2017
Dissertation, RWTH Aachen University, 2017
Veröffentlicht auf dem Publikationsserver der RWTH Aachen University
Genehmigende Fakultät
Fak01
Hauptberichter/Gutachter
;
Tag der mündlichen Prüfung/Habilitation
2017-11-14
Online
DOI: 10.18154/RWTH-2017-09884
URL: https://publications.rwth-aachen.de/record/709351/files/709351.pdf
URL: https://publications.rwth-aachen.de/record/709351/files/709351.pdf?subformat=pdfa
Einrichtungen
Inhaltliche Beschreibung (Schlagwörter)
aerosol spectroscopy (frei) ; computational nuclear engineering (frei) ; inverse problems (frei) ; remote sensing (frei)
Thematische Einordnung (Klassifikation)
DDC: 510
Kurzfassung
In dieser Arbeit studieren wir die Auswertung optischer Aerosolmessungen. Unser Ziel ist die Rekonstruktion von Aerosolpartikelgrößenverteilungen aus optischen Lichtabschwächungsmessungen, um eine sichere Messtechnik für möglicherweise gefährliche Aerosole innerhalb eines Nuklearreaktorbehälters zu erhalten. Die erste Hälfte dieser Arbeit widmet sich den linearen inversen Problemen. Insbesondere untersuchen wir die lineare Integralgleichung, die über die Mie-Theorie Aerosolpartikelgrößenverteilungen zu Lichtabschwächungsmessungen in Beziehung setzt. Wir leiten Rekonstruktionsalgorithmen her, die unabhängig von einem menschlichen Benutzer arbeiten und daher keinerlei Überwachung und weitere Einstellungen benötigen. Basierend auf statistischen Beobachtungen leiten wir residuen-basierte Methoden zum Finden der geeigneten Anzahl an Diskretisierungspunkten und des Regularisierungsparameters für Tikhonov-Regularisierung her. Da Partikelgrößenverteilungen nicht-negativ sind, wenden wir Nicht-Negativitätsbeschränkungen über den ganzen Rekonstruktionsprozess an und alle Resultate sind für restringierte Probleme hergeleitet. Ein besonderes Augenmerk liegt auf der rechnerischen Effizienz, da wir verlangen, dass eine einzelne Inversion in unter dreißig Sekunden auf einem gewöhnlichen Notebook beendet werden muss. Wir vergleichen unsere auf dem Diskrepanzprinzip basierende Methode mit einer Monte-Carlo-Inversionsmethode, bei der wir ebenfalls Nicht-Negativitätsbeschränkungen anwenden. Hier wird der Regularisierungsparameter als Modellvariable angesehen und zusammen mit der Größenverteilung bestimmt. Danach wird die Diskrepanzprinzipstrategie auf Zweikomponentenaerosole verallgemeinert, bei denen das Material der streuenden Aerosolpartikel aus zwei reinen Komponentenmaterialien besteht. Zusätzlich zu der Partikelgrößenverteilung gewinnen wir das unbekannte Mischverhältnis der beiden Komponenten. In der zweiten Hälfte dieser Arbeit untersuchen wir das nicht-lineare inverse Problem der Rekonstruktion von Brechungsindizes von Aerosolmaterialien aus Messungen von mono-dispersen Aerosolen. Zuerst betrachten wir das Problem für eine feste Lichtwellenlänge. Wir beachten alle lokalen Minimierer, die hier gefunden werden, und betrachten sie alle als mögliche Lösungskandidaten. Dann wenden wir eine auf Glattheitsannahmen beruhenden Auswahlmethode für Abschnitte der komplexen Brechungsindexkurve an, die benachbarte Lichtwellenlängen überdecken. Die resultierenden gekoppelten Brechungsindexrekonstruktionen werden anschließen mit Phillips-Twomey-Regularisierung weiter regularisiert.In this work we study the evaluation of optical aerosol measurements. Our aim is to reconstruct the size distributions of aerosol particles from optical light extinction measurements in order to obtain a safe measurement technology for potentially harmful aerosols inside a nuclear reactor containment. The first half of this work is devoted to linear inverse problems. In particularwe study the linear integral equation relating aerosol particle size distributions tooptical extinction measurements via Mie theory. We derive reconstruction algorithms which work independently from a human operator and thus do not require any monitoring or further adjustments. Based on statistical observations, we deriveresidual-based methods for finding the appropriate number of discretization points and the regularization parameter for Tikhonov regularization. Since particle size distributions are non negative, we apply non negativity constraints throughout the whole reconstruction process and all results are derived for constrained regression problems. A special emphasis lies on computational efficiency, since we demand that a single inversion must be completed in less than thirty seconds on a regular notebook.We compare our method based on the discrepancy principle with a Monte Carlo inversion method, where we also apply non negativity constraints. Here the regularization parameter is considered as a model variable and retrieved together with the sought-after size distributions. Then the discrepany principle strategy is generalized to the case of two-component aerosols, where the aerosol particle material is a mixture of two pure component materials. In addition to the particle size distribution, we retrieve the unknown mixingratio of the two components. In the second half of this work we study the nonlinear inverse problem of reconstructing the refractive indices of an aerosol material from measurements of monodisperse aerosols. First we investigate this problem for a fixed light wavelength. We take into account all local minima found here and regard them all ascandidate solutions. Then we apply a selection method based on smoothness estimates for refractive index curve sections covering consecutive light wavelengths. The resulting coupled refractive index reconstructions are regularized further using Phillips-Twomey regularization.
OpenAccess: PDF
PDF (PDFA)
(additional files)
Dokumenttyp
Dissertation / PhD Thesis
Format
online
Sprache
English
Externe Identnummern
HBZ: HT019534883
Interne Identnummern
RWTH-2017-09884
Datensatz-ID: 709351
Beteiligte Länder
Germany