are interesting
options for practical receiver designs.
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Chapter 2 introduces the bit-interleaved coded modulation (BICM) transmission technique,
which is the de facto standard for modern wireless communication systems. In particular,
we derive the BICM receiver with iterative detection and decoding, which will serve as
the foundation for the following discussions.

The next two chapters present the main contributions of this thesis. They are
organized according to the classical distinction of statistical signal processing between
estimation and detection problems. We begin in Chapter 3 with a discussion of code-aided
synchronization and parameter estimation. After a brief overview of state-of-the-art
techniques, we introduce the concept of a likelihood function for continuous-time
observations, which is required for the following development. Subsequently, we use the
divergence minimization approach to derive a receiver with hard parameter estimation,
which has earlier been proposed as an instance of the EM algorithm. As mentioned
above, the DM framework is inherently Bayesian, but hard estimators can be obtained
as special cases by constraining the feasible sets of the auxiliary parameter distributions
to Dirac deltas. The resulting algorithms themselves are not novel, but the proposed
derivation has the advantage that it admits a natural generalization to soft estimators,
simply by relaxing this constraint. This aspect will be illustrated in the remainder of this
chapter with case studies on soft estimation of both static and time-varying parameters.

Chapter 4 discusses the application of divergence minimization to detection problems.
As a running example, we study the detection of spatially superimposed signals in
multi-antenna (MIMO) systems. The same fundamental problem, however, arises in
many areas of wireless communication, for example in turbo equalization for frequency-
selective channels and multi-user detection in CDMA systems. We will see that the DM
approach naturally leads to iterative detection algorithms, where soft information is
exchanged between an affine front-end (consisting of interference cancellation followed
by a linear filter), and a bank of symbolwise detectors. Their novelty with respect to
conventional linear detectors consists in the direct feedback path from the symbolwise
detectors to the affine front-end, which improves the algorithmic performance because
it enables the detector to exploit its knowledge about the discrete modulation alphabet.

Chapter 5 concludes this thesis with a summary and suggestions for future work.

Appendix A provides some mathematical background. Section A.1 introduces basic
concepts from complex and multivariate differential calculus, which are required in the
subsequent Section A.2 on exponential families. Besides explaining the general notion
of exponential families and their importance for modern inference algorithms, we also
introduce the particular families that are used within this thesis.

Finally, Appendix B gives an overview of approximate statistical inference methods,
and provides a detailed derivation of the DM framework which is used throughout
this work. The reader who is not familiar with the general concepts of divergence
minimization is encouraged to scan this appendix before proceeding to the main text.
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Chapter 2

Bit-Interleaved Coded Modulation
with Iterative Detection and Decoding

The major contemporary wireless communication systems, like 3GPP LTE and current
revisions of the IEEE 802.11 WLAN standard, are based on bit-interleaved coded modulation
(BICM). Due to the overwhelming practical relevance of this transmission scheme, the
present thesis focuses exclusively on receiver structures for BICM systems.

This chapter starts with a general overview of modern communication systems in
Section 2.1, and a brief introduction to BICM transmission in Section 2.2. The main part
of this chapter is contained in Section 2.3, where we discuss the receiver side of BICM
systems. In particular, we derive the standard BICM-ID algorithm, which exchanges
soft information about the transmitted bits iteratively between the two constituent
algorithmic components: the demapper and the soft-input soft-output channel decoder.

The common derivation of the BICM-ID algorithm, reproduced in Section 2.3.1, is
based on an inference technique called belief propagation (BP). Subsequently, Section 2.3.2
presents an alternative derivation based on expectation propagation (EP), which is a
generalization of BP. In the particular example of BICM-ID, the additional degrees of
freedom provided by EP are not utilized, and both techniques yield the same algorithm.
However, EP will play a central role for some later developments in this thesis, and it is
instructive to introduce it in the context of a simple and well-known example.

All derivations in this chapter are based on the assumption that the receiver is per-
fectly synchronized with the transmitter. This results in a simple discrete-time channel
model, where all parameters like phase shift, channel gain, and noise variance are known
to the receiver. In the following chapter, we will lift these simplifying assumptions,
and study receiver structures where the estimation of the required synchronization
parameters is entangled with the iterative detection and decoding process.
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Physical Layer

Figure 2.1: General block diagram of a digital transmission system

2.1 A Brief History of Coding and Modulation

Figure 2.1 shows an overview of the general structure of digital communication systems,
which has been developed by Shannon in 1948 [123], but is still valid for todays wireless
standards. The source emits some information, for example an analog signal as in audio
or video applications, or any kind of digital data. The information is processed by a
source encoder, which (after A/D conversion in the case of analog sources) removes the
redundancy contained in the source signal, and outputs a sequence of binary digits.

This bit sequence is then passed through several layers of protocols, which are not
shown in the figure as they are not relevant for our discussion. In this thesis, we will
only be concerned with the lowest level of the protocol stack, the physical (PHY) layer.
It takes a block of bits (called message in the following) from the higher layers, and
converts it into an analog waveform that is suitable for transmission over the physical
medium. This process can be broken down into two steps: first, the channel encoder maps
the message to a discrete sequence of (binary or non-binary) symbols, and the modulator
subsequently generates the analog signal.

In the early days of digital communications, Coding1 and modulation were treated as
separate entities that were designed independently. The modulator and a corresponding
hard-quantizing demodulator were used to convert the underlying continuous waveform
channel into a discrete modulation channel with coinciding input and output alphabets X
and Y (for example, X = Y = {0,1}). The task of the channel code was then to correct
the errors that were introduced by the modulation channel.

! In the following, the terms “coding”, “encoder”, and “decoder” always refer to channel coding.
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A paradigm shift occurred in the 1970s, when Massey suggested that coding and
modulation should rather be considered as a single entity [84]. In particular, he studied
the gains that could be achieved by soft demodulation, i. e., by allowing for a continuous
channel output Y, which avoids the information loss caused by hard-output demodula-
tion. An immediate consequence of X' # ) is that the notion of an “error probability”
of the modulation channel (e. g., an uncoded bit error rate) becomes meaningless.

In 1976, shortly after Massey’s paper, Ungerbock presented the first practical coding
scheme which operates directly on non-binary signal levels (and not on code symbols),
the so-called trellis-coded modulation (TCM) [135]. However, it was not until 1982 that
TCM became widely recognized with the publication of [132]. The essential feature
of TCM, which distinguishes it from traditional coding schemes, is that it maximizes
the minimum Euclidean distance between signal sequences, rather than the minimum
Hamming distance between codewords. In the following years, TCM found widespread
application in bandwidth-limited systems, for example in voiceband modems. An
accessible overview of TCM can be found in the tutorial papers [133,134].

A major drawback of TCM is its lack of flexibility: for each modulation alphabet, a
separate, well-performing TCM scheme needs to be found. In an attempt to overcome
this problem, Viterbi et al presented “a pragmatic approach to trellis-coded modulation”
in 1989 [139], which allowed to combine industry standard convolutional codes with
several M-ary phase shift keying (PSK) modulations. The idea was further developed by
Zehavi [156], who combined a convolutional code and an M-ary signal constellation
via a bank of bit interleavers. At the receiver side, he proposed to compute bitwise soft
metrics, which were processed by a soft-input Viterbi decoder. This transceiver concept,
which allows combinations of any binary code with any modulation scheme, became
later known as bit-interleaved coded modulation [19]. Besides its flexibility, BICM also
benefits from a larger diversity compared to symbolwise interleaving, which makes it
particularly interesting for wireless systems that operate over fading channels.

In the 1990s, coding theory was revolutionized by the invention of turbo codes [11,12]
and the subsequent re-discovery of low-density parity-check (LDPC) codes [81], which
had originally been developed by Gallager in the 1960s [43], but whose potential had
not been recognized at that time. Both code families have in common that they are
much more “random-like” than traditional codes (for example the highly structured
convolutional codes). The downside of this randomness is that it renders optimum
maximum a posteriori (MAP) decoding infeasible. Nonetheless, it was shown that even
with suboptimal iterative decoders, these “modern codes” [110] allowed communication
over binary-input channels with a vanishingly small gap to the capacity. The roughly
simultaneously developed BICM was a simple and pragmatic method to achieve this
unprecedented performance also in conjunction with non-binary modulation schemes.

As mentioned above, the demodulator and decoder of a BICM receiver communicate
via bitwise soft metrics. BICM can therefore suffer from a performance degradation
compared to more general coded modulation (CM) schemes, because bitwise metrics
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are unable to capture the statistical dependencies between bits that belong to the same
modulation symbol. However, it was demonstrated that the resulting performance loss
could be significantly reduced by iterative detection and decoding [75,76], a concept that is
a direct generalization of the iterative turbo and LDPC decoding algorithms, and that
is commonly referred to as BICM-ID. A detailed analysis of BICM, including iterative
decoding, is presented in [51].

Today, BICM with modern channel codes is the de facto standard in state-of-the-art
communication systems. Important examples include the IEEE WLAN standard 802.11n,
the cellular long term evolution (LTE) system, and digital video broadcasting (DVB) services
like the terrestrial DVB-T2 and the satellite system DVB-52. As already mentioned at
the beginning of this chapter, it is this outstanding practical relevance which motivates
our focus on receiver structures for BICM systems in this thesis.
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Figure 2.2: Physical layer of a generic BICM transmission system

2.2 A Generic BICM Transmitter

Figure 2.2 provides an overview of a generic BICM-based physical layer. From now on,
the source does not refer to the original information source as in Figure 2.1 anymore;
instead, it should be understood from the perspective of the PHY-layer.

The source emits a message in the form of a bit sequence of length Ny,:

b= (bo,bi,..., b, 1) 2.1)

We assume that the bits b; are statistically independent and uniformly distributed, or
equivalently, that all 2" messages are equally probable:

p(b) =2"N,  pecFM, (2.2)

For two reasons, this assumption will only hold approximately. On the one hand,
practical source encoders are suboptimal (because of latency constraints, for example),
so that there will be some remaining redundancy in the message. Furthermore, b also
contains packet headers from the higher protocol layers, which exhibit some structure
and hence are not uniformly distributed. The redundancy in the message can be
exploited by joint source-channel decoding (JSCD) techniques [34], but in this thesis, our
focus will be limited to the physical layer. Thus, any techniques beyond the channel
decoder are out of scope for us. However, JSCD can of course be combined with the
PHY-layer that we will discuss in the following—particularly the iterative source-channel
decoding (ISCD) approaches from [2,52], which belong to the same algorithmic framework
as the BICM-ID receiver that will be derived in the next section.
The encoder converts the message into a codeword of length N¢:

c = (Co,Cl,...,Cchl). (23)

We will use the terms information bits and code bits to distinguish between the b; and c;.
The rate of the code is defined as r = N}, / N..

The careful reader will have noticed the lack of an interleaver after the encoder in
Figure 2.2. Despite its prominent appearance in the name “BICM”, the bit interleaver
is (at least for our purposes) just an implementation detail. In the following, the
encoder should be understood as an effective encoder; a black box which may comprise
several subblocks that operate on bit strings. A possible effective encoder is shown
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Figure 2.3: Exemplary effective code, consisting of parallelly concatenated RSC encoders,
interleavers, and a rate-matching device

in Figure 2.3, built from a rate-1/3 turbo code (which itself consists of two recursive

systematic convolutional (RSC) encoders, separated by a bit interleaver 713), a rate-matching

device (which could e. g. puncture or repeat some bits), and the BICM interleaver 7.
The codeword is split into N segments with a length of K bits each (i.e., N. = KN)

c=(co,€1,---,EN-1) (2.4)

and the subsequences are mapped to complex data symbols x € X, where X" is an M-ary
modulation alphabet and M = 2K. In the numerical examples that will be presented in
later chapters, we will always use quadrature amplitude modulation (QAM) schemes like
16-QAM, but the discussed algorithms are of course not restricted to QAM alphabets.
The symbol sequence

X = (X(),Xl,...,XN_l) (25)
is finally converted to a continuous-time signal s, using linear modulation with a
band-limited transmit pulse g and symbol spacing T:

N-1
s(t) =) xug(t—nT). (2.6)
n=0
Note the convention of using sans-serif letters for continuous-time signals.

We will only consider single-carrier transmissions over frequency-flat channels in the
following. This assumption might be rather simplistic, since modern terrestrial systems
typically operate over frequency-selective fading channels. However, the basic principles
that we will discuss are still applicable. The de facto standard for current broadband
systems is the multi-carrier technique orthogonal frequency division multiplexing (OFDM),
where the available bandwidth is split into sufficiently narrow subbands, so that each
subcarrier experiences flat fading. Some algorithms carry over unchanged to OFDM
systems, for example the MIMO detectors, which then work on a per-subcarrier basis.
Others, like synchronization, might need some adaptations, but thanks to the strong
modularity of graph-based inference algorithms, these should be fairly straightforward.
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2.3 The Outer BICM-ID Receiver

The literature on receiver algorithms sometimes distinguishes between an inner and
outer receiver, but the precise meaning of these terms does not appear to be universally
agreed upon. In this thesis, we will draw the line roughly at the boundary between
continuous and discrete variables:

o The inner receiver comprises tasks such as synchronization and channel estimation. It
essentially converts the underlying continuous-time into a discrete-time channel.

e The outer receiver consists of the demapper (also called detector) and the decoder.
This is the realm of BICM-ID.

In the following, we will briefly derive the standard BICM-ID outer receiver under
the assumption of perfect synchronization. The next chapter will then provide a detailed
discussion of the inner receiver, and of the connection between inner and outer receiver.

The emphasis of this derivation is on the general concept of message passing
algorithms and on the implementation of the soft demapper, while the channel decoder
will only be sketched very briefly. The decoder plays of course a central role in the
iterative code-aided receiver techniques that this thesis is all about, but it will be
sufficient for us to treat it as a black box, which inputs intrinsic L-values of the code
bits and returns extrinsic L-values and an estimate b of the message. There are many
detailed tutorials on soft-in soft-out decoders for turbo and LDPC codes available in the
literature, so it will not be necessary to cover this topic here in depth.

As an example, the following derivation assumes a specific modulation and coding
scheme (MCS): a turbo code and quadrature phase shift keying (QPSK) modulation. The
encoder is structured as shown in Figure 2.3. The message b (wWhose components will be
called systematic bits) is encoded by two RSC codes, once in its original shape, and once
after a pseudo-random bit interleaver 7t;,. The output sequences of the two encoders
(the parity bits) are called p and p’. With p denoting the rate matching operation and 7,
the BICM interleaver, the final codeword is obtained as

c = (CO/C1/~~~/CNC—1) = ﬂc(p(b,p,p/)). (27)
The code bits are grouped pairwise
¢ = ((co0,c01), (cr0,c11),- -+, (eN-10,EN-111)) (28)

and for each #, the pair (c,,,0,¢y,1) is mapped to a QPSK data symbol x, = M(cy,0,¢pn1)-
Under the assumption of an ideal inner receiver, the outer receiver sees a memoryless
discrete-input continuous-output channel that can be described via

Yn = &nXn + Wy, wy ~ CN(0, Np) (2.9)
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where w = (wy, ..., wyn_1) is additive white Gaussian noise (AWGN). The possibly
time-varying channel gain g, > 0 and the noise variance Ny are estimated by the inner
receiver, and are assumed to be known in the remainder of this chapter.

With the channel model (2.9), the average signal-to-noise ratio (SNR) is

E[lgx"] _ E[g*] Es

SNR £ = (2.10)
2
E(|w|"] No
where 1
Es2 — Y |x? (2.11)
M xeX

denotes the average transmit energy per symbol duration. Without loss of generality,
we will assume the normalization [E[¢?] = 1, such that SNR = Es/Nj.

2.3.1 Standard Derivation via Belief Propagation

It has been shown in [86] that the iterative turbo decoder can be derived as an instance of
belief propagation® (BP), a message passing algorithm for statistical inference. It operates
on a graphical representation of some joint probability distribution p(xy, ..., ¥N-1,¥),
and computes the posterior marginal distributions of the unknown variables x;,, condi-
tioned on the observation y. On singly-connected graphs, the algorithm terminates in
finite time and returns the exact p(x, | y). In the presence of cycles, it becomes iterative
and only yields approximate results, the so-called beliefs, denoted with the letter g in
order to distinguish them from the exact marginals:

q(xn) = p(xu|y). (2.12)

In this thesis, we will use factor graphs, a particular family of graphical models which
appears to be the most common one in the communication literature. Tutorials on
belief propagation in conjunction with the classical bipartite factor graphs (containing
factor and variable nodes) and with Forney-style factor graphs (consisting only of factor
nodes) can be found in [69] and [78], respectively. Furthermore, Appendix B gives
an introduction into the more general divergence minimization framework [94] which
contains BP as a special case, and which will be used extensively in the remainder of
this thesis. See in particular Section B.2 for a brief summary of factor graphs and BP.

The well-known message update equations for belief propagation on bipartite factor
graphs are derived in the appendix, c.f. (B.86) and (B.87), and are repeated here for the
special case of discrete variables. The message from a variable node x; to an adjacent
factor node f (x, and f are connected if and only if the function f depends on x;) is

My, p(xn) & [ ] mgx, (xn) 2.13)
8#f

2 Of loopy belief propagation, to be precise, due to the cycles in the underlying factor graph.
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where the product is over all functions other than f that depend on x;. Furthermore, if
xy is a vector that contains the parameters of f (i.e., xy is a subvector of (xg,...,XN_1)),
then the message from factor node f to an adjacent variable node x;, is

mfax,,(xn) °< Zf(xf) H mxmﬂf(xm) (2.14)
~Xp m#n
where the sum is over all possible assignments to the arguments of f, except of x;
whose value remains fixed. Note that both equations are only defined up to (positive)
factors, so we are free to drop any normalization constants.
Finally, the belief of a variable x; is given as the normalized product of all messages
towards its associated variable node:

q(xn) = % [Tmpon, (xn) (2.15)
f

where Z ensures that ), q(x,) = 1.
In the following, we will apply BP to the factor graph shown in Figure 2.4, which
represents the signal model described at the beginning of this section.

Information from the Channel

The likelihood functions p (i, | x,) depend on x,, and y,, but the observed variables y,
are not represented by their own variable nodes; they merely parameterize the likelihood
functions. The factor node p(yy | x,) is therefore only connected to the variable node x,,
and the corresponding message is simply

My, | x0)—xn (xn) o P(yn | xn)

2
o (gt
0

2 2

_ _&n |, _Yn

= exp ( No Xn o )

x CN (xn |22, 220) (2.16)
g" n

which follows immediately from (2.9).
The variable node x, is of degree 2,? so there is only one factor on the right hand
side of (2.13), and thus

n

N
mxn—W(Xn |C,,,0,cn,1) (xn) [0 mp(y” \x,,)—)x,, (xn) X CN (x,, ‘ Zf:, ;20> . (217)

3 The degree of a node is the number of edges attached to it.
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p(xo| co0,co,1)
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(Accounts for rate matching and the BICM interleaver 7t.)
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Figure 2.4: Factor graph of a BICM-ID receiver with the code from Figure 2.3
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Intrinsic, Extrinsic, and Posterior Information

In the literature on BICM-ID, the parameters A of the forward messages are often called
intrinsic L-values, with the rationale that in BPSK-modulated transmissions, where there
is only one code bit per channel use, 7\,, describes the information about ¢, that is
contained in the nth observation y;,.

Similarly, the parameters of the backward messages A are called extrinsic L-values, since
in BPSK systems, An describes (exactly or approximately) the information about cy
contained in all channel uses except of the nth.

Finally, we will refer to A £ A+ A as the posterior L-values, since they parameterize the
beliefs of the codebits, which are approximations of the posterior marginal distributions.

It is a general property of degree-2 variable nodes that they just relay their message
unchanged, so it makes little sense to distinguish between those two messages at all.
Thus, we will usually drop variable nodes of degree 2 altogether and connect their two
neighboring factor nodes directly; see the discussion on Tanner vs Forney-style factor
graphs on page 236ff, and the text box on message nomenclature at the end of this
chapter.

Demapping

Now we turn to the derivation of the soft demapper. The function p(xy | cy0,¢n1)
describes the deterministic mapping of code bits to data symbols, and is given as

P(Xn ‘ Cn,0, Cn,l) =1 [xn =M (Cn,Ol Cn,l)] (2.18)

where 1 [A] is the indicator function: 1 [A] = 1 if A is true, and 1[A] = 0 otherwise.

All messages to and from binary variable nodes are (proportional to) Bernoulli
distributions, and can therefore be conveniently represented by L-values (see (A.75) on
page 214), defined as

_ o, m(1)
with inverse
m(c) o exp(cA), ceF. (2.20)

We denote the L-value of the forward message from code bit ¢, ; to the decoder as
Xn,k, and that of the backward message from the decoder to the demapper as Xn,k. As
illustrated in the text box above, these are also called intrinsic and extrinsic L-values,
respectively.
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Now, applying (2.14), the message to the first code bit is

mP(Xn ‘ CM,O/Cn,l)‘}Cn,O (Cn,())

x ZZPW | €00 Cn,1) Mo (| norcnn) () My p(x | cupsnn) (En1)

Cn,l Xn

o Y Y M fxn = M(cp,601)] Xp

Cn,l Xn

&
No

Yn

n

Xn —

[

jwwh)

g wl* s
= ZeXP _ﬁj) M(Cn,Or Cn,l) - ?’ + Cn,l)\n,l . (2.21)
Cn,l n
The intrinsic L-value for ¢, g is thus
o m 1
An,o é log p(xn ‘CVZ,O/CnJ)—}CVl/O( )
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n,1
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Y exp (*I%%O ‘M(cn) - g—" +c;lr/\n)
b niCno=1 " <
© 1o Grind : % — Ao (2.22)
where (a) adds and subtracts 7\,,,0, and (b) switches to a more compact vector notation,
with ¢4 £ (cy0,.--,cnk—1)" and Xn = (7\,,,0, .. .,XHIK_l)T. The operator Y, ..., —p

denotes summation over all bit labels ¢, with the value of ¢,  fixed to € IF. The last

expression (2.22) has the additional advantage that it holds for any K, not just K = 2.4
Defining Xf as the set of symbols whose bit label has a j in the kth position, our final

expression of the soft demapper, which avoids the somewhat clumsy M (¢, ), becomes

2 2 -
Y. exp (7% Xp — %‘ +c;1r}\n)
o X, €X! -
Aug = log £ - 5 — — Ank (2.23)
Y exp <—j3\']—’; Xn — g —l—cIAn)
X €XY

4 Though we have not strictly shown this. A more general derivation for arbitrary K will be given in Section 2.3.2.
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where ¢, is implicitly understood to contain the bit label of the current x;,. This slightly
imprecise notation should not cause any confusion.

Computing (2.23) requires a full enumeration of all x € &, and therefore has a
complexity of order O(M) = O(2K). A common trick to reduce the complexity is the
max-log approximation, where the sums in (2.23) are replaced by their largest terms:

2 2 2 2
3 &n Yn TY 8n Yn TS Y
A~ max | =<5 |xy — —| +c, Ay | — max | -5 |x, ——| +c,An| — A
nk xneXkl ( NO n < n n) x,,eX,? < NO n , n n> nk
2 2 2
. &n Yn TS . &n Yn TS
= min | 2} |x;, — | —c, Ay | — min | & |x;, — | —c,An | — A,k
xp €XD (NO " 8n . n) Xy XL <N0 ! &n " n) nk
(2.24)

Naively searching for the two minima in (2.24) still requires a full enumeration of the set
X, but for specific mapping schemes it is possible to implement the max-log demapper
with lower complexity; see for example [3] for QAM and [141] for PSK modulations.

Decoding

As mentioned before, we will only sketch the implementation of the decoder briefly,
in an informal way. The box p(c|b,p,p’) in Figure 2.4 can be interpreted as an
edge interleaver, which connects the nodes of the systematic and parity bits with
the corresponding code bits. If a parity bit is punctured, the respective variable node
pi or p; has a degree of 1; it is only connected to the decoder, but not to the demapper.
It therefore sends a uniform message to the decoder, i. e., the constant L-value 7\,- =0.

The upper dashed box represents the first RSC decoder, which gets two kinds of
input. From the left, it takes the L-values of the parity bits p = (po, ..., pn,—1), and from
the right, it gets information about the systematic bits b = (b, ..., bNb,l). Messages
are multiplied at variable nodes, which in the case of binary variables corresponds
to a summation of their L-values. Thus, the L-value for b; which is fed to the RSC
decoder is a sum of three other L-values: (a) the information about b; from the channel,
(b) the information from the second RSC decoder, and (c) the prior information, which
we assume to be uniform in this thesis, but which can in general be non-uniform, for
instance in the presence of an ISCD loop.

The standard implementation of the RSC decoder is via the BCJR algorithm [7],
which provides extrinsic L-values of the systematic and the parity bits. The latter are
fed back to the demapper for the next BICM-ID iteration, while the former are used in
the following run of the second RSC decoder, which proceeds analogously. After one or
several turbo iteration (where one turbo iteration consists of running both RSC decoders
once), the receiver either continues with another BICM-ID iteration, or it terminates
after computing a hard estimate b by thresholding the L-values of the systematic bits.
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2.3.2 Alternative Derivation via Expectation Propagation

Expectation propagation (EP) is a generalization of belief propagation, where the update
equation (2.14) for the factor-to-variable messages is replaced by

projo_ My, s ¢ (Xn) Z f(xf) H My s (Xm) |- (2.25)

m (xp) ¢ ————
f‘ﬂ(n n mxnﬁf(xn) ~Xp m#n

belief propagation

The precise definition of the projection operator projg[p], where Q is a set of probability
distributions, is given in Appendix B.3.2 on page 242. Informally, it returns the distribu-
tion g € Q which, in a certain sense, is the best approximation of p. As an ubiquitous
example, the projection of some (in general non-Gaussian) p into the set of Gaussians
returns the Gaussian distribution with the same mean and variance as p (“moment
matching”). In the special case where p itself is an element of Q, the projection becomes
the identity operation and (2.25) simplifies to (2.14), which shows that EP really is a
generalization of BP.

The problem that EP solves is that the BP messages often become too complex to be
used in practical implementations. There are essentially only two kinds of probability
networks where BP is applicable without approximations. The first one are problems
where all variables are discrete (and with sufficiently small range® so that the sums
in (2.14) can actually be computed). The BICM-ID receiver belongs into this class. The
other example are linear Gaussian networks, where BP leads to the well-known Kalman
filter. Due to the projection step, which can be used to control the complexity of the
resulting messages, EP is applicable to many further problems where plain BP fails.

We will use EP several times in this thesis to derive novel receiver algorithms; for
example, the iterative MIMO detector from Section 4.3 is obtained by replacing the
discrete data symbols with Gaussian variables. In the remainder of this chapter, however,
we will only re-derive the BICM-ID receiver from the previous section by means of EP.
Why would we want to do this? For simplicity and generality, mainly. The factor graph
in Figure 2.4 represents a very fine-grained model of the BICM-ID receiver, showing the
dependencies between individual bits. This is the right level of detail for the derivation
of decoding algorithms, like the turbo decoder in this example. The focus of this thesis,
however, is mainly on the inner receiver. Sticking to such a detailed view of the outer
receiver would only be distracting for our purposes, and it would also needlessly restrict
the generality of the derivations, because our underlying models would always assume
one specific modulation and coding scheme.

Compare the detailed model from Figure 2.4 with the more compact representation
in Figure 2.5, where the code bits (c,,,0,¢,,,1) that belong to one channel use are merged
into the bit vector c¢;;, and where the systematic and parity bits are merged into the

5 The range of a random variable is the set of all values that it can assume: range(X) £ {X(w) |w € Q}.
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Figure 2.5: Compact representation of the BICM-ID receiver from Figure 2.4, where the
factorization of the beliefs down to the individual bits is kept implicit

bit vectors b, p and p’. The reader will probably agree that Figure 2.5 is much better
suited for a high-level overview of the probability network. However, we would run
into a problem if we were trying to apply belief propagation to the compact model.
Theoretically, it would of course still be possible, and since the subgraph which describes
the turbo code is now cycle-free, BP would actually yield an exact, non-iterative decoder.
The problem is that the discrete random variables b, p and p’ each have a range of
cardinality 2™, so describing their distributions would require 2Me — 1 real numbers,
which is far too much for any block size of practical interest. Running BP on Figure 2.5
would essentially boil down to a brute-force algorithm, which would compute the
posterior probabilities of all possible messages.

When we applied BP to Figure 2.4 in the previous section, such an exponential
blowup did not occur. The reason is that the detailed graph contains separate variable
nodes for the bits, which forces BP to compute independent bitwise beliefs. The
information about b is then given by the product q(bp) - - -q(bn,—1) which can be
represented by N, real numbers, as opposed to the 2Ne — 1 real numbers that would
in general be required for a description of q(b). However, thanks to the projection
step in (2.25), we can work with the compact model and still get the same complexity
reduction (and the same loss of optimality, of course) using EP; we just need to project
the beliefs of the bit vectors into the set of bitwise factorized distributions.

Expectation Propagation with Fully Factorized Beliefs

As derived on page 243, the projection of a multivariate distribution p(xy, ..., ¥N-1)
into the set of fully factorized distributions (distributions that can be written in the form
H,];];()l q(xn)) is equal to the product of its marginals, i.e., §(x;) = p(x,). Therefore, BP
on a certain factor graph is equivalent to EP on another graph where some of the variable
nodes are merged, as long as the beliefs of the new, “larger” nodes are constrained to be
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Figure 2.6: Simple factor graphs for the comparison of BP and EP

factorized in the same way as in the first graph. The only difference is that BP makes
the factorization of the beliefs explicit in the graph structure, while EP leaves it implicit
in the constraints of the beliefs.

Rather than giving a formal proof for this statement, let us consider a simple example,
which, however, is general enough to cover all relevant aspects. We start by defining
some notation. For a random variable x € X, let P denote the set of all probability
distributions over X. Also, for any x which is represented by its own variable node, let
Qx C Py be the set of allowed beliefs g(x), i.e., the target set of the projection in (2.25).
In the special case of BP, there is no projection, and thus Qy = Px.

Consider the two simple graphs in Figure 2.6. If we apply BP to the left-hand graph,
the messages from f to the variables x and y are easily found as

mf%x “ZZf XY,z mzﬁf( yaf Zf X, Y) y—>f () (2.26)
i, (y ZZf X,Y,2) My f(z) My p(x) Zf X, y) myp(x) (2.27)

with the intermediate result f(x,y) = ¥, f(x,v,2) m,_f(z).
Now we apply EP to the right-hand graph, where x and y are merged into a single
variable node. The message from f to the joint variable node (x,y) is in general

EP 1 .
M ) (09) & sl {mu,y)%f(x,y) LfCy2) me(Z)} . (228)

By setting Qxy = Px x Py, we force the belief g(x,y) into the factorized form
g(x)q(y). Recall from (2.15) that beliefs are given by the product of all incoming
messages. Therefore, the constraint 4(x,y) = q(x) q(y) implies that all messages to and
from the node (x,y) are factorized, too. We can thus write (2.28) as

PrOip, o, [y (x) my 5 (y) F(x,)]
mxaf(x)my%f(y)
@ (Zymes () my () Fx,y)) (Temens s (x)my 5 () Flx1))

ML (0wl (y)

mxaf(x) myﬁf(y)
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(g o) (o)

o<, (¥) m}?iy(y) (2.29)

where (a) uses the result that the projection of any p(x,y) into the set of factorized
distributions is equal to p(x) p(y). We have thus shown that

EP BP EP BP
mf—)x(x) 0( mf%x(x) and mfﬁy(y) & mfﬁy(y) (230)
and since messages are only defined up to constant factors, this means that BP and
EP are equivalent in this simple example. It is straightforward to generalize this result
to cases where more than two variables are merged, or where more than one further
variable (the z in our example) exists.

Generic Soft Demapping

For completeness, let us now derive the soft demapper by applying EP to Figure 2.5.
Compared to the previous derivation based on BP, the following computation has the
advantage that it does not make any assumption on the value of K.

Since we want to constrain g(c,) to the factorized form g(cn0) - - - q(cpx—1), We
select® Q., = BX and obtain

mp(x,, | en)—en (C‘rl)

1 .
) m Pl {mcﬂ—’P(MCn)(C”) ;P(xn [ en) M, p(, c,,)(xn)}
< < 2
wp (-1 o o (e3) o (- [t 2

Yn
M — =
(en) &n

e (~euer) £ oo (-4
o exp | —CpiAnk exp | — <&
Pl n n NO

~Cpk

2
+ cIAn> (2.31)

where the sum in the last line is over all bits ¢, ; with k" # k. The intrinsic L-value Xn,k
is now simply the L-value of the kth factor in (2.31):

5 2 A
oxpl(~1- 1) £ exp (=5 [Mlen) — [ +Thi)
— CpiCpr=
Apk = log -
exp(=0-A, ) X 0exp (— & ‘M cn) ‘ T A, >
CnCpj=

© As defined on page 215, BB denotes the set of Bernoulli distributions (i. e., distributions over the binary field
F £ {0,1}), and BX is the set of bitwise factorized distributions over FX.
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Y., exp ( g” X, — L 2 + CIAH)
xp€X} 8 .
= log 3 — — Mnk (2.32)
Y exp (— & |x, — e CIAH)
xneX

which is identical to (2.23). As before, ¢, in (2.32) contains the bit label of the current x;,.

Projecting Beliefs or Messages?

As a side note, we can use this derivation to demonstrate the importance of projecting
the whole belief instead of just the factor-to-variable message; or in other words, the need
for multiplying with m, ., ¢(x,) inside the projection operator in (2.25), and dividing by
it after the projection. If we ignored the two occurrences of m,, _, f(xn) in the message
update equation (2.25), it would reduce to

s, (Xn) « projg_ {Zf xf) H My, f (Xim } . (2.33)

Deriving the demapper based on (2.33) would yield the demapper-to-decoder message

M, | ), (€n) & PTOjx {2 plxn | en) My, (e, ) (x”)]

' 2
) (2.34)

k=0 ~Cnx

“H Zexp<

and finally the intrinsic L-value

2
Yy, exp <—— xy — L )
~ 8n
3 x,,e/’\f
Api = log o~ (2.35)
Y exp( g” xn—% )
x,,EX

As we can see, the extrinsic L-values have vanished. In the initial BICM-ID iteration,
where there is no feedback from the decoder yet, (2.35) happens to coincide with (2.32).
In the general case, however, (2.35) just ignores the feedback, which defeats the whole
purpose of BICM-ID.

The reason for stressing this point is that there exist several papers whose authors
attempt to derive receiver algorithms based on belief propagation, but, when faced with
intractable BP messages, approximate them in some ad hoc way (like replacing them with
Gaussians with the same mean and variance). As we have seen, such an approximation
can be put onto solid mathematical ground by means of the projection operator, but
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Figure 2.7: Forney-style factor graph of a generic BICM-ID receiver

said papers implicitly use the flawed update equation (2.33) instead of the correct (2.25).
Later in this thesis, we will discuss some examples in more detail, where replacing (2.33)
with (2.25) leads to a considerable performance gain.

A Fully Generic Model

While Figure 2.5 is a lot more compact than Figure 2.4, it still contains the assumptions
of a parallelly connected turbo code and a memoryless channel. As a final step, we can
abstract these details away, too, and obtain the fully generic model shown in Figure 2.7,
which will be used on several occasions throughout this thesis. In particular, the code
structure is now hidden inside the function node

plc|b) =1[c = C(b)] (2.36)

where C(b) is the codeword that is associated with the information bits b. Applying EP
to this node leads to a similar derivation as (2.31) and (2.32) above, with the expected

general result X =A- X, where A contains the L-values of the bitwise beliefs.

This concludes our overview of the BICM system model and the iterative outer
BICM-ID receiver. We are now equipped with the necessary background and notational
conventions for the following discussion of the inner receiver.
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Message Nomenclature

The traditional factor graphs are bipartite: every edge is connected to one factor node
(say, f) and one variable node (say, x). Accordingly, every message is sent either from a
factor to a variable node or from a variable to a factor node, which leads to the generic
naming convention my_,,(x) and m,_,(x), respectively, which has been used in the
present chapter.

However, many factor nodes have a natural interpretation as functional receiver units. In
Figure 2.7 for example, the likelihood function p(y | x) corresponds to the inner receiver,
the mapping constraint p(x | ¢) to the demapper, and the coding constraint p(c | b) to the
decoder. For better readability, we will usually prefer the mnemonics of the blocks over
the mathematical function names, so we would write for example M gen, . (c) instead of
mp(x\c)—m(c)'

In discrete-time models, where synchronization and matched filtering are abstracted
away (which has been the case in the present chapter), we will often abbreviate the
likelihood function p(yx | xu) in message names as yu, SO My, |x,)-sx, (Xn) will simply
be written as 11y, ., (x;). Since the observations y,, are not represented by their own
variable nodes, this notation is unambiguous.

Furthermore, variable nodes with exactly two edges simply pass the messages through
unaltered, so for example Mgem c(€) = M. qec(c). We will thus usually discard the
variable nodes of degree 2 (see also the description of Forney-style factor graphs in
Appendix B.2.2 on page 236), connect the two neighboring factor nodes directly, and call
the remaining message for instance Mgem_dec(c). The variable is then only determined
implicitly by the function argument, which is analogous to the convention of writing
p(x) for the probability distribution py(x), and should not cause any confusion.

Finally, we will use the terms forward and backward messages with two different mean-
ings. On the one hand, forward messages are from “earlier” to “later” receiver blocks,
e.g., from the inner receiver to the demapper, and from there to the decoder. Backward
messages, on the other hand, are sent in the reverse direction. Parameters of these mes-
sages are marked with left-to-right and right-to-left arrows, respectively. For example,
the intrinsic L-values that are passed from demapper to the decoder (the parameters of

the message Mgem _sdec(€)) are denoted as )\ whereas A are the extrinsic L-values that
are sent back from the decoder to the demapper.

A second meaning of “forward” and “backward” is in the context of temporal models,
where forward messages propagate information in positive time direction (filtering),
and backward messages in negative time direction (smoothing), all within the same
functional block. In this context, the parameters of forward and backward messages are
marked with subscripts “f” and “b”, respectively.




Chapter 3

Parameter Estimation

In this chapter we will discuss the inner receiver, whose main task is the conversion
of the underlying analog channel into an effective discrete-time channel, as given
in (2.9) on page 13. Since this thesis is concerned with the design of digital receivers,
the “underlying channel” does not only refer to the physical channel, but comprises
everything between the D/A converter in the transmitter and the A/D converter in the
receiver. In particular, it contains the analog transmit circuit, the physical radio channel,
and the analog receiver front-end. We can thus roughly distinguish two kinds of channel
parameters, which are a priori unknown and need to be estimated by the receiver:

e Multipath propagation caused by reflections of the electromagnetic wave at objects
within the propagation path (scatterers) leads to the reception of multiple signal
copies with different delays, attenuations, and phase shifts. Due to mobility of
the transmitter, the receiver, or any scatterers in the environment, the impulse
response of the channel is furthermore time-varying. Therefore, the radio channel
is commonly modeled as a linear time-varying (LTV) filter. Static and/or non-
dispersive channels are included as special cases in the LTV model. The process
of learning and tracking the LTV filter coefficients is called channel estimation.

e Synchronization, in contrast, refers to the estimation and correction of impairments
caused by the analog components. Timing offsets are unavoidable in practice,
since the sampling clock in the receiver is unaware of the epoch of the transmitter,
and the propagation delay of the radio waves. Other unknown channel parameters
include a frequency offset, caused by mismatches between the local oscillators at
transmitter and receiver, and phase noise due to oscillator instabilities. Finally,
the received signal is superimposed with additive noise, usually modeled as a
white Gaussian random process. Its variance also needs to be estimated, since it is
required by the baseband receiver (e. g. in the demapper, as we have seen in the
previous chapter) and also for higher-layer tasks like link adaptation.
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Note, however, that the distinction between synchronization and channel estimation
is not always clear-cut. Particularly the task of phase estimation is settled somewhere in
between, since a time-varying phase offset is caused both by imperfect oscillators and a
varying propagation delay due to mobility.

The focus of this chapter is on the latter class of problems, i.e., the estimation of
synchronization parameters. It should be emphasized, however, that the techniques that
will be studied in the following are equally applicable to the task of channel estimation.
Indeed, I have derived code-aided channel estimators, and integrated them into the
simulation framework that has been developed as a part of this research project. The
rationale for my decision to restrict this presentation to synchronization algorithms is
that they are, in some sense, more unusual and hence more interesting. In particular,
channel estimators that are based on the common assumption of a Rayleigh fading
channel process can be derived similarly as the phase noise estimator that will be studied
in Section 3.6; with the main difference that the von Mises distributions, which are used
by the phase noise estimator to encode its probabilistic knowledge about the state of the
random process, need to be replaced by the more conventional Gaussian distributions.

This chapter is structured as follows. Section 3.1 begins with a definition of the
fundamental problem that we attempt to solve. We then compare several important
algorithmic classes, which can be considered as state-of-the-art approaches to parameter
estimation, and discuss their respective shortcomings.

Section 3.2 acts as a mathematical interlude, where we introduce the concept of a
likelihood function for continuous-time observations. Classically, the likelihood function
of an unknown parameter is understood as the density function of the observation,
conditioned on the parameter. However, this definition is not suitable for the design
of synchronization algorithms, since these operate on random processes, which do not
have a probability density. In some sense, it is the very purpose of synchronization to
convert the continuous-time observation into a finite-dimensional sufficient statistic.

As a first step towards the derivation of code-aided synchronization algorithms,
Section 3.3 focuses on hard parameter estimators. While the algorithms from that section
are not novel, their new derivation from the principle of divergence minimization leads
to some insights that, to my best knowledge, have not been mentioned in the existing
literature.

The remaining sections then contain detailed case studies of Bayesian soft estimators.
Sections 3.4-3.6 are concerned with the problem of phase estimation in several scenarios
with increasing complexity. The development starts in Section 3.4 with an estimator
for a constant phase offset, which is generalized to Wiener phase noise processes in
Section 3.5, and then to general state space models in Section 3.6.

Finally, Section 3.7 closes our discussion of code-aided parameter estimation with
the derivation of several SNR estimators, with varying degrees of complexity and
algorithmic performance.
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Figure 3.1: Generic system model, including the transmission of pilot symbols
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3.1 State-of-the-Art Approaches to Synchronization

In this section, we introduce the synchronization task in a very general setting, and
compare different approaches qualitatively. Detailed case studies will be given in the
remainder of this chapter. The discussion will be based on the generic transmission
system depicted in Figure 3.1, which is similar to the model from the previous chapter,
but now also contains pilot symbols that are multiplexed into the stream of data symbols.

The transmitter wishes to transmit the message b € F™. Via some coding and
mapping scheme, it transforms the bit string b into a sequence of Ny complex data
symbols xp € CNd, Np pilot symbols xp € CMe are multiplexed into the data stream
in order to facilitate synchronization at the receiver. The sets D and P contain the
time indices of the data and pilot symbols, respectively, so that DNP = @ and
DUP ={0,...,N—1}, where N = Nq + Np is the total number of channel uses.

The resulting block x is transmitted over the channel, which includes the D/A
converter in this system model. The received signal! r is a stochastic function which
depends on the channel input x and on some synchronization parameters, collected
in the vector 8 € ©. The stochastic nature of the channel is typically described in
terms of the conditional PDF p(r|x, 6) of the channel output, given the input and the
unknown parameters. However, this notation is not well defined, because r, being a
random process, does not possess a probability density. We will address this problem
in Section 3.2; for now, it suffices to think of r as a finite-dimensional vector » which
contains the “essential” information about b, in the sense that p(b |r) ~ p(b|r).

The ultimate task of the receiver’s PHY-layer is to decide on an estimate b of the
transmitted message, which is then reported to the higher layers of the protocol stack.
The design of the detection algorithm is affected by two competing optimization criteria.
In order to maximize the goodput, i.e., the net data rate after packet retransmissions,
the estimate should be as reliable as possible. At the same time, the computational
complexity of the receiver needs to be kept reasonably low due to delay constraints and,
particularly for battery-powered devices, in the interest of a low energy consumption.

1 As introduced in Chapter 2, we denote continuous-time signals with a sans-serif font.
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Figure 3.2: Relationship between classes of parameter estimation algorithms

In the following, we review some strategies for the design of receiver algorithms
which cover a broad range of the performance-complexity tradeoff, from rather poorly
performing but simple, up to optimum but prohibitively complex algorithms. Figure 3.2
shows a tree-structured overview of the algorithmic classes, where children are proper
subsets of their parents. An exhaustive treatment of conventional receiver design,
including the classes of data-aided (DA), non-code-aided (NCA), and decision-directed
(DD) algorithms, can be found in [88]. An overview of the more recently proposed
soft-decision-directed (SDD) approaches is given in [54].

Optimum Receivers Due to the two competing optimization criteria performance and
complexity, it would be of ultimate interest to find pareto-optimal receivers. For in-
stance, we may want to specify the maximum allowed complexity, and ask for the
best-performing algorithm which does not exceed this complexity. Clearly, attempting
to do so would be a daunting endeavor. Most of the practical algorithms that we will
encounter in this thesis are able to trade off complexity vs performance, typically by
adjusting the number of iterations, but none of them can claim pareto-optimality.
Therefore, we will use the term optimum receiver for the best-performing receiver
with unconstrained complexity. While being unrealizable in practice for all but the
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simplest scenarios, the optimum receiver is a natural starting point for the systematic
derivation of suboptimum algorithms with feasible complexity.

In order to be able to speak about the “best-performing receiver,” we need to agree
on how to quantify the receiver’s performance. Since the scope of this thesis is limited
to the physical layer, which in particular excludes source coding, the most obvious
measure for our purpose is the rate of erroneous decisions after channel decoding. This
leaves us with two reasonable choices:

e The receiver that minimizes the word error rate (WER) IP [l; # b], which computes

b = argmaxp(b|r). (3.1)
beF™

e The receiver that minimizes the bit error rate (BER) IP [b; # b;], which computes for
eachie {0,...,N, —1}

b; = argmaxp(b; | r)

b;eF
=argmax Y p(b|r). (3.2)
biEF b, j#i

A key component of both criteria is the posterior distribution p(b | r), which is either
maximized or marginalized. In the presence of unknown synchronization parameters,
this distribution is itself given as the marginal of the joint posterior of the data and the
channel parameters:

poln = [ pb,0]r)do

@ [ p(r|b,0)
_/@ S rop@de (33)

where () assumes that the transmitted data and the channel parameters are statistically
independent.

On the one hand, the word error rate is the more relevant metric for bidirectional
systems like IEEE 802.11 (WLAN) or 3GPP LTE, which are able to detect transmission
errors and request the retransmission of erroneously received blocks. On the other hand,
solving (3.1) is generally an even harder problem than (3.2) [65, Section 13.1.1], since
it involves marginalization and maximization steps, both of which are intractable in
general, whereas (3.2) “only” consists of intractable marginalization (the maximization
in (3.2) is trivial). We will therefore use (3.2) as a starting point for the derivation of
suboptimal algorithms, but evaluate their performance in terms of the word error rate.
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Data-Aided Synchronization Arguably the simplest approach to tackle the synchroniza-
tion problem is by means of data-aided (DA) estimation algorithms, where the parameter
estimation and data detection stages are decoupled. First, the unknown synchronization
parameters are estimated using a training sequence, which is known to the receiver.
Then, treating the estimate as the true value of 6, the detector computes a decision of
the transmitted payload data.

To formalize this idea, assume that the received signal can be separated into two
components rp and rp which depend only on the data and pilot symbols, respectively:

p(rp,rp |xp,xp,0) = p(rp |xp,0) p(rp | xp, 6). (34)
Then, the joint posterior of the data symbols and the channel parameters can be

decomposed as

p(rp |xp,0) p(8) p(rp|xp,0) p(xp) (3.5)

estimator detector

NI +=

P(XD,B | I’,XP) =

where Z = p(r| xp) is a normalization constant.
The synchronizer uses the first part of this decomposition to compute an estimate of
the channel parameters, for instance using the maximum a posteriori (MAP) criterion

pMAP 2 argmax p(rp | xp, 0) p(0). (3.6)

0coO
In the absence of useful prior information on 6, it is reasonable to assume a uniform
prior. In this case, (3.6) formally reduces to the maximum likelihood (ML) criterion

M2 argmax p(rp | xp, 0). (3.7)

0co
Of course, other estimators than MAP or ML could also be employed.
The detector subsequently treats § as the true value of 8, and decides on the
transmitted data by replacing the true posterior of the data in (3.1) or (3.2) (note the
one-to-one correspondence between the bits b and the data sequence xp) with?

Prolano(rp | XD, 0) p(xp). (3.8)

The concept of using a parameter estimate in lieu of the true value is sometimes
called synchronized detection in the literature [8,88]. However, this term is somewhat

2 The notation Peplep6(rD | xp, ) deserves some attention. It denotes the likelihood function p(rp |xp,8),
evaluated at the point 8 = 8. It is common to omit the subscript in such cases and simply write p(rp | xp, 8).
However, with the convention that a missing subscript at a PDF implies a subscript that is equal to the argument
list of p, this notation would expand to PrD\xD,é<"’D | xp,@). In this notation, ® would be another random
variable, distinct from 6; a subtle, but important difference. Having said this, we will also omit the subscript in
the interest of compact notation, but we should always keep the intended meaning of p(rp | ¥p,8) in mind.
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misleading, because the decision 8 will be wrong with probability 1 (assuming that 8 is
continuous), and thus the receiver will almost surely not be perfectly synchronized. We
will therefore use the more accurate term mismatched detection in this thesis.

The advantages and disadvantages of the data-aided approach are evident. Since
the pilot symbols are known to the receiver, simple closed-form solutions for 8 can be
found for many cases of interest, e. g. by solving dp(rp | xp,0) /06 = 0. On the negative
side, the transmission of training data wastes bandwidth and power. Particularly in fast
fading scenarios or short burst transmissions, the training overhead that is necessary for
a sufficiently accurate synchronization may become inacceptably large.

Non-Data-Aided Synchronization Non-data-aided (NDA) algorithms do not rely on the
transmission of known training data, but use the a priori unknown payload data instead.
(With a slight abuse of terminology, we also include schemes which require a few pilot
symbols, e.g. for coarse timing synchronization and phase ambiguity resolution, or for
obtaining an initial estimate in iterative algorithms, in the category of NDA algorithms.)

NDA algorithms can be further subdivided into non-code-aided (NCA) and code-aided
(CA) schemes.

Non-Code-Aided Synchronization Non-code-aided estimators disregard the structure
of the data sequence that is introduced by the channel code. Rather, they treat the
unknown data as an iid symbol sequence. Well-known examples of NCA algorithms
are the Viterbi-Viterbi phase estimator for PSK-modulated signals [138], and the Oerder-
Meyr timing estimator which exploits the cyclo-stationarity of the received signal [101].

Code-Aided Synchronization While NCA algorithms do succeed in reducing the pilot
overhead, their performance is far from optimal since they ignore the statistical de-
pendencies between the data symbols. In this thesis, we are therefore interested in
code-aided algorithms, which use the code structure at least to a certain extend (as
argued above, truly optimum receivers are practically infeasible for complexity reasons).
In contrast to an optimum receiver, which would solve the synchronization and
detection/decoding problems jointly within one unit, virtually all code-aided algorithms
that are practically implementable are iterative. The intuitive idea is to first run the
receiver in DA mode to obtain an initial, but unreliable decision on the transmitted data.
Using the detected data sequence as virtual pilot symbols, an updated estimate of the
synchronization parameters is computed, yielding a new data decision. This process
may be repeated until convergence is detected, or for a fixed number of iterations.

Decision-Directed Synchronization The so-called decision-directed (DD) approach is a
straightforward, but quite ad hoc implementation of this idea. Here, the decoder output
b is re-mapped to yield hard decisions &p on the data symbols. These are treated just
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Hard vs Soft Decisions

In this thesis, a hard decision about a random variable x € X is understood as one
particular value £ € X. In contrast, a soft decision is a probability distribution over X,
called ¢(x) in order to distinguish it from the prior distribution p(x).

To treat both concepts on an equal footing, one can regard hard decisions as Dirac
distributions, with g(x) = é(x — £).

It is worth emphasizing that the above definition is valid for both discrete and continuous
random variables. Some authors call an estimate £ “soft” if x is a continuous variable,
but this convention will not be followed in this thesis.

like pilot symbols by the synchronizer, so that standard DA estimation algorithms can
be used in a DD receiver.

The fundamental problem with hard decision feedback is error propagation. The DD
scheme can only be expected to work well as long as the initial parameter estimate
is already sufficiently accurate to yield a low symbol error rate. Otherwise, the DD
estimator uses many erroneous decisions, and the receiver will likely fail to converge to
the correct solution.

Soft-Decision-Directed Synchronization The key idea to solving this problem is to feed
statistical information about the data symbols back to the synchronizer, rather than hard
decisions. Intuitively, this allows the synchronizer to use only the reliably decoded data
as virtual pilot symbols, and to ignore any unreliable decisions.

Such statistical feedback is referred to as a soft decision (see also the text box above),
and iterative algorithms using soft feedback are called soft-decision-directed (SDD). In the
following, some approaches for the systematic derivation of SDD receivers are discussed
in more detail.

Expectation Maximization The optimal parameter estimator in terms of the ML crite-
rion is given as

M = argmax p(r|xp, 0)
0co
=argmax )_ p(r|xp,xp,0) p(xp). (3.9)
[FISC) XD

The difficulty in solving (3.9) lies in the summation over the allowed data sequences. The
above problem is thus an example of parameter estimation in the presence of hidden data:
indeed, if xp were known, the problem would reduce to data-aided synchronization
and would have a much simpler solution.
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Figure 3.3: Comparison of data-aided and EM-based synchronization

A standard approach to solving such estimation problems is the iterative expectation
maximization algorithm [32] as described in Section B.5.2 on page 261. By specializing
the generic EM parameter update equations (B.89) and (B.90) to the problem at hand,
we obtain the following iterative estimator, where i denotes the iteration index:
i+1)

@)( = argmax[E

pce PO \r,é<">>[1°g p(r|xp,xp,0)]. (3.10)

An overview of EM-based synchronization can be found in [100] and references therein.

The EM update is typically presented as a two-step procedure: in the E-step, the
expectation of the log-likelihood function is computed, which is then maximized with
respect to 6 in the M-step. However, in order to recognize parallels to the DA approach,
it is more insightful to consider the computation of the posterior p(xp |r,8) as one step,
and the update of 0, using the posterior, as another step. The latter is analogous to the
parameter estimator (3.7) from the DA receiver, with the difference that the perfectly
known training data of (3.7) is replaced by statistical information about the data sequence.
Similarly, computing the posterior p(xp |r,8), where the current parameter estimate
is treated as the true value, corresponds to mismatched data detection. Figure 3.3
illustrates the comparison between DA and EM synchronization.

Unfortunately, an exact implementation of the EM synchronizer is rendered infeasible
by the computation of p(xp |r,8). Since the data sequence xp is a discrete random
variable whose range has cardinality 2\ (recall that Ny, is the number of information
bits per codeword), a full description of its distribution requires 2o — 1 real numbers,
which is far too complex for practically relevant block sizes. A common heuristic is
to calculate the symbolwise posteriors p(x, |r,) instead, and then approximate the
sequencewise distribution as

p(xp | r,0 H p(xn | r,0 (3.11)
neD
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For simple transmission schemes like a convolutionally coded BPSK modulation, the
symbolwise posteriors can be obtained exactly with the BCJR algorithm. But if more
complex channel codes (e. g. turbo or LDPC codes) or higher-order mapping schemes
(e. g. 16-QAM) are used, even the symbolwise posteriors cannot be computed exactly
and need to be approximated, typically by algorithms which are themselves iterative
(like turbo/LDPC decoding or BICM-ID).

In order to decrease the computational burden of EM synchronization in conjunction
with an iterative decoder, it has been proposed to interweave the EM- with the decoder
iterations [99]. Rather than reinitializing the decoder in every EM iteration and running
it until convergence, the suggestion is to do only a single iteration inside the decoder
in each EM iteration, and to keep the decoder state inbetween. Effectively, this scheme
reduces the doubly-iterative algorithm to a singly-iterative one.

Numerical results reported in [99] show that, despite of these approximations, EM-
based synchronizers perform well as long as the initial parameter estimate is reasonably
close to the true value. It cannot be denied, though, that the approximations described
above are fairly ad hoc, and that the result is, strictly speaking, not an EM algorithm.
In particular, the convergence guarantee which is an often cited advantage of EM-
based iterative schemes does not hold anymore. One of the major motivations for
the introduction of EM into the synchronization literature has been to provide “A
Theoretical Framework for Soft-Information-Based Synchronization in Iterative (Turbo)
Receivers” [100]—an endeavor which has succeeded only to a certain extent.

Belief Propagation The algorithms described so far are mismatched, in the sense that
they compute a hard parameter estimate § and subsequently treat it as the true value
of 8. However, as discussed on page 31, optimum decisions are based on the marginal
posterior of the data

po1r) = [ pb]r,0)p(0]r)do G12)

which is obtained by integration over the synchronization parameters. As long as
the posterior of 8 is sharply peaked, i.e., p(8|r) ~ §(8 — ), replacing (3.12) with
p(b|r,8) is a good approximation. However, in the first (few) iteration(s), this is a
very optimistic assumption. Indeed, if the initial estimates were already accurate, the
initial data decision would be close to optimum, and iterations between synchronizer
and decoder could not lead to any noteworthy gain. In such a situation, it would be
reasonable to reduce the number of pilot symbols (minimizing the training overhead is,
after all, the main raison d’étre of iterative algorithms), which in turn would lead to a
less accurate initial parameter estimate. We are therefore interested in algorithms which
do not approximate p(8|r) =~ §(8 — 8), but attempt to solve the original problem (3.12)
instead. In essence, these algorithms make soft rather than hard decisions on 6, which
is analogous to the difference between soft and hard data feedback as discussed on
page 33.
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Belief propagation (BP), also known as the sum-product algorithm, is a general approach
for solving marginalization problems like (3.12) approximately. It has become famous in
the communication and information theory communities after the discovery that the
celebrated turbo and LDPC decoding algorithms can be derived as instances of BP [86].
Extending the realm of BP to cover not only channel decoding but also parameter
estimation tasks, as proposed in [151], is a consequential generalization.

