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Kurzfassung

Biologische Nervensysteme weisen erstaunliche Komplexitit auf. Neurowissenschaftler
versuchen, diese Komplexitéit durch die Modellierung und Simulation der zugrunde lie-
genden biologischen Prozesse zu erfassen und zu verstehen. Modellkomplexe, die notwen-
dig sind, um die neuromorphen Prozesse abzubilden. Dementsprechend schwierig ist es
passende Modelle zu erstellen. Deswegen sind leistungsstarke Werkzeuge notwendig, die
es Neurowissenschaftlern erméglichen, diese Modelle zunéchst kompakt, aber auch um-
fassend auszudriicken und aus diesen Modellen effizienten Code fiir digitale Simulationen
Zu generieren.

Doménenspezifische Sprachen erlauben gegeniiber General Purpose Programmierspra-
chen begrenzten und problemorientierten Funktionsumfang an. Die erhéhte Produktivi-
téit der Entwickler und verbesserte Qualitéit der resultierenden Softwaresysteme [VDK98,
SEHV12, FHROS8] gelten als Vorteile einer DSL. Die erhshte Produktivitit resultiert aus
der Tatsache, dass Modelle in einer passend gewéhlten Notation im Vergleich zu einer
dquivalenten Darstellung in einer GPL kompakter sind. Verschiedene Modellierungs-
sprachen fiir die Computational Neuroscience wurden bereits vorgeschlagen [GCCT10,
RCCT11]. Da diese Sprachen jedoch typischerweise Simulatorunabhiingigkeit anstreben,
unterstiitzen sie oft nur eine Untermenge der vom Modellierer gewiinschten Eigenschaf-
ten.

Diese Arbeit prisentiert den Entwurf und die Implementierung der modularen und er-
weiterbaren doménenspezifischen Sprache NESTML, die Konzepte aus den Neurowissen-
schaften als vollwertige Sprachkonstrukte zur Verfiigung stellt und Neurowissenschaftler
so bei der Erstellung von Neuronemodellen fiir das neuronale Simulationswerkzeug NEST
unterstiitzt.

NESTML wurde mithilfe von MontiCore [GKR 08, Kral0] entwickelt. MontiCore ist
eine Language Workbench zur Erstellung von doménenspezifischen Sprachen. MontiCo-
re verwendet und erweitert das Grammatikformat von ANTLR4 [Parl3], das auf dem
EBNF-Formalismus [ASU86] basiert, um zusétzliche Konzepte fiir die Grammatikwieder-
verwendung. MontiCore stellt eine modulare Infrastruktur fiir das Parsen von Modellen,
den Aufbau der Symboltabllen und zum Priifen der Kontextbedingungen bereit. Damit
konnen die Entwicklungskosten von NESTML signifikant gesenkt werden.






Abstract

Biological nervous systems exhibit astonishing complexity. Neuroscientists aim to cap-
ture this complexity by modeling and simulation of the underlying biological processes.
Therefore it is hard to create suitable models which are necessary to depict the neuro-
morphic processes, which makes it difficult to create these models. Powerful tools are
thus needed, which enable neuroscientists to express models in a comprehensive and
concise way and generate efficient code for digital simulations.

Domain-specific languages allow limited and problem-oriented functional scope compa-
red to general purpose programming languages. The increased productivity of the devel-
opers and improved quality of the resulting software systems [VDK98, SEHV12, FHROS]
are regarded as advantages of a DSL. The increased productivity results from the fact
that models in a suitably selected notation are more compact in comparison to an equi-
valent representation in a general purpose language. Several languages for computational
neuroscience have been proposed [GCCT10, RCC*11]. However, as these languages often
seek simulator independence they typically only support a subset of the features desired
by the modeler.

This thesis presents the design and implementation of the modular and extensible
domain specific language NESTML, which provides neuroscience domain concepts as
first-class language constructs and supports domain experts in creating neuron models
for the neural simulation tool NEST.

