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Introduction 
The continuous miniaturization of electronics has led to smaller and more powerful devices in 

our everyday life, such as smart phones and tablet computers. This process is substantiated by 

Moore’s law, which predicts shrinking of electronic devices by a factor of two every two years 

[1]. While this model described the development over the last decades astonishingly well, it has 

come clear that it will break down in the near future [2, 3, 4, 5], which results from technical 

challenges in the fabrication of such small devices. However, even if the fabrication technology 

would not be the limiting factor, it is clear that at some point a fundamental size-limit for a 

classical transistor is reached – a single-atom transistor [6]. 

Generally, transistors consist of areas of differently doped semiconductors, mainly silicon (Si). 

The doping is the result of atomic defects within this host lattice of Si atoms. The positioning 

of the dopants in the Si lattice is a random process, such that for ultra-small devices, in the limit 

where the doping of the Si is determined by only a few doping atoms, small variations in the 

local dopant configuration can have large effects on the resulting device properties.  The same 

is true for unintentional lattice defects, such as lattice vacancies, interstitial atoms, domain 

boundaries and step edges on the sample surface. In large devices, the exact number of such 

defects often is not too critical because the device properties are average over a large volume. 

In a device consisting of only few atoms however, e.g. an unintended atomic vacancy almost 

certainly leads to a failure of the device. As a result, the search for alternative concepts for 

future electronics is flourishing. Recent developments show that spintronics (spin-based 

electronics) [7] and quantum computing [8] could be a next big step in computer technology. 

At the forefront of these two topics are three-dimensional topological insulators (3D TIs), which 

have been first proposed in 2005 [9] by C. L. Kane and E. J. Mele. What makes these materials 

promising candidates for future electronic devices are their two-dimensional surface states, 

where the spin of the charge carriers is locked to their momentum. Furthermore, the 

corresponding dispersion relation has the form of a linear dependence of the energy on the 

impulse, resulting in the so-called Dirac cone [10]. As a result, new pathways for the realization 

of spintronics are opened, where the spin polarization of a current can be controlled simply its 

current direction. Furthermore, it has been shown that TIs in combination with superconductors 

can lead to the formation of Majorana fermions [11], which are theoretically predicted to be 

suitable for the preparation of quantum bits [12, 13]. The combination of multiple of such 

quantum bits into quantum computers has the potential to solve certain problems much faster 

than any classical computers [14]. However, for these new materials to find their ways into 

applications, a miniaturization of the corresponding devices is required. Here, again the 

fabrication of ultra-small devices depends crucially on the behavior of defects in such systems. 

Due to this ultimate importance, the fundamental properties of defects under current flow have 

acquired an increasing interest in the research community and also electronics industry [15, 16, 

17, 18, 19]. 

On a macroscopic level, inducing defects into a sample material in general changes the 

conductivity of the sample under investigation. A widely used method to experimentally 

determine the electrical conductivity of a sample with high accuracy is a four-probe 

measurement [20]. Hereby, two contacts are used to drive a current through the sample and two 

contacts are used to measure the voltage drop across the sample. The resulting electrical 

conductivity is 𝜎~𝐼/𝑉 according to Ohm’s law. Performing such conductivity measurements 

under the influence of an external electric or magnetic field gives access to further sample 

properties due to a different response of the defect conductivity on the external field than the 



6 
 

 

host lattice. Hereby, the resulting effect of the defects on the sample conductivity is typically 

expressed in terms of the charge carrier mobility 𝜇, which is a measure of ‘how easy can the 

charge carriers in the sample move’. Such transport measurements, like Hall measurements and 

measurement of universal conductance fluctuations, however access the properties of the 

ensemble of defects in the sample, averaged over the entire sample volume under investigation. 

The influence of individual defects in a sample can be better accessed by locally resolved 

transport measurement, such as scanning tunneling potentiometry (STP), which allows to 

perform nano-scale transport measurements [17, 21]. STP is based on the working principle of 

a scanning tunneling microscope (STM), which allows highly resolved lateral profiling of a 

conducting sample surface, down to atomic scale. STP maps the local potential of the sample 

under investigation and thereby allows a direct correlation of the sample surface structure, i.e. 

its topography, and transport properties, such as local conductivity. As a result, this method is 

well suited for the investigation of the influence of individual defects with sizes ranging from 

the atomic scale up to microns.  

Depending on the samples and types of defects, due the large span of defect sizes which can be 

investigated by the STP technique, one can investigate classical transport effects, as well as 

quantum mechanical effects at defects [19].  

In order to fully understand the observed features, in STP generally a rigorous analysis of the 

sample system under investigation is of importance. For example, in many samples several 

parallel conduction channels can participate in electrical transport, not only the surface which 

is investigated by STP. Hereby, especially the transport through the sample bulk has also to be 

considered. The disentanglement of the different conduction channels is therefore generally a 

prerequisite for a detailed analysis of a sample under investigation. For TI samples this problem 

becomes rather complex, because of a multitude of possible parallel conduction channels [22]. 

The use of a four-tip STM [23] allows to combine the macroscopic measurement of the sample 

properties by four-probe measurements, as well as STP measurement on the nanoscale in a 

single measurement setup. A further advantage of transport measurements performed with a 

multi-tip STM is that the measurements can be performed under ultra-high vacuum (UHV) 

conditions, directly after the preparation of samples. Hereby, the contacting of the sample is 

controlled e.g. via a scanning electron microscope and allows flexible positioning of the 

individual tips with high accuracy. As a result, in contrast to usual transport measurements, no 

lithographic patterning under ambient conditions is required, which results in the contamination 

of the sample surface [24, 25].  

 

The present thesis describes the implementation of STP and a newly developed method for 

four-probe measurements into a four-tip STM setup in chapter 1 and 2. These methods are then 

used to analyze the electrical resistance of individual defects in a TI ultra-thin film as described 

in chapter 3. Chapter 4 describes the superposition of the multiple conduction channels in TI 

ultra-thin films in detail, where it is possible to disentangle the contributions of the individual 

channels by gate dependent transport measurements. Another parallel conduction channel in 

such sample is given by the interface layer which is formed between the TI film and the Si(111) 

substrate during the sample growth. The conductivity of this interface layer and resulting 

influence in the transport in TI films is analyzed in chapter 5. The STP method was further 

applied to Bi ultra-thin films which prove to be a promising candidate for the investigation of 

the transition between the diffusive and ballistic transport regime due to their large mean free 

path at room temperature, as described in chapter 6. Finally, chapter 7 describes details of the 

resistor network models which have been a crucial theoretical tool throughout this thesis for the 

analysis of the STP data. 
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Chapter 1 Scanning tunneling potentiometry 

implemented into a multi-tip setup by software 
 

1.1 Introduction 

Scanning tunneling potentiometry (STP) is an intriguing tool when it comes to investigating the 

fundamentals of charge transport in real space. It provides direct access to the local 

electrochemical potential in a sample surface which allows to analyze transport phenomena 

such as Ohm’s law on a nanoscopic scale. STP is based on scanning tunneling microscopy, in 

which an atomically sharp metal tip is scanned across the sample surface point-by-point. The 

tip-sample distance is kept constant by application of a voltage difference between tip and 

sample and maintaining a constant tunneling current by adjusting the tip height. The resulting 

measurement signal is the topography of the sample – a map of the tip height in which the 

current set point is met. In addition to this topography measurement, STP allows to measure the 

local electrochemical potential quasi-simultaneously. The result is a map of the electrochemical 

potential at the sample surface. By application of a lateral current through the sample, the 

electric potential has a slope according to the voltage drop across the sample, the so-called 

transport field. STP allows to analyze the local potential variations with respect to the 

topographic features. 

In principle two different STP implementations have been reported in literature which are based 

on two possibilities to separate the topography and potential feedback loops – either temporal, 

by performing the individual feedbacks after each other [21], or by use of an AC signal for 

topography feedback and DC signal for potential feedback [26]. In general, the voltage 

measured by STP is the superposition of the local electrochemical potential, thermovoltage and 

photovoltage, where the latter can be excluded in typical experimental setups. Thermovoltage 

effects between the tip and sample however can be a large parasitic signal. Here small 

temperature differences of tip and sample can be sufficient to result in large relative signals and 

therefore have to be controlled carefully when performing local transport measurements where 

one is interested in the transport field. 

We report here the implementation of the STP technique into a four-tip STM setup by use of a 

temporal separation of the topography and potential feedback which allows an implementation 

into existing setups only by software changes. The resulting setup allows flexible in situ 

contacting of the sample under investigation in order to inject a lateral current such that also 

molecular beam epitaxy grown films and nanostructures can be analyzed without additional 

sample processing as shown in the following article. In detail, locally resolved transport 

measurements on Ag/Si(111) − (√3 × √3) and Si(111) − (7 × 7) surfaces are demonstrated. 

Here, the resistivity of steps and terraces on the sample surfaces could be determined and the 

results are in agreement with literature and prove the functionality of the present 

implementation. After verification of the setup, further local transport experiments were 

performed on a variety of samples, addressing intricate problems on the atomic and mesoscopic 

scale as shown in the following chapters. 
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1.2 Scanning tunneling potentiometry implemented into a 

multi-tip setup by software 

The following article has been published in the journal Review of Scientific Instruments: 

• F. Lüpke, S. Korte, V. Cherepanov, and B. Voigtländer, Scanning tunneling 

potentiometry implemented into a multi-tip setup by software, Rev. Sci. Instrum. 86, 

123701 (2015) 

(Reproduced with the permission of AIP Publishing) 

Author contributions: 

F.L., S.K., V.C. and B.V. conceived the experiments. F.L. performed the measurements and 

analyzed the experimental data. F.L., S.K., V.C. and B. V. wrote the paper. All authors 

discussed and commented on the manuscript. 

 

Note that parts of the material contained in the article Scanning tunneling potentiometry 

implemented into a multi-tip setup by software in combination with additional measurements 

were presented also in the following review articles: 

• B. Voigtländer, V. Cherepanov, and P. Coenen, The Multimeter at the Nanoscale, 

Vakuum in Forschung und Praxis 28, 38–42 (2016) 

• B. Voigtländer, The Multimeter at the Nanoscale, Imaging and Microscopy 18, 31-33 

(2016)  
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Chapter 2 Four-probe measurements using current 

probes with voltage feedback to measure electric 

potentials 
 

2.1 Introduction 

In this chapter a newly developed multi-probe measurement method is presented which allows 

a non-invasive sample characterization. This new measurement method is a further 

development based on the previous STP implementation which utilizes the multiple tips of the 

present setup to perform four-point measurements in combination with a potential feedback 

loop for the voltage sensing tips. In addition to the advantages of previous four-probe 

measurement implementations in multi-tip STMs, such as flexible positioning of the tips and 

in situ measurement, the resulting setup simplifies the required measurement electronics and 

allows non-invasive multi-probe measurements. 

In general, independent from scanning probe measurement capabilities multi-probe 

measurements setups, such as commercially available parameter analyzers have two current 

injecting tips to which a bias voltage is applied and the resulting lateral current through the 

sample is measured. Two further tips are then used for the measurement of the potential drop 

across the sample which is typically performed by a voltage follower circuit [27]. In the 

implementation presented here however, we use the potential feedback as described in the 

previous chapter of this thesis instead of voltage follower circuits. The most striking advantage 

is that the new implementation allows the measurement of the voltage drop across the sample 

non-invasively which means the sample is not damaged in the course of the measurement, 

because all measurement contacts can be realized with tunneling contacts. The potential 

measurement is hereby performed as described in chapter 1, with the measurement tips a few 

tenths of nanometers above the sample surface, while current injection takes place in tunneling 

contact as in usual constant-current STM experiments. 

Non-invasive in situ four-probe measurements in combination with scanning tunneling 

potentiometry make the here reported four-tip STM a powerful tool for the characterization of 

fragile materials which are of interest for electronic applications. Transport measurements 

which span the length scale from millimeter to nanometer without changes in the experimental 

setup – even the same set of tips can be used for all the different measurements. As a result, the 

same setup can be used for macroscopic transport measurements, but also for the 

characterization of nanoscale defects. 

Furthermore, the technique is also combinable with magnetic fields and low temperatures 

which, in combination with the gating, allows to perform the whole spectrum of classical 

transport measurements in situ and non-invasive. 
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2.2 Four-probe measurements using current probes with 

voltage feedback to measure electric potentials 

The following article has been accepted for publication in Journal of Physics: Condensed 

Matter: 

• F. Lüpke, D. Cuma, S. Korte, V. Cherepanov, and B. Voigtländer, Four-probe 

measurements using current probes with voltage feedback to measure electric potentials. 

Author contributions: 

F.L., S.K., V.C. and B.V. conceived the experiments. F.L. and D.C. performed the 

measurements and analyzed the experimental data. F.L., D.C., S.K., V.C. and B. V. wrote the 

paper. All authors discussed and commented on the manuscript. 
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Chapter 3 Electrical resistance of individual 

defects at a topological insulator surface 
 

3.1 Introduction 

Topological insulators host surface states with properties that make them promising candidates 

for the application in electronic devices. Here, we will focus on the three-dimensional (3D) TIs, 

which have a two-dimensional topological surface state at its surface in combination with a 

bulk band gap. 

The theoretical prediction of 3D TIs [9] led to experimental efforts in form of a search for 

materials showing the predicted properties with the first reported 3D TI being the alloy Bi1-xSbx 

found by Hsieh et al. in 2008 [28]. Shortly thereafter, further promising materials with band 

gaps of up to 300 meV were reported in form of Bi2Se3, Bi2Te3 and Sb2Te3 [29].  

TI are characterized by an inverted band gap which is typically the result of a large spin-orbit 

coupling (SOC) [29]. The result is an inverted band gap which at the boundary to a ‘regular’ 

material (with a regular, non-inverted, band gap) leads to a band crossing at the surface of the 

TI. 

The special property of the band crossing is that it has a spin polarized linear dispersion as 

shown in Fig. 3.1. The spin-polarized linear dispersion results on the one hand that elastic 180° 

backscattering is suppressed in these materials. On the other hand, the linear dispersion 

corresponds in theory to that of massless charge carriers and therefore high carrier mobility, 

potentially leading to low power electronics.  

 

Figure 3.1. Schematic of the topological surface state of a three-dimensional topological 

insulator in real-space and momentum-space. The spin-polarization is indicated by colored 

arrows. [10] 

 

In sum, these properties make TIs promising candidates for application in devices and as a result 

the transport through the TSS is of great interest.  

It has however become clear that unintentional defects, such as vacancies and anti-site defects 

can undermine the electric transport through the TSS by shifting the Fermi level intro the bulk 

bands. This effect can be compensated by alloying different TIs into ternary and quaternary 

materials. 
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In the following the ternary material (Bi1-xSbx)2Te3 with 𝑥~0.5 is investigated. This compound 

is optimized for low bulk conductivity such that an electrical current through the sample is 

mainly transmitted by the TSS. As a result, the current flow through the TSS at the sample 

surface can be assessed in real space by STP in order to understand the implications resulting 

from the band structure in experiments and ultimately in devices. 

We present in the following a detailed analysis of the influence of different kinds of defects 

(step edges, domain boundaries, void defects) on an electric current transmitted through a (Bi1-

xSbx)2Te3 thin film sample. For these transport measurements, we used the methods reported in 

chapter 1 and 2 of this thesis. 
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3.2 Electrical resistance of individual defects at a topological 

insulator surface 

The following article has been published in the journal Nature Communications: 

• F. Lüpke, M. Eschbach, T. Heider, M. Lanius, P. Schüffelgen, D. Rosenbach, N. von 

den Driesch, V. Cherepanov, G. Mussler, L. Plucinski, D. Grützmacher, C. M. 

Schneider and B. Voigtländer, Electrical resistance of individual defects at a topological 

insulator surface, Nat. Commun. 8, 15704 (2017) 

Author contributions: 

F.L., M.E., T.H., M.L. and N.v.d.D. performed the experiments. F.L., V.C. and B.V. designed 

the STP experiment. M.E., T.H., L.P. and C.M.S. designed the photoemission experiment. 

M.L., P.S., D.R., N.v.d.D., G.M. and D.G. developed and fabricated the samples. The 

manuscript was written by F.L., M.E., T.H., M.L. and B.V. All authors discussed and 

commented on the manuscript.
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3.3 Electrical resistance of individual defects at a topological 

insulator surface – supplemental material 

The following supplementary information has been published alongside the article Electrical 

resistance of individual defects at a topological insulator surface in the journal Nature 

Communications: 

• F. Lüpke, M. Eschbach, T. Heider, M. Lanius, P. Schüffelgen, D. Rosenbach, N. von 

den Driesch, V. Cherepanov, G. Mussler, L. Plucinski, D. Grützmacher, C. M. 

Schneider and B. Voigtländer, Electrical resistance of individual defects at a topological 

insulator surface, Nat. Commun. 8, 15704  (2017) 
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Chapter 4 Disentangling in situ top and bottom 

surface state transport of a topological insulator 

ultra-thin film by gating 
 

4.1 Introduction 

Three-dimensional topological insulators (3D-TI), due to the unique electronic properties of 

their topological surface states (TSS), are prime candidates for application in future electronic 

devices [30, 31]. Among the most promising materials for applicability at room temperature 

due to their pronounced band gap of up to 300 meV are the compounds Bi2Se3, Bi2Te3 and 

Sb2Te3 [30, 32].  

It has become clear though that the aforementioned binary materials often suffer from 

unintentional doping by crystal lattice defects such as vacancies and anti-site defects [30, 33, 

34]. This doping can shift the Fermi energy into the bulk conduction/valence bands and result 

in highly conductive bulk transport channels, bypassing the auspicious TSS [35]. One way to 

reduce such bulk conductivity is to alloy different binary TIs into ternary or even quaternary 

compounds [35, 36, 37]. The underlying mechanism is the compensation of the unintentional 

defects which allows to shift the Fermi energy back into the bulk band gap [38]. However, the 

electronic bands on the surface of the TI are typically shifted with respect to the bulk due to 

surface band bending [24, 37]. This effect renders it difficult to achieve both, a low conducting 

bulk and a surface electronic configuration, where the Fermi energy only cuts the TSS, 

simultaneously. On the other hand, the use of thin films reduces the influence of bulk 

conduction and due to the large dielectric constant of TIs [39, 40, 41], can result in a large 

screening length in comparison to the film thickness, which means that the bands throughout 

such ultra-thin films are rather flat [42, 43]. The ternary compound (Bi1-xSbx)2Te3 with 𝑥~0.5 

has proven to have low bulk conductivity while on its surface the Fermi energy is cutting only 

the TSS [22, 36, 44]. Furthermore, possible conduction channels at the substrate interface can 

be excluded [45], which makes BiSbTe3 a promising candidate material for further application, 

as a lateral current through the sample is expected to be transmitted predominantly by the TSS. 

The characterization of samples by transport measurements typically requires sample 

processing under ambient conditions, such as lithography to apply electric contacts prior to the 

measurements. However, the exposure of TI samples to air is reported to alter their electronic 

properties [24, 25, 46, 47, 48]. As a result, the comparison of in situ sample characterization, 

for instance by photoemission experiments, and subsequent ex situ transport measurements of 

the same sample needs to be taken with a grain of salt because the samples are altered in 

between the measurements. Recent in situ investigations [17, 32, 49, 50, 51, 52] overcome this 

general limitation by transport measurements, where the sample is under UHV conditions at all 

times allowing direct comparison of the different characterization methods. 

Especially ultra-thin films close to the thickness limit of TIs (~5 QL), where the TSS at the top 

and bottom surface begin to overlap and hybridize [34, 53], are of particular interest for 

applications due to their strongly suppressed bulk conductance. In such ultra-thin films, the 

capacitive coupling of the TSS at the top and bottom surface via the TI film bulk, acting as a 
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dielectric, is reported to become significant when gating the TI film [39, 40, 41] and results in 

a simultaneous gating of the TSS on both surfaces with a single gate electrode. This finding is 

however in discrepancy with recent reports which have shown that the filling of the TSS 

changes only on one surface of the film upon application of a gate voltage, while on the other 

surface it remains unchanged [22, 44].  

In the present work we use a combination of the in situ surface analysis tools, angle resolved 

photoemission spectroscopy (ARPES) and four-tip scanning tunneling microscopy (STM), for 

the analysis of pristine BiSbTe3 ultra-thin films. We interpret gate-dependent four-probe 

measurements by use of a generic multi-channel transport model which allows us to disentangle 

the conduction through the TSS on the top and bottom surface and evaluate the amount of bulk 

conduction in the TI film. The model further gives access to the carrier concentrations and 

carrier mobility in each of the transport channels and a generic explanation for the different 

findings reported in literature. The sample used in this chapter is the same as in chapter 3 of 

this thesis. 

4.2 Sample preparation 

We prepared a 𝑑 = 10.5(5) nm films of (Bi0.53Sb0.47)2Te3 on a silicon-on-insulator (SOI) wafer 

by means of molecular beam epitaxy (MBE). Contacting the TI thin film with the tips of a four-

tip STM results in the sample geometry shown in Fig. 4.1, resembling an in situ realization of 

a TI field-effect transistor. The Si(111) SOI substrate hereby consists of a 70 nm thick Si(111) 

device-layer on top of a 300 nm thick buried oxide layer which is comprised of amorphous 

SiO2, whereas 700 µm of Si(001) act as the handle wafer.  

 

Figure 4.1. Schematic of the transport measurement setup. A BiSbTe3 ultra-thin film is 

grown on a silicon-on-insulator substrate. The tips of a four-tip STM contact the TI thin film 

for transport measurements while the gate voltage 𝑉gate is applied to the back side of the 

substrate. 

 

In order to perform in situ gate-dependent transport measurements, due to the design of the 

sample holder, a pre-structuring of the sample substrate was required in order to be able to 

control the electric potential of the Si(001) handle wafer and TI film separately. The 

corresponding mesa structure was transferred to the SOI substrate by employing 

photolithography and reactive ion etching (RIE) prior to the growth. AZ5214 was used as 
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photoresist and the etching was performed by applying a standard SF6-process to remove the 

70nm thick silicon layer on top of the SiO2. The resulting square Si(111) mesa structure 

(5 × 5 mm²) is located in the center of the 10 × 10 mm2 SOI substrate and provides a suitable 

substrate for selective area growth. The substrate pre-structuring procedure is shown in Fig. 4.2 

(a)-(d) and is followed by the TI film growth (Fig. 4.2 (e)), with the details of the growth 

procedure described in the following. 