As discussed in the previous chapter, belief propagation is usually illustrated as a
message passing algorithm which operates on a factor graph of the underlying belief
network. In principle, extending BP to include parameter estimation is straightforward:
we just need to add variable nodes for the unknown parameters and factor nodes for
the functions which specify the statistical dependencies between the parameters and the
other variables. Then, an iterative estimation and detection algorithm can be instantiated
by means of the generic message update equations (B.81) and (B.86) on page 257.

Unfortunately, using BP for parameter estimation is a lot more difficult than for
detection/decoding, because the underlying variables are continuous. Hence, the update
equations involve integrals rather than sums, which often have no closed-form solution.
Furthermore, the messages may become arbitrarily complex functions rather than finite-
dimensional vectors. To overcome this problem, [151] proposed the concept of canonical
distributions, where the messages are restricted to certain families of distributions, whose
members are fully specified by a few parameters. One possibility are Dirac distributions
which, like the EM algorithm, lead to hard parameter estimates [55]. An alternative
which retains soft information are mixtures of Dirac distributions:

K-1 K-1
q(0) = 2 w® 5(0— e(k)), Z w® = 1. (3.13)
k=0 k=0

The locations %) may be predetermined, for instance by uniformly sampling the range
of 8, in which case only the probabilities w(¥) are variable. This discretization of the
continuous random variable can lead to tremendous simplifications, since we only
have to deal with probability mass instead of density functions, which in particular
reduces integrals to finite sums, but it is only feasible for low-dimensional 0. It is
furthermore possible to also change the locations 6®) at runtime, which gives rise to the
so-called particle filters (in this context, the probabilities w(*) are interpreted as weights
of the particles). Applications of these methods to the problem of phase estimation are
discussed in [30].

To conclude, using belief propagation for the derivation of iterative synchronizers
suffers from similar problems as expectation maximization: it is indeed possible to derive
well-working algorithms, but only with additional, rather heuristic approximations. The
resulting algorithms are not covered by the theoretical framework.
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Divergence Minimization In the remainder of this chapter, we will apply the method
of divergence minimization (DM) to the synchronization problem. As derived in full
detail in Appendix B, divergence minimization is a very general inference framework
which includes EM and BP as special cases. We will see that the concept of canonical
distributions plays a central role in the derivation of practical algorithms, but the
approximations are done in a theoretically sound manner by minimizing well-defined
divergence measures between the exact and the approximated probability distributions.
What is the advantage of divergence minimization over the conventional approaches?
It turns out that many algorithms that have earlier been derived approximately from EM
or BP are fully covered by the DM framework. This alone is a good reason to prefer the
generalized approach, since it retroactively provides a theoretical justification for their
use. Even more interestingly, however, divergence minimization also allows us to derive
improvements which, to the best of my knowledge, have not been proposed before.
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3.2 The Likelihood Function for Continuous-Time Observations

As a prerequisite for the later development, we first take a closer look at the likelihood
function. We mentioned earlier that the stochastic channel is typically described by

p(r|b,0) (3.14)

i.e., the probability density of its output, conditioned on the transmitted data and
some channel parameters. After observing a particular realization of r at the receiver,
the channel output is fixed, and we may treat (3.14) as a function of the data and
the parameters—commonly called the likelihood function of b and 6. The maximum
likelihood (ML) approach to estimation and detection is now to maximize (3.14). In
particular, the joint ML parameter estimation and sequence detection problem can be
stated as [88]

(b,0) = argmax p(r|b,0). (3.15)

(b,8)cFNo x©

The problem is that the received signal r is a random process (as opposed to a random
vector), and therefore does not possess a probability density.

A common strategy to circumvent this problem is to sample the continuous-time
signal at a sufficiently high rate, and to replace r with a finite-dimensional vector r which
is supposed to be a sufficient statistic for b (see e. g. [55,114]). However, the sampling
process is only lossless if the (noise-free) received signal is strictly bandlimited. This is
indeed the case under the assumption of a bandlimited transmitted signal and a linear
channel, but then the signal is necessarily of infinite duration [70, Section 6.8]. Sampling
then merely converts the continuous-time into a discrete-time process, which does not
have a density, either. Conversely, we may argue that any practical signal is of finite
duration, but then it cannot be bandlimited, and the sampling process is lossy.

If the transmitted signal can be written as a linear combination of some basis
functions (go, ..., gn—1), for example

N-1
s(t) = ). xnen(t), eu(t)=g(t—nT) (3.16)
n=0

as in linear modulation schemes, and if the signal is only distorted by AWGN, then

((r.go),--, (rgn-1)) (3.17)

is a finite-dimensional sufficient statistic for guessing x based on r [70, Section 26.4].
Here, (x,y) £ jfooo x(t)y* (¢) dt is the inner product3 of functions x,y : R — C. However,
a perfect timing and frequency reference is needed in order to compute (3.17), so the
above result cannot be used for the purpose of synchronization.

3 Following the convention of [70], we define the inner product as linear in the first argument and conjugate
linear in the second.
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It goes without saying that the issue is of rather academic nature, since any prac-
tical signal is virtually limited both in duration and bandwidth. But it is nonetheless
interesting to see how our receiver structure can be cleanly derived from first principles.

The key point here is that it is only the likelihood function p(r|b,8) which is
undefined, but this is just an auxiliary object, anyway. What we are really interested in is
the posterior distribution p(b|r) = [g p(b,0|r) d6, which is a well defined probability
mass function. Thus, under the reasonable assumption that all data sequences have a
strictly positive prior probability (without loss of generality, any sequence with zero
prior probability can be removed from consideration), the ratio

b|r)
L (b) 2 p( :/ ¢.(b,0) p(0|b)de (3.18)
(0)= ) = Jo lr(b0)p(0]0)
with £,(b,0) = E225s) s also well defined for all b. The symbol £ reminds us that

£,(b,0) is similar to the likelihood function p(r|b,8), with the difference that ¢,(b, )
exists even if the observation is a random process. In the following, we assume that
b and 6 are statistically independent, such that p(6|b) = p(6). Note that, for a finite-
dimensional observation vector r, (3.18) simplifies to

p(r|b,6)
p(r)

by Bayes’ rule. In this case, ¢ is proportional to the conventional likelihood function. For
a continuous-time observation, however, (3.19) is not applicable.

Let s, denote the transmitted signal associated with the message b. All possible trans-
mit signals are assumed to be integrable,4 sp € L1, and bandlimited to the bandwidth
Bs. This implies that the signals are also energy-limited, s, € £, [70, Note 6.4.12].

Assume that the channel is parameterized by 6 € O, statistically independent of
b. Denote the noise-free received signal as ¥}, g which is bandlimited to B, (in general,
By > Bs due to nonlinear effects like a frequency offset between transmitter and receiver).
Assume that the channel has a finite gain, so that 7 g is also integrable and energy-
limited for all b and 0. Let by be the transmitted message and 6y the true channel
parameters. The received signal is then

4:(b,0) = (3.19)

r(t) = T 0, (t) +v(t), —o0o<t<oo (3.20)

where v is a white proper Gaussian noise process of spectral density Ny with respect
to the bandwidth W > B, (i.e., Re(v) and Im(v) are mutually uncorrelated real-valued
white Gaussian noise processes of spectral density Ny/2, as defined in [70, Section
25.15]). Furthermore, v is assumed to be independent of .

s {x ‘R C| [% |x(1)] dt < oo} is the set of integrable signals, and £, £ {x tR—C| [ XD dt < oo}
the set of energy-limited signals. Furthermore, the symbols B and W denote one-sided bandwidths.
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As will be shown below, the posterior distribution of the data is then given as

p(b1r) = p(b) [ 4:(b,0) p(6) A0 G2

where

Re (r,F0)  |lfuoll5
4 (b, 0) x exp NO/Z, TN (3.22)

and the proportionality constant is such that

Y p(b|r) =Y p(b) /@ 0:(b,0) p(6)do = 1. (3.23)
b b

In (3.22), (x,y) is the inner product as in (3.17), and |||, £ \/(x,x) is the £-norm.>

Note that both the inner product and the norm in (3.22) are well defined. The norm
[|Fp,0|, exists because , 9 € L, by assumption. With r = F;, g + v, the inner product
in (3.22) can be decomposed into a deterministic and a stochastic component:

Re <r, Fb,9> = Re <Fb0,00/ Fb,6> + Re <V, Fb,6> . (3.24)

The existence of the inner product (Fp, g,,9) again follows from the finite-energy-
assumption, as can be shown with the Cauchy-Schwarz inequality [70, Section 3.3]

[ < X2 Myl %y € Lo (3.25)
The stochastic component Re <v, Fb,g> is a Gaussian random variable

Re (v, f0) = (Re(v),Re(Fpp)) + (Im(v), Im(Fpp))
o 2
~ N (0,3 (713 (3.26)
which follows from [70, Proposition 25.15.2 (i)] because ¥ is integrable and bandlimited

to Br < W, and because Re(v) and Im(v) are uncorrelated. In summary, the exponent
in (3.22) is a Gaussian random variable with finite mean and variance:

2 . . = N2 e 12

FOY: <Re (oo T0)  Toelly [IFoe |2> 6w

No/2 Ny " No/2

Re <r, Fb,0> _ HT’b/g
Np/2 No

In order to prove (3.22), we first consider a random vector which contains finitely
many samples of r, taken at a sufficiently high rate to avoid aliasing, and then take the

5 Strictly speaking, |||, is not a norm, because |||, = 0 does not imply x = 0. It merely implies that x is
indistinguishable from the all-zero signal, meaning that the set {t € R |x(t) # 0} is of Lebesgue measure zero.
However, such mathematical rigor is not needed for our purpose.
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Figure 3.4: Spectral density of the transmitted signal s, the noise-free received signal ¥
assuming a frequency shift of v such that B, = Bs + v, and the Gaussian noise
process v; along with the spectrum of a possible anti-aliasing filter f for the
sampling rate R

limit of an infinite time horizon. To that end, let f be an anti-aliasing filter with the
idealized frequency response®

F(f) = {1 if [f| < Rs/2 525)

0 otherwise

where B, < Rs/2 < W. Let rf = rxf denote the filtered received signal, which is
subsequently sampled at rate R = 1/Ts. The useful signal is not affected by the filter
because B, < Rgs/2, and thus

re(t) = Fi, 9, () + v (£) (3.29)

with vi = v f. The samples v¢(kTs) form a discrete-time white proper Gaussian noise
process with

ve(kTs) ~ CN'(0,NoRs), k€ Z (3.30)

which follows from [70, Proposition 25.15.2 (i)] because ||f||5 = Rs, as can be shown via
Parseval’s theorem [70, Theorem 6.2.9] and (3.28).
With the finite sample sequence of length (2K + 1)

) & (1 (—KTy),...,r(0),...,r¢(KTs)) (3.31)

we can now write

_poein . pr b0
€r(b,9) - p(b,ﬂ) _Klgr;o p(T<K))

: p(r™X |b,6)
= gm ! / K p o /
K=o Yo [ p(b') p(6') p(rX) |1, 6") d6

® Being an ideal low-pass is an overly strict requirement, but it simplifies the following derivation somewhat.
See [89] for sufficient and more relaxed conditions that the anti-aliasing filter should fulfill.
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1 i g|re(kTe) = p (KTy)
(TNoR) T €XP (_ NoR.

EK:* re(kTs)—Fy o (KT5)|?
Zb’ f@ p(b/) P(G/) (ﬂNoI% SR exp (— ik ( N(])Rsbrs (KT,)] ) deo’

o (5o [2Re(eKT) g KT2) — Foa (T 2]
Yy Jo p(b)p(6') exp (No Lk oo [ZRe(rf(kTs) P o (KTs)) — [Py o (kTS)|2]> de'
(

= lim
K—oo

—

a

=

® exp (& [, [2Re (1) F50(1)) — [P (t)] d)
Ly Jo P(6) p(0) exp (3 [, [2Re(rs(1)Fy o (1) = [fy o (1)2] dt) A’
exp 1 e r,r —
< R [2RedToa) ~ nall]) : (3.32)

Ly Jo p(t)) p(0) exp (5 [2Re(rfy ) — 17y ¢ 13] ) 46"

Here, (a) cancels factors that are independent of b’ and ', and (b) follows from the
sampling theorem [70, Section 8.4] because the signals are bandlimited to Rs/2 due to
the anti-aliasing filter. Step (c¢) uses the definition of (-, -) and ||-||,, and exploits that
¥ is bandlimited to B, < Rs/2, so that rf = r x f can be replaced by r without affecting
the inner product. Finally, the claim (3.22) follows because the denominator in (3.32) is
independent of b and 6, and hence is just a normalization constant. O

A similar calculation, albeit only briefly sketched, has been given in the appendix
of [89]. That paper, however, is somewhat inconsequential in that it acknowledges
the nonexistence of the likelihood function, but nonetheless advocates the maximum
likelihood criterion for receiver design.

Maximum likelihood is a concept from orthodox statistics, which is concerned with
the invention of estimators, using a set of ad hoc criteria like ML. The central object of
orthodox statistics is the likelihood function p(y; x), which describes the hypothetical
distribution of y that would be obtained if the underlying experiment was repeated an
infinite number of times with the same deterministic but unknown parameter x.

In contrast, we will consequently stick to the Bayesian school in this thesis. Bayesians
treat all unknown quantities as random variables, and update their distribution p(x) to
p(x|y) in the light of new data y, using Bayes’ theorem p(x |y) = p(x){y(x). Among
the many advantages of Bayesian statistics are the possibilities to exploit non-uniform
prior knowledge, and to compute soft information about x in terms of probability
distributions, which can be used as prior knowledge by the next processing step.

Since exact Bayesian inference is infeasible for most practical problems, several
approximations have been proposed in the literature. In the following, we will apply
the very general divergence minimization (DM) approach, which is discussed in detail
in Appendix B, to derive iterative receiver structures for a variety of scenarios.
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3.3 Hard Parameter Estimation via Divergence Minimization

In order to demonstrate that previously proposed ML-like” code-aided synchronization
algorithms are contained as special cases in the DM framework, we start the discussion
by re-deriving the results from [100] and [114]. From those papers, we adopt the simple
channel model, which essentially consists of an AWGN channel with unknown timing
and phase/frequency shifts, and which could for example represent a satellite link.

To derive ML-like estimators from the divergence minimization approach, we con-
strain the beliefs of the parameters to Dirac distributions, which leads to MAP-like
estimators as shown in Section B.4.3 on page 252, and select uniform prior distributions,
which makes MAP and ML formally identical. In later sections, soft estimators will be
derived from the same basic principles, simply by removing these constraints.

3.3.1 System Model

A message b € F™ is encoded?® to a codeword ¢ € FNe, which is split into Ny subvectors
¢y of length K. The ¢, are transformed to complex symbols according to some M-ary
mapping scheme, where M = 2K yielding a block xp of Ng data symbols. Some
training data, consisting of Np, pilot symbols xp, is multiplexed into the symbol stream,
which results in a block x of length N = Ny + Np,.

The transmitted signal s is generated by linear modulation

N-1

s(t) = ) xug(t—nT) (3.33)
n=0

using a transmit pulse g whose properties are summarized in the text box on the facing
page.

The channel introduces a delay 1y, a frequency shift vy, a phase offset 9y, a multi-
plicative gain gg, and additive Gaussian noise v with power spectral density Ny. The
received signal r is then given as

r(t) = gos(t — o) SZHN) 4 y(t)
N—1 )
=90 Y xng(t—nT —19) d@0H%) L y(h). (3.34)
n=0

A block diagram of the system model is shown in Figure 3.5.

7 The term ML-like indicates that the proposed estimators are derived from the maximum likelihood criterion,
but only give approximate results because the presence of the unknown data sequence makes the ML problem
intractable.

8 As explained in Chapter 2, the coding scheme C should be understood as an effective encoder, which contains
the channel encoder and also the bit interleaver used in BICM transmitters.
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Figure 3.5: Block diagram of a QAM transmitter, AWGN channel, and a generic receiver.
The channel is characterized by four unknown parameters: the gain g, the
time offset 19, the frequency offset vy, and the phase offset 9

Properties of the Transmit Pulse

We require the integrable and energy-limited transmit pulse g € £; N £, to be a Nyquist
pulse with respect to the symbol duration T, normalized to unit energy, i.e., Hg||% =1
The self-similarity function of g can be compactly written as

Rg(nT) 2 / g(t+nT)g* (1)dt=1[n=0], neZ (3.35)
Furthermore we assume g to be a baseband pulse whose spectrum is centered around

f =0, 50 in conjunction with the normalization ||g||3 = 1 = ||G||3 (Parseval’s theorem),
we have

G( f)’f:O V7= i g(7) dr. (336)

Note that the transmit pulse has the somewhat peculiar physical unit 1/4/s. This is a
consequence of the unit-energy normalization, whose rationale is that the energy of a

modulated pulse s(t) = x g(t) is then simply described by |x|>. The physical unit of x is
/], and the unit of the signal s(t) is \/J/s = VW.

Collecting the channel parameters in the vector
0 = (g0, 0, v0, %) € © (3.37)

and assuming that they are independent of the transmitted signal, the joint posterior of
all unknown quantities can be factorized as

p(b,c,xp,0r) = p(b) p(c|b) p(xp | ) p(6) £:(xp, 0) (3.39)

where {(xp,0) = p(xp,0]|r)/p(xp,0) as defined in the previous section. A factor
graph of (3.38) is shown in Figure 3.6.
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EOI () H xp|c>H |b>%p(b)

/

Figure 3.6: Factor graph of the joint posterior distribution (3.38). Parameters above the
edges are passed forward, from left to right, while parameters below the edges
are passed backward, from right to left

The prior distribution p(b) of the transmitted message is assumed to be uniform
throughout this thesis. The factors p(c|b) and p(xp | ¢) represent the deterministic
encoding and mapping operations, respectively, and can be written as

p(c|b) =1[c=C(b)] (3.39)
plxp|c) ITDp Xn|en) = r%ll[xn = M(cy)]. (3.40)

The most interesting factor is the likelihood function, which has been derived in (3.22)

2
2) . (3.41)

Re {Fepo)  [Fano
No/2 Ny

L (xp, 0) x exp (
In our system model, the squared norm of ¥ is?
2= [ o)

N-1 ) )
= /‘go Z Xn g(t—l/lT—TO) e](27'[l/0t+l90) dt

HFXD/B

—1N-1

= g2 Z Z XX n,/g t—nT—1)g"(t—n'T — 1) dt

n=0 n'=

@ NS,
=86 3 |l (3.42)
n=0

where (a) uses (3.35) in the text box. The inner product can similarly be computed as

(1, Fxp0) = / (D)7, ot) dt
N-1 ,
- / () g0 2 x5 g (t— nT — 19) e (@mt+00) 4y

=goe —i% Z / *(t—nT — 1) e T2t gt (3.43)

9 All integrals over time t range from —oo to o, so for simplicity we drop the explicit bounds.
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and thus
Le(xp, 0) xexp 20 Re efj‘%Nil x5, /r(t) g*(t—nT — 1) e ™0 dt) — g—% Nil |
r\AD, N() = n' 0 NO = n .

(3.44)

The remaining factor is p(8), the prior of the channel parameters. As explained at
the beginning of this section, we assume a uniform prior in order to obtain ML-like
estimators. We will revisit this choice in later sections.

In order to apply the DM approach, we still need to define the set Q from which
the auxiliary distribution g is selected, and choose for each message whether it is
computed by inclusive or exclusive divergence minimization. First of all, the factor graph
in Figure 3.6 implies the factorization (b, ¢, xp,0) = q(b) q(c) g(xp) q(6). However,
to make the receiver algorithm tractable, we break the factorization of the discrete
distributions further down to the scalar level, i.e., q(b) = Hf\i’o_ ! q(b;), and similarly for
q(c) and g(xp). As explained in Section 2.3.2, this fine-grained factorization could also
have been expressed explicitly in the graphical model by drawing individual variable
nodes for each bit and data symbol, and in fact this is done in many papers on turbo or
LDPC decoding. Our reason to draw the graph in the compact form as in Figure 3.6,
and to impose the factorizations of g(b), g(c) and gq(xp) via implicit constraints, is to
maintain a high-level view on the probabilistic network, and to avoid getting entangled
in unnecessary details.

As mentioned at the beginning of this section, the belief q(0) of the synchronization
parameters will be constrained to a Dirac distribution in order to obtain hard parameter
estimates. A derivation of the generic MAP-like hard estimator in the context of the DM
framework is given in Section B.4.3 on page 252, where it is in particular shown that
MAP-like hard estimation is based on exclusive divergence minimization.

In the discrete part of the belief network, however, we are able to use inclusive diver-
gence minimization, which leads to expectation propagation because of the projections
that are necessary due to the factorization constraints. Message passing in the discrete
part thus boils down to the standard BICM-ID receiver, as discussed in Section 2.3.

In the next two subsections, we will derive the iterative receiver structure, comprising
the code-aided parameter estimator and the conventional BICM-ID algorithm. We begin
with the forward pass through the receiver, meaning the left-to-right information flow
in Figure 3.6, from the parameter estimator through the demapper and decoder towards
the sink. The following subsection 3.3.3 then derives the backward pass.
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3.3.2 Forward Pass

Parameter Estimation

A straightforward application of (B.84) leads to the generic parameter estimate

6 = argmaxE g(xp) 108 &r(xp, 8)] + log p(6). (3.45)
0cO

As we assume a uniform prior distribution, the term log p(8) is constant and will be
ignored in the following. With the likelihood function (3.44), we obtain the following
optimization problem:

(80r %o, Vo, 190) = argmax[E g(xp)
80,T0,V0,%

;ﬁRe(e_j19 Z / *(t—nT — 1) _jZ’TVUtdt)
No =0
g2 Nl
Z s
—argmaxv ( % Z '*/ (t—nT —19) 7j2n"°tdt)

80, T0,v0,80 0

g '\~
_ & , 3.46
No n;) Pn (3.46)
For data symbols (n € D), %, = E;(x,) [xn] and py = Eg(x,) [|x1|?] are the first two raw

moments of the data symbols, obtained from the current belief g(x,). For pilot symbols
(n € P), we simply have %, = x,, and p,, = |x, 2.

How are the g(x,) being computed? In the initial iteration, no information about the
data symbols is available, so the g(x,) are uniform, %, = 0, and p, = Es, where Eg £
|X| 'Y cx x| is the average symbol energy. The code-aided parameter estimation
then automatically decays to pilot-aided estimation. In later iterations, non-uniform
q(x,) are obtained based on feedback from later stages of the receiver. This procedure is
discussed in more detail in Section 3.3.3 on page 51.

The second term in (3.46) only depends on go, which furthermore is non-negative, so

(1o, 0, %) = arg max Re( jdo Z x / “(t —nT — 1) e 270t dt> (3.47)

T0,v0,%

Once %y and 7 are obtained, maximization over 9 is simple,

B = arg ( Y = / *(t—nT — 1) e J270t dt) (3.48)
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because then the real part of the term in parentheses coincides with its modulus. The
estimates of time and frequency offset are thus

(o, 79) = arg max Z xn/ *(t—nT — 1) e 1270l g | . (3.49)
To,V0
Finally, the estimate of the channel gain is
. g2 N-l
o= _* t—l’lT—Tg) —J2riot gg| — 0 Z Pn
8o

’ yN- Iz f t—nT—To)eﬂmUtdt‘

I (3.50)

Zn ()Pn

which is easily obtained by setting the derivative with respect to gy to zero. Note that, if
we combine the channel gain gy and the phase offset ¢y into a complex channel weight
ho = go &%, its estimate can be written by merging (3.48) and (3.50) as

“(t—nT — 1) e 1270t dt

flO nO nf
Zn Opn

(3.51)

The joint timing and frequency estimator does unfortunately not have such a nice
solution. However, (3.49) is not a novel result; strategies for solving the optimization
problem have been studied quite extensively in the literature (c. f. [88] and references
therein), so we will not discuss this topic any further.

Matched Filtering

The problem of parameter estimation with soft symbol input that we have considered
so far corresponds, in the terminology of message passing, to the computation of the
message from the factor node ¢;(xp, 8) towards p(6). Now, let us have a look at the
message towards the factor node p(xp | ¢), i.e., into the discrete part of the receiver. Up
to a multiplicative constant, it is given as

Mimé—sdem (¥D) = 1y, (xp 9)~>p x| o) (¥D) < Eyg)[¢r(xp, 0)]

@ oo [ 280 SN e
( Re(e it Z / (t—nT —1)e” sz’otdt) ﬁ% EA

n=0
N— : o 52
Y 1‘[ ( So Re( thox;, | (t)g*(tfanfO)e’]z’“’Otdt) Zf;)mz)
n=0 0
N-1
& H mmf—>dem(xn)- (3.52)

n=0
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Here, (a) computes the trivial expectation over q(8) = 5(8 — 8), and (b) pulls the sum
over n out of the exponential function, showing that m¢ ,gem (¥p) decomposes into the
product of messages towards the individual data symbols.

Because of the independence of the forward messages, it suffices to consider a single
one. Again disregarding constant factors, the message towards x;,, becomes

~ N o A2
Pt sdem () & €XD (zﬁg Re(e iy [ r(1)g (1 =T ~ t)e Pt ar) - &0 |xn|2>

D HDe*(t—nT — % 7j27'(170tdt
= exp (Zg\% <|xn|22Re(x,§ Jrg (t—n ATO)e )

o el
He*(t —nT — % —j27Tl70tdt
e | L8 €T ) BT Ny .
So el 80

where (3.53) means that for each x, € X, (X, being the discrete modulation alphabet
for the nth symbol)

52 * A\ L —j2mlot 3412
r(t t—nT — Tp) e Vol 4t
Mt —sdem (Xn) & €xp _% Xn — f (e’ T 0) . (3.54)
0 Q0 elvo
In the interest of compact notation, it is reasonable to define
yn(%0,00) 2 / ((£) g (t — nT — ) e 12700t df. (3.55)

Computing y, (%, Do) from r is commonly called matched filtering. It can be implemented
as the concatenation of a multiplication of r(t) with exp(—j27ript) (frequency correction),
filtering with g*(—7), and sampling the result at the time instant t = nT + ). We remark
that in practice, the timing and frequency correction would rather be implemented in
the digital domain, after analog prefiltering and A /D conversion with a sufficiently high
sampling rate. However, such implementation aspects are out of scope of this thesis; the
interested reader is referred to [88,89].

With the matched filter output y, (%, %), the forward message towards x;, becomes

plfolo) B0 — e (s,
Soe® &5

mmf—)dem(xn) xCN (xﬂ

yn(fo, %) f\]"z). (3.56)
ho 7o

Demapping and Decoding

The demapper and decoder proceed as derived in Section 2.3, with the sole difference
that the input to the demapper, formerly given directly as the channel output as in (2.16),
is now replaced by the message (3.56) from the matched filter.
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The demapper produces a sequence of intrinsic L-values that serve as input to the
soft-in soft-out channel decoder, which in turn computes new beliefs of all code bits c;
and information bits b;. If the decoder works itself iteratively, the question of scheduling
arises. Two canonical choices are as follows.

e On every invocation of the decoder, its internal state is cleared (i.e., the inter-
nal messages are reset to uniform distributions), and the decoder is run until
convergence. This leads to a doubly-iterative receiver.

o The decoder only runs for a single iteration, keeping its internal state. In this case,
the synchronization and decoding iterations are merged, and the receiver remains
singly-iterative.

In [99,100], an iterative receiver using the first schedule has been derived by means of the
EM algorithm,!? while the second schedule is proposed as an ad hoc approximation with
the aim of reducing the overall complexity. Simulation results presented in [99] support
the claim that both schedules yield similar performance after convergence of the total
receiver, even though the second schedule might require more synchronization iterations.
Note that both choices can naturally be obtained from the divergence minimization
approach. In contrast to the EM-based derivation, there is no necessity to leave the
ground of the theoretical framework by introducing additional approximations.

The simulation results that are presented later have been obtained with the former,
doubly-iterative schedule.

After the decoder has run, we either compute an estimate b by thresholding the
L-values of the information bits, report it to the higher layers of the protocol stack and
terminate the receive algorithm, or we continue with another synchronization iteration.

3.3.3 Backward Pass

So far we have discussed the forward pass through the receiver, which consists of
parameter estimation using soft information g(x,) about the data symbols, followed by
matched filtering, demapping and decoding. In order to close the loop, it remains to see
how the beliefs g(x,,) are computed based on the information that is fed back from the
decoder. At first glance, this computation seems quite straightforward, but it contains a
subtle aspect that to my knowledge has not been mentioned before in the literature.
Just as every belief, (x,) is the product of all messages into the variable node x;,:

q(xn) < Mmt_sdem (Xn) Mdem—sme(Xn)- (3.57)

10Strictly speaking, even the receiver using the first schedule is just an approximation, because the EM algorithm
requires the exact posterior distribution of the data, conditioned on the most recent parameter estimate, which
is delivered only approximately by iterative decoders like turbo or LDPC.
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The forward message, from the matched filter to the demapper, has been given in (3.56),
and the backward message is easily computed as

—1
mdem—)mf(xn & ZP Xn ‘ Cn H mdec—>dem(cn k)

Cn k=0
K-1 _
oY 1 [xy = M(cn)] IH exp <c,,,k/\,,,k>
[ =0

= exp ( Y M ,1k) (3.58)

where M, 1(xy) returns the kth bit of the label of x,. The belief g(x,) can thus be
conveniently computed in the log-domain as

g % Yn (%0/ VO
logq(xn):_ﬁ Xn = —5— -‘r ZM ) nk +const (3.59)
0 $o elvo
intrinsic information extrinsic information

where the constant term ensures the normalization }, 4(x,) = 1.

Let us briefly reconsider the operation that the demapper carries out. In principle,
it takes a discrete distribution of the data symbol as input, which we will call m(x) in
the following. Due to the one-to-one correspondence between symbols and bit labels, it
can treat m(x) equivalently as a joint distribution m(c, ..., ckx_1) of the bits. Then, it
computes the bitwise marginal distributions m(cy). If we attempt to recover m(x) from
the m(cy), the best we can do is to approximate m(x) with the product of marginals,
[Tk m(ck). Of course, all information about the statistical dependencies between the bits
gets lost in this process. This illustrates the validity of the approximation

_& |,
No

]/n TO/ VO

Z ./\/l Apk + const (3.60)
Goeld

where the left-hand side is the log-domain input to the demapper, and the right-hand
side the log-domain product of its output. The approximation consists in disregarding
the statistical dependencies between the bits, which are contained in the left-hand side
but lost in the right-hand side. We can thus approximate the log-belief (3.59) as

log q(xn) ZM M"’ZM Xp) A nk+c0nst

= Z M,;l (%n) A + const. (3.61)
k=0
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There exists some confusion in the literature about the question whether extrinsic or
posterior L-values should be fed back from the decoder to the earlier stages. The huge
interest in iterative receivers that we have witnessed in the last two decades has started
with the discovery of turbo codes, followed by the re-discovery of LDPC codes and by
the development of iterative demapping and decoding schemes (BICM-ID). All of these
are based on belief propagation, which is governed by the turbo principle, a term coined
by Hagenauer [53] for the concept of extrinsic information exchange.

Later, when the idea of iterative receive algorithms was extended to estimation
tasks “in front of” the demapper, it was recognized that posterior L-value feedback to
the synchronizer or channel estimator actually outperforms extrinsic feedback. An
explanation of this finding was provided by the derivation of iterative synchronization
as an instance of the EM algorithm, which computes the average over the hidden data x
based on its posterior distribution p(x|r;8).

However, as the discussion above has shown, posterior L-value feedback is not
optimal, either. A better way of computing g(x,) is given in (3.59), which is in fact
based on extrinsic rather than posterior feedback from the decoder, but which also
considers the available intrinsic information in the form of the message My gem (¥n)-
In order to reduce the complexity of computing g(x;), it is possible to approximate (3.59)
by using posterior L-value feedback as in (3.61), disregarding information about the
statistical dependencies between the code bits which is contained at least in the intrinsic
part.'! However, one should not simply ignore the intrinsic information and compute
the feedback into the parameter estimator purely from the extrinsic information. As
mentioned above, this is often erroneously done with reference to the turbo principle.

Besides offering a small performance improvement at the cost of a higher compu-
tational complexity, (3.59) has another, more important advantage over (3.61): it opens
up the possibility for NCA synchronization iterations, which include the demapper but
not the decoder. After (re-)estimating the channel parameters, the first term in (3.59) is
evaluated for all x, € &);. But instead of running the decoder to get updated extrinsic
L-values, a new g(x;) is computed immediately using the new intrinsic information,
but the old extrinsic L-values. Depending on the decoding algorithm, this can lead to
a significant complexity reduction at the cost of a decreased algorithmic performance,
because this scheme only exploits knowledge about the discrete symbol alphabet, but
not the structure that is imposed by the channel code.

Again, we obtain a doubly-iterative structure which leads to the question of schedul-
ing. The two extreme cases are (a) to only iterate between estimator and demapper, and
to invoke the decoder just once at the very end, and (b) to run the channel decoder in
each synchronization iteration, i. e., to not do any NCA iterations at all. Between those
extremes, there is of course some middle ground which offers the opportunity to trade

UThe extrinsic part does not contain such information anyway if we are using a binary channel code. Indeed, the
whole point of non-binary codes over the Galois field IF,m, m > 1, is to preserve the statistical dependencies at
least among the m bits that constitute a code symbol, but this topic is out of scope of this thesis.
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Figure 3.7: Iterative receiver structure with hard parameter estimation for the communica-
tion system shown in Figure 3.5 on page 45. The decoder is skipped in NCA
iterations, so the dashed feedback line is only updated in CA iterations

off performance vs complexity. In the terminology of Section 3.1, schedule (a) is purely
non-code-aided, whereas schedule (b) results in a code-aided receiver.

Note that the split into intrinsic and extrinsic information as in (3.59) is required to
derive the idea of iterations between parameter estimator and demapper; the traditional
view of posterior L-value feedback as in (3.61) does not allow to bypass the decoder.

3.3.4 Concluding Remarks

In this section, we have used the generic divergence minimization framework to derive
an iterative receiver structure as shown in Figure 3.7. It computes hard estimates of the
channel parameters, which are subsequently treated as the true parameter values, so the
derived structure is a mismatched receiver.

The careful reader will notice the estimate Ny of the AWGN power spectral density
in Figure 3.7. Indeed, information about Nj is required by the demapper, but it has been
taken as perfectly known up to now. Why did we not include Nj as a fifth component
in (3.37) in order to estimate it together with the other parameters? The key difference
between Ny and the other parameters is that the latter are associated with the useful
signal, which is a superposition of finitely many finite-energy pulses, so the whole
signal has finite energy. It therefore has essentially a finite duration; the only reason for
considering an infinite time interval in the derivation is to obtain simpler mathematical
expressions. In contrast, Ny is associated with the noise process, which has finite power
and therefore, in the limit of an infinite time horizon, contains an infinite amount of
energy. Thus, the posterior p(Np|r) is a Dirac distribution, meaning that Ny can be
estimated perfectly from r, but of course this is of no practical relevance. The question
of estimating Ny from the infinitely long observation r is ill-posed. Instead, we will
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discuss the problem of SNR estimation in Section 3.7, in the context of a discrete-time
transmission model with finitely many channel uses.

So far, the practically oriented engineer, who is only interested in the final algorithms,
will not have found many new insights. Non-data-aided synchronization algorithms
are studied extensively in [88], and the code-aided parameter estimators (3.48)—(3.51)
have been presented for instance in [100] and, for the special case of BPSK modulation,
in [114]. Conceptually, however, our derivation offers some advantages. The flexibility of
DM, which contains both EM and BP as special cases, has allowed us to derive the whole
receiver structure systematically in one piece, while the classical EM-based derivation
in [100] requires some ad hoc approximations to link the code-aided parameter estimator
with the outer BICM receiver. Also, we have been able to cleanly answer the question of
whether to use posterior or extrinsic L-value feedback to the estimator.

But this is not the end of the story. So far, we have not even attempted to exploit
the two main advantages of Bayesian methods over orthodox parameter estimation:
the ability to consider prior information, and the possibility to compute soft estimates
(approximations of the posterior parameter distributions) instead of hard estimates. For
the time and frequency offsets 7y and v, hard estimates seem to be a pragmatic choice,
since even they do not have closed-form expressions. Computing higher moments of
their distributions therefore seems to be practically infeasible. For other parameters,
however, soft estimation is well possible and can have a significant positive impact on
the algorithmic performance, sometimes with hardly any additional complexity.

Since we will not be discussing timing and frequency synchronization any further,
we will abstract the matched filter away in the following, and work with discrete channel
models like

Yn = 80 Xn e 4 Wy (3.62)

where any inter-symbol interference that is caused by residual synchronization errors
is assumed to be included in the noise term w,. For simplicity, we do not make the
dependence of the matched filter output i, on the estimates %y and 7y explicit any more.
However, it goes without saying that it is possible to re-estimate 75 and v, and to update
the y,, accordingly, every time a new belief §(xp) becomes available.
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3.4 Soft Carrier Phase Estimation

In this section, we generalize the phase estimator from the previous section to soft
output in a very simple and elegant way by removing the Dirac-constraint from the
belief 4(8y). Of course, merely producing soft information is not sufficient; we also need
to adapt the consumer of that information accordingly. To this end, we derive a simple
demapping metric which takes the residual phase error into account.

The work presented in this section has partly been published in [117].

3.4.1 System Model

We consider the same BICM transmitter as in the previous section, shown in Figure 3.5.
We assume a perfect time and frequency synchronization, so that the transmission can
be described with the discrete-time model

Yn=goxne® +w, n<0<N (3.63)

where w,, is zero-mean white Gaussian noise. We assume knowledge of the channel gain
<o and the noise variance Ny = E[|wy, \2], so the only unknown channel parameter is the
phase offset ¢y. In this section, we assume a constant phase shift in order to introduce
the basic concepts in a simple scenario. In the following two sections, the model will be
generalized to time-varying phase noise processes.

Recall that the sets D and P respectively contain the time indices of the data and
pilot symbols. The vectors xp and xp consist of the transmitted data and pilot symbols,
and the corresponding observations after matched filtering are collected in yp and yp.

The joint posterior of the unknown quantities factorizes as

N-1
p(b, e, xp, 80| y) o p(b) p(c|b) p(80) [ T p(xn|en) Ii[0 p(yn | Xn, %)

neD
W () p(c|b) p(00) p(yp | xp, 80) TT Pt | €n) plyn | T, 00) (3.64)
neD

where (2) merges the likelihoods of the pilot symbols into the factor p(yp | xp, t) =
ITicp P(Yn | xn, B0). A graphical model of (3.64) is shown in Figure 3.8.

3.4.2 Soft Phase Estimation

The variable ¢y in Figure 3.8 is connected to three types of nodes: the prior distribution
p(t), the likelihood function p(yp | xp, ¥9) involving the pilot symbols, and the likeli-
hood functions p(yx | xx, %), n € D, involving the data symbols. In the following, we
consider each of them in turn.
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Figure 3.8: Factor graph of the joint posterior distribution (3.64)

Information from the Pilot Symbols

The likelihood function p(y, | xp, %) is not connected to any other node, since both y
and xp are known to the receiver. Abbreviating the message 11,y | xp, 8)) 8, 35 My, — 8,/
the contribution from the pilot symbols to g(8) is thus readily computed as

my_—8,(80) < p(yp [ xp, %)

I S lyp —oxp e
(7Np) ™

No

(3.65)
where (a) discards factors that are independent of 9y, and (b) expresses the message as
a von Mises distribution.

As a quick summary, the von Mises distribution M ((), parameterized by { € C, is a
distribution that describes angular random variables ¢ € [—7, 7). Its PDF is

_exp(k cos(d — u))
p(®) = 27t Ig(k)

exp (Re (@e‘jﬂ))
T () (3.6

where Iy(-) is the modified Bessel function of the first kind and zeroth order. The
parameter p = arg{ determines the mode, and « = |{| is a measure of concentration

(inverse variance). More details about the von Mises distribution are given on page 222.




58 Chapter 3. Parameter Estimation

For convenience, we define the parameter in (3.65) as

H
< a 80XpYp
= —"" 3.67
Cp No/2 (3.67)
Note that this result is intuitively reasonable, because
arg {p = arg (+yp )
=arg (80 ||x73||2 el 4 x'f,wP> (3.68)
is an unbiased estimate of 9, and
25 = &2 |xByp|
P No/2
8 -+ feop % »

is approximately equal to twice the pilot SNR, given as g3 ||xp |* /No. Note that the
factor of 2 arises because the estimate of ¢y is only influenced by the angular, but not
the radial noise component.

Prior Information

It is usually a good idea to work with conjugate priors. These are priors which, when
multiplied with the respective likelihood function, yield posterior distributions which
have the same parametric form as the prior. Then, updating a prior to a posterior
distribution in the light of new data simply requires updating the parameters of the
distribution.

In our case, the likelihood function of ¢ is proportional to a von Mises distribution,
so we choose

p(do) = M(8o | Ca). (3.70)

Since the multiplication of two von Mises distributions boils down to a summation of
their {-parameters, which can easily be seen from (3.66), the posterior of ¢y (only taking
the pilot symbols into account, not yet the data symbols) is simply M ({a + Z'p).

There is, however, a more fundamental reason for using conjugate priors beyond
the mathematical convenience. At the very beginning of a transmission, there is no
information about the phase available yet. The only reasonable choice is thus to set p(t)
to a uniform distribution on [—7t, 77), which is a von Mises distribution with ¢, = 0. It is
then only determined by the likelihood function (i. e., by the channel model, and not by
any subjective choices made by the algorithm designer) that the posterior distribution
also becomes a von Mises distribution.
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Subsequently, this posterior becomes the prior phase distribution for the next data
packet, assuming that the phase offset stays constant over several packets. This observa-
tion finally justifies the usage of conjugate priors in our Bayesian estimators.

In the following Section 3.5, the same fundamental concept will be used to generalize
the phase offset estimator to time-varying phase noise processes.

Information from the Data Symbols

So far, we have derived a purely pilot-aided soft phase estimator. To obtain a code-
aided algorithm, it remains to incorporate the information about ¢y that is contained
in the data symbols. Since the factor nodes p(yy | x4, %) are of degree 2, we must
decide on the divergence measure that should be used for the computation of the
messages My, |, 6,)—s0, (abbreviated as m, 4 in the following). We will first show
that exclusive DM yields a simple and elegant code-aided soft phase estimator, which
is a straightforward generalization of the hard estimator from the previous section.
Afterwards we will briefly discuss the problems of inclusive DM and show why it is not
applicable to the phase estimation problem (at least not without further approximations).

Exclusive DM  With the likelihood function

_ 1  |yn — goxne™|?
p(Yn | xn,80) = N &P ( B (3.71)

we can write

,' 2
_ goRe(xpyne ™) _ 85 |%n|
log p(yn | xn, 00) = No/2 Mo + const (3.72)

and an application of the message update rule (B.62) from exclusive DM yields

)

goRe(xyyne ™) &b [xul’
No/2 No

my,,at‘)g(l%) & exp (IEq(x”)

= exp (80 Re(fryne %) g7 Pn)

Ny/2 Ny
e . s & 80%pYn
M(80] L) with 7, 2 BEb (3.73)

If we compare (3.73) with (3.65), we see that both have the same functional form, the
only difference is that the known value of x; from (3.65) is replaced by the soft symbol
T = By, [xa] in (3.73).
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Combining the available information about ¢ is done by multiplying all messages
towards the variable node ¢y, which boils down to summing their {-parameters. Thus,
q(%0) = M(|Cp) with

gpégaJFZ'PJr Z Zn

neD

N-1_
={at Z gn
n=0

»H
80r Y
= 74
Wt S (374)
where X in the last expression contains both pilot and soft data symbols.
Recall the hard phase estimator from the previous section

N-1
By = arg ( ) fflyn) = arg(x'y) (3.75)
n=0

which was given in (3.48). Since the mode of a von Mises distribution M({) is equal
to arg {, we see that the soft estimator (3.74) is quite similar to (3.48), but is improved
in two aspects: it allows for a non-uniform prior, and it additionally yields reliability
information in terms of fép’. The complexity of both estimators is dominated by the
inner product "y, so the new reliability information essentially comes for free.

Inclusive DM In order to appreciate the elegance of the estimator above, let us see
what inclusive DM would yield. Straightforward application of belief propagation gives

<go Re(xjyne %) g3 |x,,|2>

myn—>190(190)°< Z My, —y, (Xn) exp

yeX, No/2 Np

S Y g () exp S M(ﬂo\gmy’l) (3.76)
n‘>n N “XNT /A .

R No No/2

i.e., a mixture of von Mises distributions with | X}, | components. The belief (%), which
is the product of all incoming messages, then becomes a mixture of |X \Nd components
(assuming that all &, are equal). This is a typical example of exponential blowup, which
makes the estimator intractable for any relevant Ny.

We could circumvent this problem by projecting q() into the family of von Mises
distributions, yielding expectation propagation rather than belief propagation. We omit
the detailed derivation in the interest of space, but it is easy to show that EP results in a
complex and numerically unstable algorithm, so this approach is a dead end, too.
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Finally, we could apply the projection not to ¢y, but to the data symbols x;,, projecting
q(xy) into the family of Gaussians. Assume that m1y, sy, (x4) < CN (xy | 11,,, Fﬁ). Then

— go xpel%?
My, —,(%0) /m,(,ﬁyH (xn) exp <_|y"g£[0”|> daxy (3.77)
which, after a lengthy calculation that we shall omit, becomes
_ . _ 2 0 —x
my, 9,(%0) x M(8 | () with ¢, = % (3.78)
g()an + NO

The assumption of Gaussian data symbols indeed results in a tractable message
towards the phase estimator, which is actually quite similar to (3.73). The difference
is that (3.78) expresses a larger variance (smaller |Z|) of the phase estimation error, as
it also includes the uncertainty about x; in terms of its variance (‘?3,, which is ignored
by (3.73).12 It can thus be expected that the message obtained from inclusive DM
yields better results, albeit with an increased complexity. However, simulation results
presented in Figure 3.12 below indicate that the performance gain is very small, so the
simpler (3.73) is probably the more interesting choice in practice.

If we are willing to use (3.78) rather than (3.73), the remaining question is how to
compute ji,, and frf,. The authors of [22], who consider the problem of phase estimation
purely from a belief propagation perspective, simply replace the discrete BP message
My, —y, (Xn) by a Gaussian with the same mean and variance, without discussing this
issue any further. Can we do better? A systematic way to force g(x,) into a Gaussian
form would be expectation propagation, but unfortunately an exact application of EP
again yields complicated and thus practically uninteresting expressions. However, with
an additional approximation (essentially dropping the division by m,,_,;(x,) in (B.56))
we obtain a tractable expression, which differs from the proposal in [22] in the fact that
it takes the mean and variance of the posterior information of x,, computed as in (3.59),
whereas [22] only takes the extrinsic feedback into account. We will demonstrate via
simulations that our approximated EP algorithm offers a non-negligible performance
improvement over [22], which should not come as a surprise after the discussion in
Section 3.3.3.

To summarize, the soft phase estimate is given by

N-1_
lp=0C+ Y Cn (3.79)
n=0

where the Z,, are computed either via (3.73) or via (3.78).

12In fact, it is a well-known result that exclusive DM tends to underestimate the variance. We will encounter
this issue again in Section 4.4, where we discuss MRC-assisted MIMO detectors which are also derived from
exclusive DM.
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3.4.3 Demapping with Soft Phase Information

In order to put the soft phase information to good use, our final step is the derivation
of a demapping metric which takes the uncertainty in the phase estimate into account.
Since x; is a discrete variable, we can use belief propagation for this task:

n
my,,ﬁdem(xn) & Ln Moy —y, (80) p(yn | xn, B0) dbo (3.80)

with the forward message from the phase estimator

[/
ml‘)g—>yn(00) = myi(aoogﬁo)
< M (89 Z,)- (3.81)
Here, . -
Cn =0p—Cn (3.82)

is the extrinsic phase information, i. e., the information about ¢y that is contained in the
Ym with m # n (we will also call Zn the intrinsic phase information in the following). We
will later show via simulations that using extrinsic phase information in the demapper
indeed yields better results than using the whole posterior phase information—a maybe
somewhat counterintuitive result that we would not have obtained by deriving the
estimator in isolation and connecting it to the outer receiver in some ad hoc way, as it is
often done in the literature.

For notational convenience, we define the polar decomposition Zn = %n efn. Then

n exp Re(Z:eﬁ’) a2
mynﬁdem(xn) & /n 2<7TI()(E)) exp —% dl90
v n

_ 1 ynl* + g3 x>\ /7 7 80XnYn\* s,
= Sl () exp( No /_Hexp Re ((:,,—i— No/2 > e ddy

(a) _ lynl” + 83 1%n* 2, 80XuYn
T 2nlp(kn) OF ( No 27lo {160+ 7 /2
N Qo xiy, e
@ex 7|y”|2+g(2)‘x”|2 lo < Kn + No/2 ) (3.83)
P No Io(%n) '

where (a) uses the identity ffn exp (Re(@*ejﬂ)) dd = 271y(|C]) and (b) multiplies the
argument of the abs-function with e i,

The metric (3.83) has already been derived in [22]. However, due to the Bessel
functions, evaluation of (3.83) is numerically quite expensive. In the following, we
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(a) Mismatched demapping metric, which is  (b) Demapping metric (3.85) with soft phase
equivalent to (3.85) with ¥ — oo information, using ¥ = 10

Figure 3.9: Contour plots of demapping metrics (a) assuming a perfect phase estimate, and
(b) taking the phase uncertainty into account

propose a simplification which exploits that the Bessel function Iy(z) is, for z > 0,
dominated by an exponential behaviour. With Ty(z) £ Iy(z) e % and the notational
shortcut

=

- Ao 20 x:yn e JHa
Cxn) = Kn + N2 (3.84)

equation (3.83) becomes

2 2 2
+ 8o |x . o
m%,adem(xn) & exp (_Iynlgon + |€(xn)| - Kn>

N() 0(7_571)
n n jﬁ” 2 5 ~ I 4 n
= exp <—|y g(l)\;; © + }C(xn)} —Re (C(xn))> 0 (T(’f(% )’)
a n — n jﬁ" 2 5 5
(z)exp (—Wﬂg(xn){ —Re (C(x,,))) (3.85)

where (a) drops the ratio of the scaled Bessel functions. I have verified numerically that
this simplification does not cause any noteworthy performance degradation.

The first term in the exp-function is the usual Gaussian detection metric as in (2.16),
and |{(x)| — Re ({(x)) is a correction term due to the residual phase error. It can be
shown that it converges to 0 as ¥ — oo, i.e., in the limit of a perfect phase estimate.
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Figure 3.10: Comparison of soft and hard phase estimation

The effect of the correction term is demonstrated in Figure 3.9, which shows contour
plots of the demapping metrics with ¥ — o0 and ¥ = 10, assuming a received symbol of
y = 0.8 4 0.3j. Due to the assumption of proper Gaussian noise, the left plot consists
of concentric circles around the received symbol. In the right plot, which assumes a
zero-mean residual phase error with standard deviation 1/ V% ~ 18°, those circles are
“smeared” in angular direction, causing the metric to decrease faster in radial than in
angular direction.

3.4.4 Numerical Results

We now present a performance evaluation of the proposed soft phase estimator. As
a running example, the simulated system uses the 3GPP LTE turbo code of length
Np = 128 bit, which consists of two constituent RSC codes with generator polynomials
(1,15/13)g. The rate-1/3 mother code is punctured to a rate of 1/2, and the resulting
codeword has length N. = 264 bit (the true rate is slightly lower than 1/2 because the
tail bits, which drive the constituent encoders into the zero state at the end, are also
transmitted). The modulator uses a 16-QAM alphabet with Gray mapping, yielding
Ny = 66 data symbols. For initial phase estimation, a preamble of N}, = 4 pilot symbols
is prepended, so the total block length is N = 70 symbols.
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Figure 3.11: Comparison of different ways to compute the feedback q(xp)

Soft vs Hard Phase Information First, we study the advantage that we get by using
the soft demapping metric, i. e., by considering the residual phase error, versus using
the mismatched metric which assumes perfect phase information. Figure 3.10 shows
the codeword error rate (WER) as a function of the SNR, for up to four receiver
iterations. The plots labeled “0. It.” refer to the initial pilot-aided iteration. Note that the
mismatched receiver (labeled “hard”), which ignores the phase reliability information in
the demapper, is essentially identical to the EM-based phase estimator as in [99], which
does not compute reliability information in the first place. Therefore, this simulation
compares our proposed estimator with the state of the art. A non-negligible performance
gain is clearly visible, particularly in the first iterations where the residual phase error
is largest. In later iterations, when the phase estimate becomes more reliable, the soft
metric converges to the hard metric and hence both yield similar results.

The following simulations all use the soft demapping metric.

Posterior vs Extrinsic Feedback In a second experiment, we compare the three different
ways of computing the feedback g(xp) that we have discussed in Section 3.3.3:

e An exact computation of the posterior information according to (3.59).
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Figure 3.12: Comparison of exclusive (3.73) and inclusive (3.78) DM

e A computation according to (3.61), using the posterior L-values. The approxima-
tion relative to the exact computation consists of neglecting statistical dependencies
in the intrinsic part of (3.59).

e A computation using only the extrinsic L-values. Here, the approximation consists
of neglecting the whole intrinsic information.

Figure 3.11 shows the results after the initial, the first and the fourth iteration in order
to keep the figure readable. After the first iteration, the three feedback types are hardly
distinguishable. After four iterations, however, the exact computation that we derived
in (3.59) clearly leads to the best results. It is closely followed by the posterior L-values,
which shows that (3.61) is indeed a good approximation of (3.59). In contrast, using only
the extrinsic L-values as feedback into the phase estimator, which is sometimes done
in the literature based on the heuristic (and obviously flawed) analogy with iterative
channel decoders, causes a larger performance degradation.'®

Exclusive vs Inclusive DM Next we compare the two proposed ways (3.73) and (3.78)
of converting the discrete belief g(x,) of the nth data symbol into the parameter Zn

BIn this experiment, the difference between the feedback types is rather small. However, we will repeat this
comparison in the following section in the context of phase noise estimation, where the difference between
posterior and extrinsic feedback is very significant.
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Figure 3.13: Comparison of code-aided and non-code-aided phase estimation

which describes the message into the phase estimator. (The two earlier simulations both
used (3.73).) Recall that the two formulas differ in that (3.78), derived via inclusive DM,
also accounts for the uncertainty of the data symbol, whereas (3.73), obtained by exclusive
DM, only uses the mean ¥,. Thus, it is expected that (3.78) yields better results, albeit
with a larger computational complexity. The comparison in terms of WER is shown in
Figure 3.12, again after zero, one and four iterations. For the inclusive case, we present
results both for exact computation of §(xp) and for purely extrinsic feedback. Note
that the combination of inclusive DM (3.78) with extrinsic L-value feedback has been
proposed in [22], where the phase estimator has been derived from belief propagation,
and where the extrinsic (and discrete) BP message mgem .y, (x1) is heuristically replaced
with a Gaussian in order to keep the complexity manageable.

The results in Figure 3.12 show that, after four iterations, inclusive DM indeed
performs slightly better than exclusive DM as expected—but only for posterior feedback.
Using extrinsic feedback, as proposed in [22], leads to a considerable performance
degradation. Also, the difference between inclusive and exclusive DM (when using
posterior feedback) is rather small, so the higher complexity of (3.78) is probably not
justified.

Code-Aided vs Non-Code-Aided Estimation In the last experiment of this section, we
compare the code-aided algorithm that has been studied up to now with its non-code-
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aided counterpart, as discussed in Section 3.3.3. The NCA formulation relies on the
decomposition (3.59) of g(x,) into an intrinsic part, provided by the demapper for the
nth data symbol, and an extrinsic part, provided by the decoder in terms of extrinsic
L-values. In an NCA iteration, the decoder is skipped, and thus only the intrinsic
part of g(x,) is updated while the extrinsic L-values remain unaltered. The results
after one, four and ten NCA iterations are shown in Figure 3.13. Not surprisingly, the
NCA algorithm performs considerably worse than the CA receiver. After four NCA
iterations, the results are similar as with one single CA iteration, and after ten NCA
iterations, when the algorithm has converged, there remains a non-negligible gap to the
CA algorithm after four iterations. However, depending on the relative computational
complexity of the demapper and the decoder, an NCA iteration may be significantly
cheaper. Also note that the two algorithmic schedules that are compared here are, in a
certain sense, the most extreme ones: only CA iterations versus only NCA iterations.
Mixed schedules, for instance running the decoder every kth iteration with k > 1, might
be an interesting compromise between performance and complexity.

A detailed comparison of different schedules depends on many parameters like the
modulation and coding scheme and the expected SNR, and is out of scope of this thesis.
However, having the option of NCA iterations available is clearly an enrichment of our
algorithmic toolbox.

Root-Mean-Squared Estimation Error and Cramér-Rao Lower Bound The quality of a
(hard) parameter estimator is often measured in terms of its mean-squared error (MSE).
A well-known result from orthodox statistics states that the MSE of any unbiased
estimator 6 is lower-bounded by the Cramér-Rao Lower Bound (CRLB) [64, Section 3.4]

A 1
> .
var [9} 1(9) (3.86)
with the Fisher information
> log P (y' 0 )
AN Z o r\JrY)
1(9) = —E { 902 } . (3.87)

Although we are working in a Bayesian setting, we can still derive a hard phase
estimate from {,, as By = arg {p, so it is meaningful to evaluate the MSE of our phase
estimator and compare it to the CRLB. Assume a purely pilot-aided estimator, i. e., that
the whole block x of length N is known to the receiver. Then the log-likelihood function
of ¥ is

log(y; %) = _Ni lly — gox et H2 + const (3.88)
0
with second derivative

Plogp(y;d0) _  goRe(xMye™) (3.89)
a2 No/2 '




3.4. Soft Carrier Phase Estimation 69

Excl. DM, Exact g(xp), 0. It.
—>— Excl. DM, Exact q(xp), 1. It.
—e— Excl. DM, Exact q(xp), 4. It.
- x- - Excl. DM, Extr. L-val., 1. It.
— -o— - Excl. DM, Extr. L-val,, 4. It.
x- Incl. DM, Extr. L-val., 1. It.
e Incl. DM, Extr. L-val., 4. It.
----CRLB for N = 4 symbols
—— CRLB for N = 70 symbols

RMSE(dy) [deg]

SNR [dB]

Figure 3.14: Root-mean-squared error of the phase estimate, comparing exact (posterior)
and extrinsic feedback. For the case of extrinsic feedback, both exclusive (3.73)
and inclusive (3.78) DM are shown

Since E [y] = gox &/, the Fisher information becomes

2 2
& [ x| _
(%) = No/2 2N SNR (3.90)
where 5
_ 8oks
SNR = No (3.91)

is the average signal-to-noise ratio as defined in (2.10) (but with known channel gain gp).
The root-mean-squared error (RMSE), measured in degrees, is then lower-bounded as

180°

Tv2NSNR’

Figure 3.14 shows the RMSE for our phase estimator with the following choices:
extrinsic feedback with (a) exclusive and (b) inclusive DM, and (c) posterior feedback
with exclusive DM (when using posterior feedback, the results for inclusive DM are
virtually the same and are therefore omitted in the figure). For reference, the CRLB is
plotted with N = 4 (the number of pilot symbols in our system), and N = 70 (the total
block length).