NESTML is developed using MontiCore [GKR ™08, Kral0]. MontiCore is a language
workbench for the creation of domain-specific languages. MontiCore expands the gram-
mar format of ANTLR/ [Parl3], which is based on the EBNF formalism [ASU86] with
additional concepts for the grammar reuse. MontiCore provides a modular infrastruc-
ture for parsing models, building symbol tables and verifying the context-conditions.
This allows the development costs of NESTML to be significantly reduced.
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Kapitel 1
Einleitung

Die klassische Neurowissenschaft untersucht biophysikalische Prozesse, die fiir das Ver-
halten eines einzelnen Neurons bzw. hoherer Hirnfunktionen, die durch Verschaltung
dieser Neuronen zu Netzwerken entstehen, verantwortlich sind. Die ersten experimen-
tellen Studien des Nervensystems wurden bereits Jahrhunderte zuvor gemacht [She91],
dennoch war und ist die Beobachtung der Aktivitéit einer einzelnen Zelle in einer sepa-
rierten Zellkultur (in vitro) oder gar in einem funktionierenden Hirn (in vivo) technisch
eine herausfordernde Aufgabe. Deswegen benutzen Neurowissenschaftler eine Vielzahl
an Methoden und Werkzeugen, um die elektrischen und chemischen Eigenschaften von
Neuronen und deren Verbindungen untereinander zu messen. Zu diesen Methoden zéh-
len mikroskopische Untersuchungen, Elektrophysiologie und unterschiedliche bildgeben-
de Verfahren. Da diese Verfahren relativ neu sind, wurden erst im letzten Jahrhundert
erste Details iiber die Struktur und Funktion der Gehirnbausteine bekannt. McCulloch
und Pitts [MP43] verwendeten Anfang des letzten Jahrhunderts logische Schaltelemen-
te, um das in Experimenten gemessene Verhalten von Nervenzellen nachzuahmen und
vernetztes Verhalten der Nervenzellen zu verstehen.

Es stellte sich aber sehr schnell heraus, dass solche kiinstlichen Schaltungen zu stark
vereinfacht und zu sehr eingeschrinkt sind, um Funktionsprinzipien des Gehirns zu un-
tersuchen. Diese Erkenntnis spaltete die Ansétze fiir die Untersuchung von neuronalen
Netzwerken in zwei grundséitzliche Kategorien. Die erste Kategorie basiert auf den frii-
hen Anfingen der neuronalen Netzwerke auf Basis der logischen Schaltungen und ist
unter dem Begriff kinstliche neuronale Netzwerke bekannt. Solche Netzwerke sind so
entworfen, dass sie hoch spezialisierte Aufgaben wie beispielsweise Textiibersetzung und
Klassifizierung von Bildern besonders effizient 16sen kénnen. Die zweite Kategorie um-
fasst die biologischen Modelle, bei denen der Fokus auf dem Modellieren von biochemi-
schen Prozessen in einem Gehirn liegt. Solche Modelle sind unter dem Begriff biologische
neuronale Netzwerke bekannt.

1.1 Motivation und Kontext

Der Begriff eines Modells wird in der Softwaretechnik abhéingig von dem Kontext mit
unterschiedlicher Bedeutung eingesetzt. So gibt es Vorhersagemodelle, die den Ablauf
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der Entwicklung eines Softwareproduktes beschreiben. Produktmodelle und Testmodel-
le [Rum12, Rum16] spezifizieren dann das modellierte System und definieren Testkrite-
rien anhand derer das aus Modellen resultierende System validiert werden kann. Eine
gute Kategorisierung der Modelle ist in [Sch00] und [SPHPO02] zu finden. Die wesent-
lichen Eigenschaften des Modellbegriffs, die fiir diese Arbeit relevant sind, werden wie
folgt zusammengefasst:

e Ein Modell ist seinem Wesen nach eine in Mafstab, Detailliertheit und/oder Funk-
tionalitét verkiirzte beziehungsweise abstrahierte Darstellung des originalen Sys-
tems [Sta73].

e Ein Modell ist eine vereinfachte, auf ein bestimmtes Ziel hin ausgerichtete Darstel-
lung der Funktion eines Gegenstands oder des Ablaufs eines Sachverhalts, die eine
Untersuchung oder eine Erforschung erleichtert oder erst moglich macht [Bal00].