 

 

Figure 4.2. Preparation of the sample substrates (a) Silicon-on-insulator (SOI) wafer before 

patterning. The thickness of the individual layers are Si(111) – 70 nm, SiO2 – 300 nm, Si(100) 

– 700 µm. (b) Resist mask after photolithography. (c) Reactive ion etching to remove Si(111) 

layer. (d) The mesa structure as it is introduced into the MBE system. (e) Selective-area growth 

of BiSbTe3 on the remaining Si(111) mesa. 

 

In a first step, the pre-structured substrate was cleaned using a RCA/HF procedure in order to 

remove contaminations and the oxide from the sample surface. As a result, the Si(111) surface 

is H-terminated when the sample is introduced into the MBE chamber (𝑝 ≤ 1 ⋅ 10−10 mbar). 
The sample was then heated to 700°C for 10 min to desorb the hydrogen before it was cooled 

to 275°C for the TI growth. First, the sample was flushed with Te for several seconds, before 

the Bi (𝑇Bi  =  470 °C) and Sb (𝑇Sb  =  408 °C) evaporators were opened simultaneously. After 

the deposition, the samples were cooled to room temperature and transferred to the 4-tip 

STM/ARPES under UHV conditions. The resulting angle-resolved photoemission spectra are 

shown in chapter 3.3 of this thesis. 

4.3 Transport measurements 

For the transport measurements, we use a home-built room temperature four-tip STM [23] 

which allows individual positioning of the tips under scanning electron microscope monitoring. 

Due to the floating potential of the TI film, which denies regular contacting with the STM tip 

for transport measurements, we used a special tip-approaching technique. Hereby, we apply an 

AC voltage to the handle wafer which is readily contacted when the sample is mounted into the 

STM. Due to the capacitive coupling between the handle wafer, forming the back gate, and the 

device layer with the TI film grown on top, the electric potential of the device layer oscillates 

as a result of the AC voltage. 
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In order to safely approach the tips, the AC voltage frequency needs to be in a suitable range to 

be detected by the current amplifiers connected to the STM tips, below 1 kHz for the present 

current amplifiers (DLPCA-200). Furthermore, the AC amplitude has to be in a range such that 

the increase in current due to engagement of the tunneling contact with the tips results in a 

suitable auto-approach cancelling criterion. Useful parameters for the present STM and sample 

setup were 𝑓 = 500 Hz and a peak to peak voltage amplitude 𝑉𝑝 = 200 mV. After safely 

approaching all four tips to the sample surface in this way, the AC voltage is disconnected we 

perform four-probe measurements with Fig. 4.3 (a) showing a four-probe 𝐼/𝑉 of the TI film at 

𝑉gate = 0 V. Here, we find a linear current voltage characteristic, indicating ohmic contacts 

between the tips and the TI film. The four-probe resistance resulting from a linear fit to the 

measurement is 𝑅4P = 500(1) Ω which corresponds to a sheet conductivity of 𝜎total =

ln(2) /𝜋𝑅4P = 0.44(5) mS □
−1, including the positioning errors of the tips [54]. The two-

dimensional character of the conductivity of the sample we confirmed by additional four-probe 

measurements at different tip spacing which result in a constant four-probe resistivity (not 

shown). The inset in Fig. 4.3 (a) shows a scanning electron microscopy image of the four tips 

contacting the sample surface with a mutual tip distance 𝑠 = 100(5) µm. 

 

Figure 4.3. Gate dependent four-probe measurements. (a) Experimental four-probe 𝐼/𝑉 

measurement of the TI film at 𝑉gate = 0 V (black dots) and linear fit (red line) resulting in a 

sheet conductivity of 𝜎total = 0.44(5) mS/□. Inset: Scanning electron microscopy image of 

the four-probe setup. Scale bar: 100 µm. (b) Experimental gate dependent TI film sheet 

conductivity 𝜎total (black points) and linear guide to the eye (red dashed line). The two gating 

regimes are indicated as shaded areas left and right of 𝑉gate = −38 V. The amount of 

conductivity at 𝑉gate = 0 V distributes to 80% below the red dashed line and 20% above. 

 

In the next step, we determine the TI film conductivity as a function of the gate voltage as 

shown in Fig. 4.3 (b). In this graph, we find two distinctly different gating regimes: For gate 

voltages larger than 𝑉gate = −38 V we find an almost linear increase in the TI sheet 

conductivity, while for gate voltages below 𝑉gate = −60 V we find that the conductivity forms 

a plateau at 𝜎total = 0.34(1) mS □
−1. Hereby, the voltage applied between the outer current 

injecting tips Δ𝑉14 is a few mV such that in general Δ𝑉14 ≪ 𝑉gate. In order to analyze this gate-

dependent transport behavior, we employ in the following a multi-channel transport model. 
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4.4 Transport Model 

The conduction in a TI thin film is described in general by three parallel conduction channels – 

one channel for the TSS on each side of the film and one channel resembling the interior (bulk) 

of the film (in the following referred to as ‘film bulk’). To disentangle these parallel conduction 

channels is typically a difficult task because transport measurements in general measure the 

superposition of all parallel channels 𝜎total such that information about the individual channels 

can only be extracted from their different response to an external stimulation, e.g. by a magnetic 

field, or as in the present case, an electric field. The analysis of the resulting dependence of 

𝜎total on the external electric field requires a suitable transport model to conclude about the 

properties of the individual channels.  

Here, we will use in a first step a simple two channel transport model, where we assume only 

gating of the TSS closest to the back gate in order to get a basic understanding of the present 

system. Subsequently, we perform a more detailed analysis in form of a three channel transport 

model where we consider the gating throughout the film in a detailed model, including the 

capacitive coupling of the TSS on the top and bottom of the film. 

The sample conductivity is measured by means of a four-probe measurement with a tip spacing 

of 50 µm for which we used a home-built four-tip STM at room temperature. Two of the four 

STM tips inject a lateral current through the conductive TI layer while the remaining two tips 

are used to measure the voltage drop across the surface resulting from the current. The resulting 

four-point conductivity is an average conductivity of the sample surface in the region of 

measurement. Positioning of the electro-chemically etched tungsten tips is monitored by an 

SEM. 

4.4.1 Two channel model 

In the two channel model, we assume that only the TSS closest to the gate electrode is affected 

by the application of a gate voltage, while the conductivity of the other channel remains 

constant, as also found in the literature [44, 55]. In the present sample geometry, the channel 

influenced by the gate is the TSS channel at the bottom of the film with a corresponding 

conductivity 𝜎bot, while the conductivity of the constant channel 𝜎background is a superposition 

of TI film bulk conductivity 𝜎film and the top TSS channel conductivity 𝜎top. The resulting total 

conductivity is 𝜎total = 𝜎bot + 𝜎background, where we determine 𝜎background = 𝜎film + 𝜎top =

0.34 mS □−1 directly from the plateau in the conductivity in the experimental data below 

𝑉gate = −60 V.  

The bottom channel at zero gate voltage has a conductivity 𝜎bot(𝑉gate = 0 V) = 𝜎bot
0  as a result 

of a carrier concentration 𝑛bot
0 . The additional gate induced charge carriers in the bottom 

channel 𝑛bot are determined by a plate capacitor model with the gate induced charge carrier 

concentration 

𝑛gate =
𝐶gate𝑉gate

𝑒
. (4.1) 

Hereby, the gate capacitance 𝐶gate we calculate from the sample geometry after  
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𝐶gate = ((
3.9𝜀0
300 nm

)
−1

+ (
11.7𝜀0
70 nm

)
−1

)

−1

= 11 nF/cm2. 

The resulting conductivity of the bottom channel, after Drude, is 𝜎bot = 𝜇bot(𝑒𝑛bot
0 +

𝐶gate𝑉gate). Hereby, 𝜇bot is the mobility of charge carriers in the bottom channel. Fitting eq. 

(4.1) to the experimentally observed increase of the conductivity 𝜎bot(𝑉gate) via 𝑛bot = 𝑛gate 

around zero gate voltage results in 𝜇bot = 210 cm
2/Vs and 𝑛bot

0 = 2.5 ⋅ 1012 cm−2. The 

corresponding charge carriers are electrons as a result of the positive slope of the graph. 

From the fit, it results that at a gate voltage of Vgate = −38 V the charge carrier density in the 

bottom TSS in minimized. We interpret this voltage to be the point where the Fermi energy in 

the bottom channel is located at the Dirac point of the TSS. Further gating of the bottom channel 

below Vgate = −38 V results in the generation of holes in the bottom channel.  While it has 

been reported that Dirac holes have approximately the same mobility as the corresponding 

Dirac electrons [37], we find from ARPES that the Dirac point is located directly at the valence 

band edge and due to the large number of available states in the valence band, the generated 

holes are predominantly of bulk character such that we cannot address Dirac holes in the present 

transport experiments.  

From the experimentally observed plateau in the total TI film conductivity we can only estimate 

the mobility of the generated holes in the bottom channel below Vgate = −38 V to be <

2 cm2/Vs, which is lower than the corresponding TSS mobility by two orders of magnitude. 

While the mobility of bulk holes in BiSbTe3 was reported earlier to be one order of magnitude 

lower than the corresponding TSS mobility [55] we explain the finding by the bulk mobility in 

the present measurements to be further decreased due to the phonon scattering at room 

temperature. 

Owing to this low bulk carrier mobility, in combination with typical carrier concentrations 

~1013 cm−2 in similar films [44], results in a low conductivity of the interior of the TI film, as 

we also show in the following. We conclude that 𝜎background is dominated by the conductivity 

of the top TSS. As a result, at 𝑉gate = 0 V the fraction of the total current transmitted by the top 

TSS we find to be 𝜎background/𝜎total ≈ 80%, as indicated in Fig. 4.3 (b). In combination with 

the carrier concentration in the top TSS 𝑛t
0, obtained from ARPES, the mobility of the top TSS 

can be determined to be 𝜇top = 𝜎background/(𝑛t
0𝑒)  = 534 cm2V−1s−1, which is in good 

agreement with literature values [22, 56]. 

Although the above simple two channel model already gives a conclusive result of the TI 

properties of the present sample, in agreement with earlier literature reports [22, 44], it has to 

be taken with a grain of salt, because this model has several limitations. On the one hand, in the 

ultra-thin film limit the capacitive coupling between top and bottom TSS can generally not be 

neglected [39, 40, 41]. On the other hand, the TI bulk can in principle contribute significantly 

to the conduction, especially at room temperature [57] such that it has to be analyzed in general 

with more detail. 

We therefore introduce in the following a more general gating and transport model which 

includes the capacitive coupling of the TSS at the top and bottom surface of the thin film. 



51 
 

Furthermore, this refined transport model includes a separate conduction channel for the film 

bulk for which we perform band bending calculations in order to get a better understanding of 

the band configuration throughout the film. 

4.4.2 Three channel model 

In the three channel transport model, the total TI sheet conductivity is given by 𝜎total = 𝜎top +

𝜎bot + 𝜎film. No longer assuming that the gate affects only the bottom TSS channel and 

inclusion of the capacitive coupling between the TSS at the top and the bottom results in a gate 

dependent carrier concentration in the top TSS channel and furthermore in the film bulk. The 

total film conductivity results as 

𝜎total(𝑉gate) = (𝑛top
0 + 𝑛top(𝑉gate)) 𝑒𝜇top + (𝑛bot

0 + 𝑛bot(𝑉gate)) 𝑒𝜇bot

+ 𝜎film(𝑉gate), 
(4.2) 

where 𝜇top (𝜇bot) is the mobility of charge carriers, 𝑛top
0  (𝑛bot

0 ) is the initial carrier 

concentration in the top (bottom) TSS channel without gating, and 𝑛top (𝑛bot) is the 

corresponding gate induced charge carrier concentration. 

The initial carrier concentrations 𝑛top
0  and 𝑛bot

0  are a priori unknown. For an ideal topological 

insulator, the position of the Fermi level relative to the Dirac point and therefore charge carrier 

concentration in both top and bottom TSS channel, should be identical. However, it has become 

clear that this is typically not the case in experiments [22, 56], due to the different environments 

the top and bottom TSS are exposed to and which result in different amounts of unintentional 

doping on either surface. Hereby, the TSS channel at the interface to the substrate is expected 

to be more pristine than that at the top of the TI film due to the susceptibility of surface 

adsorbates and evaporation of material there. 

Here, again the ARPES measurement determines 𝑛top
0  which decreases the number of free 

parameters in eq. (4.2) when fitting it to the experimental data. In contrast, 𝑛bot
0  is difficult to 

access experimentally and is typically determined from theoretical models. The same applies 

for the gate induced charge carrier concentrations 𝑛top and 𝑛bot. 

4.4.3 Quantum capacitance 

Quantum capacitance effects occurs in capacitors when at least one of the capacitor plates, e.g. 

in a parallel-plate capacitor with corresponding geometric capacitance  

𝐶geom = 𝜀/𝑑,  

has a low density of states 𝜌. Hereby, 𝜀 is the dielectric constant of the material between the 

plates and 𝑑 is the plate distance. This case is observed e.g. in field effect transistors, where a 

gate voltage 𝑉gate is used to control the charge concentration in the channel of the device. As a 

result of the low density of states, the application of a voltage 𝑉gate to the device leads not to 

the typical charging behavior 𝑄 = 𝐶geom𝑉gate, but the amount of induced charges is attenuated. 

The reason is that due to the low density of states, the induced charge carriers need to be lifted 

into higher energy levels, for which additional energy is required. This correction to the 
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geometric capacitance corresponds to another capacitor connected in series, which due to the 

quantum mechanical nature of the density of states is called the quantum capacitance. 

In general, moving a number of electrons 𝑁, corresponding to a charge 𝑄 = 𝑁𝑒, from one plate 

of a capacitor to the other corresponds to a change in the electric potential in the capacitor of 

Δ𝑉 = 𝑄/𝐶geom corresponding to the typical behavior one expects without quantum capacitance 

effects. However, due to the limited amount of states available in one of the plates, the filling 

level of the plate has to change from its initial configuration (Fig. 4.4 (a)) to  

𝑁 = 𝜌 × 𝑒Δ𝑉qc 

⇔  Δ𝑉qc = 𝑄/𝜌𝑒
2 

as is depicted in Fig. 4.4 (b).  

 

Figure 4.4. Origin of the quantum capacitance. (a) Schematic of the filling level of a 

capacitor plate made of a material with a constant low density of states 𝜌, filled up to the Fermi 

energy 𝐸F. (b) Introducing an additional amount of charge carriers into the system results in an 

increase in the filling level by an amount 𝑒Δ𝑉qc, corresponding to 𝑁 = 𝜌 × 𝑒Δ𝑉qc. The voltage 

required to lift the charge carriers to higher energies Δ𝑉qc = 𝑄/𝜌𝑒
2 results in a lower 

capacitance of the system. 

 

This filling of higher energy levels results total in a voltage change across the capacitor as  

𝑉gate = Δ𝑉geom + Δ𝑉qc =
𝑄

𝐶geom
+
𝑄

𝜌𝑒2
=

𝑄

𝐶geom
+
𝑄

𝐶qc
. 

This expression corresponds to a series circuit of two capacitances, 𝐶geom and 𝐶qc, and results 

in a lower capacitance in comparison to 𝐶geom without the quantum capacitance effects. For 

𝜌 → ∞ the system approaches the classical model dominated by 𝐶geom. The corresponding 

equivalent circuit diagram is depicted in Fig. 4.5. 

 

Figure 4.5. Equivalent circuit diagram of a capacitor including quantum capacitance 

effects. The amount of charge carriers induced in the system by the voltage 𝑉gate is reduced by 
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the quantum capacitance 𝐶qc in comparison to the case when the capacitance is given only by 

𝐶geom. 

 

When investigating gate-dependent transport properties of samples with only one transport 

channel, this circuit diagram can be directly used to determine the gate-dependent charge carrier 

concentrations in the channel [58]. However, topological insulator thin films are a sample 

system where two parallel transport channels can both be subject to quantum capacitance effects 

resulting from a single gate electrode, such that the analysis of gate-dependent carrier 

concentrations in the individual transport channels becomes a more complex task. In the 

following, we therefore deduce the corresponding equivalent circuit diagram from a basic 

parallel-plate capacitor, in order to give a fundamental understanding of the system. 

In a simple parallel plate capacitor with metallic plates having high 𝜌, as shown in Fig. 4.6 (a), 

a negative voltage applied to the bottom plate via the gate contact results in the polarization of 

the dielectric 𝜀 between the capacitor plates and induces the same amount of positive and 

negative charge on the top and bottom capacitor plates, respectively. The resulting polarity of 

the induced charges on the respective capacitor plates is indicated by ‘+’ and ‘-‘. The 

capacitance for the shown geometry calculates after the geometric capacitance 𝐶geom = 𝜀/𝑑. 

With an additional metal plate inserted in the parallel-plate capacitor, as shown in Fig. 4.6 (b), 

and the distance between the capacitor plates increased corresponding to the thickness of the 

metal plate in order to compensate its effect on the geometrical capacitance, results in the same 

capacitance as in Fig. 4.6 (a). The explanation is that as a result of the electric field charges are 

accumulated at the surface of the intermediate plate which counteract the electric field in the 

capacitor plate such that it vanishes inside of the metal. Hereby, the intermediate plate does not 

acquire a net charge. 

In contrast to this behavior, when the intermediate metal plate is connected to ground, a net 

positive charge is induced on the bottom side of the intermediate plate corresponding to the 

charge on the bottom capacitor plate (Fig. 4.6 (c)). As a result, the electric field above the 

bottom of the intermediate plate is fully screened, such that no charges are induced in the top 

capacitor plate. The resulting capacitance between the bottom capacitor plate and the 

intermediate metal plate is double the value as in the previous models (Fig. 4.6 (a) and (b)).  

When the intermediate plate is conducting but with low 𝜌 and is connected to ground via the 

corresponding quantum capacitance 𝐶bq (Fig. 4.6 (d)), the electric field between the top and 

bottom capacitor plates is only partially screened, resulting in a net positive charge of the 

intermediate plate, however lower than the case depicted in Fig. 4.6 (c). In detail, the exact 

amount of net charges on the capacitor plates and intermediate metal plate depends on the 

capacitances of the individual capacitors and can be calculated via the respective equivalent 

circuit diagram. In the limit of 𝐶bq ≫ 𝐶geom the behavior approaches the case as if the metal 

plate is directly connected to ground, corresponding to Fig. 4.6 (c), while for 𝐶bq vanishing, the 

behavior is as if there was no connection of the intermediate plate to ground as in the case 

depicted in Fig. 4.6 (b). 

Figure 4.6 (e) shows the schematic which includes quantum capacitance effects of the 

intermediate metal plate, 𝐶bq, as well as the top plate 𝐶tq, which further reduces the amount of 

charge carriers induced in the top plate as function of the gate voltage in comparison to the 

previous geometry. This schematic corresponds to the experimental setup of the gated TI thin 
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film and results in the equivalent circuit diagram shown in Fig. 4.7 (a). Hereby, the two 

dielectrics, above and below the intermediate plate, correspond to the gate dielectric 𝐶gate and 

TI film bulk 𝐶TI, respectively. Note that in the corresponding experimental realization the 

intermediate plate is practically infinitesimally thin, resulting in its top surface, bottom surface 

and top plate of 𝐶bq in Fig. 4.6 (e) to practically coincide spatially. Nevertheless, the 

corresponding equivalent circuit diagram is still valid. 

 

Figure 4.6. Schematic of a parallel plate capacitor with different electric connections. (a) 

Typical parallel plate capacitor with metallic plates and a negative voltage 𝑉gate applied to the 

bottom plate and a dielectric indicated by 𝜀. The resulting polarity of induced charges is 

indicated as ‘+’ and ‘-‘, respectively. (b) Parallel-plate capacitor with an intermediate metal 

plate, which has no electrical connections. The dielectric is separated into two parts of equal 

size. (c) The same capacitor as in (b) but with the intermediate plate connected to ground. (d) 

Same as in (c), but the intermediate plate is connected to ground via a capacitance 𝐶bq. (e) The 

same setup as in (d) but with the top capacitor plate connected to ground via an additional 

capacitance 𝐶tq. 

 

According to the equivalent circuit diagram in Fig. 4.7 (a), it follows 

𝑉gate = 𝑄

[
 
 
 
 
1

𝐶gate
+

1

𝐶bq + (
1
𝐶tq
+
1
𝐶TI
)
−1

]
 
 
 
 

. 

In the sample investigated in this thesis 𝐶gate = 11 nF/cm
2 which is much smaller than 𝐶bq, 𝐶tq 

and 𝐶TI, which are typically on the order of µF/cm2 as shown in the following. As a result, the 

amount of charges induced in the system is given by 

𝑄 ≃ 𝑉gate𝐶gate. 

On the other hand, the distribution of these charges into the top and bottom channel, 

respectively, is given by the ratio 

𝑄bq

𝑄tq
=

𝐶bq

(
1
𝐶tq
+
1
𝐶TI
)
−1 = 𝐶bq (

1

𝐶tq
+
1

𝐶TI
). 

It follows, that when the TI film is very thin (𝐶TI → ∞) and the filling level of the top and 

bottom channel are the same (𝑛tq = 𝑛bq ⇔ 𝐶tq = 𝐶bq) that 𝑄bq = 𝑄tq, which means that both 

channels are influenced by 𝑉gate in the same way. On the other hand, if (𝐶TI → 0), as the case 

for a very thick film, only the channel closest to the gate electrode is affected by 𝑉gate. This 

behavior is consistent with our previous considerations. 
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Figure 4.7. Gating model and band schematics of the TI film. (a) Equivalent circuit diagram 

of the sample geometry including the quantum capacitances 𝐶tq and 𝐶bq. (b) Band schematic 

in the TI film at 𝑉gate = 0 V. The film conduction band and valence band are indicated in blue 

and red, respectively. The relative position of the bands with respect to the Fermi energy in the 

top channel is known from ARPES. (c) Band schematic of the TI film under negative gate 

voltage 𝑉gate ≤ −32 V. In this case, the Fermi energy at the bottom TSS is pinned at the edge 

of the film valence band. 