RMSE(8y) > (3.92)
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After the zeroth iteration, where the phase estimator works purely pilot-aided, the
RMSE is very close to the CRLB for N = 4. Note that the three algorithms do not yet
differ after the initial pilot-aided iteration, so only one plot is shown in the figure.

The plots for the other, code-aided iterations are more interesting. The lowest RMSE
is clearly obtained for posterior feedback, which should not be surprising after the
preceding discussion. In high SNR (say, > 9 dB), where the WER drops below 1073, it
reaches the CRLB for N = 70 symbols, which is derived under the assumption that the
whole block consists only of training data.

The RMSE gets far worse when only extrinsic information is fed back into the channel
estimator. When the { ,, are derived via exclusive DM, the RMSE even increases over the
iterations, at least in the low SNR range. The performance gets slightly better when
using inclusive DM, but even then, the RMSE is significantly larger than with posterior
feedback, which again confirms our result that posterior feedback is the correct choice.
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3.5 Wiener Phase Noise Estimation

So far, we have only considered the estimation of a static phase offset. Due to the
Bayesian problem formulation, however, the algorithm from the previous section can
naturally be extended to time-varying phase noise processes, by adapting the statistical
model p(9), where & = (8, ...,0y_1). In the following, we derive an estimator for the
simple, but nonetheless practically relevant example of Wiener phase noise, which is a
common model for free running oscillators. The subsequent section will then develop
an extension to linear state space models, which are sufficiently general for an accurate
description of phase-locked loops.

3.56.1 System Model

The only difference to the system model from the previous section is that we now
consider the phase ¢ to be time-varying, so the channel model is now

Yn=80xne" +w,, n<O<N. (3.93)

It remains to specify a stochastic model for the phase noise process. Following [31],
we write the continuous-time output of a noisy oscillator with frequency f. as'*

z(t) = A cos(2mtfc(t + a(t)))
_Aa (ejznfc<t+a<t>) " efi2ﬂfc(t+a(t))> (3.94)
2
where «a(f) is a stochastic time shift. The autocovariance function of z is

K. (t,7) = E [z(t + T) 2" ()]

— ATz]EKejanc(twﬂ(Hr))+e—j2nfc(t+r+a(t+7)))

<e—12nfc(t+rx(t>) +ejznfc(t+a(t>)>]

— ATZJE{ejZHfC(T-&-a(H-T)—a(t)) + @2fe 2t Ta(t+T)+a(t) (3.95)

+ e Rfe2tTHa(tHT)Ha(t) 4 e—j27rfc('r+ac(t+'r)—w(t))]'

Asymptotically, for t — oo, the expectations of the second and third term in (3.95) vanish,
as shown in [31, Eq. (33)]. This can be intuitively seen because the variance of «(t)
increases with time, so asymptotically, the term @27t fe(t) becomes uniformly distributed
on the unit circle.

1The term y(t) in [31, Eq. (11)], called the orbital deviation, is shown in [31] to remain small, and will be ignored
in the following derivation.
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The difference x = a(t + ) — a(t) asymptotically becomes a Gaussian random
variable with linearly increasing variance (see [31, Eqs. (30)-(32)])

x ~N(0,c]|t|) (3.96)

where the constant ¢ is determined by the quality of the oscillator. Thus, the autocovari-
ance function is asymptotically independent of t:

K. (1) 2 lim K(t, T)
2
_ AT (T [02fer] + e PR o] )
Az 21 feT —j2nfet
= T (77 gu2mfe) + e T gu(—27fe) ) (397)

where ¢, (w) £ Ex [e/“*] is the characteristic function (CF) of x. The CF of a N (i, 0?)
random variable is ¢(w) = el' —27%" and thus

2
Ka(t) = A e Bl (gnfer oot (3.98)
The asymptotic power spectral density (PSD) of the oscillator process is then

S.(f) = [ Kelm)e P ar

—00

2 )
_ AT e T2 (@RI | AT g, (3.99)

Let £(0,b) denote the zero-mean Laplace distribution, whose density is

p(1) = zibexp (—'—Z') . (3.100)

Then (3.99) can be written as the expectation

5.() = AZZb E, {efjbr(fffc)r +e7j27r(f+fc)r]

A?p
= (pe(=27(f = fo)) + e(=27(f + fo))) (3.101)
where T ~ £(0,b) with b = Q;ﬁ Its CF is ¢ (w) = ﬁ, S0
A?p 1 1
=" (1 TR (f - fo? 1t b247r2(f+fc)2) - (10
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As we are only interested in frequencies around the carrier frequency, we can safely
neglect the second term, which will be much smaller than the first one. Substituting b,
we obtain
A? cf?
4 7T2C2fc4 +(f _fC)z.
The phase noise PSD is usually specified as the single-sided PSD of z, normalized to
the carrier power P = A?/2 and taken as a function of A f = f — fc [31, Eq. (40)]

L(af) & 22Ut 8D SZ%E/ZM)

S:(f) =~ (3.103)

2
N (3.104)
22 f* + Af?
It is typically expressed logarithmically as 10log;,(L(Af)) in units of dBc/Hz.

We can distinguish two regions of the PSD, separated at the corner frequency mcf.2.
For very small Af, the PSD becomes flat with

1
LAf = 0) ~ ——= 3.105
Bf 20~ (3.105)
whereas for Af > 7cf.?, the PSD has a slope of ~20dB per decade
Laf ~e (L) (3.106)
Af) .

Figure 3.15 shows the spectral densities of two simulated phase noise processes
(generated via (3.108) below) and the analytic asymptotes (3.105) and (3.106), with
numerical values taken from [14]. Note that the corner frequency of the high-quality
oscillator with ¢ = 107185 is at 7107185 (200MHz)? ~ 0.126Hz, and is therefore
outside the plot.

The continuous-time phase noise process 9(t) is related to the time shift a(t) via

8(t) = 27 fea(t). (3.107)

Because of (3.96), we have a(nT) — a((n —1)T) ~ N (0,cT), so the discrete-time phase
noise process ¢, = @(nT) can be modeled as a random walk

9, = 0,1+ Ay, (3.108)
where the A9, are iid zero-mean Gaussian random variables with standard deviation

A9 = 27T fcOpa

= 27fe\/cT (3.109)
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Figure 3.15: Power spectral densities of two simulated phase noise processes with oscillator
frequency f. = 200MHz and symbol rate T~! = 10MHz, along with the
analytic asymptotes (3.105) and (3.106) (thick lines)

= 271Af/L(Af)T. (3.110)

Above, (3.110) uses the asymptotic expression (3.106), i.e., L(Af) is the one-sided PSD
evaluated at Af >> mcf.. For example, the standard deviations of the phase increments
of the two processes from Figure 3.15 are opg = 360° - 20kHz+/ 10~6s/10 MHz ~ 2.28°
for the low-quality oscillator where L(20kHz) = —60 dBc/Hz, and analogously opy ~
0.0228° for the high-quality oscillator.

Similar to (3.64), the posterior distribution of the unknown quantities in the currently
considered system can be factorized as

N—
p(b,c,xp,8|y) < p(b)p H p(xn|en) H p(Yn | Xn, On) (3.111)
neD n=0
where ¢ £ (8,...,0%y_1). Furthermore, because of (3.108), the samples of the phase
noise process form a Markov chain:

N—
H (O] 8n-1) (3.112)
n=1
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p(Yo | x0, %)

Back-End Front-End Demapper Decoder/Sink

Figure 3.16: Factor graph of (3.113). Parameters above edges refer to forward messages,
those below edges to backward messages

where p(%,|9,-1) x exp <_2‘71E(19" — 19,1,1)2). With the convention p(dy|9_1) =
p(%), (3.111) becomes

N—-1
p(b,c,xp, 8 |y) « p(b) p(c|b) [T p(xnlen) [T p(On|0n-1) p(yn|xn, 8n). (3113)
neD n=0

The only difference to the factor graph from the previous section, shown in Figure 3.8,
lies in the variable nodes for the phase offsets and the corresponding factor nodes which
describe their statistics. While Figure 3.8 only contained a single variable node ®y,
Figure 3.16 contains separate variable nodes for each @#,, 0 < n < N, which are
connected via the functions p(9y | 9,,_1) in a chain structure. The rest of the factor graph,
particularly the functions p(yn | xn, 9,) which connect the data symbols with the phase
variables, is the same as in the previous section.
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Note that the pilot symbols are not explicitly represented in Figure 3.16. For n € P,
the function node p(yy | xu, 9, ) is of degree 1, since its only unknown variable is 8. It
is only connected to the left, without requiring feedback from the right-hand part of the
graph, and therefore the an n € P, are already available in the initial receiver iteration.

3.5.2 Phase Noise Estimation

Figure 3.16 suggests a natural split of the phase noise estimator into two blocks, which,
for lack of better phrasing, shall be called front-end and back-end in the following. The
front-end consists of the functions p(y, | Xn,9x), 0 < n < N, and has a twofold task. In
the feedback pass, it converts the information g(x,) about the data symbols, calculated
via (3.59) or (3.61), into the intrinsic phase information T, via (3.73) or (3.78), which is
then fed into the back-end. In forward direction, it takes the extrinsic phase information
Z,, from the back-end, splits it into ¥, = |Z,,] and i, = arg Z,, and computes the soft
demapping metric (3.85).

The task of the back-end is somewhat similar to the channel decoder: it takes intrinsic
information as input and computes extrinsic information. In the graphical model, it
consists of the function p(dy, ..., On_1) which describes the statistics of the phase noise
process. Hence, different phase noise models give rise to different implementations of
the back-end. The front-end, in contrast, is agnostic of the phase noise statistics.

In the following, we derive the back-end for the Wiener phase noise model (3.108).
Due to the chain structure, we obtain a forward-backward algorithm which is very
similar to the Kalman smoother. We will describe the forward recursion in detail;
the backward recursion works analogously because of the symmetry of the functions
p(8n | 8,—1). Please refer to Figure 3.16 for the meaning of the various {-parameters.

The parameter () is initialized by the prior information p(#), which could be
obtained from the previous data block. If no prior information is available, p(d) is a
uniform distribution and ¢ = 0. At the variable node ¢y, the intrinsic information from
the front-end is incorporated by simply adding the incoming ZO. In the terminology of
Kalman filtering, this operation is called the measurement update (MU). The time update
(TU), which corresponds to the operation at the p(9, | 9,,_1) nodes, is more complicated.
A literal application of (B.81) yields

My (8, | 99) 0, (B1) '/771 p(1 [ B0) Mgy p(s, | 8,)(B0) dBo (3.114)

o« /7T exp <—212(191 - 190)2> exp (Re <C~f*,0ej’9°>) ddy (3.115)

J—m UAl?

5Note that the terminology of intrinsic and extrinsic phase information is analogous to that of intrinsic and
extrinsic L-values as introduced in the textbox on page 17, but with reversed arrows: Z,Z describes the

information about 8, that is contained in the nth observation y,, while z ,, describes the information contained
in all other observations.



3.5. Wiener Phase Noise Estimation 77

which is not a von Mises distribution anymore. Fortunately, there is a simple trick to
circumvent this problem (which has been independently proposed in [22]): for large
enough ||, a von Mises distribution is virtually identical to a Gaussian distribution
with mean arg { and variance |{ |71. We therefore approximate the incoming message

Mgy p(6, | 6) (00) With N'(dp | arg Cror |0 _1). Since the convolution of two Gaussian
functions is another Gaussian, where the means and variances simply add up, this yields

: 5 15 -1
the outgoing message 11,,(g, | g,)—, (81) < N (61 | arglso, [Cro| — + 03 4)- Subsequently,
this Gaussian message is approximated back to a von Mises distribution with parameter

G where [Zg1| = (|Cio| ' +039) " and arg gy = arg i

_ 1

‘gf,o‘_l +034

- ‘5f/0| elargleo

1+ [Crol oz
Gio

R

Ji1 =

(3.116)

The time update has a simple interpretation: since the innovation sequence A#, has
zero-mean, it leaves the argument of { (the mean of ¢, i.e., the classical phase estimate)
unaltered, but it reduces the modulus of  (the reliability of the estimate) by a factor
that depends on the variance of the phase noise process Ad;.

One step of the forward recursion can thus be summarized as follows:

Zin=Cin+ 0y (MU) (3.117)
G
éf,n+1 - 1 I |Z'f,n| (Tiﬂ (TU) (3118)

As mentioned above, the backward recursion proceeds analogously. Finally, the
extrinsic phase information is obtained as

-

Cn="Ctn+ Con- (3.119)

Note that the phase estimator from the previous section is a special case of the
Wiener phase noise estimator. A constant phase process is obtained from (3.108) by
setting Uiﬁ = 0. Then, the time update (3.118) reduces to (¢, 11 = é:f/n, and it is easy to
show that R _

Cu=Cio+ ¥ L (3.120)
n'#n
which is the same as (3.82) with (3.79), where (¢, now takes the role of the prior phase
information .
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Figure 3.17: Comparison of soft and hard phase estimation

3.5.3 Numerical Results

In this section, we use the LDPC code from the IEEE 802.11n standard with rate 1/2 and
a block length of 1944 codebits. A Gray-mapped 16-QAM modulation scheme is used,
and pilot symbols are periodically multiplexed into the data stream, with a pilot spacing
of 10 symbols. In order to clearly point out the differences between the algorithmic
choices, we set 0pp = 5°, resulting in very strong phase noise.

The Figures 3.17-3.19 present the same comparisons as Figures 3.10-3.12 from the
previous section. The reason for repeating essentially the same simulations is that the
results are far more pronounced in the context of heavy phase noise and hence less
reliable phase estimates.

Figure 3.17 clearly shows the advantage of soft phase estimation over the classical
hard estimate as obtained e.g. by the EM algorithm. Figure 3.18 confirms (a) the
significant advantage of posterior vs extrinsic feedback, and (b) that posterior L-values
can be used instead of (3.59) without noteworthy performance loss. In Figure 3.19
we finally see that the two ways of converting the feedback g(x,) to the intrinsic
phase information an based on exclusive and inclusive DM, hardly differ as long as
q(x,) is based on posterior information, so the computationally simpler (3.73) can be
used without performance loss. They do differ for purely extrinsic feedback—in this
case, using the inclusive (3.78) yields a quite significant performance gain over the
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Figure 3.18: Comparison of different ways to compute the feedback g(xp)

exclusive (3.73). But of course, this result is not of much practical relevance, since, as we

have seen several times now, extrinsic feedback is the wrong choice to begin with.
Note that the combination of inclusive DM and extrinsic L-values (shown with

dash-dotted plots in Figure 3.19) corresponds to the algorithm from Colavolpe et al [22].

Extrinsic vs Posterior Phase Information What we have not yet compared in the previ-
ous section is the usage of extrinsic vs posterior phase information in the demapper. The
reason is that dropping a single term in the sum (3.79) does not yield any appreciable
difference, even for such a short block length as used above. In the phase noise scenario
considered here, however, the coherence time of 9 is rather short, which makes the
extrinsic phase information Z weaker and the difference between extrinsic and posterior
information ( = Z + Z) much more pronounced.

The results in Figure 3.20 clearly show the superiority of extrinsic phase information.
Since the demapper is derived from standard belief propagation, i. e., inclusive DM, this
is exactly what we have expected. This experiment again confirms the practical value
of the generic DM approach, from which we have systematically obtained the whole
receiver structure which uses extrinsic phase information in the demapper, but which
feeds posterior information about the data symbols back into the phase estimator.
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(a) Discrete-time first order PLL, adapted from [14] (b) Simplified block diagram

Figure 3.21: Block diagrams of a first order phase-locked loop

3.6 General Phase Noise Estimation

The phase noise estimator that we have developed in the previous section is based on
the assumption of Wiener phase noise. For free running voltage-controlled oscillators
(VCOs), the random-walk model (3.108) is quite accurate [31], but it is too simplistic for
many other, practically relevant sources of phase noise. In this section, we finish the
discussion of phase noise estimation by generalizing the proposed estimator to linear
Gaussian state space models, which are expressive enough to describe a large class of
phase noise processes. Phase-locked loops (PLLs) are a particularly important example
and will serve as the basis for the following derivation. In order to demonstrate the
generality of the proposed estimator, we will briefly consider a different scenario in
Section 3.6.4, namely a joint estimation of phase noise and a residual frequency offset.

3.6.1 System Model

The general system setup is the same as in the previous section, the only difference lies
in the stochastic model of the phase noise process. In order to keep the derivation simple,
we will limit ourselves to first order PLLs. Once the basic principles are developed,
extensions to higher order PLLs or other state space models are fairly straightforward.

The following discussion is based on the analysis of PLLs presented in [87] and
the derivation of corresponding discrete-time models given in [14]. A general PLL
consists of a low-noise reference crystal, abbreviated as XTL, and a voltage controlled
oscillator, VCO, with parameters c,y and cyco, respectively. The output of both oscillators
is modeled as Wiener phase noise, i.e., as random walks (3.108) in the discrete-time
domain. A phase detector compares the output of the PLL with the reference crystal.
The phase difference may be low-pass filtered, and the result serves as input to the VCO.

Figure 3.21a shows a block diagram of a first order PLL (i. e., without a low-pass
filter), which is a discrete-time and simplified version of [14, Figure 2b]. Since the
low-pass filter i p is missing, the phase detector constant kpq and the square root of
the time constant of the VCO’s control node /Ccontr are merged into one multiplier
kpd\/m =21 fp11~ Furthermore, the integrator [(-)dt is converted to an accumulator
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TY (-), and the constant T is also merged into the multiplier. The system is linear with
an open-loop transfer function 27f,1T/(z — 1), so it can be described in the z-domain as

Apll(z) = Gxtl(z)Axtl(Z) + GVCO(Z)AVCO (Z) (3.121)
with the transfer functions
2t fonT _
Gy (z) = L and  Gyco(z) 21 (3.122)

"z (1-2nfpT) Tz (- 2nfl)

Thus, as shown in Figure 3.21b, the time shift processes « of the reference crystal and
the VCO are low-pass and high-pass filtered, respectively, both with the same 3dB
corner frequency fpy. For f > fy1, however, the crystal’s PSD is negligible anyway
compared to the PSD of the VCO, so the low-pass filter can be neglected and we obtain
the approximation

z—1 . N
—— Avwo(z) with ze =1-27fT. (3.123)

Z— Zoo

Apn(z) = Axa(z) +

Since both a, (nT) and ayeo(nT) are random walk processes, their z-transforms are
Aveo(z) = 727 AAvco(z), where AAyeo(z) is the z-transform of the white innovation
sequence, and analogously for A,y (z). Thus,

z z
Apll(z) ~ ;AAXH(Z) + E AAvco (Z) (3.124)

Transforming this expression back to the discrete time domain, and converting the time
shift apy (nT) into the phase noise process ¢, = 27 fc apy(nT), yields

b, = ﬁxtl,n + ﬁvco,n (3.125)
which is the superposition of two uncorrelated processes: the random walk
19><’tl,n = 19x’cl,nfl + A’~9><tl,n (3.126)

whose variance increases linearly with time, and the zero-mean process

Bvcon = ZooUycon—1 + Abveon (3.127)
with constant variance )
2 T
var [Oyeo| = M- (3.128)
1—2z%

Figure 3.22 shows the one-sided PSD of an exemplary PLL phase noise process, with
the same parameters as the two Wiener phase noise processes from Figure 3.15. The
PSD can roughly be divided into three segments: it starts with a slope of —20 dB/decade,
followed by a flat region, followed by another —20 dB/decade slope. This shape, which
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Figure 3.22: Power spectral density of a simulated first-order PLL phase noise process, with
fe =200MHz, T~! = 10MHz, ¢,y = 1075, cyeo = 107 s and f,; = 50kHz,
along with the analytic asymptotes (thick lines)

is characteristic for PLL phase noise processes [87], can be explained as follows. The
VCO process is high-pass filtered, so for f > f, = 50kHz, the PSDs of the PLL process
and the free-running VCO process from Figure 3.15 are essentially equal. Below f,| the
PSD becomes flat, because the slope of —20 dB/decade is cancelled by the first-order
high-pass filter. Finally, for f < y/cxy/cvco fpu = 500Hz, the phase noise from the
reference crystal becomes dominant. Notice that at the corner frequency fy, the PSD
of the crystal is, in this example, 40 dB below the VCO, which justifies that we have
disregarded the low-pass filter that acts on the crystal’s phase noise process.

State Space Model

In order to adapt the factor graph from the previous section to the PLL phase noise
model, we need a suitable factorization of p(#). Due to the more involved statistical
model, where ¢, depends not only on ¢,,_1 but on all previous phase values, a direct
factorization of p(#) would look like

N-1

p(Bo,--- On-1) =TT p(Onlbo,... 00 1). (3.129)
=0

=
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The corresponding graphical model is fully connected, leading (for realistically large N)
to a tremendously complex phase noise estimator.

The standard trick to circumvent this problem is to introduce auxiliary state variables
S £ (sg,...,8n—1), such that

p(?) = /rl(t’,S) ds (3.130)

with a joint distribution p(d, S) that admits a simple factorization.
For our PLL phase noise model (3.125)—(3.127), a natural state vector s, is

8
sy 2 [ (3.131)
l9vco,n

which leads to the state space model

1 0
Sy = ( ) Sp—1 + un (3.132)
0 Zeo

8y = (1 1) S (3.133)

where the zero-mean white Gaussian process noise #, has the covariance matrix

T 0
Cu = [wyu] ] = (27fe)? (CXS ) T) . (3.134)
VvCOo

The state vectors form a Markov chain, and ¢, only depends on s, so the joint
distribution of ¢ and S factorizes as

N-1
p(8,8) = T p(sulsn—1) p(dn|sn) (3.135)
n=0

with the convention p(sg |s_1) = p(so)-
A factor graph of the receiver is shown in 3.23.

3.6.2 Phase Noise Estimation

To keep the derivation general, we rewrite the state space model (3.132)—(3.133) as
sy = As,_1 +uy (3.136)
8y =c"sy (3.137)

with some state-transition matrix A and output vector ¢' (we use the letter ¢ because it
is standard notation; it should not be confused with the vector of code bits).
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Figure 3.23: Factor graph as in Figure 3.16, but with the back-end of the phase noise
estimator implemented according to (3.135)

Since we have a linear Gaussian state space model, the resulting phase noise estimator
is almost an instance of the Kalman smoother. The important difference is that the
two components of s contain angular variables and are therefore only defined up to
integer multiples of 27r. This needs to be taken into account when merging two pieces
of information; otherwise, averaging for example the two estimates d; ~ 0 and &, ~ 27
would yield a total estimate of 8 ~ 7, which would clearly be wrong.

In the previous section, the estimator was based on von Mises distributions, which
circumvented this problem in an elegant way because the averaging took place in the
complex plane, in terms of the {-parameters. It may look tempting to try an analogous
approach here. Since our state vector is two-dimensional, that would mean to track the
distribution of s in terms of a bivariate von Mises distribution, rather than a bivariate
Gaussian. There is indeed some recent interest in multivariate generalizations of the
von Mises distribution (see [83] and references therein), but unfortunately the proposed
distributions lack several important properties of the multivariate Gaussian distribution.
For example, they are not closed under multiplication, so the measurement update,
which involves the multiplication of distributions, must necessarily be approximated. I
have tested several multidimensional von-Mises-based algorithms via simulations, but
did not succeed in finding an estimator which performs even close to the Gaussian-based
algorithm that will be derived in the following.
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Figure 3.24: Detail of the factor graph from Figure 3.23

The proposed estimator performs Gaussian forward/backward message passing
(i.e., Kalman smoothing) along the Markov chain of state vectors sg,...,sy—1. The
interface between front-end and back-end of the phase estimator still uses von Mises
distributions, i.e., intrinsic and extrinsic {-parameters, as shown in Figure 3.23. The
conversion between the von Mises and the Gaussian distributions occurs in the p(9; | s,)
function nodes.

For the purpose of circumventing the above described problem of averaging two
phase estimates that might differ by an integer multiple of 27r, we define the function

unwrap,, () =0-2n [192_74)} (3.138)

where the square brackets denote rounding to the nearest integer. In words, unwrap, ¢ (%)
returns ¢ + 27tk, where k € Z is chosen such that ¢ + 27tk € [¢p — 71, ¢ + 7). We will
drop the subscript ¢ if the reference angle is clear from the context.

The back-end of the phase estimator consists of three steps: the forward and back-
ward recursion, and finally the computation of the output, namely the extrinsic phase
information. Figure 3.24 shows a detail of the factor graph from Figure 3.23, defining
the notation that will be used in the following. The quantities above the edges refer to
forward messages, the ones below the edges refer to backward messages.

Forward Recursion
The forward recursion consists of repeated applications of measurement update (MU)
and time update (TU). At the nth time instant, starting with the mean vector p; ,, and the

covariance matrix X, we first incorporate the intrinsic phase information an yielding
intermediate parameters fi;, and X ,. Those are subsequently transformed to p, 11
and X¢ 1, which concludes one step of the forward recursion.

Measurement Update The MU is implemented by the standard message update equa-
tion at variable nodes:

M, —p(sni1|sn) (5") X Mp(s, s, 1)—>sn (sﬂ) M9, | su)—sn (Sn)- (3.139)
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The first factor is the forward message m, (g, |5, ,)-s, (5n) © N (sn | g Zep). The
second one is given by the intrinsic phase information as

My [50)-ss, (50) & [ PO |5) M(80|Z,) 48,
x /5(1%, —cTsy) exp <|Zn\ cos(¥, — arg Zn)> dd, (3.140)

which is non-Gaussian, but can be approximated as a Gaussian by substituting

cos(¥, — arg Zn) @ cos (1911 — unwrap(arg Zn)>

® 1 < \2
N =3 <19n — unwrap(arg Cn)> + const. (3.141)

Above, (b) uses the Taylor series approximation cos(x) ~ 1 — x?/2 around x = 0,
where the additive constant 1 in the argument of the exp-function becomes an irrelevant
multiplicative constant outside exp. Before that, the unwrap-function introduced in (),
which just adds an integer multiple of 277 to its argument, ensures that the argument of
the cosine lies within the interval (—7, 7r]. Therefore, the above approximation is valid
for any ¢, and arg Z,,, even if they are some 27 apart.'®

Substituting (3.141) into (3.140) yields

7 CoN\2
My (9, | 5,)—s, (Sn) & exp ('i” (CTSn — unwrap(arg Cn)) )

1 - < <
o exp (—ESIC |Z,|c"sy +s)c|C,| unwrap(arg Cn)) (3.142)
which is a degenerate Gaussian with rank-1 inverse covariance matrix

-1 T
X, =c|l,lc (3.143)

and scaled mean vector

T, i, =c|(,|unwrap(arg,). (3.144)

We can now carry out the computation in (3.139). The multiplication of two expo-
nential family distributions boils down to adding their natural parameters, which in
case of Gaussians are the inverse covariance matrix and the scaled mean vector. Thus,

3 B - -1
Zf,n = (Ef,nl +c |§n‘ CT)

16Tf the argument of the cosine is somewhere near — 7 or 7 after resolving the 27r-ambiguity, approximation (3.141)
is of course still rather poor. This is an unavoidable error that we introduce by replacing von Mises with
Gaussian distributions, and that we just have to accept.
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5 g Ty
@y, , — |Cal Binee Bin (3.145)
1+ |€n‘ CTZf/‘VlC

where () uses the matrix inversion lemma, and

ity = Zin (Z5 e + €|, unwrap(arg Z,,))

|Zn‘ z‘fnCCTl’lfn = > =
=pp, — ——=——— +XL¢,c|l,| unwrap(arg ;) (3.146)
fn ™ ] TIPS n€16n plarg ¢y

where the reference angle for the unwrap-operation is set to the phase estimate cT,uf’n.

Time Update The derivation of the time update is a lot simpler. From the state
transition equation (3.136) it follows immediately that

Hiny1 = Afigy (3.147)
Liui1 = ALy AT + Cu (3.148)

Initialization The remaining question is how to initialize p¢ () and Zy. In a consecutive
transmission of several codewords, the obvious choice are the pen—p and gy q from
the previous codeword. In the lack of prior information, the initialization depends on
the particular state space model. Since in our PLL model, the state vector is defined as
sn = (Ot ns ﬂvco,n)T, reasonable choices are p; () = 0 and

100 0
Teo = ( ) (3.149)

0  var [Oveo)

which have been used in the simulation whose result is presented below. Above,
var [0yco| is given in (3.128), and the value of 100 is a quite arbitrary number, large
enough to yield approximately a uniform distribution for dyy o over the interval [, 7T).
The precise value does not matter, because Ly after the first measurement update is
practically independent of it, anyway.

Backward Recursion

The backward recursion proceeds similarly by alternating measurement and time up-
dates. However, for numerical reasons it is advantageous to describe those updates not
in terms of the mean vector u and the covariance matrix X, but instead using the scaled
mean vector v £ Z’ly and the inverse covariance matrix I £ Z’l, i.e., the natural
parameters of the Gaussian distribution.
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Measurement Update This time, the measurement update is the simpler one, because
the natural parameters simply add up at the variable node s;. Given vy, ,, and I'y, ,,, the
temporary parameters #, , and fb/n are

Ty = Vpy + € |Zn\ unwrap(arg Zn) (3.150)

Ty, =Ty, +c|lylc’ (3.151)
where we have used the natural parameterization of the intrinsic information (3.143)
and (3.144). As reference angle for the unwrap-operation, we use the forward phase
estimate cTyf,n, which has the additional advantage that later, when forward and

backward messages are combined to yield the extrinsic phase information, there is no
2m-ambiguity between the forward and backward messages.

Time Update There is no such shortcut for the time update equation, so we derive it
from first principles:

mp(sn ‘Sn—l>‘>su—l (Sn_l) & / p(sn ‘ Sn_l) mSn‘)p(sn ‘Sn—l) (s”) dSn
/exp ( 1( Sn — Asnfl)Tctjl(S" - Asnfl) - %s;lrfb,nsn + 5711—1713,11) dsy
1 _
« efstlATC,,lAs,,,l /exp (77571 (C +rbn> Sn +Sn <C;1AS”_1 +17b,n>> dSn
(gc) exp(—%sl_lATCtlesn,l
- -1 _ 5
3 (staATe 4ol (Gl + To,)  (CrlAsua+ )
_ -1
I3 exp(—%sIA (ATC;1A —ATc,! (C,;l + l"b,n) C,;lA) Sp—1
. -1

+srATC (G 4 Th,) )

= exp (45T 1 T 1501+ 51 1Vh 1) (3.152)

where (a) uses the identity

1T T _ J@mN 1,7
/]RN exp( sx Ix+x 1/) dx = dotT exp( r- 1/) (3.153)

which can be derived from the multivariate Gaussian PDF. The parameters of the
message after the time update can be read off as

~ —1
Vo1 = ATC (Gl +To,) T
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— AT (14T, Cu) 0 (3.154)
and
Ty =AC,lA—ATCH(C,  +Ty,)71CrlA
= AT (T+Ty,,C.) ' T A (3.155)

Note that neither (3.154) nor (3.155) contains the inverse of A or Cy, so they are well
defined also for singular state transition or process noise covariance matrices.

Initialization We assume blockwise processing, where no further observations after the
time instant N — 1 are available. The initial message is therefore an improper uniform
distribution, 1, (s, |sy_,)—ssy_, (SN—1) & 1, with parameters vy, 1 = 0 and I, y 1 = 0.

Computation of Extrinsic Phase Information

After the forward and backward recursions are completed, the final step is to compute
the extrinsic phase information Zn by combining the forward information p; ,, X¢,, and
the backward information vy, ,,, I, ,. First, we multiply the two Gaussians to obtain the

message Mg, (9, |s,)(Sn) < N (7, )En), with the parameters

- —1
%, = ():fjr} + rb,n)
= (T+Z¢,Tp,) " Iy (3.156)

and

— — -1
By = In (Zf,n Pen T Vb,")
-1 _
(I + z“f,nrb,n) z“f,n (Zf/nlyf,n + 1/b,n>

(14 Z6uTo ) " (g + Ziuvn ) - (3.157)

Then, with 9, = ¢'s,, the first two moments of 9, are given as E [¢,] = cTﬁn and

var [8,] = ¢ E,¢c. With the usual conversion of Gaussian to von Mises distributions, the
extrinsic phase information is thus found as

- ejCTﬁn
Cn = = (3.158)
c'L,c
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3.6.3 Numerical Results

We now assess the performance of the derived PLL phase noise estimator. As a bench-
mark, we compare it to the simple VCO phase noise estimator from the previous section,
which assumes a random walk and requires one parameter, the variance of the phase
difference A, = 8, — 8,,_1. When computing var [Ad] for the PLL phase noise model,
we can safely ignore the phase noise of the reference crystal and write
AV, = 19vco,n - ﬂvco,nfl

(@)

= (ZOO - 1)l9vco,n71 + Al9vc0,‘r1 (3.159)

where (a) uses (3.127). Note that Adyeo, above is the driving noise of the AR process,
which is not the same as A%, due to the factor z«. Thus,

var [A8] = (1 — zeo)? var [Byeo] + var [Adyeo)

271fe)?Cyeo T
= (1-2x) ( 1fc_) ZZVCO + (271fe) eveo T
oo
27 fe)?eyeo T
_ 2nfe)eveoT (3.160)
1-— nfpllT

Figure 3.25 shows the results of the comparison, where the same LDPC code as in
the previous section has been used, but with a pilot spacing of 30 symbols in order to
make the difference between the estimators more pronounced. The phase noise process
has been generated with the same parameters as in Figure 3.22.

In the initial iteration, where the estimators work purely pilot-aided, the PLL phase
noise estimator outperforms the VCO estimator by around 0.2-0.3 dB. Over the iterations,
however, the gap shrinks and is less than 0.1 dB after the fourth iteration. While the
specific results of course depend on the phase noise parameters, this experiment at least
indicates that the simple Wiener phase noise estimator could be the more interesting
choice in practice, even if the true phase noise process is not accurately modeled as
a random walk. After all, it has a much lower complexity than the multidimensional
Kalman smoother, and it is also more robust since it needs fewer parameters, which
have been perfectly known in this simulation, but may need to be estimated in practice.

3.6.4 Concluding Remarks

This section concludes our discussion of phase noise estimation. We have systematically
derived a fully-soft phase noise estimator, which takes probabilistic information about
the data symbols as input, and provides soft phase information as output. We have
proposed to split the estimator conceptually into two blocks, front-end and back-end.
The front-end is agnostic of the phase noise statistics. It converts the decoder
feedback into intrinsic phase information, represented by one complex number per time
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Figure 3.25: PLL phase noise estimation: comparison of the PLL estimator from this section
with the estimator from the previous section that assumes a free-running VCO

instant which encodes both a hard phase estimate and its reliability (inverse variance).
We have shown both theoretically and via simulations that it is necessary to feed back
the full posterior information about the data symbols, not just extrinsic information.
In earlier, purely pilot-aided estimators, this issue did not arise, but it is all too often
neglected even in more recent papers on code-aided phase estimation.

The back-end takes intrinsic phase information from the front-end and computes
extrinsic phase information. We have derived three implementations for increasingly
general models: a static phase offset, a Wiener phase noise process, and a linear Gaussian
state space model. Further implementations are of course possible. The LMMSE filter,
for example, which has been proposed in [124] for the pilot-aided case and extended
in [49] to code-aided estimation, also fits as a possible back-end into the proposed
framework.

Finally, note that the Gaussian state space model is by no means restricted to PLL
phase noise. As another example, consider the joint estimation of phase noise and a

residual frequency offset v, as studied in [9]. Assuming Wiener phase noise!”, and
defining ¢ £ 271vT, the phase process can be modeled as
Uy =01+ ¢+ A0, (3.161)

This is without loss of generality; the extension to PLL phase noise is straightforward.
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Figure 3.26: Estimation of a Wiener phase noise process including a constant frequency

offset: comparison of specialized estimator based on (3.162) vs the simple
random walk estimator from Section 3.5
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which can be cast into a state space model by setting

2
() ) ) () o
¢ 01 0 0 0

It is interesting to note that [9] proposes a kind of hybrid estimator for this problem.
The phase process 9;,, on the one hand, is estimated by means of tracking von Mises
distributions. This comes as no surprise since [9] is a follow-up paper of [22], where
the von-Mises-based phase noise estimator was first proposed, and which emphasizes
the significant complexity reduction that it achieves compared to the (at that time)
state-of-the-art approach of quantizing ¢, and treating it as a discrete variable. But
the normalized frequency offset ¢, on the other hand, is handled by discretizing it
into L hypotheses despite that insight. Essentially, [9] invokes the Wiener phase noise
estimator L times with different trial values ¢;. Our Gaussian state space estimator is a
consequential further development which completely avoids the artificial discretization
of continuous random variables.

Figure 3.26 compares the Gaussian state space estimator based on (3.162) with the
simple Wiener phase noise estimator which does not assume an additional frequency
offset. For each codeword, one realization ¢ ~ N (0, 17(%) is drawn. For a fair comparison,

the simple Wiener phase noise estimator is not parameterized with U’iﬁ, but rather with
(742, + U’iﬁ since this is the variance of the phase increment ¢,, — ¢,,_1.

In Figure 3.26a, the parameters are set to op9 = 0y = 2°. The effect of the frequency
offset is therefore quite significant compared to the Wiener phase noise, which is reflected
by the huge performance difference of the two estimators. The simple random-walk-
estimator is obviously not able to track the phase process. In contrast, Figure 3.26b
shows results for o9 = 5° and 0p = 1°, so that the frequency offset is now almost
negligible compared to the Wiener phase noise. Here, the advantage of the specialized
estimator is so tiny that, up the accuracy of the Monte Carlo simulation, both estimators
are virtually equivalent.

The bottom line is that the Kalman smoother can indeed perform better than the
von-Mises-based estimator, since it is able to model the phase noise statistics more
accurately. Having said this, one should evaluate carefully whether the additional
complexity is really well spent. Due to its simplicity and robustness, the von Mises
estimator seems to be an interesting choice for many scenarios, even in cases where the
random walk model is just a rough approximation of the true phase noise statistics.
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3.7 SNR Estimation

In the previous sections, the power spectral density Ny of the AWGN process has been
assumed to be known at the receiver. Also, we have only briefly touched upon the
estimation of the channel gain gp in Section 3.3.2, in the context of traditional (ML-like)
hard estimation. In this section, we conclude our discussion of code-aided parameter
estimation with a derivation of soft estimators for both gy and Ny. For conciseness, we
refer to the joint estimation of gg and Ny as SNR estimation, but it should be emphasized
that we actually compute separate estimates for the two parameters. If an estimate of

g%Es

NR =
S Ny

(3.163)

itself is required (for example as a quality indicator used for link adaptation), it can
easily be obtained from ¢y and No.

For simplicity, we will restrict the discussion to coherent SNR estimation, that is, we
assume that the phase has already been perfectly recovered. Thanks to the modularity
of graph-based receivers, however, it is fairly straightforward to combine the previously
introduced phase estimators with the coherent SNR estimators in an iterative manner.
An initial SNR estimate, required to bootstrap the algorithm, could then be obtained with
an envelope-based estimator, which discards the phase of the observations. Examples
are the non-coherent EM algorithm from [45] and the MjpMjy-estimator [85,103] which
uses the second and fourth moment of the observations.

This section is structured as follows. After an introduction of the system model
in Section 3.7.1, we apply our main algorithmic families as listed in Section B.4.4 to
the problem of SNR estimation, from “simple and moderately well performing” up to
“complex, but virtually optimal.” We start in Section 3.7.2 with classical hard estimation,
in particular with the ML estimator for pilot-aided estimation, and its iterative code-
aided generalization based on expectation maximization. Those estimators can be
regarded as state-of-the-art, and will be used both as a starting point for the derivation
of soft estimators, and as a benchmark for performance comparisons.

Recall that EM, if derived as a special case of DM, uses exclusive divergence mini-
mization, followed by a projection into the family of Dirac distributions. As a natural
generalization to soft output, Section 3.7.3 derives a VMP-type estimator by switching to
a Bayesian setting and by dropping the Dirac-constraint. We will see that the resulting
algorithm looks formally quite similar to the EM-type hard estimator (and in particular
has almost the same computational complexity), but performs remarkably better if the
number of pilot symbols is small, i.e., if the initial estimate is unreliable.18

®Note that this procedure is very similar to the development in Section 3.4, where we have derived the soft
VMP-type phase estimator (3.74), which is a generalization of the conventional EM-type hard estimator (3.75).
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Both the EM and the VMP estimators require some training data'’ to obtain an
initial guess, which is then iteratively refined. However, it is well possible to invent
SNR estimators which are purely non-data-aided, i.e., do not require any pilots at
all. Now, it would be quite disappointing if those more or less ad hoc algorithms had
desirable properties which were out of reach for our systematically derived DM-based
estimators. Fortunately, it turns out that inclusive divergence minimization also leads
to a pilot-less SNR estimator. In Section 3.7.4, we derive an EP-type algorithm (with
some approximations) which gives virtually perfect results without training data and
without iterations over demapper and decoder. As usual, its drawback with respect to
the VMP-type estimator from Section 3.7.3 is its higher computational complexity.

The work presented in this section has partly been published in [120].

3.7.1 System Model

As stated above, we will only consider coherent SNR estimation in the following, so we
will work with the channel model

Yn=80Xn+wy, 0<n<N (3.164)

where
wy ~ CN(0, Np). (3.165)

Both the real-valued channel gain gy > 0 and the variance Ny of the discrete-time
AWGN process are unknown to the receiver. Rather than estimating the noise variance
Ny itself, however, we will derive estimators for the noise precision instead, defined as

a1
Y= No' (3.166)
The reason is that the conjugate prior for the noise precision is a Gamma distribution,
which leads to simpler expressions than the inverse Gamma distribution, which would
arise if we were estimating Ny directly.?
Combining the channel model (3.164) with the standard BICM transmitter as used
in the previous sections, the joint posterior of the unknown quantities factorizes as

p(b,c,xp, 80,70 |y)
o p(b) p(e| ) p(xp [ ) p(g0) P(10) P(yp | ¥, 80, 70) P(yp [ X, 80, 70)-  (3.167)
A graphical model of (3.167) is shown in Figure 3.27, which serves as the basis for the

following derivations. Note that some factors could be broken down further into the
individual time instants, for instance p(yp | xp, 80, Y0) = [Tnep P(Yn | Xn, 80, Y0), but the

YUnless we are willing to initialize the algorithm with some rather arbitrary values as in [142].
2And furthermore, the demapper actually requires the inverse of Ny, so by estimating Ny we turn the division
by Np into a multiplication with o, which is much cheaper in a VLSI implementation.
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P(yp | *p,80,70) — p(xp | ¢) — p(c|b) |— p(b) ]

p(yp | ¥p,80,70) |

Figure 3.27: Factor graph of the joint posterior distribution (3.167)

compact representation in Figure 3.27 is sufficient for the estimators based on exclusive
DM, which are the topic of the following Sections 3.7.2 and 3.7.3. Only in Section 3.7.4 on
inclusive DM will we need the more detailed factorization, c. f. Figure 3.30 on page 109.

3.7.2 Hard SNR Estimation

We start with a discussion of classical hard estimators, namely the ML and EM estimators
for data- and code-aided estimation, respectively. Those approaches are not new; there
are several papers which apply the EM algorithm to the SNR estimation problem (see
for instance [26,142,152]). However, their derivation is nonetheless interesting for us,
since they serve as a basis for the subsequent generalization to Bayesian soft estimators,
and as a performance benchmark.

The following derivations are rooted in orthodox statistics, meaning that (a) we
compute hard estimates, and (b) that gy and 7 are modeled as deterministic quantities.
Thus, for the purpose of this section, p(gop) and p(yp) would need to be removed
from Figure 3.27; or, formally equivalently, they could be understood as improper
(non-normalizable) uniform priors: p(go) o« 1 and p(7yp) o 1.

Data-Aided Estimation

If Np > 0, the ML estimator based on the training sequence is easily derived. The
log-likelihood function is

log p(yp [¥p, g0, 70) = Np log (%) =70 lyp — goxp (3.168)

and by setting its derivatives with respect to go and 7y to zero, the ML estimates are
found as

Re(xH
g = Relxpyp) (3.169)
llxpl
N,
40 = P (3.170)

lyp — goxpl*
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Since g9 does not depend on 4, the ML estimates can be computed directly, without
iterations between ¢y and o.

Note that it is possible for §y to become negative, even though we know that gy > 0.
The difficulty of exploiting such prior knowledge is a well-known problem of orthodox
statistics, and we need to resort to some ad hoc procedure in order to ensure that §y > 0.
For example, we could modify the estimate of gy as proposed in [64, Section 10.3]:

$0 = max{0,$} . (3.171)

This could be viewed as a MAP estimate with an improper uniform prior [0, o) over
the non-negative reals. But of course, this does not solve our problem at all: an estimate
8h = 0 might be physically more meaningful than gy < 0, but it is equally useless.
Indeed, the ability to exploit the prior knowledge go > 0 properly is one of the major
advantages of the Bayesian approach that we will pursue in Section 3.7.3.

Code-Aided Estimation

In order to also use the information that is contained in the data symbols, we will now
derive an iterative EM-like?! estimator from the divergence minimization framework,
by constraining the beliefs of gy and -y to Dirac distributions: 4(go) = 6(g0 — $o) and
4(v0) = 6(vo — Jo0). The general receiver structure, including the BP-based pass through
the demapper and decoder, as well as the computation of the feedback g(xp), has been
described in Section 3.3, so in the following we only derive the update equations for the
parameter estimates §y and 4¢. In the interest of readability, we will not annotate the
beliefs 4(g0), 9(7v0), and g(xp) with an iteration index; it should be clear that all three
are updated once per EM iteration.

Update of q(go) Specializing the generic hard estimator (B.84) to §y yields

8o = argmax Ey () ) (xp) log p(y | x, 80, 70)]
8o

7
= arggronax Eqg (1) a(xp) [Nlog (;0) - lly— ngHZ}

= argmax By, [0 (9112 — 280 Re(xy) + g3 2]
8o

= argmin ((Jy|* - 2g0 Re(x"'y) + S E[|1x17]) (3.172)
0

where ¥ contains the pilot symbols and the expectations of the data symbols (soft
symbols) as defined below (3.46), and E [HxHZ] = 2WN;01 On is an estimate of the total
transmitted energy.

ZIAs explained at the beginning of the chapter, the resulting algorithm is a true instance of EM only in those
special cases where we are able to evaluate p(xp | ¥y, $o, F0) exactly.
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Setting the derivative of (3.172) to zero, we finally obtain

. Re(icHy)
=Y (3.173)
0 E[jxP)

Update of q(9) The update equation for 4 is found similarly as
Fo = argmax IEq(go)q(xp) [log P(y | X, 80, 70)}
"o

= arg’yt?axIEq(xD) [Nlog (%) 70 |ly — ngtz}

= arg max (N10g (22) =0 (Ilyl” — 280 Re(x"y) + FE[Ix]))  (3174)

and finally
N

|lyl|* — 260 Re(xHy) + GE[|x||*]

0 (3.175)

Note the similarity between the code-aided update equations (3.173), (3.175) and
their data-aided couterparts (3.169) and (3.170). Basically the only difference consists in
the expectation over the data symbols (the denominator in (3.175) is just the expectation

of ||y — gox|1%).

Numerical Results

We now assess the performance of the EM-based hard SNR estimator. Here and in
the rest of this section, we use the rate-1/3 turbo code from 3GPP LTE with a length
of 128 information bits, which are mapped to 396 code bits.?? In order to make the
receiver sensitive to SNR estimation errors, we use a 16-QAM modulation scheme,
such that we obtain a block of Ny = 99 data symbols, into which N, pilot symbols are
multiplexed. The initial iteration uses the ML estimates (3.169) and (3.170), which rely
only on the pilot symbols. Later iterations then use the EM estimates (3.173) and (3.175).

Figure 3.28a shows the word error rate for Np = 1 and Np, = 5 pilot symbols. For the
longer training sequence, one single iteration over the decoder suffices to yield the same
results (up to the simulation accuracy) as the genie aided receiver which has perfect
knowledge of gp and -yg. The short training sequence of length 1, however, is insufficient;
the plots show a kind of error floor. The main reason for this behaviour is the above

2The actual code rate is slightly lower than 1/3 due to the tail bits which drive the RSC encoders into the zero
state, and which are also transmitted.

2In [150] it has been shown that turbo decoders are quite insensitive to SNR estimation errors. However, [150]
only considers BPSK. For higher-order QAM modulations, a reliable estimate of the channel gain is indeed
required.
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discussed problem that the initial estimate o can become negative, in which case the
whole frame is lost. For N, = 1, this happens with a non-negligible probability.

For complexity reasons, we may choose to iterate only over the demapper, yielding
an NCA parameter estimator. In this case, the decoder is only invoked once using the
final SNR estimate. Results obtained with the NCA estimator are shown in Figure 3.28b.
With the long training sequence, a single iteration over the demapper still suffices to
approach the genie aided receiver up to around 0.1 dB. And as expected, the error floor
in the case Np = 1 is even more pronounced than before.

The bottom line is that the EM-based estimator works well as long as the initial
estimate is sufficiently reliable (which is a well-known characteristic of EM algorithms).
For short training sequences, however, the EM algorithm fails to work reliably. In the
remainder of this chapter, we derive two soft SNR estimators, based on exclusive and
inclusive DM, respectively, which are able to fix this problem.

3.7.3 Soft SNR Estimation Based on Exclusive DM

We now switch to a Bayesian model, i.e., we regard gy and ¢ as random variables and
assign prior distributions to them. Furthermore, we remove the Dirac-constraint from
the beliefs g(go) and g(yp) in order to produce soft estimates.

Prior Distributions

Since we are now working in a fully Bayesian setting, we need to assign prior distri-
butions to gg and 7g. For the same reasons as discussed in Section 3.4.2 on phase
estimation, we will choose conjugate priors, i.e., priors which lead to posteriors from the
same parametric family. Statistical inference then reduces to updating the parameters
(as opposed to tracking arbitrarily evolving distributions, which is generally infeasible).

Prior p(go) Consider the likelihood function

p(y1x 80, 70) = (%)N exp (=70 lly — goxll”) - (3.176)

Taken as a function of gy, it has the parametric form

0(g0) xexp (—a g} +bgo) (3.177)

for some a > 0 and b € R, which is the form of a Gaussian distribution. But, as
mentioned above, we also need to encode the physical constraint gg > 0 in the prior. We
therefore assign zero probability to gg < 0 and set the prior of gy to a truncated Gaussian

p(80) = TN (g0 | ma,s3)- (3.178)
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Briefly, the truncated Gaussian distribution is proportional to a Gaussian, but with
the tail go < 0 cut off. Note that the parameters m and s> are not equal to the mean
and variance of the distribution; instead, they refer to the mean and variance of the
underlying non-truncated Gaussian. A detailed description is given on page 216.

It can easily be verified that the truncated Gaussian is indeed a conjugate prior, since
the normalized product of a truncated Gaussian and a (non-truncated) Gaussian is again
a truncated Gaussian.

If there is no prior knowledge available beyond the non-negativity constraint, we
can set m, = 0 and take the limit s, — oo, yielding an improper uniform prior |0, c0).

Prior p(y0) If we view (3.176) as a function of 7(, we get the parametric form

£(70) < vjexp (—yob) (3.179)

for some a > 0 and b > 0, which is the form of a Gamma distribution. Since the class of
Gamma distributions is an exponential family (see page 218 in the appendix for details),
it is closed under multiplication, so

p(70) = G (70| @a, Ba) (3.180)

is a conjugate prior.

In this case, there are two obvious ways to choose a non-informative prior. On the
one hand, taking the limits x5 — 1, Ba — 0 again results in an improper [0, c0) prior.
On the other hand, the limits a; — 0, B2 — 0 yield the improper Jeffrey’s prior

p(70) <1y > 0] 1 (3.181)
Y0

which is often said to be a more natural prior for scale parameters; see [82, Chapter 24]
or [62, Chapter 12]. We will return to this issue below.
Update Equations

Now that we have fixed the priors to

p(g0) = TN (g0|ma,s2) and p(v0) = G(70 | a, Ba) (3.182)

we can derive the update equations for the beliefs §(go) and g(7o). By design they have
the same parametric form as the priors, and we will write them as

q(30) = TN (0| mp,s3) and  q(70) = G(v0 | ap, Bp)- (3.183)

Note that 1, sa, a and B, stay constant, whereas my, sp, ap and By, are iteratively
updated during the inference algorithm. This could be emphasized with iteration
indices, but we will omit them in the interest of readability.
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Update of g(go) Given the latest beliefs g(7g) and q(xp) about the noise precision
and the data symbols, the update equation for g(g) is given as

q(80) = p(go) exp (JEqm)q(xD)[log p(y| x,go,vo)])
— )2
g = 0exp (B30 v [0 (58 11F 20 Rely) + [y )] )
a

2
1 m
xT[go > 0] exp <—g20 (57 +2%IE[||XH2]) + 8o (*sza + 270 Re(iHy))>
a a

~ 2 pa(sH 2
< TN (go ma + 270% Re(x zy), L ) (3.184)
14273 E[||x]|7] 1+ 270s3 E[||x[|°]

where 7 £ g—‘; is the mean of (7o), as derived in (A.97). Therefore, it can be viewed as
an MMSE-like estimate of .
If we take the limit s, — oo to obtain a non-informative prior, (3.184) simplifies to

_ Re(xHy) 1
q(80) = TN (go ‘ B2 20 > : (3.185)

 From either (3.184) or (3.185), we can now compute the moments o £ E[go] and
g% 2 E [g%] using (A.90) and (A.91) on page 217. They will be needed in the following
update of g(yp).

Update of q(7p) The update equation for g(-yg) is found similarly as

9(70) o p(70) exp (Eq(g,) g(xp) 108 P (v x,80,70)])
o1 [0 > 0] 75" exp(—10Ba) 1) exp (,70 E;(¢0) g(xp) [Hy - goxIIZ])
=10 2 0] 75 exp (=70 (Ba + 1y — 220 Re(3"y) + G E[|x]]) )
G (70| a+ N, Ba + lylI* ~ 20 Re(x"y) + G E[}x]?] ) . (3.186)
The updated estimate of the noise precision is thus

aa+ N
Ba+ lly|* — 230 Re(My) + &3 E[|x|’]

Yo = (3.187)

which, as we have seen above, is actually all that we need. We do not have to track the
parameters ap and By, separately.
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If we assume an improper uniform prior for g, (3.187) simplifies to

_ N+1
Yo = 2 - o = 5 (3.188)
lyll* — 280 Re(x"y) + g5 E[|x[|*]
and with Jeffrey’s prior we obtain
¥ N (3.189)

Yo = — .
IlylI* — 230 Re(xHy) + g3 E[||x|*]

Iterations and Initialization Since (3.184) and (3.185) depend on ¥0,24 it looks like the
receiver with soft SNR estimation is doubly-iterative, with inner iterations between the
estimators for gy and 7y in addition to the usual outer iterations through the demapper
and decoder. Fortunately, the dependence of g(go) on ¥y is quite weak. I have verified
by simulations that it suffices to update g(go) and g just once per (outer) iteration.
Doing more than one inner iteration, i.e., re-computing q(go) with the new ¥y, does not
result in any performance improvement.
In order to bootstrap the algorithm, a possible initialization is

aa + Np
A 2
Ba+ llyp — Soxpl|

Yo = (3.190)
as obtained by combining a pilot-only version of (3.187) with the ML estimate (3.169).

Message to the Demapper The messages from the SNR estimator to the demapper are
computed as

My, —x, (Xn) o exp (IEq(go)q(q()) [log p(yn | xn,gowo)])

o _
x exp (’70 gé Xp — g(LZ" )
80
«CN <xn go%”, . 12> (3.191)
8o Y080
D on (x| 12, - 1_2 (3.192)
80 Y08p

where (a) approximates g = g%+ var [go] with just g3, i.e., it disregards var [go]. Again,
this does not cause any appreciable performance degradation, as verified by simulations.

2Note that this is in contrast to the hard SNR estimator, where $o in (3.173) does not depend on 4.
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Computational Complexity

The EM estimator (3.173) and (3.175) is dominated by the computations of Re(a‘cHy) and
E [||x|\2] , which require for each n € D: (a) the evaluation of the belief g(x;), (b) the
computation of Re(E [x}] y,), and (c) the computation of E[|x,|?].

The update equations (3.184) and (3.187) for the soft estimator actually require the
same expectations. Virtually the only difference to the EM estimator is the need to
compute the first two moments of gy using (A.90) and (A.91), which involves a single
evaluation of /\(Zl—;’ ). We can therefore conclude that the additional complexity of the
proposed soft estimator, compared to the EM estimator, is practically negligible.

Numerical Results

We now compare the proposed soft SNR estimator with the hard EM-type estimator
from the previous section. We have seen in Figure 3.28 that the EM estimator performs
very well as long as the initial estimate is good enough. We will therefore focus on
the particularly challenging case Np = 1, where the initial estimate is so poor that the
EM-type receiver shows a significant error floor.

