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Abstract

Standard Model high-precision computations of observables related to heavy quark physics

are very important, both for testing the consistency of Standard Model and for providing a

precision tool for data analysis in the context of searches for new physics. The calculation

of differential cross sections and (exclusive) observables at higher order perturbation theory

in Quantum Chromodynamics (QCD) requires a method for handling the soft and collinear

singular configurations that arise from the radiation of massless partons and appear in individual

contributions. In this thesis, we present a set-up, within the antenna subtraction framework,

for computing the production of a massive quark-antiquark pair in electron positron collisions

at next-to-next-to-leading order in the coupling αs of QCD at the differential level. Our set-

up applies to the calculation of any infrared-safe observable. We apply this formalism to the

production of top-quark pair (tt̄) production in the continuum and also to bottom-pair (bb̄)

production at the Z resonance. We compute the respective production cross sections and

several distributions. We determine, in particular, the forward-backward asymmetries AQFB of

these heavy quarks at order α2
s, which are important observables for electroweak precision tests

and for determining the neutral-current couplings of these quarks. The order α2
s corrections

turn out to be significant. In the top quark case we compute AtFB for several center-of-mass

energies above the tt̄ production threshold. For bb̄ production at the Z peak, we compute

AbFB both for the b-quark axis and the oriented thrust axis definition of the asymmetry. We

find that if one takes into account the complete massive order α2
s corrections to the leading-

order asymmetry, which is a new result, then the magnitude of the QCD corrections increases

slightly compared to previously known results. This reduces the well-known tension between

the experimentally determined bare b-quark asymmetry and the value obtained by a global fit

from 2.5σ to 2.2σ.
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Zusammenfassung

Die präzise Berechnung von Observablen mit Bezug zur Physik schwerer Quarks ist von

großer Bedeutung sowohl für Konsistenztests des Standardmodells als auch für Präzisions-

Datenanalysen zur Suche nach neuer Physik. Die Berechnung differentieller Wirkungsquer-

schnitte und (exklusiver) Observablen in höheren Ordnungen der Störungstheorie in der

Quantenchromodynamik (QCD) erfordert insbesondere eine Methode zur Behandlung der sogenann-

ten weichen und kollinearen Infrarot-Singularitäten, die durch die Abstrahlung masseloser

Partonen verursacht werden. In dieser Dissertation wird im Rahmen der sog. Antennen-

Subtraktionsmethode ein Formalismus entwickelt, der die Berechnung der Produktion eines

massiven Quark-Antiquark Paares in Elektron-Positron Kollisionen in der nächst-nächstführenden

Ordnung der QCD Störungstheorie erlaubt. Der Formalismus ermöglicht die Berechnung be-

liebiger infrarot-sicherer Observablen. Wir wenden unsere Formeln auf die Topquark Paar-

erzeugung (tt̄) im Kontinuum und auf die b-Quark Paarerzeugung (bb̄) auf der Z Resonanz an.

Wir berechnen die jeweiligen Wirkungsquerschnitte und eine Reihe differentieller Verteilungen.

Insbesondere berechnen wir die jeweiligen Vorwärts-Rückwärts-Asymmetrien AQFB zur Ordnung

α2
s. Dies sind wichtige Observablen für Präzisionstests der elektroschwachen Wechselwirkungen

und für die Bestimmung der neutralen Strom-Kopplungen der t und b Quarks. Die Korrekturen

der Ordung α2
s erweisen sich als signifikant. Im Falle des Top-Quarks berechnen wir AtFB für

verschiedene Schwerpunktsenergien oberhalb der tt̄ Schwelle. Für die bb̄ Erzeugung auf der

Z Resonanz berechnen wir AbFB sowohl bezüglich der b-Quarkachse als auch der orientierten

thrust Achse. Unser neues Resultat, die vollständigen massiven b-Quark QCD Korrekturen

bis zur Ordnung α2
s, vergrössern etwas den Betrag des bisher bekannten Wertes der Korrek-

turen. Als Folge wird die seit langem bekannte 2.5σ Diskrepanz zwischen der aus den Daten

bestimmten nackten b-Quark Asymmetrie und dem Wert resultierend aus einem globalen Fit

auf 2.2σ reduziert.
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Chapter 1

Introduction

The exploration of the physics of heavy quarks, that is, bottom and top quarks, is among the

core issues of elementary particle physics. Precision measurements of observables related to

these quarks allow for stringent tests of the Standard Model (SM) and for searches of new

interactions. On the other hand they constitute also an important background to a number

of new physics searches. The topic of this thesis is devoted to the precision physics of top

and bottom quarks at (future) e+e− colliders. We analyze heavy quark-antiquark (QQ̄) pair

production in e+e− collisions,

e+e− → γ∗, Z∗ → Q Q̄+X , (1.1)

at the differential level at next-to-next-to-leading order (NNLO) perturbation theory in Quan-

tum Chromodynamics (QCD) and apply it to tt̄ production above the pair-production threshold

and to bb̄ production at the Z resonance.

Before outlining the contents of this thesis, let us briefly review some major results on the

physics of top and bottom quarks. As to the top quark, much insight into the properties and

interactions of this quark has been gained in recent years by the experiments ATLAS and CMS

at the Large Hadron Collider (LHC), improving significantly the explorations at the Tevatron,

where the top quark was discovered [1, 2]. The LHC is a top-quark factory. Millions of top-

antitop (tt̄) pairs have been produced at this machine, predominantly by QCD interactions.

1



2 Chapter 1. Introduction

In addition, (anti)top quarks have also been produced in abundance singly at the LHC. In

single top production, which mainly proceeds via the t-channel, tW -, and s-channel modes,

electroweak interactions are involved. The tt̄ production cross section has been measured at 7,

8, and 13 TeV center-of-mass energy and the experimental results agree well with the respec-

tive QCD predictions at NNLO [3] in the perturbative expansion in the QCD coupling αs. At

present both the experimental and the theoretical precision on σtt̄ is . 5%. The experimental

results on single (anti)top production at the Tevatron and the LHC are also in agreement with

QCD predictions [4–6].

The top quark is special compared to other quarks because it decays before it can form hadrons.

Thus it provides a ‘laboratory’ for studying the interactions of a bare quark. The top quark

decays by almost hundred percent via t → bW with the subsequent decay of the W boson

into leptons W → `ν` or to quarks W → qq̄′ which fragment to hadrons that form hadronic

jets. The Cabibbo-Kobayashi-Maskawa suppressed decay modes t→ qW , q = s, d, which have

branching ratios Br . 10−3, have not yet been observed – nor have any non-standard top-decay

modes been found. If one wants to explore the properties and interactions of top quarks in tt̄

production at hadron colliders, the two important signal channels are the dileptonic and lepton

+ jets channels, that is, tt̄→ `+ν``
′−ν̄`bb̄ and tt̄→ `+ν`bb̄qq̄

′ + c.c.. By using templates for fits

to the top-quark invariant mass distribution that were measured in these channels, experiments

at the Tevatron and the LHC measured the top quark mass with high precision. The average

(taken in the year 2014) of values determined with this method and with other variables yields

mexp
t = 173.34± 0.76 GeV [7]. This means at first sight that the mass of the top quark is more

precisely known than that of any other quark, but the question is what is the precise definition

of this mass parameter? Strictly speaking it is the mass parameter that is contained in the

Monte Carlo programs that are used to compute the templates for the fits to data. Yet, it is

quite common to identify this mass with the top-quark mass defined in the on-shell scheme,

because this mass definition is the natural choice for the predominantly on-shell production and

decay of a ‘bare’ quark. Approaches which are conceptually more satisfactory use an observable

that is computed beyond leading-order QCD, for example the tt̄ cross section, and express this

observable in terms of the on-shell mass mt or the short-distance top-mass parameter in the MS
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scheme, mt(µ). Fits to data yield mt or mt(mt), but at present the error on these parameters is

larger by a factor & 3 (see, for example [8]) than the error on mexp
t given above. For a discussion

concering the interpretation of top-mass measurements, see for example [9].

Top-quark production and decay has been investigated at the level of differential distributions,

including top-spin effects, at the Tevatron and in much more detail at the LHC. So far the

experimental results agree with the SM predictions. (For recent reviews, see [10–12].) One

observable has received considerable attention in recent years, namely the top-quark forward-

backward asymmetry measured in tt̄ production at the Tevatron. At the Tevatron, which is

a proton antiproton collider, top quarks are produced predominantly in the hemisphere de-

fined by the direction of the proton beam. The asymmetry observable, which turned out to

be the most useful one, is defined by AtFB = (NF − NB)/(NF + NB), where NF and NB are

the number of tt̄ events where the rapidity difference ∆y ≡ yt − yt̄ is larger and smaller than

zero, respectively. While the latest AtFB measurement of the D∅ collaboration [13] is in reason-

able agreement agreement with SM predictions at next-to-leading order (NLO) QCD including

electroweak corrections [14–16], the AtFB measurements of the CDF collaboration persistently

showed deviations from these predictions. The CDF measurement [17] of AtFB as a function

of the tt̄ invariant mass, Mtt̄, is at high Mtt̄ about 2σ − 3σ above the NLO SM results. This

triggered the publication of a large number of articles that aimed at explaining this seeming

discrepancy with new physics effects. (For a review, see [18].) However, it was shown in ref. [19]

that the NNLO QCD corrections to AtFB are substantial and that after inclusion of these cor-

rections the SM prediction is only about 1.5σ below the CDF result.

At the LHC the top-quark forward-backward asymmetry AtFB = 0 because the initial pp state

is symmetric under rotations that put the beam axis into the opposite direction. Inspecting

the tt̄ events produced at the LHC, more t than t̄ are produced in the forward and backward

regions, while there are more t̄ than t in the central region. Thus one can define a charge

asymmetry AC = (N>−N<)/(N> +N<), where where N> and N< are the number of tt̄ events

where the difference of the moduli of the rapidities, ∆|y| ≡ |yt| − |yt̄| is larger and smaller

than zero, respectively. The asymmetry AC is quite small in the SM. It was measured by the

ATLAS and CMS experiment [20, 21] and the experimental results agree with the NLO SM
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predictions [15, 16]. The lesson to be learned from the experimental and theoretical investiga-

tions of AtFB and AC is that (differential) observables such as these asymmetries are important

for getting insight into the tt̄ production dynamics, provided that respective precision SM pre-

dictions are available.

For quite some time, there have been plans for a high-energy linear e+e− collider [22]. Such

plans have been pursued further in recent years in the context of the ILC design [23] and CLIC

design [24]. Also a high-energy circular e+e− collider is under discussion [25]. The core physics

issues of these e+e− colliders include the exploration of the production of tt̄ pairs and their

decays [22,23,25–27]. In view of the detailed information about the properties and interactions

of the top quark that the LHC has provided and will provide in the future, what can be done

better at a high-luminosity e+e− collider? Simulation studies indicate that measurements of the

reaction e+e− → tt̄ in the threshold region and in the continuum allow to precisely determine

a number of key observables associated with the top quark, including its mass, its width, its

Yukawa coupling to the 125 GeV Higgs resonance, and its electroweak neutral current couplings

(see, for example, the recent reviews [26, 27] and references therein). An energy scan of the tt̄

cross section in the threshold region and a fit to the SM prediction of σtt̄(s) allows to deter-

mine the top mass (defined in a so-called threshold mass scheme and then converted to the MS

scheme) with an unprecedented precision of about δmt . 100 MeV. Moreover, also the total

top-quark width Γt can be obtained from such a fit (for instance, using the lepton + jets decay

channels) with an expected uncertainty of δΓt/Γt ' 15%. At the LHC a direct measurement of

Γt is not possible with reasonable precision because the width of the top quark is much smaller

than the experimental resolution that can be achieved at a hadron collider. (In the SM the

top width is predicted to be Γt ' 1.3 GeV at NNLO QCD including electroweak and finite

W -width corrections [28–30]. The value of Γt depends on the value of the top mass.) Also

for tt̄ production in the continuum the top-quark mass and the top width can be determined

precisely if the measurements of the top-quark invariant mass distribution in the fully hadronic

and lepton + jets decay channels of tt̄ are combined. Ref. [31] found by Monte Carlo simulation

that a precision of δmt ' 100 MeV and δΓt/Γt ' 16% can be achieved in this way. Such a mea-

surement in the continuum would allow to extract the top-quark mass in the on-shell scheme,
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provided one would use templates computed beyond leading-order QCD. It would certainly be

valuable, from the point of view of assessing systematic errors, to get precise values of the top

mass from measurements at threshold and in the continuum, where different methods will be

used. As is well known, measuring the top mass as precisely as possible is not an idle effort,

because it is an important parameter, together with the W -boson and Higgs-boson mass, for

testing the consistency of the Standard Model at the loop level. The exchange of the 125 GeV

Higgs boson H between t and t̄ leads to a dependence of σtt̄ on the top Yukawa coupling ht.

From a high-precision scan of σtt̄(s) and measurements of other top-quark observables in the

threshold region one expects that ht can be extracted with a precision of about 5% [26, 27].

The associated production e+e− → tt̄H (which has a threshold of approximately 500 GeV)

allows to measure ht with a precision of about 10%, depending on the luminosity of the col-

lider. A further asset of high-energy e+e− colliders concerning top physics is that the neutral

current couplings of the top-quark can be determined much more precisely than at the LHC.

At the LHC these couplings can be measured in the associated production of tt̄Z and tt̄γ.

These are rare processes compared to the production of tt̄ (+ jets). Therefore, the precision

with which these production modes can be analyzed is limited due to the large background.

On the contrary, in e+e− → Z∗, γ∗ → tt̄, the cross section, the top-quark forward backward

asymmetry, and differential distributions can be measured precisely both near and (far) above

the tt̄ threshold. This allows for very precise measurements of the neutral current couplings

of the top quark and searches for new physics effects in the Z∗tt̄ and γ∗tt̄ vertices at several

center-of-mass energies [32–36].

Obviously, precise predictions are required on the theoretical side in order to achieve this pre-

cision in the analysis of future data from the planned e+e− colliders. A large effort has been

made to investigate tt̄ production at threshold. At present the threshold cross section is known

at next-to-next-to-next-to-leading order QCD [37]. The higher-order SM results that were ob-

tained so far for tt̄ production in the continuum do not match these efforts. This has served as

a motivation to analyze in this thesis the production of tt̄ pairs, or more general the production

of massive quark- antiquark pairs, above the pair-production threshold at the differential level

at NNLO QCD.
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Next, let us briefly address some aspects of the physics of b quarks. Contrary to top quarks

bottom quarks hadronize to bb̄ mesons, B mesons, and b-baryons before they decay. Especially

the weak decays of B mesons and b-baryons have been for years a vast field of experimental

and theoretical research. At present the experimental research is pursued at the B factories

SuperKEKB in Japan and LHC (CERN). The multitude of weak B decays, including rare

decays, that have been experimentally analyzed with high precision, provide deep insights into

the flavor structure of the weak interactions. In particular these weak decays offer a window to

new physics at high energy scales through possible virtual new heavy particle exchanges in the

respective decay amplitudes. Most of the experimental data agree well with SM predictions; see,

for example, the reviews [38–42]. Yet, several tensions and discrepancies between experimental

results and SM predictions exist [42], especially in B decays induced by b→ s`+`− [43–50]. It

remains to be seen whether these tensions will persist in the future or disappear by improved

experimental and theoretical results.

Bottom quarks and bb̄ pairs that are produced in high-energetic hard reactions fragment and

form hadronic jets. The physics of b-jets can be described, usually in a large kinematic region,

by (higher-order) perturbative QCD, supplemented by Monte Carlo programs that describe

parton showering and hadronization. At the LHC, hard reactions that involve b quarks, for

instance b-flavored dijets [51] or the associated production of a b jet and an electroweak gauge

boson [52] allow for tests of the SM in the high-energy regime. These processes constitute also a

background to new physics searches. At the e+e− colliders LEP1 and SLC, which are no longer

in operation, the experimental and theoretical results on Z → bb̄ received a considerable amount

of attention, especially in the context of high-precision analysis of the electroweak sector of the

Standard Model. The b-quark forward-backward asymmetry at the Z resonance, which is the

most precisely measured quark asymmetry at
√
s = mZ , was determined with an accuracy of

1.7% [53–55]. This allowed a very precise extraction of sin2 θeff . However, among the mea-

sured set of precision observables at the Z pole, this observable shows the largest deviation,

about 2.5σ, from the respective Standard Model global fit [56]. So far, it has not been clarified

whether this deviation is due to underestimated experimental and/or theoretical uncertainties

or whether it is a hint of new physics. At a future linear or circular e+e− collider [22, 23, 25],



7

precision determinations of electroweak parameters will again involve forward-backward asym-

metries AfFB, where f = quark or lepton. If such a collider will be operated at the Z peak,

an accuracy of about 0.1 percent may be reached for these observables [57,58]. The persistent

discrepancy between experiment and theory on AbFB at the Z pole and the prospects for its

improved measurement at a future e+e− collider are the motivation to consider in this thesis,

besides tt̄ production for
√
s > 2mt, also bb̄ production at the Z resonance and make improved

predictions at NNLO QCD at the differential level, especially for AbFB.

Before coming to the contents of this thesis, we recapitulate existing theoretical results for

e+e− → QQ̄ (Q = t, b) in the continuum within the SM. Differential predictions at next-to-

leading order (NLO) QCD have been known for a long time for QQ̄ [59] and QQ̄ + jet [60–65]

final states. Also the NLO electroweak corrections are known [66–69]. The production of QQ̄

in an arbitrary spin configuration was computed at NLO QCD in [70, 71]. Off-shell tt̄ pro-

duction and decay including non-resonant and interference contributions at NLO QCD was

investigated in [72]. The total QQ̄ cross section σQQ̄ was computed to order α2
s and order α3

s

in [73–76] and [77], respectively, using approximations as far as the dependence of σQQ̄ on the

mass of Q is concerned. A calculation of the total cross section of e−e+ → γ∗ → QQ̄ with full

quark-mass dependence was made in [78]. A computation of the cross section and of differ-

ential distributions for tt̄ production at order α2
s with full top-mass dependence was reported

in [79, 80]. This calculation is are based on a NNLO generalization of a phase-space slicing

method [81,82]. As to the b-quark forward-backward asymmetry at the Z resonance, the fully

massive next-to-leading order electroweak and QCD corrections were determined in [83–85] and

in [59, 86, 87], respectively. The order α2
s corrections were calculated so far only in the limit of

vanishing b-quark mass [88–91].

In this thesis we set up a formalism within the antenna subtraction framework for calculating

the electroweak production of a massive quark-antiquark pair in e+e− collisions (1.1) at order

α2
s and to lowest order in the electroweak couplings. We apply our general results to the produc-

tion of top-quark pairs above the tt̄ production threshold and to the production of bb̄ pairs at

the Z resonance. Our approach is fully differential and applies to any infrared-finite observable.

We calculate the respective production cross sections at NNLO QCD and a number of differ-
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ential distributions, some of which were not determined before. In particular we compute, at

order α2
s, the top-quark forward-backward asymmetry as a function of the e+e− center-of-mass

energy and, for the first time, the NNLO QCD corrections to the b-quark forward-backward

asymmetry at the Z pole for a massive b quark both with respect to the quark and the thrust

direction. Also the phenomenological implications of this result are briefly discussed.

The contents of this thesis is organized as follows. In the next section we briefly review existing

methods for handling soft and collinear divergences that appear in the individual contribu-

tions to differential cross sections beyond leading-order QCD, or more general, in quantum

fields theories that contain massless particles. In particular we discuss some salient features

of the antenna subtraction method. Section 3 contains a detailed exposition of our antenna-

subtraction formalism that allows to compute the differential cross section and distributions of

IR-safe observables at order α2
s for the reactions (1.1). In section 4 we apply this formalism

first to top-quark pair production above the tt̄ threshold. We compute the total tt̄ cross section

and a number of differential distributions. Then we apply it to bb̄ production at the Z pole

and compute the cross section, the distribution of the transverse momentum of the b quark,

and the cos θ distribution associated with the b-quark direction and the oriented thrust direc-

tion. In section 5 we compute the t-quark forward-backward asymmetry at NNLO QCD for

several center-of-mass energies above the tt̄ threshold. Moreover we calculate b-quark forward-

backward asymmetry at NNLO QCD for a massive b quark, both for the quark axis and the

thrust axis definition of AbFB. Then we compute AbFB for mb → 0 and show that our results agree

in this limit with existing results on AbFB(mb = 0). Finally we briefly discuss phenomenological

implications of our new result on AbFB(mb 6= 0) at NNLO QCD. We conclude in section 6.

In appendix A some formulas used in thesis are collected, including our conventions for elec-

troweak coupling factors, relevant renormalization constants, and the matching relation for the

MS coupling αs defined for nf and (nf + 1) quark flavors. Appendix B contains details about

our momentum mappings in the 3- and 4-particle phase spaces with massive quarks required for

the antenna subtraction terms at NLO and NNLO QCD. Appendix C contains our procedure

of computing rotated momenta of the massless partons that are used in the construction of the

antenna-subtracted squared matrix elements for the QQ̄qq̄ and QQ̄gg final states.



Chapter 2

Methods for handling IR divergences

Models of elementary particles and their interactions are in general (but not exclusively) for-

mulated in terms of local quantum field theories (QFT). The main method to evaluate QFTs,

in particular for computing particle reactions, is perturbation theory in powers of coupling

constant(s), provided these couplings are sufficiently small. This method is applicable to QCD

at sufficiently high energies and to the Standard Model electroweak interactions.

Amplitudes in local QFTs are in general divergent beyond the tree-level approximation,

These divergences in loop amplitudes are caused by short-distance singularities, i.e., ultraviolet

(UV) singularities, and they can be removed by local counterterms. In a renormalizable QTF

there is, to arbitrary order of perturbation theory, a finite number of counterterms of different

structure, and these counterterms can be absorbed by redefining the couplings, masses, and

fields of the theory. In particular, this is the case in the SM based on the gauge group SU(3)c×

SU(2)L×U(1)Y . Moreover, the equal number of SU(2)L quark and lepton doublets and singlets

ensures that the electroweak chiral gauge currents and thus the SM are anomaly-free (see, for

example the textbook [92]). In the following we are not concerned with UV singularities. SM

amplitudes, in particular QCD amplitudes considered below are assumed to be renormalized.

9
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2.1 Infrared divergences and factorization

In QFTs that contain massless particles, such as QED and QCD, scattering amplitudes can

suffer from other types of divergences that occur when the energy of a massless particle becomes

arbitrarily small (soft mode) or when two (or more) massless particles become collinear. These

soft and collinear divergences, which are collectively called infrared (IR) divergences, appear

both in real emission and in virtual-correction amplitudes.

Let us briefly recapitulate the structure of soft divergences in a real emission amplitude in QED

and QCD. Consider first in QCD a n-particle real emission amplitude Mn where a gluon that

is radiated from an outgoing external quark becomes soft, as depicted in figure 2.1a. Then,

by neglecting the soft gluon momentum in the numerator of the quark propagator, the matrix

element Mn shows the well-known eikonal factorization:

Mn
kµ→0−→ gs

pµε∗µ(k)

p · k + iε
T aū(p)Mn−1 , (2.1)

where gs is the QCD coupling and T a is a generator of SU(3)c in the fundamental representation.

Eikonal factors analogous to the one in (2.1) apply when a soft gluon is radiated from a final-

state antiquark or a (anti)quark from the initial state. When a soft gluon with four-momentum

k1 color label a1 is radiated from an external gluon with four-momentum k2 color label a2 as

illustrated in figure 2.1b, an associated n-particle matrix element Mn behaves as

Mn

kµ1→0
−→ gs[T

a2 , T a1 ]
kµ2 ε

∗
µ(k1)

k1 · k2 + iε
ε∗ν(k2)Mν

n−1 . (2.2)

In QED (or, more general, in an abelian gauge theory), when a soft photon is emitted from

an external charged outgoing fermion with charge Qe, the eikonal factorization formula (2.1)

applies with gs → Qe and T a → 1. Obviously there is no analogue of Eq. (2.2) in QED. The

eikonal factors in Eq. (2.1) and in Eq. (2.2) show that the emission of a soft gluon does not

affect the spin and the momentum of the radiating parton. But it changes its color, because

also a soft gluon carries color charge. As the color factors (2.1) and (2.2) signify, soft gluon

emission from different external parton lines leads to color correlations in the squared S matrix
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element.

In the case of QED, the eikonal factors are uncorrelated. The amplitude of a hard process

involving charged particles is corrected, for each emission of a soft photon from an external

charged particle line, by an eikonal factor that is independent of the eikonal factors associ-

ated with soft photon emission from other external charged particle legs. The eikonal identity

(see, for example, [92]) guarantees that this factorized product of independent eikonal factors

amounts to taking into account all possible permutations among the soft photons in the soft

limit1. The eikonal factors can be summed up and exponentiate [94–96]. The exponential

correction factor is known as the Sudakov form factor.

p+ k

p

k

(a)

p+ k

p

k

(b)

Figure 2.1: Soft gluon (photon) radiation from an outgoing quark (charged fermion) (a) and
soft gluon radiation from an external gluon (b).

The QCD amplitudes have also a factorized structure when a soft gluon is emitted, although

their structure is not as simple as in QED, as can already be seen from Eq. (2.2). The pattern

of this soft-gluon factorization is embodied in the following generic formula:

Ma
n |q→0

∼= ε∗µ(q) Ja,µ(q) Mn−1 , (2.3)

where with Ma
n denotes a n-particle amplitude and qµ is the momentum of the radiated soft

gluon with polarization-vector εµ(q) carrying color index a. (Other color indices are suppressed.)

The symbol ∼= means that on the right-hand side contributions that are less singular than 1/q

in the limit q → 0 are neglected. The current Jµa which is implicitly defined through this

factorization formula is called the eikonal current. Its tree-level form can be read off from
1In QED the eikonal-factorized amplitudes can be reproduced by a semi-classical Wilson-line factor (also

called gauge-link operator) attached onto the amplitude of the hard process [93].
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Eq. (2.1) and Eq. (2.2). Factorization formulas analogous to (2.3) hold for multiple soft gluon

emissions from tree-level QCD amplitudes [97]. For the emission of a soft masslees qq̄ pair,

a factorization formula can be derived for squared amplitudes [97]. The eikonal current for

the emission of a soft gluon at 1-loop in massless QCD and QCD with massive quarks was

studied and derived in [98–101] and in [102], respectively. The factorization of two-loop QCD

amplitudes when a soft gluon is radiated was analyzed in [103,104].

Likewise, when two (or more) massless partons become collinear, for instance, in the splitting

of a gluon into two gluons or into a massless quark-antiquark pair, QCD amplitudes also

factorize. The ensuing infrared singularities in squared tree-level amplitudes are accounted

for by collinear splitting functions [105] (see, for instance, [106] for a review). Factorization

of one-loop amplitudes in collinear limits were studied extensively in the literature, including

refs. [98, 107–109]. Collinear factorization may also be formulated at the level of amplitudes,

rather than squared amplitudes. At tree-level this was analyzed in [106, 110, 111] and at one

loop in [100, 112]. (These papers used the decomposition of a QCD amplitude into a sum

of independent color ordered partial amplitudes times color factors.) For an n-point QCD

amplitude Mn collinear factorization can be schematically written as (cf. for example [113])

Mn|p1||···||pm
∼= Sp (p1, · · · , pm) Mn−m , (2.4)

where Sp is the splitting amplitude and p1, · · · , pm are the external momenta of massless par-

tons which become collinear. Color and polarization indices are suppressed. Beyond leading

order both Mn−m and Sp have a perturbative expansion in αs such that the right-hand side

matches the perturbative order of Mn. The factorization property refers to the feature that the

factor Sp (p1, · · · , pm), has no dependence on any of the non-collinear momenta involved in the

above amplitude. The meaning of the symbol ∼= is as in Eq. (2.3). At tree-level, squaring Sp

and summing over polarizations recovers the Altarelli-Parisi splitting functions. Note that, un-

like the soft current defined in the soft factorization formula Eq. (2.3), the splitting amplitudes

introduced in (2.4) do depend on the spin of the splitting parent particle. This spin dependence

translates, after squaring the amplitude, into azimuthal spin correlations in the un-averaged

splitting functions. We will come back to this issue in section 3.3 when we discuss such angular
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terms in the context of antenna subtraction method.

Soft and collinear factorization is the basis for the methods of handling the IR singularities

that appear in individual contributions to (differential) cross sections beyond the leading or-

der. Before we discuss such methods, we briefly recapitulate the general theorems that state

the prerequisites for the IR-finiteness of cross sections or expectation values of observables at

arbitrary orders of QCD perturbation theory.

2.2 Bloch-Nordsieck, KLN, and factorization theorem

Infrared singularities that appear in QFTs with massless quanta beyond the leading perturba-

tive order cancel, in general, only in the computation of sufficiently inclusive physical quantities

when the real and virtual contributions are combined. Let’s consider here for definiteness a

physical cross section.

In QED with massive charged particles, the idea of solving the IR divergence problem goes back

to Bloch and Nordsieck [114], which is now called the Bloch-Nordsieck theorem. It states that

in the computation of a physical quantity the IR singularities cancel if one sums the contribu-

tions from energy-degenerate final states. For instance, if one considers the production cross

section of a muon pair µ+µ− beyond the leading order in the QED coupling α one has to sum

up the incoherent contributions from the final states µ+µ− and µ+µ−+n soft photons, where n

depends on the order of perturbation theory. On the experimental side this corresponds to the

fact that a cross section can be measured only wih a finite (i.e., non-zero) energy resolution.

The all-order proof [94–96] of the Bloch-Nordsieck theorem rests on the exponentiation of the

soft photon eikonal factors discussed above.

In QCD, where besides soft also collinear singularities due to gluons or massless quarks appear,

the Bloch-Nordsieck theorem does not hold in general. However, if the initial state is colorless

(that is, if there is no QCD radiation from the initial state), for instance e+e− → hadrons,

then summing over kinematically degenerate final states that include soft and collinear mass-

less parton radiation leads to IR finite cross sections [115], for example multi-jet cross sections

provided an IR-safe jet algorithm is used.
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The Kinoshita-Lee-Nauenberg (KLN) theorem [116,117] extends the Bloch-Nordsieck theorem

and applies to unitary QFTs with massless particles that lead to soft and collinear divergences.

The KLN theorem states states that an IR-finite physical quantity is obtained in such a QFT

if one sums over all kinematically degenerate final and initial states. For a proof, see [118].

The KLN theorem applies in particular to QCD but is only of formal interest, because in

practice one does not sum over degenerate initial states when computing an observable. Let’s

consider a cross section in QCD associated with hadronic collisions. Using the parton model

such a cross section is related to cross sections σ̂ of hard partonic reactions a1+a2 → b1+. . .+bn,

where a1 and a2 denotes a gluon or a massless (anti)quark, and b1, . . . bn denote hard (i.e. en-

ergetic and non-collinear) gluons and/or hard massless or massive (anti)quarks. If one wants

to obtain an IR-finite partonic cross section σ̂ beyond LO QCD, then according to the KLN

theorem, one has to sum not only the contributions from kinematically degenerate final states

in the appropriate order of perturbation theory, but also from degenerate initial states. That

is, in addition to contributions from the initial state |a1, a2〉 also contributions |a1, a2〉 plus soft

incoming gluons/massless qq̄ pairs and from |a1, a2〉 plus incoming massless partons that are

collinear to a1 and/or a2 must be taken into account. This is impractical and not in the spirit

of the parton model.