Die wesentlichen Szenarien fiir die Verwendung solcher Modelle in der Entwicklung
eines Softwareprodukts lassen sich in die folgenden Kategorien einteilen:

e Implementierungsmodelle
e Testmodelle

e Dokumentationsmodelle

e Kommunikationsmodelle

Sicherlich ist die Modellierung und Bildung der Modelle nicht auf das Gebiet der Soft-
waretechnik begrenzt. Modelle werden in Naturwissenschaften schon seit frithen Zeiten
benutzt. Auch in den Neurowissenschaften kommt diese Technik zur Anwendung. Das
Teilgebiet Computational Neuroscience [CKS93] erstellt unter anderem Modelle von Ner-
venzellen (Neuronen) und deren Verbindungen (Synapsen), mit dem Ziel diese Modelle in
einem Computer zu simulieren. Diese Modelle spiegeln bestimmte Aspekte der anatomi-
schen und physiologischen Eigenschaften der biologischen Vorbilder wider. Abhéngig von
den konkreten Zielen der Studie sind unterschiedliche Aspekte des Verhaltens oder der
Struktur eines einzelnen Neurons oder eines Netzwerkes von Neuronen relevant. Daher
erstellen Neurowissenschaftler vereinfachte Modelle, die auf die relevanten Eigenschaften
des zu erforschenden Verhaltens reduziert sind. Diese Vorgehensweise hat dazu gefiihrt,
dass mittlerweile eine Vielzahl solcher Modelle existiert. Der Detailgrad dieser Model-
le erstreckt sich von Mehrsegment-Modellen (engl: multicompartment models) [Ral64],
die viele biologische und morphologische Details der biologischen Neuronen beinhalten,
bis zu reduzierten Punkineuronen (engl: point neurons) [Macl2|, bei denen Neuronen
keine rdaumliche Ausdehnung haben und Synapsen nur durch gewichtete Verbindungen
ohne morphologische Details modelliert werden. Abbildung 1.1 visualisiert diese Unter-
scheidung und demonstriert unterschiedliche Ansétze, um die aus den physikalischen
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Messungen und Untersuchungen ermittelte Struktur eines Neurons, in unterschiedlichen
Detailgraden nachzubilden.

Multi compartment neurons

) with different numbers of
3d reconstruction of compartments
: biological neuron
' < Point neuron

— () — () —

(A) (B) (©) ! (D)

Abbildung 1.1: Unterschiedliche Abstraktionsstufen von Neuronenmodellen [DA01]. Die
Darstellung variiert in der Anzahl von den diskreten Kompartimenten.
Ausgehend von einer 3D rekonstuktion eines realen Neurons aus der
GroBhirnrinde vereinfacht sich der Abstraktionsgrad. (A) Ein Pyramidal-
Neuron aus der GroBhirnrinde. (B) und (C) Mehrsegment-Neuronen mit
unterschiedlicher Anzahl von Segmenten. (D) Ein Punktneuron.

Unabhéngig vom Detailgrad des Neuronenmodells wird seine Dynamik typischerwei-
se durch Differenzialgleichungen beschrieben. Eine Simulation solcher Neuronenmodelle
(d.h. die Evolution der entsprechenden Differenzialgleichungen iiber die Zeit, vgl. Ab-
schnitt 2.3) erlaubt es, Experimente in silico als eine Simulation durchzufiithren. Simu-
lationen ermoglichen es, Hypothesen in einer stabilen und kontrollierten Umgebung zu
verifizieren. Die Simulation von Neuronenmodellen mit verschiedenen Detailgraden er-
fordert jeweils andere technische Infrastruktur, um Neuronen an sich zu reprisentieren
und die Verbindungen zwischen Neuronen effizient zu speichern bzw. die Kommunika-
tion zwischen Neuronen zu simulieren. Deswegen existieren verschiedene Simulatoren,
die sich jeweils fiir die Simulation eines bestimmten Ausschnittes des Spektrums der
moglichen Neuronentypen besonders gut eignen. Als schwierig gestaltet sich auch der
Vergleich der Ergebnisse zwischen unterschiedlichen Simulatoren, da die Modelle fiir je-
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den einzelnen Simulator manuell und jedes Mal neu implementiert werden [CBBT12]
bzw. simulatorspezifische Effekte in Betracht gezogen werden miissen.