 

In the simple two channel model, we assumed that all gate induced charge carriers are induced 

in the bottom TSS. However, for the TSS generally the effect of quantum capacitance has to be 

taken into account. The quantum capacitance manifests as an additional energy required to 

introduce more charge carriers into a capacitor due to a small density of states on one or both 

of the capacitor plates. As a result, the gate effect and thereby the number of charge carriers 

induced in such a capacitor is attenuated [59]. In the corresponding equivalent circuit diagram 

this effect can be described by an additional capacitance 𝐶Q in series to the gate electrode [59]. 

Due to a generally small density of states in the TSS, especially close to the Dirac point, the 

quantum capacitance can have a large effect in gating of such devices. The quantum capacitance 

further results in the electric field of the gate to be not perfectly screened by the TSS closest to 

the gate [59]. A result of the penetrating electric filed to the TSS further away from the gate is 

the capacitive coupling of the two TSS at the top and bottom of the TI film, where the TI film 

bulk acts as a dielectric which mediates the coupling of the two surface states. This capacitive 

coupling becomes large for thin films and depends on the dielectric constant of the TI bulk, 

which typically is on the order of 𝜀TI = 100𝜀0 [39], for the present sample resulting in 𝐶TI =
𝜀TI

𝑑
≈ 8

μF

cm2
 after Ref. [40]. 

The resulting equivalent circuit diagram including the quantum capacitance for each of the 

surface channels 𝐶bq and 𝐶tq, the coupling capacitance via the TI film bulk 𝐶TI and the coupling 

of the gate electrode via 𝐶gate is shown in Fig. 4.7 (a) (after Ref. [39, 40, 41]). This equivalent 

circuit model results in the following set of equations describing the gate induced carrier 

concentrations in the top and bottom TSS channel [39, 40, 41]: 

𝑛bot = −𝑛gate − 𝑛TI 

𝑛top = 𝑛TI 

(4.3) 

with 
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𝑛gate =
𝐶gate(𝑒𝑉gate − Δ𝐸bot)

𝑒2
 

𝑛TI =
𝐶TI(Δ𝐸top − Δ𝐸bot)

𝑒2
 

(4.4) 

and 

Δ𝐸bot = −𝑒
2𝑛bot/𝐶bq 

Δ𝐸top = −𝑒
2𝑛top/𝐶tq 

(4.5) 

 

The quantum capacitances however generally are a function of the carrier concentrations 

themselves 𝐶tq(𝑛top) and 𝐶BQ(𝑛bot). A rigorous analysis of the effect of gating on the system 

therefore requires a more detailed description. For the case of the linear dispersion of the TSS, 

the charge carrier density in the TSS is well defined as a function of the energy level with 

respect to the Dirac point [33] 

𝐸top = √𝑛top4𝜋ℏ2𝑣F
2 ≡ 𝑎√𝑛top, (4.6) 

and in the same way 𝐸bot = 𝑎√𝑛bot. The general formulation of the quantum capacitance is 

[39] 𝐶Q = 𝑒
2𝑛/𝐸, which result with eq. (4.6) in 𝐶tq =

𝑒2√𝑛top
0 +𝑛top

𝑎
 under the presence of initial 

charge carriers 𝑛top
0  prior to gating and accordingly for 𝐶bq. This formulation of the quantum 

capacitance is consistent with eq. (4.5) and (4.6). Note that for the case of the Dirac cone this 

expression differs by a factor of two from the approximation of the quantum capacitance 𝐶𝑄 ≈

𝑒2
𝜕𝑛

𝜕𝐸
, which is also commonly used [39, 40], typically when one expects only small changes in 

𝐸.  

The initial energy level of the top TSS (without an applied gate voltage) is 𝐸top
0 = 𝑎√𝑛top

0 . A 

change in the carrier concentration 𝑛top
0 → 𝑛top

0 + 𝑛top will therefore result in a change of the 

energy level by Δ𝐸top according to 𝐸top
0 + Δ𝐸top = 𝑎√𝑛top

0 + 𝑛top, where we find that 

Δ𝐸top = 𝑎 (√𝑛top
0 + 𝑛top −√𝑛top

0 ). (4.7) 

Note that this term significantly differs from eq. (4.5), which shows a linear dependence 

between 𝐸 and 𝑛 in contrast to a square root dependence. Combining equations (4.3) - (4.7) we 

find the explicit equations 



57 
 

𝑛top ≃ ((
𝐶TI𝑎

𝑒2
)
−1

 (−𝑛bot +
𝐶TI𝑎

𝑒2
(√𝑛bot

0 + 𝑛bot −√𝑛bot
0 +√𝑛top

0 )

−
𝐶gate𝑉gate

𝑒
))

2

− 𝑛top
0  

(4.8) 

and 

𝑛bot = ((
𝐶TI𝑎

𝑒2
)
−1

 (−𝑛top +
𝐶TI𝑎

𝑒2
(√𝑛top

0 + 𝑛top −√𝑛top
0 +√𝑛bot

0 )))

2

− 𝑛bot
0  (4.9) 

(For intermediate steps see appendix F.1) 

For this set of non-linear equations, we cannot find a simple analytical solution, such that we 

evaluate equation (4.8) and (4.9) numerically. The resulting values of 𝑛top (𝑛bot) as a function 

of the gate voltage we will use in the three channel transport model as given in eq. 2. 

Equation (4.8) and (4.9) are valid as long as the Fermi energy only cuts the TSS on both, top 

and bottom surface as depicted in fig. 4.7 (b). However, doping or gating of the TI film can 

result in the case where on one surface the Fermi energy is located within the band gap, only 

cutting the TSS while on the other surface the Fermi energy lies within the film valence band 

or conduction band (fig. 4.7 (c)). Due to the presence of many available states in these bands, 

the quantum capacitance on the corresponding surface, in the present case 𝐶bq, becomes very 

large [39].  

In detail, when shifting the bands by applying a gate voltage, as soon as the valence band edge 

reaches the Fermi level, the gate induced charge carriers are induced exclusively in the 

corresponding valence bands and the gate induced electric field is completely screened by the 

bottom channel [59]. Further decreasing the gate voltage will not lead to a further shift of the 

bands with respect to the Fermi energy, but only to an increase of the gate induced charge 

carriers in the valence bands - the Fermi level is pinned at the valence band edge. In terms of 

the replacement diagram in Fig. 4.7 (a) a large value of 𝐶bq leads to all the gate induced charge 

carriers being placed on this capacitor rather than on 𝐶TI, which results in the carrier 

concentration in the top TSS channel to be unchanged. 

To include the behavior of the bulk conductivity into our model, we perform in the following a 

detailed analysis of the band bending on the TI film as a function of the film bulk doping and 

the applied gate voltage. For this we model a 10 nm thin TI film as a small bandgap 

semiconductor (𝐸gap = 260 meV), in agreement with our ARPES results. For the band bending 

calculations we solve the Schrödinger-Poisson equation in the Boltzmann approximation [60] 

for which we use an effective mass 𝑚∗ = 0.15𝑚e, which we extract from the ARPES 

measurements by fitting a parabolic dispersion to the valence band edge and which is 

comparable to literature values [55, 61]. A further parameter in the calculations is the TI doping 

level as it would be observed in a bulk crystal, far away from the surface space charge layer. 
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Because we do not have access to this quantity experimentally, due to the thin film character of 

the present sample, we varied this parameter in the range of the band gap and analyzed the 

resulting band bending. 

4.4.4 Band bending calculations 

An exemplary band schematic resulting from the calculations, without gating, is shown in Fig. 

4.8 (a). Here, the position of the bands at the TI surface is fixed according to the ARPES 

measurement. As a reference we show as dashed line in Fig. 4.8 (a) the calculated band bending 

for an extended bulk crystal, with a doping level corresponding to a position of the Fermi level 

deep in the bulk 30 mV above the bulk valence band edge. The bands are bend upwards from 

the TI surface into the bulk, until the bulk band positions are reached, resulting in a space charge 

layer (scl) as indicated in Fig. 4.8 (a). In the corresponding thin film limit however (Fig. 4.8 (a) 

solid lines), where we set the band positions on both surfaces of the thin film according to 

ARPES exemplarily, the bands are rather flat due to the long screening length in comparison to 

the film thickness [39, 40], in combination with the boundary condition of the band positions 

at the two surfaces.  

Since the doping concentration in the film is unknown, we analyze in the following the 

dependence of the film carrier concentration 𝑛film as a function of the bulk doping levels, with 

respect to the valence band edge as shown in Fig. 4.8 (b). Hereby, the thin film carrier 

concentration results from integrating over the 10 nm thick film. We find that the amount of 

charge carriers in the thin film is approximately constant with 𝑛film = 9 ⋅ 10
11 cm−2 when the 

bulk doping is such that the Fermi level is inside of the band gap of the corresponding bulk 

crystal.  

 

Figure 4.8. Band bending calculations at 𝐕𝐠𝐚𝐭𝐞 = 𝟎 𝐕. (a) Band bending in a semi-infinite 

bulk crystal (dashed lines) with the crystal surface located at 𝑧 = 0 nm. The plot shows an 

exemplary bulk doping level with the Fermi energy located 30 mV above the valence band 

edge. The band positions at the surface of the crystal are fixed by ARPES and the extension of 

the resulting space-charge layer (scl) is indicated. (solid lines) Band bending throughout the 

10 nm thick TI thin film with its two surfaces located at 𝑧 = 0 nm and 𝑧 = 10 nm, 

respectively. The bands for the thin film are rather flat in comparison to the semi-infinite crystal 

due to the presence of the second surface. (b) Carrier concentration in the 10 nm TI film as a 

function of the bulk doping level with respect to the valence band edge 𝐸F − 𝐸V. The valence 

and conduction bands are indicated as red and blue shaded areas, respectively. For all positions 
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of the Fermi level inside the band gap (i.e. for all reasonable doping levels of the TI film) the 

integrated charge carrier density of the TI film bulk is approximately constant at 𝑛film = 9 ⋅

1011 cm−2. 

4.5 Application of the gating and transport model to the 

experimental data 

Fitting eq. (4.2) to the experimental data for Vgate > −32 V via 𝑛bot
0 , 𝜇top, 𝜇bot and 𝜇film we 

find that in the three channel model, the bottom channel reaches the Dirac point and therefore 

also the valence band edge at Vgate = −32 V. Below this gate voltage the bottom channel is 

dominated by bulk p-conduction and we therefore apply the gating model which assumes a 

large density of states at the bulk valence band edge. With the bottom channel dominated by 

the TSS n-conduction at larger gate voltages we can describe the entire range of the 

experimental data. 

The resulting fit of the combined gating and transport model to the experimental data is shown 

in Fig. 4.9 (a) and results in 𝜇top = 610
cm2

Vs
, 𝜇bot = 124

cm2

Vs
, and  𝑛bot

0 = 1.7 ⋅ 1012 cm−2, 

while 𝑛top
0 = 4 ⋅ 1012 cm−2 is fixed by the ARPES measurement. Hereby, the gate voltage 

range corresponds to an amount of gate induced charge carriers 𝑛gate(𝑉gate = 40 V) = 2.25 ⋅

1012 cm−2 to 𝑛gate(𝑉gate = −120 V) = 6.75 ⋅ 10
12 cm−2. We find that in general the model 

fits very well to the data, only when the filling in the bottom TSS approaches the Dirac point, 

we observe some deviations between the experimental data and our model. This observation 

we explain by a smooth transition between the gating regimes in the experiments, due to the 

room temperature conditions and resulting smeared out Fermi distribution. Given a width of 

the Fermi function at room temperature Δ = 110 meV, corresponding to 𝐹 (−
Δ

2
) = 0.9 and 

𝐹 (
Δ

2
) = 0.1, translates to a smearing out in the TSS according to eq. (4.1) and (4.6) to Δ𝑉gate ≈

10 V. This value fits well to the experimentally observed transition region in Fig. 4.9 (a). For 

the bulk holes, we can only determine an upper boundary of 𝜇film < 2
cm2

Vs
, like before. 

 

Figure 4.9. Fit of transport model to experimental data. (a) Experimental gate dependent 

sheet conductivity with a fit of eq. (4.2), resembling the combined gating and three-layer 

transport model. (b) Band positions with respect to 𝐸F in the top and bottom channel as a 

function of gate voltage, corresponding to (a). 𝐸top
v  (𝐸top

c ) is the position of the valence 

(conduction) band in the top channel and 𝐸bot
v  (𝐸bot

c ) in the bottom channel, respectively. 
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In this mode, we find that at 𝑉gate = 0 V the portion of the total current through the bulk, top 

TSS and bottom TSS are 90% and 10%, respectively. For the bottom TSS this is half of the 

value obtained from the simplified two channel model. Furthermore, at 𝑉gate = −32 V the 

current through the sample is almost exclusively transmitted by the top TSS, as the bottom TSS 

and the film bulk conductivity are minimized. 

Figure 4.9 (b) further shows the band positions relative to the Fermi energy for the top and 

bottom channel. Here we observed that while the bottom channel band positions are shifted 

considerably as a function of gate voltage, the band positions in the top channel change only by 

an amount of Δ𝐸 ≈ 30 meV. 

This observation is in agreement with the screening of the gate induced electric field by the 

bottom TSS. Furthermore, the larger initial filling level of the top channel results in a slower 

change of the band positions as charges are induced, due to the square-root dependence of the 

𝐸top  with respect to 𝑛top. 

4.6 Discussion 

While the simple two channel transport model allows to estimate the conduction through the TI 

film, the more general three channel model allows to explain the experimental data better. In 

detail, only the three channel model, can reproduce the experimentally observed slight negative 

curvature of the conductivity graph above Vgate = −32 V, which is the result of the quantum 

capacitances and the capacitive coupling of the top and bottom TSS channel. 

As mentioned before, contrary to the principle of capacitive coupling of the top and bottom 

TSS, there are literature reports, where gating of TI ultra-thin films with a single gate electrode 

results in only the TSS closest to the gate electrode to be shifted with respect to the Fermi 

energy, while the other TSS remains unchanged [22, 44] corresponding to our two channel 

model. Such a behavior, we explain to be due to the TSS on the corresponding surface further 

away from the gate being pinned, e.g. by bulk bands. In the corresponding references [22, 44] 

significant filling of the corresponding TSS channels are reported, which suggests that the 

Fermi level might indeed be located at the conduction band edge. As a result, the filling of the 

corresponding TSS and therefore its transport properties do not change significantly by 

application of a gate voltage, because the additional charges are induced predominantly in the 

bulk bands, while the transport properties of the corresponding TSS channel are unchanged. 

Likewise, impurity states within the bulk band gap, as reported in Ref. [62] can also result in a 

Fermi level pinning.  

Furthermore, even when the capacitive coupling is considered certain configurations of initial 

filling levels in the top and bottom channel, due to e.g. surface doping, can result in the case 

where the filling level of one of the two channels only changes insignificantly. This effect can 

also lead to the interpretation that generally only one of the channels is affected by the gate. 

We conclude that the TSS at the top and bottom surface are generally coupled and only by 

certain configurations of Fermi level pinning it can occur that only the TSS filling of one of the 

two surface states changes by application of a gate voltage, as described in our two-channel 

model. Even more, when there is a large density of states present at the TI film surface closest 

to the gate electrode, then the effect of the gate on the TSS can be largely screened such that 

the top and bottom TSS channel filling both are mostly independent of the gate voltage. This 

effect also explains often reported problems in first generation TI samples where heavy doping 

results in the Fermi energy being located well within the valence/conduction bands [38]. As a 
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result, the overall conductivity of such TI films does not change significantly when applying a 

gate voltage. 

For this reason, we find that for the comprehensive interpretation of transport measurements at 

TIs it is of utter importance to perform a detailed analysis of the filling levels of the TSS 

channels in combination with the bulk bands, as provided by the present model. While the gate 

voltages applied in the present work are rather large, the observed behavior of the TI film can 

be reproduced in the range of a few volts, as typically used in devices, by use of a suitable gate 

dielectric [22]. 

4.6.1 Constant quantum capacitance approximation 

For small changes in the Fermi energy corresponding to small amounts of gate induced charge 

carriers, the quantum capacitance terms can be assumed to be constant, as long as the initial 

number of charge carriers is much larger than the gate induced carrier concentration. In this 

case, the quantum capacitance is given by the initial carrier concentrations: 

𝐶tq,bq
0 =

𝑒2√𝑛top,bot
0

𝑎
 

and Eq. (4.3) becomes 

Δ𝐸top = 𝑒
2 ( 
𝑛top
0 + 𝑛top

𝐶tq
−
𝑛top
0

𝐶tq
0 ) ≈ 𝑒

2 ( 
𝑛top
0 + 𝑛top

𝐶tq
0 −

𝑛top
0

𝐶tq
0 ) =

𝑒2𝑛top

𝐶tq
0 . 

 

This expression is again consistent with eq. (4.2) and results in the equations 

 

𝑛bot = −
1

(1 + 𝐶gate/𝐶bq
0 + 𝐶TI/𝐶bq

0 )
(
𝐶gate𝑉gate

𝑒
+
𝐶TI𝑛top

𝐶tq
0 ). (4.10) 

and 

𝑛top = 𝑛TI =
𝐶TI(𝜇top − 𝜇bot)

𝑒2
 ⇔  𝑛top =

𝐶TI/𝐶bq
0

(1 + 𝐶TI/𝐶tq
0 )
𝑛bot. (4.11) 

(For intermediate steps see appendix F.2) 

The analytical solution of this system of linear equations (4.10) and (4.11) is 

 

𝑛top =
𝐶TI/𝐶bq

0

1 + 𝐶TI/𝐶bq
0 + 𝐶gate/𝐶bq

0 + 𝐶TI/𝐶tq
0 + 𝐶TI𝐶gate/(𝐶bq

0 𝐶tq
0 ) 
⋅
𝐶gate

𝑒
𝑉gate 

𝑛bot =
(1 + 𝐶TI/𝐶tq

0 )

1 + 𝐶TI/𝐶bq
0 + 𝐶gate/𝐶bq

0 + 𝐶TI/𝐶tq
0 + 𝐶TI𝐶gate/(𝐶bq

0 𝐶tq
0 ) 
⋅
𝐶gate

𝑒
𝑉gate 

(4.12) 
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These equations directly give the amount of charge carriers induced in the top and bottom TSS 

by the back gate with the only parameters being 𝐶TI and initial carrier concentrations in each 

channel. Furthermore, from equation (4.11) it directly follows 

⇒ 
𝑛top

𝑛bot
=

𝐶TI
𝐶bq
0

𝐶TI
𝐶tq
0 + 1

. (S6) 

This result is in accordance with previous reports [40] and describes that the ratio of the gate 

induced charge carriers in top and bottom surface depends on the ratio of quantum capacitances 

of top and bottom TSS. Note that from this expression it is even possible to have 
𝑛top

𝑛bot
> 1 which 

means that the majority of the back gate induced charge carriers are located in the top TSS 

rather than the bottom TSS.  

4.6.2 Maximum applicable gate voltages 

For large positive gate voltages 𝑉gate > 45 V the measured conductivity in the experiments 

becomes noisy such that no further data acquisition was possible in this range. From the 

calculations this is also the value we expect the top TSS to come close to the bulk conduction 

band edge. In combination with the clear transition of the transport regime at 𝑉gate = −32 V 

we have experimental indications of the actual size of the band gap 𝐸gap ≈ 260 meV. On the 

other hand, for gate voltages below 𝑉gate < −175 V the leakage current through the SOI 

substrate limits further data acquisition. In the gate voltage range shown in the main text the 

experiments were reproducible. 

4.6.3 Comparison of different samples 

In total, for the current studies we have investigated three different samples with respect to their 

gate-dependent conductivity in the four-tip STM (see Table 4.1). Hereby, sample #1 is the one 

we focus on in the main text. Figure 4.10 shows the full range of experimental data acquired 

for this sample. In detail, for large positive gate voltages 𝑉gate > 45 V the measured 

conductivity becomes very noisy such that no further data acquisition was possible in this range. 

On the other hand, for gate voltages below 𝑉gate < −175 V the leakage current through the SOI 

substrate limits further data acquisition. This behavior was very similar for all samples we 

investigated, indicating the SOI to be limiting factor. In the viable gate-voltage range shown 

the experiments were reproducible for all samples. 

 

Sample # Thickness Composition Transferred via 𝜎total(𝑉gate = 0 V) 

1 10 nm (Bi0.53Sb0.47)2Te3 UHV 0.44 mS □−1 

2 21 nm (Bi0.54Sb0.46)2Te3 UHV 0.98 mS □−1 

3 9 nm (Bi0.66Sb0.34)2Te3 Air 0.40 mS □−1 

Table 4.1. Summary of the different samples analyzed with respect to their gate-dependent 

sheet conductivity in the four-tip STM. 
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Figure 4.10. Full range of experimental gate-dependent conductivity of sample #1. 

 

Figure 4.11 shows the gate-dependent conductivity of a 21 nm thin film of (Bi0.54Sb0.46)2Te3, 

where we find that below 𝑉gate ≈ 35 V the gate-dependent sheet conductivity saturates, while 

for higher gate voltages we see an increase in the conductivity. Hereby, the absolute 

conductivity of this TI film is larger in comparison to sample #1, which we address to the 

composition of sample #2 to be more towards the inherently 𝑛-doped Bi2Te3 and which results 

in even larger carrier concentration than in the already 𝑛-type sample #1. The relative change 

in conductivity of sample #2 in the applicable gate voltage range is however much smaller than 

that of sample #1. This observation would be explained by the bottom channel valence band 

edge to be located close to the Fermi energy already without gating, which seems to be counter-

intuitive due to the expected larger amount of 𝑛-type doping. However, due to the larger film 

thickness, band bending in this sample may play in increased role in the distribution of charges 

throughout the film, possibly explaining this result. Furthermore, the increased thickness of the 

film weakens the capacitive coupling of the top channel with respect to the back gate, which 

can also explain why we do not see the negative curvature of the graph at 𝑉gate > −30 V as 

evident for sample #1 in Fig. 4.10 and which is a direct evidence of the coupled gating of the 

transport channels. 