If one sums all kinematically degenerate final-state contributions to the hard parton reaction

a1 + a2 → b1 + . . . + bn (where a1, a2 are massless partons) then all IR singularities cancel

in σ̂, except those associated with collinear initial-state singularities. Fortunately, these sur-

viving collinear singularities do obey a nice factorization property (to arbitrary order in αs).

They are universal in the sense that these singularities do not depend on the final state of the

process, but only on the massless partons a1 and a2 in the initial state [119–122]. Therefore,

these singularities can be absorbed into the parton distribution functions associated with a1

and a2 by a redefinition of these functions. This is the essence of the so-called factorization

theorem [119–123] that is expected to hold to all orders in αs for sufficiently inclusive quanti-

ties in hadron hadron scattering. (It can be proven elegantly for deep-inelastic lepton nucleon

scattering using the operator product expansion, see for example [123].) The factorization the-

orem is the basis for the QCD-improved parton model and the QCD phenomenology at hadron
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colliders and of lepton-nucleon scattering.

We close this section with a side remark that refers to processes a1a2 → n beyond LO

QCD with two massive quarks in the initial state. Summing over all degenerate final states and

color-averaging of the initial state leaves, starting at two loops [124, 125], uncanceled initial-

state soft singularities which are process-dependent. Thus a factorization theorem would not

apply in this case. Unlike collinear radiation which pertains to a “locally” well-identified single

parent object, soft (long-wavelength) gluon exchange can spread the color flow over (infinite)

large distances, thus leading to (non-local) color correlations among colored particles in the

squared S-matrix elements. This indicates that the concept of universal process-independent

parton distribution functions inside one isolated hadron cannot be consistently introduced for

massive quarks in hadron collisions at and beyond two-loop order. However, these uncanceled

soft singularities are proportional to some power of the quark mass and thus disappear when

the quark mass is put to zero.

2.3 IR subtraction and slicing methods

In this section we give a short overview of methods that have been developed for handling the

IR divergences that appear in individual contributions to a physical quantity, for instance a dif-

ferential cross section, at higher-order QCD. Cancellation of soft and collinear divergences are

only guaranteed when contributions from real emission and virtual-correction amplitudes, that

is, from contributions involving different final states are properly combined. It is standard to

use dimensional regularization for regularizing the IR divergences of the various contributions,

that is, to compute them in D = 4 − 2ε space-time dimensions. The methods to be discussed

below have the purpose of modifying the individual contributions to a physical quantity such

that they are separately finite in D = 4 dimensions, but of course the sum of the contributions

must remain unchanged. The IR factorization properties of QCD amplitudes discussed above

have been essential for the development of such ‘IR-methods’ that allow to compute arbitrary

processes involving quarks, gluons, and uncolored particles at NLO and NNLO QCD at the

differential level.
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Methods at NLO QCD:

Let us first outline the essential features of the class of subtraction methods at NLO QCD. For

definiteness we consider a hard reaction

a1 + a2 −→ b1 + . . .+ bn , (2.5)

where the two particles in the initial state are either uncolored or a1 and/or a2 is a massless

(anti)quark or gluon, and b1, . . . , bn denote massless or massive (anti)quarks and/or gluons.

The n partons in the final state are assumed to be well identifiable, that is, resolved. Moreover,

let’s consider for definiteness an n-jet cross section. To LO QCD the partonic cross section is

σLO =

∫
n

dσLO F (n)
n , (2.6)

where dσLO = |M0,n|2dΦn/(2s) and M0,n is the LO matrix element of the above process. Av-

eraging and summing over the colors and spins of the particles in the initial and final state

is understood. The symbol
∫
n

denotes integration over the n-particle phase space. The jet-

defining algorithm is encoded in the phase-space function F (n)
J . It specifies the procedure of

how to build J jets via clustering out of n partons. (At LO J = n.) For simplicity we suppress

in (2.6) and below the dependence of the matrix elements and F (n)
J on the particle momenta.

The essential property required for the jet-defining function is that it must be infrared safe.

This means that this function should return the same result when applied to kinematically

degenerate configurations. When in an (n + 1)-parton final state one parton bi becomes soft

(Ei → 0) or two partons bi and bj become collinear, then F (n+1)
J must obey

F (n+1)
J (k1, .., ki = λq, .., kn+1) −→ F (n)

J (k1, .., kn) if λ→ 0 , (2.7)

F (n+1)
J (k1, .., ki, .., kj, .., kn) −→ F (n)

J (k1, .., k, .., kn) if ki → zk, kj → (1− z)k . (2.8)

The phase-space function need not necessarily describe a jet cross section. If F (n)
J is chosen to

be 1 then Eq. (2.6) provides the cross section for the reaction (2.5). If F (n)
J is chosen to be
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a delta function in some kinematical variable, then Eq. (2.6) yields the respective differential

distribution. In the determination of a forward-backward asymmetry one has to compute

forward and backward cross sections with respect to a certain IR-safe direction. For such

computations F (n)
J is given by a respective step (theta) function. Phase-space cuts on the cross

section can be implemented by choosing F (n)
J to be a product of theta functions. If one wants

to compute the expectation value of an observable one constructs F (n)
J in terms of respective

kinematical factors. As to jet cross sections, a number of IR-safe jet-defining algorithms were

proposed and are available on the market. For an extensive reference see [126].

At next-to-leading order in αs the LO cross section receives two types of corrections: real

radiation corrections that involve (n+1) partons in the final state, where the additional parton

is massless, and virtual one-loop corrections to the Born amplitude. The n-jet cross section at

NLO QCD is given by

σNLO = σLO + σ1 , (2.9)

where

σ1 = σRn+1 + σVn =

∫
n+1

dσR F (n+1)
n +

∫
n

dσV F (n)
n . (2.10)

It is understood that all UV divergences have been renormalized in (2.10).

Both the real radiation and the virtual contributions to σ1 are infrared divergent due to soft

and/or collinear singularities. If the initial state i is uncolored, the IR divergences cancel in the

sum (2.10) according to Kinoshita-Lee-Nauenberg theorem as discussed above. If the initial

state consists of one or two massless quarks or gluons, uncanceled collinear singularities remain

in (2.10). They result from the collinear emission of a massless parton from a parton in the

initial state. As outlined above, the factorization theorem of QCD tells us that these collinear

singularities are universal, that means they are independent of the specific process (2.5) (as long

as one considers massless partons in the initial state) and can therefore be absorbed into the

bare parton distribution function associated with the parton from which the collinear emission

takes place.
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The cancellation of soft and collinear divergences is obscured by the fact that the real and

virtual corrections are associated with phase-spaces of different particle multiplicity. While in-

frared singularities in the virtual-corrections σVn are obtained immediately in terms of poles in

the dimensional regularization parameter ε after integration over the loop-momentum, it is less

straightforward to identify and extract the IR singularities of the real emission contributions

σRn+1. Here the infrared singularities become explicit as poles in ε only after integrating the real

radiation matrix elements over the phase-space regions related to unresolved radiations (ap-

propriate to the jet-observable under consideration). Often this can be done only numerically,

especially when additional phase-space cuts are applied.

The general idea that underlies the so-called subtraction methods to get around this (numeri-

cal) evaluation problem is to insert the identify 0 =
∫
dσS −

∫
dσS into Eq. (2.10). Let’s first

consider the case where the initial state is uncolored. Adding this zero on the right-hand side

of Eq. (2.10) it can be reorganized in the following way:

σ1 =

∫
n+1

dσR F (n+1)
n +

∫
n

dσV F (n)
n +

[∫
n+1

dσS −
∫
n+1

dσS
]

=

∫
n+1

[(
dσR F (n+1)

n

)
ε=0
−
(
dσS

)
ε=0

]
+

∫
n

[
dσV F (n)

n +

∫
1

dσS
]
ε=0

. (2.11)

The unintegrated subtraction term dσS, living in the (n+ 1)-particle phase space as dσR, must

be constructed such that it has the same singular behavior in all single unresolved regions of

the (n+1)-particle phase space. The single unresolved regions are those where a gluon becomes

soft or two massless partons become collinear. Hence by construction, dσS cancels point-wise

the IR singularities of dσR, i.e., it acts as a local counterterm. Therefore, as indicated in the

first term of the last line of Eq. (2.11) both the evaluation of the two integrands in the square

bracket and the (n + 1)-particle phase-space integration can be done in D = 4 dimensions.

The last term in the second square bracket in the last line of Eq. (2.11),
∫

1
dσS , denotes the

integration of the subtraction term over the unresolved phase-space regions. This must de done

in D 6= 4 dimensions. This integration produces 1/ε and possibly also 1/ε2 poles that cancel

the IR poles contained in dσV F (n)
n . The remaining integration over the n-particle phase-space

can then be done in D = 4 dimensions. Thus the two terms in the last line of Eq. (2.11) and
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hence the NLO QCD correction σ1 are IR finite in D = 4 dimensions.

The integration
∫

1
dσS , which must be done in d 6= 4 dimensions and should be done preferably

in analytic fashion, is the main technical complication of the subtraction method. The inte-

gration is possible by exploiting the factorization of the soft and collinear singularities in the

construction of dσR. Moreover, the jet function that is contained in dσS is constructed to be a

function of the momenta of n resolved partons. These four-momenta are obtained by a momen-

tum mapping from the (n+ 1)-parton to the phase-space of n resolved partons. This mapping

should be constructed such that, in terms of the remapped momenta, the (n+1)-parton phase-

space measure factorizes into a product of an n-particle phase space element associated with

the resolved partons and a measure for the unresolved one-parton phase-space. This allows the

analytic integration of
∫

1
dσS . We shall outline this in somewhat more detail below.

If the initial state in the reaction (2.5) contains one or two partons, then dσS is again con-

structed such that all soft and collinear singularities in dσR associated with massless parton

radiation in the final and initial state are cancelled point-wise. In this case uncanceled initial-

state collinear singularities remain in [dσV F (n)
n +

∫
1
dσS ] which can be absorbed into the bare

parton distribution functions associated with the partons in the initial state. Technically this

can be implemented by adding a so-called collinear counterterm dσC to σNLO. In this case the

NLO correction σ1 to the LO parton cross section is replaced by a ‘subtracted’ correction σ̃1

given by

σ1 −→ σ̃1 =

∫
n+1

[ (
dσR F (n+1)

n

)
ε=0
−
(
dσS

)
ε=0

]
+

∫
n

[
dσV F (n)

n + dσC +

∫
1

dσS
]
ε=0

. (2.12)

The criteria stated above that the subtraction term dσS must fulfill does not fix it uniquely.

Consequently, a number of subtraction methods have been developed. An early version can be

found in [127] where the NLO corrections to the three-jet cross section in e+e− collisions in

massless QCD were computed. The most widely used subtraction method that applies to any

process at NLO QCD is the dipole subtraction method. It was developed for massless QCD

in [128] and extended in [129,130] to the case where the final state contains also massive colored

particles. The strategy of the dipole subtraction method is to keep the subtraction term rather
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simple. In general dσS consists of a sum of terms. Each term is the product of a function which

contains the soft and/or collinear singularities of the squared tree-level matrix element Mn+1

and a squared tree-level matrix element Mn that depends on the redefined momenta of the n

resolved partons. All integrals
∫

1
dσS can be done analytically in D 6= 4 dimensions [128, 130]

and thus all IR ε poles can be canceled in analytic fashion. Slight modifications of this method

which allow for a more efficient numerical implementation were developed in [131–135]. For the

decay of a massive colored particle, for instance, the top quark, the method was worked out at

NLO in [136,137]. Other NLO subtraction methods include those of [138–142] and the antenna

subtraction method [143–145] that will be discussed in more detail in the next section.

Within the so-called phase-space slicing method the NLO QCD corrections to a process like

(2.5) are computed as follows. Let’s consider for simplicity the case where the initial state is

uncolored. The (n + 1)-parton phase-space of the real radiation contribution is decomposed

as follows. When the additional parton is a gluon and becomes soft, the soft region is de-

fined by the requirement that the scaled gluon energy in the c.m. frame of the initial state,

xg = 2Eg/
√
ŝ, is smaller than some cut parameter xmin, where xmin � 1. In the soft gluon

region one uses the eikonal approximation for the real radiation matrix element Mn+1 and the

soft limit of the D-dimensional phase-space measure dΦn+1 and integrates the squared matrix

element approximated in this way over the soft gluon region xg ≤ xmin. The result contains

poles in ε and depends on xmin. Likewise, one can use the parameter xmin to define the collinear

region(s) of the (n + 1)-parton phase-space – if there are such regions depending on the final

state – and one uses the collinear approximation of the squared matrix element Mn+1 and of

the phase-space measure in D dimensions and integrates over the collinear region(s). Also

this result contains poles in ε and depends on xmin. If one combines the virtual corrections

and the real-radiation contributions from the soft and collinear regions, the ε poles cancel, but

the sum depends on the arbitrary slicing parameter xmin. The remaining task is to integrate

the real radiation matrix element Mn+1 over the hard radiation region, that is, the non-soft

and non-collinear region. This integration is finite and can be done in D = 4 dimensions,

but the result also depends on xmin. Now the parameter xmin has to be chosen such that the

sum of the virtual, soft, collinear, and hard contributions to the NLO QCD correction is to
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very good approximation independent of this parameter. Usually this requires a sequence of

calculations for several values of xmin. Ideally xmin → 0, but if xmin is chosen to be too small

one runs into numerical instabilities. A nice feature of the phase-space slicing method is that

no momentum mappings are necessary. On the other hand, beyond NLO the decomposition of

the real-radiation phase-spaces becomes in general very complicated, which has prohibited so

far an extension of this method to NNLO QCD. Early versions of the method at NLO QCD

include [115,146]. A systematic outline of the method for massless QCD and uncolored initial

states at NLO was given in [147]. The method was used in [148] to compute the NLO QCD

corrections to hadronic tt̄ production. In this case also a collinear counterterm as in (2.12) is

required.

Methods at NNLO QCD:

The NNLO QCD contribution dσ2 to the differential LO cross section dσLO of a parton reaction

is schematically,

dσ2 = dσV V + dσRV + dσRR , (2.13)

where the first, second, and third term on the right-hand side of this equation denotes the

double virtual (two-loop times Born and one-loop squared), the real-virtual (one-loop times

Born, with one additional parton), and double real radiation (squared Born with two addi-

tional partons) corrections, respectively. (If the initial state is colored, a collinear counterterm

is required.) There have been quite a few proposals to attack the problem of handling the IR

divergences of the terms on the right-hand side of (2.13). Assuming that dσV V can be com-

puted in D dimensions, i.e., its IR poles in the dimensional regulator ε are then known, these

methods boil down to handling the IR divergences of dσRR and those of dσRV which are simpler

in structure. Most of these methods are subtraction methods, and the main technical problem

is the integration of the real radiation subtraction terms such that the IR divergences become

explicit after integration as poles in ε. Methods range from integration of the subtraction terms

over the unresolved regions in phase-space in completely analytic fashion to numerical integra-

tion where the residues of the ε poles are determined numerically. Here we give give only a

very short overview over some of the NNLO ‘infrared methods’.
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To date the most successful NNLO IR method is STRIPPER (SecToR Improved Phase sPacE

for real Radiation) [149, 150], which is a subtraction scheme for double real radiation. It uses

aspects of the so-called FKS subtraction [138] and sector decomposition [151, 152] methods.

In the STRIPPER method the double real radiation phase space is suitably parametrized and

decomposed into various sectors according to the singularity structure of the respective matrix

elements, with the aim of disentangling overlapping IR divergences such that they factorize.

The IR singularities can the be regularized in terms of plus distributions. Integration of the

subtraction terms is done with numerical Monte Carlo methods and subsequent IR pole can-

cellation as also done numerically. The method is completely general, it can be applied to

arbitrary reactions with uncolored and colored initial states and massless and massive partons

in the final state. It has found a number of applications, most notably in the computation of

hadronic tt̄ production at NNLO QCD, both in the calculation of the tt̄ cross section [3,153–155]

as well as differential distributions [19,156,157].

The antenna subtraction scheme which is at NLO QCD, as mentioned above, an alternative to

the dipole subtraction method, was generalized in [145] for massless partons to NNLO QCD.

The method can, in principle, be applied to general partonic reactions. In the subsequent chap-

ters of this thesis we formulate this method and apply it to massive quark-pair production in

e+e− collisions at NNLO QCD. The basics of this method will be reviewed in the next section.

Subtraction methods that aim at a more restricted class of reactions include those of [158–162].

The method of [158] uses sector decomposition [151, 152] and is applicable to the hadronic

production of uncolored final states, especially hadronic Higgs production [163], and to reac-

tions with uncolored initial states [158]. The scheme of [160–162], which uses completely local

subtraction terms, was developed for reactions with uncolored initial states.

There are also NNLO infrared methods that bear a resemblance to the NLO phase-space slicing

method sketched above. The method proposed in [159] applies to the hadronic production of

colorless final states, for instance Higgs, ZZ, WW production. It uses the transverse momentum

of the uncolored final-state system for separating the double-virtual from the single and double

real radiation corrections. The two latter corrections can be handled in this approach with an

NLO subtraction method. Other approaches, which share the same spirit, have been pushed
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forward more recently in [80–82, 164] for specific reactions. Let us briefly describe it for reac-

tions with an uncolored initial state, e.g. e+e− → tt̄+X [80,82] at order α2
s, where X denotes

additional partons. One uses the unit decomposition 1 = Θ(λ−EX) + θ(EX − λ) = ΘI + ΘII ,

where EX is the energy of X and λ is an arbitrary parameter. Using this decomposition on can

write the order α2
s contribution dσ2/dO, where O is some observable associated with t and/or

t̄:

dσ2

dO
=
dσ2,I

dO
+
dσ2,II

dO
. (2.14)

Because of the above unit decomposition, dσ2,II/dO receive contributions form final states

which contain, besides tt̄, at least one additional parton with non-zero energy. Thus, dσ2,II/dO

can be computed using a NLO infrared method, for instance, the dipole subtraction method

discussed above. The term dσ2,I/dO receives the two-loop and squared one-loop contributions

from the tt̄ final state and, assuming λ� mt, soft parton contributions that may be computed

using the eikonal approximation. In this approximation, terms suppressed by powers of λ/mT

are neglected. Finally, in the numerical evaluation of (2.14) one has to choose the parameter λ

such that the dependence on λ of the sum (2.14) is minimized, which means that neglecting the

power-suppressed terms is justified. The scheme of [164] that addresses the hadronic produc-

tion of colored final states uses the global event-shape variable N-jettiness [165] for separating

unresolved and resolved parton kinematics at NNLO QCD.

2.4 The antenna subtraction method

The antenna subtraction method is a systematic (process-independent) procedure for the con-

struction of infrared subtraction terms that was developed for NLO QCD calculations in

[143, 144] and has been generalized to NNLO QCD in [145]. In this reference, NNLO an-

tenna subtractions terms for massless QCD were derived.

The antenna method is based on the use of color-ordered amplitudes into which an n-point

parton amplitude at l loops, M
(l)
n , can be decomposed [110,166,167]:

M (l)
n =

∑
i

C
(l)
i,nM

(l)
i , (2.15)
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where i runs over the (n−1)! non-cyclic permutations of the external parton spin and momentum

labels. This means that the ordering of the external partons is fixed in the color-stripped partial

amplitudes M(l)
i . The coefficients C

(l)
i,n contain the color information. Thus, kinematics and

gauge-group information is separated in (2.15). The development of the antenna formalism

relies on two important features. First, the construction of subtraction terms for the color-

ordered partial amplitudes is considerably simpler than for the full amplitudes. It relies on

the IR factorization properties of the color-ordered partial amplitudes. This factorization was

explicitly worked out both at tree-level [106, 110, 111, 143, 166, 168] and at one-loop level (cf.

for instance, [100, 112]). The determination of the integrated subtraction terms in analytic

fashion in D 6= 4 dimensions takes advantage of multi-loop integration techniques. It has been

accomplished at NNLO QCD for the massless case [145, 169], but also for a number of cases

involving massive quarks (see the references given below).

Let us consider a reaction of the form (2.5) with n resolved partons in the final state. For

simplicity we confine ourselves to the case where the initial state is uncolored. At NLO QCD

the construction of the subtraction term dσSNLO for the tree level real-radiation term dσR with

(n + 1) partons in the final state is based on the so-called tree-level three-parton antenna

functions that are proportional to a ratio of tree-level color-ordered amplitudes

X0
ijk(ki, kj, kk) ∝

|M(0)
ijk|2

|M(0)
IK |2

, (2.16)

where the labels i, j, k, I,K denote a massless or massive (anti)quark or a gluon. Summing/averaging

over the spins in the numerator and denominator of (2.16) is understood. The proportionality

factor in (2.16) contains powers of coupling constants and other normalization factors. We will

provide an example for (2.16), which is relevant for this thesis, in section 3.2. The subtraction

term dσSNLO that enters the formula (2.11) is obtained as a sum of so-called antennas2

dσSNLO =
∑
N dΦn+1(k1, . . . , kn+1; q)

1

Sn+1

×
∑
j

X0
ijk |Mn(k1, . . . , k̃I , k̃K , . . . , kn+1)|2F (n)

J (k1, . . . , k̃I , k̃K , . . . , kn+1) , (2.17)

2The choice of this terminology is explained below Eq. (2.19).
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such that the subtracted quantity3

dσRNLO − dσSNLO =
∑
N dΦn+1(k1, . . . , kn+1; q)

1

Sn+1

×

[
|Mn+1(k1, . . . , kn+1)|2 F (n+1)

J (k1, . . . , kn+1)

−
∑
j

X0
ijk |Mn(k1, . . . , k̃I , k̃K , . . . , kn+1)|2F (n)

J (k1, . . . , k̃I , k̃K , . . . , kn+1)

]
(2.18)

is free of soft and collinear singularities locally in the (n + 1)-parton phase space in D = 4

dimensions. The first sum in Eqs. (2.17) and (2.18) refers to the case where the real radiation

consists of more than one process. For example, for the LO process e+e− → QQ̄g there are

the two NLO real radiation reactions with QQ̄gg and QQ̄qq̄ in the final state which must be

summed. The factor N is a normalization factor that includes the incident flux factor, a spin-

averaging factor for the initial state and a color factor, and Sn+1 is a symmetry factor if there

are identical partons in the final state. Moreover, |Mn|2 and |Mn+1|2 denotes the squared

tree-level color-ordered S-matrix element involving n-partons and (n+ 1)-partons, respectively

(the superscript ‘0’ has been dropped and spin summation/averaging is understood), and, as

above, F (n)
J represents a measurement function constructed out of n parton momenta. The sum

over j denotes that all single unresolved configurations have to be taken into account.

The subtraction term dσSNLO in Eq. (2.17) involves the n-parton partial amplitude Mn which

depends by construction on n redefined on-shell momenta, k1, . . . , k̃I , k̃K , . . . , km+1 where k̃I , k̃K

are linear combinations of ki, kj, kk, while the tree-level antenna function X0
ijk depends only on

ki, kj, kk. For massless QCD such momentum mappings are given in [170]. For processes

that involve massive quarks these mappings are more complicated. In appendix B we give a

numerical method to construct mapped on-shell momenta for this case, which applies to the

observables considered in this thesis.

The choice of dσSNLO in Eq. (2.17) is justified because of the particular factorization properties

of color-ordered amplitudes referred to above. For example, when particle j is a gluon between

3From now on the symbols dσR, etc., contain the measurement function.
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the hard partons i and k, and j and becomes soft, the color-ordered S-matrix element undergoes

a “QED-like” factorization: an eikonal factor multiplied by the color-ordered S-matrix element

with this gluon removed, but the ordering of all the remaining particles is preserved:

|Mn+1(k1, . . . , ki, kj, kk, . . . , kn+1)|2 kj→ 0−→ S(i, j, k)|Mn(k1, . . . , k̃I , k̃K , . . . , kn+1)|2 ,

where

S(i, j, k) =
2sik
sijsjk

− 2m2
i

s2
ij

− 2m2
k

s2
jk

, (2.19)

where sij = 2ki · kj and mi,mk are the masses of partons i and k. We have replaced in the

matrix elementMn the momenta ki, kk by k̃I and k̃K , because the mapping used must satisify

k̃I = ki and k̃K = kk in the soft limit.

In this example, the partons I and K form a color-connected hard antenna that radiates particle

j. In doing so, the momenta of the radiators change to form particles i and k. The use of the

momentum mapping decouples the momentum of this unresolved parton from those of the hard

radiators I and K.

Notice that the measurement function F (n)
J in (2.18) depends, by construction, on the mapped

momenta k̃I , k̃K , but not on ki, kj, kk. One can therefore carry out the integration over the

antenna phase space associated with ki, kj and kk analytically in D 6= 4 by using the following

factorization of the phase-space measure,

dΦn+1(k1, . . . , kn+1; q) = dΦn(k1, . . . , k̃I , k̃K , . . . , kn+1; q)× dΦXijk(ki, kj, kk; k̃I + k̃K) . (2.20)

In order to appreciate this factorization formula of the (n + 1)-particle phase-space mea-

sure in D 6= 4, we may consider a much simpler case: the three-particle phase-space mea-

sure in four dimensions, dΦ3(k1, k2, k3; q). It can be written as the product of a two-particle

measure dΦ2(k̃1, k̃2; q) and an antenna phase-space measure dΦXijk(k1, k2, k3; k̃1 + k̃2). Recall

that out of the five independent variables used to parametrize the three-particle phase-space

dΦ3(k1, k2, k3; q), two of them can be chosen to be angles related to the orientation of the

coordinate frame on which the physical spin-summed/averaged S-matrix element does not de-

pend. These two angular variables are separated from the rest and used in the two-particle
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phase-space measure dΦ2(k̃1, k̃2; q). The remaining three-dimensional integration constitutes

the antenna phase-space measure dΦXijk(k1, k2, k3; k̃1 + k̃2) which retains no reference to the

absolute orientation of the underlying coordinate frame. This thee-dimensional measure dΦXijk

can be parametrized using the only two independent Lorentz-invariants that can be constructed

out of k1, k2, k3 plus an angle on which the the spin-averaged tree-level antenna function does

not not depend.

For the analytic integration of the subtraction term dσSNLO in Eq. (2.17), which is required

in order to produce the IR poles in ε that cancel the IR poles of the virtual correction (cf.

Eq. (2.11)), we can use (2.20) and rewrite each of the subtraction terms in (2.17) into the form

|Mn|2F (n)
J dΦn

∫
dΦXijk X

0
ijk,

where |Mn|2, F (n)
J and dΦn depend on k1, , . . . , k̃I , k̃K , . . . , kn+1, while dΦXijk and X0

ijk depend

on ki, kj, kk. The integral
∫

1
dσSNLO in the generic NLO formula Eq. (2.11) is therefore reduced

here to the D-dimensional analytic integration of the antenna function over the antenna phase

space.

At NNLO QCD one needs in addition to the antenna functions (2.16) also tree-level four-

parton antenna functions for the subtraction of singularities caused by double unresolved parton

configurations in the double real-radiation tree-level matrix elements. In analogy to (2.16) they

are proportional to a ratio of tree-level color-ordered amplitudes,

X0
ijkl(ki, kj, kk, kl) ∝

|M(0)
ijkl|2

|M(0)
IK |2

, (2.21)

where the labels i, j, k, l, I,K denote a massless or massive (anti)quark or a gluon. Sum-

ming/averaging over the spins in the numerator and denominator of (2.21) is understood. We

shall give examples in section 3.3 that are required for the analysis of this thesis.

For the sake of brevity we will not discuss here the general set-up of the antenna subtraction

method at NNLO QCD, but refer to the next chapter, where the formalism will be presented in

detail for the reaction e+e− → QQ̄+X which is the subject of this thesis. We close this section

with two remarks. i) At NNLO QCD the antenna subtraction terms do not, in general, cancel
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all IR singularities of the double real emission amplitudes in a point-wise manner. These un-

subtracted matrix elements contain, as a subamplitude, the splitting of a virtual gluon into two

gluons or a pair of massless quarks, g∗ → gg, qq̄, which leads to spin correlations in the squared

matrix element. However, these spin-correlations are absent in the subtraction terms because

the antenna functions are constructed with spin-summed/averaged squared matrix elements.

Nevertheless, one can remedy this deficiency by ‘azimuthal angle averaging’ [171, 172] which

will be described in section 3.3.1. This provides an efficient cancellation of the IR singularities

of the double real emission contributions. ii) A more serious issue is, generally speaking, the

construction of antenna subtraction terms for the subleading-color terms of the real emission

squared matrix elements. In general these subleading-color terms are given in terms of incoher-

ent interferences of color-ordered partial amplitudes. That is to say, amplitudes with different

orderings of the external legs interfere. Therefore, antenna functions constructed from squared

color-ordered amplitudes according to (2.16) and (2.21) will in general not be able to cancel

the singularities of subleading-color terms. The construction of appropriate subleading-color

antenna subtraction terms is, in the case of hadronic reactions, quite complicated in general.

For hadronic dijet production due to gluon scattering it was described in [173]. For the reac-

tions considered in this thesis, the construction of the subleading-color antenna functions is,

however, straightforward ( cf. [78, 174] and section 3.3.1).



Chapter 3

Ingredients for computing

e+e−→ QQ̄ + X at O(α2
s)

In this chapter we recapitulate all the ingredients needed and the formalism employed for

calculating the production of a massive quark-antiquark pair in e+e− collisions,

e−(p1)e+(p2)→ γ∗, Z∗(q)→ Q(k1) Q̄(k2) +X , (3.1)

at order α2
s in QCD and to lowest order in the electroweak couplings within the antenna

subtraction framework.

3.1 Classification of contributions to order α2
s

Before we introduce the IR subtraction formulas employed for calculating the process (3.1) to

order α2
s, let us briefly list the various terms that contribute to (3.1) contributing terms to this

process to this order in perturbation theory. To order α2
s, the (differential) cross section of the

reaction (3.1) receives contributions from

i) the two-parton QQ̄ state (at Born level, to order αs, and to order α2
s),

ii) the three-parton state QQ̄g (to order αs and to order α2
s),

iii) and the four-parton states QQ̄gg, QQ̄qq̄, and above the 4Q-threshold from QQ̄QQ̄ (to order

29
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α2
s).

The QQ̄QQ̄ final state deserves a separate discussion, in view of the fact that for these states

the particle-multiplicity nQ 6= 1 if one considers so-called inclusive heavy-quark distributions

dσ(e+e− → Q+X)/dOQ, where OQ is some observable associated with Q. We will come back

to this point in chapters 4 and 5.