1.2 Modellierungssprachen

Oft werden ausfithrbare neuronale Modelle [Rum02] als eine simulatorspezifische Imple-
mentierung in einer GSL erstellt. Solche Modelle kénnen dann nur in diesem Simulator
ausgefithrt. Um die Modellteilung und Reproduzierbarkeit von neurowissenschaftlichen
Experimenten zu vereinfachen, existieren Modellierungsansiitze NeuroML [GCCT10],
LEMS [CGC'14] und NineML [GRHLF11, RCC*11], die in Kapitel 3 niher beschrie-
ben werden. In der Regel gehoren zu einer Modellierungssprache Werkzeuge, mit denen
sich eine ausfithrbare Implementierung fiir einen Simulator generieren liasst. Die meisten
dieser Sprachen sind technologieagnostisch entworfen, daher kénnen sie nicht direkt von
den Vorteilen eines konkreten Simulators profitieren. Dies resultiert in einer schlechteren
Performance bzw. Genauigkeit der simulierten Modelle im Vergleich zu einer handge-
schriebenen Umsetzung desselben Models fiir einen konkreten Simulator.

NEST [GDO7] ist ein neuronaler Simulator fiir grofie neuronale Netzwerke, beste-
hend aus puls-gekoppelten Punktneuronen. Die Quellen von NEST sind als Open Sour-
ce verfiighbar!. Aufgrund der hybriden Parallelisierung kann NEST sowohl auf einem
leistungsschwachen Laptop als auch auf einem Supercomputer effizient ausgefiihrt wer-
den [HKM'12, KSE*14]. Mit iiber 450 publizierten Studien, in denen NEST verwendet
wurde, und 360 aktiven Mitgliedern auf der Mailing-Liste? gehort NEST zu den am
meisten verbreiteten Simulatoren fiir biologische neuronale Netzwerke. Aufgrund sei-
ner Zuverlissigkeit und Popularitdt wurde NEST als Simulator fiir Netzwerke auf der
Skala von ganzen Gehirnen im Rahmen des EU Flagship Projektes Human Brain Pro-
ject [AEMT16] ausgewiihlt.

Zu Beginn dieser Arbeit gab es 36 Neuronenmodelle in NEST. Jedes dieser Neuronen-
modelle ist als eine handgeschriebene C++-Klasse implementiert, die eine vorgeschriebe-
ne und nicht transparente Modell-APT erfiillt. Die Entwicklung neuer Neuronenmodelle
erfordert Expertenwissen sowohl in den Neurowissenschaften als auch in der Programmie-
rung mit C++ bzw. etlicher Implementierungsdetails von NEST, um Neuronenmodelle
in die NEST-Infrastruktur einzubetten. Die starke Kopplung zwischen Modellen und der
NEST-API hat zur Folge, dass bei einer Anderung der NEST-Infrastruktur bzw. Modell-
API in NEST alle Modelle manuell angepasst werden miissen. Dies erhoht den Aufwand
fiir die Wartung und Aktualisierung von Neuronenmodellen in NEST.

Die C++-Implementierung von Neuronenmodellen vermischt die Modellspezifikati-
on (d.h. die Modellgleichungen und Algorithmen zur Beschreibung der Neuronendyna-
mik) mit deren Implementierung. Modelle, die durch lineare Differenzialgleichungen mit

Thttps://github.com/nest /nest-simulator
2nest_developer@nest-initiative.org
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konstanten Koeffizienten definiert sind, werden exakt gelost [RD99]. Sobald die exakte
Losung als C++-Code ausgedriickt ist, ldsst diese nur noch schwer Riickschliisse auf
die urspriinglichen Differenzialgleichungen zu. Einerseits erschwert dies das Verstdnd-
nis der Neuronenmodelle. Andererseits entsteht dadurch eine starke Kopplung von den
ansonsten modularen Modellierungskonzepten, die fiir die Spezifikation von dem Neu-
ron verwendet werden. Dadurch wird die Wiederverwendung der Modellteile in anderen
Simulatoren negativ beeinflusst oder unmoglich gemacht.