In contrast, the proposed VMP-type soft estimator yields practically perfect results
after just a single CA-iteration, as shown in Figure 3.29a. And as we see in Figure 3.29b,
the soft estimator even performs quite close to the genie-aided receiver when it is run in
an NCA-manner, though it takes three or four iterations in this case.

Both plots show results with a uniform and with Jeffrey’s prior for the noise precision
Yo, and it is evident from the figures that the choice hardly matters. This is good news!
Bayesian inference is sometimes criticized by orthodox statisticians for its requirement
of assigning prior distributions to the unknowns, which, so the argument goes, is
not possible in an objective manner. Therefore, the results of the inference process
supposedly depend on subjective decisions made by the algorithm designer. At least
for the particular case studied here, however, we have seen that the Bayesian approach
is robust against the choice of the prior distribution—the data speaks for itself. And
independently of the chosen prior, the Bayesian estimator outperforms the orthodox EM
algorithm quite significantly. As discussed above, the main reason for this performance
difference is the ability to express the constaint gy > 0 in the prior p(go), so that the gain
estimator is guaranteed to give a physically meaningful output. The orthodox estimator,
on the other hand, may compute a negative gain, in which case the whole frame is lost.
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3.7.4 Soft SNR Estimation Based on Inclusive DM

The soft VMP-type SNR estimator derived in the previous section clearly improves on
the hard EM-type one. However, one pilot symbols is still required in order for it to
bootstrap (as long as no informative prior is available). The reason is seen in (3.185): in
the initial iteration, the expectations of the data symbols are all equal to zero, so if no
pilot symbols were transmitted, ¥ would be the all-zero vector and m, = 0.

For phase estimation (and more generally, estimation of fading channels), the require-
ment of having at least one reference symbol, if only for resolving phase ambiguities
caused by symmetries in the modulation alphabet [35], is fairly intuitive.”> Coher-
ent SNR estimation, however, should be possible in a purely NDA manner. To see
this, consider a simple BPSK transmission with X = {—1,+1}. Assume we receive
y = gox +w = 2. We do not know which x € X was transmitted, so there are two
hypotheses. Either x = —1, in which case the noise-free received signal gox would
necessarily be negative, and w would have to be greater than 2. If the transmitted symbol
were x = +1, however, a noise realization of w ~ 0 could explain our observation. The
hypothesis x = +1 is thus more likely (assuming that the AWGN variance is not too
large). This breaks the symmetry of X', and we conclude that gy ~ 2, give or take a bit
due to the noise.

Now that we have intuitively motivated that purely non-data-aided SNR estimation
should be possible, we would like to derive an appropriate algorithm in a systematic
manner. Interestingly, an NDA estimator emerges quite naturally in a non-coherent
setting [45]. Consider for a moment the transmission model

y=goxe® +w (3.193)

and assume that the phase is completely unknown, so p(d) = % Then the likelihood
function for gy and 7y is

1 T
p(y|x 80, 70) = E/ p(y | x, 80,70, %0) ddo

—TT
Yo [T 2 2112 . —id
— ﬁ/,ne)(p (Myo(lyl + g% |x|* — 2g0 Re(yx*e™ 0)))
= LHOGXP (*“ro(lyl2 +8312%)) 1o (28070 lyl %))

& 70 exp (—vo(ly\ — 80 IXI)2> (3.194)

where & denotes “approximately proportional to”, and the last line uses Iy(x) & exp(x),
similarly as in the derivation of (3.85). The non-coherent likelihood function depends on

A more relaxed requirement is that there are no two transmit sequences which differ only by a constant phase
shift; formally (3i,j, 8 : x; = xje/’) = i = j. Having a fixed reference symbol is just one particularly simple way
of ensuring that this condition holds.
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the unknown symbol x only through its modulus. In a PSK modulation scheme, |x| is
known a priori, so the data symbols can be used for SNR estimation as if they were pilots.
And even in non-constant-modulus transmissions, (3.194) can be used by replacing |x|
with its mean, since the uncertainty in |x| will get averaged out for sufficiently long
block lengths.

But what about the coherent signal model? In this case, we could still pretend that
the phase was unknown and use (3.194) nonetheless. In all likelihood, this would
be a pragmatically reasonable choice, since the resulting algorithm has a rather low
complexity and can be expected to yield accurate results. Nonetheless, having to resort
to such tricks is unsatisfactory from a theoretical point of view. We will therefore finish
this section by deriving a non-data-aided SNR estimator which is based on the coherent
signal model. The approach uses inclusive divergence minimization, so the resulting
algorithm is of EP-type.2® The following derivation is, admittedly, mainly an academic
exercise, with the main purpose of demonstrating the generality of the DM framework.
The algorithm does have a potential practical advantage, though: due to its sequential
and Bayesian nature, it can easily be extended to time-varying parameters.

An Expectation Propagation Approach to Soft SNR Estimation

How can we derive an SNR estimator using inclusive DM? A straightforward application
of belief propagation to the factor graph in Figure 3.27 is infeasible due to the presence
of discrete (xp) and continuous (go, o) variables. Summing p(yp | xp, g0, v0) over xp
leads to mixture distributions in gy and 7. For complexity reasons, we need to collapse
them to simple distributions in the exponential family by means of projections, so we
will use expectation rather than belief propagation.

However, applying EP to the structure in Figure 3.27 is still infeasible due to the
huge range of xp, whose cardinality is exponential in the block length. We will therefore
process the observations sequentially, so that at each time instant, we only operate
on mixture distributions with M components (recall that M = |X| is the size of the
modulation alphabet). To that end, we replace the scalar variables gy and ¢ with
processes g = (o, -..,8n—-1) and ¢ = (7o,...,YN—1)- We still assume that the gain and
noise precision remain constant during one block, so we assign to them the prior PDFs

N-1

p(g) =pr(go) | | 0(gn —8gn-1) (3.195)
n=1
N-1

p(v) =p(v0) [ ] 6(vn —rn-1) (3.196)

1

3
Il

2Actually, the algorithm is an instance of assumed density filtering (ADF), because we only sweep through the data
once, without going back and refining the estimates iteratively. As explained in [91], this iterative refinement is
the generalization which distinguishes EP from the older ADF. For simplicity, however, we will nonetheless use
the name expectation propagation in the following.



3.7. SNR Estimation 109
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Figure 3.30: Detail of the factor graph which shows the relevant parts for the y-estimator

but in principle, we could also allow for time-varying parameters by selecting the
conditional distributions p(g, | g4,—1) and p(yn | vn—1) appropriately. The model is very
similar to that of the phase noise estimator from Section 3.5, where we have derived a
Kalman-filter-like algorithm which, however, operated on von Mises distributions rather
than Gaussians. The estimators for channel gain and noise precision that we will discuss
in the following are again similar to the Kalman filter, but this time, they are based on
truncated Gaussian and Gamma distributions, respectively. In contrast to the phase
noise estimator, we will only perform a forward pass through the data, i.e., derive a
filter rather than a smoother. This saves us from some mathematical trouble, and is
perfectly sufficient to yield excellent results.

Estimating the Noise Precision

We begin with the noise precision estimator. The gain is assumed to be known in the
following. The graphical model of the whole receiver is quite similar to that shown in
Figure 3.16 on page 75, but with the Markov chain for (9, ..., Oy_1) replaced by that
for (7vo,...,YN-1). We therefore only show a relevant detail of the model in Figure 3.30.

Measurement Update The measurement update at time instant n combines the for-
ward message 1, (-, |, ), (Yn) with the information my, ., (7x) contained in the
observation. The former is (proportional to) a Gamma distribution with parameters
&y and By In particular, for n = 0, the forward recursion is initialized with the prior
distribution p(yo) = G (70 | 20, Bo), which could be chosen as a non-informative prior,
just as we did in the previous section for the VMP-type estimator.

The message from the observation v, is computed in the usual way, by marginalizing
the likelihood function over x;:

myn—m(%) & men—wu (xn) p(Yn | Xn, &n, 1n)

Xn
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= Y, (o) L2 exp (= [yn — gnxal?) - (3.197)
¥, (o)

Xn

The two messages are merged at the variable node 7;,, by multiplication:

m7nﬁp(7n+l ‘ 'Yn) (f)/n) & mp(’Yn ‘ ')‘;;71)—>’)/;, (r)/n) myn‘}'}’u (r)/n)

_ ﬁn Ny —
= Fayy T !

exp(—vnpPn) me11_>]/n (xn) ’%n exp ("Yn lyn — gnxn‘2>

Xn

Xn

& me,ﬁyn Xn) Vn" €xp (—'Yn (ﬁn + [yn — gnxn‘2)>

a,—1

: menﬁyn (xn) Tn exp (*’Yn,Bn (xn))

=) M, vy, (xn) B:((f:))&" Bnln) 7 exp (=7nPn(xn))

o< Y 7t (xn) G (n | &n, Bn(xn)) - (3.198)

Xn

In (a) we have introduced the auxiliary parameters

By +1 (3.199)
Bu(xn) = Bu+ yn — gnxn|2 (3.200)

and in (b) the discrete distribution

() 2 L M (0) (3.201)

Z Pn(xn)t
where Z is a normalization constant which ensures that }, 71, (x,) = 1.
As we see in (3.198), the forward message after the measurement update is a Gamma-
mixture with M components, whose weights are given by the PMF 7z, (xy,).

Time Update The second part of the recursion step is the time update, where we

convert the Gamma-mixture 7., (.| ,) (Y1) %nto a single Gamma distributiqn

Mp(Yusr [ 1) =vnia (Yn+1) *« G(vn+1 | @ps1, Bns1). Since we only perform forward fil-

tering, the backward message m,, | —p(rue |7 >.('yn+1) is constant and can be ignored.
The EP message update (B.82) thus simplifies to

M (i | 1) —7sa (Y1) & PrOjg {/0 P(Yns1|vn) My (s | ) (Y1) dW}

= Projg |:/O 'Yn+1 'Yn Znn xn 'Yn “Xn/ ,Bn(xn)) d'Yn:|

Xn
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= projg | 7n(xn) G (Vs | &n, Bu(xn)) | - (3.202)

Xn

The sufficient statistics of the Gamma distribution are log<y and 7 (c.f. (A.94)).
According to the moment matching equation (B.39), we would therefore have to compute
E [log vn+1] and E [y,,11], and then select a1 and B,,1 by inverting (A.96) and (A.97).
Unfortunately, however, E [logy] involves the digamma function, which precludes a
closed-form expression for a1 and B, 1. We will therefore approximate the projection
step by matching the first and second moment instead, as if we were projecting into the
family of Gaussians. We will see later by simulations that the algorithm still gives very
good results.

Since E [y] = % and var [y] = %, the second moment of the Gamma distribution is

2 2
2]« & atta
el =prm="
and a simple calculation shows that the parameters of a Gamma distribution with given
first and second moment are

(3.203)

pe_ (EPD?
S Ep - (EM)? (3.204
E [7]

P B - EmE

Due to the linearity of the expectation operator, the first two moments of the mixture
distribution in (3.202) are

(3.205)

E[yn1] = XZ”:T["(X”) B:E;ln) =&y xZﬂ: g:gi:; (3.206)
~2 ~
E[72] = xZ 7T (xn) ‘Ennz; :‘)n = (a2 + &) ; ”:g:i (3.207)

and inserting those into (3.204) and (3.205) yields «,,41 and B,1, which concludes one
step of the forward recursion.
When the forward recursion is finished, the algorithm outputs the soft estimate

G(an, BN), or, if sufficient, the MMSE-like hard estimate ¥y = g—i’]

Estimating the Channel Gain

The channel gain estimator works analogously, but it tracks truncated Gaussians instead
of Gamma distributions. In the following, we assume that the noise precision is known.
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Measurement Update  The forward message 1, | ¢, 1), (gn) is a truncated Gaussian
with parameters m,, and 52. At the variable node gy, it is multiplied with

My, —g, (gn) me—wn(xn) (Yn | Xn,8n,n)

Xn

& men%yn(xn) exp (*'Yn Yn *gnxn‘z) (3.208)
Xn
which results in a mixture of truncated Gaussians:

mgnﬂp(gnﬂ |g”) (gn) & mp(gn ‘gr;—‘l)ﬁgn (g‘fl) m]/n_>gn (gl’l)

Y
o« 1[gn > 0]exp (7%) Y, sy, (xn) €xp (f'yn [y fgnxn|2>
n

L[gn > 0] Y iy, sy, (xn) exp ( ( + 29 \xn\z) +8&n (% + 27 Re(xflyn))>
n
"2
n

Xn
2
XeXP< 22 Yo |Yn] )

20 E o [ 1 T st
- n n 2
n

Xn

@ 4

_l’_
() & 3 252

25
(b) (8n — i (Xn))?
=1 [gn 2 O] XZ’Z:mxn*}yn (xn) exp ( W

1 2 2 2 2
xexp |~z My + 2YnSi ‘y"2| — 1% (xp)
257 (xn) \ 1+ 279us% |xu

2
n
n

Ev () sulon) (gn — 1itn (xn))?
=1[gn > 0] Y 1mx, -y, (xn) — exp (‘%)
Xn Fyr <%) Sn(xn) 257 (xn)
2
oxp (=2 gy — = 203 ) (i)’ )
Y o) TN (0 1700 (0), 52 30)) (3.209)
Xn

Here, Fyr(x) is the CDF of the M/ (0,1) distribution, (a) and (b) introduce the auxiliary
parameters

2
S
() & ——— (3.210)
" 1 JFZ'YnS% ‘xn‘z
29,52 Re(x
it () & M 20 e(xayn) (3.211)

14 29483 |20 |
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and (c) defines the discrete distribution

i 50) = 5 1 ) B (222 ) 5,

~ 5h(xn) « W2
X exp 2 Tn ‘]/n - mnx”l - 2’)/11 n(xl’l) (Im(xnyn)) (3-212)
‘Vl
where Z is again a normalization constant.

Time Update Analogously to the -estimator discussed above, the time update col-
lapses the mixture of truncated Gaussians (3.209) to a single truncated Gaussian:

Mp(gus1 | gn)—gnin (gn+1) o Projrpr {/0 p(gn+1l8n) Mo s p(gnin \g,,)(gﬂ) dgn:l

= projry

zmmmngmlmumﬁmw}.@nm

To that end, we compute the first two moments of g, 1 via

E [gns1] = Y 7n(xn) (mn (xn) + 8 (xn) A (m” (xn) > ) (3.214)

Xn Sn (o)

E [g§+1] Y 0 (%) ( xn) + 82 (x n)+mn(xn)§n(xn)A<n:1"((;:)))) (3.215)

3
Xn n

with A(x) defined in (A.92) on page 217. Now, we would have to find 1,1 and si by
inverting (A.90) and (A.91), but for complexity reasons, we approximate this step and
simply set

Myy1 = E [gni1] (3.216)
Spa1 =B [giﬂ] — (E [gn+1])™ (3.217)

After the forward recursion, the algorithm outputs the soft estimate TN (my;, s%\,)

Iterations and Initialization

The estimator for the noise precision assumes perfect knowledge of the channel gain
and vice versa. We could thus iterate between the two estimators, but it turns out that
estimating 7y and g just once (in that order) gives already very good results.

The gain estimator uses the freshly estimated %, so the only remaining question is
how to initialize the estimate of ¢ which is used by the noise precision estimator. In the
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Figure 3.31: Performance of the EP-based SNR estimator, with N, =0

following simulation, we use a simple ad hoc estimator: the expected squared norm of
the received data is

E [lyl’] = &3 [I%17] +E [Jlw]’]
= g3NEs+ N/ 7. (3.218)

Ignoring the noise power, and replacing the expectation of HyHZ with its observed
realization, a coarse estimate of gy is found as
2
llyll

8=\ NE (3.219)

There may be more sophisticated strategies, but as the following simulation shows, any
attempts to improve the proposed estimator further are likely to be in vain.

Numerical Results

Figure 3.31 shows simulation results using the rate-1/3 turbo code and 16-QAM modu-
lation as in the previous sections, but this time without any training data, N, = 0.

We see that even in the initial iteration (without feedback from the decoder), the
gap to the genie aided receiver is less than 0.1 dB. And after a single re-estimation with
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decoder feedback, the performance is not distinguishable anymore from the genie-aided
lower bound.

3.7.5 Concluding Remarks

We conclude our case study of SNR estimation with a brief wrap-up.

Arguably the state-of-the-art approaches to code-aided SNR estimation are based on
the EM algorithm, with several publications having appeared just recently [26,45,142,152].
We have therefore started this case study in Section 3.7.2 by deriving an EM-based
estimator for the coherent channel model.

As discussed in Section B.5.5, the hard-output EM algorithm is closely related to the
soft-output VMP framework, with two key differences: (a) VMP is a Bayesian algorithm
and thus models the unknown parameters as random variables, and (b) EM reduces
the beliefs to point estimates by taking their argmax. The EM-type SNR estimator can
therefore be converted to a Bayesian soft-output algorithm in a natural and elegant
way. We have seen in Section 3.7.3 that the VMP-type estimator has virtually the same
computational complexity as its EM-type counterpart, but it allows us to reduce the
number of pilot symbols that are required in order to obtain close-to-optimal results.

VMP is a special case of the generic DM framework, which minimizes the exclusive
KL divergence. In Section 3.7.4, we have finally switched to inclusive DM and derived
EP-type estimators for the noise precision and the channel gain. Both estimators bear
some similarity to the Kalman filter, but they operate on Gamma and truncated Gaussian
distributions, respectively, rather than plain Gaussians. The proposed receiver is able to
work in a purely NDA-manner, i. e., without any training data. And as we have shown by
simulations, it gives close-to-optimal results already in the initial NCA iteration, where
it only exploits the discrete modulation alphabet, but not the coding constraints. Its
drawback, compared to the VMP-type estimator, is a significantly higher computational
complexity.



116

Chapter 3. Parameter Estimation




Chapter 4

MIMOQO Detection

In the previous chapter, we have studied parameter estimators for conventional wireless
systems, where both the transmitter and receiver are equipped with a single antenna.
Since the radio channel of these systems has one input and one output port, they are
commonly called single-input single-output (SISO) systems. Owing to the development
of modern channel codes and iterative receivers, it is now possible to operate those
systems fairly close to the channel capacity. This means that any further progress in the
area of receiver design can only be expected to reap diminishing gains in the achievable
data rates, since the channel capacity constitutes a fundamental upper bound.

It is thus necessary to modify the channel itself, and hence its capacity, in order to
improve the data rates of wireless systems by any significant factor. One possibility is
to increase the bandwidth of the radio channel over which the system operates; and
indeed, the trend towards wider frequency bands can be witnessed in the evolution
of both cellular mobile systems and wireless LAN standards. For example, while the
3GPP Universal Mobile Telecommunications System (UMTS) uses a bandwidth of 5MHz,
the Long Term Evolution (LTE) standard, release 8, is specified for a maximum of 20 MHz.
And a major feature of release 10, known as LTE Advanced, it a technique called carrier
aggregation, which allows the system to bundle up to five release-8 component carriers
to obtain a total bandwidth of 100 MHz [24, Section 7.3.1].

However, spectrum is a scarce and expensive resource that cannot grow ad infinitum.
It is therefore also important to improve the spectral efficiency in order to utilize the
available bandwidth as well as possible. A major breakthrough in this regard has been
the development of multi-antenna techniques. Multiple-input multiple-output (MIMO)
systems, where both ends of the link are equipped with several antenna elements,’
are able to transmit multiple data streams in parallel over the same frequency band
by exploiting the spatial dimension of the radio channel. Due to their significant

! In the special cases where only the transmitter or the receiver has more than one antenna, we also speak of
MISO and SIMO systems, respectively.
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performance benefits which do not necessitate an increase of resources like bandwidth
or transmit power, MIMO techniques are a central component of modern wireless
systems like the above mentioned 3GPP LTE, or the IEEE WLAN standard 802.11n.

From the receiver’s point of view, the transition from SISO to MIMO does not
introduce any fundamental obstacles. Both the transmitted and the received signal
become vector-valued, but the BICM receiver from Chapter 2 can easily be adapted
to the new channel model (see Section 4.1.3). Instead, the main challenge that MIMO
receivers face is a very practical one. As shown in (2.23) on page 18, the BICM demapper
involves an enumeration of all potentially transmitted signals. In a SISO system which
sends an M-QAM-modulated data stream, there are M possible signals per symbol
period, typically with M € {4,16,64}, which is sufficiently small so that (2.23) can be
implemented verbatim.? However, in a MIMO system that transmits Ny parallel data
streams, there are M™s possible transmit signals (assuming for simplicity that all data
streams share the same modulation alphabet). Even for moderate N; of, say, three or
four, this number is so large that a real-time implementation of (2.23) becomes infeasible.

For this reason, the past years have witnessed a tremendous amount of research
on suboptimal MIMO detection schemes with lower complexity. Linear detectors are a
family of particularly simple algorithms. They separate the spatially superimposed data
streams (to some extent) by applying a linear filter to the received signal. Subsequently,
the streams are processed by a bank of N independently working scalar demappers.

While the idea of using linear filters for the purpose of MIMO detection is certainly
far from being novel, the existing literature derives them in a very ad hoc fashion:
the general structure of the algorithm is fixed in advance, the filter matrix is derived
based on some heuristic optimization criterion (usually the LMMSE criterion), and the
output of the filter is somehow connected to the rest of the receiver. In the context of
conventional non-iterative receivers, this approach works sufficiently well, and the lack
of a solid theoretical fundament could be regarded as a purely academic issue. However,
the problem of this approach becomes apparent as soon as one attempts to use a linear
detector in an iterative BICM-ID receiver, as we shall see later within this chapter.

Since the root cause is the isolated design of the linear MIMO detectors, which
are retroactively plugged into the BICM-ID algorithm, the aim of this chapter is to
recover a holistic system perspective which will allow us to derive the receiver in one
piece. This gives rise to an interesting question: how can approximations be selectively
introduced into a systematic algorithm design? Clearly, sticking to belief propagation
will be insufficient, as this only leads to the standard BICM-ID receiver.

Divergence minimization is a more general and flexible approach to the design of
approximate Bayesian inference algorithms (see Appendix B), which we have successfully
used in the previous chapter to derive several novel parameter estimators. Confirmed
by these results, we shall now explore the applicability of DM to detection problems.

2 For many practically relevant modulation schemes, there also exist closed expressions for the demapper which
have an even lower complexity.
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This chapter is structured as follows. After providing a brief overview of multi-
antenna communication systems, Section 4.1 introduces the MIMO channel model and
the spatial multiplexing technique, which will serve as the fundament for the following
derivations. It then sketches the above mentioned modifications that are necessary to
adapt the BICM-ID receiver from Chapter 2 to multiple data streams.

Section 4.2 presents some important conventional low-complexity MIMO detectors,
which will serve as a performance benchmark for the novel detectors. Also, working
through the traditional derivation helps us to appreciate the benefits of the DM approach.

The main contribution of this chapter is presented in Section 4.3. We derive an
iterative MIMO detector where an affine front-end, consisting of interference cancellation
and LMMSE filtering, and a bank of streamwise demappers are connected by a loop
whose structure has, to my best knowledge, not been published before. The proposed
algorithm is an instance of expectation propagation, since the complexity reduction
with respect to the exact MIMO detector is achieved by constraining the belief of the
data symbols to Gaussian distributions, i.e., by projecting the discrete symbolwise
distributions into the set of proper Gaussians. This turns the sum over all possible
transmitted signals as in (2.23) into an integral which admits a closed-form solution.
Furthermore, we briefly discuss a possible extension to widely linear filters.

Finally, in Section 4.4, we try a different approximation of the symbolwise beliefs:
we modify the objective function of the underlying optimization problem rather than
the feasible set, and minimize the exclusive instead of the inclusive KL divergence.
The resulting algorithm is thus an instance of variational message passing. Its most
obvious difference with respect to the detector from Section 4.3 is that the LMMSE filter
gets replaced by a simple maximum ratio combiner. But as we will see, there is also a
second, more subtle difference, namely that the symbol statistics which are required
by the affine front-end must now be computed based on a posteriori information. If
we had just substituted the filter in an ad hoc way, with the intention of reducing the
computational complexity of the front-end, we would most likely have missed this
necessary modification. This case study thus nicely demonstrates the benefit of the
holistic system perspective that the divergence minimization approach provides us with.

In order to keep things as simple as possible, the developments in this chapter
assume a perfectly synchronized system, so that we can focus on the detection problem.
However, it goes without saying that the proposed MIMO detectors can be combined
with the estimation techniques from the previous chapter, yielding iterative receivers
which perform synchronization, detection, and decoding jointly. Modularity is, after all,
an inherent characteristic of our graph-based Bayesian inference framework.
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4.1 Introduction to Multi-Antenna Communication Systems

SIMO and MISO systems have been studied for several decades. The papers [47,48] from
1997 provide an accessible overview of traditional multi-antenna techniques, which can
roughly be categorized into beamforming and diversity approaches. In the former case,
one end of the link (typically the base station) is equipped with an antenna array, which
is used to concentrate the radiated energy into a certain direction, determined by the
phase difference of the signals at the individual antenna elements. By steering the beam
towards a particular mobile receiver, it increases the received power and hence the SNR
of that link, while at the same time reducing the interference experienced by other users.
Due to reciprocity, the same principle can be applied at the receiver side: by coherently
combining the individual received signals, the sensitivity of the antenna array is focused
in the direction of the desired signal, while interfering signals that arrive from different
directions are suppressed. Beamforming thus works best when the link is dominated by
a single propagation path, for example a line-of-sight (LOS) path.

Diversity techniques, on the other hand, aim to increase the reliability of the radio
link by exploiting the multipath propagation that occurs in rich scattering environments.
They, too, can be used at both the transmitter and the receiver, but exploiting receive
diversity is arguably simpler. It is a well-known phenomenon that multipath propagation
causes variations of the received signal power by several orders of magnitude along
distances on the order of half a wavelength (i. e., just a few centimeters for the frequencies
that are used by mobile systems). Thus, if the antennas are sufficiently separated,
they receive the signal with approximately uncorrelated fading coefficients, and the
probability that all links are simultaneously in outage decreases with an increasing
number of antennnas. A simple maximum ratio combiner (MRC) can then be used to
convert the SIMO channel into an effective scalar channel, which has the maximum
effective SNR among all linear receivers.3 Exploiting transmit diversity in systems without
channel state information (CSI) at the transmitter is less straightforward. A practically
relevant approach which has spawned a lot of research are the so-called space-time codes
like for example the famous Alamouti scheme [4].

While MISO and SIMO techniques certainly have a positive impact on the quality of
the radio transmission, it is the idea to employ multiple antennas at both ends of the link
that has led to a major paradigm shift in the wireless communication world. The crucial
property of MIMO systems is that they provide additional degrees of freedom, which
leads to a significantly increased channel capacity, particularly in the medium-to-high
SNR range. This can be explained as follows. The beamforming techniques mentioned
above achieve a power gain, which can be as large as the number of antennas: if N
antennas are used at either the transmitter or the receiver, the SNR can be increased by a
factor of up to N compared to a SISO system. If the system operates in the power-limited

3 A detailed discussion of MRC receivers in the MIMO context is given in Section 4.4, but essentially the MRC
filter is just a multiplication of the received signal with the Hermitian of the channel matrix.
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regime (i. e., at low SNR), the channel capacity scales roughly linearly with the SNR, and
beamforming can lead to an N-fold increase of the data rate. In modern cellular systems,
this is a relevant scenario for cell-edge users, who can thus benefit from beamforming.
However, in the bandwidth-limited regime (whose practical importance is witnessed by
the fact that mobile operators are willing to spend billions of Euros on a few megahertz
of licensed spectrum), the channel capacity only scales logarithmically with the SNR,
and the impact of the power gain becomes negligible. In this case, the additional degrees
of freedom provided by MIMO become relevant: as a rule of thumb, if the transmitter
employs N; antennas and the receiver N; antennas, then the capacity of the MIMO
channel scales linearly with min(Nt, N;). Detailed studies of the MIMO capacity in
different scenarios can be found in the landmark papers by Foschini and Gans [39]
and Telatar [128], and in an overview paper by Goldsmith et al [50]. Furthermore,
the textbook [131] by Tse and Viswanath contains a well readable treatment of many
important theoretical and practical aspects of MIMO systems.

We continue this section with an introduction of the MIMO channel, followed by
a discussion of the well-known diversity-multiplexing tradeoff, and an explanation of
why we will focus on spatial multiplexing (SM) in the remainder of this chapter. Finally,
we derive the exact MIMO detector, whose prohibitive complexity motivates the study
of low-complexity detection algorithms in the subsequent sections.

4.1.1 The MIMO Channel

We consider a communication system with N; antennas at the transmitter, and N; an-
tennas at the receiver. We will refer to this configuration as an N; x Ny MIMO system.
We assume a perfect synchronization in time and frequency. As explained at the end of
Section 3.3, any residual inter-symbol interference due to imperfect synchronization is
understood to be included in the noise term (the ISI power is assumed to be sulfficiently
small, such that the noise-plus-interference term is still approximately Gaussian dis-
tributed). We furthermore assume a non-dispersive (frequency-flat) fading channel, but
the following derivations are also valid for OFDM transceivers over frequency-selective
channels, where the detectors operate on a per-subcarrier basis. The single-antenna
channel model, which will be generalized to multiple antennas in the following, is thus

Yn = hpxn + why, Wp ~ CN(O/ NO) 4.1)

which is similar to (3.62), but where we have merged the channel gain g and the phase
offset ¢ to a complex channel weight 1, which is furthermore allowed to be time-varying.
The reason is that the spatial multiplexing technique, which will be described in more
detail below, does not work well in line-of-sight scenarios, where the channel gain
is constant and only the phase is varying due to mobility and/or phase noise. In
such a scenario, the MIMO channel matrix would be poorly conditioned, and rank-1
transmission would become the optimal choice (which can be shown by waterfilling
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over the eigenmodes of the channel; see e. g. [131, Section 7.1]). Instead, we will work
with the standard Rayleigh fading model, which is based on the assumption of many
independent propagation paths, such that h, ~ CN(0, 0’;) due to the central limit
theorem. For simplicity, we assume the normalization oj; = 1, so that the received
energy per symbol duration is, on average, equal to the transmitted energy Es.*

In the presence of multiple transmit and receive antennas, each link can be described
by a complex channel weight hn,j,i with 0 <i < Ny and 0 < j < N;. Assuming a linear
propagation channel, the signal received by the jth antenna at time 7 is

Ni—1
Ynj= Y hujiXni+ w0y, (4.2)
i=0

where x,, ; is the symbol that is transmitted from the ith antenna at time 7.

Collecting the symbols that are transmitted from all N; transmit antennas at time
n into the vector x,, = (Xn0,---, xn,Nt,l)T, and the received signals similarly into the
vector y,, = (Yno,---,Yu,N,—1) ', we obtain the standard matrix-vector description of a
flat-fading MIMO channel

Y, = Hyxy + wy. (4.3)

The additive noise is assumed to be temporally and spatially uncorrelated, so that
wy ~ CN (On., NoI,), where 0y is the all-zero vector of dimension N.

Due to the Rayleigh fading assumption mentioned above, the time-varying channel
matrix is modeled as a Gaussian random process. It remains to specify the correlation
between the channel coefficients, both spatially and temporally.

Spatial Correlation The spatial correlation of the channel coefficients, i.e., the correla-
tion between the entries of the channel matrix H; for one time instant n, depends on
the angular spread of the arriving multipath components. Line-of-sight channels are an
extreme case: due to the single dominating path, the angular spread is close to zero and
the channel coefficients are maximally correlated. Rich scattering environments, where
the radio waves arrive omnidirectionally, are the other extreme. Here, the entries of H,
are practically uncorrelated.

As argued above, the spatial multiplexing technique does not work well in LOS
scenarios; it requires a well-conditioned channel matrix. For the purpose of the following
discussion, we can thus safely assume that the receiver operates in a rich scattering
environment with low spatial correlation. For simplicity, all simulation results that are
presented in this chapter have been obtained with spatially uncorrelated channels.

4 Note that we do not normalize the symbol energy Es or the noise power spectral density Ny to unity, as is often
done in the literature. The difference between & on the one hand, and x and w on the other hand, is that & is
a unit-less multiplicative gain, while x and w have the physical unit /], or in other words, their variances Es
and Nj are energies, measured in Joule. By setting, say, E; = 1 and thus discarding the J, we would needlessly
eliminate the ability to do quick sanity-checks on our results by looking at the units. This is not just an academic
exercise in mathematical rigor, but has a very practical relevance: I have seen several erroneous derivations in
the literature which could have easily been spotted by checking the physical units of the equations.
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Temporal Correlation A standard model for the temporal channel correlation, which is
based on the assumption of omnidirectionally arriving multipath components, is given
by Clarke’s model [21]. Its discrete-time autocorrelation function of each individual link is

Ry (m) £ E [l mhy] = Jo(27Vmax Tm) (4.4)

where vmaxT € [0,0.5] is the normalized Doppler spread, and Jy(x) is the Bessel function
of the first kind and zeroth order. Note that the channel is assumed to be wide-sense
stationary, so that R; does not depend on 7.

It is common practice to concentrate on the two extreme cases of quasi-static and
ergodic channels. Quasi-static means that the channel stays approximately constant
during the transmission of each codeword, so that each transmission only experiences a
single realization of the fading process. In this scenario, the receiver will be able to feed
the instantaneous channel coefficients back to the transmitter with acceptable overhead.
But if CSI is available at the transmitter, it can use eigen-beamforming which decomposes
the MIMO channel into a set of mutually independent SISO channels (c. f. (4.6) below),
and the problem that we will study in this chapter, namely the joint detection of all
simultaneously transmitted data symbols, does not arise to begin with.

We will thus focus on the fast-fading regime, where the channel varies significantly
over the duration of one codeword, and instantaneous CSI feedback becomes infeasible.
In the limit of a very rapidly fading process (relative to the codeword length), the
transmission of every codeword experiences, in some sense, all possible channel matrices,
and the temporal average of the fading process approaches the ensemble average. In
this case, we speak of an ergodic channel, and it becomes meaningful to study the
Shannon capacity as an upper bound on the achievable data rate, which can be used as a
benchmark for practical transmission schemes.> Due to the bit interleaver that is used in
BICM systems, adjacent bits are mapped to data symbols which are transmitted at some
temporal distance, and which are likely to experience independent channel realizations.
Thus, we use temporally uncorrelated channels in the numerical perfomance evaluations,
which is a standard assumption in the literature on MIMO detection.

4.1.2 The MIMO Transmitter

Having established the fundamental characteristics of the MIMO channel, the question
arises how the multiple available transmit and receive antennas should be used. As
motivated in the previous section, we will only be interested in fast fading scenarios,
where the transmitter does not know the channel coefficients. The receiver, on the other
hand, is assumed to have perfect knowledge of the instantaneous channel coefficients.®

5 In the quasi-static regime, the Shannon capacity of a Rayleigh fading channel is zero, and one must resort to
other, more appropriate measures, like for example the outage probability.

® Which is of course an unrealistic assumption. More accurately, the receiver is assumed to be mismatched in the
terminology from Section 3.1, meaning that it estimates the channel coefficients and pretends that the estimates
were the true values, ignoring the inevitable estimation errors.
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Diversity vs Multiplexing

In the introduction to this chapter, we mentioned that traditional SIMO and MISO
systems provide a diversity gain (assuming sufficiently uncorrelated channel coefficients).
In SIMO systems, the receiver observes N; approximately independently faded replicas
of the transmitted signal, and can achieve a diversity order of N; by using a simple MRC
filter. In the MISO case, the transmitter emits N; signals, which fade independently and
then superimpose at the receiver. Those systems can realize a diversity order of N; by
using appropriate signaling schemes like space-time codes.

These diversity techniques can be generalized to MIMO systems, which offer a
diversity gain of up to N¢N;, the number of links between transmitter and receiver.
However, as mentioned above, MIMO systems also offer additional degrees of freedom,
which can be used to increase the data rate by multiplexing up to min(N;, N;) data
streams in the spatial domain; but this technique, known as spatial multiplexing (SM),
does not provide any diversity gain. It thus seems that the system designer must
choose between using the antennas for a lower error probability, but with the same
data rate as an otherwise equivalent SISO system, or for a higher data rate, but with a
poor link reliability. In fact, those two choices are the extreme ends of the well-known
diversity-multiplexing tradeoff [158], which quantifies the maximum diversity that can be
reached for a given multiplexing gain, and vice versa.

Now, which point on the diversity-multiplexing tradeoff curve should one attempt to
realize? This question has been studied in the recent work [79,80] by Lozano and Jindal.
They argue that “in the context of most modern wireless systems and for the operating
points of interest, transmission techniques that utilize all available spatial degrees
of freedom for multiplexing outperform techniques that explicitly sacrifice spatial
multiplexing for diversity” [79, Abstract]. Their rationale is concisely summarized by
the following bullet points, quoted from [79, Section L.BJ:

e “Modern systems use link adaptation to maintain a target error probability and
there is essentially no benefit in operating below this target. This makes diversity
metrics, which quantify the speed at which error probability is driven to zero with
the signal-to-noise ratio, beside the point.

e Wireless channels in modern systems generally exhibit a notable amount of time
and frequency selectivity, which is naturally converted into diversity benefits
through coding and interleaving. This renders additional transmit diversity
superfluous.

e Block error probability is the relevant measure of reliability. Since the channel
codes featured in contemporary systems allow for operation close to information-
theoretic limits, such block error probability is well approximated by the mutual
information outages. Although uncoded error probability is often quantified, this
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is only an indirect performance measure and incorrect conclusions can be reached
by considering only uncoded performance.”

As argued above in the context of temporal channel correlation, the focus of this
work is on fast fading channels. Our target systems thus offer some amount of time
diversity by assumption, in addition to the frequency diversity that is inherently present
in modern broadband systems like 3GPP LTE and IEEE 802.11n. We will thus follow the
reasoning from Lozano and Jindal, and only consider spatial multiplexing.

Spatial Multiplexing

The MIMO system model used in this chapter is a straightforward extension of the
single-antenna BICM system defined in Section 2.2 on page 11. The channel encoder and
QAM mapper remain unaltered. The symbol sequence (2.5) produced by the mapper
is demultiplexed into Ns data streams,” with N < min(N, Nr). The nth data symbol
vector ¥, € CM is linearly mapped to the vector x, = PG&, € CNt which is transmitted
at discrete time n. Here, G is a diagonal matrix containing real non-negative gains,
whose purpose is to adjust the transmit powers of the data streams, and P € CN*Ns s
a precoding matrix with PHp=1 N.-

How should the transmit powers and the precoding matrix be chosen? If the trans-
mitter has access to instantaneous CSI, it can compute the singular value decomposition

H=uxzvH (4.5)

of the channel matrix, where UNU = VIV =1 min(N;,N,)- and where the diagonal matrix
I contains the singular values of H. If the transmitter now precodes the symbol vector
X with V, and the receiver filters the received signal y with Uu", we obtain

g=u'y
= U"(Hx + w)
=LGE+m (4.6)

where the effective noise vector @ 2 UMNw ~ CN (On,, NoIy,) has the same distribution
as w. Since both ZG and cov [@] are diagonal, (4.6) describes a set of min(Ng, Ny)
mutually independent scalar channels. It has been shown by Telatar [128] that this
scheme, known as eigen-beamforming, is capacity-achieving if the data symbols are iid
circular Gaussian, with transmit powers chosen by water-filling.

But since the data symbols in (4.6) can be detected separately, this scenario is not
relevant for the following discussion, which will be about the joint detection of MIMO

7 This transmitter structure, where a single codeword is transmitted over all antennas, is called vertical coding. An
alternative is horizontal coding, where the spatial data streams are produced by separate encoders. All simulation
results that will be presented later have been obtained with vertical coding, but the proposed MIMO detectors
can of course also be employed in a horizontally coded system.
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symbol vectors. As motivated above, we will thus focus on the scenario with CSI at the
receiver, but not at the transmitter. In this case, the capacity-achieving input covariance
is a scaled identity matrix [128, Theorem 1], which implies Ns = Ny, P = I, and G = «I
for some constant « > 0. Without loss of generality, we can assume « = 1 and thus
X = x by incorporating the transmit power into the data symbols. With the symbol
energy Eg as defined in (2.11) on page 14, the total transmit power becomes

NtEs
T

pP= . 4.7)

One could argue that the constraint N5 = N is overly restrictive, because the channel
might not support N; data streams. This is clearly the case if Ny > Ny, but also for
ill-conditioned channel matrices, or in low-SNR scenarios where water-filling would
assign zero power to some modes. However, modern wireless standards allow for the
feedback of low-rate channel quality information, like the maximum number of spatial
streams or the highest supported modulation and coding scheme. The 3GPP LTE system,
for instance, defines a rank indication, a precoder matrix indication, and a channel-quality
indication, which are sent from the terminals back to the base stations [24, Section 13.2.5].
It is therefore a realistic assumption that the number of data streams is not excessively
large, even in a fast fading scenario without full CSI at the transmitter. In the interest of
a simple notation, we will not distinguish between Ns and N, and stick with the simple
channel model (4.3) where the entries of x;, are QAM symbols without any precoding.
This simplification is without loss of generality, because we can always interpret H; as
the Ny X Ns product of the physical channel and the precoding matrix.

To summarize, the following derivations will be based on the channel equation

y, = Hyxy +wy, 0<n<N (4.8)

where
cov [x;] = EsIy, and cov [wy] = NoIn,. 4.9)
With the transmit power as given in (4.7), a noise power after matched filtering of

Np/T at each receive antenna, and assuming the normalization (7,3 = 1 as mentioned in
Section 4.1.1, the average signal-to-noise ratio per receive antenna is

N,—
Zi:lo ! ]Eth,j,i Xn,i 2] _ NtES

SNR = .
]EHwn,j 2] No

(4.10)

A block diagram of our MIMO system model, including the BICM-ID receiver that
will be derived next, is shown in Figure 4.1.
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Figure 4.1: Overview of a MIMO transmission system with spatial multiplexing and an
iterative BICM-ID receiver. The dashed box marks the equivalent BICM channel
that will be discussed in Section 4.1.4.

4.1.3 The Outer MIMO Receiver

As a starting point for the following discussion, we now derive the exact BICM-ID
receiver® for MIMO systems with spatial multiplexing, which is a very straightforward
extension of the single-antenna BICM-ID receiver from Section 2.3. Due to its more com-
pact graphical representation, we will use expectation propagation with fully factorized
beliefs as presented in Section 2.3.2, but the more common derivation from loopy belief
propagation is mathematically equivalent.

As usual, we start with the joint posterior distribution

N-1
p(b,c,x|y) < p(b) p(c|b) T p(xnlcn) p(y, | xn) (4.11)

n=0

where ¢, contains the code bits that are mapped to the data vector x;,. For later reference,
we also define the sub-vectors ¢, ; which contain only those bits that are associated with
the symbol x,, ;. Note that we assume without loss of generality that all N; data streams
use the same M-ary modulation alphabet, so all ¢, ; have the same length K = log, (M).

Figure 4.2 shows a comb-structured graphical model of (4.11). The left-most nodes
are of degree one, so the messages from the matched filter (represented by the nodes
p(y, | 1)) to the MIMO demapper (represented by the nodes p(x; | ¢;)) are simply
given by the likelihood functions

— Hpxn|?
mmf—)dem(x") x exp <W>
« exp (—x,'jH,'jN(;lann + 2Re(x,'jH,';‘N(;1yn)) 4.12)

8 Note that this is not the globally optimal recevier which minimizes the bit or word error rate. The approximation
made in BICM-ID receivers, the bitwise information exchange between detector and decoder, is still in effect.
The word “exact” only refers to the MIMO detector, and should be contrasted to the suboptimal detectors with
lower complexity that we will study in the following.
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Figure 4.2: Forney-style factor graph of the joint posterior (4.11)

which are (possibly degenerate) circular Gaussian distributions with scaled mean vectors
vy, =H ,';' Ny 11/;1 and precision (inverse covariance) matrices I'; = H y Ny LH,. This is the
MIMO-generalization of (2.16) from page 15, which was guaranteed to be normalizable
as long as g, # 0.

Note (a) that the messages My, dem (X1 ) have been computed via inclusive DM, and
(b) that the beliefs q(x;) of the data symbols are unconstrained. The messages are thus
essentially obtained via belief propagation, and since the p(y,, | x;;) are leaf nodes in the
graphical model in Figure 4.2, they remain static during the inference algorithm. Only
the messages between demapper and decoder, i.e., Mgem dec(€n) and Myec_sdem (€n),
are iteratively updated. This is the key difference between the exact MIMO detector
from this section and the low-complexity algorithms that will be derived later from the
generalized divergence minimization perspective: the LMMSE-based MIMO detector
from Section 4.3 constrains the beliefs g(x,) to Gaussians, hence turning BP into EP,
and the MRC-based detector from Section 4.4 computes ¢ ,gem (¥n) Via exclusive DM,
yielding a VMP-type algorithm. In both cases, the ¢, qem (X1) are not static anymore;
they are iteratively refined, too. This gives rise to a second loop between the demapper
nodes p(x, | ¢;) and the MIMO front-end p(y,, | x,), in addition to the standard BICM
loop between demapper and decoder, which will be derived next.

Following the central concept behind BICM, we assume fully factorized beliefs

q(en) = TT TTalcnik) (4.13)

i.e., we project g(cy) into the set BNK of bitwise factorized distributions over FMK. In
the following, the vector A, € RMNK contains the L-values associated with the belief

g(cn), and A, and A, denote its intrinsic and extrinsic component, respectively.
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With the extrinsic feedback from the decoder to the demapper
e Ne—1K-1 _
mdecﬁdem(cn) o exp (Cn AH) = H H exp (Cn,i,k/\n,i,k> (4~14)
i=0 k=0

the messages from the demapper to the decoder become

Mdem—dec (Cﬂ )
1 .
e aem () PrOBYE |:mdecﬁdem(cn) ;P(xn len) mmfﬁdem(xn):|
Ni—1K-1 _ CH M _
o« [T J]exp (—cn,i,k)\n,i,k> Y exp <—|y” ;]0 (en)ll +clA, | (415)
i=0 k=0 ~Cnik

and the intrinsic L-values Xn,i,k that are sent forward from the demapper to the decoder
can be computed as

Z ex (_Hyn*Huquz_"_ch>
p No nn

> X, €X}

Fik =108 lvo—Hal’ . 1%
Y exp|— e o An
X €XN

—

— Ak (4.16)

Here, Xlﬂ « is the set of Ni-dimensional symbol vectors, where the bit label of the com-
ponent x; contains a $ € FF at position k. The two equations above are straightforward
generalizations of (2.31) and (2.32). As before in (2.32), ¢, in (4.16) implicitly contains
the bit label of the symbol vector x;,.

The soft decoder, i. e., the computation of A and b from 7\, is the same as before and
will not be discussed further.

The Max-Log Approximation and the Sphere Detector

The two sums in (4.16) contain 2MK=1 terms each, so the exact MIMO demapper has a
complexity that is exponential in the number of transmit streams. Even for a moderate
system configuration of, say, Ny = 4 and a 16-QAM modulation, the squared norm
in (4.16) must be evaluated 21¢ times, which cannot be done online for practically
relevant symbol durations T. For this reason, the past years have witnessed a large
amount of research on low-complexity, suboptimal MIMO detection schemes.

A common starting point that we briefly mentioned on page 19 is the max-log
approximation, which relies on the fact that the sums in (4.16) are often dominated by just
a few terms. Replacing the sums with their maximum terms yields the approximation
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2 2

. — Hux < — Hux « -

Ay ik & min 1y = Huu [ — A, | — min Ny = Hyu [ —c A | = Ak
T xeXl No X, EX), No "

(4.17)
A brute-force implementation of (4.17) would also need to evaluate all 2MK squared
norms. However, it has been recognized that the discrete minimization problem

min,cyn ||y — H xHZ (ignoring the term cTA for a moment) can be formulated as the
search for the closest point in a lattice [25], which can be solved via branch-and-bound
techniques that are known as sphere detectors (SD) in the context of MIMO receivers.

Also, modified sphere detectors that make use of the prior information ¢TA have been
developed, so that they can be employed as a building block in BICM-ID receivers [58].

While sphere detectors are much simpler than brute-force receivers which enumerate
all possible transmit vectors as in (4.16), their complexity is non-constant (it depends
on the realizations of the fading and noise processes) which imposes difficulties for
VLSI implementations, and the average complexity is still exponential in the number
of spatial data streams [61]. This motivates our interest in MIMO detectors with even
lower (and in particular constant) complexity, which will be the topic of the rest of this
chapter. We will, however, use the max-log detector as a benchmark in the numerical
performance evaluations. When reading those figures, it should be kept in mind that
practical implementations of the max-log detector using the SD technique will not reach
the optimal max-log performance, since they will require further approximations. An
extensive comparison of different practical sphere detectors, however, would justify a
thesis on its own, so we will stick to the pure max-log detector in the comparisons.

4.1.4 Information Theoretic Bounds and EXIT Charts

We continue with a brief introduction to a concept that will play an important role in
the performance evaluations: the equivalent BICM channel and its associated mutual
information. The performance of MIMO detectors is usually evaluated in terms of bit
or word error rates. This approach, however, has the drawback that it is dependent on
the specific channel code and the applied decoding algorithm. In a recent paper [37],
the authors propose to benchmark MIMO detectors based on the mutual information
over an equivalent BICM channel. This equivalent channel, marked in Figure 4.1 with a
dashed box, consists of the symbol mapper, the physical channel, and the detector, i.e.,
it is a binary-input continuous-output channel, with code bits ¢ as inputs and L-values A
as outputs.” The mutual information I(c; 7\) over this channel depends on the detection
algorithm, but not on the channel code.

9 Note that this BICM channel is not the same as the modulation channel that we discussed in Section 2.1: the
latter takes complex data symbols as inputs, while the BICM channel takes bits and outputs bitwise L-values.



4.1. Introduction to Multi-Antenna Communication Systems 131

Assuming a uniform input distribution, p(c) = 0.5 for ¢ € F, the mutual information
over the BICM channel can be calculated as follows:

I(c;A) £ H[c] —H[c| A]

1
=1-E > |log, —
“r plc|A)
—1-E_;|log, *’()"O)j”()‘m} 4.18)
' p(Alc)

where H{x] is the entropy of x, and H][x | y] the conditional entropy of x given y. For
most cases of practical interest, there is no analytical expression available for (4.18),
but the conditional densities and the expectation can be approximated by Monte Carlo
methods. The results that are presented in this chapter have been obtained with the
algorithm described in [37, Appendix A].

In general, the bitwise mutual information can depend on k, the index of the bit
within the label of the data symbol. For example, consider the 4-PAM scheme with
symbols —3, —1, +1, +3, and associated bit labels 00, 01,11, 10. It is intuitively reasonable
that the first bit, which determines the sign of x, is better protected than the second bit,
and thus I(co; Ag) > I(c1; A1). The information that can be transmitted over the MIMO
channel per symbol duration is then upper-bounded by the sum of I(cy; Xk) over all bits

, K-1 .
Cblcm = Nt 2 I(Ck; /\k)
k=0
= NiKIp (4.19)

which is called the BICM capacity. In (4.19), we have introduced the average mutual
information

P2 R Z (cr; Ax)- (4.20)

So far, we have considered non-iterative receivers. In the presence of feedback A from
the decoder, there is some a priori information about the bits available at the detector,
whose average is defined analogously to (4.20) as

Z (cx; Ak)- (4.21)

In general, the availability of A helps the detector to compute more reliable X, so that Ig
is a non-decreasing function of I, called an extrinsic information transfer (EXIT) function.
The graph of Ig(I4) in a [0,1] x [0,1] diagram is known as an EXIT chart [129].
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The area theorem [5] states that the CM capacity, which upper-bounds the data rates
that are achievable with BICM-ID receivers, is

1
com A& NtK/ Ig(I4)dly (4.22)
JO

where the integral is equal to the area in the EXIT chart below the function plot.

Strictly speaking, the area theorem only holds if the extrinsic channel (a hypothetical
construct which models the relationship between ¢ and A is a binary erasure channel.
But due to the robustness of EXIT charts, (4.22) is reasonably accurate also for other,
more realistic channels [5]. In the numerical results presented in this chapter, we
follow the usual convention and model the extrinsic channel as a binary-input AWGN
channel [130, Section IL.B].

A concise introduction to EXIT charts and the area theorem can also be found
in [51, Sections 5.3 and 5.4].

4.1.5 Numerical Results

We conclude this introductory section with some numerical results. Figure 4.3 compares
the EXIT characteristics of MIMO systems with 1, 2, and 4 spatial data streams. In all
cases, a Gray-mapped 16-QAM modulation and an SNR of 6 dB was used.

For Ny = Ny = 1, i.e,, a conventional single-antenna system, the EXIT function is
almost constant, which explains the well-known fact that BICM-ID hardly yields any
gains in Gray-mapped SISO systems. The early research on BICM-ID has thus been
accompanied by studies of non-Gray-mapping schemes that are optimized for use in
BICM-ID systems (see for example [20]). Those mapping schemes, however, have the
drawback that they perform poorly in conjunction with strong channel codes like turbo
or LDPC [112]. Thus, plain Gray mappings seem to be the most reasonable choice for
SISO systems, which in turn makes single-antenna BICM-ID receivers less attractive.

This changes once we turn to multi-antenna systems. As seen in Figure 4.3, the EXIT
characteristics for 2 and 4 data streams are not horizontal anymore, so it is reasonable
to assume that iterations between the detector and decoder will yield non-negligible
performance gains, even if pragmatic Gray-mapped modulations are used.

To verify this assumptions, we plot in Figure 4.4 the CM and BICM capacities of a
4 x 4 MIMO system (i.e., Nt = N; = 4). We see that there is a significant gap of around
1 to 3 dB between the two curves, which corresponds to the potential gain that can be
achieved with iterative receivers.

As an upper bound, the figure also shows the Shannon capacity that was computed
by numerical quadrature of [128, Equation (8)]. It can be seen that, below a certain SNR,
the CM capacities are quite close to the Shannon capacity, while they necessarily branch
off and converge to Nilog, M for higher SNR. This shows that BICM-ID systems have
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Figure 4.3: EXIT chart, using a Gray-mapped 16-QAM modulation, a symmetrical antenna
configuration, and a max-log sphere detector, at SNR = 6 dB

the potential to operate close to capacity, provided that not too much information is lost
by the suboptimal, low-complexity MIMO detectors.
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Figure 4.4: CM and BICM capacity of a 4 x 4 MIMO system, with Gray-mapped 4-, 16-, and
64-QAM modulation schemes. Also shown is the Shannon capacity, achieved
with a Gaussian input distribution, as an upper bound for C°™ and (Cbicm

4.2 Conventional Low-Complexity MIMO Detectors

In this section, we briefly introduce a few conventional low-complexity MIMO detectors.
They are quite heuristic, but they still provide some interesting context for the novel
iterative MIMO detectors that we will derive later from the diveregence minimization
framework. Besides serving as a performance benchmark for the proposed detectors,
we will also encounter open questions regarding the connection between the MIMO
detector and the other receiver components, that arise from the ad hoc derivations and
whose answers will be derived from the systematic approach.

Since the MIMO detectors process each data vector separately, we will drop the time
index n in this section, to simplify the notation.

4.2.1 ZF Detection

One of the simplest MIMO detection methods is the zero forcing (ZF) detector (e. g. [18]).
It proceeds in two steps. First, the spatial interference between the data streams is
removed by filtering the received signal with the (pseudo)inverse of the channel matrix.
Then, the N; interference-free signals are processed by conventional scalar demappers.
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Applying the ZF filter HT 2 (H"H) 1H" to the received signal yields
Xzr SH'y
= (H'H)"'"H"(Hx 4+ w)
=X+ WzF (4.23)

with an effective noise vector @wzr = (HHH) " 'HMw which is circular Gaussian with
cov [@zg] = No(HTH) 1.

Note that the ZF filter only exists for N; > N, but this is not a relevant limitation
in practice. As argued earlier on page 126, H should in general be understood as the
product of the N; x N; physical channel and the N; X N; precoder; and the system can
always choose to transmit N5 < Ny streams, even if Ny > N;.

Equation (4.23) can be broken down into the scalar equations

Tzpi =X+ Wzp; 0 <i< Nt (4.24)

each of which describes an AWGN channel with var [d)zp/i] = NoeiH (H HH )~ le;. Here,
e; is the ith unit vector which contains a one in the ith position, and zeros otherwise.
The outputs of those virtual AWGN channels are fed to a bank of N; scalar demappers,
which compute the L-values that are passed to the decoder. It should be noted that the
suboptimality of the ZF detector is not caused by the ZF filter, which is information-
preserving (as long as the pseudoinverse of H exists). Rather, information is lost because
the scalar demappers work independently of each other, and thus do not consider
the correlation between the filtered noise samples; i. e., they neglect the off-diagonal
elements of cov [@Wzg).

An overview of the ZF detector is shown in Figure 4.5a. It is a very simple and
rather poorly performing algorithm, but we will see in the further development that
the more advanced detectors exhibit the same general structure: a filter followed by a
bank of scalar demappers. An important difference, which also becomes apparent from
Figure 4.5a, is that the ZF detector works in a purely feed-forward manner; it is not able
to exploit feedback from the channel decoder. The detectors that we will discuss in the
following use the non-uniform prior information about the data symbols for some kind
of interference cancellation (IC). The ZF detector, however, removes the whole interference
anyway, so pre-subtracting an estimated interference vector before applying the ZF filter
would not have any effect.

4.2.2 MRC Detection

Assume for a moment that we were only interested in receiving the ith spatial stream.
We would then decompose the received signal as

y= h,-x,- + Z h,-/xi/ —+ w
i
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Figure 4.5: Overview of the ZF and LMMSE detectors

= h;jx; + H\ix\i +w (4.25)

where h; is the ith column of H, H \i is obtained from H by removing the ith column,
and x,; is obtained from x by removing the ith symbol x;. The second term in (4.25) is

the spatial interferencel? that acts on the ith data stream. For later reference, we define
the interference-plus-noise term

AN
v; 2 ) hixp tw

i
=Hx +w (4.26)
and write (4.25) more compactly as
y = hix; +v;. (4.27)

As we have seen above, the ZF filter is designed to maximize the signal-to-interference
power ratio (SIR) without considering the noise vector (where “signal” only refers to
the desired signal component h;x;, not the interference). The maximum ratio combining
(MRC) filter represents the other extreme: it maximizes the signal-to-noise ratio without
considering the interference term. It is well known that the SNR-maximizing filter for a
SIMO channel y = hx + w is (proportional to) the conjugate transpose of the channel
vector [59]. Collecting the MRC estimates of all N; streams in one vector thus yields

Fvre 2= HMy (4.28)

1%Since we are considering a very simple channel model without any other sources of interference (like inter-
symbol-, inter-carrier-, or multi-user-interference, we will simply speak of the interference in the following.
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where each component can be written as the output of an effective AWGN channel

~ 2 ~ .