3.1.1 Contributions from QQ̄, QQ̄g, QQ̄gg, and QQ̄qq̄ final states

We start with the QQ̄ contributions. Figure 3.1 shows representative Feynman diagrams for

this two-parton final state up to α2
s.

Figure 3.1: Examples of diagrams that contribute to the QQ̄ final state to order α2
s. The dashed

line represents the electroweak neutral current, that is, the virtual photon or Z boson, the thick
line the massive Q quark, and the thin line any of the six quarks. The triangle diagrams (d)
are summed over the six quark flavors. Here the the vector current contributions are zero due
to Furry’s theorem.

According to the terminology used in [175–177], the two-loop diagram figure 3.1c belongs to

the type-A two-loop contributions where the external current couples to to QQ̄. This diagram

and the one-loop diagram fig. 3.1c are also examples of so-called universal QCD corrections

because the same electroweak couplings as in the lowest order diagram fig. 3.1a are involved.

Figure 3.1d is an example of the so-called type-B two-loop contributions where a fermion triangle
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loop is involved. Since in fig. (3.2d) it is not necessarily the heavy quark Q that is coupled to

the electroweak current, it is an example for the so-called non-universal QCD corrections to

the lowest order QQ̄ production amplitude.

Examples of diagrams associated with the QQ̄g final state that lead to contributions of

order αs and as2 to the differential cross section of (3.1) are displayed in fig. 3.2. The diagrams

fig. 3.2a,b and fig. 3.2c belong to the universal and non-universal QCD corrections, respectively.

The four-parton final-state diagrams of fig. 3.3 contribute at order α2
s to the differential

cross section. An example of a diagram corresponding to the final state QQ̄gg is shown in

fig. 3.3a, while two of the four diagrams associated with QQ̄qq̄ (q 6= Q) are exhibited in

fig. 3.3b,c. The square of the QQ̄gg diagrams and the square of fig. 3.3a lead to universal QCD

corrections while the square of fig. 3.3c and the interference of figs. 3.3b and 3.3c belong to the

non-universal QCD corrections.

Figure 3.2: Examples of diagrams that contribute to the QQ̄g final state to order α2
s. The

assignment of the lines is as in figure 3.1.

For our computation of the b-quark forward-backward asymmetry in section 5.3 and com-

parison of our results with previous ones for massless b quarks [90] it is useful to group the

various contributions into the following three classes.

i) Triangle contributions: This class refers to those contributions associated with two-

parton, three-parton, and four-parton final states where a fermion triangle is involved.

These contributions are ultraviolet and infrared finite by themselves. To be specific, this

set consists of the interference between the diagrams in figure 3.1a and 3.1d, between

the diagrams in figure 3.2a and 3.2c, and between the diagrams in figure 3.3b and 3.3c.



32 Chapter 3. Ingredients for computing e+e− → QQ̄ + X at O(α2
s)

The triangle interferences involve a sum over three generations of quarks. We neglect the

masses of the u, d, c, s quarks, which is an excellent approximation for our purposes, i.e.,

the computation of differential cross sections at or above the Z resonance. After pairing

up triangle contributions from two quarks in one SU(2)-doublet, the only non-vanishing

one comes from the third generation due to the mass-splitting between the b and t quark.

The triangle contributions are part of the non-universal corrections to the leading-order

QQ̄ cross section because they involve electroweak couplings of quarks q 6= Q.

ii) Flavor singlet contributions: The square of diagrams where the observed final-state

heavy quark Q is produced by the splitting of a gluon radiated off a quark rather than

via a virtual photon or Z boson belong to the so-called singlet contributions. Here the

QQ̄ pair is produced in a definite state of charge conjugation, namely in a C-even state.

The square of the diagrams in figure 3.3c belong to this class. Obviously these are non-

universal corrections. There is an additional singlet contribution from the QQ̄QQ̄ final

state as will be discussed in the next subsection. This contribution belongs to the universal

QCD corrections.

iii) Flavor non-singlet contributions: All the remaining contributions that are not in the

above two classes are classified as non-singlet contributions. Here the observed final-state

heavy quark Q is coupled to the electroweak current. All the two-parton diagrams in

figure 3.1 other than the so-called type-B two-loop diagrams represented by figure 3.1d,

belong to this class. Non-singlet contributions from the three-parton final state are shown

in figure 3.2a and 3.2b. All the diagrams that correspond to the QQ̄gg final state (cf.

figure 3.3a) and the square of QQ̄qq̄ (q 6= Q) diagram figure 3.3b are in this class. There

are also contributions from the QQ̄QQ̄ final state, see the next subsection 3.1.2. The

non-singlet contributions lead to universal QCD corrections to the lowest-order QQ̄ cross

section.
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Figure 3.3: (a): Examples of diagrams that contribute to the QQ̄gg final state at order α2
s.

(b,c): Two of the four diagrams that contribute to the QQ̄qq̄ (q 6= Q) final state at order α2
s.

3.1.2 The QQ̄QQ̄ final state

The QQ̄QQ̄ final state contributes to the heavy quark-pair cross section above the 4mQ thresh-

old. At order α2
s there are eight diagrams shown in figure 3.4 associated with this final state

because it contains two identical (anti)quarks. Notice that the multiplicity factor associated

with these diagrams depends on which observable is calculated. In the case of the total cross

section for e+e− → hadrons the multiplicity factor is one. However, in the case of (differen-

tial) inclusive cross sections for a heavy quark Q these diagrams count twice because there are

two quarks Q in the final state. This will be further discussed in chapters 4 and 5 where we

compute inclusive b quark distributions and the b-quark forward-backward asymmetry. In the

case of top quark production, we limit ourselves to center-mass energy below four-top threshold.

In section 5.3.2, we shall compute the b-quark forward-backward asymmetry in the limit mb → 0

for the purpose of comparing with the massless result of [90]. Due to a subtlety of AFB for

massless quarks (which is actually not well defined at order α2
s as as will be explained in sec-

tion 5.3.2, it is useful to partition the square of the eight QQ̄QQ̄ diagrams into different groups,

following the conventions of [90]. For definiteness we specify in the remainder of this subsection

the heavy quark Q to be the bottom quark. Ref. [90] distinguishes between group-(i) contribu-

tions that are identical to those of bb̄qq̄ shown in figs. 3.3b and 3.3c, but with q being replaced

by that b quark that is not triggered on, and group-(ii) genuine interference terms that arise

from the fact that there are two indistinguishable (anti)quarks in the final state. Group-(ii),

which is called the E-term in [127], is the color subleading part of the squared bb̄bb̄ S-matrix
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element.

In the following we denote by Di the sum of the two diagrams shown in figure 3.4 and

Dij = 2Re(D∗iDj). Then the E-term is given by the sum of the following interferences:

D12, D13, D24, D34 . (3.2)

Ref. [90] considers the E-term to be part of the non-singlet contributions. Group-(i) can be

partitioned into non-singlet, singlet, and triangle contributions. By convention we denote the

momentum of the triggered b-quark with k1. The singlet terms refer to those where the b quark

that is observed is produced by a gluon. Then the singlet contribution is given by the sum of

the terms

D33 and D44 . (3.3)

The triangle interferences are given by the sum of the terms

D14 and D23 . (3.4)

These are interferences between diagrams where the b quark with momentum k1 couples to the

weak current and to the gluon, respectively.

The remaining contributions to group (i) are non-singlet contributions where the triggered b-

quark with momentum k1 is coupled to the electroweak current.

We come back to this classification in section 5.3.2 when comparing our computation of the

b-quark forward-backward asymmetry in the limit mb → 0 with that of [90].

(a) Amplitudes Di, i = 1, . . . , 4.

Label D1 D2 D3 D4

1 k1 k1 k3 k3

2 k3 k3 k1 k1

3 k4 k2 k4 k2

4 k2 k4 k2 k4

(b) Labeling of the quark momenta

Figure 3.4: Contributions to e+e− → QQQQ
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3.2 The differential cross section at LO and NLO QCD

In this subsection we outline all the basic ingredients and formulae involved in the computation

of the differential cross section for e+e− → QQ̄ + X at order αs within the antenna subtraction

method. Here Q denotes a massive quark, for instance, the bottom or top quark. We work in

QCD with nf massless quarks q and one massive quark Q. In our application to top-quark pair

production, nf = 5. When we apply the general formulae of section 3 to bb̄ production at the

Z-boson resonance we use four massless quarks (i.e., put nf = 4) and a massive b quark. In this

case the top-quark is decoupled from its contribution to the 1-loop gluon self-energy (which

contributes to the 2-loop type-A bb̄ final-state diagrams) because we use the QCD coupling αs

in the MS scheme with 5 flavors, but the top quark contribution to the 2-loop type-B diagrams

fig. 3.1d and to the 1-loop triangle diagrams figure 3.2c has to be taken into account.

All S-matrix elements in this and in the following subsection 3.3 refer to UV-renormalized

matrix elements. The mass of Q, denoted by mQ, is renormalized in the on-shell scheme

while the QCD coupling αs, as aleady mentioned, is renormalized in the MS scheme. The

renormalization constants of this hybrid renormalization scheme that we need are collected

in Appendix A.2. Dimensional regularization (DR) is used to regularize both UV and IR

singularities that appear in intermediate steps of perturbative calculations. In the following

the differential cross section for QQ̄ productions at order α2
s is written schematically as

dσ = dσLO + dσ1 + dσ2 , (3.5)

where dσLO, dσ1, and dσ2 denote the LO, NLO, and NNLO QCD contribution, respectively.

3.2.1 LO QCD

To zeroth order in αs we consider

e−(p1) e+(p2)→ γ∗, Z∗(q)→ Q(k1) Q̄(k2) , (3.6)
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where Q denotes a massive quark. The corresponding leading-order (LO) (differential) cross

section for unpolarized e+e− collisions is given by

∫
dσLO = N Nc

∫
dΦ2F (2)

2 (k1, k2)
∣∣M0

2(1Q, 2Q̄)
∣∣2 , N =

1

8s
, (3.7)

where Nc = 3 denotes the number of quark colors and M0
2(1Q, 2Q̄) is the two-parton color-

stripped Born-level amplitude which is defined in eq. Eq.(3.14) below. Here and in the following,

summation over polarizations and colors of the partons in the final state is implicit. The factor

N contains the incident flux factor, 1/(2s) = 1/(2(p1 + p2)2) and the spin averaging factor 1/4

for the initial state. The phase-space measure dΦn in D = 4 − 2ε dimensions for n particles

in the final state is defined in Appendix A. We use here and below symbolic labels iX in order

to denote the type X and the four-momentum ki of a final-state parton in the (color-stripped)

S-matrix elements. For example, the symbol 1Q denotes a massive quark with momentum k1

while 3q̄ labels a massless anti-quark with momentum k3.

The infrared-safe jet-defining function or measurement function is denoted by F (m)
n (kj).

It must fulfill the conditions (2.7) and (2.8). Here it refers to a n-jet observable constructed

out of a pair of heavy quarks Q, Q̄ and (m − 2) massless partons in the final state. All the

computations done in this thesis involve only observables associated with Q and/or Q̄. Hence

for definiteness we put n = 2 in (3.7) and in the following formulae. But we emphasize that

the formalism presented below applies to any infrared-safe observable.

3.2.2 NLO QCD

The NLO QCD correction dσ1 to the LO differential cross section Eq.(3.7) consists of the

interference of the Born and one-loop QQ̄ amplitude and the squared tree-level real radiation

amplitude of the three-parton final state

e−(p1) e+(p2)→ γ∗, Z∗(q)→ Q(k1) Q̄(k2) + g(k3) . (3.8)

Based on what has been discussed in the preceding chapters, in a subtraction method for
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handling the IR divergences the NLO correction to the LO cross section or to a differential

distribution can be rewritten as follows:

∫
dσ1 =

∫
Φ3

[ (
dσRQQ̄g

)
ε=0
−
(
dσSQQ̄g

)
ε=0

]
+

∫
Φ2

[
dσVQQ̄ +

∫
1

dσSQQ̄g

]
ε=0

, (3.9)

where ε = (4 − D)/2 is the regulator parameter of the dimensional regularization scheme

and the subscripts Φn denote n-particle phase-space integrals defined in D = 4 space-time

dimensions. Throughout this thesis, the symbol
∫
n

indicates the analytic integration over the

phase space of n unresolved partons in D 6= 4 dimensions. The second term in the first and

second square bracket of Eq.(3.9) is the unintegrated and integrated IR subtraction term that

renders the difference, respectively the combination of the terms in the square brackets finite in

D = 4 dimensions. We address the construction of NLO subtraction terms required in Eq. (3.9)

within the antenna subtraction framework below in Eqs. (3.16), (3.17).

The NLO real and virtual corrections to the LO cross section, Eq.(3.7), dσR
QQ̄g

and dσV
QQ̄

, are

given by

dσRQQ̄g = N (4παs)
(
N2
c − 1

)
dΦ3F (3)

2 (k1, k2, k3)
∣∣M0

3(1Q, 3g, 2Q̄)
∣∣2 , (3.10)

dσVQQ̄ = N
(αs

2π

)
C̄(ε)

(
N2
c − 1

)
dΦ2F (2)

2 (k1, k2) δM1
2(1Q, 2Q̄) , (3.11)

where

C̄(ε) = 8π2C(ε) = (4π)εe−εγE (3.12)

and γE = 0.5772156649 . . . denotes the Euler–Mascheroni constant. As before summation over

polarizations and colors of final states is not exhibited. To ease the work of typing, we use the

following shorthand notation for the interference of the color-stripped tree-level and one-loop

two-parton amplitude:

δM1
2

(
iQ, jQ̄

)
= 2Re

[
M0∗

2

(
iQ, jQ̄

)
M1

2

(
iQ, jQ̄

)]
. (3.13)

In the formulas Eq.(3.7), Eq.(3.10), and Eq.(3.13) we have introduced color stripped partial
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amplitudes M0
2, M1

2, and M0
3 where the QCD coupling factor is taken out, but electroweak

couplings are kept. These quantities are related to the tree-level and the renormalized one-

loop matrix elements of e−e+ → QQ̄ and the tree-level matrix element of e−e+ → QQ̄g via

projecting them onto the appropriately normalized color decomposition basis. For the sake of

easy reference in the next section we give here the color decomposition of S-matrix elements of

these processes to NNLO QCD:

M(e−e+ → QQ̄) = δi1i2M0
2

(
1Q, 2Q̄

)
+

(αs
2π

)
C̄(ε) 2CF δi1i2M1

2

(
1Q, 2Q̄

)
+

(αs
2π

)2 (
C̄(ε)

)2
δi1i2M2

2

(
1Q, 2Q̄

)
+O

(
α3
s

)
, (3.14)

M(e−e+ → QQ̄g) = gs
√

2T a3
i1i2

{
M0

3

(
1Q, 3g, 2Q̄

)
+
(αs

2π

)
C̄(ε)

×
[
NcM1,lc

3

(
1Q, 3g, 2Q̄

)
− 1

Nc

M1,sc
3

(
1Q, 3g, 2Q̄

)
+ nfM1,f

3

(
1Q, 3g, 2Q̄

)
+M1,F

3

(
1Q, 3g, 2Q̄

)
+M1,tr

3

(
1Q, 3g, 2Q̄

) ]
+O

(
α2
s

)}
, (3.15)

where i1 (i2) denotes the color index of the heavy quark (antiquark) in the fundamental represen-

tation, a3 is the color index of the gluon in the ajoint representation, gs =
√

4παs, CF = N2
c−1

2Nc
,

and the generators of SU(3)c are normalized according to tr(T aT b) = TRδab with TR = 1
2
. As

already mentioned at the beginning of sec. 3.2, the number of massless quarks is denoted by

nf which will be set to 4 for bottom-quark production at the Z-pole and to 5 for top-quark

production. The renormalized two-loop two-parton amplitudeM2
2, which consists of contribu-

tions with different color structures, and the renormalized 1-loop three-parton amplitude in the

square bracket of Eq.(3.15) are required in the next section. TheM2
2 are computed by using the

heavy quark vector, axial vector, and anomaly form factors known to NNLO in QCD [175–177].

All other one-loop and tree-level amplitudes are computed using standard procedures. The

one-loop two- and three-parton amplitudes are calculated by performing a Passarino-Veltman
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reduction to scalar one-loop integrals in D dimensions of the respective Born times one-loop

interference terms. The scalar one-loop integrals are known in analytic fashion. The labels ‘lc’

and ‘sc’ in Eq.(3.15) refer to leading-order and subleading-order term in the color factor Nc,

respectively. The terms M1,f
3 and M1,F

3 are the contributions from the massless and massive

quark loop, respectively, that enter via the renormalization of the quark-quark-gluon vertex in

QCD. The term M1,tr
3 denotes the contribution from fig. 3.2c, where the axial current couples

to quark triangles, summed over all quark flavors (ui, di), which disintegrate into a real and

virtual gluon that splits into QQ̄. This term, which is both ultraviolet- and infrared-finite by

itself, involves weak couplings of q 6= Q and constitutes, as already mentioned in sec. 3.1, a

non-universal correction to the leading-order QQ̄ cross section. We recall from sec. 3.1 that

there are also non-universal corrections contained in the two-loop two-parton amplitude M2
2 –

the type-B contributions – and also from four-parton amplitudes that will be discussed in the

following subsection.

We continue with the discussion of the formulae for the differential NLO cross section in the

antenna subtraction method. The squared tree-level S-matrix element
∣∣M0

3

∣∣2 of the real radia-

tion correction Eq.(3.10) becomes singular when the gluon momentum k3 becomes soft. Within

the antenna method this soft singularity is subtracted by constructing a local subtraction term

that approaches Eq.(3.10) in this soft region. This NLO local subtraction term, which involves

a term called quark-antiquark antenna A0
3, and its integrated form (integrated over the phase

space of the unresolved single gluon) are:

dσSQQ̄g = N (4παs)
(
N2
c − 1

)
dΦ3(k1, k2, k3; q)F (2)

2

(
k̃13, k̃32

)
× A0

3

(
1Q, 3g, 2Q̄

) ∣∣∣M0
2

(
(̃13)Q, (̃32)Q̄

)∣∣∣2 , (3.16)∫
1

dσSQQ̄g = N
(αs

2π

)
C̄(ε)

(
N2
c − 1

)
dΦ2(k1, k2; q)F (2)

2 (k1, k2)

×A0
3

(
ε, µ2/s; y

) ∣∣M0
2

(
1Q, 2Q̄

)∣∣2 , (3.17)

where µ is the dimensionful parameter of DR, and

y =
1− β
1 + β

, β =
√

1− 4m2
Q/s . (3.18)
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The three-parton tree-level massive quark-antiquark antenna function A0
3 describes a single

unresolved gluon radiation between a (massive) quark-antiquark pair at tree-level. Obviously

this antenna function A0
3

(
1Q, 3g, 2Q̄

)
encapsulates all single unresolved limits of this radiation

process. We recall that in the antenna picture, the color-ordered (m + 1)-parton tree-level

S-matrix element factorises, in the unresolved IR limits, into a product of the well known soft

eikonal factor when the gluon is soft, or Altarelli-Parisi splitting functions when two massless

partons are collinear, and a reduced color-ordered m-parton tree-level S-matrix element with

the unresolved parton removed but keeping same color-ordering among the remainders. This

antenna function A0
3

(
1Q, 3g, 2Q̄

)
can be obtained via appropriately normalizing the squared

tree-level color-stripped S-matrix element for the process γ∗ → QQ̄g. The normalization is

done with respect to the color-stripped two-parton S-matrix element of γ∗ → QQ̄ which is the

remaining hard skeleton of γ∗ → QQ̄g when the gluon is soft. The normalization is necessary

if we want this antenna function A0
3

(
1Q, 3g, 2Q̄

)
to have the correct limiting form, a (color-

stripped) soft eikonal factor squared, when 3g is soft. Thus it is given by

A0
3

(
1Q, 3g, 2Q̄

)
=
|M0,γ∗

3

(
1Q, 3g, 2Q̄

)
|2

|M0,γ∗

2

(
1Q, 2Q̄

)
|2

. (3.19)

Summation over the spins in the numerator and denominator of (3.19) is understood.

The explicit form of this antenna function and its integrated counterpart A0
3 were derived first

in [178,179]. The integrated quark-antiquark antenna function A0
3 contains an explicit IR pole

∝ 1/ε that cancels the corresponding IR pole in the one-loop function contained in dσV
QQ̄

.

The integrated antenna function A0
3 on y involves to order ε0, which is sufficient for the NLO

computation of the cross section, only logarithms and dilogarithms. The order ε terms of A0
3,

which is needed for the NNLO calculation, contains also harmonic polylogarithms (HPL) [180],

which can be evaluated using the codes of refs. [181,182].

As already alluded to in section 2.4, the matrix element M0
2 and the measurement function

F (2)
2 in Eq. (3.16) must be evaluated with redefined on-shell momenta k̃13, k̃32 that are obtained

from k1, k2, k3 by an appropriate phase-space mapping [172]. The point of this mapping is to

guarantee that the partial integration over the unresolved radiation in the subtraction term

in Eq. (3.16), which is done in numerical manner, is exactly the same as the integration in
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Eq. (3.17) done analytically. This is essential for the cancellation of contributions from these

purely unphysical terms when they are combined.

Our method to construct the mapped momenta k̃13, k̃32, which can be used for observables

associated with Q and/or Q̄, is given in Appendix B.

3.3 The differential cross section at NNLO QCD

The second-order correction dσ2 in the expansion in powers of αs of the differential cross section

of Eq. (3.1), dσ = dσLO + dσ1 + dσ2 + O(α3
s), receives the following contributions, organized

according to the number of partons in the final states:

i) the double virtual correction dσV VNNLO associated with the (renormalized) S-matrix element

of e+e− → QQ̄ to order α2
s (i.e., 2-loop times Born and 1-loop squared),

ii) the real-virtual cross section dσRVNNLO associated with the S-matrix element of e+e− → QQ̄g

to order α2
s (1-loop times Born),

iii) the double real contribution dσRRNNLO associated with the squared Born amplitudes e+e− →

QQ̄gg, e+e− → QQ̄qq̄ (where q denotes a massless quark).

Above the 4Q threshold, the channel e+e− → QQ̄QQ̄ is open. This contribution is IR finite as

long as we consider massive quarks and is of no concern to us for the purpose of this section.

Each of the contributions listed in the above three subsets of is IR divergent.

Within the antenna subtraction method, the IR-subtracted second order correction dσ2, where

the different pieces are separately finite, is constructed schematically as follows:

∫
dσ2 =

∫
Φ4

(
dσRRNNLO − dσSNNLO

)
+
∫

Φ3

(
dσRVNNLO − dσTNNLO

)
+
(∫

Φ2
dσV VNNLO +

∫
Φ3
dσTNNLO +

∫
Φ4
dσSNNLO

)
. (3.20)

The integrands dσSNNLO and dσTNNLO denote the double-real subtraction terms (for QQ̄qq̄ and

QQ̄gg) and the real-virtual subtraction term, respectively. The construction of these terms in-

volves various antenna functions which can be derived from appropriately normalized physical
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color-ordered partial amplitudes of certain subprocesses responsible for the unresolved radia-

tion. Due to the much more involved IR singular structure at NNLO compared to NLO, the

construction of dσSNNLO will intertwine with that of dσTNNLO. In addition, individual NNLO IR-

subtraction terms introduced and worked out for a specific IR singular region (constructed such

that they do a good job there) can produce unwanted extra IR singularities in other singular

regions where the IR singularity of the unsubtracted squared S-matrix element is already taken

care of by another IR-subtraction term. This leads to the so-called over-subtracted singulari-

ties, which must be carefully compensated when constructing NNLO subtraction terms.

We now discuss in turn the various terms in Eq. (3.20) in some detail. It is a good strategy to

start with the IR subtraction terms for the processes with the largest particle multiplicity.

3.3.1 Double real-radiation corrections

In this subsection we discuss the computation of
(
dσRRNNLO − dσSNNLO

)
on the right-hand side of

the first line in Eq. (3.20) within the antenna subtraction framework.

The QQ̄qq̄ final state:

First we start with the reaction

e−(p1)e+(p2)→ γ∗, Z∗(q)→ Q(k1) Q̄(k2) + q(k3) q̄(k4) , (3.21)

where q denotes a massless quark. The corresponding tree-level amplitude, decomposed into

color-stripped partial amplitudes with the QCD coupling factored out explicitly, is given by

M
(
e+e− → QQ̄qq̄

)
= (4παs)

(
δi1i4δi3i2 −

1

Nc

δi1i2δi3i4

)(
MQ

4 +Mq
4

)
. (3.22)

The colors of the quarks and antiquarks are labeled by i1, . . . , i4. The MQ
4 (Mq

4) corresponds

to the color-ordered partial amplitudes where the massless (massive) quark-antiquark pair is

produced by the splitting of the virtual gluon radiated off one of the quarks produced by

the virtual photon or Z boson. These amplitudes still contain the corresponding electroweak

couplings. Squaring the matrix element Eq. (3.22) yields the unsubtracted differential cross
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section summed over colors and summed/averaged over all spins:

∑
q

dσQQ̄qq̄NNLO = N (4παs)
2 (N2

c − 1
)
dΦ4F (4)

2 (k1, k2, k3, k4)

×
{
nf
∣∣MQ

4

∣∣2 +
∑
q

∣∣Mq
4

∣∣2 +
∑
q

2 Re
[(
MQ

4

)∗
Mq

4

]}
, (3.23)

where the sum is over all nf massless quark flavors. The factor N is given in Eq. (3.7). The

second and third term in the second line of Eq. (3.23) contain the electroweak couplings of the

massless quarks q and contribute to the non-universal QCD corrections to the leading-order

differential QQ̄ cross section. As long as Q is massive the propagator factors in the second

term cannot become singular in the four-parton phase space. The third term has a singularity

which integrable with respect to phase-space integration. Therefore neither of these two terms

requires an IR subtraction in the four-parton phase space – only the first term in the second

line of Eq. (3.23) does.

As mentioned before, instead of finding a single monolithic NNLO IR subtraction in one go,

the task is divided into constructing several pieces, each of which is supposed to perform the

IR subtraction in a certain IR singular region.

The fully subtracted IR-finite differential cross section for the process (3.21) reads as follows:

dσsub,QQ̄qq̄
NNLO =

∑
q

(
dσQQ̄qq̄NNLO − dσ

S,a,QQ̄qq̄
NNLO − dσS,b,2,QQ̄qq̄NNLO − σS,b,1,QQ̄qq̄NNLO

)
. (3.24)

where the NNLO IR subtraction consists of three pieces, dσS,a,QQ̄qq̄NNLO , dσS,b,2,QQ̄qq̄NNLO , σS,b,1,QQ̄qq̄NNLO . By

construction the sum of the three subtraction terms is such that it coincides with Eq. (3.23) in

all single and double unresolved limits, i.e., when the massless quarks become collinear and/or

soft. Thus, Eq. (3.24) is, as a whole, free of IR divergences and can be integrated over the

four-parton phase space numerically in D = 4 dimensions.

In order to understand the cancellation pattern of the IR singularities among the four terms in

Eq. (3.24) in all IR-singular regions of the four-parton phase space, it is advantageous to start

with the double-unresolved configurations. The subtraction term for removing the singularities
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of Eq. (3.23) due to the double unresolved configuration, where both q and q̄ become soft, is

dσS,b,2,QQ̄qq̄NNLO = N (4παs)
2 (N2

c − 1
)
dΦ4

× B0
4(1Q, 3q, 4q̄, 2Q̄)

∣∣∣M0
2

(
(̃134)Q, (̃342)Q̄

)∣∣∣2F (2)
2

(
k̃134, k̃342

)
. (3.25)

The tree-level four-parton antenna function B0
4 is given in [183], which is obtained via appropri-

ately normalizing the squared tree-level color-ordered (partial) S-matrix element of the process

γ∗ → Q(k1)Q̄(k2)q(k3)q̄(k4). (The initial state γ∗ is chosen by convention.) The normalization

is done with respect to the color-stripped two-parton S-matrix element of γ∗ → QQ̄ which is

the remaining hard skeleton when both massless quarks are soft. Thus,

B0
4(1Q, 3q, 4q̄, 2Q̄) =

|MQ,γ∗

4 (1Q, 3q, 4q̄, 2Q̄)|2

|M0,γ∗

2 (1Q, 2Q̄)|2
, (3.26)

where summation over the spins in the numerator and denominator of (3.26) is understood.

The tree-level color-ordered S-matrix element M0
2 is defined in Eq. (3.14). The momenta k̃ikl

and k̃jkl are linear combinations of the momenta ki, kj, kk, kl obtained from a 4→ 2 mapping,

cf. Appendix B.2. It is thus relatively easy to see the dσS,b,2,QQ̄qq̄NNLO does manage to remove the

IR singularities of dσQQ̄qq̄NNLO in the double-unresolved region. Moreover, it is constructed in a

way that facilitates the analytic integration over the double-unresolved phase space in D di-

mensions.

However, dσS,b,2,QQ̄qq̄NNLO itself is not able to properly approximate the dσQQ̄qq̄NNLO in the single unre-

solved region, which is clearly shown by the appearance of the hard skeletonM0
2

(
(̃134)Q, (̃342)Q̄

)
in Eq. (3.25). We notice that the hard skeleton of dσQQ̄qq̄NNLO in the single unresolved region is

the (squared) S-matrix element of a 2 → 3 process like e+e− → QQ̄g which in general is not

simply proportional to the squared matrix element of e+e− → QQ̄ by a constant factor in the

whole 3-particle phase-space. Thus we conclude that dσS,b,2,QQ̄qq̄NNLO given in Eq. (3.25) is unable

to remove the IR singularities of dσQQ̄qq̄NNLO in the single unresolved region. We have to introduce

an additional subtraction term for doing this job.

The term dσS,a,QQ̄qq̄NNLO is introduced to remove the singularities of the unsubtracted differential

cross section dσQQ̄qq̄NNLO associated with the single unresolved configurations. Within the antenna
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method, it is given by

dσS,a,QQ̄qq̄NNLO = N (4παs)
2 (N2

c − 1
)
dΦ4(k1, k2, k3, k4; q)

×
[

1

2
E0

3(1Q, 3q, 4q̄)
∣∣∣M0

3

(
(̃13)Q, (̃34)g, 2Q̄

)∣∣∣2F (3)
2

(
k̃13, k̃34, k2

)
+

1

2
E0

3

(
2Q̄, 3q, 4q̄

) ∣∣∣M0
3

(
1Q, (̃34)g, (̃42)Q̄

)∣∣∣2F (3)
2

(
k1, k̃34, k̃42

)]
. (3.27)

The three-parton tree-level quark-gluon antenna function E0
3 with a massive (anti)quark radia-

tor describes a tree-level radiation process where a pair of massless quarks and a massive quark

are present in the final state. Note that this antenna becomes singular in the single unresolved

collinear region and in the double soft region. The explicit form of this antenna function is

given in [178].