 

 

Figure 4.11. Experimental gate dependent conductivity of sample #2 (21 nm thin 

(Bi0.54Sb0.46)2Te3, UHV transferred). 

 

Sample #3 is an even more 𝑛-type sample which was transferred through air to the four-tip 

STM. As evident in Fig. 4.12, we do not observe a saturation in the conductivity below a certain 

gate voltage in the applicable gate voltage range which is in contrast to sample #1 and #2. We 
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explain this finding by a large doping of the sample as result of its composition and the exposure 

to ambient conditions on the time scale of a few hours, in agreement with literature  [24, 25, 

46, 47, 48]. In detail, the resulting higher carrier concentration in the film is expected to result 

in the conduction band to cut 𝐸F such that shifting the bands requires larger gate voltages with 

respect to the other samples. In this way, the range of applicable gate voltage resulting from the 

SOI substrate is not sufficient to shift the bands until the Fermi energy coincides with the bottom 

channel valence band edge like in the other samples. The hump in the graph, located at 𝑉gate ≈

−20 V in this course can be explained as the position of the conduction band edge in the bottom 

channel being shifted above 𝐸F. In agreement with this explanation is the higher conductivity 

of this sample in comparison to sample #1 as a result of the larger 𝑛-type carrier concentration 

of sample #3. 

 

 

Figure 4.12. Experimental gate dependent conductivity of sample #3 (10 nm thin 

(Bi0.66Sb0.34)2Te3, transported through air). We do not observe a saturation of the conductivity 

as function of the gate voltage in contrast to sample #1 and #2. 

 

4.7 Conclusion 

From gate-dependent transport measurements, we are able to disentangle the transport through 

different conduction channels of a (Bi0.53Sb0.47)2Te3 thin film, namely the top and the bottom 

TSS channel, as well as the interior of the TI film, in form of a bulk conductivity. Hereby, the 

combination of in situ transport measurements in combination with photoemission 

spectroscopy on the same sample, without exposition to ambient condition, allow us to deduce 

the carrier concentration, and respective mobility, in each of the three channels. The present 

gating and transport models are applicable for a wide range of samples including also thicker 

films. TI samples with a Dirac point located well in the band gap, typically show a local 

minimum in the film conductivity at the transition from n- to p-type transport in the TSS [22], 

which we do not observe in the present sample due to the Dirac point coinciding with the 

valence band edge. Such a behavior can also be reproduced by the present gating and transport 

model and would be of interest for further application of the model in order to determine charge 

carrier properties without the necessity of an external magnetic field. Furthermore, the gating 

effect can in principle depend on the temperature, e.g. due to a temperature dependent screening 

of charges by the film bulk and corresponding measurements could clarify this issue. 
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Chapter 5 Chalcogenide based van der Waals 

epitaxy: Interface conductivity of Tellurium on 

Si(111) 
 

5.1 Introduction 

For the application of TI films in future electronic devices it is important that their TSS, which 

governs the promising electronic properties of TIs, can be addressed individually in devices. In 

the first generation of chalcogenide based van-der Waals TIs (Bi2Se3, Bi2Se3 and Sb2Te3) defect 

induced doping, due to anti-site defects and Te/Se vacancies led to large charge carrier 

concentrations in the crystal bulk, such that bulk conductivity was dominant in these samples 

[38]. This problem has been overcome by refining the crystal preparation methods [63] and use 

of ternary (e.g. BiSbTe3) and quaternary materials (e.g. BiSbTe2Se), in which the defects 

compensate [38], resulting in low bulk carrier concentrations and conductivity. Furthermore, 

the use of ultra-thin films further allows to reduce the influence of the TI bulk on transport.  

For the application of TIs in electronic devices large-scale preparation processes have to be 

established, with the most suitable process being molecular-beam epitaxy (MBE) [64]. A 

prerequisite for MBE growth hereby is a suitable substrate on which the TI films can be grown 

in high quality, where amongst others Si(111) has proven to fulfill this requirement [64]. For 

the growth on Si(111) the substrate surface is however typically passivated to form a template 

for the subsequent van-der Waals growth. As a result, besides the conductivity of the substrate 

itself and the transport channels of TI films, which chapter 4 of this thesis dealt with, the 

substrate interface resulting from the passivation prior to the TI film growth can result in an 

additional parallel conductance channel which potentially bypasses the TSS and undermines its 

application in devices. 

While the Si(111) substrate bulk can be readily optimized to be low conducting by choosing a 

low-doped substrate, the passivation of the Si(111) surface prior to the TI film growth can result 

in a highly conducting interface layer, depending on the used material and exact preparation 

parameters. To name an example, one possible termination of the Si(111) surface is the 

Bi/Si(111)−(√3 × √3) reconstruction [63] which is reported to have a conductivity of up to 

𝜎 = 4 ⋅ 10−3 S/□ [54]. This amount of conductivity is in the range of typical TSS 

conductivities [17] and therefore impracticable for the analysis and further application of the 

TSS properties. The samples used in this thesis are grown on Si(111) substrates which are 

saturated with Te to form a template for the TI film growth. The corresponding conductivity of 

Te on Si(111) is therefore of great interest but we find it not to be reported in literature.  

In this chapter, we report the investigation of the structural, electronic and transport properties 

of the Te saturated Si(111) surface by means of scanning transmission electron microscopy 

(STEM), low-energy electron diffraction (LEED), scanning tunneling microscopy (STM) and 

four-probe conductivity measurements in the four-tip STM. 
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5.2 Chalcogenide based van der Waals epitaxy: Interface 

conductivity of Tellurium on Si(111) 

The following article has been published in the journal Physical Review B: 

• F. Lüpke, S. Just, G. Bihlmayer, M. Lanius, M. Luysberg, J. Doležal, E. Neumann, V. 

Cherepanov, I. Ošt’ádal, G. Mussler, D. Grützmacher, and B. Voigtländer, 

Chalcogenide based van der Waals epitaxy: Interface conductivity of Tellurium on 

Si(111), Phys. Rev. B 96, 035301 (2017) 

Author contributions: 

F.L., S. J., M.La., M.Ly, V.C., E.N., G.M., D.G. and B.V. conceived the experiments. F.L., 

S.J., J.D., M.L., E.N., M.L and performed the measurements and analyzed the experimental 

data. G.B. performed the theoretical calculations. F.L., M.L., G.B., J.D. wrote the manuscript. 

All authors discussed and commented on the manuscript. 
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Chapter 6 Scanning tunneling potentiometry at 

ultra-thin Bismuth films 
 

6.1 Introduction 

The continuous optimization of electronic devices leads to ever new material designs, e.g. in 

order to make transistors smaller and less power consuming. Hereby, a fundamental limit of the 

power consumption of a transistor is given by its on-off ratio which is limited by defects in the 

corresponding materials and which results in residual resistivity dipoles [65]. 

Considering a single defect, application of a lateral electric field which leads to a net current 

through the sample, leads to a scattering of mobile charge carriers at the defects and thereby to 

the formation of a residual resistivity dipole [65]. While resistivity dipoles can occur at defects 

of different dimensionalities [19, 66, 67], in general quasi-zero-dimensional defects, such as 

atomic vacancies, are the most difficult to control considering the application in devices [68]. 

The underlying mechanism of the formation of resistivity dipoles is the flow of charge carriers 

past the defect with some of the charge carriers are scattered at the defect. The result is an 

equilibrium state where and additional electric field with the shape of a dipole is superimposed 

on the otherwise linear voltage slope across system [19, 65]. The polarity of the superimposed 

electric field is counteracting the transport field and leads to a macroscopically observed 

increase in resistance [19, 52]. Depending on the scattering mechanism involved, the amplitude 

of the resulting resistivity dipoles, and therefore the increase in resistivity, varies. In the 

following, we differentiate between two sources of scattering at the defect [19]: 

• Diffusive transport, corresponding to classical transport 

• Ballistic transport, as described by quantum mechanics. 

While, the evaluation of the dipole amplitude in the diffusive regime leads to a description in 

terms of electrostatics according to Ref. [69], the scattering of ballistic charge carriers was 

described by Rolf Landauer in his commendable paper in 1957 [65]. In detail, the dominant 

transport regime is determined by the relative size of the defect, with radius 𝑎, with respect to 

the mean free path of the charge carriers 𝜆. For 𝜆 ≫ 𝑎 the transport dipole is of quantum 

mechanical nature, and for 𝑎 ≫ 𝜆 the classical limit applies. This concept is depicted 

schematically in Fig. 6.1. As a result, in a sample with defects of different sizes and a suitable 

carrier mean free path, it is possible to investigate the crossover from the classical to the 

quantum transport limit. 

In the present work, we use Bi ultra-thin films in order to investigate the dependence of the 

amplitude of the resistivity dipoles as function of the defect sizes, as Bi bulk crystals are 

reported to have a large mean free path of up to several 100 nm at room temperature. Although, 

this value is reduced in thin films [19, 70], we find Bi films grown on Si(111) to be an excellent 

candidate for the rigorous study of transport around defects, not only due to the proposed large 

mean free path in Bi, but also due to its structural properties when grown on Si(111) resulting 

in a flat film with well-defined scattering centers [19]. We use scanning tunneling potentiometry 
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(STP) to map resistivity dipoles around defects and analyze our results with respect to different 

transport theories and in combination with resistor network calculations. In this way we are able 

to deduce an analytic function which allows us to describe the amplitude of the resistivity 

dipoles as a function of the defect size. Furthermore, the model allows us to determine the mean 

free path and the Fermi wave vector 𝑘F of the sample under investigation. 

 

 

Figure 6.1. Schematic of different transport regimes at a circular defect. (a) The mean free 

path 𝜆 is smaller than the defect size 𝑎 such that charge carriers are scattered many times as 

they pass the defect (diffusive transport). (b) The mean free path is much larger than the defect 

size, such that the charge carriers are scattered exclusively by the defect (ballistic transport). 

 

6.2 Bismuth thin films 

Depending on the deposition parameters of Bi on Si(111), a variety of Bi crystal phases can be 

realized [71, 72]. Below a critical thickness of ~7 ML, the deposition of Bi onto the Si(111) −

(7 × 7) surface results in the formation of a Bi{012} film in the black phosphorus phase [71, 

72], in the following denoted as Bi-BP.  

For the sample preparation, a 8 × 4 mm² piece of Si(111) (𝜌Si ≈ 700 Ωcm) was degassed at 

𝑇𝑠 ≈ 700°C for several hours, under ultra high vacuum (UHV) conditions, followed by repeated 

flash annealing cycles at 1230°C for 30 s. After each flash annealing step, the sample was 

quenched and left at room temperature for several minutes, until the pressure recovered close 

to the base pressure of 𝑝 ≈ 2 ⋅ 10−10 mbar. When the pressure during the flash annealing stays 

below 𝑝 ≤ 1 ⋅ 10−9 mbar, the sample is considered clean and is quenched to 𝑇𝑠 = 1050°C 

followed by a slow cooling to 𝑇𝑠 = 950°C at a rate of ~1 K/s. Subsequently, the sample is 

quenched to 𝑇𝑠 = 850°C and the sample is annealed for 30 min at that temperature to form a 

well ordered Si(111) − (7 × 7) surface structure, followed by a final quench to room 

temperature. During the sample preparation, the heating current direction was in ‘step-up’ 

direction according to the technical current direction such that the resulting Si(111) − (7 × 7) 
surface shows parallel step-bunches with several-hundred-nanometer-wide, flat terraces in 

between [73, 74]. Subsequent measurements were performed exclusively on the terraces, where 

the flow of a lateral current is not influenced by any substrate steps. 

One hour after the final quench, 4 ML of Bi were deposited onto the Si(111) − (7 × 7) surface 

at room temperature from a Knudsen effusion cell at 𝑇Bi = 425°C [75], corresponding to a rate 

of 1 ML/min at the position of the sample (1 ML =  9.28 ⋅ 1014 atoms/cm2) [71]. The 

pressure during the Bi deposition was 𝑝 ≤ 1 ⋅ 10−9 mbar. The such prepared sample results in 

a Bi thin film which is almost uniform in thickness but not completely closed – it has holes in 
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it and additional islands on top. The topography of the film is shown in Fig. 6.2 (a). The holes 

are found to be 4 ML in depth, which means that they go all the way down to the Si substrate. 

We do not observe any open intermediate layers within the holes such that the first 4 ML of Bi-

BP represent an ideal two-dimensional system. Islands on top of the first 4 ML correspond to 

an additional 1 − 5 ML. A schematic of the sample geometry is shown in Fig. 6.2 (b) and the 

histogram of the experimental data shown in Fig. 6.2 (c). 

As evident from the histogram, the peak at 1.65 nm corresponding to a film thickness of 5 ML 

is much smaller than the peaks corresponding to a thickness of 4 ML and 6 ML, respectively. 

We explain this observation by Bi-BP consisting of buckled bilayers as shown in Refs. [71, 72, 

76, 77]. As a result, odd numbers of layers have dangling bonds and are therefore energetically 

unfavorable over even layers. As a result, under certain preparation conditions odd layers are 

quenched. 

The different surface configurations of even and odd layers can be furthermore visualized in 

thermovoltage measurements, i.e. STP measurements without a lateral current flow, which is 

sensitive to changes in the material properties. In detail changes in the density of states and 

derivative of density of states according to chapter 1 of this thesis result in a contrast in 

thermovoltage maps. The result of such a measurement is shown in Fig. 6.3. 

 

Figure 6.2. Structure of the Bi{012} thin film in the black phosphorus phase. (a) Sample 

topography of a ~4ML Bi{012} film in the black-phosphorus phase showing additional islands 

of 1 − 5 ML in height and holes of 4 ML in depth going all the way down to the substrate. Scan 

size: 600 nm. (b) Schematic of the cross section of Bi{012} (gray) grown on a Si(111) −

(7 × 7) substrate (blue). (c) Histogram of the topography data in (a) with the thickness given 

in nm and ML. The peak corresponding to a thickness of 5 ML is suppressed in agreement with 

literature [78]. 

 

In the topography (Fig. 6.3 (a)), we find a distribution of islands on the Bi-BP surface, but with 

smaller number of holes in the film and more islands compared to Fig. 6.2, resulting from the 

larger amount of deposited Bi (4.5 ML). The corresponding histogram of the topography in Fig. 

6.3 (b) shows still a somewhat smaller peak for 5 ML island height in comparison to islands of 

6 ML thickness, however not as prominent as in Fig. 6.2. The corresponding thermovoltage 

measurement is shown in Fig. 6.3 (c), where we observe two distinctly different areas of 
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thermovoltage signal throughout the sample surface. In detail, the 5 ML high islands show lower 

thermovoltage signal than the rest of the sample surface. We determine the difference in 

thermovoltage to be Δ𝑉th = 105(2) µV from the histogram in Fig. 6.3 (d) and Gaussian peak 

fits. Looking closely, one can further find that the thermovoltage signal for 6 ML islands in 

comparison to the 4 ML film is approximately 20 µV higher. This finding indicates that the 

electronic configuration of the uppermost bilayer of the 6 ML high islands is also slightly 

different than in the 4 ML thick film, which is in agreement with theoretical calculations found 

in literature [79]. 

 

Figure 6.3. Thermovoltage measurement at the Bi{012} surface. (a) Topography of the 

sample surface after deposition of a 4.5 ML film. (b) Histogram of the topography in (a) 

showing the peak corresponding to 5 ML high islands being smaller than that corresponding to 

6 ML high islands. (c) Corresponding potential map to (a) showing distinctly different potentials 

of surface areas corresponding to 5 ML film thickness in comparison to 4 ML and 6 ML areas. 

(d) Histogram of the potential map in (c) (black dots) where we determine the difference in 

potential between the two levels to be Δ𝑉th = 105(2) µV from a multiple-Gauss curve fit (solid 

lines). 

 

6.3 Resistivity Dipoles 

In the classical limit, resembling diffusive charge carrier transport of a free electron gas, it can 

be shown that the dipole forming around a circular defect in a two-dimensional system is 

described by [69] 
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𝑉diffusive = −
cos(𝜃)  

𝑟
⋅
1

2
𝐸0𝑎

2 (6.1) 

and is valid as long as 𝑎 ≫ 𝜆. Here, 𝜃 is the angle with respect to the current direction, 𝑟 is the 

distance to the defect, 𝐸0 is the overall electric field resulting from the applied lateral voltage 

across the sample without defects and 𝑎 is the defect radius. The resulting potential distribution 

around a defect is shown in Fig. 6.4.  

 

Figure 6.4. Transport dipole around a circular void defect. (a) Topography of the defect. 

(b) Potential map around the defect upon current flow from left to right. (c) Section of the 

potential map indicated in (b) by a dashed line. The position of the defect corresponding to its 

topography is indicated by the shaded area. 

 

On the other hand, the quantum-mechanical Landauer dipole results in a disturbance of the 

electric potential around the defect according to [80] 

𝑉Landauer = −
cos(𝜃)

𝑟
⋅
4ℏ𝑗

𝑘F𝑒2
𝑎, (6.2) 

which is valid as long as 𝑎 ≪ 𝜆. Here, 𝑗 is the local current density corresponding to 𝑗 = 𝐸0/𝜌Bi, 

where 𝜌Bi is the sheet resistance of the Bi{012} film.   

Like eq. (6.1), eq. (6.2) decays with 𝑟−1 outside of the defect, such that the two above sources 

of transport dipoles can only be distinguished experimentally by their dipole amplitude. Hereby, 

the Fermi wave vector 𝑘F, and as a result also the pre-factor of the Landauer dipole 
4ℏ𝑗

𝑘F𝑒2
, is a 

priori unknown. As a result, the two dipole source can be only distinguished by their 

dependence on the defect radius 𝑎: The quantum mechanical Landauer dipole (eq. (6.2)) 

depends linearly on 𝑎 while the diffusive transport dipole (eq. (6.1)) is proportional to 𝑎2.  

In order to characterize their size dependence, we have analyzed resistivity dipoles in a Bi thin 

film by means of scanning tunneling potentiometry implemented into a four-tip STM [52, 81]. 

Hereby, the sample surface is contacted by two of the four STM tips, injecting a lateral current 

of 𝐼 = 0.4 mA at a tip distance of 𝑑 = 10 µm. The resulting current density at the position 

centered between the tips, where we perform the potentiometry scan, is 𝑗 =
2𝐼

𝜋𝑑
= 2.5 A/m [82].  
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6.4 Evaluation of transport regime 

Figure 6.5 shows the results of the STP measurements. The sample topography (Fig. 6.5 (a)) 

shows a distribution of holes of different sizes with only a small number of additional islands 

on top. In the corresponding potential map, we find an overall linear voltage slope and after 

subtraction of the linear slope a fine structure which shows dipole shaped features located 

corresponding to the position of the holes in the topography (Fig. 6.5 (b)). 

 

Figure 6.5. Scanning tunneling potentiometry of the Bi{012} surface. (a) Topography of the 

sample surface. (b) Corresponding potential map to (a) after linear background subtraction. 

Transport dipoles located at the voids in the sample surface are observed. (c) Result of the 

resistor network calculations using the mask shown in (d). (e) Sections of topography and 

potential data indicated in (a)-(c) as white lines. The lateral dimension of the defect is indicated 

as gray area. 

 

In order to investigate the transport regime present (diffusive or ballistic), the dipole amplitude 

has to be analyzed as a function of the defect size. However, as evident from the topography 

the defects in the present sample are not circular and thus the theory given by equations (6.1) 

and (6.2) cannot be directly applied. In order to lift the limitation of the theoretical equations to 

circular defects, we present in the following resistor network calculations which allow to 

determine the classical transport dipole around arbitrarily shaped defects, as already 

demonstrated in chapter 3 of this thesis. The defect dimensions and shapes are given by a mask 

which we deduce from the topographic data by applying an automated void detection algorithm 

implemented in the open source data analysis software Gwyddion. The algorithm is set to detect 

regions in the topography with a height below a certain threshold. We then use the resulting 
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mask for the resistor network calculations by setting the resistance inside of the voids to be 

infinite, whereas on the terrace surrounding the defect the resistors have values according to the 

film resistivity 𝜌Bi. No additional parameters are required for the calculation of the resulting 

potential distribution. The source code of the calculations can be found in the appendix C.1.2 

of this thesis. The result of the resistor network calculation is shown in Fig. 6.5 (c) with the 

used mask shown in Fig. 6.5 (d). Figure 6.5 (e) shows a section of the sample topography and 

the corresponding measured and calculated potential at the position of a defect, indicated in the 

corresponding maps as white line. The lateral size of the dipole 2𝑎 = 13 nm and the dipole 

amplitude 𝑉dipole = 0.4 mV are determined as the maximum voltage difference of the potential, 

parallel to the current direction which occurs at the boundary of the defects. For this defect, the 

dipole amplitude in the experiments 𝑉dipole and resistor network calculation 𝑉diffusive are in 

very good agreement without any fit parameters included. Thus, we conclude that the transport 

around this defect is in the classical transport regime.  

The next step is the analysis of a several defects of different sizes with respect to their potential 

deviation from the expected diffusive transport behavior. Such a deviation would be an 

indication of a quantum mechanical contribution to the observed resistivity dipole, i.e. the 

Landauer dipole. However, on the one hand the fact that the holes are not circular requires a 

procedure which allows to map the resistivity dipole which we obtain from the resistor network 

calculations and experimental results to the theory of circular defects. One way to do this is the 

calculation of a corresponding defect size 𝑎∗ which one would expect for a hole with the 

calculated diffusive resistivity dipole 𝑉dipole after  

𝑎∗ =
𝑉dipole

𝐸0
. 

To validate this analysis method, one requires e.g. to characterize holes for which one is certain 

that the classical transport regime applies. For such data, the size-dependent resistivity dipoles 

should represent the expected diffusive behavior given by eq. (6.1).  