Ivrei = [hill”xi +9mrei 0 < i< N (4.29)
with gain ||k;|| and filtered interference-plus-noise term

dyvre, = Mo, (4.30)

= h'H\x; + hf'w. (4.31)

An advantage of MRC over ZF, and in particular over the LMMSE filter from the
next section, is the extremely low computational complexity of (4.28), since it does not
involve any matrix inversions. Its obvious drawback is that it does not even attempt
to suppress the interference, so it can only be expected to work well if the filtered
noise term hin is much stronger than the filtered interference term h:-"H \iX¥\;- This
condition is trivially fulfilled for rank-1 transmissions, since they do not experience
spatial interference at all. Hence, as briefly mentioned at the beginning of this chapter,
the MRC receiver is commonly encountered in the literature on beamforming.

Another scenario where MRC could turn out to be an interesting option is the uplink
of so-called massive MIMO systems which have gained a lot of interest recently (see
e.g. [71]). They are characterized by huge antenna arrays at the base station (research
papers envision several hundred elements), such that Ny > N;. The channel matrix then
becomes very tall, and its columns are almost orthogonal with high probability.

Finally, another possible reason why the interference could be small compared to
the noise is the presence of feedback in iterative receivers. Using the non-uniform prior
information about the data symbols, it becomes possible to compute an estimate of the
spatial interference, and to subtract it from the received signal. However, based on our
development so far, we would have to resort to heuristics, as it is not yet apparent how
such an interference cancellation (IC) step would have to be implemented correctly. We
will return to this topic in Section 4.4.

4.2.3 LMMSE Detection

The linear minimum mean-squared error (LMMSE) filter strikes a balance between ZF and
MRC by minimizing the mean-squared Euclidean distance between x and its estimate
XrmmMse, thus taking both the noise and the interference into account. Since it will play
an important role in the following section, we will take the time and derive the LMMSE
detector from first principles.

The LMMSE filter depends on the first two moments of x. In non-iterative receivers,
these would be E [x] = 0y, and cov [x] = EsIy,, but since we are interested in iterative
algorithms, where the detector has some prior information about x after the first iteration,
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we will not make this assumption to keep the derivation general. In order to account for
the possibly non-zero mean, we include a constant term a in the estimator, and write

XLvMsE = Qy + a.

(4.32)

Strictly speaking, (4.32) is an affine rather than a linear equation, but we will stick to the
more common terminology. The two parameters Q and a are now chosen to minimize

the mean-squared estimation error:
(Q,a) = argminE [||Q(Hx +w)+a-— xHZ]
Qa

=argminE [||(QH —Ix+ Qw + aHZ] .
Qa

Taking the derivative with respect to a!, and setting it to zero, yields

)
0= 3am
@]E[(QH—I)erQeru]
=(QH-DE[x]+a

E [|l(QH — Dx + Qu +a||’]

and thus
a=—(QH-1)E|[x].

In (a) above, we have swapped the derivative and the expectation operator.
We proceed by inserting (4.35) into (4.33) and obtain

Q = argminkE [|(QH —)(x— E[+]) + Qul’]

= argminftr ((QH —I)cov[x] (HQ" — 1) + QNOQH> .
Q

Again, we find the optimum by setting the derivative to zero

9
oQ"
= (QH —I) cov [x] H" + QN

=Q (Hcov [x] HY + NOI) — cov [x] HH

0= tr ((QH —I)cov [x] (HPQ" — 1) + QNOQ”)

which yields the result

Q = cov [x] H! (Hcov [x] HH + NOI> 71.

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)
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Substituting both (4.35) and (4.38) into (4.32), we finally arrive at the LMMSE estimate
Xmmse = Q (y — HE [x]) + [ [x]
= cov [x] H (HCOV (x| HH + NOI) B (y — HE [x]) + E [x]
= C,H"C," (y — HE [x]) + E [x] (4.39)
where we have introduced the shorthands Cy = cov [x] and
Cy = Hcov [x] H + NoL. (4.40)
Replacing y with Hx 4 w, the elements of ¥ \nvisg can be written as
T mmsk,i = var [x;] 1 C, ! (Hx +w — HE [x]) + E [x;]
= var [x;] hf'C,! (hi(xi —E[x;]) + Hy;(x\; — E[x;]) + w) + I [x;]
= var [x] K Cy hy x; + (1= var [x] B Cy By ) B[] + fuviwse,
=&ixi+ (1= &) E [xi] + ummsE,i (441)
where we have defined the effective channel gain
& = var [x;] h:«-' C;lhi (4.42)
and the filtered interference-plus-noise component

Lmwms 2 var [xi] hf'C, ! (H\i(x\i —E[x]) + w) : (4.43)

The covariance matrix of the vector in parentheses is Cy, — h; var [x;] h:-", so the variance
of the interference-plus-noise term can be written as

var [0 pmsg,i| = var [x;] h!" C;l (Cy — h;var [x;] h!") C;lhi var [x;]

= var[x;] & (1 - ). (4.44)

Biased vs Unbiased LMMSE Detection The LMMSE estimate & pvsg,; shown in (4.41)
is biased due to the presence of the effective channel gain §; < 1. It is sometimes
proposed in the literature (see e. g. [23]) to use an unbiased LMMSE estimator instead,
which would be obtained by multiplying both sides of (4.41) with ng.

This modification is indeed relevant for hard-output MIMO detectors, which would
slice £ mmsg,i to the closest valid constellation point. This is intuitively reasonable
because, for example, a very small §; would cause the detector to only decide on the
constellation points that are closest to the origin of the complex plane, while never
picking the outer constellation points.
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However, the soft-output detectors that we are studying are not affected at all by
a multiplication with g;l (with any non-zero constant, for that matter). To see this,
consider the canonical AWGN channel model y = gx + w with var [w] = Ny, where the

2
computation of the L-values is based on the ratio % The equivalent “unbiased”

channel model % =x+ % with var [%} = % would accordingly lead to the ratio
—x? 2
% - I%o |x — % 2, which happens to be the formulation that we used in (2.23),

2
but which is obviously the same as ly ;\ix‘ above. In fact, it is a simple consequence
of the data processing inequality that multiplying an observation by some constant
cannot improve the final result, as long as the further postprocessing is lossless. We will

therefore not be concerned with the issue of biased vs unbiased LMMSE detection.

Extrinsic vs Posterior Feedback In the derivation above, we have assumed that the
MIMO detector knows the first two moments E [x] and cov [x] of the data symbol vector,
which are presumably calculated based on feedback from the channel decoder (or are
simply set to 0 and EgI, respectively, in the first iteration or in non-iterative receivers).
But despite their importance, we have not yet given a precise equation for calculating the
two moments. However, this is not due to an oversight, but because of a fundamental
issue of the derivation that is pervasive in the literature, and that we have followed so
far. The problem is that the conventional LMMSE detector is based on the simplistic
system model y = Hx + w, which only includes the transmission of a single data vector,
and completely ignores the presence of other components like the channel code. Thus,
if we want to embed it into an iterative receiver structure, we need to connect it to the
rest of the system in an ad hoc manner.

The approach that is taken in virtually every paper on iterative LMMSE-based MIMO
detection is to start with the standard BICM-ID receiver as developed in Section 4.1.3
and as shown in Figure 4.1 on page 127, and to replace the exact, but computationally
infeasible detector with the suboptimal LMMSE detector, leaving the rest of the system
untouched. In particular, this implies that the LMMSE detector receives feedback in

terms of extrinsic L-values A. Then, faced with the problem of converting these into the
two moments E [x] and cov [x], the only obvious way to proceed is to compute them

from the auxiliary prior distribution p(x; X) o exp (cTX>, where c is the bit label of x.

Already in 2002, however, it was observed by means of numerical simulations that
the overall performance improves if the channel decoder passes not just the extrinsic,
but the full posterior information back to the MIMO detector [148] (i. e., if one removes
the lower subtraction node in Figure 4.1). Since posterior L-values are the sum of the
extrinsic and intrinsic L-values, and since the intrinsic L-values have been computed by
the MIMO detector itself in the preceding iteration, replacing extrinsic with posterior
feedback essentially means that some information is passed back to its own producer.
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This is a remarkable contradiction to the famous turbo principle [53], which states that
only “new” information should be conveyed to other receiver components in order
to prevent double counting. Despite the high practical relevance of this phenomenon,
the publication [148] has to my best knowledge not been followed by any attempts to
substantiate it with a theoretical explanation.

In the following section, we will develop an LMMSE-based MIMO receiver from
a holistic system perspective, which not only yields the detector itself, but also its
connections to the remaining system components. On the one hand, the proposed
algorithm is able to outperform the conventional LMMSE detector (even if the latter
gets posterior feedback as in [148]). And furthermore, the novel derivation also sheds
light on the remarkable and so far unexplained performance gain that LMMSE detectors
experience with posterior information feedback.

4.2.4 LMMSE-SIC Detection

The new algorithm mentioned above improves on the conventional LMMSE detector by
exploiting the knowledge that the data symbols are chosen from a discrete alphabet, and
hence cannot have arbitrary values. We will thus briefly introduce one last conventional
MIMO detector which is based on a similar idea: in order to exploit the discrete symbol
constellation, it augments the linear filter with a nonlinear interference cancellation step.

A successive interference cancellation (SIC) detector processes the N; data streams
sequentially in the order (7t(0), 7t(1),..., 7(Nt — 1)), where 7 is a permutation of the
set {0,..., Ny — 1}. It starts by computing the filtered estimate X(0) using one of the
linear filters from the previous sections (we will only consider LMMSE, but ZF could
also be used). While the L-values for that stream are computed based on g, it also
obtains a hard estimate

2(0) = QEr(0)) (4.45)

where Q(%) £ argming_, | — %| quantizes ¥ to the closest constellation point (as
discussed on page 139, this should be done using the unbiased LMMSE estimate).

For the detection of the next data stream 77(1), the estimated interference from the
already detected stream, h ()% (g, is cancelled from the observation, yielding

71 =Y — o) 2 00)
= H\ 7(0)%\7(0) + P (0) (Xr(0) — £r(0)) + W (4.46)

which is filtered with a new LMMSE filter (since Cy, # Cy), resulting in ¥(;). The
filtering, slicing, and interference-cancellation steps are then iterated until all data
streams have been detected.

This slightly informal description of the LMMSE-SIC detector shall suffice for us; a
more detailed explanation can be found e. g. in [73].
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The possible advantage of LMMSE-SIC over the plain LMMSE receiver is obvious:
if the hard estimates £ happen to be correct, the remaining data symbols are affected
by less interference and can thus be detected more reliably. But the approach also
has its downside. A problem which is inherent to the hard-estimation step is the
possible error propagation, which happens if the guess £ is wrong, and which can
actually lead to less reliable decisions downstream. A related issue is the question of
how to choose the detection ordering. In order to minimize the probability of error
propagation, one should proceed from the strongest to the weakest stream (in terms
of the signal-to-interference-plus-noise ratio, SINR). This is the ordering used in the
so-called V-BLAST algorithm [149]. However, determining the stream with the highest
SINR in each iteration is a complex operation, which might dominate the total runtime.

Intuitively, a superior approach would be to estimate and cancel the interference
in a parallel rather than sequential manner. This would avoid the whole problem of
ordering, and it would also mean that every data stream would benefit from interference
cancellation from all other streams. Also, more efficient hardware implementations
would be possible, since they could process the streams in parallel, rather than one
after the other (and not having to sort the data streams would further simplify VLSI
implementations, since sorting is quite expensive in hardware).

There exist some publications about LMMSE detection with parallel interference
cancellation (PIC), for example [125]. Note, however, that this MMSE-PIC algorithm is not
what we are discussing here, since its PIC-step is solely based on the decoder feedback.
In fact, the affine MMSE detector that we have derived in Section 4.2.3 is nothing but the
MMSE-PIC algorithm; the eponymous interference cancellation is simply the subtraction
y — HE [x] in (4.39). In contrast, the LMMSE-Soft-PIC algorithm that will be the topic
of the following section is closer to being a dual of the LMMSE-SIC detector, as it
estimates the interference based on information that is intrinsically computed by the
MIMO detector (and hence also works in non-iterative receivers, though it can certainly
be used in BICM-ID receivers, too, by combining this intrinsic information with the
extrinsic decoder feedback).

4.2.5 Numerical Results

We close this section with a performance comparison of the low-complexity MIMO
detectors that we have introduced so far. As a standard configuration that will be used
not only in this section, but for most numerical results in this chapter, we use a 4 x 4
MIMO system with a Gray-mapped 16-QAM modulation.

Several publications compare MIMO detectors by their uncoded bit error rate per-
formance. In order to demonstrate the flaws of this metric, we begin with an uncoded
BER plot in Figure 4.6. In all figures within this section, “ordered LMMSE-SIC” uses the
V-BLAST ordering from [149], while “unordered LMMSE-SIC” processes the streams in
their natural order, i. e., uses the identity function for the permutation 7.
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Figure 4.6: Uncoded bit error rates of a 4 x 4 MIMO system with a Gray-mapped 16-QAM
modulation

The first obvious result is that the performance of the MRC receiver is completely
uninteresting. Only in the very low SNR range does it perform comparable to LMMSE
(with and without SIC) and better than ZF. But at around 7.5 dB, it crosses the perfor-
mance plot of ZF, and stays at a BER of around 0.25 even in high SNR. This behaviour is
not surprising, however; it is an immediate consequence of the fact that MRC ignores the
spatial interference and only considers the noise component, so it cannot be expected to
perform well in high SNR, where the total distortion is dominated by the interference.

Among the other algorithms, ZF is clearly the worst, with a gap of around 1.5dB
to LMMSE. Between LMMSE and unordered LMMSE-SIC, there is no clear winner.
Below approximately 16dB, the SIC step makes so many erroneous decisions that
it actually degrades the BER compared to plain LMMSE. In high SNR, on the other
hand, unordered LMMSE-SIC outperforms LMMSE by around 1.3 dB. By far the best
algorithm, however, is the ordered LMMSE-SIC, with a gain of around 8 dB compared
to LMMSE in high SNR.

Figure 4.7 compares the same MIMO receivers based on their maximum data rates
Rmax, which are obtained from the mutual information over the equivalent BICM channel
as discussed in Section 4.1.4. Just as above, MRC shows the most striking behaviour, its
spectral efficiency converges to just around 5 bit / channel use (bpcu) in the high SNR
range, whereas the system configuration would allow for a maximum spectral efficiency
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Figure 4.7: Upper bounds on the achievable data rates of a 4 x 4 MIMO system with a
Gray-mapped 16-QAM modulation, for different low-complexity detectors

of 16 bpcu. In contrast to the uncoded BER plot, however, unordered LMMSE-SIC is
now worse than plain LMMSE over the whole SNR range of interest; in high SNR, it
approaches the rather suboptimal performance of ZF. Finally, the comparison between
LMMSE and ordered LMMSE-SIC is far from being as clear-cut as it was in the uncoded
BER plot. Both algorithms show virtually the same results in low to medium SNR; only
in high SNR can the ordered LMMSE-SIC receiver outperform plain LMMSE.

In a last simulation, we compare the detectors in a coded system, using the practically
relevant LDPC code from the IEEE 802.11n standard with rate 1/2 and a block length
of 1944 code bits. As seen in Figure 4.8, the gap between ordered LMMSE-SIC and
plain LMMSE has diminished to less than 0.1dB, which can be neglected for most
practical purposes. ZF, on the other hand, now performs more than 2.5 dB worse than
LMMSE, and the error propagation in the unordered LMMSE-SIC receiver is so severe
that this algorithm is even worse than ZF, let alone plain LMMSE without interference
cancellation. The maximum ratio combiner is omitted from the figure, since its WER
is 1 over the whole SNR range. Again, this is not surprising, since we have seen in
Figure 4.7 that its spectral efficiency hardly exceeds 5 bpcu, whereas the system that
has been simulated in Figure 4.8 operates at a rate of 8 bpcu (a raw bit rate of 16 bpcu,
times a code rate of 1/2).
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Figure 4.8: Word error rates of an LDPC-coded 4 x 4 MIMO system, for different detectors

One conclusion of this study is that uncoded BER plots should be interpreted with
care, since one can easily draw misleading (or plain wrong) conclusions from them.
Reading only Figure 4.6, one would be tempted to think that the complexity that is
required for ordering the streams by their SINR is well spent—it yields a gain of 8 dB over
LMMSE without SIC, after all. The more practical results from Figure 4.8, based on an
LDPC-coded system, are disillusioning however. One reason for this difference between
coded and uncoded results is that uncoded BER plots tend to cover an unrealistically!!
high SNR range of, say, 30-40 dB, where most hard decisions made by the interference
estimator are correct. The problem of error propagation, which dominates the system
performance in the lower SNR range, is thus hardly reflected by the uncoded results.

Another result is that, since the ZF and unordered LMMSE-SIC receivers perform
significantly worse than LMMSE with a comparable (ZF) or even higher (unordered
LMMSE-SIC) complexity, we will drop them from our further considerations. The
MRC receiver, on the other hand, is much simpler than LMMSE as it does not require
any matrix inversion. Its complexity is only O(N;Ny) rather than O(er(Nt + N;)), or,
for symmetric systems, quadratic rather than cubic. We will therefore return to it in
Section 4.4, despite the devastating performance that we have observed in this study.

“Unrealistic” in the sense that one would not operate the system that we have studied here in such an high SNR.
Indeed, we have seen in Figure 4.4 that the 16-QAM modulation becomes a performance bottleneck already at
around 15dB, so at 30 dB, one would certainly switch to a higher-order modulation scheme.
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4.3 MIMO Detection Based on Inclusive DM:
Iterative LMMSE Receivers

Let us recap our discussion of MIMO detectors so far. We have started in Section 4.1.3
with the “exact” BICM-ID MIMO receiver, which is a simple generalization of the scalar
BICM-ID detector from Section 2.3 to multi-dimensional data symbols and vector-valued
observations. It is obtained by applying the well-known loopy belief propagation (BP)
algorithm to the joint posterior

N-1 N—1
p(b,c,x|y) e« p(b) p(c|b) Hop(yn l20) T p(xnilen) (4.47)
n= i=0

which fully describes the transmission system (assuming perfect CSI at the receiver).
Application of BP to (4.47) thus derives the whole iterative receiver “in one go”; it not
only yields descriptions of the two major algorithmic blocks (the detector and decoder,
corresponding to the factors p(y,, | x,) HZNZ‘(; ! p(x,i|cni) and p(c|b), respectively), but
also of their interaction (exchange of extrinsic L-values).

We have then introduced three kinds of low-complexity MIMO detectors, which
all share a common structure: a concatenation of a linear filter, which (more or less)
separates the spatially superimposed data streams, followed by scalar detectors. We have
furthermore seen an example of a nonlinear preprocessor, which attempts to improve
on the linear filters by exploiting information about the discrete modulation alphabet.
A common characteristic of these low-complexity detectors is that they are ad hoc
replacements of the exact detector, which, for lack of alternatives, are usually connected
to the decoder in the same way as the exact detector: via extrinsic L-values. But, as
shown in the already mentioned paper [148], providing the LMMSE-based detector
with posterior L-values can yield significantly better results than with extrinsic L-values.
This proves that it is insufficient to just replace the implementation of an algorithmic
component with a heuristic approximation, while leaving its interface unaltered.

In order to understand the phenomenon discovered in [148], we will now approach
the design of low-complexity MIMO receivers from a system perspective. We have
seen in Chapter 3 that divergence minimization (DM), which unifies several seemingly
unrelated techniques like belief propagation and expectation maximization under a
general framework, is able to yield a variety of novel parameter estimators, covering
several practically interesting points on the performance-complexity tradeoff curve. In
this and the following section, we will explore whether DM is also applicable to the
design of detection algorithms.'?

The work presented in this section has partly been published in [118].

2Strictly speaking, we already know that the answer is in the affirmative, since the exact BICM-ID detector is
based on BP, which is a special case of DM. The question we are really interested in is thus, whether we can
use the additional degrees of freedom that the general DM approach provides to derive suboptimal, but less
complex algorithms, which however are still built upon a solid theoretical fundament.
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Figure 4.9: Forney-style factor graph of the joint posterior (4.47), and the information that
flows along its edges

4.3.1 LMMSE Detection with Soft Parallel Interference Cancellation

The fundamental principle of divergence minimization is to approximate the posterior
distribution p of interest with a simpler distribution g, which is found by minimizing
some divergence measure between p and q. The traditional BICM-ID receiver, for
example, can be derived by choosing a fully factorized auxiliary distribution

Np—1 N—1N;— K—1
q(b,c,x) = T al H H (i) TT a(enik) (4.48)
j=0 n=0 i=0 k=0

and refining the approximations of the individual factors iteratively, according to loopy
belief propagation (BP; see Section B.5.1). As we have seen, the huge complexity of the
exact BP-based MIMO detector is caused by the fact that the factors g(x, ;) are discrete
distributions over the modulation alphabet &', which leads to BP message updates that
consist of sums with exponentially many terms.

Expectation propagation (EP; see Section B.5.2) is a generalization of BP which allows
us to impose further constraints on the auxiliary distribution. In order to remove the
computational bottleneck caused by the discrete variables x,, ;, we exploit this additional
degree of freedom by constraining the factors g(x,, ;) to proper Gaussian distributions:

|
q(xni) = CN (X | i o7 ;) (4.49)

Equivalently, we constrain the vectorwise distributions g(x,) to proper Gaussians with
mean vector y,, and diagonal covariance matrix X,. Both perspectives will be useful
in the following derivation of the EP-based MIMO detector. The underlying graphical
model has been shown on page 128 and is repeated in Figure 4.9 for convenience.
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Interference Cancellation and Spatial Filtering

We begin our derivation with the message from p(y,, | xx) to p(x, | cx). We will refer to
these nodes as the equalizer'® and demapper nodes, respectively, so the messages between
them will be called #eqy dem (¥n) and Mgem equ(¥n). Due to the Gaussian constraint
on g(xy), both of these messages are Gaussian, too (up to constant factors), whose
parameters are marked with left-to-right and right-to-left arrows.

According to the general EP message update rule (B.56), the computation at the
equalizer nodes can be derived from

prOjCN [Z71 P(yn | xn) mdem%equ(xn)]

(4.50)
Mdem—equ (xﬂ)

Mequ—dem (xn) =

where Z is a normalization constant, and where the projection is into the family of
proper Gaussian distributions with diagonal covariance matrix. Up to constant factors,
the argument of the projection is

p(Y, | xn) mdemﬂequ(x‘rl)

— Hyxyl? T -
o exp (W(xnumzn mm)

o1 o1
o exp <—x,';| (HﬁN(;lHn +XI, )xn +2Re (x,",' (H?N&lyn +ZI, ﬁn))> (4.51)

with Z,, = diag((‘?i/o, ol (‘7%,11\,{,1). After normalization (multiplication with Z~1), this
becomes a Gaussian distribution CN (u,,, £,,;) with covariance matrix

Hao1 -1y -1
T, = (HnNO’ H,+XI, )
P P H < H -1 <
2y, - £,HH (H,,):an 4 NOINr> H,Z,
2%, -L,H{C,H,L, (4.52)
and mean vector
- - < 1
to = (B0 - TuHYCUHLE, ) (HING 1y, + 2, i, )
=yt Z”Hilj C;”l (y, — Hupt,,) (4.53)
where (a) uses the matrix inversion lemma, and (b) introduces the shorthand notation

Cy, = HyZH + Noly,. (4.54)

13The rationale for this name is that the equalizer node separates the spatially superimposed data streams, just as
a conventional equalizer for frequency-selective channels separates the temporally superimposed data symbols.
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Note that (4.53) consists of parallel interference cancellation using j,, (the latest estimate
of the transmitted signal x;), followed by an LMMSE filter. In fact, it is essentially the
same expression as (4.39). The small, but important difference it that the terms E [x]
and Cy in (4.39) are only vaguely defined, as we argued on page 140. In (4.53), they are

replaced by the well defined message parameters s and X, whose computation will be
derived in the next subsection.

We have seen that the argument of the projection operator is already Gaussian, but
with a non-diagonal covariance matrix (4.52). Since we know that the projection of a
joint distribution into the set of fully factorized distributions is equal to the product of its
marginals (see the derivation on page 243), the result of our projection into the Gaussians
with diagonal covariance matrix simply consists of neglecting the off-diagonal elements
of (4.52). The parameters of the updated symbolwise beliefs g(x,, ;) thus become

Hni = an—’_g h;'z Y, (yn H‘flﬁn) (4~55)
02 =T — Tkt C (4.56)

where h,, ; is the ith column of the channel matrix H;,. Note that the above equations
are obtained by taking the ith coefficient of the mean vector (4.53), and the ith diagonal
element of the covariance matrix (4.52).

Finally, the new message equ—dem (X5,i) from the equalizer to the demapper is com-
puted by dividing the updated belief q(x,,;) by the incoming message Mgem sequ(*n,i)-
Since the product of two members of an exponential family is obtained by summing
their natural parameters, which in the case of proper Gaussians are y o2 and o2 (up to
constant factors; c. f. page 215), the parameters of the forward and backward symbolwise
messages are related via

1 1 1 B 1 i
p—;‘f‘; and p—;'ﬁ‘? (457)
from which the parameters of mequ%dem(xn,i) are easily found as
hiljz Y, (yn - H‘fl’jn)
U= . 4.58
Hn,z Vn,z hzl,i ;ﬂlhn,i ( )
_ -1
- (h;',icynlh,,,,-) — 52, (4.59)

Computing the Symbol Statistics

We continue with the operation at the demapper node p(x,,; | ¢y;).
The backward message mdem_,equ(xnli), which we derive in this section, essentially

consists of the first two moments ji, ; and 5%1,1‘ of the symbol x,, ;, which are required
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for the interference cancellation and LMMSE filtering, respectively, as shown in (4.58)
and (4.59). Starting again from the generic EP message update rule (B.56), we obtain

Proje

z! CZ p(xn,i | Cn,i) mequ—>dem(xn,i) mdec—>dem(‘*’n,i>i|

Mdem—equ (xn,i) = Mequ—dem (xn i)

(4.60)
The message Mequ—sdem (¥n,i) = CN (x| Hy 50 (7%1/1») comes from the spatial equalizer
with the parameters computed according to (4.58) and (4.59), and the feedback from the
decoder to the demapper consists of the usual extrinsic information

K-1
Mgec—sdem (€ni) & [ | exp <Cn,i,k/\n,i,k) (4.61)
k=0

as in (4.14). With the function p(x,;|¢,;) = 1 [x,; — M(c,,;)], which represents the
deterministic symbol mapping, we can write the argument of the projection as

. Jn,i = > RS .
flxni) =2 " exp < % + Z M (301 A ik (4.62)
n,i
where ./\/lk_1 (x,,i) denotes the kth bit of the bit label associated to x,,; as in (3.58), and

where the normalization constant Z is chosen such that Y, cx f(x,) = 1.
According to the principle of moment matching, the projection of f(x, ;) into the
family of proper Gaussians consists of computing the first two moments of f(x,, ;)

i = 3, fxui)Xn, (4.63)
x,,,,EX

o= Y () [xni— (4.64)
Xy €EX

which are finally used to determine the updated parameters of mdemﬁequ(xn/i) as

=2 — 2
~ Mn,iOni = Mui0yi
Ppi=———F (4.65)
Oni =0y
=2 2
g,;0.
<2 ni"n,i
U‘fl,i == ﬁ (4.66)
On,i — Un,i

where we have again used (4. 57)

It can happen that ¢ (7,, i < (7 ., which would yield an infinite or negative variance (73, i
clearly a nonsensical result. However this does not reveal a mistake in the derivation; it
is known that the division in the EP message update step can result in unnormalizable
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densities [65, Section 14.3.3.2].% To the best of my knowledge, there is no systematic
way to handle this situation. In this particular case, I simply propose to feed the full

belief back to the equalizer, i.e., to set i, ; = p,,; and 5%/1- = 02 .. Clearly, this is just

a heuristic, and there may be more sophisticated ways to prevent frfm- from becoming
negative. However, this situation occurs quite rarely, typically in a fraction of 1075 to
1073 of all processed symbol vectors, so that I do not expect that this heuristic causes a
noteworthy performance degradation.

Symbolwise Demapping

For completeness, we finish this derivation with mgem—dec(Crik) & B(Cn ik | ani,k), the
message from the demapper to the decoder. It is parameterized by the intrinsic L-value

7"‘::»‘*?{”,1"2 + TX .
Y exp 72 CyiMn,i

- x,,yiele ni

Ak = log = Anik
" ‘xn,if.l_‘)n,i‘z T X "
b exp |\ — 72 + Cn,i n,i

xn’,'EX]? d

—

(4.67)

n,i

where, analogously to (2.23), ¢, ; contains the bit label of the current x,, ;.

4.3.2 Discussion of the Proposed LMMSE-Soft-PIC Receiver

In Section 4.2.4 about the LMMSE-SIC detector, we argued that parallel interference
cancellation would be a more promising approach than the sequential one, because
the detection of every stream would benefit from IC of all other streams, and because
the problem of ordering would be avoided. As we see in (4.58), the detector that we
have derived above indeed performs a parallel IC by means of the subtraction y — Hj.
Furthermore, the interference cancellation is soft in the sense that the estimate j of the
transmitted signal is not obtained by hard-quantizing the LMMSE result to the closest
constellation point like in (4.45), but rather by computing a kind of soft symbol as shown
in (4.63)—(4.65). Due to this soft-IC approach, the proposed detector also avoids the
problem of error propagation. Because of these properties, the algorithm will be called
LMMSE-Soft-PIC in the following.

Comparison with the Conventional LMMSE-PIC Receiver

We also mentioned in Section 4.2.4 that the name MMSE-PIC is sometimes used in the
literature (e. g. [125]) to refer to the iterative MMSE detector that we have derived in
Section 4.2.3. While both receivers include a parallel IC step, they differ in the way how

14As a side note, this situation cannot occur in (4.59). By writing Cy, as hlﬂ‘(ﬁzh}4 + H\,f\,-H'\"i =+ NoIy, and applying

the matrix inversion lemma, it can easily be shown that 77> 0.
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Figure 4.10: Block diagram of the conventional iterative LMMSE-PIC receiver

they compute the estimate i of the interference and the associated variance 7. Let us
now compare the two algorithms, and in particular their feedback paths, in more detail.

Figure 4.10 shows a block diagram of the conventional algorithm, where all time and
stream incides have been omitted for simplicity. The linear (or affine) front-end, labeled
“PIC & LMMSE Eq.” in the figure, is identical to the one that we have derived above
using expectation propagation. It receives the first two moments of the data symbols, ji
and &, as inputs. In the initial iteration, those are simply given as ji = 0 and 5 = Es,
and in the later iterations, they are computed based on the decoder feedback.

Using these symbol statistics, the front-end computes 7i and 7 according to the
formulas given in the figure, and passes them to the streamwise demapper. Note that
the given expressions for 7i and #* are taken from (4.58) and (4.59), but it is easy to
show that the conventional derivation (4.41)—(4.44) of the LMMSE detector is equivalent.

The demapper then determines the L-values A in the usual manner, and passes
them to the decoder, which computes the posterior information A4e. and the extrinsic
L-values A = Adec — A Finally, the extrinsic L-values are processed by a soft mapper,
yielding updated symbol statistics ji and &2, which closes the loop.

Using the projection operator, the computation at the soft mapper can be written as

CN (1,5%) = projCN[ exp (cTX) } (4.68)
~—_——

only extrinsic information
from decoder considered

which emphasizes that its input consists only of the extrinsic L-values from the decoder.

As already mentioned, it has been observed in numerical simulations [148] that the
performance of the iterative LMMSE MIMO detector can be improved by ignoring the
turbo principle and feeding back the full posterior information from the decoder to the
demapper, i. e., by removing the dashed line in Figure 4.10. Then, writing the posterior
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Figure 4.11: Block diagram of the proposed doubly iterative LMMSE-Soft-PIC receiver

L-values as a sum of intrinsic and extrinsic L-values, the operation at the soft mapper
can be expressed analogously to (4.68) as

CN (1, 5%) = projCN{ exp (CTA) exp (CTA) } (4.69)
—_———— —_————
intrinsic information  extrinsic information
from LMMSE filter from decoder

where the comment mentions that the intrinsic information originates from the spatial
equalizer, even though the arrow labeled with A is rooted in the demapper block.
Ultimately, all that the demapper does is to take a symbolwise PMF of x, which can
equivalently be considered as a joint PMF of the associated bits (cy, ...,cx_1), and turns
it into a product of bitwise marginal distributions, discarding any information about the
correlation between the bits.

Now, contrast the conventional LMMSE-PIC receiver with the proposed EP-based
algorithm that is depicted in Figure 4.11. It consists of two similarly structured loops:
(a) between the streamwise demapper and the linear (affine) front-end, which performs
the interference cancellation and the spatial equalization, and (b) between the demapper
and the decoder.

The right-hand loop between demapper and decoder is the standard BICM-ID loop.
Here, the two connected components exchange probabilistic information about the code
bits in terms of Bernoulli distributions, parameterized by L-values. The left-hand loop
between the demapper and the LMMSE-Soft-PIC front-end is conceptually similar. Here,
information about the complex data symbols is exchanged in terms of proper Gaussian
distributions. The two subtraction blocks in this loop are equivalent to a division of
the corresponding Gaussian densities, just as the subtractions of the L-values in the
right-hand loop are equivalent to divisions of the corresponding Bernoulli distributions.

We are now in a position to give a first explanation of the phenomenon discovered
in [148]. Analogously to (4.68) and (4.69), we can express the computation of the symbol
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statistics for the affine front-end, including both the soft mapper & demapper block and
the subsequent subtraction point in Figure 4.11, as

CN (1, 72) = projear|  CN(H, ) exp (cT/\> ] % . (4.70)
———— —_—— CN (i, o%)
intrinsic information  extrinsic information .
from LMMSE filter from decoder removal of intrinsic

information after proj.

Comparing this with (4.68), we see that the difference between the conventional and
the proposed LMMSE receivers boils down to one small, but crucial detail: in the
terminology of message passing algorithms, the conventional algorithm projects only
the backward message, whereas the proposed algorithm projects the whole belief,
including the intrinsic information, and subsequently removes the intrinsic information
from the result of the projection. Due to the nonlinearity of the projection operator, the
two equations will in general yield different results, and the derivation of the generic
message update equations in Section B.4.1 on page 249 has shown that (4.70) is the
“correct” way.

Equation (4.69) lies somewhat in between (4.68) and (4.70). On the one hand, it
does include the intrinsic information in the projection operation, which explains the
better performance that can be achieved with posterior information feedback. However,
it differs from the proposed equation (4.70) in two points. First, it uses the intrinsic
information after it has been processed by the demapper, which, as mentioned above,
essentially discards the information about the correlation between the bits. The proposed
algorithm, in contrast, uses the intrinsic information in terms of the complex symbol x,
which still contains the bitwise correlations. Second, it complies with the turbo principle
by removing the intrinsic information after the projection. We will see in the simulation
results that are presented later that these differences cause a further performance gain
of the proposed LMMSE-Soft-PIC receiver over the conventional LMMSE-PIC receiver
with posterior feedback.

Note that very similar considerations have arisen earlier in this thesis. On page 24,
in the context of deriving the standard single-antenna BICM-ID algorithm, we have
already demonstrated the importance of projecting beliefs rather than messages. And the
comparison of extrinsic and posterior feedback has also played a central role in Chapter 3
on parameter estimation; see in particular the discussion of the generic backward pass
in Section 3.3.3 on page 51. It is one of the major benefits of the divergence minimization
approach to the design of iterative receivers that, while breaking down a complex system
into smaller algorithmic components, it still maintains the holistic perspective that is
required for also deriving the interactions of those components in a systematic manner.

15Up to the fact that DM is itself just a heuristic approach to statistical inference, so that the term “correct” should
be understood in a very informal sense; hence the quotation marks.
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Scheduling

A question that is not answered by the divergence minimization framework is that of
scheduling. As soon as the receiver contains more than one loop, it is not apparent
anymore in which temporal order the algorithmic blocks should be invoked. Finding
the optimal schedule is in general a very hard problem, and it is an active field of
research (see e. g. the recent publications [154,157]). In fact, even finding a reasonable
optimization criterion is far from obvious. The algorithmic performance in terms of
error probabilities is of course an important point, but hardware aspects like runtime,
energy consumption, and occupied chip area of the functional units also need to be
considered for VLSI implementations.

Due to the complexity of this field of research, I do not attempt to optimize the
scheduling of the proposed LMMSE-Soft-PIC receiver. Instead, I have evaluated the
performance of several schedules by computer simulations, and have found that one
particularly simple schedule (in terms of the overall runtime and the regularity of the
schedule) yields very promising results.

As we see in Figure 4.11, the LMMSE-Soft-PIC receiver is doubly-iterative: there is
the left-hand loop between the spatial equalizer and the streamwise demappers, and the
right-hand BICM-ID loop between demapper and decoder. Since the left and middle
block in Figure 4.11 together implement the functionality of the MIMO demapper from
Figure 4.1, we will refer to the left-hand loop as inner iterations, as they are conceptually
confined to the demapper. Correspondingly, the iterations between demapper and
decoder will be called outer iterations.

My proposal for a simple, but efficient schedule is as follows. During the initial
outer iteration, when no feedback from the decoder is available yet, the MIMO detector
should perform two inner iterations. The first one is equivalent to the conventional
LMMSE MIMO detector, while the second iteration already benefits from interference
cancellation, leading to more reliable L-values for the channel decoder. In the later
outer iterations,'® a single inner iteration is sufficient, as I have verified by computer
simulations. The computational complexity of the later iterations of the proposed
schedule is thus comparable to that of the conventional LMMSE detector, but some
memory (one complex and one real number per scalar data symbol) is required in order
to store the left-to-right message parameters 7 and & between the outer iterations.

An alternative schedule, which does not require that memory at the cost of additional
computations, is the one that I have proposed in [118]. Here, the ji and & are not
stored; instead, the detector always performs two inner iterations, where the first one
approximately recovers the i and @ from the previous outer iteration. This schedule
thus treats every outer iteration like the first one. In the low-to-medium SNR range,

16Note, however, that it is not necessary to perform outer iterations in order to benefit from the Soft-PIC detector.
Due to the two initial inner iterations, the performance gain over the conventional LMMSE detector is already
observable in the first outer iteration, i.e., in a plain BICM (rather than BICM-ID) receiver.
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both schedules show practically the same algorithmic performance. But as we will see in
Section 4.3.4, the former schedule (which stores the 7i and 72 between outer iterations)
yields better results in high SNR, so it should be preferred if the additional memory can
be afforded.

Another question that we will study in Section 4.3.4 is whether it makes sense to
perform more than two inner iterations. Details will be presented below, but the short
answer is no. In fact, we will see that a third inner iteration can even deteriorate the
detection results.

Before we turn to the numerical results, however, we will discuss a modification
which has been shown to improve the algorithmic performance of the conventional
LMMSE detector in BICM-ID receivers, and study its applicability to the LMMSE-Soft-
PIC detector: using widely rather than strictly linear filters.

4.3.3 Widely Linear MMSE Receivers

Preliminaries

In the real-valued world, an estimator is called linear if it can be expressed as a matrix
multiplication!”
x= Ay 4.71)

with ¥ € RM,y € RN, and A € RMXN,

A straightforward extension to complex quantities is to keep the expression (4.71),
but to allow for complex-valued coefficients in the observation y, the filter matrix A, and
the estimate ¥. However, there exists another, more general extension, which additionally
considers the complex conjugate of the observation:

¥ = Ay + By". 4.72)

It is obvious that (4.72) is at least as expressive as (4.71), since we can choose B = 0.
That it is strictly more expressive can be seen with a simple one-dimensional example.
Assume that y is the superposition of x and zero-mean complex-valued noise. If we
know that x is real-valued, the imaginary part of y consists solely of noise, and an
intuitively reasonable estimator would be £ = Rey. With (4.71), such an estimator
cannot be expressed, because there is no a € C such that Vy € C : ay = Rey. With the
formulation (4.72), in contrast, this estimator is easily obtained: by choosing a = b = %,
we get X = %y—i— %y* = Rey.

A filter of the form (4.72) is called widely linear, and the “normal” linear filter (4.71)
will be called strictly linear if we want to emphasize the difference. An introduction to
complex-valued statistical signal processing and widely linear estimators can be found
in the textbook [115].

7For simplicity, we assume zero-mean variables in this section.
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A natural question to ask is whether our LMMSE MIMO detectors can benefit from
the additional expressiveness of (4.72), i. e., whether widely linear minimum mean-squared
error (WLMMSE) detectors have the potential to outperform their LMMSE counterparts.

In order to answer this question, we first define some vocabulary from the field of
complex-valued statistical signal processing. Let x be a complex random vector with
mean ¥ = E [x]. The regular covariance matrix of x is defined as

C.2E [(x—a‘c)(x—a‘c)”]. (4.73)

C.2E [(x —x)(x - x)T] . (4.74)

Similarly, the cross-covariance and complementary cross-covariance matrices between
two complex random vectors x and y are respectively defined as

Coy 2B [(x = 3)(y — 9)"] (4.75)

and
Coy 2B [(x=%)(y—9)7] (4.76)

with # £ E[y]. A random vector x is called proper if its complementary covariance
matrix vanishes (Cy = 0); otherwise x is called improper [115, Definition 2.1]. Two
random vectors are cross-proper if their complementary cross-covariance matrix vanishes.
Now let y be an observation, and x a signal that we want to estimate based on y. As
shown in [115, Result 5.4], the WLMMSE and LMMSE estimates of x are identical if and

only if
CayCy'Cy = Cy. 4.77)

A sufficient condition for (4.77) to hold is that the observation is proper (Cy =0), and
that the signal and observation are cross-proper (C xy = 0).

Application to MIMO Detectors
For the linear channel model defined in (4.3)
y=Hx+w (4.78)

with w ~ CN(On,, NoIy,) and perfectly known H, the complementary covariance
matrix of the observation is

Cy =E [(H(x— %)+ w) (H(x— %) + )| = HCH + Ty (4.79)
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and the complementary cross-covariance matrix between signal and observation is
Cry = E [(x —%)(H(x— %) + w)T] =C,H". (4.80)

The noise process is proper by assumption (Cy, = 0). Thus, the WLMMSE estimate is
identical to the strict LMMSE estimate if the signal is proper (Cx = 0). Assuming that
the data symbols that belong to one symbol vector are statistically independent (which
can be justified due to the bit interleaver in BICM systems), this reduces to the condition
that all of the scalar data symbols are proper.

Decomposing the complex scalar x into its real and imaginary parts, x = u +jo, the
complementary variance of x can be written as

E [(x - x)z} =E [(u —i+j(v— 17))2]
= E[(u—1)? —E [(0=9)?] + 2B [(u—)(v — )]
= var [u]| — var [v] + 2j cov [, v]. (4.81)

Thus, a complex random variable is proper if and only if its real and imaginary parts
are uncorrelated and have the same variance.

This condition indeed holds for the usual modulation alphabets like QAM and
PSK,18 assuming that the symbols are uniformly distributed. For that reason, WLMMSE
filters cannot provide a performance gain over LMMSE filters in conventional, non-
iterative BICM receivers. However, as first noticed in [147], the situation changes once
we consider iterative receivers.!® Due to the information that is provided by the channel
decoder, the data symbols are not uniformly distributed anymore, and they become
improper in general. As a simple example, consider a QPSK system, where one of the
two bits per data symbol determines its real part, and the other its imaginary part. Now
assume that, due to the decoder feedback, the first bit is known with a high reliability
(its L-value has a large magnitude), whereas the L-value of the second bit is close to 0.
Then, var [Re x] < var [Imx], and the symbol is improper.

The WLMMSE-Soft-PIC Detector

Clearly, the same situation arises in the doubly-iterative LMMSE-Soft-PIC detector,
where we do not even need decoder feedback; the symbols already become improper
after the first inner iteration. It is therefore an interesting question whether we can
modify its EP-based derivation such that we obtain a widely linear MMSE detector

1A noteworthy exception are purely real-valued alphabets like BPSK. Since the imaginary part is always zero, it
is a priori known to the receiver, and thus has a variance of zero.

The main focus of [147] are signaling schemes where both x and its complex conjugate x* are transmitted, like
for example the well-known Alamouti scheme. However, the paper also mentions the applicability of widely
linear filters to iterative receivers.
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instead. And indeed, this is easily possible; the only required modification is that
we project the data symbols into the family of improper instead of proper Gaussian
distributions.?’ Formally, we replace the constraint (4.49) with

q(xn,i) - “:N(xn,i

In order to simplify the derivation of the widely linear filter, it is advisable to work
with augmented vectors and matrices as introduced on page 205. With the augmented

quantities
L, L
S I PR sl D M e (4.83)
Xy - My L, I,

the PDF of the Ni-dimensional improper Gaussian vector x;, takes on the form

Ll gy VHE Ty —
q(xn):exp< 2 h,) En (3 E”)> (4.84)

7Nk, /detZ,

as derived in (A.122). The marginal distribution of x, ; can similarly be expressed using
2 %2
Xy i i oL 05 1 -
X, 2 ( :'”>, uo= (“ Z”>, L, % <~’;§ g") @ aﬁ/i( o f ””) (4.85)
X ' Ho,i Ui Tni Pni 1

- 2F (~3 @i — 1, )P @i — 1, )
Wi} = mty/detX, ;

1 | %00 — pni

Ponis O 75 1)- (4.82)

n,i’

as

- Re (P:,i(xn,i - ,un,i)z)

= exp (4.86)
/ 2 2 2
noﬁ/i 1—[pn, i (1 = lon, )
In (4.85), (a) introduces the complex correlation coefficient

52

N4
E 4.87
. (+87)

with |p| < 1. For p = 0, the Gaussian distribution is proper, while for |p| = 1, it is
maximally improper, meaning that the support of the distribution degenerates to a line.

With the notion of using augmented vectors and matrices, the derivation of the
WLMMSE-Soft-PIC detector becomes very similar to that of its strictly linear counterpart.
We will therefore only sketch it very briefly. Analogously to (4.50), it starts with

Projé’./\f [Zil p(yn | xn) Mdem—equ (xn)}

(4.88)
Mdem—equ (xn)

Mequ—dem (xn =

2The improper Gaussian distribution is introduced on page 223 in the appendix. We denote it as EA/, which is
supposed to mean elliptical, in contrast to the circular Gaussian distribution CN.
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but this time, the incoming message from the demapper node is an improper Gaussian
mdemﬁequ (xn) & “:N(x‘fl | ﬁnr Ly, i‘n) (4~89)

& e - s .o=2 <2 .
where I, = diag(Tag,...,Ton_1) and L, = diag(F,p, ..., Ty n_1)- With the aug-
mented matrices

M1t
=
Il
DMt

H, 0 I, I, <
H, = , - « and C, = H,X H,  + Nyl A 4.90
n (0 H:) 2* Y, n&ndly 042N, ( )

Mt

n

the argument of the projection operator is the improper Gaussian EN (,un,Ln) with
augmented mean

n,=10, +z,HYC, (y —H,ji) (4.91)

71

and augmented covariance matrix
£, =Z,—%, HHC 1H z,. (4.92)

Note that these equations are essentially the same as (4.52) and (4.53), the only difference
is that now all vectors and matrices are augmented.

The projection of EN (y X,,) into the set of fully factorized improper Gaussians is
the product of its margmals, and the parameters ", ;and X, ; of the ith marginal are

P MO I U I @.93)
Fui =\ (Ne+1) M \EL(Ne+1,i)  Zy(Ne 414, Ne+1)

where a(i) returns the ith coefficient of the vector a, and A(i, j) the (7, j)th coefficient
the matrix A.

Next, the forward messages mequﬁdem(xn/i) are computed by dividing the belief
q(xn,i) by Mgem—sequ(*n,i)- The natural parameters of the improper Gaussian distribution

are the inverse augmented covariance matrix ;‘1 and the weighted mean ;‘1]1, so the

,Z,,;) are given as

parameters of the forward message Mequ—sdem (*n,i) & EN( B,

- 1 - 1\ !
En/i = ;ﬂ,i (;};}Eﬂ/l - ;n’i En,i) and ;ﬂ,i = (;;,’1 — ;n,i ) . (4.94)

These are finally used by the demapper node to compute either new y % ; and (7,, i
using essentially (4.62)-(4.66), or new L-values for the decoder, using essentlally (4.67),
which completes the inner iteration. The main difference is that the quadratic term

o me(4 (e 7 2
L’U il in (4.62) and (4.67) is replaced by — i H"";z _lszfﬁ"’l(;’)'l Fu)?) as in (4.86).




4.3. MIMO Detection Based on Inclusive DM: Iterative LMMSE Receivers 161

Note that the above presented equations should not be used verbatim for an im-
plementation of the WLMMSE detector. While augmented vectors and matrices lead
to elegant mathematical expressions, they also contain redundancy since their lower
halves are just the complex conjugates of their upper halves. Besides avoiding redundant
computations, it is furthermore possible to eliminate the explicit computation of the
parameters in (4.93) and the subsequent division (4.94) by merging both steps, similar
to (4.58)—(4.59). Not only does this modification reduce the number of operations, but
it also improves the numerical stability of the algorithm, since the inversions of the
augmented covariance matrices in (4.94) are not required anymore. This is important
since those matrices can become close to singular, for instance when the information
about Re x is much more reliable than that of Imx, in which case the shape of the
distribution of x would degenerate to a thin vertical ellipse.

Despite their practical importance, however, implementation aspects are not in the
focus of this thesis. We will therefore not explore this issue any further.

4.3.4 Numerical Results

We proceed with a numerical performance evaluation of the proposed MIMO detector.
As earlier in this chapter, the following simulation results are based on a 4 x 4 MIMO
system with a Gray-mapped 16-QAM modulation.

Impact of the Number of Inner Iterations

As mentioned before, the LMMSE-Soft-PIC detector is itself iterative; it exchanges
information between the spatial equalizer and the streamwise demappers. In conjunction
with a BICM-ID receiver, the total algorithm thus becomes doubly iterative. In the
section on scheduling, I proposed to perform two inner iterations during the initial outer
iteration. To justify this proposal, this section starts with a performance comparison of
LMMSE-Soft-PIC detectors doing 1, 2, and 3 inner iterations. There is no feedback from
the decoder, so the simulations correspond to non-iterative BICM receivers, or to the
initial iteration in BICM-ID receivers.

Figure 4.12 shows uncoded BER results for both the LMMSE and WLMMSE versions
of the detector. As expected, LMMSE and WLMMSE show exactly the same performance
after the first inner iteration, because without feedback, the symbols are proper and
the WLMMSE filter becomes strictly linear. In fact, with a single inner iteration, both
detectors are identical to the conventional LMMSE detector.

The second inner iteration leads to a significantly better performance of the proposed
algorithm, compared to the conventional detector. At an uncoded BER of 102, the
LMMSE receiver performs about 5dB, and its widely linear version even 5.7 dB better
than the non-iterative detectors. And, as one would intuitively expect, a third iteration
yields a further improvement, albeit by much less than the second one.
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Figure 4.12: Uncoded bit error rates of a 4 x 4 MIMO system with a Gray-mapped 16-QAM
modulation, using the (W)LMMSE-Soft-PIC detector with 1, 2, and 3 inner
iterations

However, as we have seen in Section 4.2.5, uncoded error rates can be misleading.
Figure 4.13 therefore present a similar study, but using an LDPC code of rate 1/2 and a
length of 1944 code bits. This time, the results are more interesting: While the second
inner iteration still provides a considerable gain over the non-iterative detector, the third
iteration actually decreases the performance.

What is the reason for this unexpected behaviour? We have seen that the uncoded
BER, which only depends on the sign of the L-values, does profit from a third inner
iteration. Therefore, the third iteration must have a negative impact on the magnitude of
the L-values. In order to investigate this issue, Figure 4.14 shows scatter diagrams of
L-values that have been obtained by a Monte Carlo simulation. Each dot corresponds
to one transmitted bit; the horizontal coordinate is equal to its exact L-value (4.16),
while the vertical coordinate corresponds to the output of the LMMSE-Soft-PIC detector.
Thus, dots that are concentrated around the main diagonal of the diagram indicate
an accurately working LMMSE detector. The transmitted bits are iid, drawn from
F = {0, 1}, but the sign of the L-values that belong to ¢ = 0 have been flipped, so that a
positive L-value always correspond to a correct, and a negative L-value to a wrong hard
decision.
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Figure 4.13: Word error rates of an LDPC-coded 4 x 4 MIMO system, using the (W)LMMSE-
Soft-PIC detector with 1, 2, and 3 inner iterations

Low-SNR Behaviour The figure shows nine subplots: the three rows correspond to
SNR values of 0, 10, and 20 dB, while the different columns show the results after 1, 2,
and 3 inner iterations (in particular, the left column corresponds to the conventional
LMMSE detector). From the top row, we see that the LMMSE detector works very well
in low SNR, as the L-values are tightly concentrated along the main diagonal. This is
already true for the conventional LMMSE detector, and even more so for the Soft-PIC
detector after two or three inner iterations.

In order to understand the good low-SNR performance, it is instructive to consider
the formulation introduced in (4.26) and (4.27)

y = hix; + v (4.95)

which focuses on the detection of the ith data symbol, and merges the interference from
all other signals and the noise into an interference-plus-noise term

v; & H\x\; +w. (4.96)

The vector v; is the sum of N; — 1 discrete and one Gaussian random vector, which
are mutually independent. Its density is thus equal to the convolution of the individual
densities, namely a Gaussian mixture. Now, the only approximation that is introduced
by the LMMSE detector is that it treats v; as a Gaussian random vector with the
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Figure 4.14: Scatter diagrams of L-values in a 4 x 4 MIMO system with 16-QAM modula-
tion and two different MIMO detectors: an exact detector (horizontal axis) and

an LMMSE-Soft-PIC detector (vertical axis) with 1, 2, and 3 inner iterations

same mean and covariance; if v; were truly proper (improper) Gaussian, the LMMSE
(WLMMSE) detector would be exact. Intuitively, this approximation is quite accurate in
low SNR, where the individual components of the Gaussian mixture are so wide that
they essentially merge into one mode. In high SNR, on the other hand, the individual
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% %

(@) SNR = 0dB (b) SNR = 10dB

Figure 4.15: Probability density function of the interference-plus-noise term v = x + w,
assuming a BPSK-modulated interferer x € {—1,+1} and w ~ N (0, Ny/2),
and its Gaussian approximation (dashed)

components hardly overlap, so that approximating the mixture distribution with a
single Gaussian necessarily leads to a severe error. This is visualized in Figure 4.15,
which depicts the distribution of a scalar interference-plus-noise term, assuming one
BPSK-modulated interferer, for SNR values of 0 and 10 dB. The dashed lines in the same
figure show the corresponding Gaussian approximation. It should be obvious that the
left-hand distribution (SNR = 0dB) can be much better approximated with a Gaussian
than the right-hand one (SNR = 10dB).

To summarize, even the non-iterative LMMSE detector is fairly accurate in low SNR,
so that we can only expect a small gain by doing more than one inner iteration.

High-SNR Behaviour The three scatter diagrams in the bottom row of Figure 4.14 (SNR
= 20dB) look entirely different. In the leftmost plot, practically all dots are below the
main diagonal, which means that the conventional LMMSE detector underestimates the
magnitudes of the L-values. This can be explained as follows. It is well known that
the Gaussian distribution has the largest entropy among all distributions with a fixed
covariance matrix (see Appendix A.2). Thus, replacing v; by a Gaussian with the same
covariance necessarily increases the entropy of the effective noise term, which causes
the detector to output conservative soft decisions (i.e., L-values with underestimated
magnitudes).

After two iterations (middle column), some L-values are below and some above the
main diagonal, and after the third inner iteration (right column), the characteristic of the
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(a) Without prior information about the data symbols

(1) (+1)
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(b) After interference cancellation with xp = —1

Figure 4.16: Received signal space of a 2 x 1 MISO system with BPSK modulation, a

transmitted signal of x = (=1, +1)T, a channel of H = (1, 2), and a received
signal of y = Hx +w = 0.5

results is reversed: now, almost all L-values are overestimated, which explains that the
WER performance after just two iterations is actually better than after three iterations.

The overestimation of the L-values is (somewhat paradoxically) caused by the
virtually perfect prior information about the spatial interference that is available to
the detector in the third iteration. To understand this phenomenon, consider a simple
example which is visualized in Figure 4.16. We have a 2 x 1 MISO system, where both
streams are BPSK-modulated. Assume that the symbol vector (xg, x1)T = (=1, +1)7
has been transmitted, that the channel matrix is H = (1, 2), and that the observation
is y = hoxp + h1x1 +w = 0.5. Furthermore, assume a noise power spectral density of
Np =1 for simplicity.

Now, we want to compute the L-value for x; using the max-log approximation.
Without any prior information, the four hypotheses for the noise-free received signal
(—3,—1,1,3) are equally probable. We search for the two hypotheses (one with x; = —1,
one with x; = +1) that are closest to y = 0.5, and find them to be —1 and 1, respectively,
as indicated with the arrows in Figure 4.16a. The L-value is thus

M=y = (D) = =) (4.97)

=152 — (-0.5)2 (4.98)

=2 (4.99)

Now assume that we know from previous iterations that xg = —1. We subtract

the interference from the observation and obtain § = y — higxg = 1.5. As indicated in
Figure 4.16b, the only remaining receive hypotheses are —2 and 2, and computing the
L-value from the interference-free observation yields

A= —(-2)— (7 (+2))? (4.100)
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=352 — (—05)? (4.101)
=12. (4.102)

Thus, the removal of the interference has led to a severe overestimation of the L-value.