The color-stripped tree-level QQ̄g matrix elementM0
3 is defined in Eq. (3.15). As in Eq. (3.16),

the momenta k̃ij and k̃jk are redefined on-shell momenta, constructed from linear combinations

of the momenta ki, kj and kk [172, 184]. The structure of dσS,a,QQ̄qq̄NNLO in Eq. (3.27) makes it

clear that it is suitable to be analytically integrated over the single unresolved phase space in

D dimensions.

Despite the fact that both dσS,b,2,QQ̄qq̄NNLO and dσS,a,QQ̄qq̄NNLO are able to do a good job in their respective

realm, the double and single unresolved region, both of them produce additional unwanted IR

singularities in regions which they were not designed for in the first place. To be more specific

about this, dσS,b,2,QQ̄qq̄NNLO is IR singular in the single unresolved region where the IR divergences

of dσQQ̄qq̄NNLO are removed by dσS,a,QQ̄qq̄NNLO , and dσS,a,QQ̄qq̄NNLO is also singular in the double unresolved

region where the IR divergences of dσQQ̄qq̄NNLO are taken care of by dσS,b,2,QQ̄qq̄NNLO . To eliminate these

so-called over-subtracted singularities, we must introduce an additional subtraction term. The

construction of such an additional term is easiest if we examine the limiting form of the IR sub-

traction term dσS,a,QQ̄qq̄NNLO in the double unresolved region, that is, when both k3 and k4 become

soft simultaneously. Following the procedure how the NLO IR subtraction term Eq. (3.16) for

Eq. (3.8) is constructed in the single unresolved region, it is not hard to arrive at the following
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expression for this compensating term, which we call dσS,b,1,QQ̄qq̄NNLO :

dσS,b,1,QQ̄qq̄NNLO = −N (4παs)
2 (N2

c − 1
)
dΦ4(k1, k2, k3, k4; q)

×
[

1

2
E0

3(1Q, 3q, 4q̄)A
0
3

(
(̃13)Q, (̃34)g, 2Q̄

) ∣∣∣∣M0
2

(
˜

((̃13)(̃34))Q,
˜

((̃34)2)Q̄

)∣∣∣∣2
×F (2)

2

(
k̃

(̃13)(̃34)
, k̃

(̃34)2

)
+

1

2
E0

3

(
2Q̄, 4q̄, 3q

)
A0

3

(
1Q, (̃34)g, (̃42)Q̄

) ∣∣∣∣M0
2

(
˜

(1(̃34))Q,
˜

((̃34)(̃42))Q̄

)∣∣∣∣2
×F (2)

2

(
k̃

1(̃34)
, k̃

(̃34)(̃42)

)]
. (3.28)

The arguments of the antenna functions A0
3 are mapped momenta obtained by the 3 → 2

mappings. The arguments of the Born matrix elements and of the measurement functions in

Eq. (3.28) are obtained by two consecutive 3 → 2 mappings, see Appendix B.2. These two

iterated 3 → 2 mappings are necessary for the same reason as given before, i.e., in order to

be able to perform the integration over the unresolved antenna phase-space in analytic fashion

and obtain the integrated subtraction term defined in Eq. (3.47) below.

It is not hard to check that the subtraction term given in Eq. (3.28) manages to eliminate,

apart from the unwanted IR singularities of dσS,a,QQ̄qq̄NNLO in the double unresolved region, also the

IR singularities dσS,b,2,QQ̄qq̄NNLO in the single unresolved region. To appreciate this, we recall how

the tree-level four-parton antenna function B0
4 is constructed, namely it is closely connected

to the physical S-matrix-element of γ∗ → Q(k1)Q̄(k2)q(k3)q̄(k4). In fact, the relation between

dσS,b,1,QQ̄qq̄NNLO and dσS,b,2,QQ̄qq̄NNLO closely resembles, as far as their structure is concerned, the relation

between dσS,a,QQ̄qq̄NNLO and dσQQ̄qq̄NNLO. A close examination of dσS,b,1,QQ̄qq̄NNLO given in Eq. (3.28) confirms

that this term approaches dσS,b,2,QQ̄qq̄NNLO but not dσS,a,QQ̄qq̄NNLO in the single unresolved limit. Thus

dσS,b,2,QQ̄qq̄NNLO does not approach dσQQ̄qq̄NNLO in this limit, i.e., is unable to cancel the singularities

of the unsubtracted squared S matrix element in this region. In summary, we see that the

functionality of the compensating term dσS,b,1,QQ̄qq̄NNLO is twofold, namely to eliminate spurious IR

singularities produced by dσS,a,QQ̄qq̄NNLO in the double unresolved region and to eliminate spurious

IR singularities produced by dσS,b,2,QQ̄qq̄NNLO in the single unresolved region.

Due to a subtlety associated with angular correlations in the antenna subtraction frame-
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work [145, 172], Eq. (3.24) is not yet the appropriate expression for efficient numerical eval-

uation. The origin of the problem is that the collinear limit of the S-matrix-element maintains

the information about the polarization of the splitting parent particle in g∗ → qq̄, gg. This

spin/polarization dependence of the collinear factorization thus gives rise to a dependence of

the collinear limit of the S-matrix-element on the azimuthal angle in the transverse plane of

the collinear direction. In the case at hand the gluon radiated off a Q or Q̄ that splits into qq̄

leads to angular correlations in the unsubtracted S-matrix element squared. However, the term

dσS,a,QQ̄qq̄NNLO in Eq. (3.27) that was constructed to take care of the single unresolved limit of the

squared matrix element when the q and q̄ become collinear, is composed of two products, each of

which contains a spin-averaged three-parton antenna function and a three-parton Born matrix

element. That is, the subtraction term with label ‘a’ does not contain these angular terms and,

therefore, does not have the same local singular behavior as the unsubtracted squared S-matrix

element. The four-parton antenna function B0
4 and thus the term dσS,b,2,QQ̄qq̄NNLO Eq. (3.25) contain

these angular correlations, simply because the way B0
4 is constructed. The angular correlations

are absent also in the compensating term dσS,b,1,QQ̄qq̄NNLO constructed in Eq. (3.28). However, these

angular correlations in dσQQ̄qq̄NNLO and in the subtraction term dσS,b,2,QQ̄qq̄NNLO are averaged out after

integration over the azimuthal angles of the spatial parts of the light-like momenta k3, k4. (This

is also why these angular-correlation terms are no longer present in the integrated antenna func-

tions that will be introduced in sections 3.3.2 and 3.3.3.) These azimuthal angles are defined

in the plane orthogonal to the spatial part of the collinear direction k = k3 + k4. A precise

definition is given in Appendix C.

As shown in [171] and in Appendix C, the functional dependence on φ of the squared matrix

element in the collinear limit is proportional to cos(2φ + α). Here φ denotes the azimuthal

angle of either k3 or k4. This suggests [171,172] that the angular correlations can be averaged

out by combining, for each ‘point’ k1, k2, k3, k4 in the four-particle phase-space, two kinematic

configurations with azimuthal angles φj and φj + π/2, j = 3, 4.

Thus in our numerical implementation of the subtracted squared matrix element, we evaluate∣∣MQ
4

∣∣2 in Eq. (3.23) and the subtraction term dσS,b,2,QQ̄qq̄NNLO containing B0
4 for each set of mo-

menta k1, k2, k3, k4 also for k1, k2, k3r, k4r and take the average. The 4-momenta k3r, k4r are



48 Chapter 3. Ingredients for computing e+e− → QQ̄ + X at O(α2
s)

obtained by rotating k3, k4 by an angle π/2 around the collinear axis k = k3 + k4 following the

prescription described in Appendix C. Hence in our formula (3.24) for the subtracted squared

matrix element, the respective terms on the right hand side are replaced by the corresponding

averages. Let us denote the unsubtracted differential cross section with the averaged
∣∣MQ

4

∣∣2 by

dσQQ̄qq̄NNLO and the sum of the three subtraction terms in (3.24) with the averaged dσS,b,2,QQ̄qq̄NNLO by

dσantennna, QQ̄qq̄
NNLO . We sampled the phase space in regions where k3 · k4/s ≤ 10−7 and we found

that the ratio ∣∣∣∣∣ dσQQ̄qq̄NNLO

dσantennna, QQ̄qq̄
NNLO

− 1

∣∣∣∣∣ ≤ 10−6 . (3.29)

Therefore, this procedure leads to a very good agreement between the unsubtracted S-matrix

element squared and the complete subtraction term in the single unresolved and, of course, also

in the double unresolved region.

Obviously, no matter what we have introduced here in order to get a IR-finite dσsub,QQ̄qq̄
NNLO , the

subtraction terms must be exactly canceled (after integration over the unresolved phase space)

by their integrated counterparts which are incorporated with opposite signs into the virtual

contributions. To be more specific, the analytically integrated version of dσS,b,2,QQ̄qq̄NNLO over the

double unresolved phase-space will be added back to the two-parton virtual corrections, cf.

sec. 3.3.3 below. The term dσS,a,QQ̄qq̄NNLO , together with dσS,b,1,QQ̄qq̄NNLO , will be added to the three-

parton one-loop corrections once they are integrated analytically over the single unresolved

phase-space, see sec. 3.3.2. As already mentioned above, the above angular correlations are

averaged out in these integrated IR subtraction terms, just as in the virtual loop corrections.

The QQ̄gg final state:

The construction of the NNLO antenna subtraction terms for the QQ̄gg final state follows

in essence the above derivation for the QQ̄qq̄ final state. Yet, here the construction of the

subtraction terms is more laborious due to the slightly more involved IR singular regions and

the fact that there are now two identical particles in the final state.

We consider the reaction

e−(p1)e+(p2)→ γ∗, Z∗(q)→ Q(k1)Q̄(k2) + g(k3)g(k4) . (3.30)
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The corresponding tree-level S-matrix element can be decomposed into color-ordered partial

amplitudes as follows:

M(e+e− → QQ̄gg) = (4παs) 2
[
(T a3T a4)i1i2M

g
4(1Q, 3g, 4g, 2Q̄)

+ (T a4T a3)i1i2M
g
4(1Q, 4g, 3g, 2Q̄)

]
. (3.31)

The unsubtracted differential cross section, summed over all colors and summed/averaged over

all polarizations, is given by

dσQQ̄ggNNLO =
1

2
N (4παs)

2 (N2
c − 1

)
dΦ4(k1, k2, k3, k4; q)F (4)

2 (k1, k2, k3, k4)

×
[
Nc

(
|Mg

4(1Q, 3g, 4g, 2Q̄)|2 + |Mg
4(1Q, 4g, 3g, 2Q̄)|2

)
− 1

Nc

Msc

]
, (3.32)

where the subleading color term is given by the square of a sum of two partial amplitudes with

different orderings,

Msc =
∣∣Mg

4(1Q, 3g, 4g, 2Q̄) +Mg
4(1Q, 4g, 3g, 2Q̄)

∣∣2 . (3.33)

The factor 1/2 in Eq. (3.32) is due to Bose symmetry. The subleading color term Msc is

obviously symmetric under exchange of 3g and 4g and is photon-like. That is to say, no non-

abelian gluon vertices are involved. Hence, when the two gluons become collinear, this term

does not become singular, just like in QED.

A subtracted IR-finite differential cross section is introduced, in analogy to Eq. (3.24), by

subtracting three terms from Eq. (3.32):

dσsub,QQ̄gg
NNLO = dσQQ̄ggNNLO − dσ

S,a,QQ̄gg
NNLO − dσS,b,2,QQ̄ggNNLO − dσS,b,1,QQ̄ggNNLO . (3.34)

This expression is by construction free of IR divergences and can be integrated over the four-

parton phase space numerically in D = 4 dimensions. Similar to the QQ̄qq̄ case, dσS, a QQ̄ggNNLO and

dσS, b,2 QQ̄ggNNLO are introduced to subtract the IR singularities of Eq.(3.32) that arise from single-

unresolved and double-unresolved configurations, respectively. But notice that here there are
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more IR singular regions than in the QQ̄qq̄ case. As in the QQ̄qq̄ case we need an extra

compensating term dσS,b,1,QQ̄ggNNLO to eliminate the spurious IR singularities of dσS, b,2 QQ̄ggNNLO in the

single unresolved limits and of dσS, a QQ̄ggNNLO in the double unresolved limit

. Within the antenna subtraction method, these three subtraction terms are given by

dσS,a,QQ̄ggNNLO =
1

2
N (4παs)

2 (N2
c − 1

)
dΦ4(k1, k2, k3, k4; q)

×
{
Nc

[
d0

3(1Q, 3g, 4g)
∣∣∣M0

3

(
(̃13)Q, (̃34)g, 2Q̄

)∣∣∣2F (3)
2

(
k̃13, k̃34, k2

)
+ d0

3(1Q, 4g, 3g)
∣∣∣M0

3

(
(̃14)Q, (̃43)g, 2Q̄

)∣∣∣2F (3)
2

(
k̃14, k̃43, k2

)
+ d0

3

(
2Q̄, 3g, 4g

) ∣∣∣M0
3

(
1Q, (̃43)g, (̃32)Q̄

)∣∣∣2F (3)
2

(
k1, k̃43, k̃32

)
+ d0

3

(
2Q̄, 4g, 3g

) ∣∣∣M0
3

(
1Q, (̃34)g, (̃42)Q̄

)∣∣∣2F (3)
2

(
k1, k̃34, k̃42

)]
− 1

Nc

[
A0

3

(
1Q, 3g, 2Q̄

) ∣∣∣M0
3

(
(̃13)Q, 4g, (̃32)Q̄

)∣∣∣2F (3)
2

(
k̃13, k4, k̃32

)
+ A0

3

(
1Q, 4g, 2Q̄

) ∣∣∣M0
3

(
(̃14)Q, 3g, (̃42)Q̄

)∣∣∣2F (3)
2

(
k̃14, k3, k̃42

)]}
(3.35)

for subtracting IR divergences of (3.32) in the single unresolved regions and

dσS,b,2,QQ̄ggNNLO =
1

2
N (4παs)

2 (N2
c − 1

)
dΦ4(k1, k2, k3, k4; q)

×
{
Nc

[
A0

4(k1, k3, k4, k2)
∣∣∣M0

2

(
(̃134)Q, (̃342)Q̄

)∣∣∣2F (2)
2

(
k̃134, k̃342

)
+ A0

4(k1, k4, k3, k2)
∣∣∣M0

2

(
(̃143)Q, (̃432)Q̄

)∣∣∣2F (2)
2

(
k̃143, k̃432

)]
− 1

Nc

Ã0
4

(
1Q, 3g, 4g, 2Q̄

) ∣∣∣M0
2

(
(̃134)Q, (̃342)Q̄

)∣∣∣2F (2)
2

(
k̃134, k̃342

)}
(3.36)

for subtracting the IR divergences of (3.32) in the double unresolved region. The compensating



3.3. The differential cross section at NNLO QCD 51

subtraction term is given by

dσS,b,1,QQ̄ggNNLO = −1

2
N (4παs)

2 (N2
c − 1

)
dΦ4(k1, k2, k3, k4; q)

×
{
Nc

[
d0

3(1Q, 3g, 4g)A
0
3

(
(̃13)Q, (̃34)g, 2Q̄

) ∣∣∣∣M0
2

(
˜

((̃13)(̃34))Q,
˜

((̃34)2)Q̄

)∣∣∣∣2F (2)
2

(
k̃

(̃13)(̃34)
, k̃

(̃34)2

)
+ d0

3(1Q, 4g, 3g)A
0
3

(
(̃14)Q, (̃43)g, 2Q̄

) ∣∣∣∣M0
2

(
˜

((̃14)(̃43))Q,
˜

((̃43)2)Q̄

)∣∣∣∣2F (2)
2

(
k̃

(̃14)(̃43)
, k̃

(̃43)2

)
+ d0

3

(
2Q̄, 3g, 4g

)
A0

3

(
1Q, (̃43)g, (̃32)Q̄

) ∣∣∣∣M0
2

(
˜

(1(̃43))Q,
˜

((̃43)(̃32))Q̄

)∣∣∣∣2F (2)
2

(
k̃

1(̃43)
, k̃

(̃43)(̃32)

)
+ d0

3

(
2Q̄, 4g, 3g

)
A0

3

(
1Q, (̃34)g, (̃42)Q̄

) ∣∣∣∣M0
2

(
˜

(1(̃34))Q,
˜

((̃34)(̃42))Q̄

)∣∣∣∣2F (2)
2

(
k̃

1(̃34)
, k̃

(̃34)(̃42)

)]
− 1

Nc

[
A0

3

(
1Q, 3g, 2Q̄

)
A0

3

(
(̃13)Q, 4g, (̃32)Q̄

) ∣∣∣∣M0
2

(
˜

((̃13)4)Q,
˜

(4(̃32))Q̄

)∣∣∣∣2F (2)
2

(
k̃

(̃13)4
, k̃

4(̃32)

)
+ A0

3

(
1Q, 4g, 2Q̄

)
A0

3

(
(̃14)Q, 3g, (̃42)Q̄

) ∣∣∣∣M0
2

(
˜

((̃14)3)Q,
˜

(3(̃42))Q̄

)∣∣∣∣2F (2)
2

(
k̃

(̃14)3
, k̃

3(̃42)

)]}
.

(3.37)

The tree-level massive quark-gluon antenna function d0
3(1Q, 3g, 4g) is given in [178]. It is em-

ployed to capture the singular behavior due to the unresolved radiation of a gluon with mo-

mentum k3 between a massive quark Q and a hard resolved gluon of momentum k4. Notice

that the radiation of the two gluons in this antenna function is color-ordered and d0
3(1Q, 3g, 4g)

is not symmetric with respect to 3g and 4g. The component that is anti-symmetric in 3g and 4g

vanishes by integration over the unresolved antenna phase space. The leading-color four-parton

QQ̄gg antenna function A0
4 and the subleading color function Ã0

4, which were derived in [174],

govern the color-ordered and non-ordered (photon-like) radiations between a pair of massive

radiator quarks, respectively. They are given by

A0
4(1Q, 3g, 4g, 2Q̄)| =

|Mg,γ∗

4 (1Q, 3g, 4g, 2Q̄)|2

|M0,γ∗

2 (1Q, 2Q̄)|2
, (3.38)

Ã0
4(1Q, 3g, 4g, 2Q̄)| =

∣∣Mg,γ∗

4 (1Q, 3g, 4g, 2Q̄) +Mg,γ∗

4 (1Q, 4g, 3g, 2Q̄)
∣∣2

|M0,γ∗

2 (1Q, 2Q̄)|2
. (3.39)

Summation over the spins in the numerator and denominator of these ratios is understood. The

mapped momenta denoted by a tilde and double tilde in Eq. (3.35) – Eq. (3.37) are obtained
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from 3 → 2, 4 → 2, and two iterated 3 → 2 mappings, respectively, in completely analogous

fashion as in the QQ̄qq̄ case, cf. Appendix B.

The previous remarks on the angular correlations due to gluon splitting in the collinear limit

made below eq. Eq. (3.28) apply also here, where the angular correlations in the unsubtracted

squared S matrix element are now due to g → gg and they are present only in the leading color

part. As far as the subtraction terms are concerned, these correlations are present only in the

leading-color part of the subtraction term Eq. (3.36). Recall that the subleading color parts do

not contain a non-abelian vertex.

In analogy to the QQ̄qq̄ case these leading-color terms are evaluated for each set of momenta

k1, k2, k3, k4 and for k1, k2, k3r, k4r and then their average is taken. Also here, a very good

numerical agreement was found between the averaged dσQQ̄ggNNLO and the sum of the subtraction

terms in the single and double unresolved region characterized by k3 ·k4/s ≤ 10−7. We sampled

the phase space in this region and found that

∣∣∣∣∣ dσQQ̄ggNNLO

dσantennna, QQ̄gg
NNLO

− 1

∣∣∣∣∣ ≤ 10−5 , (3.40)

where the notation in (3.40) is analogous to the notation used in (3.29).

3.3.2 Real-virtual corrections

This subsection is devoted to the computation of the antenna-subtracted order α2
s contribution

of the QQ̄g final state,

e−(p1)e+(p2)→ γ∗, Z∗(q)→ Q(k1)Q̄(k2) + g(k3) , (3.41)

to the differential massive quark-pair production cross section. In the schematic formula (3.20)

this contribution corresponds to the second term on the right-hand side of the first line of this

equation.

The unsubtracted real-virtual cross section:

This contribution is generated by the interference between the tree-level and one-loop QQ̄g
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final-state amplitude. Using the conventions of Eq. (3.15) the unsubtracted O(α2
s) correction,

summed over colors and summed/averaged over spins, is given by

dσRV,QQ̄gNNLO = N (4παs)
2 (N2

c − 1
)
C(ε)dΦ3(k1, k2, k3; q)F (3)

2 (k1, k2, k3)

×
[
Nc δM1,lc

3

(
1Q, 3g, 2Q̄

)
− 1

Nc

δM1,sc
3

(
1Q, 3g, 2Q̄

)
+ nfδM1,f

3

(
1Q, 3g, 2Q̄

)
+ δM1,F

3

(
1Q, 3g, 2Q̄

)
+ δM1,tr

3

(
1Q, 3g, 2Q̄

) ]
. (3.42)

The factor C(ε) is defined in Eq.(3.12). We have introduced the shorthand notation

δM1,X
3

(
1Q, 3g, 2Q̄

)
= 2 Re

[(
M0

3

(
1Q, 3g, 2Q̄

))∗M1,X
3

(
1Q, 3g, 2Q̄

)]
, (3.43)

with X ∈ {lc, sc, f, F, tr}. We recall thatM1
3 is the UV-renormalized one-loop amplitude which

we computed using the hybrid renormalization scheme defined at the beginning of section 3.2

and in Appendix A.2. The analytic computation of Eq. (3.42) is standard and our computation

was sketched below Eq. (3.15). The term δM1,tr
3 involves a triangle fermion loop and is free

of UV and IR singularities. As already mentioned above, this term belongs to the so-called

non-universal QCD corrections because it contains electroweak couplings of quarks other than

the external heavy quark. The other contributions to the unsubtracted cross section contain

explicit IR poles (single and double poles in 1/ε) from the IR region in the loop integration. In

addition, in the region where the external gluon becomes soft, Eq. (3.42) develops additional

IR singularities which would lead to additional poles in ε after phase-space integration in D

dimensions. We call these singularities of Eq. (3.42) in the limit k3 → 0 implicit IR singularities.

Both the explicit and implicit IR singularities must be subtracted with appropriate terms in

order that the integration over the three-parton phase space can be performed numerically in

4 dimensions.

Subtraction of explicit infrared poles:

The explicit IR poles (in the DR regulator ε) of Eq. (3.42) are canceled by adding the IR

subtraction terms Eq. (3.27) and Eq. (3.35), integrated over the phase space of one unresolved
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parton:

dσT,a,QQ̄gNNLO = −
∫

1

dσS,a,QQ̄ggNNLO −
∑
q

∫
1

dσS,a,QQ̄qq̄NNLO

= −N (4παs)
2 (N2

c − 1
)
C(ε)dΦ3(k1, k2, k3; q)F (3)

2 (k1, k2, k3)

×
[
Nc

2

(
D0

3

(
ε, µ2/k2

13; z13

)
+D0

3

(
ε, µ2/k2

23; z23

) )
− 1

Nc

A0
3

(
ε, µ2/k2

12; y12

)
+
nf
2

(
E0

3

(
ε, µ2/k2

13; z13

)
+ E0

3

(
ε, µ2/k2

23; z23

) )]∣∣M0
3

(
1Q, 3g, 2Q̄

)∣∣2. (3.44)

The integrated quark-gluon antenna functions D0
3 and E0

3 , which are the integrated versions of

the tree-level quark-gluon antenna functions d0
3 and E0

3 , respectively, can be found in [178,179].

The explicit poles in ε of these functions and of A0
3 cancel1 the explicit IR poles in Eq. (3.42).

The kinematic invariants that appear in the arguments of these functions are

k2
ij = (ki + kj)

2, zij =
mQ√
k2
ij

, βij =
√

1− 4z2
ij, yij =

1− βij
1 + βij

. (3.45)

The one-loop single-unresolved subtraction term:

The subtraction term (3.44) takes care of the explicit 1/ε2 and 1/ε IR poles of the unsubtracted

3-parton matrix element. As mentioned above, the matrix element in the square bracket of

(3.42) develops, in addition, IR singularities in the 3-parton phase space when the external

gluon becomes soft. These implicit singularities (using the above terminology) can be canceled

with the following subtraction term:

dσT,b,QQ̄gNNLO = N (4παs)
2 (N2

c − 1
)
C(ε)dΦ3(k1, k2, k3; q)F (2)

2

(
k̃13, k̃32

)
×
(
Nc

[
A1

3

(
1Q, 3g, 2Q̄

) ∣∣∣M0
2

(
(̃13)Q, (̃32)Q̄

)∣∣∣2
+ A0

3

(
1Q, 3g, 2Q̄

)
δM1

2

(
(̃13)Q, (̃32)Q̄

)]

1The function D0
3 has poles of order 1/ε2 and 1/ε, while E03 and A0

3 have poles of order 1/ε.
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− 1

Nc

[
Ã1

3

(
1Q, 3g, 2Q̄

) ∣∣∣M0
2

(
(̃13)Q, (̃32)Q̄

)∣∣∣2
+ A0

3

(
1Q, 3g, 2Q̄

)
δM1

2

(
(̃13)Q, (̃32)Q̄

)]
+
(
nf Â

1
3,f

(
1Q, 3g, 2Q̄

)
+ Â1

3,F

(
1Q, 3g, 2Q̄

)) ∣∣∣M0
2

(
(̃13)Q, (̃32)Q̄

)∣∣∣2). (3.46)

The massive one-loop quark-antiquark antenna functions A1
3, Ã1

3, Â1
3,f , and Â1

3,F were first

computed in [78] and A0
3 is given in [178,179]. The two-parton Born times one-loop interference

term δM1
2 is defined in Eq.(3.13). All these terms, except A0

3 and Â1
3,F , contain poles in ε.

The compensation term for oversubtracted poles:

We recall that the sum of dσS, a QQ̄ijNNLO and dσS, b,2 QQ̄ijNNLO fails to exactly approach the differential

cross section dσQQ̄ijNNLO (where ij = gg or qq̄) in the IR singular regions due to the spurious IR

singularities produced by these subtraction terms (although each of them works fine separately

in the IR singular region for which they were constructed in the first place). This mismatch

called for an additional compensating term dσS, b,1 QQ̄ijNNLO .

Here we have a similar situation. The explicit IR poles in ε of (3.42) are canceled by those of

(3.44) in the whole 3-parton phase space, and the implicit singularities of (3.42) in the limit

k3 → 0 are canceled by those of (3.46). But the subtraction term (3.46) has also explicit IR

poles which are contained in the 1-loop antenna functions and in the 1-loop matrix element

δM1
2. Therefore, we need an additional compensating term with explicit IR poles in ε that

cancel those of Eq.(3.46) exactly in the whole 3-parton phase-space and whose term of order ε0

has the same singular behavior as (3.44) when the external gluon becomes soft.

Since the integrals of dσS, b,1 QQ̄ggNNLO and dσS, b,1 QQ̄qq̄NNLO (introduced in sec. 3.3.1) over the phase space

of one unresolved parton must be included in the three-parton corrections, it is not too hard to

convince oneself that the following expression plays the role of compensation needed here [78]:

dσT,c,QQ̄gNNLO = −
∫

1

dσS,b,1,QQ̄ggNNLO −
∫

1

dσS,b,1,QQ̄qq̄NNLO . (3.47)
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The integrands are given in Eq.(3.28) and Eq.(3.37), respectively. The integration over the

phase space of one unresolved parton yields

dσT,c,QQ̄gNNLO = N (4παs)
2 (N2

c − 1
)
C(ε)dΦ3(k1, k2, k3; q)

∣∣∣M0
2

(
(̃13)Q, (̃32)Q̄

)∣∣∣2F (2)
2 (p̃13, p̃32)

×
[
Nc

2

(
D0

3

(
ε, µ2/k2

13; z13

)
+D0

3

(
ε, µ2/k2

23; z23

) )
− 1

Nc

A0
3

(
ε, µ2/k2

12; y12

)
+
nf
2

(
E0

3

(
ε, µ2/k2

13; z13

)
+ E0

3

(
ε, µ2/k2

23; z23

) )]
A0

3

(
1Q, 3g, 2Q̄

)
. (3.48)

In summary, the pattern of cancellation or matching of IR singularities among the four terms

dσRV,QQ̄gNNLO , dσT,a,QQ̄gNNLO , dσT,b,QQ̄gNNLO , and dσT,c,QQ̄gNNLO is as follows. The poles in ε of dσT,a,QQ̄gNNLO cancel

exactly those of dσRV,QQ̄gNNLO everywhere in the three-parton phase space. The same cancellation

holds between the ε pole terms of dσT,b,QQ̄gNNLO and that of dσT,c,QQ̄gNNLO . In the region where the

external gluon is unresolved – that is, when k3 → 0 – the ε-free part of dσT,b,QQ̄gNNLO correctly

approximates the implicit infrared singularities of Eq.(3.42). In this soft region, the sum of

dσT,a,QQ̄gNNLO and dσT,c,QQ̄gNNLO is also finite, namely the implicit IR singular pieces contained in these

two terms cancel among each other.

The subtracted three-parton cross section at NNLO:

Combining Eqs. (3.42), (3.44), (3.46), and (3.48) yields an expression that is free of both explicit

and implicit IR singularities in the entire three-parton phase space in D = 4 dimensions:

∫
Φ3

[
dσRV,QQ̄gNNLO − dσT,a,QQ̄gNNLO − dσT,b,QQ̄gNNLO − dσT,c,QQ̄gNNLO

]
ε=0

= finite. (3.49)

We recall that the terms dσT,a,QQ̄gNNLO and dσT,c,QQ̄gNNLO are counterbalanced by the double-real sub-

traction terms dσS,a,QQ̄ijNNLO and dσS,b,1,QQ̄ijNNLO (ij = gg, qq̄), respectively, that were defined in sec-

tion 3.3.1. Hence, only dσT,b,2,QQ̄gNNLO integrated over over the gluon phase space has to be added

back to the two-parton contribution that will be discussed in the next subsection.
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3.3.3 Double virtual corrections

Finally, we are at the stage of discussing how to compute the order α2
s contribution of the QQ̄

final state to the differential massive quark-pair production cross section within the antenna

framework, that is, the sum of the three terms in the second line of Eq.(3.20).

Unsubtracted real-virtual cross section:

The renormalized two-parton one-loop and two-loop QQ̄ matrix elements defined in Eq. (3.14)

yield the following O(α2
s) correction to the differential cross section:

dσV V,QQ̄NNLO = N
(
C̄(ε)

)2
(αs

2π

)2

Nc dΦ2(k1, k2; q)F (2)
2 (k1, k2)

{
4C2

F

∣∣M1
2

(
1Q, 2Q̄

)∣∣2
+ 2Re[M0∗

2

(
1Q, 2Q̄

)
M2

2

(
1Q, 2Q̄

)
]
}
. (3.50)

Summation over all colors and spins of the final state is understood. The factor C̄(ε) is defined

in Eq.(3.12). The real and imaginary parts of the one-loop vertex functions V QQ̄ (V = γ, Z),

up to and including terms of order ε, and the corresponding two-loop vertex form-factors

to order ε0 were computed in [175–177]. With these vertex form factors, Eq.(3.50) can be

computed in straightforward fashion. The last term on the right-hand side of Eq.(3.50) can be

decomposed into different color structures, that is, leading and subleading color contributions,

terms that involve a massless and massive quark loop in the gluon vacuum polarization tensor,

and fermion-triangle loop contributions summed over all quark flavors. These triangle loop

contributions (the type-B contributions, see sec. 3.1.1) which are finite by themselves [177], are

non-universal QCD corrections to the leading-order cross section.