Another problem in the data analysis is that the mask extracted from the topographic data 

depends on the chosen threshold in the automated void detection and as a result the void size 

which enters the calculations varies. The reason for this is that the hole edges are not perfectly 

sharp in the topographic data but are somewhat rounded as evident in Fig. 6.5 (e). This effect 

we address mainly to the finite radius of the scanning tip. An analysis of the effect of variations 

in the threshold on the resulting diffusive transport data which we calculated from the resistor 

networks, shows that an underestimation of the actual hole size can in principle result in a 

spurious deviation from the diffusive transport model. To exclude the different possible error 

sources in the analysis of the experimental data is an ongoing task which we plan to address by 

additional experiments. In this way, we are confident that it is possible to extract the 

experimental signature of the Landauer dipole around a single hole in the sample surface, which 

would be the first direct experimental evidence of this effect since its prediction 70 years ago. 

6.5 Conclusion 

We have shown that a detailed analysis of transport dipoles at void defects can give access to 

different transport regimes (classical and quantum mechanical). In detail, the two regimes can 

be distinguished in local transport measurements by the dependence of the amplitude of the 
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transport dipoles as a function of the defect size. However, the detailed analysis of the dipole 

amplitudes with the corresponding analytic models turn out to be difficult because these 

theories consider only circular defects and small variations in the defect shapes and sizes can 

have large effects on the resulting expected dipoles. To analyze the experimentally observed 

resistivity dipoles we facilitate resistor network calculations, which are a versatile tool to 

describe the diffusive transport around arbitrary defect geometries and allows us to determine 

the diffusive contribution in the experimentally observed resistivity dipoles. Deviations from 

the expected diffusive resistivity dipoles we expect to be due to the contributions of the 

Landauer dipole.  

While we have obtained promising results in STP experiments in Bi thin films, still some work 

has to be done to establish the understanding of the system under investigation and the 

corresponding theoretical analysis. Especially the detailed analysis of possible error sources in 

the data analysis is an important task. For this purpose, additional experiments such as low 

temperature STP measurements, where the mean free path of the charge carriers is larger, are 

planned. In combination with recent theoretical work [83, 84] these results could further provide 

a model the transition of the scattering at defects between the diffusive and quantum mechanical 

transport regime.  

The establishment of local transport measurements in the ballistic regime opens the route for 

intriguing future experiments. For example, the measurement of an orifice promises the 

investigation of the principles of a quantum point contact in real space [85]. Furthermore, in 

this experiment it is predicted that the Fermi surface can be studied in real space [86, 87, 88]. 

In order to perform such an analysis, measurement at low temperatures are administrable, due 

to the increase in the carrier mean free path [19], better STP measurement resolution [81] and 

reduced thermal broadening. 
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Chapter 7 Resistor network calculations 
 

7.1 Introduction 

As evident from chapter 3 and 6 of this thesis, resistor network calculations present a powerful 

tool to analyze scanning tunneling potentiometry data, corresponding to a two-dimensional 

system. Hereby, resistor network are a simplification of the general relation of electric fields 

and currents by projection onto a discrete lattice, consisting of nodes which are connected with 

each other via resistors. The resulting set of equations, connecting potentials and currents in the 

system via the respective resistors corresponds to Ohm’s law in matrix notation, according to 

𝑽 = 𝑆−1𝑰, (7.1) 

  

where 𝑽 is the vector of voltages, 𝑰 is the vector in which the sum of incoming and outgoing 

currents at each node enters and 𝑆 is the matrix of conductivities. Hereby, after Kirchhoff’s 

current law 𝑰 is zero everywhere in the system except where a current is injected. This method 

allows the calculation of the potential distribution resulting from an arbitrary distribution of 

resistors and has previously been used to analyze scanning tunneling potentiometry results on 

e.g. Ag/Si(111)−(√3 × √3) [16] and graphene [15, 89]. In these applications it was possible 

to determine the electrical conductivity of defects like steps and domain boundaries on the 

sample surfaces. Figure 7.1 shows the schematic of a basic two-dimensional resistor network 

with 𝑛 × 𝑚 nodes. 

 

Figure 7.1. Schematic of a resistor network with 𝑛 ×𝑚 nodes. 

 

While in these reports the potential maps are calculated from given arrangements of resistors 

after eq. (7.1) and then compared to the experimental results, it is also under certain 

circumstances possible to directly calculate a resistor distribution from a given potential map, 

the so called ‘inverse problem’. The limitation hereby is that the corresponding equation system 

is in general underdetermined, such that finding a unique solution generally requires certain 

additional conditions. In detail, the problem in solving eq. (7.1) with respect to 𝑆 stems from 

the larger number of unknown resistors in comparison to the number of nodes with given 
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voltages. In detail, a system with 𝑛 × 𝑛 nodes has 2𝑛2 − 𝑛 unknown resistors (without 

considering the boundaries). 

In this chapter, first the mathematical concept of the resistor network is introduced in detail. 

Subsequently, the inverse conductivity problem is discussed and different possibilities which 

allow to find a unique solution to the problem are presented. 

7.2 Forward direction 

The resistance between two neighboring nodes 𝑉𝑞 and 𝑉𝑞′ {𝑞 𝜖 𝑛 × 𝑚} is 𝑅𝑞 𝑞′ with a 

corresponding conductance 𝑆𝑞,𝑞′ = 1/𝑅𝑞,𝑞′ = 𝑆𝑞′,𝑞. As a result, at each node the incoming and 

outgoing currents are 

• 𝐼𝑞−1,𝑞 = (𝑉𝑞−1 − 𝑉𝑞)𝑆𝑞−1,𝑞 

• 𝐼𝑞+1,𝑞 = (𝑉𝑞+1 − 𝑉𝑞)𝑆𝑞+1,𝑞  

• 𝐼𝑞−𝑚,𝑞 = (𝑉𝑞−𝑚 − 𝑉𝑞)𝑆𝑞−𝑚,𝑞  

• 𝐼𝑞+𝑚,𝑞 = (𝑉𝑞+𝑚 − 𝑉𝑞)𝑆𝑞+𝑚,𝑞  

After Kirchhoff’s current law it holds 

𝐼𝑞−1,𝑞 + 𝐼𝑞+1,𝑞 + 𝐼𝑞−𝑚,𝑞 + 𝐼𝑞+𝑚,𝑞 = 𝐼𝑞 = 0 A 

corresponding to 

(𝑉𝑞−1 − 𝑉𝑞)𝑆𝑞−1,𝑞 + (𝑉𝑞+1 − 𝑉𝑞)𝑆𝑞+1,𝑞 + (𝑉𝑞−𝑚 − 𝑉𝑞)𝑆𝑞−𝑚,𝑞 + (𝑉𝑞+𝑚 − 𝑉𝑞)𝑆𝑞+𝑚,𝑞 = 0 A 

which in matrix notation is 

𝑆 𝑽 = 𝑰 = 𝟎 (7.2) 

 

corresponds to Ohm’s law. Hereby, 𝑆 is a sparse matrix with less than 4𝑚𝑛 finite entries and 

the respective matrix dimensions in eq. (7.2) are as follows: 

dim(𝑆) = (mn)2 

dim(𝑽) = mn 

dim(𝑰) = mn 

Note that Kirchhoff’s law is only valid in the interior of the resistor network. If we would not 

allow any current to flow in or out of our resistor network, the result will only be a trivial 

solution of the system which has a constant potential at all nodes of the network as results. 

Therefore, at the boundary of the resistor network we allow finite currents to occur, typically 

on one side of the network incoming and on the opposite side outgoing. Hereby, the number of 

nodes where the current is injected is arbitrary but is typically one of two cases: A single node, 

corresponding to a point contact, or an entire side of the resistor network, corresponding to a 

parallel current flow. In either case, the sum of all incoming and outgoing currents has to vanish, 

according to Kirchhoff’s law.  
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7.2.1 𝟑 × 𝟑 Resistor Network 
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Note how in the sparse matrix the individual conductivities appear at the position in the matrix 

according to their numeration, e.g. 𝑆2,5 is in row 2, column 5 of the matrix. On the diagonal the 

sum of the adjacent conductivities to that respective node are entered with negative sign. As a 

result, each line and each row of the matrix adds up to zero, which corresponds again to 

Kirchhoff’s law. The voltage distribution resulting for this system is readily found by entering 

the corresponding values of 𝑆𝑞,𝑞′ into the matrix, inverting it numerically and calculating the 

right side of the equation system according to eq. (7.1). The result for all resistors of 

conductivity 𝑆𝑞,𝑞′ =
3

2
 Ω−1 is shown in Fig. 7.3 

 

Figure 7.3. Voltage drop across the 3 × 3 resistor network resulting from the system shown in 

Fig. 7.2 with 𝑆𝑞,𝑞′ =
3

2
Ω−1 . 

 

7.2.2 Resistor network with quasi-one-dimensional defects 

The application of the above scheme for larger resistor networks and with resistor distributions 

corresponding to a current flow around circular defects was shown in chapter 3 and 6 of this 

thesis. However, one can also calculate the potential distributions resulting from quasi-one-

dimensional defects corresponding to e.g. steps on a sample surface [16]. An example of the 

voltage drop at a corresponding test structure, in this case a step which results in an increased 

resistance along a line with a bulge, is given in Fig. 7.4 (a). From this resistor network one can 

further extract the local current in the two spatial dimensions 𝑗𝑥 and 𝑗𝑦, the local absolute current 

𝑗abs = √𝑗𝑥2 + 𝑗𝑦2 and the local current direction 𝜔 = arctan(𝑗𝑦/𝑗𝑥) which are shown in Fig. 7.4 

(b)-(e). This makes resistor network a powerful tool for the analysis of coresponding 

experimental data, as these quantities are typically not directly accessible otherwise. 
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Figure 7.4. Resistor network calculation at a quasi-one-dimensional defect. (a) Surface plot 

of the resulting potential distribution corresponding to a step edge with a bulge. (b) Local 

current in 𝑥-direction. (c) Local current in 𝑦-direction. (d) Absolute current distribution. (e) 

Local current direction. 

  

7.3 Inverse conductivity problem 

After demonstrating the ‘forward direction’ of calculations with resistor network in chapter 7.2, 

we turn now to the inverse conductivity problem. Hereby, not the conductivities of the resistor 
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network are given but the voltages at the nodal points. For addressing this problem, we need to 

rewrite eq. (7.1): 

𝑉 𝑺 = 𝑰 (7.3) 

 

Namely, 𝑺 is now the vector of unknown conductivities and 𝑉 is the matrix where we enter the 

known node potentials. The problem can then be solved by inverting 𝑉, such that 

𝑺 = 𝑉−1𝑰. 

The problem hereby is, as mentioned before, that due to the underdetermined system, the 

inverse of 𝑉 is generally not unique. Graphically speaking, after entering all the equations we 

receive from applying Kirchhoff’s current law to the system, the matrix 𝑉 has more columns 

than it has rows. In order to make the system uniquely solvable, there are two possibilities: 

• Decrease the number of unknown parameters by putting further restrictions on the 

system, e.g. by fixing some of the conductivities, 

• Increase the number of linearly independent equations which describe the system, e.g. 

by additional measurements. 

In general, the stronger the restrictions on the system are, the easier it is to solve. For example, 

using the symmetry of a two-dimensional system to reduce it to a one-dimensional problem 

results in a system which can be readily solved as demonstrated e.g. in Ref. [90]. However, in 

order to keep the solution as general as possible, the smallest possible amount of restrictions 

should be put on the system. In this way, instead of introducing further conditions, here it is 

possible to find a unique solution for the problem without further restrictions, by combining 

two measurements of the same system [91]. 

In detail, one needs to record another set of voltages 𝑉 which fulfil eq. (7.3) with the same set 

of conductivities 𝑺. Experimentally speaking, this corresponds to another measurement of the 

same sample area. However, because to get additional information about the system, this 

additional set of equations must be linearly independent from the first set of equations. This 

means that multiple measurements with the same current direction, with different absolute 

amount of current, will not give additional information about the underlying set of 

conductivities. Instead, one requires a measurement at a different current direction through the 

sample under investigation. In principle, the relation of the current directions is arbitrary as long 

as they are not identical, however, experimentally it makes sense to choose perpendicular 

current directions in order to minimize the overlap of the two data sets. Furthermore, in two 

dimensions additional data sets beyond two current directions, again will not add new 

information about the system because all current directions can be written as a linear 

combination of the first two. Additional measurements of linearly dependent data sets will 

therefore only decrease statistical measurement errors, which is however typically better done 

by fewer but therefore more precise measurements.  

Below we present the corresponding MATLAB script, which performs the calculation of a 

conductivity map from two previously simulated potential maps of perpendicular overall 

current direction. The script is applied to two different problems: 

• A conductivity profile originally proposed by Wang et al. [91], corresponding to e.g. an 

island on a thin film. 
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• A quasi-one-dimensional defect corresponding to e.g. a step edge on a Si(111) surface. 

7.3.1 Island 

In this example the conductivity distribution given by the formula [91] 

𝜎(𝑥, 𝑦) = 𝜎0[1 + 5 exp(−(𝑥 − 𝑦)
2 − 2(𝑥 + 𝑦)2) + 3 exp(−3(𝑥 − 1)2 − (𝑦 + 1)2)]−1. 

Hereby, for 𝜎0 = 1 the conductivity is approximately 1 everywhere on the boundary of the test 

system, resembling a somewhat circular shaped defect. Perpendicular current directions 

through the system result in the potential distributions shown in Fig. 7.5 (a) and (b), 

respectively. The corresponding solution of the inverse conductivity problem is shown in Fig. 

7.5 (c) and (d). We find that the initial resistivity profile of the system is very well reproduced 

from the potential data. 

The analysis of the present resistivity profile corresponds to e.g. an island on a 4 ML film of 

Bi-BP, as shown in chapter 6 of this thesis. In the area of the island the resistivity of the sample 

is expected to be lower due to the larger film thickness there. Hereby, the decrease in resistivity 

is expected not to be instantaneous at the edge of the island, but will be smeared out to the 

inside because the current requires some distance to redistribute into the additional layer on top 

of the film. Corresponding experimental data would therefore be of great interest to test the 

present numerical analysis method and allow to determine the influence of additional layers on 

a thin film on its conductivity. Such an analysis would also enable to determine possible surface 

state contributions to the conduction through the thin film, if presents. 

 

Figure 7.5. Inverse conductivity problem calculated for an island on a thin film. Input 

potential maps for one current direction (a) and the second current direction (b). Resulting maps 

of the resistivity in (c) 𝑥-direction and (d) 𝑦-direction. 

 

7.3.2 Quasi-one-dimensional defect 

In the case of the quasi-one-dimensional problem embedded in a two-dimensional matrix, one 

finds generally two points where the area of increased resistance collides with the boundary of 

the system. As a result, when considering multiple current directions at some point the node at 

the boundary where resistors of high resistance are connected will act as a current source. The 

problem hereby is, that assuming a constant current density at the boundary will result in an 

unphysical much larger voltage drop at the position of the defect which disturbs the system. 
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Figure 7.6. Inverse conductivity problem calculated for a quasi-one-dimensional defect. 

(a) Input potential maps for one current direction and (b) the second current direction (b). 

Resulting maps of the conductivity in (c) 𝑥-direction and (d) 𝑦-direction. 

 

A solution for this problem is to scale an incoming current density 𝑗 at each node according to 

the resistance connected to it. This process introduces a minimal boundary condition: No 

change in conductivity perpendicular to boundary where the quasi-one-dimensional defect 

meets the boundary within first two pixels perpendicular to the boundary. The resulting solution 

of the inverse conductivity problem is shown in Fig. 7.6. We find that the quasi-one-

dimensional defect is very well reproduced from the potential data. 

7.3.3 Calculation speed 

For convenience, we have also tested the implemented code speed with the resulting 

computation time as function of the system size plotted in Fig. 7.7. Here, an exponential 

increase of calculation time is observed with a 100 × 100 pixel system taking approximately 

23 min for calculation on a standard desktop PC. 

 

Figure 7.7. Calculation time of the MATLAB code to solve the inverse problem as a function 

of the system size (black dots) with exponential fit (red line).  

 

7.3.4 Effect of noise on the inverse conductivity calculation 

While extracting the distribution of conductivities works nicely in theory as shown above, 

measurement errors in real experiments turn out to be a critical parameter when trying to solve 

the inverse problem for experimental STP data. For this reason, the application of the above 
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calculations to real experiments was not successful up to this point. The reaction of the 

calculations upon errors in the measurement data can be determined by the so-called condition 

number of the matrix 𝑉 [92] which is defined as 

𝜅(𝑉) = ||𝑉|| ⋅ ||𝑉−1 ||. 

The condition number gives an estimate of the maximum error in the vector 𝑆 when the 

measurements in 𝑉 are subjected to errors. In mathematical terms: Be ||𝑒|| the error of the exact 

solution ||𝑆|| for eq. (7.3). Then for errors in the matrix 𝑉, with 𝑺̃ an approximate solution for 

the disturbed matrix 𝑉̃, meaning 

𝑉̃𝑺̃ = 𝑰, 

the relative error of the solution is  

||𝒆||

||𝑺||
= 𝜅(𝑉)

||𝑉 − 𝑉̃||

||𝑉||
+ Ο(||𝑉 − 𝑉̃||2), 

for ||𝑉 − 𝑉̃|| → 0 [93]. Simply speaking, for an ideal system 𝜅(𝑉) = 1, which means that the 

relative error in the solution equals the relative error in the data [93]. Hereby, the condition 

number can be interpreted as a factor by which the relative error in the measurement is scaled 

with respect to the final result. 

In order to optimize the solution of the inverse conductivity problem one should therefore 

minimize the condition of the respective matrix, which however varies for different problems 

and therefore sets of equations. For example, for systems like the Ag/Si(111)−(√3 × √3) 
surface reconstruction, where the resistivity of the sample surface is dominated by step edges 

the voltage slope across the terraces is very small. In such systems, small amounts of noise in 

the measured potential maps lead to large variations in the local potential slope and therefore 

typically result in large relative errors when trying to compute the corresponding conductivity 

on the terraces. 

Furthermore, 𝑉 is typically non-square as a result of the structure of the resistor network. In this 

case, the inverse matrix 𝑉−1 can be determined by a singular value decomposition 

𝑉 = 𝐴Σ𝐵∗ 

⇔ 𝑉−1  = 𝐵Σ−1𝐴∗, 

where Σ is a diagonal matrix with its diagonal elements being the singular values of 𝑉 [94]. The 

singular value matrix Σ has the same condition as 𝑉 and 𝐴 and 𝐵 are unitary matrices, meaning 

that the inverse of 𝐴 and 𝐵 is equal to their conjugate transpose 𝐴∗ and 𝐵∗, which makes the 

calculation of the inverse of 𝑉 and therefore also its condition easy. 

Below we show the effect of noise in the measurement data on the resulting conductivity 

distribution by introducing an artificial relative noise of 1% rms on the voltage maps in the test 

system from chapter 7.3.1. The resulting noise in the calculated conductivity is 15% rms with 

respect to the conductivity resulting from the voltage data without noise added on top. The 

results of this calculation are shown in Fig. 7.8. Hereby, the system size is 21 × 21 nodes and 

𝑐𝑜𝑛𝑑(𝑉) ≈ 35. 
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Figure 7.8. Conductivity distribution resulting from 𝟏% 𝐫𝐦𝐬 noise in the voltage data. (a) 

and (b) input voltage data with added 1% rms on top of the data. System size 21 × 21 nodes. 

(c) and (d) resulting conductivity distributions from (a) and (b). The noise level is 15% rms 
with respect to the result from the voltage data without noise. 

 

In order to enhance the noise performance of the inverse conductivity calculation, without 

putting further restrictions on the system, the condition of the matrix 𝑉 should be enhanced. To 

do so, there are different methods reported in literature, such as the Tikhonov regularization 

which can in principle be readily applied in terms of the singular value matrix [95]. These 

optimizations of the present work are planned for the near future with the ultimate goal of a 

successful application on experimental data. The present calculation method is of great interest 

for the application to STP data, because it allows to deduce unprecedented information directly 

from the experimental data. 

7.4 Conclusion 

Resistor network calculations are a versatile tool when it comes to the analysis of locally 

resolved transport measurements of nanostructures. In detail, they can provide a toolset to 

overcome the problem that potential maps along are a priori not sufficient to determine the 

exact current paths in the sample under investigation. However, by fitting a resistor network 

with the corresponding geometry to the experimental data one can deduce local current 

direction and amplitudes. By such an analysis different kinds of defect geometries can be 

analyzed with great detail, providing important information about the sample material 

properties. The successful application of the technique was demonstrated in chapter 3 of this 

thesis. 

An ultimate goal would be the direct calculation of the resistivity profile throughout the sample 

from voltage maps, acquired by STP experiments, by inverse conductivity calculations. For the 

application of the inverse method to experimental data Bi thin films on Si(111) would be a 

promising system. In this sample, under the correct preparation procedure [42], highly 

conducting domains can be embedded in an otherwise low conducting film and vice versa. 

Furthermore, Bi thin films have proven to be excellent candidates to perform STP 

measurements due to high measurement resolution and good contact stability with the current 

injecting tips.  

As a further outlook, higher-dimensional resistor networks are possible to implement in the 

same way as presented here. Just to name one example of a possible application: A three-

dimensional resistor network allows to calculate the potential distribution at the sample surface 

for a defect which is buried underneath. While details will not be discussed here, the code 
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required for calculations in three-dimensional resistor networks can also be found in the 

appendix. 

All MATLAB codes for the calculations shown in this thesis can be found in appendix C. 
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Chapter 8 Conclusion and Outlook 
 

As shown in this thesis, in situ transport measurements by STP are a powerful tool which allows 

the characterization of samples, e.g. epitaxial thin films, with unprecedented spatial and 

potential resolution. By only changing the software of the electronic controller, we reported 

here the successful implementation of STP into a four-tip STM setup. As a result, a 

corresponding ‘upgrade’ of similar experimental setups can be performed in a very simple and 

cost-efficient way. 

Based on this technique we have further developed a four-probe measurement method where 

all the contacts required to perform a multi-probe measurement can be held in tunneling contact. 

This novel measurement technique enables truly non-invasive in situ transport measurements, 

which are of interest especially for fragile samples, e.g. surface terminations of reconstructed 

semiconductor surface. This technique is furthermore promising for applications in electronics 

industry, e.g. to control products between individual processing steps without damaging them. 