Methods for correcting such erroneously computed L-values (at least to some extend)
are an active field of research. While working on this thesis, I have tried to apply the
technique proposed in [126] which is based on a saddlepoint approximation of the
L-value distribution,?! but unfortunately without success. However, this study at least
explains the surprising fact that a third iteration within the LMMSE-Soft-PIC detector
causes a performance degradation.

In the remainder of this section, the LMMSE-Soft-PIC detector will be operated
according to the schedule described on page 155, i. e., with two inner iterations in the
first outer iteration, and a single inner iteration in all subsequent outer iterations.

Maximum Data Rates

We proceed with an evaluation of the maximal achievable rates (see Section 4.1.4) of the
conventional LMMSE detector and the proposed LMMSE-Soft-PIC detector, along with
their WLMMSE versions. As a performance benchmark, we also include the max-log
detector (4.17) in the comparison, implemented via the sphere detection (SD) algorithm.

The results are presented in Figure 4.17, which is split into two subfigures to
improve the readability: the upper plot shows the achievable data rates of a non-iterative
receiver,”? while the lower plot contains the results for a BICM-ID system.

First consider the non-iterative case. In the low SNR range, there is hardly any
difference between LMMSE and LMMSE-Soft-PIC, as we would have expected after
discussing Figure 4.14. But with increasing SNR, the gain that is provided by the
inner iteration within the LMMSE-Soft-PIC becomes quite significant. At a data rate of
8 bit / channel use (bpcu), corresponding to a code rate of 1/2, the gap between the
two receivers is around 0.7 dB, and at 12 bpcu, it already exceeds 1.5dB. The max-log
detector performs worse than both LMMSE-based detectors in the low SNR region,
where the max-log approximation is particularly inaccurate. In high SNR, however,
the approximation becomes very tight, and max-log SD converges to the exact MIMO
detector. While both LMMSE detectors are clearly suboptimal in high SNR, the LMMSE-
Soft-PIC at least reduces the gap to the max-log SD by more than 50% (in terms of dB),
compared to the conventional LMMSE detector.

21In collaborative work with the INRS Montreal, Canada, presented in [121], we have shown that the saddlepoint
approximation can also be used to derive a MIMO receiver which resembles the LMMSE detector, but yields more
accurate results because it approximates the distribution of the interference-plus-noise term (c. f. Figure 4.15)
with a non-Gaussian and in general multi-modal distribution. However, due to space constraints, we will not
investigate this approach any further in this thesis.

2In the sense that there are no iterations between MIMO detector and decoder. The (W)LMMSE-Soft-PIC detector
still does two internal iterations.
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Figure 4.17: Upper bounds on the achievable data rates of a 4 x 4 MIMO system with
a Gray-mapped 16-QAM modulation, comparing the conventional and the
proposed iterative (W)LMMSE detectors



4.3. MIMO Detection Based on Inclusive DM: Iterative LMMSE Receivers 169

As expected, there is no difference between the conventional LMMSE and WLMMSE
detectors in non-iterative receivers, because without feedback, the data symbols are
proper and both filters are identical. In case of the Soft-PIC detectors, there is still
hardly any difference in the low SNR range, but in high SNR, we can see a small gap of
around 0.2-0.3 dB. The reason for this behaviour is that only the spatial interference can
become improper, while the noise w always remains proper. Thus, the higher the SNR,
the “more improper” can the interference-plus-noise term (4.96) get in the presence of
feedback, which increases the potential benefit of widely linear filters.

In iterative BICM-ID receivers (Figure 4.17b), the advantage of LMMSE-Soft-PIC over
the conventional LMMSE detector is even more pronounced. Up to a spectral efficiency
of around 12 bpcu, its performance is close to that of the max-log detector, while the
conventional LMMSE is already more than 2 dB worse at that rate. Only in very high
SNR, there remains some gap between LMMSE-Soft-PIC and max-log SD, and it can
be argued that this high SNR range, where the Rmax curves start to flatten out and
approach their limit of Nilog, M, is rather uninteresting from a practical point of view.
The reason is that modern systems adapt their modulation and coding scheme to the
channel conditions, and would switch to a larger constellation like 64-QAM as soon as
the current modulation alphabet became a performance bottleneck.

LDPC-Coded Word Error Rates

In order to verify the soundness of the information theoretic study, we close this section
with some word error rate plots.

Medium SNR  The results reported in Figure 4.18 have been obtained using the LDPC
code from the IEEE 802.11n standard, with a block length of 1944 code bits and code
rate r = 1/2. The upper subfigure compares the conventional LMMSE with extrinsic
and with posterior decoder feedback, the proposed LMMSE-Soft-PIC, and as a reference
the max-log sphere detector. For each algorithm, word error rates are shown after the
initial pass through the receiver (the “zeroth” iteration, corresponding to a non-iterative
BICM receiver), and after one and three BICM-ID iterations.

It can clearly be seen that the LMMSE detector with posterior feedback performs
significantly better than with extrinsic feedback. This verifies the observation from [148]
which has been the initial motivation for the work presented in this section. After
just one iteration, the receiver which uses posterior feedback yields better results
than the version with extrinsic feedback after three iterations. However, it is equally
clearly outperformed by the LMMSE-Soft-PIC: it, too, yields a lower WER after a single
iteration than the conventional LMMSE (with posterior feedback) after three iterations.
Comparing both algorithms after three iterations, the gap is around 0.5dB at a WER
of 1072, The LMMSE-Soft-PIC detector even outperforms our reference algorithm, the
max-log sphere detector, by just under 0.2dB at a WER of 1072,
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Figure 4.18: Word error rates of an LDPC-coded 4 x 4 MIMO system with a Gray-mapped
16-QAM modulation, using a rate-1/2 code
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The lower subfigure compares both the conventional LMMSE and the LMMSE-Soft-
PIC with their widely linear variants. Used in the conventional detector, the widely
linear filter offers a non-negligible performance gain of around 0.17 dB. In the case of the
Soft-PIC detector, however, the difference is much smaller and amounts to a mere 0.05 dB
in non-iterative receivers, which makes the additional complexity of the WLMMSE filter
hardly worthwile. In iterative receivers, the stricly linear filter even performs slightly
better than the widely linear version. There is of course no fundamental reason for
this behaviour—theoretically, the WLMMSE receiver should never yield worse results
than LMMSE. However, as briefly mentioned above, the WLMMSE filter can run into
numerical problems when the complex correlation coefficient approaches the unit circle,
i.e., when the symbol distributions become maximally improper. Because of the rather
small performance difference between the strictly and widely linear MMSE detectors, I
have not invested much effort into improving the numerical stability of the algorithm; it
is well possible that better implementations of the WLMMSE filter can be found. Still,
quantization errors are clearly an important issue that must be investigated carefully
when designing a VLSI implementation, especially when the data is represented with
fixed point numbers (all results that are shown in this thesis have been computed with
double precision floating point numbers).

High SNR The last Figure 4.19 shows the results of essentially the same simulation,
but with a code rate of r = 5/6, in order to evaluate the MIMO detectors in high SNR.

The upper subplot, which again compares extrinsic and posterior feedback in con-
junction with the conventional LMMSE detector, shows an interesting effect: the WER
curves of the receiver with extrinsic feedback after one and after three iterations intersect
at around 21 dB; in higher SNR, doing more than one iteration actually degrades the
performance. This result shows once more that using a plain LMMSE receiver with
extrinsic feedback is fundamentally flawed. A similar phenomenon can also be observed
with the LMMSE-Soft-PIC detector, when it operates according to the schedule that
I have described in [118] (the detector is always run for two inner iterations, and the
internal parameters ji and & are not stored between the outer iterations). In the medium
SNR range, this schedule yields essentially the same results as the one proposed in this
work (storing the internal parameters, and doing just a single inner iteration in all but
the initial outer iteration), which is why the corresponding results have not been shown
in the previous Figure 4.18. In high SNR, however, using the schedule from [118] results
in an error floor after ~ 20 dB, which is avoided by the schedule proposed in this work.
(In some sense, this is also the “more correct” schedule according to the expectation
propagation algorithm. Resetting the internal detector messages is just an ad hoc trick to
save some memory; it is not theoretically backed up by the EP equations.)

However, while the proposed LMMSE-Soft-PIC detector performs best among the
LMMSE-based algorithms, it should be acknowledged that all of them are clearly



172 Chapter 4. MIMO Detection

10°@

—B— LMMSE, Extr. L-val., 0. It.
- 43 - LMMSE, Extr. L-val., 1. It.
(3 LMMSE, Extr. L-val., 3. It.
—+— LMMSE, Post. L-val., 0. It.
- —+ - LMMSE, Post. L-val., 1. It.
+- LMMSE, Post. L-val,, 3. It.
—o— LMMSE-Soft-PIC [118], 0. It.
- -0~ - LMMSE-Soft-PIC [118], 1. It.
O LMMSE-Soft-PIC [118], 3. It.
—&— LMMSE-Soft-PIC, 0. It.
- - - LMMSE-Soft-PIC, 1. It.
@ LMMSE-Soft-PIC, 3. It.
—e— Max-Log SD, 0. It.
- -e-- Max-Log SD, 1. It.
«- Max-Log SD, 3. It.

10!

WER

102

SO

10-3 | : R
15 16 17 18 19 20 21 22

SNR [dB]

(a) Comparison of the conventional LMMSE detector (with extrinsic and posterior feedback), the
LMMSE-Soft-PIC detector, and the max-log SD

10° @rrf=
—+— LMMSE, Post. L-val,, 0. It.

- —+ - LMMSE, Post. L-val., 1. It.

+- LMMSE, Post. L-val., 3. It.
—— WLMMSE, Post. L-val., 0. It.
- x- - WLMMSE, Post. L-val., 1. It.

x WLMMSE, Post. L-val., 3. It.
—&— LMMSE-Soft-PIC, 0. It.
- - - LMMSE-Soft-PIC, 1. It.

@& LMMSE-Soft-PIC, 3. It.
—&— WLMMSE-Soft-PIC, 0. It.
- -® - WLMMSE-Soft-PIC, 1. It.

® - WLMMSE-Soft-PIC, 3. It.

107!

WER
T T TTTT]

102

1073 -
15 16 17 18 19 20 21 22

SNR [dB]
(b) Comparison of strictly and widely linear MMSE detectors

Figure 4.19: Word error rates of an LDPC-coded 4 x 4 MIMO system with a Gray-mapped
16-QAM modulation, using a rate-5/6 code
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outperformed by the max-log SD. This should not come as a surprise, since this result is
in agreement with the information theoretic study from Figure 4.17.

The lower subplot of Figure 4.19 again compares the strictly and widely linear
receivers. This time, the results of the WLMMSE detector are around 0.3 dB better than
those of LMMSE (after three iterations and at a WER of 10~2). Obviously, the potential
performance advantage of widely linear receivers is large enough in this high SNR
to overcompensate any numerical issues. Nonetheless, the practical relevance of the
WLMMSE-Soft-PIC detector stays questionable in my opinion. A performance gain of
around 0.3 dB is certainly not negligible, but not that significant, either. And even this
moderate gain is only present in a rather unrealistically high SNR range, where the
max-log sphere detector (or a variant thereof) would be a superior option, anyway.

4.3.5 Concluding Remarks

In this section, we have systematically derived a new low-complexity MIMO detector as
an instance of the expectation propagation framework. The proposed algorithm is very
similar to the well-known LMMSE-based MIMO detector, but it achieves a significant
performance gain by exchanging information internally between the spatial equalizer
and the streamwise demappers, in a fashion that is conceptually closely related to the
exchange of L-values between demapper and decoder in BICM-ID systems. Due to this
modification, the proposed detector is able to exploit its knowledge about the discrete
modulation of the interfering signals; the conventional non-iterative LMMSE detector, in
contrast, treats the interference as Gaussian and hence discards this information.

The performance of the LMMSE-Soft-PIC detector has been assessed in terms of
the maximal data rate that could be achieved with optimal outer coding, and in terms
of word error rates that have been obtained with an LDPC code. In both metrics, the
proposed algorithm clearly outperforms the conventional LMMSE detector (except in
very low SNR, where even the conventional detector yields almost optimal results).

In the practically relevant medium SNR range (corresponding to code rates of,
say, 1/3 to 2/3), the new algorithm performs comparably to the max-log SD, which
has a much higher (and in particular non-deterministic) computational complexity.
In high SNR, the proposed detector still improves considerably on the conventional
LMMSE receiver, but it is clearly worse than the max-log SD, whose results are virtually
optimal in high SNR. Further research should thus focus on the high SNR range, in
order to decrease the remaining gap to capacity as far as possible. We have discussed
one potential technique, the adoption of widely rather than strictly linear filters, but
more engineering work is required to optimize the numerical stability of the algorithm.
However, a more interesting topic for further research, in my opinion, are methods
that aim at correcting the overestimated L-values that arise after the second, and
particularly after the third inner iteration. At first glance, being able to cancel the spatial
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interference thanks to very reliable feedback seems to be a curious problem, but to my
best knowledge, no simple remedy has been found yet.

I have intentionally not presented a detailed complexity analysis of the LMMSE-Soft-
PIC detector—I gladly leave this work to my fellow researchers who are specialized on
VLSI implementations, and who will be able to present vastly more accurate numbers
than I could within the scope of this thesis. Having said that, I am fairly confident that the
proposed algorithm can be implemented with only a moderately increased complexity,
compared to a conventional LMMSE receiver. According to the scheduling that I have
proposed, the LMMSE-Soft-PIC detector only performs two inner iterations in the initial
outer iteration—and this additional computation is well spent, considering the significant
performance gain that it yields. In all subsequent BICM-ID iterations, the proposed
detector runs for just a single inner iteration. Assuming that the complexity of computing
and applying the LMMSE filter is dominated by the inversion (or decomposition) of the
covariance matrix Cy, those later iterations should be comparable complexity-wise to a
conventional LMMSE receiver.

A potential problem is that the proposed detector requires memory to store the
parameters ji and & across the outer iterations. I am unable to offer a realistic judgement
on how severe this issue might be for a VLSI implementation. In recent work [6], an
implementation of a variant of the proposed detector has been presented, which avoids
this additional memory at the cost of some algorithmic performance. The conclusion
of [6] is that “lower area and higher throughput combined with significant SNR gains
over regular linear MMSE detection is possible,” which strengthens my confidence that
the proposed LMMSE-Soft-PIC detector, or at least the fundamental idea behind it, will
be a promising option for future iterative MIMO receivers.

Aside from its practical value, the work presented in this section is also interest-
ing from a theoretical perspective. The empirical observation that LMMSE detectors
work better with posterior than with extrinsic feedback, as reported in [148], has been
quite remarkable due to its apparent contradiction to the turbo principle. To my best
knowledge, the present work is the first to provide an explanation to this phenomenon.
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4.4 MIMO Detection Based on Exclusive DM:
Iterative MRC Receivers

The iterative LMMSE-based MIMO detector from the previous section is an instance
of expectation propagation (EP), an algorithmic framework for approximate statistical
inference. As discussed in Appendix B, EP can be derived as a special case of the more
general divergence minimization (DM) approach: it is obtained by minimizing the inclu-
sive Kullback-Leibler divergence Dkp (p || ) with respect to g, where p is an (intractable)
target distribution, and where g is constrained to a set of simpler distributions.

Variational message passing (VMP) is another statistical inference technique which
can be derived in a similar manner as EP; the main difference is that VMP attempts to
minimize the exclusive Kullback-Leibler divergence Dky (¢ || p). In Chapter 3 on iterative
synchronization, we have successfully used both inclusive and exclusive DM to derive
novel parameter estimators. The general outcome of that study is that algorithms that
are based on inclusive DM tend to yield better results, but are also more complex than
the ones derived from exclusive DM.

Now, a natural question to ask is whether exclusive DM can also be applied to the
problem of MIMO detection. If so, we would expect to obtain a simpler but worse
performing algorithm compared to the LMMSE-Soft-PIC detector. Depending on the
extent of the performance loss and the achieved complexity reduction, such an algorithm
could well have its scope of practical application. On the following pages, we shall
investigate this question.

4.4.1 MRC Detection with Soft Parallel Interference Cancellation

As with all DM-based message passing algorithms, the following derivation starts with
a suitable factorization of the joint posterior distribution. For the system that we are
studying in this chapter, i.e., MIMO detection with perfect channel state information,
the joint posterior has been given in (4.47) and is repeated here for convenience:

Ni—1

p(b,c,x|y) e p(b) p(c|b) prn|x” [T n

i=0

- (4.103)

As in the previous section (c.f. (4.48)), we approximate (4.103) with a fully factorized
auxiliary distribution

Np,—1 N— — K-1
qb,e,x) = [T a( H H (xni) [T 9(cnix) (4.104)
j=0 n=0 i=0 k=0

but this time, we use exclusive divergence minimization, i.e., variational message
passing (see Section B.5.5 on page 265), for a subset of the local approximations.
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Figure 4.20: Forney-style factor graph of the joint posterior (4.103), and the information
that flows along its edges

First of all, we need to determine which of the factors lend themselves to VMP. The
local functions p(c|b) and p(x, ;| ¢,,;) encode deterministic mappings (from messages
to codewords, and from blocks of code bits to data symbols, respectively) and hence
are Dirac distributions. As shown in the appendix, the VMP message update involves
an integration over the logarithm of the local factor. Since the logarithm of a Dirac
distribution is not a well defined function, the functions p(c|b) and p(x,; | c,;) are not
suitable for VMP.

This leaves us with the factors p(y,, | x,) which encode the stochastic channel model.
Using VMP, we will now approximate them with the fully factorized expression

Ni—1
P, | xn) = H mequﬂdem(xn,i) (4.105)

i=0
The underlying factor graph of the message passing algorithm is sketched in Figure 4.20.
It is very similar to Figure 4.9 from the previous section; the only difference is that
Figure 4.20 contains separate nodes for the individual data symbols, while Figure 4.9
kept p(xn|cn) = Hf\igl p(x,i|cyi) as a single node. Figure 4.20 is thus a more ac-
curate representation of the factorization (4.103). In fact, we could also have based
the derivation of the LMMSE-Soft-PIC detector on the more detailed graph, but the
math would have been slightly more involved. Hence, in the interest of simplicity,
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we have preferred to work with Figure 4.9 instead, which has been possible due to
the exponential family constraint that is enforced by EP’s inherent projection step. By

choosing a fully factorized constraint q(x;) < Hf\ial g(x,,i), the graphs 4.9 and 4.20
essentially become equivalent. As mentioned in Section B.4.2, however, imposing an
exponential family constraint on the solution of exclusive DM is generally intractable
(because the resulting optimization problem is non-convex in general), so we will work
with the graph from Figure 4.20 in the following.

Interference Cancellation and Spatial Filtering

We proceed by deriving the VMP updates of the equalizer-to-demapper messages given
in (4.105). Starting from the generic update equation (B.62), we obtain

mequ%dem(xn,i) & exp <]Eq(xy,/\,») [log P(yn ‘ xn)])
x exp (_NLO]E x,,\, |:Hyn H"x"l||2:|>

X exp (— !

N By (xn\,)[(yn \ n\z )( Yy — Hyp\iXy)\i — nlxn,i)]>

h
(&) exp (*NLO]E q(x0\i) [|xn1‘ thlH —2Re ( yann,\ixn,\i)>]>
i Yy

2
(obc) exp <_Hh]y\1;z ( —2Re < *‘ Hh n\z”n\z))))
0 n,i

< CN <x ) hll;l,i(yn - Hn,\i”’n,\i) No )
n,zt 7
th,i||2 hn,i 2

(4.106)

where (a) drops all terms that are independent of x,, ;, and (b) introduces the mean

Pui = B, [xn,\i] (4.107)
of the interfering data symbols, computed with respect to the current belief

Xn \1 I—[q xn,] (4.108)
j#i

When we derived the LMMSE-Soft-PIC detector in the previous section, a central
step was the projection of q(x, ;) into the family of proper Gaussians, which led to the
crucial complexity reduction compared to the exact MIMO detector. This time, applying
the generic VMP update equation immediately results in a proper Gaussian message, as
evidenced by (4.106). Let us have a closer look at both its mean and its variance.
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Mean of mequ—sdem (xn,;) The mean of the equalizer-to-demapper message is

N hrl-li,i(yn - Hn,\i”n,\i)
yn,i -

”hn,i ?
.y, —H
= i + "’z(m s ", (4.109)
n,i

Note the similarity of (4.109) with the corresponding (4.58) from the previous section.
Both consist of an interference cancellation step, followed by a filter which reduces the
vector-valued observation to a scalar. There are, however, two key differences:

o The estimate of the interference in (4.58) is computed based on the extrinsic
information i from the demapper (indicated by the right-to-left arrow). The
corresponding estimate in (4.109), in contrast, is computed from the current belief,
i.e., the posterior information (indicated by the lack of an arrow).

n.c ! H
e The LMMSE filter # in (4.58) is replaced by the simpler expression ”:"f’Hz

ni-y,

which is simply the maximum ratio combiner (MRC) that we have briefly men-
tioned in Section 4.2.2.

Since the derived MIMO detector consists of soft parallel interference cancellation
followed by MRC filtering, we will call it MRC-Soft-PIC in the following.

Variance of mequ—ydem(¥4,i) The variance of the equalizer-to-demapper message as
derived via VMP is
0= 3 (4.110)

[
which is the inverse SNR of the ith data stream. In Section 4.2.2 above, we mentioned
that the MRC filter maximizes the SNR while ignoring the interference from the other
data streams. In some sense, it is thus not surprising that the variance of the VMP
message, whose mean is given by MRC filtering, also disregards the spatial interference.

Let us now compute the true variance of the MRC output, including the interference
term. On substituting y,, = Hy,x,, + wy, in (4.109), we obtain

hili (ann +wn — Hn,\iﬂn,\i>
2
([T,
a (Hn,\i (X \i = M) + wn)
5 .
th,i

—

Vn,i =

(4.111)
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Clearly, this is an unbiased estimate, ]E[ﬁn/i] = X,,i, since wy, has zero mean, and since
E[x,,\;] = p,\; by definition (4.107). The variance of the estimate (4.111) is

E {hrl-z',i (Hn,\i (i = M) + wn> ((x,'f,\i - ﬂ,t',\i) H;',\i + wﬁ) hn,i]

var [ﬁn,i] = Hh 4
- hl:,i (Hn,\izn,\iH,T,\i + NOIN,> hn,i
th,i ¢
ol (HeEHY ) by, LN )
[ "l '

with Uii £ E[|x,; — yn,i‘z} and I, £ diag((fﬁro, ... ,U,%’Ntil).

It can be shown by simulations that using the “correct” variance (4.112) yields vastly
improved results compared to the expression (4.110) that we have derived by applying
the VMP message update equations. We will discuss this issue briefly in Section 4.4.4.

All simulation results that will be presented in Section 4.4.3 are based on (4.112).

Soft Mapping and Demapping

So far, we have only discussed the operation at the equalizer nodes (labeled p(y,, | x,) in
Figure 4.20), which compute the left-to-right parameters i, ; and 33,,,- from the posterior
information y,, ; and U;f:,i as provided by the demapper nodes. The demapper nodes
p(x,,| €y i) themselves do not require a new derivation; as argued above, they are still
based on inclusive DM and hence operate as before. In the forward direction, they
compute the intrinsic L-values An ; using 7i, ; and ¢ (T,,H from the MRC filter and An i from
the decoder as specified in (4.67) on page 151 In the backward direction, they compute
Ui and o by projecting the posterior information into the family of proper Gaussians

CN(u,0%) = projep | CN (i, #2) exp <CTX) } (4.113)
S — ———

intrinsic information  extrinsic information
from MRC filter from decoder

similarly to (4.70), but without the subsequent division by CN (%, &) since the MRC
filter requires the full posterior information. The implementation complexity of (4.113)
can be further reduced with the approximation

CN (1, (72) ~ Proje {exp (CTX> exp (JX)}
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Figure 4.21: Block diagram of the proposed doubly iterative MRC-Soft-PIC receiver

= proje {exp (cTAdeC)] (4.114)

which is just a soft symbol mapper that uses the posterior L-values from the decoder as
input. In particular, this approximation gets rid of the memory that is required to save
the parameters ji and 7 during the outer iterations. The background of (4.114) is the
same as in Section 3.3.3 on page 51, where we have discussed this approximation in the
context of iterative parameter estimation.

Overview of the MRC-Soft-PIC Receiver

Figure 4.21 shows a block diagram of the VMP-based MIMO receiver. Just as in
Figure 4.11 before, the resulting algorithm is doubly iterative. On the right hand side,
between demapper and decoder, we recognize the by now familiar BICM-ID loop. The
left-hand loop between the spatial equalizer and the demapper is different, however:
the subtraction points, which correspond to divisions of probabilities, are missing in
Figure 4.21, since the MRC filter is fed with posterior rather than extrinsic feedback.

According to computer simulations that will be presented in Section 4.4.3 below,
doing three to five inner iterations (between MRC filter and demapper) for each outer
BICM-ID iteration seems to be a reasonable schedule.

4.4.2 A Combined LMMSE-MRC-Soft-PIC Receiver

In the present and the previous section, we have derived two similar MIMO detectors,
which exchange information iteratively between an affine front-end (which performs
interference cancellation and spatial equalizing) and a bank of streamwise symbol
demappers. In the former algorithm, the spatial equalizer is realized as an LMMSE filter,
and in the latter, as an MRC filter. Both approaches have their respective advantages
and disadvantages.

On the one hand, the benefit of the MRC filter is its computational simplicity. As
shown in (4.109), the result of the interference canceller is multiplied with the filter vector
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H

IR
evaluated for each stream, the spatial equalizer has a total complexity of O(N¢Ny), i.e.,
a quadratic complexity if we assume N; o< N;.

and this operation has a complexity of O(N;). Since the product needs to be

H ~-1

. . h,,;C . .
In contrast, the computation of the LMMSE filter vector ﬁ as given in (4.58)

iy,

is dominated by the inversion (or decomposition) of the covariance matrix (4.54)

Cy, = HuZyHY + NoIy,. (4.115)

Both the computation and the inversion of C, have a cubic complexity.

The benefit of the LMMSE filter, on the other hand, is its superior algorithmic
performance. As discussed above, the LMMSE filter is designed to maximize the signal-
to-interference-plus-noise ratio, whereas the MRC filter ignores the spatial interference
and only maximizes the signal-to-noise ratio. It is thus to be expected that the perfor-
mance gap between LMMSE and MRC depends on the power of the spatial interference:
the stronger the interference (compared to the noise power), the heavier the performance
degradation of the MRC filter. In particular, the performance gap will be especially
pronounced in the initial iteration of the algorithm, when there is no interference can-
cellation possible yet. Subsequently, the power of the residual interference decreases
during the iterations, and the difference between MRC and LMMSE becomes smaller.

Moreover, it should be noted that the covariance matrix (4.115) reduces to

Cy = EsH,H! + Noly, (4.116)

in the initial iteration, and thus only depends on the channel. In most practical systems,
the channel coefficients can be expected to stay approximately constant for at least a few
symbol periods (or subcarriers, in OFDM systems). Otherwise, their estimates would
become very poor and coherent communication would be impossible in the first place.
It can thus be expected that the LMMSE filter matrix for the initial iteration can be used
during several symbol periods, which reduces the average complexity per channel use
accordingly. In the later iterations, however, the LMMSE filter must be recomputed for

each symbol vector, even if the channel stays constant, since the covariance matrices En
will vary independently of each other.

For the important case of N; > Ni,3 there is a second reason why the LMMSE
filter has a lower complexity in the first iteration than in all further iterations: the
LMMSE filter vector for the ith data stream is (up to a normalization constant) given as
h;',iCy_nl. Collecting the filter outputs for all streams into one vector, the LMMSE filter

BWe will see in Section 4.4.3 that for N, = N, the spatial interference is so strong that the MRC receiver breaks
down completely. It is therefore a fair assumption that MRC-based receivers will only ever be operated in
systems with N; > Nj.
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thus essentially needs to compute the expression H' Cy, }f/n, where i, =y, — Huji,, is
the received signal after interference cancellation. Using the identity

HY(HAH" +B) ' =A"1(A '+ H'B 'H) 'H'B! (4.117)
for invertible A and B, which can easily be derived using the matrix inversion lemma,
the computation at the LMMSE filter can be written as

vic 'y, = HY (H,Z,HY + NI 1y
yyn n n&ntly 04Ny Yn

-—

1/ o I N
x, (H'H,+%Z, No) HYy,. (4.118)

In the first iteration, )En = Esly,, and (4.118) can be simplified to

-1
H;'C, 'y, = (EsH,';'Hn +N01Nt> HYy,. (4.119)

We have thus reduced the dimension of the matrix that needs to be inverted from
Nr X Ny to N x Ni. However, this trick only works in the initial iteration. As soon
as prior information about the data symbols is available, the variances on the main

diagonal of %, can get arbitrarily small, and (4.118) becomes numerically unstable, even
though H'! Cy 1§, itself remains well defined.

To summalrize, we have argued that in the initial iteration, the LMMSE receiver
is computationally cheaper than in the later iterations; and that at the same time, its
performance advantage compared to the MRC receiver is largest in the first iteration.
Now, in an attempt to combine the advantages of both filters, we can implement a
receiver which uses an LMMSE filter initially, when no interference cancellation is
possible yet, but which switches to an MRC filter in the later iterations, where the
interference can at least partially be cancelled due to the availability of non-uniform
prior information from the channel decoder.

In terms of the divergence minimization framework, this means that the first compu-
tation of the equalizer-to-demapper messages is based on inclusive DM, and all later
message updates on exclusive DM. While changing the divergence measure that is being
minimized dynamically at runtime might be unusual (and all algorithms that we have
discussed so far in this thesis keep the choice of divergence measure static), nothing
in the general derivation of DM prevents us from doing so. It is admittedly a rather
heuristic procedure, but a well motivated one. At the end of the day, every approximate
solution of NP-hard problems is heuristic; the only property that matters is the tradeoff
between performance and complexity that a particular algorithm realizes.

In order to assess this tradeoff for the plain MRC and the combined LMMSE-MRC
Soft-PIC receivers, we proceed by presenting some numerical results.
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4.4.3 Numerical Results

We begin with an information-theoretic study of the maximum data rates, as introduced
in Section 4.1.4. Figure 4.22 shows Rmax for non-iterative (upper plot) and iterative
(lower plot) BICM receivers, using a 3 x 4 MIMO system with a Gray-mapped 16-QAM
modulation. The receiver employs an MRC-Soft-PIC detector with 0 up to 6 inner
iterations, where “0” refers to a pure feed-forward algorithm. Results for the max-log
SD are also shown for comparison.

In both subfigures, we can clearly see that doing a single inner iteration already
realizes a major part of the gain that can be achieved with the MRC-Soft-PIC compared
to the plain non-iterative MRC detector. If the channel decoder is not part of the
feedback loop (Figure 4.22a), the performance saturates after around five inner iterations;
and in BICM-ID receivers (Figure 4.22b), three inner iterations are already sufficient.
Furthermore, the performance of MRC-Soft-PIC is comparable to the max-log sphere
detector in the low to medium SNR range: for non-iterative BICM receivers, up to a
code rate of around 1/2 (6 bpcu), and for BICM-ID receivers, even up to a code rate of
more than 2/3 (8 bpcu).

In the remainder of this section, the MRC-Soft-PIC detector performs four inner
iterations in every outer iteration. Also, all WER results presented in the following have
been obtained using a Gray-mapped 16-QAM modulation, and the LDPC code from the
IEEE 802.11n standard with rate 1/2 and a block length of 1944 codebits.

Note that the above results are for a 3 x 4 MIMO system, while all previous computer
simulations in this chapter have been based on a symmetric 4 x 4 system. For a
meaningful study of MRC receivers, however, we need to consider asymmetric systems
with Ny > N in this section. Since the MRC filter ignores the spatial interference and
only maximizes the streamwise SNR, the iterative receiver only has a chance to converge
to the correct solution if the spatial interference is sufficiently small, even in the initial
iteration where the interference cannot be mitigated yet. The MRC filter output after the
first iteration is (up to normalization constants)

xvre = H'y = HHHx + HMw (4.120)

from which we see that the diagonal elements of the Gramian matrix H'H must be
much larger (in magnitude) than the off-diagonal elements in order for the MRC filter
to yield viable results, and the probability for this precondition to hold increases with
the number of receive antennas. In fact, MRC-based MIMO receivers have to the best of
my knowlege only been considered for massive MIMO systems, where the base station
is equipped with hundreds of antenna elements, so that the uplink is characterized by a
very tall channel matrix. For example, [71] notes that “While ZF also works fairly well
for a conventional or moderately-sized MIMO system, MRC generally does not. The
reason for why MRC works so well for massive MIMO is that the channel responses
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Figure 4.22: Upper bounds on the achievable data rates of a 3 x 4 MIMO system with a
Gray-mapped 16-QAM modulation. The numbers in the legend refer to the
number of inner iterations within the MRC-Soft-PIC detector
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Figure 4.23: Word error rates of N; x N MIMO systems with a Gray-mapped 16-QAM
modulation and a rate-1/2 LDPC code, using the MRC-Soft-PIC receiver with
3 outer and 4 inner iterations

associated with different terminals tend to be nearly orthogonal when the number of
base station antennas is large”.

This statement of course refers to conventional, non-iterative MRC receivers. In order
to check its validity for iterative MRC receivers, Figure 4.23 shows the word error rates of
MIMO systems with different antenna configurations, using the MRC-Soft-PIC detector
with 3 outer and 4 inner iterations. Out of the symmetric configurations (dashed lines),
only the 2 x 2 system exhibits a distinct turbo-cliff, and even that only occurs at a very
high SNR, with a gap of around 4 dB to the 2 x 3 system. The WER results of the 3 x 3
and 4 x 4 configurations are completely uninteresting. However, if we increase the
number of receive antennas by just one or two, the results look entirely different. For
two and three data streams, Ny = N; + 1 is already enough to recover the turbo-cliff.
For N; = 4, five receive antennas are not yet sufficient, but the 4 x 6 system again
works fairly well. These results show that the above cited statement from [71] is too
pessimistic if one allows for iterative receivers. There is no need to enter the realm of
massive MIMO and to increase the number of receive antennas into the hundreds; the
MRC-Soft-PIC detector can well be employed in conventional MIMO systems with only
mildly asymmetric antenna configurations.
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Figure 4.24: Performance of the MRC-Soft-PIC detector with different kinds of information
that is being passed to the interference canceller and the MRC filter

Next, we study the influence of the feedback type on the algorithmic performance.
Since the MRC-Soft-PIC detector is an instance of exclusive DM, theory predicts that
the symbolwise mean and variance should be computed using the available posterior
information as shown in (4.113). Also, as mentioned before, computing these symbol
statistics from the posterior L-values as in (4.114) instead is an approximation which
reduces the computational complexity and the memory requirements. Both types of
feedback are compared in Figure 4.24, and we see that the performance penalty incurred
by the approximation (4.114) is absolutely negligible.

Moreover, Figure 4.24 also shows results with purely extrinsic feedback, i.e., similar

to (4.114), but using A instead of Adec- Note that these are by no means theoretically
motivated; they are only included in order to validate once more that the DM framework
gives us reliable instructions how to connect the components of an iterative receiver. In
fact, the figure shows that the MRC-Soft-PIC detector yields distinctly worse results when
being fed with extrinsic instead of posterior information; with a gap of around 0.25dB
at a WER of 1072 in this example.

In the final Figure 4.25, we compare the MRC-Soft-PIC detector with its LMMSE-
based counterpart that we have derived in Section 4.3, and with the combined MRC-
LMMSE-Soft-PIC detector from Section 4.4.2. Remember that the latter algorithm uses
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the LMMSE filter only in the initial iteration, which makes it only slightly more complex
than the pure MRC filter.

The upper Figure 4.25a shows results for a 3 x 4 MIMO system. Clearly, the
performance that can be gained by using LMMSE in the first iteration (where its
interference rejection capabilities are most urgently needed) is quite significant. At
a WER of 1072, and after three outer iterations, the gap between the pure MRC and
LMMSE detectors is larger than 0.6 dB, which the combined MRC-LMMSE algorithm
reduces by more than 50% to around 0.3dB. And compared to the max-log sphere
detector, the low-complexity MRC-LMMSE detector only has a gap of less than 0.2dB.

For the sake of completeness, Figure 4.25b shows analogous results for a symmetric
4 x 4 MIMO system. The plain MRC-Soft-PIC detector is omitted from this figure, since
its WER stays at essentially 1 over the whole SNR range that is shown in the figure.
Of course, this had to be expected after the discussion of Figure 4.23. The combined
MRC-LMMSE detector clearly improves on the catastrophic performance of plain MRC,
but it still shows significant gaps of almost 1dB compared to the LMMSE-Soft-PIC
detector, and of 0.65dB compared to the max-log SD (again after three outer iterations,
and at a WER of 1072). Also, after three outer iterations, it only performs around 0.35 dB
better than the LMMSE-Soft-PIC detector without any BICM-ID iterations.

Thus, while the MRC-LMMSE-Soft-PIC detector is in principle applicable to the
examined symmetric 4 x 4 system (in contrast to the plain MRC-Soft-PIC detector), it is
probably not a good choice in practice. For slightly asymmetric systems, however, both
MRC-based detectors achieve an interesting tradeoff between algorithmic performance
and computational complexity, which could make them viable options in particular for
specialized hardware that is optimized for low power consumption.

4.4.4 Concluding Remarks

In this section, we have used the divergence minimization principle to derive another
low-complexity MIMO detector in a similar vein as in Section 4.3, but with one crucial
difference: whereas the LMMSE-Soft-PIC detector from the previous section has been
obtained by minimizing the inclusive KL divergence at the factor nodes p(y|x), the
present derivation has been based on minimizing the exclusive KL divergence.

The resulting MRC-Soft-PIC detector exhibits a clearly worse performance than its
LMMSE-based counterpart. Of course, this does not come as a surprise: as shown in
Section B.3.2, the inclusive KL divergence is in some sense the “correct” divergence
measure to minimize.?* It is hence to be expected that switching to a different divergence
measure has a negative impact on the algorithmic performance. On the positive side,

2n the sense that a receiver which solves the global optimization problem (B.35) on page 244, where F is the set
of fully factorized distributions, obtains the exact bitwise marginals of the posterior distribution p, and hence
achieves the minimum BER among all possible receivers.
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however, the computational complexity of the new detector is also significantly lower,
since it does not require the inversion of the observation’s covariance matrix.

Using MRC filters to combine multiple observations in wireless receivers is not a
novel idea, but to the best of my knowledge, these filters have only been considered
for massive MIMO systems in the literature, where the columns of the channel matrix
are almost orthogonal with high probability (and for SIMO systems, where there is no
spatial interference to begin with). In contrast, the proposed MRC-Soft-PIC detector
can also be employed in moderately asymmetric MIMO systems, as we have shown by
computer simulations. Its crucial advantage compared to ordinary MRC-based receivers
is its ability to exploit knowledge about the discrete modulation alphabet, by means of
an iterative information exchange between the affine front-end (including interference
cancellation and MRC filtering) and the scalar demappers. We have verified numerically
that it is better to use posterior rather than extrinsic information in the feedback path
towards the front-end. This is in accordance with the results of the generic divergence
minimization framework, since the proposed detector is based on exclusive DM and is
hence an instance of variational message passing.

However, we have also seen that a literal application of VMP can result in a quite
suboptimal algorithm. Deriving the equalizer-to-demapper message from the generic
VMP update equation (B.62) results in a Gaussian function with variance (4.110) which
is too small, because it only considers the noise but disregards the power of the residual
spatial interference. Using the correct variance (4.112) instead is crucial for the MRC-
Soft-PIC detector to work properly; in fact, I have refrained from presenting numerical
results based on (4.110) at all, since the resulting word error rate is essentially equal to
one over the whole SNR range of interest.

Note that we have encountered this issue already in Section 3.4 on phase estimation:
the {-parameter of the soft phase estimate (3.73), obtained via exclusive DM, has a
larger magnitude than in (3.78) obtained by inclusive DM, since the latter includes an
additional term in its denominator which accounts for the uncertainty of the data symbol.
As the variance of a von Mises distribution is (approximately) inversely proportional to
the modulus of {, we see that the soft estimate (3.73) has a smaller variance than (3.78).
In the context of phase estimation, however, it hardly makes a difference whether one
uses the correct variance or the one obtained from VMP, as shown in Figure 3.12. This is
in stark contrast to the MRC-based MIMO detector from the present section.

It is not a coincidence that we have observed the same phenomenon in two quite
different scenarios. Underestimating the variance is actually an inherent characteristic
of exclusive DM, which has already been described in [94, Section 2], and which can
be explained as follows. As discussed in Appendix B.4.4 on page 255, the difference
between inclusive and exclusive DM is that the former spreads its probability mass across
the whole support of the target distribution p, whereas the latter only covers a single
mode of p. This behaviour, which is illustrated in Figure B.8, is indeed the very origin
of the names “inclusive” and “exclusive” divergence. Now, recall that the projection
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(which is defined via inclusive DM) of an arbitrary p into the exponential family is found
by matching the moments of the sufficient statistics, which in particular means that the
Gaussian approximation obtained by inclusive DM preserves the mean and variance
of p exactly. But since exclusive DM leads to a more compact approximation, it must
necessarily underestimate the variance of p.

The bottom line is that the algorithms that are derived via divergence minimization
should not be taken too literally. They are heuristic approximations to NP-hard problems,
after all, and it certainly does not hurt to investigate possibilities for manually tweaking
the mechanically derived equations. But despite its imperfections, the generic DM
framework has again proven to be a valuable tool for the systematic design of composite
receivers, which are built from local components that belong to different algorithmic
classes, connected in a theoretically sound manner to a global iterative structure.



Chapter 5

Summary and Outlook

The development of the iteratively decoded turbo and LDPC codes has arguably been
one of the key discoveries in the area of wireless communication. Motivated by their
unprecedented performance, researchers soon tried to extend the concept of iterative
information processing to other receiver components beyond the channel decoder.

Two different algorithmic frameworks have become the standard mathematical
groundwork of iterative receivers. Belief propagation, which was discovered to be the
theoretical fundament of the turbo and LDPC decoders, has successfully been applied to
detection problems, yielding in particular the well-known iterative BICM-ID algorithm.
However, BP turned out to be less suitable for the estimation of continuous variables.
Instead, expectation maximization has emerged as the state-of-the-art algorithmic frame-
work for the derivation of parameter estimators. But since BP and EM are two unrelated
classes of algorithms (at least in their original formulations), it is necessary to derive the
EM-based parameter estimators and the BP-based detectors and decoders separately,
and to connect them in some heuristic manner.

The topic of this research project has been the study of a more generic approach
to the design of iterative receivers. The fundamental concept has been developed in
the machine learning community as a method for finding approximate solutions to
intractable statistical inference problems. The idea is to replace the joint probability
distribution, which describes the relations between all variables in the problem domain,
with an auxiliary distribution which is subsequently used to answer any probability
queries. The process of selecting the auxiliary distribution involves two conflicting
goals. On the one hand, it should resemble the true distribution as closely as possible,
since any discrepancy may degrade the quality of the final results. But on the other
hand, it must be simple enough so that it can actually be used to answer the probability
queries, or nothing would have been gained. These two criteria give rise to a constrained
optimization problem. The most appropriate auxiliary distribution is the one which
minimizes a given measure of dissimilarity with respect to the true distribution; selected
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from a set of feasible solutions which only contains sufficiently simple distributions.
Since the objective function which quantifies the difference between two probability
distributions is usually called a divergence measure, the general approach to statistical
inference that is described above is called divergence minimization (DM) in this thesis.

Unfortunately, solving these divergence minimization problems exactly in practice is
also infeasible. They are hence broken down into smaller interconnected subproblems,
whose provisional solutions are iteratively refined according to some fixed-point scheme.
In the context of receiver design, these subproblems correspond to the functional units
of wireless receivers, like parameter estimators, MIMO detectors, and channel decoders.

The generalized formulation of DM provides the designer with a great deal of
flexibility. In particular, it contains several more specific algorithms, among them the
above mentioned BP and EM, as special cases, which can be obtained by choosing certain
divergence measures and feasible sets. Now, a key characteristic of the generic DM
approach is that it is possible to apply different objective functions and feasible sets to
the individual subproblems. This allows for the systematic derivation of entire receiver
structures from a global optimization criterion, where every functional component is
based on the algorithmic technique that is most appropriate for its task.

Estimation

In the first part of this thesis, we have used the DM framework to derive approximate
solutions to estimation problems. By constraining the feasible set of the parameter
distributions to Dirac deltas, one obtains “hard” estimates as known from orthodox
statistics. We have seen that the derived structure is formally equivalent to state-of-the-
art hybrid receivers, which combine EM-based estimators with BP-based detection and
decoding units. Since the estimators decide on one particular (and almost surely wrong)
parameter value, which is subsequently used for data detection, this technique is known
as mismatched detection.

At this point, we have been able to start reaping the benefits of the DM approach.
By relaxing the Dirac-constraint of the parameter distributions, we have derived “soft”
estimators, which compute not just a single value, but entire probability distributions that
encode the remaining uncertainty about the parameter. The resulting algorithms thus
follow the Bayesian paradigm: they start with prior distributions for the variables, and
update them to posterior distributions as soon as new information becomes available.

Bayesian statistics has occasionally been criticized for being subjective, due to the
necessity of assigning prior distributions to the variables, whereas orthodox statistics
supposedly lets the data speak for itself. However, we have seen that conjugate priors
offer an objective choice which is entirely determined by the probabilistic model.

In order to appreciate the benefits of the DM approach, we have conducted an
exhaustive case study on carrier phase estimation. Starting from a simple model with a
phase offset that remains constant during the transmission, we have derived an elegant
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soft-input soft-output phase estimator, which computes von Mises distributions that are
parameterized by a single complex number. Information about the carrier phase that
has been obtained from independent sources can be optimally combined by taking the
sum of the corresponding complex parameters, which leads to a simple and intuitive
expression for the soft-output estimator. By also modifying the detection metric such
that it takes the residual phase error into account, we have developed a Bayesian receiver
which outperforms its traditional EM-based counterpart with only a mildly increased
computational complexity.

A key benefit of the holistic design approach, compared to a separate derivation of
the individual receiver components, is that is also specifies the connections between
the functional units. Soft information exchange has thus been a recurring topic in
this thesis. Earlier publications have suggested that the estimators should be provided
with extrinsic information about the data symbols, with a reference to the “turbo
principle” which states that an algorithmic unit should only pass “new” information
to its neighbors. Our derivation however has shown that the estimators require all
available information, which should ideally be computed by combining the intrinsic
information with the extrinsic L-values that are fed back from the channel decoder.
Simply mapping the posterior L-values to soft symbols, as often done in the literature,
is just an approximation; albeit a fairly good one which is justified by its significantly
lower complexity with only a small performance penalty. On the other hand, the data
detector with soft phase input should only consider the extrinsic phase information;
i.e., when detecting the nth symbol, the phase knowledge that has been obtained from
the nth observation should be ignored. These results are certainly not obvious, and
demonstrate the practical value of the proposed methodology.

A further benefit of the Bayesian approach is that estimators for static parameters can
easily be generalized to time-varying processes. Bayesian inference essentially consists
of updating prior to posterior distributions in the light of new data. If the unknown
parameter varies significantly between two symbols, one can update its estimate after
every received symbol, using the posterior distribution from the previous symbol as the
prior for the next. This naturally leads to forward-backward algorithms which resemble
the Kalman smoother, but which may generally operate on non-Gaussian densities.

We have demonstrated this concept by deriving a phase-noise estimator, which
we have broken down into two parts, a front-end and a back-end. The front-end is
independent of the process statistics. It connects the back-end with the rest of the receiver
by converting the soft information from the data symbols into likelihood functions with
respect to the time-varying parameter, and by converting the parameter estimates back
into metrics that are consumed by the data detector. The back-end, on the other hand,
is immediately dependent on the assumed statistics which describe the behaviour of
the random process. We have derived two such back-ends with different complexity: a
simple one which tracks the output of a free-running oscillator, and a more complex one
based on a generic state space model. The latter is sufficiently generic so that it can be
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used for phase-locked loops, or for the estimation of a residual frequency offset which
leads to a linearly increasing phase shift.

While we have focused this discussion on phase-noise processes, it should be noted
that the same principle can also be used for code-aided channel estimation. Different
channel models, like autoregressive or basis expansion models, give rise to different
implementations of the back-end, whereas the front-end essentially turns classical data-
aided channel estimators into iterative code-aided algorithms, by providing the back-end
with soft information that is contained in the data symbols.

In a final case study, we have examined the joint estimation of channel gain and noise
variance. Here, the major point has been the importance of considering all available
information in the algorithm design. It is a natural constraint that the channel gain must
be a non-negative quantity. However, orthodox estimators like the EM algorithm treat
the unknown parameters as deterministic, which makes it difficult to incorporate prior
knowledge. The Bayesian formulation, in contrast, allows the exclusion of physically
impossible values simply by assigning them zero prior probability. We have seen that
the proposed estimator offers a performance gain with respect to the EM algorithm,
which is due to the fact that the latter sometimes computes a nonsensical, negative gain.

Detection

In the second part of this thesis, we have applied the DM approach to detection problems.
As a case study, we have considered the joint detection of spatially superimposed data
streams in multi-antenna systems. The proposed techniques are however more widely
applicable, since the underlying model of a linear channel plus Gaussian noise is very
general. It occurs for instance in the context of multi-user detection in CDMA systems,
and turbo equalization for frequency-selective channels.

Conceptually, MIMO detection is a fairly simple problem. Practically, however, it
suffers from a computational complexity that increases exponentially with the number of
data streams. For many practically relevant applications, solving the detection problem
exactly in real time is prohibitively hard, which motivates our interest in suboptimal,
low-complexity approximations.

Linear detectors are a class of algorithms with particularly appealing complexity
characteristics. They work in two stages. First, a linear filter is applied to the received
vector-valued signal in order to separate the superimposed data streams. The results are
then processed by mutually independent scalar detectors.

The most important filter for linear detectors is the LMMSE filter which minimizes the
total distortion, taking both noise and inter-symbol interference into account. However,
due to the linearity constraint, even the LMMSE filter is unable to exploit the receiver’s
knowledge about the discrete modulation alphabet, which can lead to a significant
performance degradation compared to the exact detector.
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To mitigate this problem, successive interference cancellation techniques have been
proposed, but they suffer from error propagation due to erroneous hard decisions, which
can be so severe that SIC can actually degrade rather than improve the results.

Another strategy is to solve the detection and decoding problems jointly, by means
of the aforementioned iterative BICM-ID technique. This algorithm is based on belief
propagation, and proceeds by exchanging extrinsic information about the transmitted
bits between the detector and the channel decoder. However, it has been observed by
computer simulations that iterative receivers which employ a linear MIMO detector
actually work better if they feed the full posterior information back to the detector, rather
than just extrinsic L-values. This phenomenon seems to violate the turbo principle, and
clearly demonstrates the necessity of a more thorough theoretical understanding.

Once again, the fundamental issue consists in the separate design of the individual
receiver components, which are then connected in some heuristic manner. By applying
the DM framework to the global inference problem, we have been able to derive
an iterative receiver structure with an affine MIMO front-end, consisting of parallel
interference cancellation followed by an LMMSE filter, and a conventional BICM-ID loop.
The crucial step in our derivation has been the introduction of a Gaussian constraint on
the auxiliary distributions of the data symbols, which has turned the summations over
exponentially many terms into integrals which admit closed-form solutions. Due to this
constraint, the resulting algorithm is an instance of expectation propagation rather than
belief propagation, since only the first two moments of the data symbols are exchanged
between the LMMSE filter and the scalar detectors.

We have seen that the proposed receiver exhibits a novel doubly-iterative structure.
On the one hand, there is the traditional BICM-ID loop between the scalar detectors
and the channel decoder, which exchange extrinsic information about the code bits. For
numerical reasons, implementations of the BICM-ID algorithm represent this information
in the logarithmic domain in terms of L-values, but fundamentally, the information that
is being exchanged consists of Bernoulli distributions (i. e., distributions over {0,1}).
The subtraction, which computes the extrinsic L-values as the difference of the posterior
and prior L-values, is in fact a division of the posterior and prior Bernoulli distributions.

The novel loop, between the LMMSE filter and the detectors, is structurally identical.
The only difference is that these components exchange information about the complex
data symbols in terms of Gaussian distributions, i.e., in terms of mean and variance.
In particular, the detectors first compute the symbolwise posterior distributions by
combining the intrinsic information from the LMMSE filter and the extrinsic L-values
that are provided by the channel decoder. The resulting discrete distributions are then
reduced to Gaussians by computing their first two moments; but before this information
is passed back to the LMMSE filter, the intrinsic component which has originated in
the LMMSE filter itself is removed by dividing the two Gaussian functions, which in
practice is implemented as a subtraction of their natural parameters.



196 Chapter 5. Summary and Outlook

There are two aspects that should be emphasized. First, the proposed receiver indeed
uses the full posterior information (and not just the extrinsic L-values) for computing
the discrete, symbolwise distributions. This explains the remarkable observation that
iterative receivers with linear MIMO detectors work better with posterior instead of
extrinsic feedback. Secondly, however, the algorithm is fully compatible with the turbo
principle, because it removes the information that has been contributed by the LMMSE
filter before the remaining information is passed back to the affine front-end. We have
seen that this final step leads to a further performance gain with respect to the heuristic
LMMSE detector with posterior L-value feedback. In the original, exact formulation
of the MIMO detector, which does not reduce the discrete symbolwise distributions to
Gaussians, adding and removing the intrinsic information are inverse operations, so
they cancel each other out, and the remaining feedback solely consists of the extrinsic
L-values. Due to the nonlinear reduction step, however, these two operations are not
inverse anymore in LMMSE-based receivers, and computing the feedback to the LMMSE
filter solely from the extrinsic L-values causes a significant performance degradation
compared to our proposed method.

We have shown by simulations that the proposed iterative LMMSE detector with soft
parallel interference cancellation is able to perform comparably to the sphere detector
over a wide SNR range; from very low SNR where even the conventional LMMSE
receiver yields close to optimal results, up to medium SNR which corresponds to a
code rate of, say, 1/2 to 2/3. In the high SNR regime, however, the algorithm tends to
overestimate the magnitudes of the L-values, which causes quite a performance loss
compared to the sphere detector. While the reason for this phenomenon is understood,
we have unfortunately not been able to find a remedy. Nonetheless, the proposed
detector seems to be an interesting option for future mobile receivers, thanks to its good
performance and its fairly low and in particular constant complexity (in contrast to the
sphere detector, whose runtime depends on the channel and noise realizations).

By introducing a different modification to the divergence minimization problem,
this time simplifying the objective function instead of the feasible set, we have finally
derived another linear MIMO detector. The new algorithm uses an MRC instead of
an LMMSE filter, which leads to an even simpler implementation since the MRC filter
does not require any matrix inversions; it merely consists of multiplying the received
signal with the adjoint of the channel matrix. We have furthermore shown that the new
filter requires a different kind of feedback: it must be fed with posterior information,
i.e., the division step that we have described above needs to be omitted. If we had
simply exchanged the filter heuristically, with the intention of reducing the complexity
of our receiver, we would certainly have missed this necessary modification. This
demonstrates once more the practical value of the systematic design that is offered by
the DM approach.
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Outlook

Solving the generic DM equations often leads to reliable expressions, in the sense that
they offer a superior algorithmic performance compared to more heuristic approaches.
However, we have also seen examples of quite suboptimal results. In the derivation
of the iterative MRC-based MIMO detector, a literal application of the DM equations
yields a significantly underestimated variance (and hence an overestimated reliability
of the detected data) because the resulting expression does not consider the residual
interference from the superimposed data streams. In this example, it has been fairly
simple to derive the correct variance after interference cancellation and filtering, and the
new expression indeed causes a significant performance gain. For the above mentioned
problem of the iterative LMMSE detector, which leads to overestimated L-values in
the high-SNR regime, I have however not been able to propose a simple correction.
Investigating the root causes of these problems and developing countermeasures would
certainly be an interesting research project. If it were possible to correct the mismatched
L-values of the iterative LMMSE detector with a moderate computational complexity,
the algorithm would yield excellent results across the whole SNR range.

The focus of this thesis has exclusively been on deterministic algorithms, which
optimize a simple parametric distribution to match the true posterior as well as possible.
However, these methods will necessarily yield suboptimal results for involved models.
For example, replacing a significantly non-Gaussian distribution with a Gaussian will
always be a poor fit, no matter how well the parameters of the approximating density
have been optimized. Stochastic inference algorithms, on the other hand, hardly make
any assumptions at all on the target distribution, which has pros and cons. In those
scenarios where deterministic algorithms work well, stochastic algorithms will likely
require more computational power to yield similar results, since they must draw many
samples in order to represent the target distribution faithfully, whereas the deterministic
algorithm only needs to tune a few parameters. But with an increasing complexity of
the underlying model, the lack of assumptions becomes an asset, and a well designed
stochastic algorithm will converge to the correct solution in the limit of an infinite
runtime. Besides studying deterministic algorithms, I have also worked on stochastic
approaches to MIMO detection in the course of this research project; c.f. [116,119,122].
In particular, [116] presents a Markov chain Monte Carlo method for MIMO detection
in the presence of residual channel estimation errors. Since the computational power
of mobile receivers will continue to grow in the foreseeable future, it is predictable
that stochastic algorithms will gain in importance. Fortunately, the methods that we
have discussed in this thesis will not become obsolete by these developments, since the
two approaches are by no means mutually exclusive. For example, the aforementioned
stochastic MIMO detector could well be coupled with a DM-based channel estimator. It
would be interesting to explore which tasks of modern receivers can profit the most from
stochastic algorithms, and which ones are better handled by deterministic methods.
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Appendix A

Mathematical Background

A.1 Differential Calculus

A common task in signal processing applications is the optimization of some cost
function f, which is necessarily scalar and real-valued. Its parameters, however, may be
complex, and in this thesis we are often concerned with functions f : CN — R.