The subtraction term:

Recalling the subtraction terms that were introduced above, those that remain to be counterbal-

anced are dσT,b,QQ̄gNNLO (cf. Eq. (3.46)) and dσS,b,2,QQ̄ij (ij = qq̄, gg) (cf. Eq. (3.25) and Eq. (3.36)).

They have to be integrated over the unresolved one-parton, respectively two-parton phase space

in order to serve as counterterm for the IR poles in ε of the double-virtual correction Eq.(3.50).
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We get

∫
1

dσT,b,QQ̄gNNLO +

∫
2

dσS,b,2,QQ̄ggNNLO +
∑
q

∫
2

dσS,b,2,QQ̄qq̄NNLO

= N
(
C̄(ε)

)2
(αs

2π

)2 (
N2
c − 1

)
dΦ2(k1, k2; q)F (2)

2 (k1, k2)

×
{
Nc

[(
A0

4

(
ε, µ2/s; y

)
+A1

3

(
ε, µ2/s; y

) )∣∣M0
2

(
1Q, 2Q̄

)∣∣2
+A0

3

(
ε, µ2/s; y

)
δM1

2

(
1Q, 2Q̄

) ]
− 1

Nc

[(
1

2
Ã0

4

(
ε, µ2/s; y

)
+ Ã1

3

(
ε, µ2/s; y

)) ∣∣M0
2

(
1Q, 2Q̄

)∣∣2
+A0

3

(
ε, µ2/s; y

)
δM1

2

(
1Q, 2Q̄

) ]
+ 2TR nf

(
B0

4

(
ε, µ2/s; y

)
+ Â1

3,f

(
ε, µ2/s; y

)) ∣∣M0
2

(
1Q, 2Q̄

)∣∣2
+ 2TR Â1

3,F

(
ε, µ2/s; y

) ∣∣M0
2

(
1Q, 2Q̄

)∣∣2} . (3.51)

The auxiliary variable y is defined in Eq.(3.18). The integrated antenna functions B0
4, A0

4, and

Ã0
4 were computed in [174,183] and A1

3, Ã1
3, Â1

3,f , and Â1
3,F were determined in [78].

The subtraction term Eq. (3.51) has to be added to Eq. (3.50). In the sum all IR poles

cancel analytically.

∫
Φ2

[
dσV V,QQ̄NNLO +

∫
1

dσT,b,QQ̄gNNLO +

∫
2

dσS,b,2,QQ̄ggNNLO +
∑
q

∫
2

dσS,b,2,QQ̄qq̄NNLO

]
ε=0

= finite. (3.52)

After summing these terms and after analytic cancellation of the IR poles, one can take the

limit ε → 0 and perform the remaining integration over the two-parton phase space in four

dimensions.



Chapter 4

Application to tt̄ and bb̄ production

In this chapter we apply the formalism developed in the preceding chapter to top-quark pair

production in the continuum and to bottom-quark pair production at the Z-boson resonance. In

the following sections we present or results for the respective tt̄ and bb̄ cross sections and several

distributions at NNLO QCD. Our results for the t- and b-quark forward-backward asymmetry

at NNLO QCD will be discussed separately in chapter 5.

For our numerical computations in this and in the next chapter we use the following

Standard Model input parameters. The values of the weak-boson masses and of the total

Z-boson decay width are taken from [185]:

mW = 80.385 GeV , mZ = 91.1876 GeV , ΓZ = 2.4952 GeV . (4.1)

For the QCD coupling defined in the MS scheme in 5 flavor QCD we use the value [186]

α
(nf=5)
s (µ = mZ) = 0.118 . (4.2)

For the masses of the top quark and bottom quark defined in the on-shell scheme we use

mt = 173.34 GeV , mb = 4.89 GeV . (4.3)

As to the top quark mass, we have identified the central value of the average of experimental

59
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extractions [7] of the top-quark mass (from fits with templates to the t-quark invariant mass

distribution and other variables) with the on-shell or pole mass of this quark. The value (4.3)

of the pole mass of the b quark is obtained as follows. The relation between the the pole mass

mb and the MS mass mb(mb) is of the form

mb = mb(mb) f(nl,ml,mb, αs) , (4.4)

where nl = 4, ml (l = 1, . . . , 4) are the MS masses of the u, d, s, c quarks, and αs(mb) is the

MS coupling of 5-flavor QCD which is evaluated at µ = mb. The conversion relation f is

known in QCD perturbation theory to order α3
s [187–189]. Using this 3-loop relation, the value

mb(mb) = 4.18 GeV [186], mc = 1.27 GeV [186], the 3-loop renormalization group running of

αs with the input value (4.2), and putting the masses of the u, d, s quarks to zero, we obtain

the on-shell b-quark mass given in Eq. (4.3).

In the case of top quark production, the other 5 quarks (including the bottom quark) are

taken to be massless and αs(µ) is computed in 6-flavor QCD using the input value (4.2), the

respective matching relation [190] as described in Appendix A.3, and 3-loop renormalization

group running. When we consider bottom production at the Z-pole, we work in 5 flavor QCD

with αs given in (4.2). Here we use massless u, d, s, c quarks and and a massive b quark. In QCD

with αs defined in the MS renormalization scheme with 5 flavors, the top quark is decoupled

from the gluon polarization tensor but is still present in the 1-loop and 2-loop triangle diagrams

(‘anomaly-type diagrams’) shown in figs. 3.2 and 3.1.

We work to lowest order in the electroweak couplings. The sine of the weak mixing angle,

sin2 θW , is fixed by sin2 θW = 1−m2
W/m

2
Z . For computing the electroweak couplings we use the

so-called Gµ scheme [66] where the electromagnetic coupling is given by α =
√

2Gµm
2
W s

2
W/π =

7.5624× 10−3 with the Fermi-constant Gµ = 1.166379× 10−5 GeV−2.

Our approach to computing the cross section of the reaction e+e− → QQ̄X in the SM is

fully differential, that is, we use the respective antenna-subtracted differential cross sections for

2-parton, 3-parton, and 4-parton final states of chapter 3, integrate them over the respective

phase-spaces and add them up. Our approach allows to apply arbitrary phase-space cuts.
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However, we refrain from applying cuts in the following.

As emphasized above, we work to lowest order in the electroweak couplings. Each of the

various contributions to the differential QQ̄ cross section up to and including order α2
s is given

by the sum of a s-channel γ and Z-boson contribution and a γZ interference term1. In practice,

it is technically more convenient to reorganize these electroweak components according to the

vector and axial vector couplings involved, rather than γ and Z-boson mediators. We denote

these contributions to the differential cross section by dσ(i,j), where the first index i in the

superscript (i, j) labels the final state, i.e., i = QQ̄, QQ̄g, QQ̄gg, QQ̄qq̄, QQ̄QQ̄ and the

second index j refers to the power of the QCD coupling αs involved. The dσ(i,j) can be written

as contractions of lepton and hadron tensors. This is schematically illustrated in fig. 4.1. The

dσ(i,j) have, for unpolarized e+e− collisions, the structure

dσ(i,j) =
1

8s

(4πα)2(4παs)
j

|DZ |2
∑

F,(X,Y,X′,Y ′)∈K

kXYF,X′Y ′L
µν
XYH

(i,j),F,X′,Y ′

µν dΦi , (4.5)

where

DZ = s−m2
Z + imZΓZ (4.6)

is the denominator of the Z-boson propagator, and LµνXY and H
(i,j),F,X′,Y ′
µν are the lepton and the

antenna-subtracted, i.e., IR finite hadron tensors. The symbol K denotes the following index

set:

K = {(V, V, V, V ), (V, V,A,A), (A,A, V, V ), (A,A,A,A),

(V,A, V,A), (V,A,A, V ), (A, V,A, V ), (A, V, V,A)} , (4.7)

where V and A label the vector and axial vector couplings proportional to γµ and γµγ5, re-

spectively, that appear in the electron Z/γ, heavy quark Z/γ, and light quark Z/γ vertices.

The first two (last two) labels in (X, Y,X ′, Y ′) refer to the two electroweak electron vertices

(heavy quark, respectively light quark) vertices, cf. fig. 4.1. The index F in (4.5) refers to

the case where the two electroweak vertices in a hadron tensor are associated both with the

1In principle, s-channel SM Higgs-boson exchange contributes also to (4.8), but this contribution can be
safely neglected because of the tiny Higgs Yukawa coupling to the electron.
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heavy quark (F = QQ), both with a light quark (F = qq), and with a light and a heavy quark

(F = qQ), respectively. The kXYF,X′Y ′ are listed in Appendix A.1 and denote sums of products

of electroweak vector and axial vector couplings. They involve also factors of s (the denomina-

tor of the photon propagator) and DZ . A sum over the light quark flavors in (4.5) is understood.

The two-loop QQ̄ matrix elements and the integrated antenna subtraction terms contain

harmonic polylogarithms (HPL) [180]. We evaluate them with the codes of refs. [181,182]. The

integrated antenna functions A1
3, Ã1

3 are expressed in terms of HPL and cyclotomic harmonic

polylogarithms [191–193]. We evaluate the cyclotomic HPL numerically by using their Poincaré-

iterated integral representations.

Figure 4.1: The decomposition of the dσ(i,j) into a lepton tensor Lµν and a hadron tensor Hµν .

4.1 The tt̄ cross section above threshold

We consider

e−(p1)e+(p2)→ γ∗, Z∗(q)→ t(k1) t̄(k2) +X , (4.8)

for unpolarized e+ and e− beams and e+e− center-of-mass (c.m.) energies
√
s sufficiently away

from the tt̄ threshold, where fixed order perturbation theory in the SM couplings, in particular

in αs, is applicable. As already discussed in the introduction, perturbation theory in αs breaks

down close to threshold and one has to use methods of effective field theory [194–197] in order

to compute the tt̄ production cross section in this kinematic region. For a rather recent state-

of-the-art computation of the tt̄ production cross section at threshold, see [37].
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For center-of-mass (c.m.) energies
√
s > 4mt, four-top production, i.e., tt̄tt̄ production occurs.

The order α2
s cross section of this process does not contain any IR singularities. It makes only

a small contribution to the inclusive tt̄ cross section as long as we are not significantly above

the four-top threshold. Moreover, the tt̄tt̄ final state has a distinct signature and could be

experimentally distinguished from tt̄ final states. Here we consider c.m. energies
√
s . 4mt.

Figure 4.2 shows our result for the e+e− → tt̄ cross section at LO, NLO, and NNLO QCD for

c.m. energies
√
s . 4mt. In the case of σtt̄NLO and σtt̄NNLO the solid lines represent the values com-

puted with the choice µ =
√
s for the renormalization scale. Uncertainties due to undetermined

higher-order corrections are conventionally estimated by varying the renormalization-scale µ be-

tween
√
s/2 and 2

√
s. The upper and lower dashed lines correspond to these scale variations.

In order to exhibit the size of the higher order QCD corrections relative to the LO cross section,

we represent the tt̄ cross section in the form

σtt̄NNLO = σtt̄LO (1 + ∆1 + ∆2) . (4.9)

The order αs and α2
s corrections ∆1 and ∆2 are displayed, for three renormalization scales µ, in

figure 4.3 as functions of the c.m. energy
√
s. The changes of ∆1 and ∆2 due to scale variations

are small, especially for ∆2. (The logarithmic scale on the y axis of figure 4.3 may give a wrong

impression.)

In the computation of σtt̄NNLO, we have included also the non-universal contributions of order

O(α2
s) that contain the electroweak couplings of quarks q 6= t. These contributions are free of

divergences and are very small. For instance, at
√
s = 500 GeV they amount to −0.16% of

the total second order correction ∆2 defined in Eq. (4.9), and this fraction decreases further in

magnitude for smaller c.m. energies.

Our results displayed in figure 4.3 agree with the calculation of the tt̄ cross section in [80] shown

for µ =
√
s in this reference. In the near threshold regime where the top-quark velocity β is

small and where αs � β � 1 holds, the first few terms of the threshold expansion of σtt̄NNLO are

known analytically [198–201]. For the vector current contribution to σNNLO asymptotic expan-

sions in the region where m2
t/s � 1 are also known [73–76]. We have numerically compared

our exact NNLO result with these expansions in the respective kinematic regimes and found
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Figure 4.2: The total tt̄ cross section at LO, NLO, and NNLO QCD as a function of the c.m.
energy. The solid lines that refer to σtt̄NLO and σtt̄NNLO correspond to the choice µ =

√
s, the

dashed lines correspond to µ =
√
s/2 and 2

√
s.

agreement.

From figures 4.2 and 4.3 we can see that the higher order QCD corrections to the tt̄ cross

sections decrease with increasing c.m. energies
√
s. In the near threshold region, the QCD

corrections become rather large. The blue thick line in figure 4.2 representing the total NNLO

result already shows a hint of blowing up when
√
s → 2mt. This feature of our fixed-order

perturbative calculation is due to the well-known Coulomb singularities [74, 202]. In this non-

relativistic kinematic region, the behavior of the tt̄ cross section can be effectively obtained

via the imaginary part of the respective non-relativistic Green function in the presence of a

Coulomb potential. Roughly speaking, each exchange of a virtual longitudinal gluon between

the two non-relativistic heavy quarks, that is, a re-scattering through the Coulomb potential,

results in a single 1/β enhancement where, as above, β is the velocity of the heavy quark. (In

addition, exchanges of transverse gluons are in effect described by a running QCD coupling

αs which should also be taken into account.) The NLO cross section, i.e., the red line in

fig. 4.2, does not diverge but goes to a constant for β → 0, because it involves only a single
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Figure 4.3: The order αs and α2
s corrections ∆1 and ∆2 to the LO tt̄ cross section defined in

Eq. (4.9) as a function of the c.m. energy. The solid lines correspond to the choice µ =
√
s,

the upper and lower dashed lines correspond to µ =
√
s/2 and 2

√
s.

1/β Coulomb singularity, (due to one virtual longitudinal gluon exchange) which is completely

compensated by the suppression factor β due to the shrinking phase-space. The presence of

Coulomb singularities in fixed order perturbative calculations near threshold clearly signifies

the break-down of such a calculation. If we still stick to perturbative methods, then one way to

improve in the near threshold region is to sum these Coulomb singularities through all pertur-

bative orders, which then leads to a finite result (see, for instance, [197,202]). This refinement

is, however, beyond the scope of this thesis. As emphasized before we confine our calculations

to tt̄ production in the continuum.

Another point to notice in figure 4.2 is that, in the region where the perturbative calculation

is reliable, the scale-variation band at NNLO is narrower than at NLO. This is a common

aspect of perturbative calculations. Notice also that the scale-variation bands do not overlap

here. Non-overlapping scale-variation bands are not uncommon in higher-order QCD calcula-

tions. One should always keep in mind that the scale variation does not correspond to a solid

error/uncertainty estimate. It is a convenient ad hoc procedure to estimate the size of the
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uncalculated higher order corrections. Moreover, the scale variation does not have to be in the

range
√
s/2 ≤ µ ≤ 2

√
s. This is nothing but a rather commonly accepted convention in the

case of the total cross section σ(s).

Finally we list, for a reference, in table 4.1 the QCD corrections ∆1 and ∆2 for selected c.m.

energies
√
s for µ =

√
s. With the input values given above the cross section σtt̄NNLO reaches

its maximum at
√
s = 381.3 GeV. We obtain σtt̄NNLO(381.3GeV) = 0.843 pb for µ =

√
s. The

numbers in table 4.1 and figure 4.3 suggest that fixed order perturbation theory can be applied

for
√
s > 360 GeV.

Table 4.1: The QCD corrections ∆1 and ∆2 to the LO tt̄ cross section defined in Eq. (4.9) for
several c.m. energies and µ =

√
s.

√
s [GeV] 360 381.3 400 500

∆1 0.627 0.352 0.266 0.127
∆2 0.281 0.110 0.070 0.020

4.2 Top quark distributions

In this section, we present our results for a selected set of top-quark distributions. we consider

the distribution of the cosine of the top-quark scattering angle θt = ∠(t, e−) in the e+e− c.m.

frame, the transverse momentum ptT of the top quark and of the tt̄ system, ptt̄T = |kT,t +

kT,̄t|, with respect to the beam direction, and the tt̄ invariant mass distribution Mtt̄. In the

following we use for convenience the shorthand notations LO, NLO, and NNLO for dσtt̄LO/dO,

dσtt̄NLO/dO = (dσtt̄LO+dσtt̄1 )/dO, and dσtt̄NNLO/dO = (dσtt̄LO+dσtt̄1 +dσtt̄2 )/dO, where O denotes one

of these observables. We confine ourselves to c.m. energies 400 and 500 GeV where perturbative

calculations are reliable and the tt̄ cross section is rather large.

Distribution of cos θt: The plots in figure 4.4 display the distribution of cos θt at
√
s = 400

and 500 GeV at LO, NLO, and NNLO QCD. As expected from the behavior of the total tt̄

cross section shown in figure 4.2, the order αs and order α2
s QCD corrections to the LO distri-

bution of this observable decrease if one moves further away from threshold. As the panels in

the middle of the plots show, the inclusion of the order α2
s correction significantly reduces the
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Figure 4.4: The distribution of cos θt at
√
s = 400 GeV (plots on the left) and 500 GeV (plots

on the right). The upper panels show the distribution at LO (grey), NLO (red), and NNLO
QCD (blue) for µ =

√
s. The panels in the middle show the scale variations NLO(µ′)/NLO(µ =√

s) − 1 (red band) and NNLO(µ′)/NNLO(µ =
√
s) − 1 (blue band) of the first and second

order QCD corrections, where
√
s/2 ≤ µ′ ≤ 2

√
s. The lower panels display the ratios dσtt̄1 /dσ

tt̄
LO

(red) and dσtt̄2 /dσ
tt̄
LO (blue) for µ =

√
s.

dependence of the distribution on variations of the scale. The ratios dσtt̄1 /dσ
tt̄
LO and dσtt̄2 /dσ

tt̄
LO

for
√
s = 400 GeV and µ =

√
s shown in the lower panel of the left plot in figure 4.4 agree with

the corresponding result given in [80].

Both the order αs and order α2
s curve in fig. 4.4 follow the same pattern as the leading-order

distribution. Since the leading-order contribution dominates over the higher order perturbative

corrections at the c.m. energies considered here, the features of the distribution can be under-

stood from the LO contribution which can easily be computed analytically. Working out the

contraction of the lepton-tensor Lµν and and leading-order hadron-tensor H
(2,0)
µν in Eq. (4.5), we

see immediately that the result is a quadratic form in the scattering angle cos θt, which is due

to the fact that its orbital part contains a s-wave and a p-wave. The distribution in figure 4.4

are not symmetric in cos θt around cos θt = 0 because the interaction between the Z boson and
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top quark does not conserve the parity P. This leads to parity-odd VA terms in the differential

cross section which are anti-symmetric in cos θt, which gives rise to a non-vanishing forward

backward asymmetry as we will discuss in detail in the next chapter. The sign of the top-quark

forward backward asymmetry is positive. Accordingly, more top-quarks are produced in the

forward region (cos θt > 0) than in the backward region (cos θt < 0). When the c.m. energy is

lowered towards the near-threshold region, the s-wave in the orbital angular momentum part of

dσ will become more and more dominant. As a consequence, the distribution will become more

and more flat. Indeed, consider just the tree-level S-matrix-element in the near-threshold limit

where the p-wave gets squeezed out and only the s-wave remains. Here the distribution in cos θt

becomes flat and the forward-backward asymmetry will become zero. On the other hand, when

we go to the high-energy region s� m2
t , the orbital p-wave component is no longer suppressed,

which leads to a shape of the cos θt distribution where the central part is reduced compared to

the forward and backward regions. This is not visible in the plots of fig. 4.4, because
√
s = 500

GeV does not correspond to the high-energy region for top quark pair production, but it is

clearly visible for bottom pair production at the Z-pole which will be discussed in the next

section. From the lower panels of fig. 4.4 we see that both the order αs and order α2
s correction

to the LO cos θt distribution show the same pattern: they are larger in the top-quark forward

direction than in the backward direction and thus increase the top-quark forward-backward

asymmetry, which is the topic of the next chapter.

Distribution of ptT : Figure 4.5 displays the distribution of the top-quark transverse momen-

tum ptT at the c.m. energies
√
s = 400 GeV and 500 GeV at LO, NLO, and NNLO QCD.

As in the case of the cos θt distribution, the order αs and α2
s corrections become smaller when

the c.m. energy is increased from 400 to 500 GeV. Nevertheless, the O(α2
s) correction is still

∼ 5% for most of the ptT bins. Including the α2
s correction reduces the uncertainty due to scale

variations for all for all ptT bins, as shown in the middle panels of fig. 4.5. The reason why the

NNLO scale variations of the ptT distribution for
√
s =500 GeV (shown by the blue curve in

the middle panel) fluctuate more than its counterpart at
√
s =400 GeV is the following: In our

computation the same total number of random points were sampled by the Monte Carlo (MC)

integration routine for both c.m. energies. Thus, there is, on average, a smaller number of MC



4.2. Top quark distributions 69

Figure 4.5: The distribution of the transverse momentum ptT of the top quark at
√
s = 400

GeV (plots on the left) and 500 GeV (plots on the right). The meaning of the upper, middle,
and lower panels is as in figure 4.4.

events distributed into a single ptT bin in the 500 GeV case (simply due to the increment in the

number of bins). The maximum top-quark transverse momentum is 99.77 GeV (180.15 GeV)

at the c.m. energy 400 GeV (500 GeV) for a top-quark mass mt = 173.34 GeV that we use.

The rising shape of the transverse momentum distribution, starting from ptT = 0, can be read

off from the LO distribution. A straightforward computation yields

dσtt̄LO
dptT

=
8ptT

(
(s− 4m2

t )(r0 + r1 + r2)− 4 (ptT )
2

(r1 + r2)
)

(s− 4m2
t )

2

√
1− 4(ptT )

2

s−4m2
t

, (4.10)

where the coefficients ri depend on s,mt,mZ , and the electroweak couplings. For small ptT the

distribution grows linearly.

From the lower panels of fig. 4.5 one sees that αs and α2
s corrections increase the ptT distribution,

but not necessarily in every ptT bin. At
√
s = 500 GeV the order α2

s correction is in fact negative

in the last bin. This feature becomes more pronounced for larger c.m. energies.
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The ratios dσtt̄1 /dσ
tt̄
LO and dσtt̄2 /dσ

tt̄
LO for

√
s = 400 GeV and µ =

√
s shown in the lower panel of

the left plot in figure 4.5 agree with the corresponding plot displayed in [80], except for the last

bin at (ptT )max. This is apparently due to the fact that a slightly lower value of the top-quark

mass was used in [80], which shifts (ptT )max at 400 GeV to a value slightly above 100 GeV.

Figure 4.6: The distribution of the transverse momentum ptt̄T of the tt̄ system for events with
ptt̄T ≥ 10 GeV (plots on the left), and the tt̄ invariant mass distribution for events with Mtt̄ ≤ 490
GeV (plots on the right) at

√
s = 500 GeV for µ =

√
s. The upper panels show the distributions

at NLO (red) and NNLO QCD (blue). The panels in the middle show the scale variations
NLO(µ′)/NLO(µ =

√
s)− 1 (red band) and NNLO(µ′)/NNLO(µ =

√
s)− 1 (blue band) of the

first and second order QCD corrections, where
√
s/2 ≤ µ′ ≤ 2

√
s. The lower panels display the

ratio dσtt̄2 /dσ
tt̄
1 for µ =

√
s.

Distributions of ptt̄T and Mtt̄: The left plots of figure 4.6 show, for
√
s = 500 GeV, the

distribution of the transverse momentum of the tt̄ system, ptt̄T , for events with ptt̄T ≥ 10 GeV.

The right plots show the tt̄ invariant mass distribution for events with Mtt̄ ≤ 490 GeV. These

cuts remove the LO contribution and events with very soft massless parton radiations at order

αs and α2
s. Clearly, the bins that are removed by these cuts contain most of the tt̄ events.

Let us briefly discuss the kinematic range of ptt̄T distribution. For tt̄ final states ptt̄T = 0. For tt̄g

final states ptt̄T becomes maximal for the following configuration: the t and t̄ move parallel and
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in a plane perpendicular to the electron positron beam and the momentum is balanced by the

gluon moving in the opposite direction. For
√
s = 500 GeV the maximum ptt̄T is 129.81 GeV,

but events with ptt̄T near this value are very rare. For the four-partion final states tt̄gg and tt̄qq̄

the maximum ptt̄T can be at most as large as for the three-parton final state. The kinematic

range of the Mtt̄ distribution is 2mt ≤Mtt̄ ≤
√
s.

The decrease of the ptt̄T distribution and the rise of the Mtt̄ distribution towards their

respective endpoints shown in figure 4.6 is a consequence of the fact that it is more preferable

to radiate gluons with small energy rather than large energy.

The NNLO QCD correction to the NLO result increases significantly towards small ptt̄T

in the left plots, respectively towards large Mtt̄ in the right plots of figure 4.6. In the bin

10 GeV ≤ ptt̄T ≤ 20 GeV the order α2
s correction is almost 50% of the NLO contribution. This

is due to logarithmic enhancement in the variable ptt̄T in the soft radiation region which is a

feature of the fixed order perturbative calculation. In fact this is not uncommon for observables

for which there exists a kinematic configuration where virtual (“non-radiative”) corrections are

favored over the real radiative corrections contributing at the same perturbative order, and

hence a balance between these two types of corrections is spoiled. In such a kinematic region,

one type of correction is effectively singled out and becomes dominant (usually the virtual non-

radiative one). The we find that in this special region the fixed order perturbative corrections

get enhanced, i.e., become relatively large. For example, consider a jet observable calculated

at a fixed perturbative order. Such a fixed-order calculation becomes unreliable when we try

to approach the parameter region where the jet defining parameters such as jet mass or jet

angular width are chosen to be very small. In fact, this can also happen to the ptT distributions

shown in figure 4.5. Imagine a ptT bin sitting right at the (ptT )max with very small bin width.

Then diagrammatically, the contributing diagrams are only the virtual loop-diagrams with

reduced (radiation-free) kinematics and the real-radiation diagrams where the energy carried

away by the radiation is very very small. Although the sum of these contributions is still

free of IR singularities, a logarithmic enhancement will remain which makes the fixed order

perturbative calculations unreliable. If we insist on examining these special kinematic

regions but still stick to perturbative methods, then we must refine the results by resuming
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these large logarithmic terms that show up in all of the subsequent perturbative orders. Coming

back to the ptt̄T distribution shown in the left plot of figure 4.6 this means one would have to

sum these logarithmic enhancement terms in the small ptt̄T region, but this is beyond the scope

of this paper. An analogous statement applies to the Mtt̄ distribution shown in the right plot

of figure 4.6. Here the dangerous region are the Mtt̄ bins close to the c.m. energy.

4.3 The bb̄ cross section at the Z resonance

In this section, we move to analyzing bottom quark pair production in e+e− collisions at the Z

resonance,

e+e− → Z → bb̄+X , (4.11)

to second order in the QCD coupling αs. Because at the Z pole, the contribution to dσbb̄ of

Z-boson exchange, Z− γ interference, and γ exchange is of order 1, order α, and order α2 with

respect to the electroweak interactions, and because we work to lowest order in the electroweak

couplings, we neglect in this section the contributions of γ exchange and Z − γ interference

to the (differential) bb̄ cross section. (In fact, right at
√
s = mZ the Z − γ interference term

vanishes.) To order α2
s the cross section of the reaction (4.11) receives contributions from the

two-parton bb̄ final state (at Born level, to order αs, and to order α2
s), the three-parton final

state bb̄g (to order αs and to order α2
s), and the four-parton final states bb̄gg, bb̄qq̄, and bb̄bb̄.

The bb̄bb̄ diagrams discussed in section 3.1.2 are taken into account with a multiplicity factor

one in the computation of the bb̄ cross section. This corresponds to an exclusive definition of

the cross section [90], that is the cross section for events containing at least one b quark. The

inclusive b cross section, where the bb̄bb̄ diagrams are taken into account with a multiplicity

factor two, is the cross section where each b quark is contributing once.

Our computational framework is the same as in the case of tt̄ production, i.e., the antenna

method described in section 3. Here we work, as already emphasized above, in QCD with

massless u, d, s, c quark and a massive b quark with its on-shell mass values given in Eq. (4.3).

The top quark enters only in the UV and IR finite 1-loop and 2-loop triangle diagrams, cf.
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section 3. The QCD coupling that we use here is given in (4.2). Analogous to the tt̄ case we

use here the notation dσbb̄NLO = dσbb̄LO + dσbb̄1 and dσbb̄NNLO = dσbb̄NLO + dσbb̄2 .

Our results for the bb̄ cross section at LO, NLO, and NNLO QCD at
√
s = mZ are given in

table 4.2 for three renormalization scales. Moreover, this table contains also the order αs and

order α2
s QCD corrections ∆b

1 and ∆b
2 to the LO bb̄ cross section defined by writing the NNLO

cross section in the form

σbb̄NNLO = σbb̄LO (1 + ∆b
1 + ∆b

2) . (4.12)

Table 4.2: The bb̄ cross section at LO, NLO, and NNLO QCD at
√
s = mZ , and the QCD

corrections ∆b
1 and ∆b

2 to the LO bb̄ cross section defined in Eq. (4.12) for three renormalization
scales µ.

σbb̄LO [pb] σbb̄NLO [pb] σbb̄NNLO [pb] ∆b
1 ∆b

2

µ = mZ 8742.84 9119.93 9152.29 4.31× 10−2 3.7× 10−3

µ = 2mZ 8742.84 9084.25 9141.60 3.90× 10−2 6.6× 10−3

µ = mZ/2 8742.84 9164.18 9157.60 4.82× 10−2 −7.5× 10−4

The numbers given in table 4.2 show that, at
√
s = mZ , the QCD corrections to the LO bb̄

are small and that inclusion of the NNLO QCD correction significantly reduces the uncertainty

associated with scale variations.

4.4 Bottom-quark distributions

Our set-up allows to compute the distribution of any IR-finite b-quark observable at NNLO

QCD. Our main interest in bb̄ production at the Z pole is, however, the computation of the

forward-backward asymmetry for massive b quarks at NNLO QCD, which was so far not avail-

able in the literature. We determine this asymmetry from the distributions of the b-quark and

oriented thrust directions. Besides these distributions we consider here for the sake of brevity

only the distribution of the b-quark transverse momentum pbT .