For this reason, we have filed the application for a corresponding patent. 

A major advantage of the resulting experimental setup compared to traditional approaches are 

the possibility of in situ combination of different surface analysis tools such as LEED and 

ARPES. Hereby, the general limitation of comparability between in situ spectroscopic 

measurements and ex situ transport measurements, due to the altering of samples under ambient 

condition and lithography steps can be overcome. 

This approach is applied to topological insulator thin films, where we performed STP in 

combination with ARPES to get a thorough understanding of the conductance through the film 

under investigation, as shown in chapter 3 of the thesis. In detail, by performing ARPES we are 

able to determine the filling level of the TSS on the top of the sample which is an important 

factor in the corresponding transport measurements, because in this way we are able to identify 

the fraction of the current transmitted by the TSS on the top surface of the thin film, which is 

important to analyze the STP data. Furthermore, spin-polarized ARPES measurements ensure 

that the surface state inherits the spin-momentum locking expected for a topological insulator. 

When performing STP measurements we find three different kinds of defects to result in a local 

voltage drop: Step edges, domain boundaries and void defects. Hereby, we find the resistance 

of the domain boundaries to be almost four times larger than that of the step edges and thereby 

the dominant defect induced contribution to the transport. The resistance of void defects we 

determined by use of resistor network calculation where we find their contribution to the overall 

resistance to be small compared to the other defects. In total, the defects make up 44% of the 

total voltage drop across the sample. The remaining 56% occur on the flat terraces and are 

attributed to electron-phonon scattering and defects below the resolution of our transport 

experiments. 

In general, it is important to analyze all the conduction channels with respect to their 

contribution to the overall conduction through the sample. Such a detailed analysis we presented 

in chapter 4 of the thesis, where we used again a full in situ approach and combine ARPES and 

transport measurements on a TI thin film. For the transport measurements we facilitated a newly 

developed sample design which enables gating of the sample while performing transport 

measurements. The results of these measurements we analyze with respect to a model we 

developed and which in combination with the ARPES results allows us to deduce transport 

properties of the individual transport channels in the TI film, such as carrier concentrations with 
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and without gating as well as the carrier mobilities in the two TSS channels. In this context we 

have performed band bending calculations, from which we find that due to the high dielectric 

constant in the TI film and the presence of two surfaces, in which the position of the bands 

relative to the Fermi energy depends on the filling of the Dirac cones, the bands throughout the 

film are rather flat. To calculate the effect of the application of a gate voltage on the TSS channel 

at the top and bottom of the film in unprecedented detail, we have further performed 

calculations based on a gating model which includes the quantum capacitance of the TSS, which 

results due to the respective low density of states, and the coupling between the top and bottom 

surface state. Analyzing the gate dependent transport data with this model gives us a conclusive 

picture of the transport properties in these TI thin films. 

We have further analyzed another transport channel of TI thin film samples which is formed at 

the substrate interface during the epitaxial growth of the films. In detail, we have shown by a 

combination of STEM, LEED and DFT calculations that the Te passivation of the Si(111) 

substrate results in a Te/Si(111)−(1 × 1) termination of the substrate as shown in chapter 5 of 

the thesis. Due to the Te atoms forming one bond to the directly underlying Si atom, an a priori 

net positive charge, corresponding to a two-dimensional hole-gas is expected to be present at 

the substrate surface. This consideration is reflected in a metallic band structure as determined 

from DFT calculations. Preparation of the sole Te/Si(111)−(1 × 1) substrate termination and 

analysis by in situ distance dependent transport measurements in the four-tip STM results in a 

conductivity which is relatively low compared to the typical conductivity of the TSS transport 

channels, despite the predicted metallic bands. We explain this finding by the relatively high 

surface roughness which we observe in STM measurements and which is the result of an initial 

HF etching procedure of the sample substrate. Nevertheless, the TI films grown on the substrate 

are very smooth and of high crystalline quality. 

As shown in chapter 6 of the thesis it is possible to further disentangle classical transport and 

quantum mechanical transport in a sample by measurement of void defects of different sizes. 

To do so we performed STP measurements on Bi ultra-thin films, which host naturally such 

defects with a variety of sizes. A lateral current through the sample then results in the formation 

of resistivity dipoles at the defects, their amplitude depends on the transport regime at the 

respective defect – classical transport if the defect size is larger than the carrier mean free path 

and quantum mechanical when the defect size is smaller than the mean free path. In this way 

we are able to characterize the transition between the two transport regimes by measurement 

different sizes of defects. This furthermore allows us to extract parameters like the mean free 

path and 𝑘F from the measurements. 

For the detailed analysis of the size dependent resistivity dipoles, resistor network calculations 

are an important tool because a previous analytic theory only considers circular defects and 

variations in the defect shape can result in significant changes in the respective dipole 

amplitudes. 

Chapter 7 of the thesis documents the basic principle of the resistor network calculations used 

throughout the thesis, which is based on Kirchhoff’s current law and results in a linear equation 

system. As a result, it is possible to calculate the potential distribution resulting from an 

arbitrary distribution of resistances in a system under flow of a current in up to three-

dimensions. The resulting potential distributions can be compared to transport measurements 

and pose an important tool for the understanding and analysis of experimental transport data as 

evident in chapter 3 and 6 of the thesis. While the calculation of a potential distribution from a 

given set of resistors and a current is relatively straight forward, it only allows to fit 
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experimental data by adjusting the resistor distribution and then comparing the resulting 

potentials to those observed in the experiments. More convenient would be the straight-forward 

determination of the sample resistivity from a given potential distribution – the so called inverse 

conductivity problem.  

The aim of the inverse conductivity problem is to determine the distribution of resistances in a 

structure under investigation only from the potentials measured at its surface which, without 

constraining the system, results in an underdetermined problem. Our approach to solve this 

problem for a two-dimensional resistor network is the measurement of the same resistor 

distribution under two different, ideally perpendicular, current directions which gives enough 

information to solve the corresponding linear equation system. While we have proven that this 

procedure works in theory, it is susceptible to noise in the potential data sets, which quickly 

leads to a divergence of the solution and thereby to unphysical results. To address this problem, 

it is planned to condition the equation system such that noise will have less influence on the 

solution. After that, the application of the procedure to experimental data, e.g. from STP 

measurements of Bi thin films on Si(111) in planned. 

Plans for future in situ transport studies include the utilization of a low-temperature four-tip 

STM which will be operational soon and allows to perform four-probe measurements and STP 

at a temperature of down to 4 K. The low temperatures freeze out bulk charge carriers in 

semiconductor substrates as well as the interior of TI samples, reducing drastically their impact 

in transport measurements. In this way the transport properties of interest will be better 

accessible allowing even more detailed studies of their properties. In detail, the phonon 

scattering at low temperatures is much lower than at room temperature, leading to increase 

mean free path of the charge carriers, giving better access to quantum mechanical effects. To 

determine e.g. the Fermi wave vector 𝑘F by studying the size dependent residual resistivity 

dipoles would therefore be much easier. Furthermore, low temperatures generally result in a 

more stable system concerning the drift of the STM units but also the stability of the tunneling 

tips and the achievable energy resolution. As a result, on the one hand spatially more precise 

measurements can be realized (smaller scan areas, slower scan speed) and much sharper 

spectroscopic features can be analyzed e.g. in tunneling spectroscopy due to the Fermi 

distribution in tip and sample being much narrower as at room temperature. Concerning the 

STP measurements, the low temperature results in a decrease in the noise of the measured 

voltage, which enhances the potential resolution even further. 

The low temperature four-tip STM setup contains also a magnet, which allows application of a 

magnetic field perpendicular to the sample plane of up to 8 T. In this way it will be possible to 

cover the full spectrum of magneto-transport measurements under UHV conditions, including 

measurements of the Hall effect, weak (anti-)localization, Shubnikov-de-Haas oscillations and 

many more. In STP measurements, the combination of large mean-free paths and magnetic 

fields should further lead to the opportunity to directly observe spatial variations at the sample 

surface due to the Aharonov-Bohm effect. 
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Appendix A Createc box startup via ethernet 

connection 
 

The new electronics is based on the new TMS320C6657 DSP from TI. Communication between 

the PC and the electronics is based on a Gigabit Ethernet connection. It is expected that the PC 

is running the 64bit Version of Windows 7. In the standard configuration the software running 

on the DSP board is loaded from the PC after startup of the electronics. It is therefore necessary 

to install a TFTP and DHCP Server on the PC.  

In more detail: Install an Ethernet adapter in the host PC, which is dedicated to communication 

with the Electronics. A Gigabit Ethernet switch is needed between the electronics and the PC. 

Disconnect or deactivate all other network connections during the installation process. The 

address of this adapter has to be 192.168.1.2. Subnet Mask: 255.255.255.0 Gateway 

192.168.1.1 (see images below). A suitable TFTP and DHCP Server is TFTPD64. A suitable 

‘.ini’ file will be supplied to the DSP as below: The name file downloaded is C6657le.bin 

(rename it if it has a different name) and has to be located in the current directory of TFTP64 

(see image). Start TFTP64 using the settings given in the Graphs below first, then start the 

electronics. After a few seconds the DSP downloads the ‘.ini’ file resulting in the log viewer to 

respond as shown in the image below. After a successful boot the new electronics appears with 

address 192.168.1.102. Test it by using “ping 192.168.1.102” in the windows command 

window. Then you can finally start the PSTMAFM program on the PC. In the initialization you 

have to select hardware 5:C6657 save and restart the program. 

If the boot is successful the STMAFM.log file should read  

 

Afterwards, the TFTP server is not needed anymore. In the following, the settings in the 

corresponding windows are shown. 

09.04.2014 10:35:23: Start STMAFM_Init 

09.04.2014 10:35:23: Enter DSPInit 

09.04.2014 10:35:23: Flashboot is false 

09.04.2014 10:35:23: C6657 Boot Start 

09.04.2014 10:35:23: Leave dspinit 

09.04.2014 10:35:23: Check pc32addamode 

09.04.2014 10:35:23: Create Registry file 

09.04.2014 10:35:24: Registry Access finished 

09.04.2014 10:35:24: Open STMAFM.cfg 

09.04.2014 10:35:24: Close STMAFM.cfg 

09.04.2014 10:35:24: Check Ramp Slider 

09.04.2014 10:35:24: Set FBControl 

09.04.2014 10:35:24: Open Datalogger 

09.04.2014 10:35:24: Finish stmafminit 
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Optional: 

To change the IP address from the default value of 192.168.1.102: (not for 4pp yet, 2014.04.09). 

In Initialization change the IP address and press ‘Save to Flash’ button. Afterwards quit the 

STM Program. Change the IP address of the network card if you changed the subnet and change 

the corresponding parameters in the TFTP Server. Reboot the DSP. Upon restart of the STM 

program the DSP will appear under the new address. 
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Appendix B Potentiometry software manual 
 

• Prerequisite for a potentiometry scan is a stable tunneling contact 

• The potential resolution of a STP scan depends strongly on the tunneling resistance  

o Values below 200 MOhm (e.g. 5-500 mV; 0.05-1 nA) are typical scanning 

parameters. The feedback parameters need to be set according to the tunneling 

parameters and voltage divider (1:1, 1:10, …). Good starting points are 

Integrator2=0.0001 (1:1); 0.01 (1:100); 0.1 (1:1000).  

o P-Gain2 should be set to 1 independent of measurement parameters and is 

typically not required to be adjusted. 

• The ADC offset needs to be calibrated to be zero – otherwise the measurement results 

will be flawed. This is true especially for thermovoltage and surface photovoltage 

measurements. 

The contact resistance of the two current injecting tip can vary during the measurements. To 

compensate the variation a voltage reference tip can be used. This tip should be contacted to 

the sample surface close to the scan tip and on the same equipotential line as the scan tip. The 

potentiometry measurement can then be calculated as the difference of the scanning tip and the 

reference tip to cancel out offsets in the sample voltage due to the fluctuations in the current 

injection contact resistances. The method of utilizing a voltage reference tip is however often 

not required, because small offset fluctuations in the sample voltage can be corrected in the 

potentiometry scan in post-processing by a line subtraction. For larger fluctuations the 

potentiometry measurement itself typically becomes so instable that also the voltage reference 

tip does not help to achieve a good measurement. 

B.1 Software settings 

Aux1: This channel contains the measured potential data by the scanning tip. It can be renamed 

in the ‘Initialization’ tab of the software. 

Aux2: This channel contains the current of the scanning tip after performing the potential 

feedback. This value should be zero when the feedback functions properly. It can be renamed 

in the ‘Initialization’ tab of the software. 

ADCs: One should always also acquire the map of one of the ADCs of the current injecting 

tips, such that the injected current throughout the scan can be related to the potential map 

afterwards. If present, the ADC channel of the voltage reference tip should be recorded. 
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Figure B.1. DSP setting tab in the software with typical settings for a potentiometry scan with 

1:100 voltage divider. 

 

B.2 Potentiometry measurement without transport field  

In this setup one can measure e.g. the thermovoltage or photovoltage. 

 

Figure B.2. Schematic of the setup for a potentiometry measurement without a transport field. 
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• Make sure that the sample is on ground potential 

• Auto-approach the scan tip at the desired sample position with approach parameters e.g. 

2 V and 0.1 nA 

• Perform a topography scan to make sure the sample surface at this position is ok 

• Retract the tip by setting the set point to 0 A 

• Insert the voltage divider (if required), set the appropriate bias voltage and null the ADC  

• Re-approach the tip 

• Start the potentiometry scan 

• Adjust the scan parameters until the desired scan quality is achieved (typically best 

visible in the ‘LineScanForm’ with activated ‘Display current ScanProfile’) 

 

B.3 Potentiometry measurement with transport field  

 

Figure B.3. Schematic of the setup for a potentiometry measurement with applied transport 

field. 

 

• Make sure that the sample is on ground potential 

• Auto-approach the scan tip at the desired sample position with approach parameters e.g. 

2 V and 0.1 nA 

• Perform a topography scan to make sure the sample surface at this position is ok 

• Retract the tip by setting the set point to 0 A and performing slip-stick steps if required 

• Position the current injecting tips, typically a few ten or hundred microns away from the 

scanning tip such that all three tips are on a straight line 

• Auto-approach the current injecting tips one at a time 

• Auto-approach the scanning tip if retracted by slip-stick steps 

• Insert the voltage divider (if required), set the appropriate bias voltage and null the ADC  

At this point all tips should be in the vicinity of the sample surface, such that they can be brought 

into contact to the sample surface by activating their feedback loops. 

• Bring current injecting tip 1 into tunneling contact 
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• Activate the z-limiter of that tip (z-Limit retract 100 nm) 

• Set that tips bias voltage to ~10 mV 

• Set that tips preamp gain to 106 

• Activate the feedback loop of that tip with maximum current set point (~8 ⋅ 10−6 A) 

• Manually approach the tip to the sample surface by clicking the slider of the z-limiter 

and moving the tip forward with the arrow keys on the computer keyboard until a stable 

current of ~1 µA flows 

• Set the tip voltage to 0 mV and repeat the approaching procedure with the other current 

injecting tip 

 

• When both current injecting tip are in contact to the sample surface disconnect the 

sample’s connection to ground 

• Set the voltage of the two current injecting tips such that the desired lateral current is 

flowing – the absolute current measured at both current injecting tips should be 

identical. 

 (Optional) Contact voltage reference tip 

• Auto-approach the voltage reference tip to the surface 

• Activate the feedback of the tip 

• Activate the z-limiter of that tip (z-Limit retract 100 nm) 

• Switch that tip to voltage probe mode 

• Manually approach the tip to the sample surface by clicking the slider of the z-limiter 

and moving the tip forward with the arrow keys on the computer keyboard until the 

voltage at the tip jumps to 0 V. 

Approach scanning tip 

• Activate the feedback of the scanning tip with bias voltage larger than the bias voltage 

of the current injecting tips 

• Start a potentiometry scan and determine the approximate potential at the position of 

the scanning tip 

• Adjust the current injecting tips’ bias voltage such that the potential at the position of 

the scanning tip is approximately 0 V 

 

• Retract the tip by setting the set point to 0 A 

• Insert the voltage divider (if required), set the appropriate bias voltage and null the ADC  

• Re-approach the tip 

• Start the potentiometry scan 

• Adjust the scan parameters until the desired scan quality is achieved (typically best 

visible in the ‘LineScanForm’ with activated ‘Display current ScanProfile’) 

B.4 Opening Potentiometry Files in Gwyddion 

When a potentiometry scan is imported in Gwyddion, the z-scale of current and potential 

images is wrong due to the fact that all z-scales are recomputed using the corresponding piezo 

constants and Gain values when imported into Gwyddion. 
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The correct data scale can be retrieve from the original dataset by loading the file into Gwyddion 

and rescaling the potential/current images under “Data Process->Basic Operations-

>Dimensions and units” by a factor of 

𝑠 =
10 ⋅ 109

GainZ ⋅ ZPiezoconst
, 

as a result of the piezo constant being in units Å/V. For example, if GainZ=5 and ZPiezoconst= 

48.00 scaling by a factor of 

𝑠 = 0.0417 ⋅ 109 = 41.7 ⋅ 106 

yields the correct z-scale. To make sure the z-scale is correct, compare it to the original data in 

PSTMAFM! 

Note: If a voltage divider was used in the measurements, it can be directly factored in when 

rescaling the data: 

Zpiezoconst [Å/V] Z gain Voltage divider Scaling factor 𝑠 in Gwyddion 

48 5 1 4,167E+07 

48 5 10 4,167E+06 

48 5 100 4,167E+05 

48 5 1000 4,167E+04 

48 20 1 1,042E+07 

48 20 10 1,042E+06 

48 20 100 1,042E+05 

48 20 1000 1,042E+04 
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Appendix C Resistor network MATLAB codes 
 

C.1 Forward direction 

The following source code calculates the potential distribution from a given distribution of 

resistors, corresponding to the ‘forward direction’ of calculation. The type of defect can be 

chosen by uncommenting the corresponding function which are explained below.  

Source code of ‘Resistor_network_forward.m’ 

 

clear; tic; close all; 
x=51; y=51;                         %Pixel dimensions 
U1=10; U2=-10;                      %Potential at boundaries 
[Sx,Sy,Sz,I]=deal(sparse(x*y,1));   %Predefine for quicker calculation 
R=spalloc(x*y,x*y,6*x*y); k=0;           

  
Rho=1;          %bulk resistivity in Ohm*cm 
R_defect=10;    %Defect resistivity 
  

 
noise=0;       %swtich noise on/off 
T=[]; 
r=1; n=20;                              %radius of circular defects and 

number of defects in the random array                                          
% [T] = T_generator_circle(x,y,r);      %circular defect 
% [T] = T_generator_step(x,y);      %step defect 
% [T] = T_generator_array(x,y);  %array of circular defects 
[T] = T_generator_random(x,y,n);  %random distribution of 

circular defects 

% R_defect=T_generator_kidney(x,y);[T] = zeros(x,y);k=1;  %kidney defect 

 
t=find(T==0);                           %find the resistors to be 

replaced 

  
if x>1 
    Rx=Rho*ones(y,x);                   %resistors in x-direction 
    Rx(t)=Rstufex;                      %set resistor to step resistance 
    for i=1:numel(t) 
        if t(i)<(x-1)*y && k<1                  
    Rx(t(i)+y)=Rstufex;                 %set also resistors after node 

to step resistance 
        end 
    end 
    Rx(:,1)=[]; 
    Sx=1./Rx';                          %calculate conductivity 
end 

  
if y>1 
    Ry=Rho*ones(x,y);                   %resistors in y-direction 
    Ry(t)=Rstufey;                      %set resistor to step resistance 
    for i=1:numel(t) 
        if mod(t(i),x)>0 && k<1 
    Ry(t(i)+1)=Rstufey;                 %set also resistors after node 

to step resistance 
        end 
    end 
Ry(1,:)=[]; 
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    Sy=1./Ry';                          %calculate conductivity 
end 

  
for a=1:x*y                             %filling of resistance matrix 
        if mod(a,y)>0                   %connection to nodes in +x-

direction, if applicable 
            R(a,a+1)=Sx(a-floor((a-1)/y)); 
            R(a,a)=R(a,a)-Sx(a-floor((a-1)/y)); 
        end 
        if mod(a-1,y)>0                 %connection to nodes in -x-

direction, if applicable 
            R(a,a-1)=Sx(a-1-floor((a-1)/y)); 
            R(a,a)=R(a,a)-Sx(a-1-floor((a-1)/y)); 
        end 
        if  a-1<(x-1)*y                 %connection to nodes in +y-

direction, if applicable 
            R(a,a+x)=Sy(a); 
            R(a,a)=R(a,a)-Sy(a); 
        end 
        if a-1>=x                       %connection to nodes in -y-

direction, if applicable 
            R(a,a-x)=Sy(a-x); 
            R(a,a)=R(a,a)-Sy(a-x); 
        end 
end 

  
% ______________________data set 1______________________________________ 
I(1:y)=1;                               %current source 1 
I(y*(x-1)+1:x*y,1)=1;                   %current source 2 

  
Rb=R; 
for i=[(x*(y-1)+1):x*y] 
R(i,:)=0;                               %set potential at boundary 1 

independent of reistances 
R(i,i)=1/U1;%                           %instead use U1 for voltage at 

that boundary 
end 
for i=[1:y] 
R(i,:)=0;                               %set potential at boundary 2 

independent of reistances 
R(i,i)=1/U2;                            %instead use U2 for voltage at 

that boundary 
end 
tic; 

  
V1=full(R\I);                           %solve linear equation system 

  

V1=reshape(V1,x,y);                     %matrix representation of 

potentials 
V1=permute(V1,[2 1]) ;                  %put in corresct order 
  

 
% _________________________________data set 2___________________________ 
I(:,:)=0; 
I(1:x:(x-1)*y+1)=1;                     %current source 1                   
I(x:x:x*y)=1;                           %current source 2  
 

R=Rb; 
for i=[1:x:(x-1)*y+1] 
R(i,:)=0;                               %set potential at boundary 1 

independent of reistances 



121 
 

 

R(i,i)=1/U2;                            %instead use U2 for voltage at 

that boundary 
end 
for i=x:x:x*y 
R(i,:)=0;                               %set potential at boundary 2 

independent of reistances 
R(i,i)=1/U1;                            %instead use U1 for voltage at 

that boundary 
end 

  
V2=full(R\I);                           %solve linear equation system 
V2=reshape(V2,x,y);                     %matrix representation of 

potentials 
V2=permute(V2,[2 1]) ;                  %put in corresct order 

  
Vn1=V1;Vn2=V1;Vn3=V2;Vn4=V2; 
% ____________________________________end of data set 2________________ 
DeltaV=1; 
for i=[1:x*y]                           %add noise to potential data 
    Vn1(i)=V1(i)+noise*(rand-0.5)/DeltaV/100;         
    Vn2(i)=V2(i)+noise*(rand-0.5)/DeltaV/100; 
    Vn3(i)=V1(i)+noise*(rand-0.5)/DeltaV/100;                      
    Vn4(i)=V2(i)+noise*(rand-0.5)/DeltaV/100; 
end 

  
PaperSize=[50 10]; 
h=figure; 
set(h,'PaperSize', PaperSize, 'Resize', 'off', 

'units','centimeters','outerposition',[0 5 PaperSize(1)+0.2 

PaperSize(2)+2.2]);  

  
subplot(1,5,1); 
surf(Vn2) 
xlabel('x'); 
ylabel('y'); 

  
subplot(1,5,2); 
surf(Vn1) 
xlabel('x'); 
ylabel('y'); 

  
subplot(1,5,3); 
imagesc(flipud(Rx)) 
xlabel('x'); 
ylabel('y'); 
axis square; 
title('Rx') 

  
subplot(1,5,4); 
imagesc(flipud(Ry)) 
xlabel('x'); 
ylabel('y'); 
axis square; 
title('Ry') 

  
dlmwrite('V_1.txt',Vn1,'delimiter',' ','precision',100); 
dlmwrite('V_2.txt',Vn2,'delimiter',' ','precision',100); 
dlmwrite('V_3.txt',Vn3,'delimiter',' ','precision',100); 
dlmwrite('V_4.txt',Vn4,'delimiter',' ','precision',100); 
dlmwrite('S_x.txt',Sx,'delimiter',' ','precision',100); 
dlmwrite('S_y.txt',Sy,'delimiter',' ','precision',100); 
toc 
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C.1.1 Generating different defect geometries 

The MATLAB code presented in chapter C.1 can define different defect geometries by loading 

different ‘T_generator’ functions at its beginning. In the following are given some example 

source codes of structures which were investigated in the course of the thesis. 