The derivative of complex functions f : D — C with domain D C C

/ L li f(Z) 7f(ZO) Al

fi(z0) = lim ——rrms %0 (A1)

as studied in complex analysis, however, is not applicable to the problem of finding
stationary points of real-valued functions. Indeed, it is a well known result that a
holomorphic (complex-analytic) function f must satisfy the Cauchy-Riemann equations

Ju Jv ou v
5%~ ay and - ox (A2)

where z = x +jy and f = u +jv. If f is real-valued, g—z = a—; = 0, so any real-valued
holomorphic function must be constant.

However, a non-holomorphic function can still be real differentiable when viewed as
a function of two real variables f(x,y), so the traditional real gradient can be used to
find stationary points of f. The downside of this approach is that the resulting formulas
tend to be awkward, since the inherent coupling of x and y as real and imaginary part
of one complex variable gets lost.

An elegant alternative is the Wirtinger calculus [146], also called CR-calculus [67],
which defines two generalized complex derivatives, applicable to non-holomorphic (and
in particular real-valued) functions. While the original work of Wilhelm Wirtinger dates

back to 1927, it appears that the English speaking engineering community has only taken
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notice of it through Brandwood in 1983, who defined a complex gradient operator [16].
Later, this work was extended by von den Bos [136], who derived a complex gradient
with respect to the augmented! vector

z2 ( i) (A3)
z

and used it to define a complex Hessian. At about the same time, the work of Picinbono
on statistical signal processing of complex data was published [106-109].

The purpose of this section is to give a brief introduction into the topic of complex
and multivariate calculus, both in order to establish the notation used in this thesis,
and to serve as a collection of some basic definitions and results that are needed by
the main text. Recommended further reading includes the text books [57,115] and the
articles [1,36,56,67,74,102]. The section closes with a brief discussion of variational
calculus.

A.1.1 Univariate Complex Calculus

Consider some complex univariate function? f : C — C. By splitting both its domain
and codomain into real and imaginary part, we can view f also as a function R? — R2.
With a slight abuse of notation, we use the same symbol for both functions and write
f(z) = f(x+jy) = f(x,y) = u(x,y) +jv(x,y). The complex function f(z) is called
real-differentiable if the four partial derivatives g'é, gly‘ gz and azy’ exist, in which case we

define the partial derivatives of f straightforwardly as

g Ju .dv q g ou .0v

ax ox Jax M oy ay oy (Ad)

The differential of f, denoted as df and defined as the linear part of the difference
f(x+ dx,y+ dy) — f(x,y) (and analogously for the other differentials that we encounter
later in this section), is then given in terms of its partial derivatives by the usual formula

df = af Cdx o+ ?yf dy. (A5)

The two generalized complex derivatives, which are the central ingredients of the
Wirtinger calculus, are now defined as

%él(%_-%) and aazf sl (g£+]g§) (A6)

ox Jay

! He did not use the term augmented, though, which to my best knowledge was coined by Schreier and Scharf [115].
2 To simplify the notation, we will assume without loss of generality that f is defined on the whole C or CN.
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from which

of of = of of . [(of of

are easily obtained.
Definition (A.6) might seem arbitrary at first. It is justified by the fact that it yields,
in conjunction with the definitions

dz £ dx+jdy and dz* = dx—jdy (A.8)

an expression for the differential of f that is analogous to (A.5)

_ of 4
df = 5-dz+ 52 dz" (A9)

It is easy to verify that af ( %>*, which implies that in general % # (%y
of

Only in the special case of a real valued function, we have f = f* and thus % = <§) *,
in which case the differential of f becomes df =2Re (i dz).

If the only way to obtain f and 5 f was to compute the derivatives with respect to
real and imaginary part and then applymg (A.6), we would not have gained much. The
elegance of the Wirtinger calculus lies in the fact that the complex derivatives can be
computed very naturally by treating z and z* formally as independent variables [16,
Theorem 1]. In particular, we have

Jdz  dz* 0z dJz*
0z 0z 1 and oz* 0z =0. (410

If f: C — R is real-valued and real-differentiable, then both

of _ of _
3 = 0 and e 0 (A11)

are necessary and sufficient conditions for f to have a stationary point [16, Theorem 2].
It can be shown that the complex derivatives % and % obey the same sum and
product rules as the standard real derivatives. The chain rule, however, is different, as

the inner function needs to be considered both in non-conjugate and conjugate form [36]

0fog _9f 93, Of 9g" dfog _of dg , of ag*
5z —ogar ag oz ™ Tor “agar Tag oz (A12)

Later we will see how this inconvenience can be circumvented with the notion of
augmented vectors.
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Example To appreciate the simplicity of the Wirtinger calculus, consider the function
fz) = 2P =+ ¢~ (A13)
With % = 2x and % = 2y, we obtain via (A.6)

of

=l(2x—j2y)=x—jy=z" and s

Pe) . .
% =l2x+i2y) =x+jy=2z. (A14)

By writing f(z,z*) = zz* and treating the two parameters as independent, we

of _

immediately get % =z* and 5= = z. Even in this small example, the simplification
that the Wirtinger calculus offers is evident.

A.1.2 Multivariate Real Calculus
Before we extend the discussion to multivariate complex calculus, we introduce some

basic definitions for the real-valued case.

Jacobian Let f : RN — R be a real-valued function of N real parameters. We define
its derivative with respect to the vector x as the row vector of partial derivatives

%é(% 3f), (A.15)

ox dxN-1

We furthermore introduce the shorthand notation TaT f (gi)

of

Note that many authors, particularly from the engineering community, define o
as a column vector and call it the gradient of f. A discussion of why (A.15) is a more

natural definition is given in [66] (see also references therein), where zf is called the

cogradient of f. Here, the following pragmatic reasons shall suffice: with % defined as a
row vector, the differential of f can be written in the natural form

df = af d 2 af dxn (A.16)

Furthermore, the derivatives themselves become simpler, with fewer transpose-operators.

To appreciate the difference, consider the simple example f(x) = a'x = x"a. With the

definitions above, we obtain a’g x — 47 and 35‘ 2 = a. Contrast this with a” x

aa"x—T“ = a" which would be the derivatives if % was defined as a column Vector.

=aand

In order to avoid confusion, we will use the clearly defined partial derivatives instead
of the term gradient and the symbol V.
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Defining the derivative of a scalar function as a row vector leads to a straightforward
generalization to vector-valued functions. Let f : RN — RM. The derivative of f with
respect to x, often called the Jacobian, is defined as

9fo gﬁ .. aafo
ox X0 XN-1
f . .| (A.17)
ax . . . .
9fm Ofmr . fma
ox dxg dxN-1

The derivative of a scalar function f : RN*KX — R with respect to a matrix parameter
of dimension N X K is the K x N matrix of partial derivatives

of . of
9x0,0 dxXN-10
of o : . .
33X : . : . (A.18)
of . of
9Xo k-1 OXN-1K-1

Agai define the shorthand 2 2 (207 and note that the differential of f is i
gamwe erne e shorthan W* X and note a e diirerential o flSll’I

this case given as df = tr <% dx >, where tr(-) denotes the trace of a square matrix.

Hessian The Hessian of a scalar function is the Jacobian of its first derivative %:
2f ’f
/ e
aZf - 63.‘0 . XN .1 Xo (A 19)
oxoxT : E : ' '
_9%F . 2
9x0 9XN_1 X3,
The Hessian is symmetric, and more generall af (2 !
Y ’ & Y o ayT — \odyoxT ) *

A.1.3 Multivariate Complex Calculus

Jacobian and Conjugate Jacobian Now, let f : CN — C be a function of a complex
vector z, and define x = Re(z) and y = Im(z). Using the derivative (A.15) with
respect to a real vector, the generalized complex derivatives (A.6) can be extended to the
multivariate case as

of s 1 (9f .of of al(of  .of
322 (Geig) e 5525 (i) (20
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which are respectively called the Jacobian and conjugate Jacobian [67]. The differential of
f is then given by the straightforward generalization of (A.9)

df = fd +af dz*. (A.21)

T
We also define the shorthand notation afT = (%) and asz = (aazf*) . Note that

in general ;é ( ) . Only in the special case of a real-valued f, aaz—fH = (%)
of of of of

Also note that with above definitions, 3= and 5.+ are row vectors, while P and Pyl
are column vectors. As an example of the simple notation which emerges from this

convention, consider the quadratic form f(z) = z" Az, whose derivatives are ;Z—fH = Az
and g/; =zMA.
Definition (A.20) can be extended to vector-valued functions f : cN - cM:

s o U .. 9
of Y R o of 0z, 9zy_y
N . . = : :
2 £ : - : d = : - . . A.22
0z : ‘ : e oz ‘ ’ ( )
ua . fua s L O
9z 9zN-1 9z 0zy_4

The chain rule (A.12) also has a straightforward generalization to the multivariate
case. Let f: CM — CKand g: CN — CM, such that fog: CN — CK. Then,

dfog _9f og  If 98" ofog _9f 9g , Of 9"
0z  Jg 0z + d9g* oz and dz* ~ dg dz* + dg* dz*’ (A-23)

Hessian Just as there are two Jacobians, we can identify four Hessians of a scalar
function f : CN — C

P >f 3f . 2f
aZf 9z 0z dzn—1 0% aZf 9z}, 9z dzy_4 0%
d9zozH : - : dz*ozH : : :
2f . >f 2f ’f
dz9 dz}_, dzy_10z}_, 9z 0zy_, T dzy_, 9zy_,
P f P f i A Pf
azf 9z 929 dzn_1 0% a2f aZS 9z az}‘\171 9z
9z0zT : - : 9z*9zT : - :
P f .. Pf 2f . >f
020 0zN_1 0zZN_10ZN_1 aZS JzN_1 az;hl JzN_1

(A.24)
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For general complex-valued f, the Hessians satisfy the three equations

2f :( 2f )T, 2f :( 0% f )T, 0% f :( 9*f )T. (A.25)

0z dzH 0z* 0z T 0z0zT 0z0z" oz* 0zH oz* 0zH

In the special case of real-valued f, we have furthermore

2f :( 2f )H, 2f :( 0% f )H’ 9% f :( 0% f )H (A.26)

0z ozH 0z ozH d0z* 0z T 0z* 0z T 0z0z T dz* 0zH
and, combining (A.26) with (A.25), also
aZf aZf * aZf a2f *
— d = . A27
9z dzH (az* BZT) and 9z azh (az BZT) (A.27)

Augmented Vectors and Matrices

Many computations that involve complex variables z € CN can be vastly simplified by
introducing the augmented vector [115]3

22 ( z ) e N (A.28)
z*

where, informally, C2N c C2VN is the set of all vectors whose upper N entries are
complex conjugates of the lower N entries. Consider the real vector

w2 <x> - (Re(2)> e R2N (A.29)
y Im(z)

containing the real and imaginary part of z. The two vectors are related via

z=Jyw and w=]y'z (A.30)
with the transformation matrix
1 il
Ty ( NN ) (A31)
In —jIn
Some useful identities are
N =35I8 (A.32)
detJy = (—2)N (A.33)
det(JyJi) =4V, (A.34)

3 In this thesis, we adopt the convention from [115] and underline all augmented vectors and matrices.
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Jabobian We can now define the Jacobian of a function f : CN — CM with respect to
the augmented parameter vector as

ﬂg(af U= (L o 2L L Lf) (A.35)

0z 9z 0z dzg dzy—1 0z ozy_,

For the special case of a scalar function f : C — C, we also define

of
f & (azH)
— = . A.36)
A of (
oz =T
We can furthermore augment the function itself, and write the Jacobian as
of (U of  of
S ) 0z* _ 0 Jz* 2Mx2N
= 0z d9z* dz* Jz

where C2M*2N — C2M*2N g the set of complex matrices whose upper-left block is the

complex conjugate of its lower-right block, and whose upper-right block is the complex
conjugate of its lower-left block. Matrices which satisfy this pattern are called augmented
matrices.

The differential of f is

of of
df—adg or di—gdg (A.38)
which is an example of the fact that using augmented complex vectors typically results
in expressions that are formally identical (or at least very similar) to their real-valued
counterparts.

Hessian The Hessian of a scalar function f : CN — C with respect to the augmented
parameter vector contains all four Hessians from (A.24):

aZf >f >f
— | 9z9z"  9z*9zM (A.39)
9z azH Of >f |- ’
- - 0z0z"T  09z*9dzT

Using (A.27), we see that the Hessian of a real-valued f is an augmented matrix.
The Jacobian with respect to z as defined above, and the standard real Jacobian with
respect to w are related via

of _of of _19f
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Similarly, the Hessians of a scalar function are related via

Rf 2f 2f Rf

1
_ qH I H
dwowT TN 9z ozH Jn and ozozH 4 In ow ow’ In-

(A.41)

It is important to note that differentiating with respect to z or z* does not obey the
same rules as differentiating with respect to z or z*. For example, consider the quadratic

form f(z) = zZHMz with M € C2N*2N | Then, % is not equal to z"M, as it would be if

z were an unpatterned vector from C2N | Instead, by expanding the function as

Flz,2%) = (ZH ZT) <‘2 ;;) (;) (A42)

and applying the definitions above, we obtain the first two derivatives as

of A+D" B+BT 3% f A+D" B+BT
—_— = a =
oz" c+C" D+AT)” 9z 9zM C+C" D+AT

) . (A43)

It is easy to show that f is real-valued if and only if M € C2N*2N j e, A = D* and
B = C*. Then, the derivatives simplify to

2
a% = (M+M")z and ajaj;H =M+ M (A.44)
which shows that the Hessian is a Hermitian augmented matrix.

Equations (A.35) and (A.39) demonstrate an important simplification that the notion
of augmented vector provides: instead of having to deal with two Jacobians and four
Hessians as in (A.22) and (A.24), it is sufficient to consider one Jacobian and Hessian
with respect to z, which respectively contain all first and second order derivatives of f.

Chain Rule The notion of augmented vectors also simplifies the chain rule (A.23). As
above, let f : CcM - CcX and g: CN — CM, and define the augmented vector functions
z and g as in (A.37). Then

azog afog Bfog

0F
dz of og of og
- 0z dz*

of 9g | of 9g"  Of og | Of 9g
g 0z + dog* 0z 0g 0z* + g+ 0z
T\ of9g If 9 9of dg . If dg

+ dag* 0z Jdg Jz* Jag* dz*
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_9f g c C2Kx2N

S ogoz '
Thus, by working with augmented quantities, the chain rule for complex calculus
becomes formally identical to the standard chain rule of real calculus.

(A.45)

A.1.4 Variational Calculus

Let us go back to the discussion of multivariate real calculus, where we have studied
functions f : RN — R with argument x = (xo,...,xy_1)" € RN. We now view
this vector itself as a function g : {0,...,N—1} — R with ¢(n) = x,, such that
f:({0,...,N—-1} - R) — R becomes a higher-order function or functional. A
straightforward generalization is to replace the discrete domain of ¢ with a continuous
one, say CK. In the following, we will briefly discuss the calculus of functionals

: (CX - R) — R, which map real-valued functlons g to real numbers.

Analogous to (A.16), the functional derivative ¢ 5 < is defined via

6F
dF = <@, dg>

A 6F
= Jex @(z) dg(z)dz (A.46)

where the differential dF is the part of F(g + dg) — F(g) that is linear in dg.
As a very simple example, consider the linear functional

g = L wiglz) (A47)

which evaluates its argument only at a discrete set of points {zo, ..., z7—1}. Then

dF—Zwl (z;) +dg(z; Ewlg

= F gt a19)
i=0

and a comparison with (A.46) implies that

‘SF Z w; 6(z — z;) (A.49)
i=

Of course, such a functional is hardly interesting, as it can be reduced to a regular
function f : R — R with f(g) = w'gand g = (g(20),...,8(z11))7. Instead, we are
interested in functionals which evaluate their argument at a continuum of points

F(g) = [ h(g(z))dz (A50)
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with some differentiable function & : R — R. With ~ meaning “equal up to first order
terms in dg,” we have

dF = / z) dg(z dz~/h 2) +dg(z dz—/h (A51)

which holds in general if

6F

vz e CK: g(z) dg(z) ~ h(g(z) +dg(z)) — h(g(z)). (A52)
With 1/ (x) & dg(xx) , the functional derivative is thus found as
SF )
T (2) = g(2)). (A53)

Example Consider the functional

- / p(z)logp(z)dz (A.54)

which maps a probability distribution p(z) to its differential entropy. This functional
is in the form (A.50) with h(x) = —xlogx. Using #’(x) = —(1 + log x), the functional
derivative of F is found as

OF

%(z) = —(1+1logp(z)). (A.55)
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A.2 Exponential Families

Exponential families are an essential ingredient of many modern inference algorithms
and thus play a major role throughout this thesis. Informally, an exponential family
is a set of probability distributions which share the same parametric form, and whose
individual elements are identified by a parameter vector 6.

Exponential families possess two key properties which make them invaluable for the
design and implementation of inference algorithms:

e Bounded space complexity. Representing an arbitrary probability density function
would generally require an infinite amount of information. A member of an expo-
nential family, however, is fully determined by the finite-dimensional parameter
vector 0. (Strictly speaking, an exact representation of a continuous parameter also
requires an infinite amount of memory, but it can be truncated to an appropriate
fixed point data format with an arbitrarily small quantization error.)

e Bounded time complexity. Exponential families are closed under multiplication;

the product of two members of an exponential family with parameters 6 and 6’ is,
up to a normalization constant, another member of the exponential family with
parameter 6 + 6'. This is important in practice, because an ubiquitous task in sta-
tistical inference is to combine information about an unobserved quantity obtained
from different (presumably independent) sources, which requires multiplication
of the corresponding distributions.
As a very basic example, assume we are interested in an unobserved quantity x,
and let y; denote all information available to us at a certain time instant. Our
state of knowledge about x is then fully described by the distribution p(x |y;).
Now assume that we obtain additional information y,. Using Bayes’ theorem, we
update our state of knowledge about x as

p(y2lx,y1) plx|y1)
p(y2 [ y1)

@ py2|x) p(x|y1) A.56
p(y2ly1) (420

p(x|y1,y2) =

where (a) presumes that y; and y; are statistically independent given x. In general,
this computation could be arbitrarily complex. However, if p(x |y;) is a member
of an exponential family, and if p(y, | x) when taken as a function of x is (up to a
constant factor) in the same exponential family, then we know that p(x | y1,y2) is
also a member of this exponential family, and its parameter is merely the sum of
the parameters of p(x|y1) and p(y2 | x). In particular, there is no need to evaluate
the normalization constant p(y2 | y1) = [p(y2 | x) p(x|y1) dx.
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Of course, those favorable properties cannot per se justify the use of exponential
families. The fundamental reason for their use is that they emerge from the principle
of maximum entropy [62, Chapter 11-12], which states that, “subject to precisely stated
prior data [...], the probability distribution which best represents the current state of
knowledge is the one with largest entropy” [143].

To derive this connection, assume that we have observed some data (xq, ..., xn_1)
that are drawn iid from an unknown distribution p(x). In order to estimate this distri-
bution, we determine the empirical moments of some functions of the data, collected in
the vector ¢(x) = (¢o(x),...,¢x_1(x))". That is, we compute

A1
m=

N-1
ZO ¢ (xn) (A.57)

z|

and then discard the data. How can we obtain an estimate of p(x) from m? Clearly, it is
desirable to select a distribution whose moments

# = E[p(x)] (A.58)

match the empirical moments m, but there will generally be infinitely many such
distributions. According to the principle of maximum entropy, we should then pick the
one distribution which has the largest (differential) entropy among all distributions that
are compatible with m. The rationale is that, since entropy is a measure of randomness,
this choice results in the distribution which contains the least amount of information
beyond that provided by the available data.

Formally, we obtain the following optimization problem:

maximize/X —p(x)logp(x) dx (A.59a)
subject to /X p(x)dx =1 (A.59Db)
/X p(x)p(x)dx =m (A.59¢)

where X is the set from which the data is drawn. Typically this is R or C, but if we
have additional knowledge about the possible values of x, for instance a non-negativity
constraint, this can be incorporated here.

In order to solve (A.59) we introduce a Langrange multiplier A associated to the
normalization constraint (A.59b), and a vector-valued Lagrange multiplier 6 associated
to the moment matching constraint (A.59c¢). The Lagrangian is then

L(p) = /X p(x) (— logp(x) + A+ 9T¢(x)> dx (A.60)
with functional derivative (see Section A.1.4)
oL
%(x) = (— logp(x) + A+ 0" p(x) — 1) . (A.61)
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Setting ‘;—I’;(x) = 0 for x € X, and with p(x) = 0 for x ¢ X, the maximum entropy
solution is found as

p(x) =1[x € X]exp (9T¢(x) tA- 1) . (A.62)

Ignoring the normalization constant and the constraint x € A’ for a moment, we see that
our estimate of the unknown distribution p(x) has the functional form

p(x) o< exp <9Tc[) ) = exp (Z Ok (x ) (A.63)

where the parameters 6 must be chosen such that # = m. For example, we will later see
that the Gaussian distribution is characterized by ¢o(x) = x and ¢ (x) = x2. Thus, if all
that we know about a random variable x are its first two moments, our best guess of
p(x) is a Gaussian distribution.

In the remainder of this section, we will formally introduce exponential families.
Then, with the concepts from the previous section on complex calculus, we will show
how the notion of exponential families can easily be generalized to complex random
variables and parameters, without having to resort to the isomorphism CN 2 R2N je,
treating N complex variables as 2N unrelated real variables. As argued in the previous
section, this would mathematically be equivalent, but formally much more intricate.
Along the way, we will discuss some important examples of exponential families which
are used in this thesis.

Recommended books about statistical inference and exponential families include [13,
65,140].

A.2.1 Univariate Distributions

An exponential family is a set of probability distributions which can be written in the
form

p(x;0) = h(x)exp <Z O i (x )) (A.64)

In general, i(x) can be an arbitrary non-negative function. However, we will only
allow £ to take values in {0, 1}, because otherwise the family would not be closed under
multiplication. But as argued above, this is an essential property for our purposes. The
function & can thus only be used to restrict the range of x, which we denote as

X2 {x|h(x)=1}. (A.65)

To simplify the notation, we drop the explicit h(x) in the following, with the implicit
understanding that p(x;0) = 0 for x ¢ X. Also, integrals [(-)dx (or sums }_,(-) in case
of discrete random variables) are implicitly understood to range over the set X'.
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The functions ¢ : X — R are the sufficient statistics of the family, and the associated
Ok are called natural or canonical parameters. The claim from the beginning of this section
that p(x;0)p(x;0') « p(x; 0 +6’), i.e., that the product of two members of an exponential
family is obtained by adding their natural parameters, easily follows from (A.64).

The log-partition function A : RK — R, which serves to normalize the distribution, is
given by the integral

K-1
= log/exp (Z Gk(pk(x)) dx. (A.66)
k=0

We are of course interested in natural parameters which produce normalizable distribu-
tions, i. e., parameters 0 € (), where

Q= {0]|A(0) < o} (A.67)

is called the natural parameter space. Below it is shown that the Hessian of A is the
covariance matrix of ¢, so it is necessarily positive semidefinite. Thus, A is a convex
function in 8, which implies that () is a convex set.

Besides natural parameters, exponential families can alternatively be parameterized
in terms of mean parameters, which are defined as the expectations of the sufficient

statistics
u 2 E[p(x)] € RK (A.68)

The derivative of the log-partition function provides a mapping from natural to mean

parameters

0A
== A.69
B= oot (A.69)

which can be shown by the following calculation

ggz 50, 108 / exp (Z O e (x )
o (D6 e (1)) i) dx
J exp (T2 0 gu (1)) dx
- / exp CZZ O (x) — A(B)) i (x) dx (A.70)
= E [ (x)] = pix-

Also, the Hessian of A equals the covariance matrix of the sufficient statistics

92A

W = CoVv [¢} (A.71)
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as can be shown continuing from (A.70)

9%2A 9

K-1
6,00, 06, / P (k,zoe""”k’m - A<9>> i (x) dx

K-1
= exp ( Y Opdu(x) — A(")) P (x) (Pr(x) — ) dx

= E [ (x)pr(x)] — pxpis
= cov [ (x), ¢ (x)].

The Bernoulli Distribution

(A.72)

The Bernoulli distribution is ubiquitous in digital communication algorithms, because it
describes the statistics of binary random variables, i. e., bits. It is defined over the set
X =F = {0,1} and is fully described by the mean parameter

u=E[x] =p(1) €[0,1]. (A.73)

In order to identify the natural parameters, sufficient statistics, and the log-partition
function of the Bernoulli distribution, we write p(x) in the form required by (A.64):

px) =p*(1—p)'"

exp (log(u)x +log(l —p)(1—x))

= exp (log (%) x +1log(1— V))

= exp (/\x —log(1+ e)‘)) . (A.74)
In (A.74) we have defined the L-value
1)
Allog M —1og P (A.75)
g1 —u p(0)
from which
eA
p=p(1) T ot (A.76)
1
1—u=p(0) = AT77
p=p0) = T (A77)
and thus
= — A7
p(x) =7 o (A.78)

are easily obtained.
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By comparing (A.64) and (A.74) we find that the Bernoulli distribution has K =1
sufficient statistic ¢(x) = x, which justifies in retrospect the usage of the symbol u
for the mean of x. The corresponding natural parameter 6 is the L-value A, and the
natural parameter space is () = R U {—co, +0}, where A € {—00, 400} corresponds to
the degenerate cases 1 € {0,1} where x is perfectly known.

The natural parameter A and the mean parameter u are two equivalent choices for
describing a Bernoulli distribution. For practical implementations, however, the L-value
is preferable, both for numerical reasons and because the combination of (presumably
independent) information about a bit boils down to a summation of the L-values.

Finally, the log-partition function is A(A) = log(1 +e"). By taking its first two
derivatives, we find the mean and variance of x as

dA &

ar T 14er H

dZA et

T Areng - HI-W

E [x] = (A.79)

var [x] = (A.80)

We denote the Bernoulli distribution with natural parameter A as B(A). Also, BN(A)
with A € RN denotes the distribution of a random vector x € FN with statistically
independent components. That is, if x ~ BN (A), then its joint distribution is

— N—

H p(xn) = 1_[ (x| An). (A.81)

The Gaussian Distribution

The density of a Gaussian random variable x € X = R with mean y and variance ¢

can be written in the form (A.64) as follows

= 6 6 92 1l _a A.82
=exp | Opx + 1x2 +49 og p . (A.82)

Thus, the Gaussian distribution is described by the K = 2 sufficient statistics

#(x) = <x2> (A.83)
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with natural parameters 6y = % and 0; = —ﬁ. The natural parameter space is
Q =R x [~0,0), where §; = —oo corresponds to the degenerate case of ¢ = 0.

The log-partition function can be read off from (A.82) as

2 1 0
A(6o,6,) = —ﬁ — 5 log (—;1) (A.84)

whose derivatives yield the expected results

_oa_ 6

E[x}——aeo = 20, =u (A.85)
0A 62 1
2] _ _ % _ _ 2,2
IE[x]—agl —49% 291—;4 +0°. (A.86)

We denote the Gaussian distribution with mean p and variance o2 as N (u, o).

The Truncated Gaussian Distribution

A truncated Gaussian distribution is obtained by restricting the range of a Gaussian
variable to some interval. In this thesis, only one kind of truncation is used, namely the
restriction to X = [0, ), so we will simply speak of the truncated Gaussian distribution.

Let
exp —1x2 x
fw)is%) and Fy(x) 2 [ fu(e)de (A.87)

respectively denote the PDF and CDF of the A/ (0,1) distribution. Then, the PDF of the
truncated Gaussian distribution with parameters m and s? is

o) — 1[x > 0] N _(x—m)2
p()_pN(s)\/Wep< 2s2>

m 1 m? 1 m
=1[x > 0]exp (S—Zx - @xz 52" Elog(Z?‘(sz) —log Fy (;))

=

12

2

6 1 0 6
= > 2 0 + 9y i} ‘
1[x > 0]exp <90x—|—91x + 10, +3 log ( 77'() log Fyr (\/Tﬂl (A.88)

which has the same sufficient statistics as the non-truncated Gaussian distribution, but
a different range (i.e., a different /). The natural parameters are analogously to the
non-truncated case 6p = 7 and 67 = — 21? The log-partition function

0z 1 0 )
A(6y,01) = —ﬁ - Elog (—%) +log Fys (\/%91) (A.89)
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Figure A.1: The function A(x) = Q\Et; needed for evaluating the moments of the truncated

Gaussian distribution, and its approximation A(x) = 1v/x2+4— %(x < -3)

contains an additional term, compared to the non-truncated case. Its derivatives yield
the mean parameters

[
E[x]:ai:_ei+ 1 fN(\/—0291>
a6y 201 /20, FN( 6o

m
=m+sA () (A.90)
and
0,
L RN € )
o 467 201 20,/=201 p, ( \/% )
- 1
:mz-&-sz—kms)\(%) (A.91)
with
X
Ax) £ J;fvf 8 (A.92)

For x < —3, a good approximation is given by A(x) £ 1v/x2+4— 3, and for x > 3,

A(x) =~ 0. In between, for |x| < 3, the function can be implemented with a small
lookup-table. A plot of A and A is shown in Figure A.1.
We denote the truncated Gaussian with parameters m and s> as TN (m,s?).
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The Gamma Distribution

The gamma distribution is a density on X = [0,00). It arises for instance in SNR
estimation problems, because it is the conjugate prior of the precision (inverse variance)
of the Gaussian distribution. Its PDF is given as

px) =1 2 0] oo wr Tl
1[x > 0]exp((a —1)logx — px + alog p —logI'(x))
=1[x > 0]exp(6p log x + 61x + (6 + 1) log(—61) —log (6 + 1)) (A.93)

which is described by the K = 2 sufficient statistics

#(x) = (10g x) (A.94)

X

with natural parameters 6y = « — 1 and 6; = —pB. The natural parameter space is
Q = (—1,00) x (—00,0), corresponding to the conditions « > 0 and > 0.
The log-partition function is

A(6p,61) =logI'(6p+1) — (60 +1)log(—61) (A.95)
from which we obtain

A qrT(6+1)

E [log x] = W~ T+l log(—f1) = ¢(a) —logp (A.96)
_0A  Hh+1 o«
2
var [x] = IA_botl o« (A.98)

063 0% g2

dr<

where () £ ?)) is the digamma function.

We denote the gamma distribution with parameters « and g as G(«, ).

A.2.2 Multivariate Distributions

In principle, (A.64) also includes multivariate distributions. We just take x as a random
vector (and thus write it in boldface in the following), and define the sufficient statistic
vector appropriately. For instance, a Gaussian random vector x € RN would be described
by K= N+ %N (N + 1) sufficient statistics, including the linear terms xo, ..., xy_1, the
quadratic terms x%, e, x%\ffl, and the mixed terms x,,x;, for m < n.
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Notationally, however, it is more convenient to allow for vector- or matrix-valued
sufficient statistics and natural parameters, and rewrite (A.64) as

p(x;60,...,0k 1) = h(x) exp <i Ok, @i (x)) — A(Bp, . --,91<1)> (A.99)

with the Euclidean inner product (x,y) £ y ' x, or for matrices (X,Y) £ tr(XYT), whose
derivatives are simply

9 (x,y)
oxT

0(X,Y)
axT

=y and

(A.100)

As a straightforward generalization of the univariate case, the vector derivatives of
A yield a mapping from natural to mean parameters

;?(r = Elog/exp (:Zl (O, o (x )>> dx
Jexp (ZE2) (6p, pio(%) ) () dx
Jexp (E525 (0w, ¢y (x))) dx
E [ (x)] = py (A.101)

while the Hessians of A are the covariance matrices of the sufficient statistics

az7A*i/ex Z_: O, P (x)) — A6 0k_1) | pp(x)dx
aelaaz _aﬂl p e K Py X 0s---7UVK-1 k

= cov [(/)k(x), zp,T(x)} . (A.102)

An important subtlety here is that above derivation assumes that the parameters 6y
are unpatterned. Thus, in order to find the mean parameters, unpatterned derivatives of
A need to be computed, even if the parameters happen to be patterned. This will be
the case in the following example, where the matrix paramter @, is constrained to be
negative definite.
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The Multivariate Gaussian Distribution

The density of a Gaussian random vector x € RN with mean y and covariance matrix £
can be written in the canonical form (A.99) as follows

( ) VdetX
= exp (yTE x—Str(Eax") — JuTE Ty — Llogdetz — & log(27r))
= exp ((Bo,x) + <®1,xxT> + %9;{@)1_190 + Jlogdet(—20) — § 10g(27‘()> .
(A.103)
As in the univariate case, we have K = 2 sufficient statistics, the vector-valued ¢, = x
and the matrix-valued ®; = xx'. The corresponding natural parameters are 8y = £~ 'u
and © = 7%2’1, from which y = 7%017160 and X = 7%6171 are easily obtained.
The natural parameter space is Q = RN x IRIXOX N, where ]RfOXN is the set of negative

definite matrices of dimension N x N.
The log-partition function can be read off as

A(8),01) = —10l @10y — Llogdet(—20;) + ¥ log(2n). (A.104)
With the matrix derivatives (see e. g. [90])

aaTX71 1 Tv—1 alogdetX 1
—ax —X taa' X and —ox X (A.105)
and noting that ©®; = O], the derivatives of the log-partition function yield the moments

0A

E [x] = T = —1e7'0 =pn (A.106)
0
2

cov [x] = A -le;l=x (A.107)

a6090; 1!
dA
T 11 Ta-—1 11 T
E x| = se] — 101008507 —jOrT =y (A.108)

Note that the standard unpatterned derivative has been used in the last equation, even
though @1 is negative definite and thus symmetric.
We denote the multivariate Gaussian distribution with mean p and covariance matrix

Zas N(p X).
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A.2.3 Extension to Complex Random Variables

In this thesis, we are often concerned with complex-valued quantities. Since the dis-
tribution of a complex random vector z € CV is defined via the joint distribution of
its real and imaginary part, (A.99) is sufficient for describing the distribution of z; we
just have to set x = (Re(z)T,Im(z)T)T € R?N. However, doing so typically results in
awkward expressions since it discards the tight coupling of the real and imaginary parts.
We are therefore interested in a description of exponential families for complex random
variables directly in the complex domain.

As discussed in Section A.1.3 on complex calculus, the notion of augmented vectors
constitutes a systematic way of extending expressions from the real to the complex case.
Recall that the augmented vector for some z € CV is defined as

sz (In jIn Re(z)\
= <z*> B (IN —jIN> <Im(z)> =Inw (A.109)

where Jy and w € R?N are implicitly defined via the above equation.

In this thesis, the inner product of complex vectors or matrices is defined as linear
in the first and conjugate-linear in the second argument. Thus, for x,y € CN and
X,Y € CN*M we have

(x,y) 2yHx and (X,Y) 2 tr(XY™). (A.110)

The inner product of augmented vectors x,y € C2N or matrices X, Y € C2N*2M jg
real-valued, thus commutative, and given as

(x,y) =2Re((x,y)) and (X, Y)=2Re((X,Y)+(X,Y)) (A.111)

x= ;Y= , X=|_. ;o Y=1_, . (A112)
) \yr X xr Yoy

Equipped with this inner product, a straightforward generalization of (A.99) to
complex random variables is

where

K-1

p(z8y, ..., 0x_1) = h(z) exp (2 (01,,(2)) —A<eo,...,eK1>> L (A1)
k=0

With definition (A.36), the derivatives of the inner products in (A.111) are

_ UXY)

oxH = oxH

=Y (A.114)
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analogously to the real case. Therefore, Equations (A.101) and (A.102) carry over to the
complex case as

A 92A

X _E {Qk(;)] =p, and m

el = cov [ﬂk (2), ¢} (;)} (A.115)

which can be shown analogously to (A.101) and (A.102).

The von Mises Distribution

The von Mises distribution, also called the circular normal distribution, often occurs
naturally when we are dealing with random variables that describe angles. In this thesis,
it is used for the estimation of phase noise processes.

A real random variable x with domain X’ = [—7, 71) (or any interval of length 27) is
von Mises distributed if its density is

p(x) = W;:}—w (A.116)

where I, (x) is the modified Bessel function of the first kind and nth order. The parameter
i € [—m, 1) specifies the mode of the distribution, while « > 0 determines its variance.
For x = 0, p(x) becomes a uniform distribution (note that Iy(0) = 1). For large « (say,
x > 5), the von Mises distribution converges to a Gaussian distribution with mean u
and variance x~!, which can be seen by using the approximations cos(x) ~ 1 — %2 and

Ip(x) ~ %\/L") in (A.116).

27x
Rather than working with the real-valued phase x, it is often more convenient to

consider the complex phasor z = e* on the unit circle instead. To this end, we also merge
the real parameters x and y into the complex parameter

N (A.117)
and rewrite (A.116) as

B exp (K Re (ej(xff‘)>)

p(z) = 271y (x)

~ exp (Re((£,2)))
= T onh(l) (A.118)

With augmented vectors z = (z,z*)T and { = ({,*)T we finally obtain the canonical
form (A.113)

p(z) = exp ((3¢,z) — loglo(v/2T*) — log(27) ) (A.119)
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with K = 1 sufficient statistic ¢(z) = z. The corresponding natural parameter is = % 4

with natural parameter space Q = C2.
From the log-partition function A({) = loglo(+/CC*) — log(27), and using the

derivative % Ip(x) = I;(x), we find the first moment of z as

n(g) ¢
_0A _(ER _ (2% _ (i@
E{Z]aeH(E[z*J(zaA =\ Lleh & (A120

¢

We denote the von Mises distribution with parameter { = x el as M({).

The Complex Gaussian Distribution

We first derive the density of a general (i.e., possibly improper) complex Gaussian
random vector [137]. Let w € R2N be a real Gaussian random vector with mean
v £ E [w] and covariance matrix T £ E [(w — v)(w — v) "], whose density is
() exp (—%(w )T Yw — v))
w) = .
P (270)NV/det T

Now we take w = ]X]lg = %]'{\',g as in (A.30) and define the mean p £ E[z] = Jyv

(A.121)

and the covariance £ £ E [(; —u)(z— y)H} = JNIJH. From this definition we obtain

I ! =JHE"1]y and detT = det ]g,l det X det IR,H = 4"NdetZ. Plugging everything
into (A.121) yields the density of the augmented complex Gaussian vector
o P (“3z-wHiE - p)
pPie) = nNy/detZ '

L is called the augmented covariance matrix of z [115] because £ € C2N*2N_ This can
be seen by writing it as a block matrix

_ (Elz-mz-m"] IE[(Z—F)(Z—#)T])_<Z Z) A
x (E[(Z—ﬂ)*(z—y)H] ]E[(Z—}l)*(z—y)T] sy ) (A.123)

(A.122)

x

X is the regular covariance matrix of z, while ¥ is the cross-covariance of z and z*, and
is called the complementary covariance matrix [72] or the pseudo-covariance matrix [98]. If
£ =0, z is proper [98], and the density (A.122) simplifies to the well-known form

exp (~(z—mME(z - p))
N detX '

p(z) = (A.124)
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The density (A.122) can be expressed in the canonical form (A.113) as

NI=
4

p(z) = exp (EH;’lg— tr( 717zH) — %EHLAE— %logdetg— Nlog 7r>

= exp ((Qo,g> + <Ql,7H> +165'@; 16, + Llogdet(—20,) — Nlog rr) (A.125)

N

with sufficient statistics ¢ = z and ®; = zz", and corresponding natural parameters

0y = ;AK and ©; = —%;’1. Note the similarity of (A.103) and (A.125), which is a
consequence of the usage of augmented quantities.
The matrix derivatives (A.105) have straightforward extensions to the complex case

iy

0a'"z7'a 1. He1 dlogdetZ 1
ez —Z aa'Z and —z VA (A.126)
for any Z € C2N*2N and a € C2N. With the log-partition function

A(8y,©;) = —1650; 10, — 1 logdet(—20;) + Nlog (A127)

we find the moments using (A.115) as

0A B
Elz]=q = —30; '8 =p (A.128)
20
92A _
cov[e] = 5o g = 29 =L (A.129)
20 “Y0
H 9A lo-lp.pHe-1 _ le-1 H
E [ﬂ } T et 19,6060, — 50, =pp" +L (A.130)

once more verifying the validity of the mapping from natural to mean parameters in the

complex case. Note that in the last equation ;@)A{' = a%‘], because @, is Hermitian and

A is real-valued.

[

We denote the improper Gaussian distribution with mean p= ( ’i) and covariance

r I -
matrix T = (i‘.* Z*) as EN'(u, L, E) or EN (p, Z).

If £ = 0, the distribution is proper, and is denoted as CA (u, X).
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Approximate Statistical Inference

All detection and estimation tasks that a receiver needs to execute are instances of
statistical inference problems, which thus play a central role in this thesis.

Historically, statistics has been split into orthodox and Bayesian schools. A detailed
comparison of both approaches is out of scope of this work; the interested reader is
referred to the very enlightening discussion in [62] instead. The bottom line, however, is
that nowadays it seems generally recognized [33,77,82] that orthodox statistics suffers
from some severe flaws, whereas Bayesian statistics offers a systematic methodology
which gives meaningful results for all well-posed problems, including corner cases
where the orthodox approach breaks down (examples of which can be found in [93]).

For this reason, this thesis is based on the Bayesian approach to statistical inference.
In particular, we treat all unknown quantities as random variables, and express our
imperfect knowledge about those variables in terms of probability distributions (which
may decay to Dirac distributions). The related concept of deterministic but unknown
parameters, which is ubiquitous in orthodox statistics, will not be used in this thesis.

This chapter is organized as follows. After a brief introduction in Section B.1, the
topic of structured probability distributions is covered in Section B.2. This is a central
concept, since exploiting the available structure is a key step towards the derivation
of efficient inference algorithms. Section B.3 introduces the divergence minimization
principle, a framework for the systematic derivation of a broad variety of inference
algorithms. An iterative method for finding approximate solutions to the generic
divergence minimization problem is presented in Section B.4. Finally, Section B.5 derives
several state-of-the-art algorithms like belief propagation and expectation maximization as
special cases of the divergence minimization framework.

The most influential paper for this chapter has been [94], which proposes the generic
message passing scheme that will be discussed later on. More recently, similar work has
been presented in [111], which approaches the problem of unifying belief propagation
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and variational message passing from a different angle, but arrives at essentially the
same result.

An exhaustive treatment of graphical models and inference algorithms can be found
in [65], while [69] and [78] are well readable tutorial papers on factor graphs and belief
propagation. A comparison of inference algorithms that work on graphical models is
given in [40]. Further recommended books on statistical inference include [13] and [140].
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B.1 Statistical Inference

Statistical inference is the process of reasoning about unknown quantities, based on the
observation of other, stochastically related quantities. At the heart of statistical inference
lies a joint probability distribution p which models the stochastic dependencies between
all quantities that are of interest to the problem at hand. The task of finding a suitable
model, which describes the underlying physical phenomena with sufficient accuracy
while being simple enough to allow for mathematical tractability, is an interesting
problem in its own and is outside the scope of this thesis. In the context of wireless
communication, this problem mainly involves the modeling of the stochastic channel,
including both the propagation of the radio waves and the behaviour of analog compo-
nents in transmitter and receiver. In this thesis, we will only consider simple, widely
accepted models such as Rayleigh fading and Wiener phase noise. In the following we
assume the availability of a sufficiently accurate model, encoded in the distribution p.

When a suitable model has been identified, it can be used to answer several kinds
of questions. For our purpose, the most important kind is what [65] calls a marginal
MAP guery, which finds the most probable value of a particular unobserved variable,
conditioned on the values of the observed quantities. To formalize this task, we split the
set of variables into x and y: the observations are collected in the vector y, whereas

x=(x0,...,XN_1) EX 2 X)X X Xn_1 (B.1)

contains the unknown variables. The marginal MAP query for x;, is then defined as

£ argmax p(x, | y)
X €Xy

£

(a) /
= argmax p(x|y)dx
X €X, X\” \n

(b) p(x) p(y | x)

= argmax

dx
X, €Xy X\n p(y) \n

Dargmax [ p(x) ply|x)dx,, B2)
\n

X E€Xy,
where x\ , £ (%05« s X1, Xyt 1y -« -, xN,l)T contains all unknown variables except x;.
In (B.2), (a) involves marginalization over X\ps (b) is an application of Bayes’ rule,
and (c) holds because p(y) is a positive constant with respect to x, hence multiplication
with p(y) does not change the location of the maximum. We will often make use of the
freedom to ignore constant factors, as it will lead to some considerable simplifications.

! This is not to say that constant factors can always be neglected. In the problem of model selection, where we
do not have one but several candidate models, encoded in the distributions p;, the so-called evidence p;(y)
quantifies how well the competing models can explain the observed data. It can be used either for deciding on
the best model, or for averaging over all models. In this thesis, we will not be concerned with model selection.
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In principle, (B.2) can be solved via repeated application of the two basic rules of
probability theory: the marginalization or sum rule

ply) = / p(x y)dx (B.3)
and the chain rule or product rule

p(x,y) = p(x) p(y | x). (B.4)

In practice, however, exact solutions are only available for some very simple models.
In more complex models, we are facing two kinds of obstacles:

e Space complexity: An accurate representation of probability densities can require
an arbitrary amount of memory. But even for discrete distributions over a finite
set Xy, which could theoretically be stored as a vector of dimension |Xy| — 1, the
space complexity may become problematic, as |X;| is often very large in practice.

o Time complexity: The integrals that arise in the context of continuous variables
may not have closed solutions. And if &, is discrete, such that f x, (-)dxy turns
into a sum, the number |X| of terms may be so large that its evaluation is still
practically impossible.

When faced with such complex models, we have no other choice than to introduce
approximations. The available algorithms for approximate inference can be broadly split
into two categories.

’

o Parametric methods: If the distribution that encodes our model is sufficiently “nice”
in a certain sense (e.g., it is a member of a sufficiently structured exponential
family; see Section A.2), chances are that we can solve (B.2) exactly. If it is not,
we can still approximate it with an appropriate member of the exponential family,
and then answer our MAP queries using the approximate distribution instead of
the true one. If the approximation is good, we can expect to obtain results that
are close to the exact answers. The problem is then to tweak the parameters of
the approximate distribution such that it fits the true distribution as closely as
possible. The integration problem (B.2) thus turns into an optimization problem.

o Particle methods: Besides the parametric approach, another option to approximate
a complex distribution is with a set of values x<k>, the so-called particles, which
may have an associated weight w(*¥):

K-1 3 K-1
plen) ~ Y w®6(x, — ) with Y w® =1, (B.5)
k=0 k=0

R



B.1. Statistical Inference 229

In this case, the approximated density is represented by the pairs of particles and
weights (xS,k), w<k>)f;01, and integrals over x, decay to finite sums:
K-1

/ pxn) f(xy) dxy = Z w(k)f(x,(qk)). (B.6)

n k=0

The problem is then to find a set of particles that represents the true distribution
accurately. In practice, this is often done by drawing random samples from the
target distribution (or an approximation thereof), giving rise to stochastic algorithms.

The remainder of this chapter gives a deeper introduction to the parametric paradigm,
as it is the basis for the main part of this thesis. The dominance of parametric algorithms
can be explained by the stringent complexity constraints of mobile receivers, which
are due to the real-time requirements and the scarce supply of energy in battery-
driven devices. Since particle methods make fewer assumptions about the target
distribution, they usually require more computations to yield satisfactory results than
parametric methods; a property which currently makes them less interesting for practical
applications. However, presuming that Moore’s law continues to hold for some time, it
is well possible that this will change in the future. This is because parameteric methods
can suffer from systematic errors, while well designed particle-based approaches do not.
If we approximate a multimodal density with, say, a Gaussian, then the approximation
is necessarily imperfect, no matter how much computation time we spend on optimizing
the parameters of the Gaussian distribution. Particle methods, on the other hand, can
approximate any distribution more closely when we increase the number of samples.
In this case, the lack of assumptions turns into an advantage. In the limit of an infinite
amount of available computation power, a well designed particle-based algorithm would
therefore almost surely converge to the exact result, whereas parametric algorithms
would run into a kind of error floor.

Finally, it should be emphasized that parametric and particle-based approaches
are by no means mutually exclusive. As we discuss in the following section, most
distributions of practical interest are structured in certain ways, such that inference
problems naturally decompose into smaller, local problems, each of which can be solved
with a different algorithm. Graphical models provide a global view on the problem
at hand, and suggest a systematic way for breaking it down into local, interconnected
subtasks. A discussion of how particle methods fit into this framework is given in [29].

In some sense, hard parameter estimation, which approximates the distribution of
x, by a Dirac distribution é(x, — £,), can be regarded as a degenerate particle method
with K = 1. However, the particle £, is usually not found by stochastic algorithms, but
by maximizing (an approximation of) the posterior distribution of x,,. We will return to
this aspect in Section B.4.3.
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B.2 Structured Distributions and Graphical Models

In order to solve (B.2) as efficiently as possible (be it exactly or approximately), it
is essential to exploit the structure in the form of conditional independences that
the distribution p(x|y) provides. In this section, we first have a closer look on how
conditional independence can make marginalization tractable. We then introduce the
concept of probabilistic graphical models and discuss some simple, but important
examples of particularly strongly structured distributions.

For the following development, it is immaterial that p(x | y) is a posterior distribution.
In order to simplify the notation, we thus drop the explicit dependence on y (which is
just a fixed parameter at runtime) and denote the distribution simply as p(x). We also
assume that all random variables x;, are discrete, and that their ranges |X;| are small
enough such that summations over &), are practically feasible.

B.2.1 Conditional Independence

By repeated application of the chain rule (B.4), it is easy to show that any distribution
over N variables can be factorized as

N-1
p(xo,..., xn-1) = [T pleulxo,..., %0-1) (B.7)
n=0

where the first factor should be read as the marginal distribution p(xp). Of course, the
order in (B.7) does not matter, so p(xp,...,xn—1) can be expanded in N! different ways.

Fortunately, most distributions that arise in practice are simpler than (B.7), in the
sense that some of the factors p(xy | xg,...,x,_1) only depend on a subset of {x; |i<n}.
The deeper reason is that typically, only few variables interact directly with each other
in the underlying physical process; most interactions are indirect. As a simple example,
consider an uncoded transmission (i. e., of mutually independent data symbols) over a
discrete-time channel described by v, = h;x; + wy. By this equation, the four variables
Yn, hu, x4 and wy, interact directly. Under the standard assumption of white noise w
and correlated fading h, the observation y, also contains information about the data
symbols x,,, m # n, but only indirectly through the fading process h. A factorization
along the lines of (B.7), but neglecting as many unnecessary conditions as possible,
is p(x,h,y) = p(h) TIN5 p(Yn | xn, hn) p(xn). Thus, while y, ;1 contains information
about xy, it does not contribute further information assuming that we already know ;.
This gives rise to the notion of conditional independence, formally defined as follows.

Let V' £ {0,...,N — 1}. In the following, we write x7 = (x; |i € Z), where T C N is
an index set, to denote a subvector of x. Let A, B,C C N be three mutually disjoint index
sets. Then, x4 and xp are conditionally independent given x¢, written (x4 L xg|x¢), if
and only if

p(xa,x5|xc) = p(xalxc) p(xs|xc) (B.8)
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or equivalently
pxalxp xc) = p(xalxc). (B.9)

In the special case C = @, meaning that x¢ vanishes from above equations, x 4 and xg
are marginally independent, written (x4 L xg).

Fully Factorized Distributions Exploiting conditional independence is crucial for the
derivation of efficient inference algorithms, because it allows us to discard irrelevant
information. In the simplest imaginable case, the distribution decomposes as

1 N—
p(xo, .-, *N-1) ZH (B.10)

where the f,, : X, — [0, c0) are non-negative functions, and Z is a normalization constant.
In order to obtain the marginal distribution p(x;,), we simply take f, (x,) and normalize
it to a valid distribution; the factorization allows us to ignore all other x;,,, m # n. A
distribution which can be decomposed as (B.10) is called fully factorized. Despite their
simplicity, fully factorized distributions emerge as a key ingredient in the development
of approximate inference algorithms.

Markov Chains A somewhat more complex example is a Markov chain, where the only
direct interactions are between adjacent variables:

1 N-1
P en-1) = o [T Sl ) (B.11)

n=1

which implies the conditional independences (xg, ..., X,—1 L X;41,...,XN—1|¥x). Thus,
when reasoning about, say, xg, we do not have to sum over all possible assignments to
(x1,...,xN_1) because

p(xo) = %Z fn(Xn-1,%n)

1
=7 filxo,x1) Y - ) an Xp—1,%n)
X1 X2

XN-1 n=

= %Zfl(xofﬁ)lﬁ(m). (B.12)

Since xg depends on the other variables only through x1, it is possible to merge all
information that the other variables contain about x( into a unary function (x1).
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(a) Fully factorized distribution (b) Markov chain

Figure B.1: Simple Markov networks with N = 4 variables

B.2.2 Graphical Models and Message Passing

In general, it might not be obvious how to extract conditional independences from a
given factorization of the joint distribution p. Graphical models provide a visualization
of p, and are therefore valuable tools for the identification of its structure. As we will
see later, they are also useful as a basis for the systematic derivation of a broad variety
of inference algorithms.

Markov Networks

Assume that we have some generic factorization

1 K-1
plx) =7 Iﬂ () (B.13)
=0

where Z is a normalization constant. For all k, f; is a non-negative function and AV C
{0,...,N — 1}, such that the argument list x; of f is a subvector of x. The functions f
could be, but don’t have to be, conditional distributions as in the decomposition (B.7).

The Markov network associated with the factorization (B.13) is a graph with N vertices,
one for each variable x through xn_1.2 It contains an edge between the vertices x,; and
xy, if and only if 3k : {m,n} C Ny (i.e., at least one of the functions f; depends on both
xm and x,). A path is a sequence (X, (g), Xx(1), - -, Xz(pm)) Of vertices, such that for all
m € {0,..., M — 1} there exists an edge between x,;(,,;) and x4 1). Two vertices xy
and x, are connected if a path exists between them, otherwise they are disconnected. They
are adjacent if they are connected via a single edge. Adjacent vertices are called neighbors.

It can be shown [65, Section 4.3] that (x4 L xp | x¢) if all paths from any x,,a € A to
any xp,b € B contain an x., c € C. In other words, if all x¢ and their adjacent edges were
removed from the graph, the sets x 4 and xg would become disconnected. Intuitively,
information about the variables flows only along the edges of the Markov network. If a
variable (say, v) is observed, the information flow gets blocked because the subnetwork
“behind” y could only contribute information to the variables “in front of” y through y
itself, which however is perfectly known already.

Figure B.1 shows Markov networks for the two simple examples from the previous
section. The fully factorized distribution (B.10) does not contain any factor which
depends on two or more variables. Thus, its Markov network is the fully disconnected

2 With slight abuse of notation, we will not distinguish between the vertices and their corresponding variables.
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Figure B.2: Section of the Markov network for the factorization (B.14)

graph as shown in Figure B.1a. The fact that all variables in (B.10) are statistically
independent is reflected by the lack of edges in the network, which means that it is
impossible for any variable to provide information about any other.

The Markov chain (B.11) contains only pairwise factors with variables (x,_1,x4),
so each factor contributes one edge to the Markov network shown in Figure B.1b.
Obviously, the graph is connected, so all variables are marginally dependent. Observing
one variable, say x,, splits the chain into two conditionally independent subgraphs
(x0,...,xy—1) and (xX41,...,XN_1)-

In order to demonstrate how graphical models can help us to identify conditional
independences, consider again the example of an uncoded transmission over a discrete-
time channel as discussed at the beginning of Section B.2.1. For simplicity, assume
furthermore that the fading process h can be modeled as a Markov chain. A natural
factorization of this model is
N-1
p(x,hy) = H p(Yn | X0, hn) p(xn) p(hn [ hy—1) (B.14)
n=0

with p(hg |h_1) = p(hp). A section of the corresponding Markov network is shown in
Figure B.2, where observed variables are indicated by a dark shade. From the graphical
model it is obvious that any path from y;,, m # n to x;; necessarily contains h;, from
which we conclude that the only information that the observations i, m # n can provide
about the data symbol x;, is via the state of the fading channel. If i were known, the
observations y;;, m # n would not contain any further information, so the demapping
of x;, could be based on observation y;, alone. This leads naturally to a decomposition
of the receiver into a channel estimator and N independent demappers. Even in this
simple example, extracting this structure directly from the factorization (B.14) would
arguably be more cumbersome.

Finally, note that a factorization of a given distribution is not unique, so the Markov
network is not unique, either. A complete graph (which contains edges between all
pairs of vertices) is trivially compatible with any distribution, but it does not reveal any
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structure. It is therefore worthwile to look for a minimal network which contains as
few edges as possible. The interesting information that graphical models convey is not
contained in the edges that are present in the graph, but in the edges that are missing.

Message Passing

Let us now turn to the problem of marginalizing structured distributions. Consider
again the Markov chain with N = 4 variables as shown in Figure B.1b, and assume we
are interested in finding p(xp), the marginal of the first variable. Inserting (B.11) into
the definition of the marginal yields

plao) = 2 DXL fivo, 1) fala, x2) fo(xa, v3). (B15)

Exploiting the distributive law, we shift the sums as far to the right as possible and
assign descriptive names to the intermediate results:

p(xo0) = % Y filxo,x1) Y faloer, x2) Y fa(x2, x3)

—_———
L35 (x2)

= %Zfl(xofxl)Zfz(x1,x2)m3a2(xz)

é7712»1(3(1)

%;fl(xo, x1) Mp—1(x1)

Lm1_0(x0)
1
= zml—m(xo)- (B.16)

The intermediate functions ,41_,,(x,) can be computed recursively, and each compu-
tation only involves the summation over a single variable.

Now assume we want to find the last marginal p(x3). By symmetry, we can proceed
analogously:

p(x3) = % Y f3(x2,x3) Y fa(x1, x2) Y fi(x0, x1)

|
S1moy (x1)

% Y fa(x2,x3) Y fo(x1, x0) mgs1 (x7)

émlaz(v‘fz)
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Figure B.3: Forward and backward messages passed along a Markov chain

— % Y fa(x2,x3) my_a(x2)

X2

Sy 3(x3)
1
= 2m2—>3(x3)- (B.17)

What about the interior variables, say x1? With the same approach, we find

1
pn) = Y Axo,x1) Y fax1,x2) Y fa(xa, x3) (B.18)
X0 X X3
o1 (x1) My (x1)

where we have reused intermediate results from (B.16) and (B.17). Thus, once we have
computed the intermediate functions in (B.16) and (B.17), we can find all marginals as

pxn) = %mn—l—m (%n) My 1 (%) (B.19)

In order to make this equation well defined for all n € {0, N — 1}, it makes sense to
define the constant functions m_1_,o(xp) =1 = my_n_1(xN_1)-

A standard interpretation of this algorithm is message passing: the functions m are
referred to as messages which are exchanged between adjacent variables. Figure B.3
shows the Markov chain, where the edges are labeled with the messages that are
passed along them. The messages above the edges are called forward messages, and their
computation (B.17) is called the forward recursion. Similarly, the messages below the
edges are the backward messages, computed by the backward recursion (B.16).