At this point a remark on the four-b diagrams discussed in section 3.1.2 is in order. By conven-

tion, we have taken them into account with a multiplicity factor one in the above computation

of σbb̄NNLO. It is however not entirely clear how the four-b final states were treated in e+e− collider
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experiments in the past. As mentioned in [90] one finds vague statements in the experimental

literature, for instance “a four-b final state is more likely to be tagged than a two-b one, but

less than twice as likely”. Thus if a calculation should match a respective measurement one has

to understand whether experiments have used (or use) the same or different tagging efficiencies

for the bb̄ and bb̄bb̄ final states. In principle, in the computation of the (differential) inclusive b

cross section dσ(e+e− → b+X)/dOb, where Ob is some b-quark observable, the four-b diagrams

count twice, because there are two b quarks in the final state. We have used this multiplicity

factor in the computation of the distributions of this section. (Numerically, the difference be-

tween using multiplicity factors one or two is very small.)

Distribution of pbT : Our results for the distribution of the b-quark transverse momentum pbT

are shown in fig. 4.7. In the kinematic region where pbT is close to maximal, which corresponds

to the last bin in fig. 4.7, the order αs and α2
s QCD corrections are due to one-loop or two-loop

contributions from bb̄ final states and real radiation diagrams with soft gluon(s) or soft qq̄.

Thus, we expect large logarithmic enhancements from these corrections. Let’s consider the

vicinity of the maximally allowed pbT determined by the bb̄ final state where these two partons

are in the plane transverse to the beam. The real radiation corrections deplete this region of

the pbT distribution and increase the number of b quarks with smaller transverse momentum.

This may explain qualitatively why the net higher order QCD corrections are negative in the

vicinity of the maximally allowed pbT .

Distribution of b-quark and thrust direction: Next we consider the distributions of the

b-quark direction of flight and of the oriented thrust axis. The forward-backward asymmetries

corresponding to these directions will be discussed in the next chapter. If the b-quark direction

of flight is chosen, then θb = ∠(k1,p1), where k1 and p1 are the three-momenta of the b quark

and of the electron, respectively, in the e+e− c.m. frame. However, an accurate determination

of the b-quark momentum is contaminated by quark fragmentation and decay. In the past

experimental analyzes often used the thrust axis as reference axis. Before we present the plots

for both distributions, let us quickly recapitulate the definition of thrust. Thrust is one of the

widely used global observables (meaning that all final state particles of a given event contribute),

called event shapes. For a given n-parton event described by a collection of final-state four-
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Figure 4.7: The distribution of the transverse momentum pbT of the b quark at
√
s = mZ .

The upper panels show the distribution at LO (grey), NLO (red), and NNLO QCD (blue) for
µ = mZ . The panels in the middle show the scale variations NLO(µ′)/NLO(µ = mZ)− 1 (red
band) and NNLO(µ′)/NNLO(µ = mZ) − 1 (blue band) of the first and second order QCD
corrections, where mZ/2 ≤ µ′ ≤ 2mZ . The lower panels display the ratios dσbb̄1 /dσ

bb̄
LO (red) and

dσbb̄2 /dσ
bb̄
LO (blue) for µ = mZ .

momenta {ki}ni=1 (related by momentum conservation), the thrust axis is the direction nT that

maximizes the thrust T defined by [203,204]:

T = max
nT

n∑
i=1

|ki · nT |
n∑
i=1

|ki|
, |nT | = 1. (4.13)

It can be shown [205] that

nT ‖
∑
i

εiki, εi ∈ {0,±1}, (4.14)

which implies that (4.13) is equivalent to the finite maximization problem:

T = max
εi

|
∑
i

εiki|∑
i

|ki|
. (4.15)
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This formula determines nT up to a sign. Its orientation is fixed by requiring nT · k1 > 0. A

geometric interpretation can be given to thrust: it is the ratio between the longest of all sides

and diagonal lines of all possible polygons constructed out of a given set of 3-vectors ({ki}) to

the perimeter fixed by this chosen set of vectors. Thus, if the thrust axis is chosen as reference

axis, the forward hemisphere is defined by nT · p1 > 0. Therefore, in this case θT = ∠(nT ,p1).

The possible directions of the oriented thrust axis nT are shown in figure 4.8 for the 3-parton

final state b(k1)b̄(k2)g(k3). According to the above formulas the oriented thrust axis is

nT ‖ k1 if |k1| > |k2|, |k3| , (4.16)

nT ‖ −k2 if |k2| > |k1|, |k3| , (4.17)

nT ‖ −k3 if |k3| > |k1|, |k2| . (4.18)

Figure 4.8: The possible directions of the oriented thrust axis in case of a 3-parton QQ̄g final
state.

In the case of a four-parton final state, nT is an element of the following set:

nT ∈ {k1,±k2,±k3,±k4,±(k1 + k2),±(k1 + k3),±(k1 + k4)} , (4.19)
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and the sign is fixed by the requirement nT · k1 > 0. Normalization of the thrust vector is

understood. The type-a antenna subtraction terms involve mapped momenta that arise from

3→ 2 phase-space mappings (see section 3.3.1). In this case the thrust vector is an element of

the set

ñT ∈ {±k̃ij,±k̃k,±kl} , i 6= j 6= k 6= l ∈ {1, . . . , 4} , (4.20)

Again, the sign is fixed by the condition ñT · k1 > 0.

Figure 4.9: The distribution of cos θb (plots on the left) and of cos θT (plots on the right)
at
√
s = mZ . The upper panels show the respective distribution at LO (grey), NLO (red),

and NNLO QCD (blue) for µ = mZ . The panels in the middle display the scale variations
NLO(µ′)/NLO(µ = mZ)−1 (red band) and NNLO(µ′)/NNLO(µ = mZ)−1 (blue band) of the
first and second order QCD corrections, where mZ/2 ≤ µ′ ≤ 2mZ . The lower panels show the
ratios dσbb̄1 /dσ

bb̄
LO (red) and dσbb̄2 /dσLObb̄ (blue) for µ = mZ .

In figure 4.9 we display the distributions of cos θb and cos θT to order α2
s, where θb (θT ) is

the angle between the b-quark direction (oriented thrust direction) and the electron beam.

The first thing to notice is that, in comparison to the top-quark cos θt distribution shown in

figure 4.4, for bottom production at the Z-pole the orbital p-wave component of the S matrix

element is much more dominant. This is because at
√
s = mZ we are in the high-energy region
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of b-quark production. Both plots show qualitatively the well-known LO p-wave (1 + cos2 θ)

angular dependence which is modulated by a term linear in cos θ resulting from the parity-odd

contributions.

The plots in the second panels of fig. 4.9 show that incorporating the order α2
s corrections helps

to reduce the scale variation uncertainties both for the cos θb and the cos θT distribution.

From the third panels of fig. 4.9 we see that with increasing θb or θT , that is, when going

from the backward to the forward direction, the order αs and α2
s QCD corrections do not

steadily grow – unlike the case of top-quark production, see fig. 4.4. Thus in the case of bottom

production at
√
s � mb, the higher order QCD corrections do not necessarily increase the

b-quark forward-backward asymmetry.



Chapter 5

The top- and bottom-quark

forward-backward asymmetry

As already mentioned in the introduction, forward-backward asymmetries are precision observ-

ables for the determination of the neutral current couplings of leptons and quarks f in the

reactions e+e− → ff̄X. In this chapter we compute the respective forward-backward asymme-

tries for tt̄ and bb̄ production to second order in αs.

The forward-backward asymmetry AFB in fermion antifermion pair production, in partic-

ular in QQ̄ production is defined by1

AFB ≡
NF −NB

NF +NB

, (5.1)

where NF (NB) is the number of quarks produced in the forward (backward) direction. The

identification of the forward/backward direction involves a choice of reference axis. The defini-

tion of the reference axis must be such that the resulting forward-backward asymmetry is an

infrared safe (IR-safe) quantity so that it can be reliably calculated and subsequently compared

with experimental measurements. Common choices include the direction of flight of the heavy

quark and the oriented thrust axis defined by a certain thrust-finding algorithm, both of which

will be considered in this thesis for the bottom quark. The definition of the thrust axis is given

1Here and in the following, we refrain from putting an index Q on AFB . Thus in sections 5.2 and 5.3 the
notation AFB refers to the top-quark and bottom-quark asymmetry, respectively.
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in Eq. (4.14) in section 4.4. The two-fold ambiguity inherent in this definition is resolved by

singling out the direction which is closer to the flavored quark in question. For tt̄ production we

will consider only the t-quark direction of flight as reference axis for computing AFB, because

this direction can be well reconstructed in tt̄ → leptons plus jets events where the top-quark

decays hadronically, t→ bqq̄′.

Both choices of reference axes are infrared and collinear safe for massive quarks. However they

no longer keep this IR-safe property when a masssless quark flavor is considered. Intuitively this

fact can be understood by recalling that the notion of “the number of massless quarks of a spe-

cific flavor or number of gluons” is not an IR-safe quantity in QCD. This point is already clear

in QED: considering the number of soft photons produced in the soft photon region Eγ → 0 is

physically not meaningful. Technically, AFB for massless quarks of a specific flavor – consider,

for definiteness, massless b quarks — suffers from some uncanceled logarithmic divergences due

to the involvement of the bb̄bb̄ final state (section 3.1.2) where the particle-multiplicity nb 6= 1

of these 4-b final states spoils the cancellation of all IR singularities [90]. It turns out that it

is the denominator of Eq. (5.1), the total number of massless b quarks produced, that contains

uncanceled collinear divergences while the difference NF − NB in the numerator of (5.1) hap-

pens to remain finite. We will come back to this in more detail in section 5.3.2. What is always

legal to ask is the number of flavored jets produced according to an IR-safe jet definition. An

infrared-safe definition of a flavored quark jet for a massless quark was given in [206]. Based

on this jet algorithm a definition of the forward-backward asymmetry based on the jet axis was

given in [91] that is IR finite in the limit mb → 0,

Before we proceed it is useful to pause for a moment and discuss why there is a non-vanishing

AFB in the process under consideration. The asymmetry AFB is generated by those terms in

the squared S-matrix elements of the reactions e+e− → QQ̄X which are odd under the inter-

change of Q and Q̄ while the initial state is kept fixed. Thus, as already emphasized in the

introduction, AFB 6= 0 is not a sign of a symmetry violation. In particular, it has a priori

nothing to do with parity violation. For instance, in pure Quantum Electrodynamics (QED)

an non-zero AFB is generated at order α3 in e+e− → QQ̄X. The following QED contributions

generate a non-zero asymmetry [207]: i) the interference of the 1-loop QQ̄ box diagrams and
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the Born diagram and ii) the interference of real photon radiation from the initial and the final

state. Both i) and ii) contain even and odd terms with respect to Q↔ Q̄.

This QED contribution is a gauge-invariant part of the higher-order electroweak contributions

and will not be considered in the following because, as emphasized repeatedly, we consider

here e+e− → QQ̄X only to lowest order in the electroweak couplings, i.e., the s-channel γ and

Z-boson exchange matrix elements. Those terms in these squared matrix elements that are

odd with respect to Q↔ Q̄ are also parity-odd, i.e., are generated by the interference of vector

and axial vector couplings. Below we calculate the QCD-induced correction factors to these

lowest-order asymmetries.

A further remark concerns the so-called charge asymmetry. The initial state |e+(−p1)e−(p1)〉

is a CP eigenstate in the e+e− frame. If the interactions that affect e+e− → QQ̄X are CP -

invariant then AFB is equal to the charge asymmetry AC that is defined by the number of

quarks Q minus the number of antiquarks Q̄ in the forward direction divided by the total

number of produced QQ̄ pairs.

5.1 AFB to second order in αs

We recall the definition of the differential inclusive cross section for the production of a (massive)

quark flavor Q, i.e., dσ(e+e− → Q+X)/dxQd cos θ, where θ is the angle between the the electron

three-momentum p1 and the axis defining the forward hemisphere, xQ = 2EQ/
√
s, and EQ is

the energy of Q. Both θ and EQ are defined in the e+e− c.m. frame. With this distribution

one can define forward and backward cross sections

σF =

∫ 1

0

d cos θ

1∫
x0

dxQ
dσ

dxQd cos θ
, σB =

∫ 0

−1

d cos θ

1∫
x0

dxQ
dσ

dxQd cos θ
, (5.2)

and the symmetric and antisymmetric cross section σS and σA,

σS = σF + σB , σA = σF − σB . (5.3)
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In (5.2) the parameter x0 = 2mQ/
√
s. With (5.3) the forward-backward asymmetry (5.1) can

be expressed as

AFB =
σA
σS

. (5.4)

We emphasize again that above the threshold for QQ̄QQ̄ production the Feynman diagrams

associated with this process contribute with a multiplicity factor two both to σS and σA because

this final state contains two quarks Q.

The forward-backward asymmetry belongs to the class of observables that can be computed at

the level of unresolved partons. We consider now the individual contributions to (5.4) to second

order in αs. These contributions are understood to be regulated, as in the previous chapters,

with antenna subtraction terms. To order α2
s the symmetric and antisymmetric cross sections

receive the following contributions from unresolved partons:

σA,S = σ
(2,0)
A,S + σ

(2,1)
A,S + σ

(3,1)
A,S + σ

(2,2)
A,S + σ

(3,2)
A,S + σ

(4,2)
A,S +O(α3

s) , (5.5)

where the first number in the superscripts (i, j) denotes the number of final-state partons

associated with the respective term and the second one the order of αs.

5.1.1 Unexpanded asymmetry

Inserting (5.5) into (5.4) we get the unexpanded version of AFB to first and to second order in

αs:

AFB(αs) =
σ

(2,0)
A + σ

(2,1)
A + σ

(3,1)
A

σ
(2,0)
S + σ

(2,1)
S + σ

(3,1)
S

≡ ALO
FB C1 , (5.6)

AFB(α2
s) =

σ
(2,0)
A + σ

(2,1)
A + σ

(3,1)
A + σ

(2,2)
A + σ

(3,2)
A + σ

(4,2)
A

σ
(2,0)
S + σ

(2,1)
S + σ

(3,1)
S + σ

(2,2)
S + σ

(3,2)
S + σ

(4,2)
S

≡ ALO
FB C2 , (5.7)

where

ALO
FB =

σ
(2,0)
A

σ
(2,0)
S

, (5.8)
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is the forward-backward asymmetry at Born level. The factors C1 and C2 defined by the

respective ratio on the left of Eq. (5.6) and (5.7) are the unexpanded first-order and second-

order QCD correction factors.

5.1.2 Expanded asymmetry

Taylor expansion of Eq. (5.6) to first order and of (5.7) to second order in αs gives

ANLO
FB =ALO

FB [1 + A1] + O(α2
s) , (5.9)

ANNLO
FB =ALO

FB [1 + A1 + A2] + O(α3
s) , (5.10)

where A1 and A2 are the QCD corrections of O(αs) and O(α2
s), respectively.

A1 =
∑
i=2,3

[σ(i,1)
A

σ
(2,0)
A

− σ
(i,1)
S

σ
(2,0)
S

]
, (5.11)

A2 =
∑
i=2,3,4

[σ(i,2)
A

σ
(2,0)
A

− σ
(i,2)
S

σ
(2,0)
S

]
− σ

(2,1)
S + σ

(3,1)
S

σ
(2,0)
S

A1 . (5.12)

Eqs. (5.9) and (5.10) are the expanded versions of the forward-backward asymmetry at NLO

and NNLO QCD.

The unexpanded and expanded first and second-order forward-backward asymmetries differ

by terms of order α2
s and order α3

s, respectively. Below we shall evaluate both versions of

the asymmetry for top and bottom quarks. The differences between the two versions may be

considered as an estimate of the theory uncertainties.

As to the expanded version (5.10) of the forward-backward asymmetry, we recall that the

two-parton and the sum of the three- and four-parton contributions to A2 are separately infrared

(IR) finite, cf. [88,90,201]. The QQ̄ contribution to A2 is determined by the one-loop [59] and

two-loop [175–177] QCD vertex form factors γ∗, Z∗ → QQ̄ and it was calculated in [201] for

massive b and top quarks.

The three- and four-parton contributions to A2 may be computed with any NLO method for

handling the IR divergences, for example, with the dipole subtraction method [128,130]. Let us
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briefly discuss why with such a method subtracted three- and four-parton contributions to A2

can be computed that are separately finite. We recall the generalized eikonal-like factorization

property of QCD amplitudes in the soft limit [97, 101, 128]. The only hard skeleton of our

QQ̄ amplitudes at NNLO QCD that survive in the double soft limit (which is the only double

unresolved region for heavy quark pair production in e+e−collisions) is the 2 → 2 tree-level

amplitude e+e− → QQ̄. The key point to realize is that neither the (generalized) eikonal

factors or soft currents nor their integrated forms have any knowledge about the structure of

this hard skeleton, for instance of the scattering angle of the heavy quark w.r.t. the electron

beam. On the other hand, it is precisely the structure of this hard skeleton that determines

the forward-backward asymmetry. This implies that in the double-soft region σ
(i,2)
A and σ

(i,2)
S

are proportional to σ
(2,0)
A and σ

(2,0)
S , respectively, with the same IR singular proportionality

factor. This holds separately for i = 2, 3, 4. Therefore, in the double soft-region each of the

three differences
[
σ

(i,2)
A /σ

(2,0)
A − σ(i,2)

S /σ
(2,0)
S

]
(i = 2, 3, 4) that appear in A2 (cf. Eq. (5.12)) is

infrared finite. In other words, these differences do not require a NNLO infrared subtraction.

Yet, this difference becomes IR singular for i = 3, 4 in the single unresolved region, but they

can be separately regularized with an NLO subtraction scheme [208], such that the sum of the

differences for i = 3 and i = 4 is IR finite.

However, for the calculation of the numerator and denominator of the unexpanded asymmetry

(5.7) an NNLO IR method is required. We calculate both versions of the b-quark forward-

backward asymmetry at NNLO with the NNLO antenna subtraction set-up outlined in the

previous chapters.

5.1.3 Leading-order formulas and sin2 θeffW

It is useful to recall the analytic formula for the forward-backward asymmetry at lowest order.

Neglecting the electron mass the symmetric and antisymmetric LO cross sections for e+e− →
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γ∗, Z∗ → QQ̄ are given by

σ
(2,0)
S =

Nc

24π

1

s
β
(
vγe v

γ
Q

)2
(3− β2) +

Nc

12π

s

DZ

β

(
1− m2

Z

s

)
vγe v

γ
Qv

Z
e v

Z
Q (3− β2)

+
Nc

24π

s

DZ

β
[(
aZe
)2

+
(
vZe
)2
] [

2
(
aZQ
)2
β2 +

(
vZQ
)2

(3− β2)
]
, (5.13)

σ
(2,0)
A =

Nc

4π

s

DZ

β2 aZe a
Z
Q

[
vZe v

Z
Q +

1

2

(
1− m2

Z

s

)
vγe v

γ
Q

]
, (5.14)

where vγf is the electric charge of the fermion f in units of e > 0 and vZf , aZf are the vector and

axial vector couplings of f to the Z boson defined in Eq. (A.4) of Appendix A.1. Moreover,

β =
√

1− 4m2
Q/s is the velocity of Q and DZ is the numerator of the Z-boson propagator.

The leading-order asymmetry ALO
FB is given by the ratio (5.8). Near threshold,

√
s → 2mQ,

the asymmetric cross section, which is generated by the p-wave component of the S matrix

element, is suppressed by a factor of β compared to the symmetric cross section and, therefore,

the forward-backward asymmetry becomes zero.

Right at the Z resonance,
√
s = mZ , the couplings to the photon are put to zero if one works

at lowest order in the electroweak couplings. Then

ALO
FB =

6βvZe a
Z
e v

Z
Qa

Z
Q[

(aZe )2 + (vZe )2] [2 (aZQ)2
β2 +

(
vZQ
)2

(3− β2)
] . (5.15)

The formulas (5.13) - (5.15) apply to the production of quark and lepton pairs ff̄ . (Nc → 1

for f = e, µ, τ .) Neglecting the mass of the final-state fermion f in (5.15), we have

ALO
FB(mf = 0) =

3

4
AeAf , where Af =

2vZf a
Z
f

(vZf )2 + (aZf )2
. (5.16)

In the SM the forward-backward asymmetry depends on s2
W ≡ sin2 θW . The sensitivity of ALO

FB

to s2
W is given by Sf ≡ ∂ALO

FB/∂s
2
W . This quantity depends on the charge of the final-state

fermion f as is clear from the expression for vZf . We may estimate Sf at the Z pole using

s2
W = 0.23 as an example. For quarks with |QQ| = 1/3, i.e. for b quarks we get SQ = Sb ' 5.6,

while for quarks with |QQ| = 2/3, i.e. for c quarks we get SQ = Sc ' 4.4. For charged leptons
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Sl ' 1.9. This signifies that at the Z pole the b-quark forward-backward asymmetry has the

highest sensitivity to sin2 θW , as was already emphasized in the introduction.

In electroweak precision fits to data at the Z pole the formula for ALO
FB is used where the

couplings vZf and aZf of the final-state fermions are replaced by effective couplings vZf,eff and

aZf,eff . In fact, one goes further and expresses these couplings in terms of an effective weak

mixing angle sin2 θeffW and a normalization factor ρf . By convention, these effective couplings

incorporate only the genuine weak-interaction corrections (which are IR finite) to Z → ff̄

which are calculated in some renormalization scheme, see for instance [209]. (For the 2-loop

weak corrections to Z → bb̄ see [210].) The QED and QCD corrections (in the case of f = Q)

are taken into by correcting the measured forward-backward asymmetry. This will be outlined

in somewhat more detail in sec. 5.3.4.

In this thesis we consider unpolarized e+e− collisions. The leading-order formulas for the

symmetric and antisymmetric cross sections given above can be straightforwardly extended to

the cases where the electron and/or positron beam is longitudinally polarized to some degree.

(For explicit formulas, see for instance, [90].) Below we compute the universal and non-universal

QCD corrections to order α2
s (as defined in section 3.1) to the LO top- and bottom quark

asymmetry. The respective universal QCD corrections apply as a multiplicative factor to the

LO asymmetry also in the case of tt̄ and bb̄ production by polarized e− and/or e+ beams.

5.2 The top-quark asymmetry above the tt̄ threshold

In this section we present our results for the t-quark forward-backward asymmetry at NNLO

QCD and lowest order in the electroweak couplings above the tt̄ threshold. This observable is

of central interest for the top-physics program at future e+e− colliders [27].

We consider the top-quark asymmetry for c.m. energies
√
s > 2mt where fixed-order perturba-

tion theory in αs is reliable. For definiteness, we confine ourselves to
√
s . 4mt. For

√
s > 4mt

the tt̄tt̄ final state contributes, too. This final state has a signature which is clearly distinct from

tt̄ events. Thus, the four-top final state may or may not be included in future measurements

of the top-quark AFB, depending on experimental strategies.
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We consider here the top-quark AFB with respect to the top-quark direction of flight in the

e+e− c.m. frame. As already mentioned above this axis can be reconstructed in future tt̄ data,

in particular in tt̄→ lepton + jets events where the top quark decays hadronically, t→ bqq̄′.

We use for our computation of the top-quark AFB the antenna-subtracted squared matrix el-

ements that correspond to the contributions of the various final states at NNLO QCD. This

allows to implement acceptance cuts, although we refrain here from applying cuts. Our results

for the top-quark asymmetry given below follow from the computations of the cos θt distribu-

tions at LO, NLO, and NNLO QCD which were presented for two c.m. energies in sec. 4.2.

The input values for the top-quark mass, the QCD and electroweak couplings, in particular

the value of sin2θW , are those given at the beginning of chapter 4. Our main interest is the

determination of the NLO and NNLO QCD correction factors to the LO asymmetry. These

factors may be used in the future to extract from the measurement of the top-quark AFB the

leading-order asymmetry which contains the information about the neutral-current couplings

of the top quark.

Table 5.1 contains our results for the unexpanded version of the top-quark AFB at NLO and

NNLO QCD and the associated QCD correction factors C1 and C2 defined in Eq. (5.6) and (5.7)

for several c.m. energies. This version of computing the asymmetry corresponds to its experi-

mental measurements or its simulation Monte Carlo event generators. The central values refer

to the choice of renormalization scale µ =
√
s and the given uncertainties are obtained by

varying µ simultaneously in the numerator and denominator of Eq. (5.6) and (5.7) between

√
s/2 ≤ µ ≤ 2

√
s. The scale uncertainties are small, but the NNLO uncertainties do not

decrease compared to those at NLO QCD. This feature is not uncommon for an observable

that is defined as a ratio. The simultaneous scale variation of the numerator and denominator

may underestimate the scale uncertainties. A more conservative procedure would be to vary

numerator and denominator independently, which is possible in the case of the unexpanded

asymmetry.

Table 5.2 contains our results for the expanded version of the top-quark forward-backward

asymmetry at NLO and NNLO QCD defined in Eq. (5.9) and (5.10), respectively, and the

correction terms A1 and A2 given in Eq. (5.11) and (5.12) for several c.m. energies. The central
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Table 5.1: The unexpanded version of the top-quark forward-backward asymmetry and the
QCD correction factors C1 and C2 defined in Eq. (5.6) and (5.7) for several c.m. energies.

√
s [GeV] ALO

FB [%] AFB(αs) [%] AFB(α2
s) [%] C1 C2

360 14.94 15.31+0.02
−0.02 15.82+0.08

−0.06 1.0247+0.0013
−0.0013 1.0589+0.0053

−0.0040

400 28.02 28.77+0.05
−0.04 29.42+0.10

−0.09 1.0268+0.0018
−0.0014 1.0500+0.0036

−0.0032

500 41.48 42.32+0.06
−0.05 42.83+0.08

−0.07 1.0203+0.0014
−0.0012 1.0325+0.0019

−0.0017

700 51.34 51.78+0.03
−0.03 52.03+0.04

−0.04 1.0086+0.0006
−0.0006 1.0134+0.0008

−0.0008

values and the uncertainties refer to the scales µ =
√
s and µ =

√
s/2 and 2

√
s, respectively.

Obviously, here we vary µ simultaneously in the σS and σA of different partonic channels

between
√
s/2 and 2

√
s. The numbers δANNLO

FB in the last column of table 5.2 signify the

change of ANNLO
FB if our input value for the top-quark mass is changed by ±0.5 GeV. For a given

c.m. energy ANNLO
FB increases if the top-quark mass is decreased and vice versa. Simulations

indicate that the top-quark mass can be measured with a much smaller uncertainty than ±0.5

GeV from a tt̄ threshold scan at a future e+e− collider [27].

Table 5.2: The top-quark forward-backward asymmetry at LO, NLO, and NNLO QCD for
several c.m. energies using the expansions Eq. (5.9) and (5.10).

√
s [GeV] ALO

FB [%] ANLO
FB [%] ANNLO

FB [%] A1 [%] A2 [%] δANNLO
FB [%]

360 14.94 15.54+0.05
−0.04 16.23+0.12

−0.10 4.01+0.35
−0.29 4.58+0.46

−0.38 ±0.59

400 28.02 28.97+0.08
−0.07 29.63+0.11

−0.10 3.41+0.29
−0.25 2.36+0.11

−0.11 ±0.27

500 41.48 42.42+0.08
−0.07 42.91+0.08

−0.07 2.28+0.19
−0.16 1.18+0.01

−0.01 ±0.13

700 51.34 51.81+0.04
−0.03 52.05+0.04

−0.04 0.91+0.07
−0.06 0.47+0.01

−0.01 ±0.06

In the computation of the numbers in table 5.1 and table 5.2, we have included in A2 also

the non-universal contributions that contain the electroweak couplings of quarks q 6= t. We

remark that the square of the diagrams where γ∗/Z∗ couple to q 6= t and the tt̄ pair is produced

by gluon splitting does not contribute to the antisymmetric cross section, but they do make

non-zero contribution to the symmetric cross section. These contributions are pretty small due

to the fact that the top-quark mass is not small compared to c.m. energy considered. The ratio

r = Anon
2 /A2 of the non-universal and the total order α2

s correction increases with increasing

c.m. energy. We find that r = −0.16%,−1%, and −2.4% for
√
s = 400 GeV, 500 GeV, and
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700 GeV, respectively.

The numbers of table 5.2 tell us that close to the tt̄ threshold, at
√
s ' 360 GeV, fixed order

perturbation theory is no longer reliable because the second order correction A2 to the forward-

backward asymmetry is larger than the first order correction A1. From the numbers given in

table 5.1 one can draw the same conclusion. For
√
s > 380 GeV, the ratio |A2/A1| becomes

smaller than one. Notice that the order α2
s correction is significant as compared to the first

order one: |A2/A1| & 0.5 for the c.m. energies listed in table 5.2. The uncertainties of ANNLO
FB

due to scale variations are small, but these uncertainties do not decrease, in the range of c.m.

energies given in table 5.2, compared to the scale uncertainties of ANLO
FB .

As discussed in section 5.1.2, the two-parton, i.e., the tt̄ contribution to AFB is separately IR-

finite, both at order αs and at order α2
s [201]. In the range of c.m. energies given in table 5.2,

the tt̄ final state makes the largest contribution both to A1 and A2. For
√
s . 500 GeV it

is significantly larger than the respective contribution from the three- and four-parton final

states. Here, we have computed the tt̄ contribution to A1 and A2 with the antenna-subtracted

two-parton matrix elements of sections 3.2 and 3.3. It was computed in [208] with an NLO

subtraction scheme, namely dipole subtraction with massive quarks [130]. We agree with the

results of [208]. The top-quark forward-backward asymmetry at NNLO QCD was computed

before in ref. [80] in the unexpanded version with values of mt and αs that differ slightly from

the ones that we use here. Taking these differences into account we agree with [80]. The method

employed in [80] is a mixture of phase-space slicing and NLO dipole subtraction method.

One may take the spread between the values of the unexpanded and expanded versions of

AFB, at NLO and NNLO QCD respectively, given in tables 5.1 and 5.2 as an estimate of the

uncalculated higher order corrections. Alternatively, one may add the scale uncertainties and

the uncertainties due to δmt = ±0.5 GeV of the expanded version (cf. table 5.2) linearly and

take this as residual uncertainty of our prediction of ANNLO
FB . An uncertainty of 0.4% and 0.2%

at
√
s = 400 and 500 GeV, respectively, results in this way. This estimate is in accord with

the spread between the expanded and unexpanded results listed in tables 5.1 and 5.2. This

uncertainty is significantly smaller than the projected experimental precision of top-quark AFB

measurements at future electron-positron colliders [32]. This observable has a high sensitivity
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to precisely determine the neutral current couplings of the top quark and probe for anomalous

couplings in e+e− collisions [32].