Step with a bulge 

Source code of ‘T_generator_step.m’

 

Circular Hole 

Source code of ‘T_generator_circle.m’

 

 

function [ T ] = Tgenerator( x,y ) 
s=0; 
T=ones(x,y); 
for(i=[ceil(2*x/5.)]) 
    for j=1:floor(size(T,2)/5.+1) 
    T(i,j)=0; 
    end 
    for j=floor(size(T,2)/5.)+1:floor(2*size(T,2)/5.) 
    T(i+j-floor(size(T,2)/5.),j+1)=0; 
    end 
    for j=floor(2*size(T,2)/5.)+1:floor(3*size(T,2)/5.) 
    T(i+floor(size(T,2)/5.),j)=0; 
    end 
    for j=floor(3*size(T,2)/5.)+1:floor(4*size(T,2)/5.) 
    T(i-j+floor(4*size(T,2)/5.)+1,j)=0; 
    end 
    for j=floor(4*size(T,2)/5.)+1:size(T,2) 
    T(i,j)=0; 
    end 
    T=flipud(T); 
end 
end 

  

 

 

function [ T ] = Tgenerator( x,y,r ) 
s=0; 
T=ones(x,y); 
x0=ceil(x/2); 
y0=ceil(y/2); 
for i=1:x 
    for j=1:y 
        if (i-x0)^2+(j-y0)^2<r^2 
            T(i,j)=0; 
        end 
    end 
end 
end 
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Regular array of holes 

Source code of ‘T_generator_array.m’

 

Random distribution of holes 

Source code of ‘T_generator_random.m’

 

Kidney 

Source code of ‘T_generator_kidney.m’

 

  

function [ T ] = Tgenerator( x,y,r ) 
s=0; 
T=ones(x,y); 
for i=1:x      
    for j=1:y 
        if mod(i,8)==0 && mod(j,8)==0 
            T(i-1,j-1)=0; 
        else 

             
        end 
    end 
end 
end 

  

 

 

function [ T ] = Tgenerator( x,y,n ) 
i=0; 
T=ones(x,y); 
while i<n      
        x0=ceil(rand*(x-1))+1; 
        y0=ceil(rand*(y-1))+1; 
        if x0<x && y0<y && T(x0,y0)==1 && T(x0+1,y0)==1 && T(x0-1,y0)==1 

&& T(x0,y0+1)==1 && T(x0,y0-1)==1 
            T(x0,y0)=0; 
            i=i+1; 
        end 
end 
end 

  

 

 

function [ R ] = Tgenerator( x0,y0 ) 
a=1.2;                          %size in x-direction   
b=1.2;                          %size in y-direction   
dx=(x0+2)/a;                    %step-size in x-direction 
dy=(x0+2)/b;                    %step-size in y-direction 

  
for i=1:x0 
    for j=1:y0 
        x=7*(i/(dx))-3.4*a;     %re-scaling of x 
        y=7*(j/(dy)-0.6*b);     %re-scaling of y 
        sigma(i,j)=(1+5*exp(-(x-y)^2-2*(x+y)^2)+3*exp(-3*(x-1)^2-

(y+1)^2))^-1; 
    end 
end 
R=1./sigma';    %Inversion and rotation of the matrix 
end 
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C.1.2 Calculations for Bi thin films 

Source code of ‘Resistor_network_Bi.m’ 

 

clear; tic; close all; 

  
M = dlmread('A151119.193814.Poti100.markup_490nm.txt');  %load mask file 

  
M=M(1:end,1:end)'; 

  
x=size(M,1); y=x;           %Pixel Dimensions 
U1=-0.05e-3; U2=10e-3;      %Potential at left and right boundary 
[Sx,Sy,Sz,I]=deal(sparse(x*y,1)); 
R=spalloc(x*y,x*y,6*x*y);   %Predefine to increase speed 

  

Rs=1;                       %Sheet resistance in Ohm/sq. 
Rdefekt=1e10; 

  
t=find(M~=0); 

  
if x>1 
    Rx=Rs*ones(y,x);             %Resistors in x-direction     
    Rx(t)=Rdefekt; 
    Rx(:,1)=[]; 
    Sx=1./Rx'; 
end 

  
if y>1 
    Ry=Rs*ones(x,y);             %Resistors in y-direction     
    Ry(t)=Rdefekt; 
    Ry(1,:)=[]; 
    Sy=1./Ry'; 
end 

  
for a=1:x*y                               %fill resistance matrix 
        if mod(a,y)>0                     %connection to nodes in +x-

direction, if applicable 
            R(a,a+1)=Sx(a-floor((a-1)/y)); 
            R(a,a)=R(a,a)-Sx(a-floor((a-1)/y)); 
        end 
        if mod(a-1,y)>0                   %connection to nodes in -x-

direction, if applicable 
            R(a,a-1)=Sx(a-1-floor((a-1)/y)); 
            R(a,a)=R(a,a)-Sx(a-1-floor((a-1)/y)); 
        end 
        if  a-1<(x-1)*y                   %connection to nodes in +y-

direction, if applicable 
            R(a,a+x)=Sy(a); 
            R(a,a)=R(a,a)-Sy(a); 
        end 
        if a-1>=x                         %connection to nodes in -y-

direction, if applicable 
            R(a,a-x)=Sy(a-x); 
            R(a,a)=R(a,a)-Sy(a-x); 
        end 
end 

  
I(1:y)=1;                                           %current source 1               
I(y*(x-1)+1:x*y)=1;                                 %current source 2 
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Rb=R; 
for i=1:y 
R(i,:)=0;                                           %set potential at 

boundary 1 independent of reistances 
R(i,i)=1/U1;                                        %instead use U1 for 

voltage at that boundary 
end 
for i=y*(x-1)+1:x*y 
R(i,:)=0;                                            %set potential at 

boundary 2 independent of reistances 
R(i,i)=1/U2;                               %instead use U2 for 

voltage at that boundary 
end 

  
V=full(R\I);                                         %solve linear 

equation system 

  
V=reshape(V,x,y);                                    %matrix 

representation of potentials 
 

%______subtract background slope______ 
S=ones(x,y);       E=(U2-U1)/((x-1)); 
for n=1:x 
S(:,n)=U2+E*(n-1); 
end 
D=V-S; 

 

%_______plot________ 
PaperSize=[30 10]; 
h=figure(1); 
set(h,'PaperSize', PaperSize, 'Resize', 'off', 

'units','centimeters','outerposition',[0 15 PaperSize(1)+0.2 

PaperSize(2)+2.2]);  

  
subplot(1,3,1); 
imagesc(D) 
xlabel('x'); 
ylabel('y'); 
axis square; 
dlmwrite('CalcPot.txt',D,'delimiter',' ','precision',100); 

  
subplot(1,3,2); 
imagesc(Sx) 
xlabel('x'); 
ylabel('y'); 
axis square; 
title('Sx') 

  
subplot(1,3,3); 
imagesc(Sy) 
xlabel('x'); 
ylabel('y'); 
axis square; 
title('Sy') 
toc 
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C.1.3 Three-dimensional resistor network 

Source code of ‘Resistor_network_3D.m’  

 

clear; tic; close all; 
x=50; y=x; z=3;   %pixel dimensions 
d=1;             %size of simulation in meter 
dx=d/x;          %mesh spacing in meter 
U1=1; U2=-1;     %potential at current injection points 
[Sx,Sy,Sz,I]=deal(sparse(x*y*z,1)); %Predefine for quicker calculation  
R=spalloc(x*y*z,x*y*z,6*x*y*z);     %Predefine for quicker calculation 

  
Rs=1e-5;          %surface sheet resistance in Ohm/sq. 
Rho=1;           %Bulk resistance in Ohm*cm 
Rkoppel=1;     %coupling resistance between surface and bulk in Ohm 

cm^2 
Tx=0.5;         %relative x-position of current injection 
Ty=0.3;         %relative y-position of current injection 

  
if x>1 
    Rx=Rho*x^2/d*ones(y,x,z);           %calculate resistors values in 

x-direction 
    Rx=permute(Rx,[2 1 3]);             %bring resistor values in 

correct order 
    Sx=reshape(1./Rx,[],1);             %calculate x-conductivity 
end 

  
if y>1 
    Ry=Rho*x^2/d*ones(y,x,z);           %calculate resistors values in 

y-direction 
    Ry=permute(Ry,[2 1 3]);             %bring resistor values in 

correct order 
    Sy=reshape(1./Ry,[],1);             %calculate y-conductivity 
end 

  
if z>1 
    Rz(:,:,1)=Rkoppel*x^2/(x*y*d)*ones(y,x,1);  %calculate resistor 

values 
    Rz(:,:,2:z)=Rho*x^2/d*ones(y,x,z-1);        %resistors in z-

direction 
    Rz=permute(Rz,[2 1 3]);                     %bring values in correct 

order 
    Sz=reshape(1./Rz,[],1);                     %calculate z-

conductivity 
end 

 

for a=1:x*y*z                               %filling of resistance 

matrix 
        if(mod(a,x)>0)                      %connection to nodes in +x-

direction, if applicable 
            R(a,a+1)=Sx(a,1); 
            R(a,a)=R(a,a)-Sx(a,1); 
        end 
        if(mod(a-1,x)>0)                    %connection to nodes in -x-

direction, if applicable 
            R(a,a-1)=Sx(a-1); 
            R(a,a)=R(a,a)-Sx(a-1); 
        end 
        if(mod(a-1,x*y)<x*y-x)              %connection to nodes in +y-

direction, if applicable 
            R(a,a+x)=Sy(a+x); 
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        R(a,a)=R(a,a)-Sy(a+x); 
        end 
        end 
        if(mod(a-1,x*y)>=x)                 %connection to nodes in -y-

direction, if applicable 
            R(a,a-x)=Sy(a-x); 
            R(a,a)=R(a,a)-Sy(a-x); 
        end 
        if(a<=x*y*z-x*y)                    %connection to nodes in +z-

direction, if applicable 
            R(a,a+x*y)=Sz(a); 
            R(a,a)=R(a,a)-Sz(a); 
        end 
        if(a>x*y)                           %connection to nodes in -z-

direction, if applicable 
            R(a,a-x*y)=Sz(a-x*y); 
            R(a,a)=R(a,a)-Sz(a-x*y); 
        end 
end 

  
Tipx=round(Ty*y*x)+round(Tx*x);              %position of current 

injection 1 
Tipy=round((y-Ty*y-1)*x)+round(Tx*x);        %position of current 

injection 2 

  
I(Tipx,1)=1;                                 %current source 1           
I(Tipy,1)=1;                                 %current source 2 

  
Rb=R; 

  
R(Tipx,:)=0;            %set potential at boundary 1 independent of 

surrounding reistors 
R(Tipx,Tipx)=1/U1;      %instead use U1 for voltage at the position of 

current source 1 
R(Tipy,:)=0;            %set potential at boundary 2 independent of 

surrounding reistors 
R(Tipy,Tipy)=1/U2;      %instead use U2 for voltage at the position of 

current source 2 

  
V=full(R\I);            %solve linear equation system 

  
I=Rb(Tipx,:)*V(:) 

  
V=reshape(V,x,y,z);     %matrix representation of potentials 
V=permute(V,[2 1 3]) ;  %put in corresct order 

  
PaperSize=[40 10]; 
h=figure; 
set(h,'PaperSize', PaperSize, 'Resize', 'off', 

'units','centimeters','outerposition',[0 5 PaperSize(1)+0.2 

PaperSize(2)+2.2]);  

  
subplot(1,2,1); 

  
for i=1:size(V,3)      %plot matrix as stacked potential planes 
[~,h] = contourf(V(:,:,i),x*2,'LineStyle','none'); 
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hold on; 
hh = get(h,'Children');             
for j=1:numel(hh) 
    zdata = ones(size(get(hh(j),'XData')));  %shift z values to plot 

stacked planes 
    set(hh(j), 'ZData',1*(1-i*zdata)); 
end 
end 
title('Local Potential') 
colorbar; 
cb = colorbar('vert'); 
zlab = get(cb,'ylabel'); 
set(zlab,'String','Potential (V)'); 
caxis([U2 U1]); 
hold off; 
view(80,20); 
axis('square'); 

  
subplot(1,2,2); 
plot(permute(V(:,ceil(0.5*x),:),[1 3 2]))   %plot sections of the 

potential planes 
title('Section') 
xlabel('x (a.u.)'); 
ylabel('Potential (V)'); 

 
toc 
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C.2 Inverse conductivity calculation 

Source code of ‘Resistor_network_inverse.m’ 

 

clear; close all; tic; 
V1= dlmread('V_1.txt'); %load potential distribution 1 
V2= dlmread('V_2.txt'); %load potential distribution 2 
Sx_ref= dlmread('S_x.txt'); %load original resistivity distribution 1 
Sy_ref= dlmread('S_y.txt'); %load original resistivity distribution 1 
x=size(V2,1);               %x-size of the loaded data set 
y=size(V2,2);               %x-size of the loaded data set 
dV=spalloc(2*numel(V2),numel(V2),4*numel(V2)); %predefine for quicker 

calculation 

  

  
for i=1:size(V1,1)-1 
for j=1:size(V1,1)-1 
    V1(i+1,j)-V1(i,j) + V1(i+1,j+1)-V1(i+1,j) + V1(i,j+1)-V1(i+1,j+1) + 

V1(i,j+1)-V1(i,j) 
end 
end 
% ______________________data set 1________________________________ 

[dV] = dVmatrix(V1,x,y); %set up matrix V  

  
double ddV1; 
ddV1=dV;                    
% ______________________data set 2________________________________ 
[dV] = dVmatrix(V2,x,y); %set up matrix V  

  
double ddV2; 
ddV2=dV;            
%_______________________combine data sets_________________________ 
ddV=[ddV1; ddV2];  %combine the potentials of the two data set  

  
Sx=ones((x-1)*y,1);     %predefine vector of vertical resistors 
Sy=ones(x*(y-1),1);     %predefine vector of horizontal resistors 
Rt=[Sx(1:end)' Sy(1:end)']'; %combine x- and y-conductivities  

  
%_______________________Left side of LEQ__________________________ 

  
C1=ddV1*Rt;     
C1=reshape(C1,x,y); 
C1(2:x-1,:)=0; 
C1=reshape(C1,numel(C1),1); 
C2=ddV2*Rt; 
C2(x+1:(x-1)*y)=0; 
C=[C1;C2]; 

  
A=-1*eye(size(ddV,2),size(ddV,2)); 
b=zeros(size(ddV,2),1)'; 

  
f=zeros(size(ddV,2),1); 

  
S = linprog(f,A,b,ddV,C); 
size(S) 
  

%_____solved LEQ -> analyze data__________   
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Sx=S(1:x*y); 
Sy=S(x*y+1:end); 
Rt=[Sx(1:end)' Sy(1:end)']'; 

  
l=reshape(Rt(1:(x-1)*y),x,y-1); 
m=reshape(Rt(((x-1)*y+1):end),x-1,y); 

  
Sx_ref=flipud(Sx_ref'); 
DeltaSx=(Sx_ref-l).^2; 
DeltaSx=sum(sum(DeltaSx)); 

  
Sy_ref=flipud(Sy_ref'); 
DeltaSy=(Sy_ref-m).^2; 
DeltaSy=sum(sum(DeltaSy)); 

  
sigmaS=sqrt(1/(2*x*y-1)*(DeltaSy+DeltaSx)) 

  
d=(V1(end,1)-V1(1,1))/(x-1); 

  
for i=1:x 
    D1(i,:)=V1(i,:)-d*i; 
end 

  
%_____Plot_______________________________ 
PaperSize=[40 10]; 
h=figure; 
set(h,'PaperSize', PaperSize, 'Resize', 'off', 

'units','centimeters','outerposition',[0 5 PaperSize(1)+0.2 

PaperSize(2)+2.2]);  

  
subplot(1,4,1); 
surf(V1); 
xlabel('x'); 
ylabel('y'); 
axis square; 

  
subplot(1,4,2); 
surf(V2); 
xlabel('x'); 
ylabel('y'); 
axis square; 

  
subplot(1,4,3); 
imagesc(flipud(l)) 
xlabel('x'); 
ylabel('y'); 
set(gca, 'Clim', [0 1]) 
title('Rx') 
axis square; 
  

subplot(1,4,4); 
imagesc(flipud(m)) 
xlabel('x'); 
ylabel('y'); 
set(gca, 'Clim', [0 1]) 
title('Ry') 
axis square; 
toc 
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C.1.2 Function to set up matrix 𝑽 

Source code of ‘dVmatrix.m’ which is used for the calculation of the inverse problem.

 

 

 

 

  

function [ dV ] = dVmatrix( V, x, y ) 
dVx=zeros(x*y,x*(y-1));                 %horizontal voltage differences 
dVy=zeros(x*y,x*(y-1));                 %vertical voltage differences 
kill=[]; 

  
for(j=1:numel(V)) 

     
    if j+1<=numel(V)                     %connection to nodes in +y-

direction, if applicable 
        dVy(j,j)=V(j+1)-V(j); 
    end 
    if j-1>0                             %connection to nodes in -y-

direction, if applicable 
        dVy(j,j-1)=V(j-1)-V(j); 
    end 
    if mod(j,x)==0 && j<x*y 
        kill=[kill j]; 
    end 

     
    if j>0 && j<=numel(V)-y              %connection to nodes in +x-

direction, if applicable 
        dVx(j,j)=V(j+x)-V(j); 
    end 

     
    if j>y && j<=numel(V)                %connection to nodes in -x-

direction, if applicable  
        dVx(j,j-x)=V(j-x)-V(j); 
    end 
end 
dVy(:,kill)=[]; 
dV=[dVx dVy]; 
end 
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Appendix D Electrostatics of a current around a 

sphere or cylinder 
 

D.1 Current around a sphere  

This geometry corresponds to a three-dimensional defect embedded in a conductor. For a 

conductivity inside/outside of the sphere 𝜎𝑖/𝜎𝑜 we solve the Laplace equation for finite 

potentials at the origin 

ΔΦ(r, θ) = 0 

Ansatz: 

Φ𝑖 =∑𝑎𝑛 ⋅ (
𝑟

𝑅
)
𝑛

∞

𝑛=0

⋅ 𝑃𝑛(cos (𝜃)) 

Φ𝑜 = 𝐸∞ ⋅ 𝑟 ⋅ cos(𝜃) +∑𝑏𝑛 ⋅ (
𝑟

𝑅
)
−(𝑛+1)

∞

𝑛=0

⋅ 𝑃𝑛(cos (𝜃)) 

boundary conditions 

Φ𝑖(𝑟 = 𝑅, 𝜃) = Φ𝑜(𝑟 = 𝑅, 𝜃) 

𝜎𝑖
𝜕

𝜕𝑟
 Φ𝑖(𝑟 = 𝑅, 𝜃) = 𝜎𝑜

𝜕

𝜕𝑟
Φ𝑜(𝑟 = 𝑅, 𝜃) 

Which equals to 

 

∑𝑎𝑛

∞

𝑛=0

⋅ 𝑃𝑛(cos(𝜃)) = 𝐸∞ ⋅ 𝑅 ⋅ cos(𝜃) +∑𝑏𝑛

∞

𝑛=0

⋅ 𝑃𝑛(cos (𝜃)) 

𝜎𝑖∑𝑎𝑛 ⋅
𝑛

𝑅
(
𝑟

𝑅
)
𝑛−1

∞

𝑛=0

⋅ 𝑃𝑛(cos (𝜃))|𝑟=𝑅

= 𝜎𝑜𝐸∞ ⋅ cos(𝜃) + 𝜎𝑜∑𝑏𝑛 ⋅
−(𝑛 + 1)

𝑅
(
𝑟

𝑅
)
−𝑛∞

𝑛=0

⋅ 𝑃𝑛(cos (𝜃))|𝑟=𝑅 

and results in 

𝑎0 + 𝑎1 ⋅ 𝑃1(cos(𝜃)) + 𝑎2𝑃2(cos(𝜃))…
= 𝑏0 + (𝐸∞ ⋅ 𝑅 + 𝑏1) ⋅ 𝑃1(cos(𝜃)) + 𝑏2𝑃2(cos (𝜃)… 

 

𝜎𝑖 (
𝑎1
𝑅
⋅ 𝑃1(cos(𝜃)) +

2𝑎2
𝑅
𝑃2(cos(𝜃)) + ⋯)

= −𝜎𝑜 (
𝑏0
𝑅
+ (−𝐸∞ +

2𝑏1
𝑅
) ⋅ 𝑃1(cos(𝜃)) +

3𝑏2
𝑅
𝑃2(cos(𝜃))… ). 
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Comparison of coefficients: 

𝑎0 = 𝑏0 

𝑎1 = 𝐸∞ ⋅ 𝑅 + 𝑏1 

𝑎𝑛 = 𝑏𝑛, 𝑓ü𝑟 𝑛 > 1 

and 

𝑏0
𝑅
= 0 ⇒ 𝑎0 = 0 

𝜎𝑖𝑎1
𝑅
= 𝜎𝑜 (𝐸∞ −

2𝑏1
𝑅
) 

𝜎𝑖𝑎𝑛𝑛

𝑅
= −

𝜎𝑜𝑏𝑛(𝑛 + 1)

𝑅
, for n > 1 

𝜎𝑖𝑎𝑛  
𝑛

(𝑛 + 1)
= −𝜎𝑜𝑏𝑛, for n > 1 

From this and 𝑎𝑛 = 𝑏𝑛, 𝑓ü𝑟 𝑛 > 1 results  

𝑎𝑛 = 𝑏𝑛 = 0, 𝑓ü𝑟 𝑛 > 1 

The only remaining coefficients are 

𝑎1 = 𝐸∞ ⋅ 𝑅 + 𝑏1 

𝜎𝑖𝑎1
𝑅
= 𝜎𝑜 (𝐸∞ −

2𝑏1
𝑅
) 

Solving for 𝑏1 

𝑎1 = 𝑅
𝜎𝑜
𝜎𝑖
(𝐸∞ −

2𝑏1
𝑅
) = 𝐸∞ ⋅ 𝑅 + 𝑏1 

⇒ 𝐸∞ ⋅ 𝑅 (
𝜎𝑜
𝜎𝑖
− 1) = (

2𝜎𝑜
𝜎𝑖
+ 1)𝑏1 

⇒ 𝑏1 = 𝐸∞ ⋅ 𝑅
(
𝜎𝑜
𝜎𝑖
− 1)

(
2𝜎𝑜
𝜎𝑖
+ 1)

  

and therefore 
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⇒ 𝑎1 = 𝐸∞ ⋅ 𝑅 + 𝑏1 = 𝐸∞ ⋅ 𝑅 (
(
𝜎𝑜
𝜎𝑖
− 1)

(
2𝜎𝑜
𝜎𝑖
+ 1)

+ 1). 