The method of finding the marginals of a Markov chain that we just derived is a
special case of a more general algorithm called belief propagation. It works over any
singly-connected (i.e., tree-structured) belief network, and returns the exact marginals
after a finite number of operations. Starting at the leaves (nodes with only one edge),
it recursively computes 2E messages, where E is the number of edges in the network.
Then, the marginals are obtained as

p(xn) = Z [ Trmwsn(xn) (B.20)

where the product is over all neighbors of x;,.
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Unfortunately, most probability distributions of practical interest do not have simple>
singly-connected networks. In order to perform statistical inference in such distributions,
we do not have much choice but to introduce approximations. A common heuristic is
based on the fact that belief propagation only performs local computations which can
be implemented regardless of whether the global graph structure is tree-like or not. By
ignoring the loops and running belief propagation nonetheless, we obtain an iterative
algorithm that is commonly called loopy belief propagation. Empirical evidence shows that
if the messages converge, the approximated marginals that are obtained as in (B.20) are
sufficiently accurate for many practical problems. Arguably the most famous examples
in the field of digital communication are the highly successful turbo and LDPC decoders,
which are known to be instances of loopy belief propagation [86].

As long as the variables are discrete and have a sufficiently small range (like the
binary variables in decoding algorithms), there is not much left to say. However, loops
are not the only reason why we might need to introduce approximations. Beyond any
structural aspects, the factors f; in (B.13) themselves may be too complex for an exact
implementation of belief propagation. This happens frequently if the variables are
continuous (the all-Gaussian case being an important exception), but also if the variables
are discrete with an exponential number of states.

In the remainder of this chapter, we will discuss a systematic approach to the
derivation of approximate inference algorithms which plays a central role in this thesis.
The divergence minimization approach contains loopy belief propagation as a special case,
but also encompasses other techniques which are better suited for continuous variables.

Factor Graphs

While Markov networks are a useful tool for the identification of conditional indepen-
dences, it turns out that factor graphs are more suitable for the purpose of deriving
inference algorithms. Like Markov networks, they represent the factorization (B.13) of a
distribution

1 K-1
p(x) = = I felxw) (B21)
k=0

but in contrast to Markov networks, factor graphs make the factorization explicit. In addi-
tion to the N vertices that represent the variables x;, the factor graph for (B.21) contains
K vertices representing the functions fx. The two types of vertices are commonly called
variable nodes and factor nodes, respectively. An edge exists between the variable node x
and the factor node fj if and only if n € N (i.e., the function f; depends on x;,).

3 There exist graph transformations which can be used to remove cycles, for example by merging variables.
However, the range of the variables increases exponentially (e. g., if M binary variables are merged, the new
variable has 2M states), so the practical applicability of this technique is rather limited. As an extreme example,
it is always possible to merge all variables into the vector x. The resulting Markov network contains just a single
node, so it is clearly singly-connected, but it is also useless because it defeats the purpose of identifying and
exploiting structure.
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Figure B.4: Section of the factor graph for the factorization (B.14)

Since all edges in a factor graph connect a variable with a factor node, factor graphs
are bipartite. The set N consists of the indices of all variables that f; depends on.
Similarly, the set K, = {k|n € N} contains the indices of all functions that depend on
xy. In the following, we adhere to the convention of drawing variable nodes as circles
and factor nodes as rectangles.

As a simple example, Figure B.4 shows a section of the factor graph for the discrete-
time transmission as described by (B.14). The corresponding Markov network has been
given on page 233. Note that only the unobserved variables are explicitly represented
by nodes in the factor graph. The observations y, are considered as fixed parameters of
the functions f(xp, hy) = p(yn | Xn, hn), which at runtime only depend on x,, and h,.

One advantage of factor graphs over Markov network is their higher expressive
power, as demonstrated by the standard example in Figure B.5. The network consists
of three variables which are all directly connected, i.e., there are no conditional in-
dependences. Nonetheless, the distribution might admit a factorization into pairwise
functions as p(x1,xp,x3) = %fu(xl, x2) f13(x1, x3) fo3(x2, x3). The Markov network is
not able to distinguish such a factorization from the trivial p(x1, x3, x3) = % fx1, x2,x3).
In contrast, the factor graph expresses the factorization explicitly and is therefore able to
distinguish between the two cases.

The bipartite factor graphs discussed so far are also known as Tanner graphs [127].
Besides them, there exists another flavor of factor graphs in the literature, called normal
graphs [42] or Forney-style factor graphs (FFGs) [78]. The difference is that FFGs only
contain factor nodes. The variables are not represented by nodes, but are associated
with edges instead. Since every edge is connected to exactly two nodes, it might seem
that FFGs only exist for factorizations where every variable occurs in exactly two factors,
but with a simple trick, FFGs can be drawn for any factorization. To handle variables
which occur just once, FFGs may also contain half edges which are only connected to a
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Figure B.5: Comparison of the complete Markov network over three variables with two
compatible factor graphs, expressing different amounts of structure

single node. To handle variables which occur d > 3 times, one introduces d — 1 auxiliary
variables and an equality-constraint function, which forces all d copies of the variable to
have the same value.

As an example, consider the factorization

f(x,y,2) 8(y,z) h(z). (B.22)

Figure B.6a shows the classical Tanner graph of (B.22). The Forney-style graph, shown
in Figure B.6b, is obtained from the Tanner graph by the following steps: (a) Remove all
variable nodes of degree 1, and convert their adjacent edges into half edges. (b) Remove
all variable nodes of degree 2, and merge their two adjacent edges. (c) For every variable
node of degree d > 2, replace the variable node by an equality constraint node, and
introduce d — 1 copies of the original variable. Due to these auxiliary variables, the FFG
describes strictly speaking a different factorization, in our example

floy,2) gy, 2 ) h(2") =z 2, 2") (B.23)

with the equality constraint function
[=lz,7,2") 2 6(z—2) é(z— 2"). (B.24)

Both factorizations are equivalent, however, in the sense that integrating over the
auxiliary variables reproduces the original factorization. In particular, this implies that
both factorizations have the same marginals.

It is obvious that the conversion from a Tanner graph to an FFG described above
also works in the other direction. Thus, the two styles are isomorphic; both have exactly
the same expressive power. It is then mainly a matter of taste which style one uses.

For the derivation of the generic divergence minimization approach that follows
below, I consider it helpful to distinguish clearly between factor-to-variable and variable-
to-factor messages. Therefore, Tanner graphs will be used in the remainder of this
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(a) Classical bipartite factor  (b) Forney-style factor graph  (c) Hybrid factor graph used
graph in this thesis

Figure B.6: Comparison of different factor graph styles

appendix. The main text, however, mostly uses a kind of hybid style as shown in
Figure B.6¢c, which in my opinion combines the advantages of both approaches: Variables
with degree > 3 will be drawn as standard variable nodes, so we don’t need to introduce
any auxiliary variables and equality constraints. Variable nodes with degree 2, however,
will not be drawn, just as in FFGs. The rationale is that degree-2 variable nodes are quite
uninteresting from a computational perspective: all they do is pass the messages through
unaltered. In the example from Figure B.6a, we would have m_,, (y) = my—¢(y) and
mgy(y) = my_,¢(y). It thus leads to simpler notation, both mathematically and
graphically, to omit the degree-2 variable nodes, and to denote the messages through
them simply as m¢ . (y) and mg_, ¢(y), in this example. Finally, variable nodes of degree
1 will also be omitted, along with their adjacent edges. The reason is that variables of
degree 1 will always be observed, and thus fixed at runtime. A standard example is the
above mentioned p(yy | xu, hn) which describes the relation between channel input and
output. The observation y, does not appear in any other factor, so it is of degree 1,
but since it is known, it makes sense to think of it as a fixed parameter and consider
p(Yn | Xn, hn) as a function of just x, and hy,.

It goes without saying that this hybrid style can trivially be converted to either
Tanner or Forney-style graphs. If you prefer to work with Tanner graphs, just add
degree-2 variable nodes where necessary. And if you prefer FFGs, just convert every
variable node into an equality constraint function for that particular variable.
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B.3 The Divergence Minimization Approach

While the problem of marginalizing an arbitrary distribution is generally intractable, we
have seen in the previous section that there are certain classes of structured distributions
which do allow for exact marginalization. We have identified two conditions that such
simple distributions should fulfill:

o the distribution should have a factorization whose graphical representation is
singly-connected, and

e whose factors are sufficiently simple functions. If all arguments are discrete, this
basically means that the ranges of the variables are small enough such that a
full enumeration of all states is possible. In the continuous case, the functions
should have a simple parametric representation, the most important example
being Gaussian functions.

Unfortunately, many distributions that arise in practical problems do not fulfill these
conditions, which motivates our interest in approximate inference techniques.

Divergence minimization (DM) is a generic approach to the systematic derivation
of approximate inference algorithms. The central idea is to approximate the true*
distribution with a simpler one, which is subsequently used to answer the probability
queries of interest. If the auxiliary distribution closely resembles the true distribution, it
can be expected that those answers are good approximations of the exact results.

In the remainder of this section, we formalize this idea and show how the original
marginalization problem can be transformed into an optimization problem. Then, in the
next section, we will develop a generic method for solving this optimization problem
approximately via fixed-point iterations. As we will see, state-of-the-art techniques like
belief propagation and expectation maximization can be expressed as special cases of
divergence minimization.

B.3.1 Statistical Inference via Optimization

We start by introducing some notation. As above, the vector x = (xo,. ..,xN,l)T

contains all unobserved (also called hidden or latent) variables. The notation should be
understood in a somewhat generalized sense, because the components x, € X, are
not necessarily real or complex scalars, but could be compound objects like vectors or
matrices themselves. From the perspective of the DM framework, however, the x;, are
atomic. In the language of graphical models, each x; corresponds to one variable node.

4 We use the terms true distribution or target distribution to refer to the distribution which encodes our model
assumptions. The word “true” should not be understood as a statement about the accuracy of this model. As
discussed at the beginning of this chapter, the problem of finding an appropriate model is outside the scope of
this thesis.
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The observations are collected in the vector y, which stays fixed during the execution
of the inference algorithm. The target distribution that we want to approximate is the
posterior p(x|y) o« p(x,y). As discussed above, the normalization constant p(y) can
usually be neglected.

In order to distinguish cleanly between the target distribution and its approximation,
the former is always denoted as p, while the auxiliary distribution will be called 4. Note
that g is an approximation to the posterior distribution, but for simplicity, its dependence
on y is not made explicit. Our task is thus to find a g such that

q(x) =~ p(x|y). (B.25)

”

The first design decision that we need to make is to determine a set Q of “simple
distributions, from which the approximation g is picked. This choice entails a tradeoff
between accuracy and complexity: the larger® we choose Q, the higher the probability
that it contains an element g which approximates p well, but the problem of finding a
good g € Q typically becomes more complex.

In order to formalize this problem, we need a divergence measure D(p || ) which
quantifies the dissimilarity of p and q. It should be a non-negative function, with
D(p|lg) = 0if and only if p = g. Again, the choice of D contains an accuracy-complexity
tradeoff.

When we have selected a set Q and a measure D, we can express the problem of
finding a g ~ p formally as

g =argminD(p | §). (B.26)
jeQ

Once the optimum g is found, approximations to the marginals of interest are
computed as

Bu() = [ q(x) v, (8.27)

where x,, = (X0, -+ Xp—1,Xp41,---,xN—1) 1, and [(*) dx,, denotes marginalization
over all components of x except of x,. Since Q only contains sufficiently simple
distributions, (B.27) is exactly solvable by construction and requires no further discussion.
It then remains to find a solution of (B.26).

As we will examine in more detail below, the elements of Q are typically members
of an exponential family (see Section A.2) and are therefore indexed by a parameter
vector 0 € (), where () is the natural parameter space of the exponential family. Then,
the optimization problem (B.26) can equivalently be written as

6 = argmin D(p| g5)- (B.28)
0cQ)

5 “Larger” should be understood as “being a superset of,” rather than “having a larger cardinality,” because even
the simplest Q used in practice consist of uncountably many elements.
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In Section A.2 we have shown that the natural parameter space of an exponential
family is always a convex set. If the divergence measure is furthermore chosen such that
D(p|| qe) is convex in 6, (B.28) is a convex optimization problem [15]. Now, the value
of the preceding derivation becomes clear. Recall that our starting point has been the
marginalization problem

Pl ly) = [ plxly) dx,, (B.29)

which, by assumption, involves intractable sums or integrals. From the formulation (B.29)
it is not apparent how approximations could be introduced in a systematic manner.
By transforming the integration into an optimization problem, we gain access to the
powerful tools of convex optimization theory.

So far, we have not yet discussed how Q and D should be chosen. A natural question
to ask is whether there exist choices which lead to exact marginals, ,,(x,) = p(x | y)-
As we will see in the following, this is indeed the case. Note that this result does not
imply that we are able to solve the integration problem (B.29) exactly after all, because
we will generally not be able to find the exact solution of the corresponding optimization
problem (B.26). However, it still serves as an interesting starting point for the further
development.

B.3.2 Projections of Probability Distributions

Arguably the most important divergence measure is the Kullback-Leibler divergence

Dki(pllg) £ / p(x) log Zg)) dx (B.30)

which is well defined as long as p(x) > 0 = gq(x) > 0. It is a well-known property
that Dk (p || g) > 0 with equality if and only if p = g. Also, by substituting a generic
exponential family g(x) = exp <9T(p(x) - A(B)) into (B.30) and using the result that A
is always a convex function, it can easily be shown that Dxy (p || g¢) is convex in 6.

An operation that will be useful for the following derivation is the projection of a
probability distribution p into a set Q of distributions, formally defined as

projg [p] £ argmin Dxy (p || 9)
qeQ

= argmax/p(x) logg(x) dx. (B.31)
q€Q

Figure B.7 illustrates the projection of p into Q. Distributions are represented as points
in a Euclidean space, and the set Q is visualized by the gray surface. Every q € Q has
a certain non-negative divergence from p, represented in the figure by the Euclidean
distance. Then, g* = projg [p] is the element of Q which is closest to p.
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Dxr(pllq%)

Dxw(pll9)

Figure B.7: Visualization of g* = projg [p], the projection of p into the set Q

Note that the Kullback-Leibler divergence is not symmetric, so a different projection
could be defined as argmin, . Dki(q] p). In [65], this latter projection is called the
information projection, while (B.31) is called the moment projection. While we will indeed
discuss minimization problems of the type argmin, ¢ Dkr(q || p) below, we will reserve
the term projection, and in particular the proj-operator, for moment projection.

Two special kinds of projection are of particular importance for us.

Projections into the Set of Fully Factorized Distributions

Consider a random vector x = (x, ..., xN,l)T where, as discussed at the beginning of
Section B.3.1, the x,; are not necessarily scalars, but constitute an arbitrary partition of
all random variables of interest. The set of fully factorized distributions (with respect to
the given partition) is defined as

N-1
Fi {q ‘ g(x) = [[0 qn(xn)} (B.32)

where no constraints are imposed on the marginals g,,, beyond the necessary g, (x,) > 0
and [ g (x,) dx, = 1.
The projection of an arbitrary distribution p into F can be computed analytically:

qg= argmax/p(x) log §(x) dx
qeF

) N-1 .,
= argmax Y /pn(xn) log dn (xy) dxy (B.33)

4o,---gN-1 n=0
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where (a) uses the constraint § € F, (b) follows from the linearity of the integral, and
pn is the nth marginal of the joint distribution p. The sum is maximized by maximizing
each term individually, and hence

Gn = argfnax/pn(xn) log §in (xy) dxy,
qn

= argmin Dy (pn || Gn)
In

= . (B.34)

In words, the projection of an arbitrary p into the set of fully factorized distributions
is equal to the product of marginals of p. This means in particular that by choosing
Q = F and D = Dy in (B.26), we obtain an optimization problem

q = argmin Dxp(p || 4) (B.35)
jeF

whose solution consists of the exact marginals of p. Unfortunately, solving (B.35) is an
intractable problem in itself for most practical distributions, but this result nonetheless
motivates our focus on fully factorized approximations (which furthermore have the
advantage that they lead to a trivial post-processing step (B.27)). In order to finally
obtain a suboptimal, but practically implementable algorithm, we can apply several
kinds of approximations to (B.35):

e A potential problem is that the marginals g, can become arbitrarily complex,
particularly for continuous variables. This can be remedied by imposing further
constraints on the individual marginals, the most important example being the
constraint to some exponential family. This will be the topic of the following
subsection.

e We can change the divergence measure. In principle, there is an endless supply of
candidates (for instance, [94] discusses the class of a-divergences which includes
Dxw(p|lg) and Dxp(q || p) as special cases), but in this thesis we limit ourselves to
the Kullback-Leibler divergence, or KL divergence for short. We will see, however,
that replacing Dxp.(p || q) by DxrL(q || p) often leads to a significant complexity
reduction (albeit usually at the expense of a reduced algorithmic performance).
For reasons that are explained in Section B.4.4, Dxy (p || ) is called the inclusive
KL divergence, and Dk (g || p) the exclusive KL divergence.

e Rather than trying to find a one-shot solution to (B.35), which is hopeless for most
distributions of practical interest anyway, we can exploit the structure of p (see
Section B.2). By maintaining separate approximations for the individual factors of
p, we obtain a set of equations which we can attempt to solve by iterative methods.
Section B.4 presents a detailed study of an approach using fixed-point iterations.
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Projections into an Exponential Family

In this subsection, we address the first point from the list above. If the true marginals
are too complex, we can impose a constraint g, € Q,, on them, where

On = {qn | log qu(xn) = 9;',—4’,,(9511) - An(en)} (B.36)

is a suitable exponential family with sufficient statistics ¢,, and natural parameters
0,, € O, as introduced in Section A.2.

In order to incorporate this constraint into (B.35), we use again the projection operator
as defined in (B.31). Solving for g, = projg [px] boils down to finding the natural
parameters 6, of gy:

0, = a{gmax/ Pn(xn) logqn(x,) dxy,

0,0,
=argmax | pn(xy) <9:¢n(xn) - An(én)> dxy, . (B.37)
é’ZEQ”
2f(8n)

A unique stationary point of f; is found by setting its derivative to zero:

fn 0Ay, |
agz = /Pn(xn)¢n(xn)dxn - o =0 (B.38)
= Ep,[¢,] =Ey,[¢,] (B.39)

where (B.39) follows from (A.69), which states that the derivative of the log-partition
function of an exponential family is equal to the expectation of its sufficient statistics.
The Hessian of f,; can be found using (A.71) as
Pf  PA,

30,90] 00,00,

= —covy, [¢,] (B.40)

which is negative semidefinite. This proves that the stationary point is a maximum.

Equation (B.39) is referred to as moment matching. For example, since the Gaussian
distribution is characterized by the sufficient statistics ¢ (x) = (x,x?)T, the projection
of p into the family of Gaussian distributions is the particular Gaussian with the same
mean and variance as p.
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B.4 Divergence Minimization via Fixed-Point Iterations

In Section B.2 we have seen that exploiting the structure of the target distribution is
a key step towards the derivation of efficient inference algorithms. There, our focus
has been on singly-connected belief networks, which allow for exact marginalization
via belief propagation. In this section, we will discuss how the structure of p can be
used to derive iterative algorithms which yield approximate solutions of the divergence
minimization problem (B.35).

The notion of structure essentially refers to a factorization of p,

p(x|y) = Z H fr(xas) (B.41)

where each factor f; usually depends on just a small subset of x. Note that some of the
fx may depend on y, but for simplicity we do not make this dependence explicit.

Recall that our aim is to find a simple auxiliary distribution g which approximates p.
In order to exploit the factorization of p, we impose an analogous factorization as (B.41)
on g and write

1 K=1
=3 [T o) (B.42)
=0

with the implicit meaning that each f; is an approximation of the corresponding f;.
Furthermore, g is constrained to be fully factorized, so it can also be written as

N-1
=TT an(xn). (B.43)
n=0

Since q(x) is an approximation of the posterior p(x|y), each q,(x,) can be interpreted
as an approximation of the marginal posterior p(x, | y). The distributions g, are also
called beliefs, as they encode our belief, i. e., our probabilistic knowledge, about x;,.

By comparing (B.42) and (B.43), we see that each f; necessarily decomposes into a
product of unary factors

Feean) o TT misn(xn) (B.44)
neN;

and thus®
—1

K
q(x) o< IT TT misn(an)

k=0 neN;
N-1

=11 IT mk—n(xn) (B.45)

n=0 kek,

6 As defined earlier, N contains the indices of the variables that appear in the argument list of f;, and I,
contains the indices of the functions that depend on x;,.
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The two expressions above merely differ in the grouping of the factors my_.,. Then,
comparing (B.45) with (B.43), we obtain

Gn(xn) o< [T masn(xn). (B.46)
ke,

If the my._,, are members of an exponential family, this multiplication boils down to a
summation of their natural parameters.

Note that the equalities above are only given up to constant factors (with respect to x,
which in particular includes the evidence p(y)). As already mentioned at the beginning
of this chapter, it is not necessary to keep track of multiplicative constants, because (a)
we are often just interested in arg max g, (x,), which is invariant under multiplication
with positive constants, and (b) we know that g, is a distribution and therefore must be
normalized. We can always recover the normalization constant from (B.46) if required.

For later use, we also define functions of the type m,,_,j as

mn%k(xn) x I—[ mk’%n(xn)
k' ek, \{k}

@ _n(xn) (B.47)

Mi—n (x n )

where (a) holds as long as Vx, € Xy, : my_,,(x,) # 0, but this limitation is not relevant
to us for the following reason. Without loss of generality, we can restrict X, to those
values which have a non-zero prior: X, = {x,|pn(x4) > 0}. And our ubiquitous
assumption that the observations can be modeled as a superposition of some function
of x and additive Gaussian noise guarantees that the likelihood is strictly positive: the
received data may render some values x, € X, extremely unlikely, but never impossible.
Thus, all x, € &), necessarily have a strictly positive belief, and because of (B.46), this
implies that all m_,,, are also strictly positive.”

Note that (B.47) implies that for any k € KC;,

n (xn) o< My (Xn) My (Xn). (B.48)
The iterative divergence minimization algorithm now works as follows:
o The algorithm maintains a factor my_,,, for each pair (k,n) with n € N.
e At the beginning, the factors are initialized to constant functions: my_,,(x,) = 1.

e According to some schedule, the functions m_,,, are updated by minimizing a
local divergence measure. This restriction to local optimization problems is the key
step which makes the algorithm practically feasible, but also suboptimal. It will
be discussed in more detail below.

7 An exception occurs in the context of hard decisions (see Section B.4.3), where the belief g, is a Dirac distribution.
In this case, Vk € IC,; : 1, = qn.
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e At any time, estimates §, (x;) of the marginals p(x; | y) can be obtained via (B.46).

o After a certain stopping criterion has been reached (e. g., after a fixed number of
iterations, or when convergence has been detected), the algorithm terminates and
outputs the most recent beliefs.

We now examine the central step, the update of the functions my_,,. Ideally, we
would like to solve

mpsy, = argmin D(p | q)
mk%rﬁqﬂEQ”
1 k=1 1 K=1
= argmin D Z ka/ z ka/ . (B.49)
My Gn € D k'=0 kK'=0

The subscript of the arg min operator indicates that we minimize over my_,, with the
constraint q, = m,_mg_,, € Qu. The set Q, is either a certain restricted set of
distributions, e. g., an exponential family, or simply the set of all distributions over X};.

However, solving the global problem (B.49) directly is intractable by assumption.
The trick for obtaining a feasible approximation is to assume that all fi, k' # k, are
already good approximations of the respective fi, so that the local problem®

1 IS R
MW — argmin D (Z, £ T1 fe H S 11 fk,> (B.50)
K £k

Mi—n:qn S Qn k’#k

is a good approximation of (B.49).

The validity of the assumption fi ~ fi is of course far from guaranteed. A typical
characteristic of iterative schemes is the existence of a certain region of attraction around
the global optimum. As long as the algorithm is initialized within this region, the
updates will move the beliefs closer to the optimum and the algorithm will eventually
converge. In digital communication systems, a standard means of improving the
initial parameter estimates and hence increasing the probability of convergence to the
global optimum is the transmission of some training data. However, an analytical
characterization of the size or shape of the region of attraction is a hard problem, which
is not studied in this thesis.

It remains to solve the local optimization problem (B.50) for particular choices of D.
As mentioned earlier, we restrict ourselves to the inclusive and exclusive Kullback-Leibler
divergences, which allow for analytic solutions of (B.50).

8 Here and in the following, we simply write k' # k and leave the bounds 0 < k' < K implicit.
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B.4.1 Inclusive Kullback-Leibler Divergence
On setting D(p || q) = Dxr(p || 9), (B.50) becomes

m, = argmin Dy < S TLie | 51T fk/)

My qn € Qn k' #k k' #k

= argmin /fk XAG) ka/ (xn,) logfk( Ne)

dx
mkan:q;xegn k'#k f( N)

—

) ~
2 argmax [ flxy) TT felong) logme s (xa) dx (B51)
mkﬂn:q:!EQn * k/;ék

where (a) holds because the objective function depends on m1;_,,, only through f;.

Let us first assume that Q,, is the set of all distributions over &}, so that the only
constraints are g, (x,) > 0 and [ gu(xn)dx, = 1. With a similar argumentation as
given after (B.47), we can assume that the optimum occurs at an interior point, i.e.,
that gy, is strictly positive. Therefore, we can solve (B.51) by setting the derivative of
its Lagrangian to zero. The non-negativity constraint is satisfied anyway, so we only
introduce a Lagrange multiplier A for the normalization constraint, yielding

Limon) = [ ([ feea) TT fiolns ) 1og () dieyy Aty (on) g () )l

k' £k
(B.52)
Its functional derivative (see Section A.1.4 on page 208) is
fie(ens) Tl fie (20,
dx\, +Am X B.53
5mkﬁn / My (Xn) \n n-sk(xn) ( )
which becomes zero if
mpeY (x / X H(xpr,) dx
1) ¢ ey f o) T Feon)
(a)
x /fk ) [T TT moosw(xw) dxy,
ysi(Xn) k’;ékn Ny
(b)
: e (x /fk x/\/'k H H My —sp! (xn )dx\n
n~>k n'=0k ek, \{k}
(c)
(e po /fk x'/\[k H H mk,ﬁn/(xn/) H dxn//
n—k (X n'eNi kel \{k} n"eN\{n}
)
(: /fk xM H My g (%) H dxn
My g (%

n'eNg n"eN\{n}
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(2 /fk(XM) H m,,/ﬁk(xn/)dxn/. (B54)
n' €N\ {n}

Here, (a) uses (B.44), (b) swaps the product operators, (c) follows from integration over
all x,; with n’ ¢ N, which implies that k ¢ K, (d) uses (B.47), and (e) cancels the
function m,,_.

If we impose further constraints on g, (i.e., if Q, is a strict subset of the set of
all distributions over X)), the optimization problem does not have a closed solution
as (B.54) since it must of course depend on the particular constraint. However, we can
derive a similar-looking solution with the help of the projection operator (B.31). To that
end, we write mp<Y (xy) o< g (xn)/my, i (xy) with the implicit understanding that g,
is varied only through my_,,, while m,_,; stays constant. Continuing from (B.51), the
update equation for g, can be derived as

e = argmax/fk(x/\/k) H fk/(x/\/k,) log g, (xy) dx

1u€Qn K £k
= argmax/ (/ felany) TT fk/(x/\/k,)dx\n) log qn (xn) dxp
4u€Qn K £k
@ argmax/(mnﬁk(xn)/fk(x/\/k) 11 m,,/ﬁk(xn/)dxn/) log g (x,) dxy
Gn€Qu n’ eN\{n}
. 1
= argmin Dg|, (Z My (Xn) /fk(x/\/'k) H My k(X)) Ay qn)
Qnggn X H/GM\{H}
, 1 :
= P10)g, [Z mn—>k(xn) / fk(x/\/k) I—I mn’—>k(xn’) dxn’] (B.55)
n' €N\ {n}

where (a) comprises essentially the same steps as (a)—-(d) in (B.54), and where Z is a
normalization constant that is required because the KL divergence and the projection
operator are only defined for normalized distributions.

The update equation for ny_,, is then

M () & projg, | k) [ filow) [T ko) o
Mk (xn) 4 . weN\{n}

(B.56)
which can be seen as a generalization of (B.54): if the projection is unnecessary, either
because g, is unconstrained or because the projection argument is already in Qy, then
proj becomes the identity operator, the functions m,,_.; cancel out, and (B.56) reduces
to (B.54). In the general case, however, proj is a nonlinear operator, and canceling the
m,_,x is not allowed.
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B.4.2 Exclusive Kullback-Leibler Divergence
Using the exclusive KL divergence D(p || q) = Dxr(q]| p) in (B.50), we obtain

mjy, = argmin DKL( FeTT Fie | Z,kafk/>

mkan”]negn k' #k k' #k
_ ; ; z filxay)
= argmin [ fi(xp;) H fr(xn,) log Gint) dx
mkan”]negn k' #k f
. HH/'EN mk%n//(xnr/)
= argmin x (x) lo X dx
mka?ﬁnGQn / qn( ") nl’gn i ( ! ) 8 fk(x/\/k)

i k—m(xn)
= argmin [ m,_;(xy) Mmy_,(x (xy) lo dx. (B.57)
mkai;:llnegn / " ! B nl;[n ‘7" " g fk(xNk)

As above, we solve this problem by introducing a Lagrange multiplier A for the
normalization constraint, yielding the Lagrangian

L(m ://m Xp)m X X,) lo, k%"(xn)dx
(Mk—sn n—k (Xn) Mgy (Xn HI;IW% n) 108 JACT) \n

+ Ay, (xn) mk%n(x”)> dxy,. (B.58)

Its functional derivative is

OL _ k—>n( )
Sy _sy B / (mnﬂk xn ],';‘[n i xn log f( ) "'_mnak o nl;Inqn/ ! )) dx\”
+ Aty (xn) (B.59)
which becomes zero if
Eew

/ og = ]  gqw(xw)dx, = const (B.60)

fi( xNk ' N\ {n}
> log mpY (xn /log fr(xaz)) H g (%) dxy + const (B.61)

weN\{n}
= mp&y (xn) o< exp /log fr xNk)) H G (%) Ay | (B.62)
n' €N\ {n}

This derivation assumes an unconstrained g, (besides the necessary normalization
constraint). In principle, we could impose an exponential-family constraint on g,
just as we did for the inclusive KL divergence. However, the resulting optimization
problem does not have a closed-form solution, because the exclusive KL divergence
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D (exp(87¢ — A(8)) || p) is in general not convex in 8. (In contrast, the inclusive KL
divergence Dxp (p || exp(8T¢ — A(8))) is convex in 8, independently of p and ¢, since
its Hessian is equal to the Hessian of A, which is a positive semidefinite matrix.) The
good news is that such a constraint is rarely needed in practice, since the result of (B.62)
is typically quite simple already.

An important exception is hard estimation of x;, which is included in the divergence
minimization framework by constraining g, to the family of Dirac distributions.

B.4.3 Hard Parameter Estimation

Two problems that arise frequently when dealing with continuous variables are (a)
the problem of storing a probability density in finite memory, and (b) doing further
computations with the density, typically involving the evaluation of expectations of
certain functions with respect to the (potentially very complex) density. As we have
seen, exponential families are often able to solve both problems.

Another approach for handling continuous parameters is to abandon soft information
(expressing uncertainty by means of probability distributions) entirely, and to simply
compute hard estimates (also called point estimates) instead. The concept of hard
estimators plays a central role in orthodox statistics, where they are invented in a rather
ad hoc fashion, based on heuristic criteria like maximum likelihood (ML) or unbiasedness.
But hard estimators are also found in the context of Bayesian statistics, the most
important examples being the maximum a posteriori (MAP) and the minimum mean squared
error (MMSE) estimators. They can be systematically integrated into our Bayesian
framework by treating the estimate £, of x, as the Dirac distribution

Gn(xn) = 0(xn — £n). (B.63)

Hard estimates solve the two problems mentioned above even better than exponential
families: their representation only involves storing a single value £,,, and the expectation
of any function f(x,) with respect to a Dirac distribution is trivially f(%£,). The obvious
disadvantage is that hard estimates generally lead to a worse algorithmic performance
since they discard any reliability information about the estimate.

There are two situations where using hard estimates is appropriate:

e When there is sufficient data available, so that the variable can be estimated with
high reliability. If the true posterior distribution is a thin spike, then replacing it
with a Dirac will have a negligible impact on the algorithmic performance, and
the complexity reduction makes the usage of hard estimates worthwile.

e As a last resort, when the true posterior is so involved that even the projection
into an exponential family is intractable.
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In this section, we discuss how hard estimates fit into the divergence minimization
framework. The following notation will be used: the set of all Dirac distributions over
X, is denoted as A(X};), while 63, € A(X}), defined via

82, (xn) = 6(xn — %) (B.64)

is the distribution which assigns all probability mass to the value £, € &;.
We begin by considering the divergence minimization problem

argmin Dy (4. || Z7'f) (B.65)
QHEA(-XL)

with some non-negative function f : X, — R, and Z £ [ f(x,) dxy,. Strictly speaking,
the Kullback-Leibler divergence is undefined for Dirac distributions. We can circumvent
this problem by instead constraining g, to Gaussian distributions with fixed variance
€ > 0, and defining (B.65) as the limit for ¢ — 0. For simplicity, the following derivation
assumes that x, is a real scalar, but the generalization to other objects like vectors or
matrices is straightforward.

With the constraint’ gn = N(u,¢), where ¢ is fixed and p variable, we obtain the
following optimization problem:

qn = argmin Dyp (qa | Z71f)

3=N(ju€)
qn(xn)
= argmin /q xy) log ——=——dx
q”:,/\f(y e e Z f( ) !
= argmax /qn xn) log f(xy) dxy + § log(27tee) — log Z. (B.66)
3u=N ()

The last two terms in (B.66) are independent of . Taking the limit ¢ — 0, it remains to
solve

= 11m argmaxlEN ¢ [log f(xn)]

= arg max log f(@) (B.67)
fi

since E y(;,¢)[log f (xn)] — log f(u) for & — 0. Thus, we define (B.65) as

argmin Dy (qn || Z71f) £ 8;, with £, = argmax f(x,). (B.68)
n€A(X,) Xn € X

9 N(u, ) is the Gaussian distribution with mean y and variance e. It should not be confused with NV, the set of
variables from the argument list of f;.
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In order to incorporate the hard estimation of variable x; into the DM framework,
we must slightly modify the procedure that we discussed above. The problem is that
the decomposition (B.46)

Gn(xn) H Mgy (Xn) (B.69)
kek,
is not meaningful if g, is a Dirac distribution. Thus, rather than updating the m_,,
separately based on this factorization, we update g, directly by minimizing the exclusive
KL divergence:

qp°" = argmin Dy (71| p)
n€A(Xy)
N-1 1 K-1
= argmin Dxp | [] 9w Z 11 %
gnE€N(Xy) n'=0 k=0

= arg min/qn(xn) H G (x) log qn (xnIZI];I;}:T;Ac/]k,S/(xn/) d

%GA(X) n’;&n
qn(xn) }
= arg min xn) E log ————| dx
4 egA /q" ) Bl [ ngfk(xNk) "

1 K-1
77 Bl 00 {log I1 fk<x/vk>] )
Gu€A(Xy) k=0

— 5, (B.70)

= argmin Dgp, <qn

where

K-1
= argmaxEry,, 4, {log 11 felxas ]

Xy €Xy
= argmax ) B cni oy [log fi(xpr)] - (B.71)
X €Xy ke,

If the functions are so involved that there is no closed-form solution for the maxi-
mization problem (B.71), gradient ascent methods may be employed as proposed in [28].
Note that £, can be seen as an approximation of the MAP estimate

£MAP 2 aremax p(xn | y) (B.72)

Xy €Xy

because

£, = arg max / [T 9w (xw) log p(x | y) dx,y
x,€Xy /;én

= argmax log p(x |y) +/ IT aw(xw) log p(xy, [ xn,y) dxy. (B.73)

Xn €Xy n'#n
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Under the assumption that the x, are almost independent given the data y, the term
log p(xy | y) is much more sensitive to changes in x,, than the integral, so £, ~ £}MAT.

In the derivation above, we have always used the exclusive KL divergence. Could
we also use the inclusive KL divergence for hard estimation? In order to define the
projection into the set of Dirac distributions, we can write similarly to (B.66) for variable
u and fixed €

qn = argmin Dx(Z7'f || qn)

Gn=N(j1€)

= argmax /Z 1f (xn) log qn(xn) dxy
=N (p

= argmin /Z Lf(xn) (0 — p)? daxy. (B.74)
QU=N Vr

By setting the derivative with respect to y to zero, it is easy to show that the minimum
is attained for
u= IEqu[xn] (B.75)
independently of ¢, so it particularly holds in the limit ¢ — 0. Thus, it makes sense to
define
argmin D (Z7'f || gu) 2 0z, where %, = Ez-1f[xu]. (B.76)
qn€A (Xn )
We can incorporate this projection into the DM framework analogously as above,
yielding MMSE hard estimates

T, = TMMSE 2 |

Xn (B.77)

pl ) o]
At first glance, this seems to be a nice complement to the MAP-like estimates obtained
via exclusive divergence minimization. However, it does not appear to have any practical
relevance. If we use hard estimates in order to decrease the computational complexity
when the true posterior is narrowly spiked (the first bullet on page 252), then MAP and
MMSE yield virtually the same estimates, anyway. And if we use them as a last resort
because even projections into an exponential family are too involved, then computing
the MMSE estimate is probably intractable, either. Conversely, if we were able to
compute the mean of a distribution, we could usually also compute its variance, so the
projection into the Gaussians would be an option. (Even if the true distribution is very
non-Gaussian, a Gaussian approximation would still be better than a Dirac distribution.)
In this thesis, we always use the exclusive KL divergence for hard estimation.

B.4.4 Comparison of Inclusive vs Exclusive Divergence Minimization

Above we have derived different ways to approximate the functions f;, based on
minimizing the inclusive and exclusive Kullback-Leibler divergence. But what is the
difference between them, and when should we use which one?
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Figure B.8: Projection of a bimodal Gaussian mixture distribution p into the family of
Gaussians, where g; = argmin D, (p || 9) is the result of minimizing the inclu-
sive KL divergence, while g, = argmin Dky. (4 || p) is obtained by minimizing
the exclusive KL divergence

In order to answer the first question, we first note that if the approximating family
allows for a close fit to the true distribution, then we expect that minimizing either
divergence will give about the same result. So in order to appreciate the difference,
we need to study an example where the true distribution is quite different than even
the best approximations. Inspired by the example given in [94], Figure B.8 shows the
approximation of a bimodal Gaussian mixture p with a single Gaussian. The Gaussian
labeled g; is the result of minimizing the inclusive KL divergence, i. e., the result of the
projection as defined in (B.31). Its mean and variance have been obtained by moment
matching (B.39), i. e., by setting them to the mean and variance of the Gaussian mixture.
The result is a Gaussian which covers both modes of p, even though it necessarily
has its own mode in the valley between the modes of p, in a region where p is rather
small. Conversely, the Gaussian labeled g., which has been obtained by minimizing the
exclusive KL divergence, covers only the larger mode of p and almost ignores the other
mode. Since there is no closed-form solution, the mean and variance of g, have been
computed by numerical optimization.

This behaviour can be explained as follows. From the definition of the inclusive KL
divergence

Diw(p ) = [ pls) og L2 ®78)
we see that
p(x) >0 = g;(x) > 0. (B.79)

A violation of this condition (except possibly on a set of measure zero) would lead to an
infinite KL divergence. Thus, g; includes all regions where p is large.
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Conversely, when minimizing the exclusive KL divergence,
p(x) =0 = ge(x) =0 (B.80)

so g, cannot assign a large density to a region where p is small; it can only cover
one mode while excluding the other. As a side note, this example also illustrates that
minimizing the exclusive KL divergence with an exponential family constraint is in
general a non-convex problem: the global minimum is attained when g, covers the
bigger mode (in terms of bigger mass, not higher density at the maximum), but there
is also a local minimum when g, covers the smaller mode. In between, there is a local
maximum where g, covers only the valley between the modes of p.

So when shall we use which divergence? Since there are no hard and fast criteria, all
we can do is give some rules of thumb. A coarse ordering of the approximations from
“good but complex” down to “poor but simple” is

o Inclusive KL divergence minimization using (B.54):

s Gen) e [ fileag) IT el ds (B:81)
X n'eNi\{n

As discussed on page 244, projecting p into the set of fully factorized distributions,
without further constraints on the marginals q;,, would result in the exact marginals
qn = pu. Of course, we are not able to solve the projection exactly for sufficiently
complex p, but nonetheless, the approximate result that we obtain via the fixed-
point iterations is usually still quite good. Since (B.81) does not impose an
exponential family constraint, it can in practice only be used if the result of (B.81)
is already sufficiently simple, e.g., if x, is discrete. In the context of digital
receivers, important examples are demapping and decoding, since those tasks
involve data symbols and bits, respectively. Famous applications of (B.81) are the
iterative turbo and LDPC decoding algorithms, as well as iterative detection and
decoding (BICM-ID).

o Inclusive KL divergence with an exponential family constraint, using (B.56):

new

. 1
MR, () j Proig, | 7 mak(en) [ filen)  TT o) d

My sk (Xn neN {n}

(B.82)
Projecting the belief into a family of simple distributions can sometimes lead to a
tremendous complexity reduction. The impact on the algorithmic performance
obviously depends on the accuracy of the projection. An important application
of (B.82) in the context of digital receivers are LMMSE filters, used e. g. for MIMO
detection, and iterative code-aided channel estimation.
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o Exclusive KL divergence minimization using (B.62):

et (x) ocexp | [ log (i) IT v s (B.83)
X n'eNi\{n

While discrete variables can usually be handled with the inclusive KL diver-
gence, (B.83) often leads to significantly simpler (and also numerically more
robust) formulas than (B.82). In this thesis, it is used e. g. for SNR estimation and
the tracking of phase noise processes.

e Hard estimation using (B.70) and (B.71):

e =65, where £, =argmax ) /log (fexa))  TT aw(xw) dxy
E€Xy kel ' eN\{n}
(B.84)
Clearly, reducing a distribution over &), to just a single value £, € &), is the
simplest possible approximation, but also the poorest one.

Due to the lack of a thorough, systematic way for selecting the best approximation
strategy for a given inference task, there is not much choice but to exercise pragmatism:
do the math, implement the algorithms in a simulation environment, compare them in
terms of performance and complexity, and finally come to an educated decision.

B.4.5 A Message-Passing Interpretation of Divergence Minimization

As discussed in Section B.2.2, belief propagation is often presented as a message
passing algorithm, which operates on a graphical model of the belief network. While
this interpretation is by no means of any fundamental importance, it is still a nice
and intuitive way which helps the algorithm designer to identify the structure of the
underlying problem, and to visualize the exchange of information between the variables.
Also, some properties are expressed more naturally with graphical models than using
plain mathematics. For instance, it is well known that loops of length 4 are detrimental
to the performance of LDPC codes, and hence should be avoided. Expressing this
statement (and identifying the problem in the first place) without the aid of graphical
models would be more intricate.

In [94] it has been shown that the generic divergence minimization framework also
lends itself to such an interpretation. As long as the approximating distribution is
fully factorized (as we have assumed throughout the derivation above), factor graphs
are well suited for this task. Remember that a factor graph is bipartite. It contains a
factor node for each function fi, k € {0,...,K— 1}, a variable node for each variable
xn, 1 € {0,...,N—1}, and an edge connecting the nodes f; and x, if and only if f;
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(a) The fully factorized approx- (b) The belief g, is given by the (c) An outgoing message from a

imation of f; is the prod- product of all incoming mes- variable node is the product
uct of all outgoing messages sages at the variable node x, of the incoming messages
from the factor node f; as in (B.85) along all other edges (B.86)

Figure B.9: Messages, beliefs, and fully factorized approximations in a factor graph

depends on x,,. Thus, N} can be seen as a function which returns the set of neighbors of
the factor node f, while C;; returns the set of neighbors of the variable node x;,.
Associated with each edge are two functions my_,,(x,) and m,_,x(x,), which are
respectively interpreted as the message sent from factor node fj to variable node x,, and
the message in the reverse direction, from variable to factor node. The message passing
algorithm proceeds by iteratively refining the factor-to-variable messages according to
the update equations that are summarized in the previous subsection. The beliefs g,
and variable-to-factor messages m1,,_,;, which appear in those update equations, are just
shortcuts for products of factor-to-variable messages, defined in (B.46) and (B.47):

Gn(xn) o< TT mgsn(xn) (B.85)
ke,

My i (xXn) o H My (X)) n(Xn)

_Amtn) (B.86)
k'EKn\{k} My —n (xﬂ)

Hard constraints are an exception: if g, = d3,, then Vk € IC;y : m,,_; = 03, as well.
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B.5 Special Cases of Divergence Minimization

We conclude this chapter with a brief overview of some state-of-the-art techniques for
statistical inference. We will see that they are all included in the generic divergence
minimization framework as special cases. They also serve as building blocks for
the receiver algorithms that are discussed in this thesis. The virtue of the generic
divergence minimization approach is that it provides a systematic way for deriving
composite receivers whose subparts belong to different algorithmic classes. In the
context of digital receiver design, the ability to mix different inference techniques is
of vital importance, since this domain naturally comprises both discrete (bits, data
symbols) and continuous variables (channel weights, synchronization parameters).
There are several examples in the communication literature where such algorithmic
blends have been derived heuristically, and where the DM framework enables us to
propose improvements for these ad hoc algorithms, or to explain phenomena which have
been observed experimentally, but which so far have lacked a theoretical understanding.

B.5.1 Loopy Belief Propagation (BP)

In Section B.2.2, belief propagation [104] has been presented as an exact marginalization
technique for tree-structured graphical models.!? Essentially, it is a systematic way
for minimizing the number of arithmetic operations by means of the distributive law,
exploiting the structure of the belief network. Belief propagation terminates in finite
time and returns the exact marginals.

While BP in its strict form can only be applied to single-connected graphs, it purely
consists of local computations which are ignorant of the global structure, so nothing
prevents us from running BP in belief networks with loops. The resulting algorithm,
known as loopy belief propagation, is both iterative and approximate (since information
can flow in circles and eventually gets double-counted), which caused it to be largely
ignored at first [41]. It became widely appreciated only after the discovery of turbo
codes [11,12], when researchers recognized that it provides the theoretical background
of the celebrated turbo decoder [68,86]. This finding then sparked research on the
application of loopy BP to other inference problems than channel decoding [97].

While loopy belief propagation has traditionally been presented as a heuristic
application of BP to graphs with cycles, it is interesting that the divergence minimization
approach leads to precisely the same algorithm. In fact, (B.86) and (B.81) are nothing
but the variable-to-function and function-to-variable message update equations of

1%In his paper [104], Pearl used a different kind of graphical model, called Bayesian network, but the gist of BP on
Markov and Bayesian networks is the same. See also [105] and [65].
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loopy belief propagation in factor graphs (c.f. (5) and (6) in [69]), particularly if we
replace (B.81) by its discrete version

mpel () o Y flleng) T mwosk(aw). (B.87)
TN\ {1} n'eNi\{n}

B.5.2 Expectation Propagation (EP)

Expectation propagation is a technique for approximating posteriors in belief networks,
which has originally been proposed as a generalization of assumed density filtering
(ADF) [91,92]. Later it has been formulated as a message passing algorithm [94], which
has made the tight connection of EP and BP obvious. In fact, the only difference is that
EP uses (B.82) rather than (B.81) for the function-to-variable message update, i. e., that it
performs a projection of the beliefs into an exponential family.

The fact that projecting a distribution p into an exponential family with sufficient
statistics ¢ boils down to computing the expectation [E, [¢(x)] explains the name: While
BP propagates the whole beliefs of the variables through the network, EP only propagates
the expectations of their sufficient statistics.

B.5.3 Expectation Maximization (EM, BEM)

Expectation maximization is an iterative method for solving intractable maximum like-
lihood (ML) estimation problems. It has originally been presented in [32], and an
accessible overview of the algorithm can be found in [96].

Assume we are given some data y, drawn from a distribution p(y; 6) which depends
on a parameter 6. The original formulation of the EM algorithm is rooted in orthodox
statistics and thus models 6 as a deterministic quantity rather than a random variable;
in particular, it does not assign a prior distribution to 8. We wish to solve the maximum
likelihood estimation problem

oML £ arg max p(y;6). (B.88)
0

The EM algorithm assumes the existence of some hidden data x, such that, if x were
known, maximizing p(x,y;0) over 6§ would be easy. (Note that the bold x in [96], the
so-called complete data, comprises both x and y in our notation.)

Starting from an initial estimate §(°), where the superscript denotes an iteration
index, the EM algorithm proceeds by iteratively applying the following two steps.

e Expectation step (E-step):

Q(6;6) =, |, g0 [log p(x,y;6)] (B.89)
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@@

Figure B.10: Factor graph for the EM algorithm (note that y is known and is therefore not
explicitly represented by a variable node)

e Maximization step (M-step):

ali+l) = arg max Q(6; é(i)). (B.90)
0

To see how this algorithm can be derived as a special case of DM, we start by drawing

the (admittedly not very exciting) factor graph shown in Figure B.10. The belief g, is

unconstrained, whereas gy is constrained to Dirac distributions, qé’) = 0401

We start by initializing §(°) (how to choose the initial estimate is application-specific
and not prescribed by the EM algorithm). One iteration of DM then proceeds as follows.
First, we update g, according to

g3 (x) & il (x)
=E [p(x,y;0)]
= p(x,y;00). (B.91)

()

Normalization of qxi is trivial:
7 (x) = plx|y;0%). (B.92)
Then, we update gy by applying (B.84)
0+ — arg max / log(p(x,v;0)) g% (x) dx
0
= arggnax]Ep(xly;é(,->>[log p(x,y;0)]. (B.93)
One EM-iteration can be broken down into three steps:
1. Compute p(x |y;0())
2. Compute ]Ep(x\y;é(i)) [log p(x,y;0)]

3. Compute §(+1) = arg max, E, (e |y:00) [log p(x,y;0)].
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Figure B.11: Factor graph for the Bayesian EM algorithm

The traditional presentation of the EM algorithm merges the first two steps into the
E-step, while the last one is the M-step. In the derivation via the DM framework, 1. is
taken as a separate step (the update of gy), while 2. and 3. together constitute another
step (the update of gg). The overall algorithm, however, is identical.

The Bayesian EM algorithm (BEM) [46] is a variant of EM, which models 0 as a
random variable and thus assigns it a prior distribution py. It is easily derived that
the only difference to the classical EM algorithm is to account for the log-prior when
updating 6:

U+ = argmaxE, .\, 50 [logp(x y|16)] +1logp(0). (B.94)
0

Note that the classical EM algorithm can be regarded as a special case of Bayesian EM
(at least formally); it is obtained by assuming a uniform prior for 6.

B.5.4 Space-Alternating Generalized EM (SAGE)

The space-alternating generalized expectation maximization algorithm [38] is a general-
ization of EM which assumes a parameter vector 0. In each iteration, it only updates
a subset of components of 8. As long as the components can be split into a partition
(6o, - -.,0n—_1), where exactly one 6, is updated per iteration, SAGE can be obtained as
a special case of DM by introducing separate variable nodes for each 6,,.

As an example, consider the problem of estimating static, frequency selective chan-
nels in a multiple-input-single-output (MISO) OFDM system, as discussed in [153]. The
transmitter is equipped with N; antennas. The link from the nth transmit antenna to the
receiver is characterized by the channel impulse response h;, of length L. The OFDM
system uses K subcarriers, K > L, so the frequency domain channel response is Fh;,
where F is a K X L matrix, consisting of the first L columns of the K x K FFT matrix. The
nth transmit antenna sends the frequency-domain data symbols x;, which are assumed
to be known at the receiver (they are either training data, or the receiver operates in a
decision-directed mode). Assuming perfect synchronization, the received signal in the
frequency domain is

Ni—1
y= Y X,Fh,+w (B.95)
n=0

where X, = diag(x,) and w ~ CN(0, NgIg). Our task is to estimate the channels h,,.
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Figure B.12: Factor graph for the application of SAGE to MISO-OFDM channel estimation

If we model the channel weights as deterministic (equivalently, assign improper
uniform priors), a one-shot solution is given by the method of least squares as

W™ = (xHx)"1xHy = Xty (B.96)

where h = (hT, .. .,h?\—]ﬁl)T and X = (XoF,...,Xn,_1F). However, this requires the
computation of the pseudo-inverse of a K x N;L matrix (assuming K > N;L).

In order to decrease the computational complexity, [153] proposes to apply the SAGE
algorithm to this problem. The vector h of unknown parameters (corresponding to 6
above) is partitioned into the N = N links hy, ..., hy,—1, and per iteration, one estimate
Iy, is updated. The comb-structured factor graph of this problem is shown in Figure B.12.
The update equations are easily derived as follows

ey — aig meLix ]El_[n/#ufl(hn/) logp(y|ho,... hn—1)]
n€C

= argminHy — Z X,,/sznr —an-"hnH2

h,eCL n'#n
~———
29,
= (FixMx, F)1FHx!y, (B.97)

which only involves the inversion of an L x L matrix.

Note that the DM approach has allowed us to derive (B.97) in a simple and systematic
manner, without the need for artificial concepts like “complete” and “incomplete”
data spaces. Having understood the general principle, it is easy to derive further
modifications. For example, if the inversion of an L x L matrix is still too expensive,
we can break the parameter vector & down into smaller pieces. As an extreme case,
we could split h into its N;L scalar coefficients, introducing a separate variable node
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for each of them. The update equation for ]:ln,l is derived analogously as above (see
also [155])

Aziw = argminHy — Z X, Fh, — X, Z fl,ﬁn,p —anlh,,,,Hz
hy, €C n'#n I'#1

27,
X,
- f lH Xln—| an 1
which only requires a scalar division. Above, f; denotes the /th column of F.
Further generalizations that are straightforward within the DM framework include

the assumption of Gaussian rather than uniform priors, and the extension to imperfect
knowledge of the transmitted data.

(B.98)

B.5.5 Mean Field (MF) and Variational Message Passing (VMP)

The EM algorithm distinguishes two unknown quantities: the parameter 6 that we wish
to estimate, and the hidden data x. They are treated asymmetrically in two ways.

o The parameter 6 is modeled as deterministic and therefore does not have a prior
distribution, while the hidden data x is modeled as a random variable. Thus,
even if prior knowledge about 6 is available, it cannot be used by the classical
EM algorithm. As discussed above, this issue is remedied by the Bayesian EM
algorithm, which treats all unknowns as random variables.

e The more important difference is that both EM and BEM make hard decisions
about 6, while soft knowledge about x is retained in terms of the posterior
distribution p(x |y, ).

In the original formulation of EM, it is 6 that we are ultimately interested in, while
x is an auxiliary quantity, sometimes essentially made up out of thin air, introduced
with the sole purpose of simplifying the estimation of 8. However, the second difference
outlined above has the somewhat paradoxical consequence that the EM algorithm
harvests more information about the nuisance data than about the parameter of interest!

As an example, consider again the problem of channel estimation, but this time with
unknown data symbols (joint iterative channel estimation and data detection). Without
doubt, we are ultimately interested in the data symbols, whereas the channel coefficients
are nuisance parameters. Thus, we should identify the data symbols with 6 and the
channel weights with x. But this inevitably leads to hard data decisions, which makes
this scheme unsuitable for coded transmissions, since modern channel decoders (like
turbo and LDPC decoders) require soft input. Hence, it is actually preferable to identify
6 with the channel weights and x with the data symbols (see [44] and references therein).
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Figure B.13: Factor graph for the MF algorithm with two variables

The lack of an objective rule for mapping 0 and x to the quantities of the problem
domain can cause the derivation of EM algorithms degenerate to trial-and-error. Clearly,
there is something fundamentally wrong with the distinction between parameters and
nuisance data, which is artificial and unsuitable for (at least some) practical problems.

With the identification of EM as a special case of DM, as discussed in Section B.5.2,
the solution is obvious: we just remove the Dirac-constraint from gy and hence retain
soft information for both 0 and x. Based on the factor graph shown in Figure B.13, and
minimizing the exclusive KL divergence (which is also the basis of EM), the update
equations for the two beliefs are easily derived as

73" (x) = exp (Eg,[log p(x,0)]) (B.99)
75" (8) = exp (IEq, [log p(x,6)]) (B.100)

which are iterated until convergence. Note that f and x are now treated on equal footing,
so for simplicity we drop the different notation and just call them xy and x;. An obvious
generalization is then to allow for more than two variables, which finally leads us to the
general update equation

new

g (xn) = exp (]ETLM#” g, 10g p(xo, - - .,xN,l)]> . (B.101)

This is nothing but the well-known naive mean ﬁ'eld11 algorithm, whose name is rooted
in statistical physics [17]. In the context of statistical inference, mean field algorithms
are also called variational methods [10,60,63].

If p factorizes as in (B.13), the naive mean field algorithm can be implemented by
local computations, giving rise to a message-passing interpretation, where, since we
are minimizing the exclusive KL divergence, the messages are computed by (B.83). The
resulting algorithm is known as variational message passing, and has originally been
proposed in the context of Bayesian networks [144,145]. Later, a formulation for factor
graphs has been given in [27].

UThe opposite of naive mean field is structured mean field. The difference is that naive MF uses fully factorized
auxiliary distributions, while structured MF allows for more involved approximations like chains or trees [113].
As a side note, similar generalizations are possible for inclusive KL divergence minimization, see e.g. [95].
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