5.3 The bottom-quark asymmetry at the Z pole

Finally we determine the b-quark forward-backward asymmetry at the Z resonance to NNLO

QCD and lowest order in the electroweak couplings. As in section 4.4 the contributions involv-

ing virtual photon exchange are neglected. We compute the b-quark AFB with respect to both

the b-quark and the thrust direction. The input values of the Standard Model couplings and

masses are specified at the beginning of section 4. In particular we recall that we use αs defined

in 5-flavor QCD and the bottom-quark on-shell mass mb = 4.89 ± 0.04 GeV. For the mass

of the top quark that appears in the triangle-loop diagrams contributing to the non-universal

corrections to AFB we use mt = 173.34 GeV. The u, d, c, s quarks are taken to be massless.

Although, as explained above, the expanded version of AFB at NNLO QCD can be calculated

using a NLO IR subtraction scheme, we employ again the set-up of the NNLO antenna sub-

traction scheme developed in the previous chapters. First we calculate the b-quark asymmetry

without phase-space cuts. In section 5.3.3 we apply a cut on cos θb, respectively on cos θT and

determine the resulting asymmetry.

5.3.1 Massive b quark, quark axis and thrust axis

With the input parameters mentioned above, the Born-level value of the b-quark forward-

backward asymmetry at
√
s = mZ is ALO

FB = 0.1512. The value of ALO
FB is very sensitive to

the input value of s2
W but insensitive to the value of mb within its uncertainty. As in the case

of the top quark, we are primarily concerned with the order αs and α2
s QCD corrections to

the LO asymmetry, both in the unexpanded and expanded version of the asymmetry. In this

subsection we take into account all Feynman diagram contributions discussed in sections 3.1.

First we present for the expanded version of the asymmetry our results for the QCD correc-

tions defined in Eqs. (5.9) - (5.12). Table 5.3 lists the values of the NLO and NNLO correction
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Table 5.3: The first- and second-order QCD correction factors defined in (5.9) - (5.12) to the
LO b-quark forward-backward asymmetry at the Z peak for the input values given in the text
and for µ = mZ . The numbers in superscript (subscript) refer to the changes if µ = 2mZ

(µ = mZ/2) is chosen.

1 + A1 1 + A1 + A2 A1 A2

quark axis: 0.9710+0.0028
−0.0034 0.9587+0.0026

−0.0028 −0.0290 −0.0123

thrust axis: 0.9713+0.0027
−0.0026 0.9608+0.0022

−0.0025 −0.0287 −0.0105

factor, both for the quark axis and the thrust axis definition, for the three renormalization scales

µ = mZ/2,mZ , 2mZ . Contrary to the case of the top-quark the QCD corrections decrease the

asymmetry. The numbers given in this table show that the order α2
s corrections are significant.

For µ = mZ the ratio A2/A1 is 43% and 37% for the quark and thrust axis definition, respec-

tively. The scale variations change both the first- and second-order QCD correction factors by

about ±0.003 with respect to their values at µ = mZ . As already discussed in the preceding

section for the top quark case, the fact that inclusion of the second-order correction term A2

does not reduce the scale uncertainty is not unusual for an observable that is defined as a ratio.

Contrary to the case of the top quark for the c.m. energies used in sec. 5.2, the order αs

and α2
s corrections A1 and A2 are dominated by the contributions from the three-parton and

three- and four-parton final states, respectively. In the limit mb → 0 the bb̄ contribution to A1

and the non-singlet bb̄ contribution to A2 vanish because of the chirality-preserving feature of

gauge interactions of massless quark in these diagrams. Because mb/mZ � 1 these 2-parton

contributions to A1 and A2 turn out to be about two orders of magnitude smaller than the

three-parton, respectively three- and four-parton contributions. The bb̄ triangle contribution to

A2 (cf. figure 3.1d) is about one order of magnitude larger than the non-singlet bb̄ contribution,

but an order of magnitude smaller than those from the three- and four-parton final states.

We have included in the computation of AFB the non-universal corrections Anon−u.
2 of order

α2
s that contain the vector and axial vector couplings of quarks q 6= b. They are significant.

For instance, for the quark axis definition and µ = mZ we get Anon−u.
2 = −0.00310 which is

25% of the total correction A2. This number comes about as follows. The two- and the three-

parton contribution to Anon−u.
2 , that is, the interference of figure 3.1a and 3.1d and of figure 3.2a

and 3.2c, is small: it is +0.00085 and +0.00028, respectively. The dominant part is due to the
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non-universal contributions from the bb̄qq̄ (q 6= b) final state. While the term σ
(4,2)
A /σ

(2,0)
A (cf.

eq. (5.12)) of this correction is negligibly small, the term σ
(4,2)
S /σ

(2,0)
S is significant. As a result

the contribution of this term to Anon−u.
2 is −0.00423. Notice that the value of Anon−u.

2 depends

on the value of sin2 θW .

In order to factorize out the dependence of the QCD correction factors on αs, we now represent

the expanded version of the b-quark asymmetry, both for the quark and the thrust axis, in the

form:

ANNLO
FB = ALO

FB

[
1− a1

αs
2π
− a2

(αs
2π

)2
]
. (5.17)

Table 5.4 contains the values of the coefficients a1 and a2 extracted from the values of A1 and

A2 of table 5.3. The rather large changes of a2 with variation of µ is due to the fact that the

variation of the complete correction A2 is small (because of the definition of AFB as an ratio)

but the variation of α2
s with µ is significant. The numbers given in table 5.4 should be useful for

future implementation of our results into simulation programs that use a value of αs different

from ours.

Table 5.4: The values of the first- and second-order coefficients a1 and a2 defined in (5.17).

a1 a2

quark axis µ = mZ/2: 1.544 26.67
µ = mZ : 1.544 34.84
µ = 2mZ : 1.544 43.06

thrust axis µ = mZ/2: 1.528 21.75
µ = mZ : 1.528 29.81
µ = 2mZ : 1.528 37.98

Monte-Carlo simulations or measurements of the b-quark forward-backward asymmetry at

the Z peak may also be compared with perturbative computations where the ratio NF−NB
NF+NB

is

not expanded. In this case the order αs and order α2
s correction factors C1 and C2 defined in

(5.6) and (5.7) apply. Their values are given in table 5.5.

As in the top quark case, the spread between the second-order expanded and unexpanded

correction factors may be viewed, in addition or alternatively to scale variations, as an indication

of the order of magnitude of the uncalculated higher-order corrections. The comparison of the

values of 1 + A1 + A2 and C2 for fixed µ given in table 5.3 and 5.5 shows that both for the
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Table 5.5: The first- and second-order QCD correction factors C1 and C2 associated with the
unexpanded version of the b-quark AFB.

C1 C2

quark axis: 0.9722+0.0025
−0.0031 0.9594+0.0026

−0.0030

thrust axis: 0.9725+0.0025
−0.0031 0.9614+0.0023

−0.0026

quark and the thrust axis definition the spread between these correction factors is significantly

smaller than the change of these terms due to scale variations.

5.3.2 Approaching the limit mb → 0

As a check, we want to calculate the b-quark AFB for mb → 0 and compare with the order

α2
s results of [89, 90] obtained for mb = 0. To be precise, we compute the second-order QCD

correction to the b-quark forward-backward asymmetry for a sequence of decreasing values of

mb and then perform a fit to these numbers which allows us to extrapolate to mb = 0. In

order to conform to the calculation of [90] we neglect now, as was done in [90], the so-called

singlet and the triangle contributions that were classified in sec. 3.1 in accord with [90]. As a

short reminder, flavor singlet contributions consist of diagrams where the bottom quark that

is observed is produced via the splitting of an intermediate gluon g → bb̄ rather than by the

(electro)weak neutral current. The triangle contributions correspond to two-parton, three-

parton, and four-parton cut-diagrams where a triangle fermion loop is involved. The remaining

contributions are the so-called non-singlet contributions and they are taken into account when

approaching the massless b-quark limit. The non-singlet contributions to the second-order QCD

correction A2 are denoted in the following by ANS2 . Recall that as far as the bb̄bb̄ final state is

concerned, the E-term given by the interferences listed in Eq. (3.2) contribute to ANS2 .

Note that in the limit mb → 0, the only non-vanishing two-parton two-loop contributions to A2

are the triangle contributions, fig. 3.1c. All other diagrams, the non-singlet bb̄ contributions,

lead to the same QCD correction for the vector and axial-vector coupling of the Z boson, as

a consequence of chiral invariance of the massless theory, so that their net contribution to A2

vanishes. Thus for mb = 0 the non-singlet QCD correction term ANS2 receives only contributions
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form 3-parton and 4-parton final states.

In the limit mb → 0 the second-order QCD correction ANS2 becomes singular. In order to

understand this let us decompose the symmetric and antisymmetric non-singlet cross sections

as follows [90]:

σS,NS(wE) =σS,NS(wE = 0) + wEσ
(2,0)
S

∫
ES , (5.18)

σA,NS(wE) =σA,NS(wE = 0) + wEσ
(2,0)
A

∫
EA . (5.19)

Here the first terms on the right-hand sides of these equations denote all non-singlet contri-

butions to order α2
s except the E term, while

∫
ES and

∫
EA denote the phase-space integrals

of the symmetric and antisymmetric E-term, and wE is a multiplicity or weight factor. Re-

call that the inclusive definition of σS,NS and σA,NS corresponds to wE = 2 because there

are two b quarks in the bb̄bb̄ final state. The corresponding forward-backward asymmetry is

AFB,NS(wE) = σA,NS(wE)/σS,NS(wE) and by expansion in αs one gets ANS2 .

It turns out that the inclusive definition with wE = 2 yields an antisymmetric cross section

which is infrared finite to order α2
s in the limit mb → 0, but the symmetric cross section

is IR divergent in this limit, even if one considers only the non-singlet component. Thus

AFB,NS(wE = 2) is IR divergent at order α2
s for mb → 0. In fact this holds for any value of

wE > 0. For instance, for wE = 1 the symmetric cross section σS,NS(wE = 1) is IR-finite at

order α2
s for mb → 0, while σA,NS(wE = 1) is not.

Let us try to understand this. The divergences for mb → 0 in the above non-singlet components

are associated with logarithmically enhanced terms ∝ α2
s ln(s/m2

b) that arise in the phase-pace

integration of the E-term in the four triple-collinear regions, where three of the four b quarks

become simultaneously parallel [90]. What are the consequences of this singularities for (5.18)

and (5.19)? The b quark from gluon splitting g → bb̄ does not contribute to
∫
EA. There-

fore only half of the b quarks from the bb̄bb̄ final state, those from Z → bb̄, contribute
∫
EA.

This factor 1/2 compensates the factor wE = 2. As a result, for mb → 0, the divergence in

2σ
(2,0)
A

∫
EA is canceled by the respective divergence that arises from the 1-loop bb̄g diagrams

that contribute to σA,NS(wE = 0). On the other hand, for wE = 2 there is a mismatch of sin-
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gularities of the symmetric E-term, 2σ
(2,0)
S

∫
ES, and and of the singularities of σS,NS(wE = 0).

Therefore σS,NS(wE = 2) and hence AFB,NS(wE = 2) are IR-singular for mb → 0. If one would

choose wE = 1 then σA,NS(wE = 1) becomes IR-singular, while σS,NS(wE = 1) is IR-finite for

mb → 0. (Recall that the multiplicity factor wE = 1 corresponds to the exclusive definition of

the cross section. This is also the multiplicity factor with which the bb̄bb̄ final state and the

other qq̄qq̄ final states contribute to the total cross section e+E− → hadrons.)

Refering to the definition of the b-quark forward-backward asymmetry (5.1) which involves the

number of b quarks in the forward and backward direction an the total number of b quarks,

one has to choose wE = 2. Because AFB,NS(wE = 2) is IR-divergent at order α2
s for mb → 0,

ref. [90] defined an auxiliary variable ÂFB,NS that is IR finite in this limit, namely

ÂFB,NS ≡
σA,NS(wE = 2)

σS,NS(wE = 1)
. (5.20)

Using (5.18) and (5.19) and expanding the ratio one sees that the physical expression for the

asymmetry is

AFB,NS(wE = 2) = ÂFB,NS − ALOFB

∫
ES . (5.21)

In this way, the term ∝
∫
ES which becomes singular for mb → 0 is isolated. Ref. [90] computed

ÂFB,NS for massless b quarks and the term ALOFB

∫
ES for small, but non-zero mb.

Now we explicitly expand (5.21) to order α2
s. Referring to the definition of the first and second-

order QCD correction terms A1 and A2 in Eq. (5.10) we get analogously for the non-singlet

second-order QCD correction term

ANS2 (wE = 2) = ÂNS2 −
∫
ES . (5.22)

The term ÂNS2 , which is finite for mb = 0 as emphasized above, was computed for a massless

b quark in [89, 90] and [90] for the quark axis and thrust axis definition, respectively. Here we

compute ÂNS2 , respectively the coefficient

âNS2 = −
(

2π

αs

)−2

ÂNS2 (5.23)
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for a sequence of decreasing b-quark mass values between mb = 4.89 GeV and mb = 1 GeV.

We choose the renormalization scale to be µ = mZ . We compute âNS2 both for the quark and

thrust axis definition of AFB. The results are shown by the red solid triangle points in the left

Figure 5.1: Left plot: The solid red triangles are values of the order α2
s correction coefficients

âNS2 defined in (5.23) for the quark axis definition for a sequence of b-quark mass values. The
solid red curve is obtained by a fit using the ansatz (5.24). The horizontal solid black line is
the value for mb = 0 computed in [89, 90]. The shaded blue vertical line is the 1σ uncertainty
of the value of âNS2 at mb = 0 resulting form the fit. Right plot: same as left plot, but for the
thrust axis definition of AFB. The corresponmding value of âNS2 at mb = 0 computed in [90] is
represented by the solid black line.

and right plots of figure 5.1. In order to extrapolate âNS2 to mb = 0 we perform a fit using the

ansatz

c0 + c1z + c2z ln z2 , (5.24)

where z = (mb/mZ). The structure of this ansatz is inspired by the analytic form of the

high-energy asymptotic expansion of the antisymmetric cross section for massive quark pair

production in e+e− collisions. (The asymptotic expansion of the symmetric cross section con-

tains only powers of z2 (and logs).) The coefficient c0 is our fit value of âNS2 at mb = 0. We

obtain

quark axis: c0 = 36.40± 1.70 , thrust axis: c0 = 24.83± 1.78 , (5.25)

which agree within errors with the values

âNS2b (mb = 0) = 38.5, âNS2T (mb = 0) = 26.74 (5.26)
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for the quark axis [89, 90] and thrust axis [90] definition, respectively. Therefore we conclude

that our calculation of the b-quark AFB in the massless b quark limit at the Z pole agrees

with [89,90].

If one wants to compare the size of the QCD corrections to AFB for a massive and a massless

b-quark (under the same assumptions), one should compare the massless order α2
s correction

coefficients of [89,90] with the respective coefficients shown in figure 5.1 for non-zero mb, rather

than comparing with the coefficients a2 given in table 5.4, because the latter contain also singlet

and triangle contributions which are not included in (5.26). Figure 5.1 shows that both for the

quark and for the thrust axis definition, the second-order corrections are smaller in magnitude

for massive quarks than for massless ones. For mb = 4.89 GeV we obtain

â2b(mb = 4.89 GeV) = 23.31, â2T (mb = 4.89 GeV) = 18.43 . (5.27)

The magnitude of the second-order corrections decreases with increasing quark mass. This

holds true also for the first-order corrections, as exemplified by comparing the values of a1 for

mb = 4.89 GeV listed in table 5.4 with the values a1b = 2 and a1T = 1.787 for mb = 0. This is

in accord with the basic physical fact that a massive (anti)quark is more inert than a massless

one in radiating off partons, and hence less affected by changes of its direction with respect to

the leading-order quark antiquark configuration.

5.3.3 The b-quark asymmetry with a cut

Measurements of the b-quark AFB at the Z pole used quite generally the oriented thrust axis for

defining the forward and backward hemispheres [53]. The experiments used acceptance cuts,

in particular a cut on cos θT for selecting bb̄ events and extrapolated the b-quark asymmetry

determined in the fiducial phase space to the full phase space. On the theoretical side one

may compute AFB with cuts, which would perhaps allow a more direct comparison with exper-

imental results. In this subsection we consider the b-quark AFB with respect to the thrust axis

definition for mb = 4.89 GeV, apply a cut on cos θT , and compute the first and second-order

QCD correction factors.
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Inspecting the plots displayed in fig. 4.9 for the cos θT distribution shows that the QCD cor-

rections are larger in the central region than in the forward and backward regions. Thus we

expect that the QCD corrections to ALOFB become larger in magnitude when a cut on cos θT is

applied. For definiteness, we use the cut | cos θT | ≤ 0.9. The resulting first and second-order

QCD correction factors in the expanded and unexpanded version of the asymmetry are given

in table 5.6 for µ = mZ . Comparing with the numbers listed in table 5.3 and 5.5 one sees

that, indeed, a cut on cos θT increases the magnitude of the QCD corrections. Because they are

negative, the QCD correction factors become smaller when a cut on cut on cos θT is applied.

Table 5.6: The first- and second-order QCD correction factors (expanded and unexpanded) to
the LO b-quark forward-backward asymmetry at the Z peak for the thrust axis definition and
for the cut | cos θT | ≤ 0.9. The renormalization scale µ = mZ .

1 + A1 1 + A1 + A2 C1 C2

0.9681 0.9572 0.9695 0.9579

5.3.4 Phenomenological consequences

Finally we discuss the phenomenological impact of our order α2
s calculation of the b-quark

AFB for mb 6= 0. We emphasize, however, that the following discussion is not a full-fledged

analysis. Such an analysis would require the knowledge of a number of details about the

respective measurements of AFB made in the past which is not the topic of this thesis. The

QCD corrections to the b-quark AFB computed above cannot be applied directly to the analysis

of experiments. (This holds true also for the calculations of [89, 90] for mb = 0.) In the

measurements of the b-quark asymmetry by the experiments at the previous e+e− colliders

LEP and SLC, which are reviewed in [53–55], the forward and backward hemispheres was

defined using the thrust axis. In our computation the thrust axis is defined for partonic final

states, but the hadronization of partons causes a smearing of this axis. In addition, a bias

in the topology of the events is introduced by the experimental selection and analysis method

towards two-jet final states which causes additional uncertainties [211,212].

A proper discussion of all these issues is certainly beyond the scope of this thesis. In order

to get an idea about the impact of the QCD corrections to the lowest order AFB computed
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above, we compare them with those QCD corrections that were taken into account in [53–55].

These analyses aimed at extracting a pseudo-observable, namely the so-called bare b-quark

Z-pole asymmetry A0,b
FB from the measured asymmetry Ab,TFB,exp. For the determination of this

pseudo-observable, a procedure described in [211, 212] was used. First, Ab,TFB,exp was corrected

for QCD effects. Schematically the procedure is as follows. (A more precise description what

was actually done by experiments will be given at the end of this subsection.) Using (5.17) one

writes

Ab,TFB,exp =

[
1− a1T

αs
2π
− a2T

(αs
2π

)2
]

(A0,b
FB)exp ≡ (1− CT

QCD)(A0,b
FB)exp . (5.28)

The QCD corrected “experimental asymmetry” (A0,b
FB)exp was then further corrected to obtain

the experimental value of the pseudo-observable A0,b
FB, which is defined by

A0,b
FB = (A0,b

FB)exp + δAbFB . (5.29)

The corrections δAbFB include the energy shift from
√
s = 91.26 GeV (all measured asymmetries

were corrected, in a first step, to this energy) to
√
s = mZ , QED corrections, corrections due

to γ exchange and Z − γ interference, and due to imaginary parts of effective weak couplings

(cf. for instance, [85]). These corrections were computed with the program ZFITTER [213].

The value δAbFB = 0.0019± 0.0002 was obtained [85]. With this correction a value of the bare

asymmetry A0,b
FB was finally deduced. In this way ref. [55] obtained for the pseudo-observable

the experimental value

A0,b
FB = 0.0992± 0.0016 , (5.30)

where the error refers to experimental and theoretical uncertainties. The pseudo-observable

A0,b
FB still contains the genuine weak-interaction corrections One may use the concept of the

effective weak mixing angle, respectively sin2 θW,eff as discussed in section 5.1.3, with which the

leading-order formula for ALOFB can be parametrized. Then a comparison of ALOFB(sin2 θW,eff ) with

(5.30) yields a value for this parameter2. Yet, let us stick to the pseudo-observable A0,b
FB rather

than to sin2 θW,eff . The most recent combined SM fit to all precision observables available [56]

2The hadronic effective weak mixing angle is actually flavor-dependent due to higher-order weak corrections,
see for instance [210].
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yields A0,b
FB = 0.1032. The pull between this value and (5.30) is 2.5σ.

The QCD correction factor defined in (5.28) and used in [55] was obtained as follows [211,212].

For the order αs correction the value a1T = 1.54 was taken3 that was computed in [87] for mb =

4.5 GeV. For the second-order QCD correction coefficient the value aT2 (mb = 0) = 23.72 was

used. This number is obtained by adding to the massless result of [90] the two-loop bb̄ triangle

contribution. The QCD correction factor determined in [212] is (1− CT
QCD) = 0.9646± 0.0063

where the error includes estimates of hadronization effects. Our thrust axis correction factor

given in table 5.3 is (1+A1 +A2) = 0.9608±0.0025, where the error is due to scale uncertainties

only, agrees with that factor within the uncertainties. Our central value is smaller than 0.9646

by 0.4%. Using Eqs. (5.28) and (5.29) and the value of δAbFB given above we find that our

correction changes the value of the pseudo-observable A0,b
FB to

(A0,b
FB)new = 0.0996± 0.0016 . (5.31)

Thus our new massive b-quark result of order α2
s leads to a slight decrease of the pull between

A0,b
FB and the SM fit cited above, namely from 2.5σ to 2.2σ.

We recall that our value of the QCD correction factor was obtained by taking into account all

second-order QCD contributions discussed in section 3.1. If one neglects the singlet contribu-

tions, that is, if one uses the value of â2T (mb = 4.89 GeV) given in (5.27) and adds the bb̄ and bb̄g

triangle contributions, we get for the thrust axis correction factor (1+A1+A2) = 0.9659±0.0023.

This value is not significantly larger than the correction factor used in [212] and cited above.

At this point we may speculate and assume that the QCD correction factor in the correction

procedure (5.28) should not be the factor that was computed in the full phase space but the

factor computed in a fiducial phase space. Let’s further assume that the cut | cos θT | ≤ 0.9

applies. Then one should use in (5.28) the QCD correction factor (1 +A1 +A2) = 0.9572 given

in table 5.6 instead of the factor 0.9659. Then the central value of the pseudo-observable A0,b
FB

changes from A0,b
FB = 0.0996 given in (5.31) to A0,b

FB = 0.1000. Assuming that the error given

in (5.31), respectively in (5.30) does not change, the pull between this value and the value

3This value is almost the same as the value a1T = 1.53 given in table 5.4. We recall that we use a slightly
larger b-quark mass. Moreover, we determine the thrust axis by classifying the final states according to the
moduli of their three-momenta rather than their energies as in [87].
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A0,b
FB = 0.1032 obtained by the SM fit [56] is then further reduced, namely to 2.0σ.

However, the above discussion of the impact of our new results on the order α2
s QCD corrections

to the LO b-quark AFB have to have to be taken with a grain of salt. The issue of extracting a

value of the pseudo-observable A0,b
FB is not so straightforward. The ‘old’ value given in Eq. (5.30)

is an average [55] of quite a number of A0,b
FB determinations by a number of experiments that used

different methods to measure Ab,TFB,exp. These methods include b-tagging by high PT leptons,

lifetime-tagged events in combination with jet charge measurements, and selecting b events

by specific final states, namely D mesons from B decays. Some of the experiments reviewed

in [53] used cuts on cos θT , some extrapolated to the full cos θT range. Some of the experiments

removed the contributions from g → bb̄ splitting (which are part of the singlet contributions)

‘by hand’, that is, by making a Monte Carlo estimate and subtraction from the data. What

is more cumbersome from a theorist’s point of view is that the way how the QCD corrections

were applied differs from experiment to experiment. The various experimental analyses made

in the past have different sensitivity to QCD corrections. Therefore, a bias factor sq was

introduced, as suggested in [211], in order to scale the QCD corrections computed by theory

with the experimental sensitivity. Instead of the QCD correction factor (1− CT
QCD) the factor

(1−sqCT
QCD) was used in Eq. (5.28), and different experiments used different values of sq which

were estimated by Monte Carlo simulation. Therefore, a proper re-analysis of b-quark AFB data

at the Z resonance using our new results on the second-order QCD corrections can be done

only in collaboration with experimental physicists that have access to respective uncorrected

and to Monte Carlo corrected data.
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Summary and outlook

In this thesis we have developed, within the antenna subtraction framework, a formalism for

calculating the production of a massive quark-antiquark pair in electron-positron collisions at

NNLO QCD. Our approach is fully differential and can be used to compute any infrared-safe

observable for this process. We have applied this formalism to top-quark pair production in

the continuum in the context of a future high-energy e+e− collider and also to bottom-quark

pair production at the Z resonance.

In the top-quark case, we have calculated, besides the tt̄ cross section σtt̄(s), also several

distributions in order to demonstrate the usefulness of this approach, namely the cos θt and

transverse momentum distribution of the top quark, the transverse momentum of the tt̄ system

and the tt̄ invariant mass distribution. The NNLO QCD corrections are sizable for center-of-

mass energies
√
s not too far away from the tt̄ threshold. We have also computed the top-quark

forward-backward asymmetry, which is an important precision observable for determining the

neutral-current couplings of the top quark at a future e+e− collider, at NNLO QCD. In the

center-mass energy region considered,
√
s . 4mt, the NNLO QCD corrections increase the

t-quark forward-backward asymmetry and the asymmetry is dominated by the contribution

from the tt̄ final state. This contribution is infrared finite, as is the sum of the contributions

from the three- and four-parton final states. At a future e+e− collider, the top-quark forward-

backward asymmetry is expected to be measurable with a precision δAFB/AFB of about one

percent, with data both from the full hadronic and lepton + jets channels [32]. We have found
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that in order reach the same level of precision for this observable on the theoretical side, it is

necessary to include the NNLO QCD corrections. In particular, we showed in section 5.2 that

at a center-of-mass energy 500 GeV and with the chosen Standard Model input parameters

the order α2
s QCD correction modifies the tree-level top-quark forward-backward asymmetry

by 1.18%. Our results for the expanded and unexpanded asymmetry at order α2
s agree with

previous calculations [80, 208] of this asymmetry.

Concerning the bottom-quark pair production at the Z peak, we have computed the production

cross section, the pbT distribution, and the distributions of the b-quark direction of flight and of

the oriented thrust axis, from which the forward-backward asymmetries with respect to these

reference axes can be obtained. For mb = 4.89 GeV, we have consistently included all the

contributing diagrams listed in section 3.1. Our computation of the b-quark AFB to order α2
s,

both for the b-quark axis and the oriented thrust axis definition of the asymmetry, is a new

result. So far, the order α2
s corrections were known only for massless b quarks. In contrast

to the top-quark forward-backward asymmetry as computed in section 5.2, the order αs and

α2
s QCD corrections to the b-quark asymmetry at the Z resonance are negative, and the sum

of the three- and four-parton final-state contributions is much larger in magnitude than the

contributions from the bb̄ final state. This is a consequence of the fact that mb/mZ � 1 and

that the universal bb̄ final-state QCD corrections vanish for mb → 0 due to chiral invariance.

Although the order α2
s QCD correction to the leading-order b-quark asymmetry is quite small

in magnitude, it is nevertheless significant. The complete order α2
s correction, that is, the

sum of the flavor non-singlet, flavor singlet, and triangle contributions, amounts to 37% of the

order αs correction. The NNLO correction changes (reduces, to be more specific) the tree-level

asymmetry at the percent level, as shown in section 5.3. Thus the α2
s QCD correction must

be taken into account in the SM prediction in order to match the precision with which this

asymmetry was determined years ago from experimental data taken at LEP1. As a consistency

check and also as an interesting exercise by itself, we computed the α2
s correction to the b-

quark forward-backward asymmetry also for a sequence of decreasing values of mb, in order to

approach the massless results given in in [89, 90]. As shown in section 5.3.2, we are able to

reproduce the values of [89,90] within 1σ uncertainty.
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Of experimental interest at the Z peak is the b-quark forward-backward asymmetry with respect

to the oriented thrust direction. We have described in section 5.3.4 a procedure, proposed

in [211, 212], how a pseudo-observable, the bare asymmetry A0,b
FB was extracted by correcting

the experimentally measured asymmetry Ab,TFB,exp for QCD effects, and for photonic corrections

and corrections due to an energy shift. Yet we also emphasized that the procedures how the

various measurements made at LEP1 were corrected for QCD effects are not universal and more

complicated than Eq. (5.28). Nevertheless, in these correction procedures for the thrust-axis

Ab,TFB,exp the order α2
s QCD correction obtained for mb = 0 in [90] were used. This led to the

well-known result [53–56] that among the set of precision observables measured at the Z peak,

the value of the pseudo-observable A0,b
FB shows the largest deviation, about 2.5σ, from the value

obtained by a combined SM fit to all precision observables available. We have repeated the

procedure to correct for QCD effects as described by the schematic formula Eq. (5.28), using

our massive order α2
s result. Then we find that this increases slightly the value of the bare

asymmetry A0,b
FB. As a consequence, the tension decreases from 2.5σ to 2.2σ. Furthermore we

have computed the b-quark AFB also for a cut on cos θT . Cuts on cos θT were applied also by the

experiments at LEP1. Using | cos θT | ≤ 0.8 we find that the resulting QCD corrections increase

the value of the bare asymmetry even further, which decreases the tension to about 2.0σ. This

indicates that there is no real need to invoke new physics effects in order to account for the

difference between the measured average value of the b-quark asymmetry and the SM prediction.

However, we emphasized in section 5.3.4 that our schematic analysis of the phenomenological

consequences of our new result on the b-quark asymmetry is no substitute for a detailed re-

analysis of the experimental data. This is beyond the scope of this thesis. Such an analysis can

only be done in collaboration with experimentalists that have access to LEP1 uncorrected and

to Monte Carlo corrected data.

The research presented in this thesis can be applied and extended in a number of ways. An

immediate application is to compute b-jet cross sections and distributions at NNLO QCD.

An immediate extension would be to consider heavy quark pair production by longitudinally

polarized electron and/or positron beams. This amounts to replacing the tree-level lepton

tensors LµνXY in Eq. (4.5) by the corresponding tensors where the polarization degrees of the
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beams are incorporated. The order αs and α2
s QCD corrections (more precisely, the universal

ones) to the leading-order t-quark and b-quark forward-backward asymmetries computed in

chapter 5 can be applied as multiplicative factors also to the respective LO asymmetries for

polarized electron and/or positron beams. Of interest for future e+e− colliders would be to

apply our set-up to the production of polarized tt̄ pairs. The infrared singularity structure of

the respective (squared) matrix elements does not change compared to the unpolarized case.