Or in a different representation 

𝑏1 =
𝜎𝑜 − 𝜎𝑖
2𝜎𝑜 + 𝜎𝑖

𝐸∞ ⋅ 𝑅 𝑎𝑛𝑑 𝑎1 =
3𝜎𝑜

2𝜎𝑜 + 𝜎𝑖
𝐸∞ ⋅ 𝑅  

 

Φ𝑖(𝜃 = 0) =
3𝜎𝑜

2𝜎𝑜 + 𝜎𝑖
𝐸∞ ⋅ 𝑟 

Φ𝑜(𝜃 = 0) = 𝐸∞ ⋅ 𝑟 +
𝜎𝑜 − 𝜎𝑖
2𝜎𝑜 + 𝜎𝑖

𝐸∞ ⋅
𝑅3

𝑟2
  

Infinite resistance of the sphere: 

 

𝑏1
𝜎𝑖→0
→   

1

2
𝐸∞𝑅 and 𝑎1

𝜎𝑖→0
→   

3

2
𝐸∞𝑅 

Φ𝑖(𝜃 = 0) =
3

2
𝐸∞ ⋅ 𝑟 

Φ𝑜(𝜃 = 0) = 𝐸∞ ⋅ 𝑟 +
1

2
𝐸∞ ⋅

𝑅3

𝑟2
 

Infinite conductance of the sphere: 

𝑏1
𝜎𝑖→∞
→   −𝐸∞ ⋅ 𝑅 and 𝑎1

𝜎𝑖→∞
→   0 

 

D.2 Current around an infinite cylinder 

This calculation determines the electric field around an infinite cylinder embedded in a 

conductor. The problem geometry corresponds to a quasi-two-dimensional system.  

Ansatz: 

Φ𝑖(𝑟, 𝜃) = ∑𝑎𝑛 ⋅ (
𝑟

𝑅
)
𝑛

∞

𝑛=0

⋅ cos (𝑛 ⋅ 𝜃) 

Φ𝑜(𝑟, 𝜃) = 𝐸∞ ⋅ 𝑟 ⋅ cos(𝜃) +∑𝑏𝑛 ⋅ (
𝑟

𝑅
)
−𝑛

∞

𝑛=0

⋅ cos (𝑛 ⋅ 𝜃) 

boundary conditions 

Φ𝑖(𝑟 = 𝑅, 𝜃) = Φ𝑜(𝑟 = 𝑅, 𝜃) 
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𝜎𝑖
𝜕

𝜕𝑟
 Φ𝑖(𝑟 = 𝑅, 𝜃) = 𝜎𝑜

𝜕

𝜕𝑟
Φ𝑜(𝑟 = 𝑅, 𝜃) 

Which equals to 

∑𝑎𝑛

∞

𝑛=0

⋅ cos (𝑛 ⋅ 𝜃) = 𝐸∞ ⋅ 𝑅 ⋅ cos(𝜃) +∑𝑏𝑛

∞

𝑛=0

⋅ cos (𝜃) 

𝜎𝑖∑𝑎𝑛 ⋅
𝑛

𝑅
(
𝑟

𝑅
)
𝑛−1

∞

𝑛=0

⋅ cos(𝑛 ⋅ 𝜃) |𝑟=𝑅  

= 𝜎𝑜𝐸∞ ⋅ cos(𝜃) + 𝜎𝑜∑𝑏𝑛 ⋅
−𝑛

𝑅
(
𝑟

𝑅
)
−(𝑛−1)

∞

𝑛=0

⋅ cos (𝑛 ⋅ 𝜃) |𝑟=𝑅 

and results in 

𝑎0 + 𝑎1 ⋅ cos (𝜃) + 𝑎2cos (2𝜃)… = 𝑏0 + (𝐸∞ ⋅ 𝑅 + 𝑏1) ⋅ cos (𝜃) + 𝑏2cos (2𝜃)… 

 

𝜎𝑖 (
𝑎1
𝑅
⋅ cos (𝜃) +

2𝑎2
𝑅
cos (2𝜃) + ⋯) = −𝜎𝑜 ((−𝐸∞ +

𝑏1
𝑅
) ⋅ cos (𝜃) +

2𝑏2
𝑅
cos (2𝜃)…). 

Comparison of coefficients: 

𝑎0 = 𝑏0 

𝑎1 = 𝐸∞ ⋅ 𝑅 + 𝑏1 

𝑎𝑛 = 𝑏𝑛, 𝑓ü𝑟 𝑛 > 1 

and 

𝜎𝑖𝑎1
𝑅
= 𝜎𝑜 (𝐸∞ −

𝑏1
𝑅
) 

𝜎𝑖𝑎𝑛𝑛

𝑅
= −

𝜎𝑜𝑏𝑛𝑛

𝑅
, 𝑓𝑜𝑟 𝑛 > 1 

Boundary condition Φ𝑜(𝑟 → ∞, 𝜃) = 𝐸∞𝑟 yields 

𝑎0 = 𝑏0 = 0 

such that the only remaining coefficients are 

𝑎1 = 𝐸∞ ⋅ 𝑅 + 𝑏1 

𝜎𝑖𝑎1
𝑅
= 𝜎𝑜 (𝐸∞ −

𝑏1
𝑅
). 
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Solving for 𝑏1: 

𝜎𝑖𝑎1
𝜎𝑜

= 𝐸∞ ⋅ 𝑅 − 𝑏1 

𝑏1 = 𝐸∞ ⋅ 𝑅 −
𝜎𝑖𝑎1
𝜎𝑜

 

And therefore 

⇒ 𝑎1 = 𝐸∞ ⋅ 𝑅 + 𝐸∞ ⋅ 𝑅 −
𝜎𝑖𝑎1
𝜎𝑜

 

⇔ 𝑎1 (1 +
𝜎𝑖
𝜎𝑜
) = 2𝐸∞ ⋅ 𝑅 

⇔ 𝑎1 =
2

(1 +
𝜎𝑖
𝜎𝑜
)
 𝐸∞ ⋅ 𝑅 

Resulting in 

⇒ 𝑏1 = 𝐸∞ ⋅ 𝑅 −
𝜎𝑖
𝜎𝑜

2

(1 +
𝜎𝑖
𝜎𝑜
)
 𝐸∞ ⋅ 𝑅 

⇔ 𝑏1 = 𝐸∞ ⋅ 𝑅 −
2𝜎𝑖

(𝜎𝑜 + 𝜎𝑖)
 𝐸∞ ⋅ 𝑅 

⇔ 𝑏1 =
𝜎𝑜 − 𝜎𝑖
𝜎𝑜 + 𝜎𝑖

 𝐸∞ ⋅ 𝑅 

Infinite resistance of the cylinder:  

 

𝑏1
𝜎𝑖→0
→   𝐸∞𝑅 and 𝑎1

𝜎𝑖→0
→   2𝐸∞𝑅 

Φ𝑖(𝜃 = 0) = 2𝐸∞ ⋅ 𝑟 

Φ𝑜(𝜃 = 0) = 𝐸∞ ⋅ 𝑟 + 𝐸∞ ⋅
𝑅2

𝑟
 

Infinite conductance of the cylinder: 

 

𝑏1
𝜎𝑖→∞
→   −𝐸∞ ⋅ 𝑅 and 𝑎1

𝜎𝑖→∞
→   0 
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Appendix E Deduction of carrier concentration in 

the Dirac cone 
 

The linear dispersion of the Dirac cone in two dimensions is given by 

𝐸 = ℏ𝑣𝐹√𝒌𝑥2 + 𝒌𝑦2 ≡
1

𝑎
𝑘  ⇔   𝑘 = 𝑎 ⋅ 𝐸 

(E.1) 

  

Furthermore, in a two-dimensional system, the density of states is given by the two-dimensional 

density of states per unit volume 𝜌 without spin degeneracy, due to the spin-polarized nature of 

the TSS [96]: 

𝜌(𝑘)𝑑𝑘 =
𝑘

2𝜋
 𝑑𝑘, 

which with eq. (E.1) becomes 

𝜌(𝐸)𝑑𝐸 =
𝑎2𝐸

2𝜋
𝑑𝐸. 

Integration yields 

𝑛2𝐷(𝐸) = ∫𝜌(𝐸)𝑑𝐸 =
𝑎2𝐸2

4𝜋
. 

Rewriting again with eq. (E.1), the carrier concentration in the Dirac cone, which is filled up to 

the Fermi energy 𝐸F, can be determined from the corresponding Fermi wave vector 𝑘F after 

𝑛2𝐷(𝐸F) =
𝑘F
2

4𝜋
. 
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Appendix F Deduction of gate formulas 
 

F.1 Full description 

This appendix documents the deduction of eq. (4.8) and (4.9) in chapter 4 of the thesis. In 

detail, combination of eq. (4.3) to (4.5) in this thesis results in 

𝑛bot = −𝑛TI − 𝑛gate 

⇔ 𝑛bot = −
𝐶gate(𝑒𝑉gate − 𝜇bot)

𝑒2
−
𝐶TI(𝜇top − 𝜇bot)

𝑒2
 

⇔ 𝑛bot = −
𝐶gate𝑉gate

𝑒
+ 
𝐶gate𝜇bot

𝑒2
−
𝐶𝑇𝐼𝜇top

𝑒2
+
𝐶𝑇𝐼𝜇bot
𝑒2

 

⇔ 𝑛bot = −
𝐶gate𝑉gate

𝑒
+ 

𝐶gate𝑎 (√𝑛bot
0 + 𝑛bot −√𝑛bot

0 )

𝑒2
−

𝐶TI𝑎 (√𝑛top
0 + 𝑛top −√𝑛top

0 )

𝑒2

+

𝐶TI𝑎 (√𝑛bot
0 + 𝑛bot −√𝑛bot

0 )

𝑒2
 

⇔ 𝑛bot + (−
𝐶gate𝑎

𝑒2
−
𝐶TI𝑎

𝑒2
) (√𝑛bot

0 + 𝑛bot −√𝑛bot
0 ) +

𝐶gate𝑉gate

𝑒

+

𝐶TI𝑎 (√𝑛top
0 + 𝑛top −√𝑛top

0 )

𝑒2
= 0  

⇔

𝐶TI𝑎 (√𝑛top
0 + 𝑛top −√𝑛top

0 )

𝑒2

= −𝑛bot + (
𝐶gate𝑎

𝑒2
+
𝐶TI𝑎

𝑒2
) (√𝑛bot

0 + 𝑛bot −√𝑛bot
0 ) −

𝐶gate𝑉gate

𝑒
 

⇔
𝐶TI𝑎

𝑒2
√𝑛top

0 + 𝑛top −
𝐶TI𝑎

𝑒2
√𝑛top

0

= (−𝑛bot + (
𝐶gate𝑎

𝑒2
+
𝐶TI𝑎

𝑒2
) (√𝑛bot

0 + 𝑛bot −√𝑛bot
0 ) −

𝐶gate𝑉gate

𝑒
) 

⇔
𝐶TI𝑎

𝑒2
√𝑛top

0 + 𝑛top

= (−𝑛bot + (
𝐶gate𝑎

𝑒2
+
𝐶TI𝑎

𝑒2
) (√𝑛bot

0 + 𝑛bot −√𝑛bot
0 ) −

𝐶gate𝑉gate

𝑒
)

+
𝐶TI𝑎

𝑒2
√𝑛top

0  



142 
 

 

⇔ √𝑛top
0 + 𝑛top

= (
𝐶TI𝑎

𝑒2
)
−1

((−𝑛bot + (
𝐶gate𝑎

𝑒2
+
𝐶TI𝑎

𝑒2
) (√𝑛bot

0 + 𝑛bot −√𝑛bot
0 )

−
𝐶gate𝑉gate

𝑒
) +

𝐶𝑇𝐼𝑎

𝑒2
√𝑛top

0 ) 

⇔ 𝑛top
0 + 𝑛top

= ((
𝐶TI𝑎

𝑒2
)
−1

((−𝑛bot + (
𝐶gate𝑎

𝑒2
+
𝐶TI𝑎

𝑒2
) (√𝑛bot

0 + 𝑛bot −√𝑛bot
0 )

−
𝐶gate𝑉gate

𝑒
) +

𝐶𝑇𝐼𝑎

𝑒2
√𝑛top

0 ))

2

 

⇔ 𝑛top = ((
𝐶TI𝑎

𝑒2
)
−1

((−𝑛bot + (
𝐶gate𝑎

𝑒2
+
𝐶gate𝑎

𝑒2
) (√𝑛bot

0 + 𝑛bot − √𝑛bot
0 ) −

𝐶gate𝑉gate

𝑒
)

+
𝐶𝑇𝐼𝑎

𝑒2
√𝑛top

0 ))

2

− 𝑛top
0 , 

where 𝐶gate = 11 nF/cm
2 ≪ 𝐶TI = 8 µF/cm

2 and therefore 

𝑛top ≈ ((
𝐶TI𝑎

𝑒2
)
−1

((−𝑛bot +
𝐶TI𝑎

𝑒2
(√𝑛bot

0 + 𝑛bot −√𝑛bot
0 ) −

𝐶gate𝑉gate

𝑒
)

+
𝐶TI𝑎

𝑒2
√𝑛top

0 ))

2

− 𝑛top
0  

⇔ 𝑛top ≈ ((
𝐶TI𝑎

𝑒2
)
−1

 (−𝑛bot +
𝐶TI𝑎

𝑒2
(√𝑛bot

0 + 𝑛bot −√𝑛bot
0 +√𝑛top

0 ) −
𝐶gate𝑉gate

𝑒
))

2

− 𝑛top
0  

 

Furthermore 

𝑛top = 𝑛TI =
𝐶TI(𝜇top − 𝜇bot)

𝑒2
 

⇔ 𝑛top =
𝐶TI𝜇top

𝑒2
−
𝐶TI𝜇bot
𝑒2

 

⇔ 𝑛top =

𝐶TI𝑎 (√𝑛top
0 + 𝑛top −√𝑛top

0 )

𝑒2
−

𝐶TI𝑎 (√𝑛bot
0 + 𝑛bot −√𝑛bot

0 )

𝑒2
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⇔

𝐶TI𝑎 (√𝑛bot
0 + 𝑛bot −√𝑛bot

0 )

𝑒2
= −𝑛top +

𝐶TI𝑎 (√𝑛top
0 + 𝑛top −√𝑛top

0 )

𝑒2
 

⇔
𝐶TI𝑎

𝑒2
√𝑛bot

0 + 𝑛bot −
𝐶TI𝑎

𝑒2
√𝑛bot

0 = −𝑛top +
𝐶TI𝑎

𝑒2
(√𝑛top

0 + 𝑛top −√𝑛top
0 ) 

⇔
𝐶TI𝑎

𝑒2
√𝑛bot

0 + 𝑛bot = −𝑛top +
𝐶TI𝑎

𝑒2
(√𝑛top

0 + 𝑛top −√𝑛top
0 ) +

𝐶TI𝑎

𝑒2
√𝑛bot

0  

⇔
𝐶TI𝑎

𝑒2
√𝑛bot

0 + 𝑛bot = −𝑛top +
𝐶TI𝑎

𝑒2
(√𝑛top

0 + 𝑛top −√𝑛top
0 +√𝑛bot

0 ) 

⇔ √𝑛bot
0 + 𝑛bot = (

𝐶TI𝑎

𝑒2
)
−1

(−𝑛top +
𝐶TI𝑎

𝑒2
(√𝑛top

0 + 𝑛top −√𝑛top
0 +√𝑛bot

0 )) 

⇔ 𝑛bot
0 + 𝑛bot = ((

𝐶TI𝑎

𝑒2
)
−1

(−𝑛top +
𝐶TI𝑎

𝑒2
(√𝑛top

0 + 𝑛top −√𝑛top
0 +√𝑛bot

0 )))

2

 

⇔ 𝑛bot = ((
𝐶TI𝑎

𝑒2
)
−1

 (−𝑛top +
𝐶TI𝑎

𝑒2
(√𝑛top

0 + 𝑛top −√𝑛top
0 +√𝑛bot

0 )))

2

− 𝑛bot
0  

 

F.2 Limit of constant quantum capacitances 

𝑛bot = −𝑛TI − 𝑛gate 

⇔ 𝑛bot = −
𝐶gate(𝑒𝑉gate − 𝜇bot)

𝑒2
−
𝐶TI(𝜇top − 𝜇bot)

𝑒2
 

⇔ 𝑛bot = −
𝐶gate𝑉gate

𝑒
+ 
𝐶gate𝜇bot

𝑒2
−
𝐶TI𝜇top

𝑒2
+
𝐶TI𝜇bot
𝑒2

 

⇔ 𝑛bot = −
𝐶gate𝑉gate

𝑒
−

𝑎

√𝑛bot
0

𝐶gate𝑛bot

𝑒2
+

𝑎

√𝑛top
0

𝐶TI𝑛top

𝑒2
−

𝑎

√𝑛bot
0

𝐶TI𝑛bot
𝑒2

 

With 
𝑎

𝑒2√𝑛top
0
= (𝐶tq

0 )
−1
 and 

𝑎

𝑒2√𝑛bot
0
= (𝐶bq

0 )
−1

 

⇔ 𝑛bot = −
𝐶gate𝑉gate

𝑒
−
𝐶gate𝑛bot

𝐶bq
0 +

𝐶TI𝑛top

𝐶tq
0 −

𝐶TI𝑛bot

𝐶bq
0  

⇔ 𝑛bot +
𝐶gate𝑛bot

𝐶bq
0 +

𝐶TI𝑛bot

𝐶bq
0 = −

𝐶gate𝑉gate

𝑒
+
𝐶TI𝑛top

𝐶tq
0  

⇔ 𝑛bot (1 +
𝐶gate

𝐶bq
0 +

𝐶TI

𝐶bq
0 ) = −

𝐶gate𝑉gate

𝑒
+
𝐶TI𝑛top

𝐶tq
0  
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⇔ 𝑛bot = −
1

(1 +
𝐶gate
𝐶bq
0 +

𝐶TI
𝐶bq
0 )

(
𝐶gate𝑉gate

𝑒
+
𝐶TI𝑛top

𝐶tq
0 ) 

 

Furthermore, it follows 

𝑛top = 𝑛TI =
𝐶TI(𝜇top − 𝜇bot)

𝑒2
 

⇔ 𝑛top =
𝐶TI𝜇top

𝑒2
−
𝐶TI𝜇bot
𝑒2

 

⇔ 𝑛top = −
𝐶TI𝑛top

𝐶tq
0 +

𝐶TI𝑛bot

𝐶bq
0  

⇔ 𝑛top +
𝐶TI𝑛top

𝐶tq
0 =

𝐶TI𝑛bot

𝐶bq
0  

⇔ 𝑛top (1 +
𝐶TI

𝐶tq
0 ) =

𝐶TI𝑛bot

𝐶bq
0  

⇔ 𝑛top =

𝐶TI
𝐶bq
0

(1 +
𝐶TI
𝐶tq
0 )

𝑛bot  

⇔
𝑛top

𝑛bot
=

𝐶TI
𝐶bq
0

(1 +
𝐶TI
𝐶tq
0 )

. 
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