Therefore, the (integrated) antenna functions can be used also for polarized tt̄ production. If

this extension to polarized tt̄ is available, polarized t and t̄ decay can be incorporated via the

narrow width approximation. This would allow for a number of studies, including studies of top-

spin effects, at the level of the tt̄ decay products. Another follow-up of our work is to combine it

with the known NLO electroweak corrections [66–69]. Finally, the antenna subtraction set-up

developed in chapter 3 can be applied also to the computation of the NNLO QCD corrections

to other reactions where a massive quark-antiquark pair is produced by an uncolored initial

state, for example, to the decay of the 125 GeV Higgs boson to b-quark pairs.



Appendix A

Some formulas and conventions

In this appendix we list some formulas and conventions that are used in this thesis.

The n-particle phase-space measure dΦn in D = 4− 2ε space-time dimensions is given by

dΦD
n (kj; q) = (µ4−D)n−1

n∏
i=1

dD−1ki
(2π)D−12k0

i

(2π)D δ(D)

(
q −

n∑
i=1

ki

)
, (A.1)

where q = p1 + p2 denotes the total 4-momentum of the initial state, ki (i = 1, . . . , n) are the

4-momenta of the particles in the final state, and µ is the mass scale associated with dimen-

sional regularization.

The quark and gluon fields transform under the fundamental and adjoint representation, respec-

tively, of the color gauge group SU(Nc), where Nc = 3 is the number of colors. The generators

of the fundamental representation are denoted by T aij, a = 1, . . . , N2
c − 1. Our normalization

convention is

tr(T aT b) = TRδ
ab , TR =

1

2
. (A.2)

The Casimir invariants of the fundamental and adjoint representation are

CF =
N2
c − 1

2NC

, CA = Nc . (A.3)
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A.1 Electroweak coupling factors

In this section we list the electroweak coupling factors kXYF,X′Y ′ defined in Eq. (4.5) that are taken

out of the leptonic and hadronic tensors LµνXY and H
(i,j),F,X′,Y ′
µν which make up the differential

cross sections dσ(i,j). We recall that the two superscripts X, Y (subscripts X ′, Y ′) in kXYF,X′Y ′

refer to the type of electoweak current that couple to the electron (quark) in the lepton tensor

(hadron tensor). The label F refers to the case where the two electroweak vertices in a hadron

tensor are associated both with the heavy quark (F = QQ), both with a light quark (F = qq),

and with a light and a heavy quark (F = qQ), respectively.

The electroweak couplings of f = electron, quark are

vZf =
1

2sW cW

(
I3f − 2s2

WQf

)
, aZf = − 1

2sW cW
I3f , vγf = Qf , aγf = 0 , (A.4)

where I3f is the quantum number of f with respect to the third component of the weak isospin

operator, Qf is the electric charge of f in units of the positron charge e > 0, and sW , cW are the

sine and cosine of the weak mixing angle θW . Moreover, we recall that DZ = s−m2
Z + imZΓZ .

Then we have for F = QQ:

kVV
Q,VV =

(
vZe
)2 (

vZQ
)2

+
2Re [DZ ] vZe v

Z
Qv

γ
e v

γ
Q

s
+
|DZ |2 (vγe )2 (vγQ)2

s2
,

kAA
Q,AA =

(
aZe
)2 (

aZQ
)2
,

kVV
Q,AA =

(
aZQ
)2 (

vZe
)2
,

kAA
Q,VV =

(
aZe
)2 (

vZQ
)2
,

kVA
Q,VA = kAV

Q,AV = aZe a
Z
Qv

Z
e v

Z
Q +

Re [DZ ] aZe a
Z
Qv

γ
e v

γ
Q

s
,

kVA
Q,AV = kAV

Q,VA = aZe a
Z
Qv

Z
e v

Z
Q .

For F = qq we have

kVV
q,VV =

(
vZe
)2 (

vZq
)2

+
2Re [DZ ] vZe v

Z
q v

γ
e v

γ
q

s
+
|DZ |2 (vγe )2 (vγq )2

s2
,

kAA
q,AA =

(
aZe
)2 (

aZq
)2
,
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kVV
q,AA =

(
aZq
)2 (

vZe
)2
,

kAA
q,VV =

(
aZe
)2 (

vZq
)2
,

kVA
q,VA = kAV

q,AV = aZe a
Z
q v

Z
e v

Z
q +

Re [DZ ] aZe a
Z
q v

γ
e v

γ
q

s
,

kVA
q,AV = kAV

q,VA = aZe a
Z
q v

Z
e v

Z
q .

For F = qQ the factors are

kVV
qQ,VV =

(
vZe
)2
vZq v

Z
Q +

Re [DZ ] vZe v
Z
Qv

γ
e v

γ
q

s
+

Re [DZ ] vZe v
Z
q v

γ
e v

γ
Q

s
+
|DZ |2 (vγe )2 vγq v

γ
Q

s2
,

kAA
qQ,AA =

(
aZe
)2
aZq a

Z
Q,

kVV
qQ,AA = aZq a

Z
Q

(
vZe
)2
,

kAA
qQ,VV =

(
aZe
)2
vZq v

Z
Q,

kVA
qQ,VA = aZe a

Z
Qv

Z
e v

Z
q +

Re [DZ ] aZe a
Z
Qv

γ
e v

γ
q

s
,

kVA
qQ,AV = aZe a

Z
q v

Z
e v

Z
Q,

kAV
qQ,AV = aZe a

Z
q v

Z
e v

Z
Q +

Re [DZ ] aZe a
Z
q v

γ
e v

γ
Q

s
,

kAV
qQ,VA = aZe a

Z
Qv

Z
e v

Z
q .

A.2 Renormalization constants

We consider QCD with nf massless and one massive quark flavor. As stated in chapter 3 we use

a hybrid renormalization scheme. In the following we list the renormalization constants that are

used to compute the 3-parton QQ̄g amplitude at 1-loop and the 2-parton QQ̄ amplitude at 1-

and 2-loop order. The 1-loop and 2-loop term in the perturbative expansion of a renormalization

constant Z is defined in the following by

Z = 1 + Z(1) + Z(2) +O(α3
s) . (A.5)
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The QCD coupling αs is defined in the MS renormalization scheme. In the following we denote

gMS =
√

4παs. The relation between gMS and the bare QCD coupling g0 =
√

4παs,0 is

g0 = Zg,MS gMS µ
ε , (A.6)

where ε = (4 − D)/2. (We keep the renormalized coupling dimensionless also in D 6= 4 di-

mensions. For ease of notation we use the same symbol µ for the mass scale of dimensional

regularization and the renormalization scale.) We need the relation (A.6), i.e., the renormal-

ization constant Zg,MS to 1-loop. We have

Z
(1)

g,MS
= −αs

2π
(4π)εΓ(1 + ε)

1

4ε

(
11

3
CA −

4

3
TR(nf + 1)

)
. (A.7)

We define the gluon and the quark fields and the mass of the heavy quark in the on-shell (OS)

scheme:

Ga,µ
0 (x) =

√
Z3,OS G

a,µ
OS(x) , Q0(x) =

√
Z2,OS QOS(x) , mQ,0 = Zm,OS mQ , (A.8)

where mQ ≡ mQ,OS. We need Z3,OS to 1-loop. For nf massless and one massive quark with

on-shell mass mQ the 1-loop term is given in the Feynman gauge by

Z
(1)
3,OS = −αs

2π
(4π)εΓ(1 + ε)

(
µ2

m2
Q

)ε
2

3ε
TR . (A.9)

The relation between the bare and renormalized heavy quark mass is required to 1-loop while

the wave function renormalization constant Z2,OS is needed to 2-loop order (for computing the

renormalized 2-loop QQ̄ amplitude). The 1-loop terms are

Z
(1)
m,OS =− αs

2π
(4π)εΓ(1 + ε)

1

2ε

(
µ2

m2
Q

)ε

CF
(3− 2ε)

(1− 2ε)
,

Z
(1)
2,OS =− αs

2π
(4π)εΓ(1 + ε)

1

2ε

(
µ2

m2
Q

)ε

CF
(3− 2ε)

(1− 2ε)
, (A.10)
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The quark wave function renormalization constant in the on-shell scheme was computed at 2

loops in [214,215] and given in terms of the MS coupling αs for instance in [176]. For the sake

of brevity we do not list Z
(2)
2,OS here.

Finally, we need the renormalization constant Z1,F for the QQg vertex. It is obtained from the

Slavnov-Taylor identity

Z1,F = Zg,MS Z2,OS

√
Z3,OS . (A.11)

We require this renormalization constant to 1-loop. Expanding (A.11) to first order in αs and

using the respective 1-loop terms listed above we get

Z
(1)
1,F =− αs

2π
(4π)εΓ(1 + ε)

1

2ε

(
11

6
CA +

(
µ2

m2
Q

)ε

CF
(3− 2ε)

(1− 2ε)

−2

3
TRnf +

2

3
TR

[(
µ2

m2
Q

)ε

− 1

])
. (A.12)

A.3 Matching relation for αs

As is well-known, the definition of of the QCD coupling in the (modified) minimal subtraction

scheme provides a gauge- and vertex independent definition of this basic parameter. However,

decoupling of heavy quarks is not manifest in this scheme. In the energy region µ2 � m2
Q the

contribution of the heavy quark Q to an observable blows up with some power of ln(m2
Q/µ

2),

depending on the order of perturbation theory. This behavior is related to the fact that there

is also no decoupling of a heavy quark from the β function in this scheme that governs the scale

dependence of αs. In order to establish decoupling, one has to sum these logarithms. This

is done by matching the full theory – i.e., without loss of generality, QCD with nf light and

one heavy quark – and the effective theory with nf light quark flavors below the heavy quark

threshold. The resulting matching relation to order α3
s for the MS QCD couplings in the full

and effective light-flavor QCD is [190]

α
(nf )
s (µ) = α

(nf+1)
s (µ)

1 +
x

6

α
(nf+1)
s

π
+

(
x2

36
+

11x

24
+

11

72

)(
α

(nf+1)
s

π

)2
 , (A.13)
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where

x ≡ ln(m̄2
Q/µ

2) , (A.14)

and α
(nf+1)
s and α

(nf )
s are the QCD couplings in nf + 1 flavor and nf flavor QCD, respectively.

The matching relation (A.13) is given for Nc = 3. There are also matching relations for the

running light quark masses in the (modified) minimal subtraction scheme [216], but we do not

need them in this thesis. The mass m̄Q in Eq. (A.14) is not the on-shell mass of Q but its mass

defined in the (modified) minimal subtraction scheme.

We need the relation (A.13) for computing αs in QCD with 6 quarks (i.e., above the top-quark

threshold) from the value α
(nf=5)
s (µ = mZ) = 0.118 (see Eq. (4.2)) in 5-flavor QCD. With

this starting values we perform a renormalization group (RG) evolution (using the first three

coefficients of the β function with nf = 5, given for instance in [186]) of α
(nf=5)
s (µ) up to some

high scale µ∗. Then we use (A.13) to compute α
(nf=6)
s (µ∗) from α

(nf=5)
s (µ∗). It is convenient,

but not necessary, to choose µ∗ = m̄Q. The value of α
(nf=6)
s (µ∗) is then used as a starting value

for computing α
(nf=6)
s (µ) at other scales µ by RG evolution using the β function with nf = 6

flavors.
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Phase-space momentum mappings

In this appendix we describe the four-momentum mappings in the three- and four-particle

phase-spaces that are used in the construction of the antenna subtraction terms of section 3.2

and 3.3. The momenta are associated with massless and massive quarks and with massless

gluons. The momentum mappings required in our case are related either to a single or double

unresolved parton configuration in the final state. These mappings must obey four-momentum

conservation, must keep the mapped momenta on their respective mass shell, and the mapped

momenta must converge to the correct momentum configurations in the the soft and collinear

limits. We follow the mapping procedures of [170], which apply to the case where all partons are

massless, respectively of [172] where the massless case was extended to configurations involving

massive partons. However, the formulas published in [172] have the deficit that the mapped

four-momenta do not obey the correct mass-shell conditions away from the soft and collinear

limits. The correct analytic formulas of Abelof and Gehrmann-De Ridder that keep the mapped

momenta on-shell in the massive case have not been published so far [184].

Therefore we have constructed an alternative numerical mapping method which is sufficient

for computing the observables discussed in this thesis. This method is described in the following.
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B.1 Three parton final states

We consider the final state Q(k1)Q̄(k2)g(k3). The NLO subtraction term dσS
QQ̄g

of eq. (3.16)

and the NNLO subtraction terms dσT,b,QQ̄gNNLO and dσT,c,QQ̄gNNLO of eq. (3.46) and (3.48) depend on

mapped momenta obtained from a 3 → 2 mapping k1, k3, k2 → k̃13, k̃32. Let’s consider the

mapping k1, k3, k2 → pI ≡ p̃13, pJ ≡ p̃32 defined in [170] and in appendix B1.1 of [172]:

pI = xkµ1 + rkµ3 + zkµ2 ,

pJ = (1− x)kµ1 + (1− r)kµ3 + (1− z)kµ2 , (B.1)

where the parameters x, r, z are given by

x =
1

2(sij + sik)
[(1 + ρ)sijk − 2rsjk] ,

z =
1

2(sjk + sik)
[(1− ρ)sijk − 2rsij] ,

ρ2 = 1 +
4r(1− r)sijsjk

sijksik
,

r =
sjk

sij + sjk
, (B.2)

and sik = 2ki·kk, sijk = sij+sik+sjk. The mapping (B.1) satisfies four-momentum conservation,

pI +pJ = k1 +k3 +k2, and the mapped momenta behave correctly when the gluon becomes soft:

pI → k1, pJ → k2 if k3 → 0. If all three partons were massless, the mapped momenta remain

massless, p2
I = p2

J = 0 [170]. However, if one or two massive (anti)quarks Q are involved,

as in our case, the mapped momenta are no longer on their mass shell, except in the limit

k3 → 0, as can be checked straightforwardly. Thus modified formulas must be used for the

parameters x, r, z in order to get p2
I , p

2
J = m2

Q [184]. We emphasize that on-shellness of the

mapped momenta is crucial for deriving the correct integrated antenna subtraction terms from

the unintegrated ones.

Here we describe, as an alternative to the analytic formulas of Abelof and Gehrmann-De

Ridder a numerical method to obtain on-shell mapped momenta k̃13, k̃32. We use the mapping

(B.1) with the parameters x, r, z given in [172] for an intermediate step. Four-momentum
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conservation in the e−e+ c.m. frame reads:

√
s = p0I + p0J , 0 = pI + pJ . (B.3)

The second equation is the crucial one. It allows to rescale the 3-momenta by a factor ξ such that

the 4-momenta pµI , p
µ
J are transformed into on-shell 4-momenta kI , kJ with mass mI = mJ = mQ

without destroying 4-momentum conservation.

ki = ξpi , k0i =
√
m2
i + ξ2(p2

0i − p2
i ) , i = I, J , (B.4)

where ξ is the solution of the equation

√
s =

√
m2
I + ξ2(p2

0I − p2
I) +

√
m2
J + ξ2(p2

0J − p2
J) . (B.5)

Eq. (B.5) can be solved numerically by iteration using the Newton-Raphson method. One can

start the iterative solution of (B.5) with the value ξ =
√

(1− (2mQ/
√
s)2). We found that a

few iterations (n ≤ 6) are enough to get an accuracy of 10−14
√
s/[GeV]. Or method based on

eq. (B.4) and (B.5) is analogous to the procedure used in the phase-space generator RAMBO [217]

for constructing massive four-momenta from massless ones.

B.2 Four parton final states

We consider the final states Q(k1)Q̄(k2)a(k3)b(k4), where ab = qq̄, gg. For the a- and b-type

subtraction terms of section 3.3.1 we need 3 → 2 and 4 → 2 momentum mappings associated

with single and double unresolved configurations.

3→ 2 mappings for a-type antenna subtraction terms:

For evaluating the a-type subtraction term dσS,a,QQ̄qq̄NNLO of (3.27) one needs mapped momenta

obtained by the two 3→ 2 mappings

k1, k3, k4 → k̃13, k̃34 , k3, k4, k2 → k̃34, k̃42 , (B.6)
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where the massless (anti)quark with momentum k3, respectively k4 becomes unresolved. For

definiteness we describe for the mapping on the left side of (B.6) how one can obtain, with

a procedure analogous to that of section B.1, mapped momenta that satisfy four-momentum

conservation and the on-shell conditions k̃2
13 = m2

Q, k̃2
34 = 0. We use again in an intermediate

step the 3→ 2 mapping

pI = xkµ1 + rkµ3 + zkµ4 ,

pJ = (1− x)kµ1 + (1− r)kµ3 + (1− z)kµ4 , (B.7)

where the parameters x, r, z are given in (B.2). We have p2
I 6= m2

Q and p2
J 6= 0 for general

configurations kj. In the case of four-parton final states, momentum conservation in the e−e+

c.m. frame reads in terms of the mapped momenta pI , pJ :

Qµ
2 = pµI + pµJ , (B.8)

where Qµ
2 = (

√
s− k02,−k2). Now we boost to the rest frame IS’ of Qµ

2 with the boost vector

β2 = −k2/Q02. Four-momentum conservation in IS’ reads

Q′02 = p′0I + p′0J , 0 = p′I + p′J . (B.9)

As above, the second equation allows to rescale the 3-momenta by a factor ξ such that the

4-momenta p′µI , p
′µ
J are transformed into on-shell 4-momenta k′µI , k

′µ
J with mass mI = mQ and

mJ = 0, respectively, without destroying 4-momentum conservation.

k′i = ξp′i , k′0i =
√
m2
i + ξ2(p′20i − p′2i ) , i = I, J , (B.10)

where ξ is the solution of the equation

Q′02 =
√
m2
I + ξ2(p′20I − p′2I) +

√
m2
J + ξ2(p′20J − p′2J) . (B.11)

Again, eq. (B.11) can be solved numerically by iteration using the Newton-Raphson method.
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In this case it is advantageous to start the iteration with the value ξ =
√

(1− (mQ/Q′02)2). A

few iterations (n ≤ 6) are enough to get an accuracy of 10−14Q′02/[GeV].

Finally we boost k′µI , k
′µ
J back to the e−e+ c.m. frame IS with the boost vector −β2 and we

obtain kI ≡ k̃13, kJ ≡ k̃34. The on-shell 4-momenta kµI , k
µ
J satisfy 4-momentum conservation in

IS and behave correctly in all singular limits.

For the second set of momenta in (B.6) mapped on-shell momenta are constructed in

completely analogous fashion with the ‘spectator’ k2 replaced by k1. The above procedure

applies also to the various 3 → 2 mappings that are required for the a-type subtraction term

dσS,a,QQ̄ggNNLO of (3.35).

Abelof and Gehrmann-De Ridder have derived analytic formulas for the mapped on-shell

4-momenta kµI , k
µ
J , but have not published them so far [184].

4→ 2 mappings for b-type antenna subtraction terms:

The b-type antenna subtraction term dσS,b,2,QQ̄qq̄NNLO of (3.25) is evaluated with mapped momenta

that are obtained by a 4→ 2 mapping

k1, k3, k4, k2 → kI ≡ k̃134, kJ ≡ k̃342 . (B.12)

As an intermediate step we use the 4→ 2 mapping k1, k3, k4, k2 → pI , pJ , where

pI = xkµ1 + r1k
µ
3 + r2k

µ
4 + zkµ2 ,

pJ = (1− x)kµ1 + (1− r1)kµ3 + (1− r2)kµ4 + (1− z)kµ2 , (B.13)

and the parameters x, r1, r2, z are given1 in appendix B.2.1 of [172]. For general configurations kj

the mapped momenta are not on the mQ mass shell, p2
I , p

2
J 6= m2

Q. Four-momentum conservation

in the e−e+ c.m. frame reads

√
s = p0I + p0J , 0 = pI + pJ . (B.14)

1There are a few typos in the 4 → 2 mapping formulas in Appendix B.1.1 of [172] as compared to the
formulas of [170]. The parameter r1 should read r1 = (sjk + sjl)/(sij + sjk + sjl). The term proportional to
(r1 − r2) in the definition of the parameter z should read −(r1 − r2)(sijskl − siksjl)/sil.
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Because of the second equation the mapped momenta can be transformed without boost into

on-shell four-momenta kI , kJ with mass mI = mJ = mQ. We have, analogous to the equations

above,

ki = ξpi , k0i =
√
m2
i + ξ2(p2

0i − p2
i ) , i = I, J , (B.15)

where ξ is the solution of the equation

√
s =

√
m2
I + ξ2(p2

0I − p2
I) +

√
m2
J + ξ2(p2

0J − p2
J) . (B.16)

As in the case of equation (B.5) the iterative solution of (B.16) can be started with the value ξ =√
(1− (2mQ/

√
s)2). A few iterations (n ≤ 6) are enough to get an accuracy of 10−14

√
s/[GeV].

The mapped momenta kI , kJ converge to the correct momenta in the double unresolved limits.

The mapped momenta required for dσS,b,2,QQ̄ggNNLO of eq. (3.36) are obtained in the same fashion.

Abelof and Gehrmann-De Ridder have derived analytic formulas for the on-shell massive 4-

momenta kµI , k
µ
J [184].

Finally, for the antenna subtraction term dσS,b,1,QQ̄qq̄NNLO of (3.28) two iterated 3→ 2 momen-

tum mappings are needed:

1Q, 3q, 4q̄ with spectator 2Q̄
I−→ (̃13)Q, (̃34)g, 2Q̄

II−→ ˜
((̃13)(̃34))Q,

˜
((̃34)2)Q̄ (B.17)

and

2Q̄, 4q̄, 3q with spectator 1Q
I−→ 1Q, (̃34)g, (̃42)Q̄

II−→ ˜
(1(̃34))Q,

˜
((̃34)(̃42))Q̄ . (B.18)

Let us consider (B.17). The 3→ 2 mapping I is done as described below eq. (B.6): boost to the

rest frame of Qµ
2 , rescale, and then boost back to the e−e+ c.m. frame. The rescaling involved

in the subsequent mapping II is done directly in the e−e+ c.m. frame. This yields the two

mapped on-shell momenta with mass mQ on the right-hand side of (B.17). The iterated 3→ 2

mappings (B.18) and those involved in constructing the antenna subtraction term dσS,b,1,QQ̄ggNNLO

of (3.37) are performed in analogous fashion.
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Angular correlations and averaging

As discussed in sections 2.4 and 3.3.1, our antenna subtraction terms for the squared S-matrix

elements associated with the QQ̄qq̄ and QQ̄gg final states are not completely local. The squared

S-matrix elements contain spin correlations (or angular correlations) that arise from the ‘sub-

processes’ where a virtual gluon splits into a pair of massless quarks or gluons, g∗ → qq̄, gg.

In the antenna subtraction terms discussed in section 3.3.1 these angular correlations are not

present by construction. Thus the point-wise cancellation of IR singularities fails in the single

unresolved limit when the pair of massless quarks or gluons from g∗ → qq̄, gg becomes collinear.

This issue is resolved, as outlined in section 3.3.1, by evaluating the unsubtracted squared

matrix elements for each set of final-state momenta also for the momentum configuration where

the momenta of the two massless partons (q, q̄ or g, g) are rotated by an angle φ = π/2 around

the collinear axis with respect to the original configuration and then take the average. In this

appendix we discuss how to construct these rotated 4-momenta for the massless partons.

C.1 Light-cone basis and decomposition of lightlike mo-

menta

First, we introduce a set of 4-vectors {n µ
+ , n

µ
− , n

µ
⊥ } in 4-dimensional Minkowski space which is

called the light-cone basis. Here n µ
− is a lightlike vector which is dual to n µ

+ , i.e., n µ
− ≡ n+µ.

118
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The 4-vector n µ
⊥ is by definition transverse to n µ

± . The light-cone basis satisfies

n+ · n+ = 0 ,

n− · n− = 0

n+ · n− = n− · n+ = 1 ,

n⊥ · n± = 0 ,

n⊥ · n⊥ = −1 , (C.1)

where it is understood that the above normalization equation for n µ
⊥ involves only one degree

of freedom of the two transverse components.

Now we decompose a given pair of lightlike 4-momenta, kµi and kµj , with respect to the light-cone

basis, with the additional requirement that the transverse momentum components are defined

to be orthogonal to the 4-vector kµi + kµj . We define

kµi + kµj ≡ Kµ = (K0, |K|e) (C.2)

where e = K/|K|. Eq. (C.2) suggests to construct the following two lightlike 4-vectors which

are dual to each other:

n+
µ =

1√
2

(1, e) ,

n−
µ =

1√
2

(1,−e) . (C.3)

Now we decompose Kµ and kµa (a = i, j) with respect to n µ
+ , n

µ
− , and n µ

⊥ , where n µ
⊥ will be

given below:

Kµ = κ+n µ
+ + κ−n µ

− ,

kµa = k+
a n

µ
+ + k−a n

µ
− + k⊥a n

µ
⊥ , a = i, j . (C.4)



120 Chapter C. Angular correlations and averaging

From Eq. (C.4) it is clear that the parameter

k⊥ ≡ k⊥i = −k⊥j . (C.5)

Using Eq. (C.1), it is straightforward to obtain the coefficients

κ+ = n− ·K =
1√
2

(K0 + |K|) ,

κ− = n+ ·K =
1√
2

(K0 − |K|) , (C.6)

and similarly the coefficients

k+
i = n− · ki ,

k−i = n+ · ki . (C.7)

We need to compute these only for one momentum i or j.

From the Lorentz-square k2
i = 2k+

i k−i − |k⊥|2, we see that the squared transverse momentum

of a lightlike 4-momentum kµi is given by

|k⊥|2 = 2k+
i k
−
i , (C.8)

where the seeming sign-ambiguity is related to the freedom of choosing the positive direction

of the transverse coordinates.

What is left is to construct the 4-vector n µ
⊥ explicitly. It is obtained in straightforward fashion

from the formulae above. By rewriting the second equation in Eq. (C.4), we get immediately

n µ
⊥ =

1

k⊥
(
kµa − k+

a n
µ

+ + k−a n
µ
−
)
, a = i or j . (C.9)

For the definition of the azimuthal angle φ, i.e. the angle that describes a rotation around

the spacial direction e of Kµ we choose a coordinate frame. In view of the fact that |k⊥|

characterizes how close the divergent collinear region kµi ||k
µ
j is approached, we simply choose

the plane formed by these two quasi-collinear lightlike 4-momenta as φ = 0 plane, and then
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take the transverse part of one of them, say kµj , to be the positive “x direction”. (Of course, this

choice is technically not possible if the Monte-Carlo code VEGAS that we use for numerical

phase-space integration samples the point exactly at the collinear configuration. However, the

probability for this to happen is practically zero.)

The unit 3-vector N which is normal to the plane determined by e (defined by Eq. (C.2)) and

the spatial direction of n µ
⊥ , denoted by n⊥, is

N = e× n⊥ . (C.10)

We define nµ⊥N ≡ (0, ~N). At this point, we have decomposed all relevant lightlike 4-momenta.

Implementation of the π/2 rotation:

If we choose the azimuthal φ = 0 plane according to the above convention then we can focus on

dealing with only one of the two massless momenta, say ki. The π/2 rotation of ki is achieved

by the following “subtraction and addition”:

k̃µi =
(
kµi − k⊥n µ

⊥
)

+ k⊥nµ⊥N , (C.11)

where k̃µi is the new 4-momentum obtained from a π/2 rotation of kµi around the collinear axis.

We get it via simply removing the transverse part k⊥n µ
⊥ from kµi and add the new π/2-rotated

transverse part k⊥~n⊥N .

The π/2 rotated 4-momentum k̃j is given by

k̃µj = Kµ − k̃µi . (C.12)

A few additional remarks are in order:

• The unsubtracted squared matrix elements associated with the final states QQ̄qq̄ and

QQ̄gg contain terms that are linear in k⊥. (Obviously the 4-momenta of q, q̄, respec-

tively of g, g correspond to the above momenta ki, kj.) These terms will vanish if one

of the following two conditions holds. The first one is obvious, if the azimuthal angle φ
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as defined above is integrated over the full range [0, 2π]. The second condition is that

the kinematics approaches the collinear limit between ki and kj. In this case the form

of the spin-dependent gluon splitting function shows that there are only terms bilinear

in k⊥ in the unsubtracted squared 4-parton S-matrix elements. This indicates that sum-

ming/averaging over two phase-space points with azimuthal angles φ = 0 and π/2 should

be sufficient to remove, after adding the corresponding antenna subtraction terms, all

the singular φ-dependent terms in the single unresolved collinear limit in the case of

g∗ → qq̄, gg. We have checked that this is indeed the case, see section 3.3.1.

• In the single collinear limit g∗ → qq̄, gg the associated spin correlation terms in the

squared 4-parton matrix elements behave as

∼ Aµkµ⊥k
ν
⊥Aν ∼ A+B cos(2φ+ α) , (C.13)

where kµ⊥ = (0,k⊥, 0) with k⊥ = (|(k⊥| cosφ, |k⊥| sinφ) is the transverse part of the kµi

(or alternatively of kµj ) with respect to the above coordinate frame. Eq. (C.13) can be

understood without much computation as follows. Inserting kµ⊥ into the left side of (C.13)

we get a sum of terms bilinear in sinφ, cosφ which can be decomposed with respect to

the “basis” {1, (cos2 φ− sin2 φ), sinφ cosφ}. The φ-independent term is denoted by A in

eq. (C.13). Using the trigonometric identity

cos(2φ+ α) = cos 2φ cosα− sin 2φ sinα

= cosα(cos2 φ− sin2 φ)− 2 sinα sinφ cosφ (C.14)

one sees that, using the two parameters B and α, one can parametrize the coefficients

of (cos2 φ − sin2 φ) and sinφ cosφ which appear on the left side of (C.13). Eq. (C.13)

shows that performing a π/2 rotation and averaging does the job of getting rid of the

spin correlation term.

Alternative numerical implementation:

Alternatively, we can obtain the π/2-rotated massless 4-vectors as follows. Using the
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components of the unit 3-vector

e =
(
e1, e2, e3

)T
defined in Eq. (C.2) it is straightforward to construct two vectors spanning the plane

orthogonal to e:

e⊥, 1 =
1√

e2
2 + e2

3

(
0, −e3, e2

)T
, e⊥, 2 =

1√
e2

2 + e2
3

(
1− e2

1, −e1e2, −e1e3

)T
,

or, if e1 = 1 (which is highly unlikely):

e⊥, 1 =
(
0, 1, 0

)T
, e⊥, 2 =

(
0, 0, 1

)T
.

The set {e, e⊥, 1, e⊥, 2} forms an orthonormal basis and k⊥ ∈ span
(
e⊥, 1, e⊥, 2

)
.

In terms of this basis, an arbitrary 3-vector v is written as

v = vee + v⊥, 1e⊥, 1 + v⊥, 2e⊥, 2.

The vector ṽ, obtained by rotating v around e by an angle of π/2, is then

ṽ = vee− v⊥, 2e⊥, 1 + v⊥, 1e⊥, 2.

Hence

ṽ = v −
(
v⊥, 1 + v⊥, 2

)
e⊥, 1 −

(
v⊥, 2 − v⊥, 1

)
e⊥, 2. (C.15)

Applying this to ki and kj gives the desired rotation.
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