iaf_cond_alpha iaf_cond_exp

clear_history(); B_.spike_exc_.clear();
B _.spike_inh_ .clear();

B_.currents_.clear();

B_.spike_exc_ clearU
B_.spike_inh_.clear(
B .currents clear() | clear history();

*é%

// refractoriness and spike
// generation
if (s_.r ) { ...}

// absolute refractory period
P (S_.r_ ) ...}

Abbildung 1.2: Schematischer Vergleich von zwei Neuronenmodellen aus dem NEST
Quellcode mithilfe von KDiff. Die in dunkel dargestellten Dateiabschnitte
stimmen in beiden Modellen {iberein.

Aufgrund der fehlenden Modularitit des C++-Code von Neuronenmodellen in NEST
werden neue Neuronenmodelle auf Basis des Copy& Paste-Verfahrens [JHO7] erstellt.
Ausgehend von einem Modell, das am besten passt und bereits existiert, wird eine Ko-
pie der Implementierung erstellt und entsprechend der neuen Anforderungen erginzt
und modifiziert. Modelle werden durch Neurowissenschaftler entwickelt, die oft weder
Experten in Programmierung sind, noch sich mit der internen Struktur der Modellin-
frastruktur von NEST auskennen. Daher werden Neuronenmodelle durch diese Art der
Erzeugung redundant, mit suboptimaler Performance und ungeniigender Dokumentati-
on erstellt. Vorldufigen Untersuchungen existierender NEST-Modelle offenbarten Félle,
in denen iiber 90% der Implementierung zweier Modelle gleich oder sehr dhnlich waren.
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Der mithilfe von KDiff3? erstellte Vergleich zweier Neuronenmodelle in Abbildung 1.2
visualisiert dies an einem Beispiel. Die Grafik zeigt schematisch zwei C++-Dateien, die
unterschiedliche Neuronenmodelle implementieren. Auffillig sind die dunkel markierten
Bereiche, die komplett identischen Codeabschnitten entsprechen. Auch manche als un-
terschiedlich markierte Bereiche sind semantisch sehr &hnlich. Die Abbildung zeigt dies
exemplarisch an zwei Fallbeispielen. Im ersten wird die Reihenfolge der Anweisungen
permutiert. Im zweiten wird der Kommentar minimal angepasst. Dennoch &ndert sich
in beiden Fillen das Verhalten des Neurons aufgrund dieser Anderungen nicht.

Trotz der bereits existierenden Ansétze zur Modellierung von Neuronen mit den Markup-
Sprachen NineML, NeuroML und LEMS bzw. die in die Simulatoren integrierten Spra-
chen stellen sie keine akzeptable Alternative zur Entwicklung neuer Modellierungsspra-
chen dar. Markup-Sprachen sind sehr wortreich, was das Nachvollziehen und Erstellen
von Neuronenmodellen stark erschwert. Die in Simulatoren eingebetteten Sprachen sind
zwar syntaktisch besser aufgebaut, dennoch ist deren Wiederverwendbarkeit aufgrund
der engen Verzahnung mit dem jeweiligen Simulator eingeschrinkt.

1.3 Der NESTML-Ansatz

Im Laufe dieser Arbeit wurde die modular aufgebaute Sprache Domain Specific Langua-
ge (DSL) NESTML entwickelt. NESTML eignet sich fiir die Modellierung von Punktneu-
ronen besonders gut. Dennoch wird die Sprache so entworfen, dass ihre Komponenten
sich in anderen Kontexten (z.B. fiir die Modellierung von Synapsen oder komplexeren
Neuronenmodellen) einfach wiederverwenden lassen.

Auch wenn in der Literatur keine einheitliche Definition einer DSL existiert, fassen die
folgenden Charakterisierungen die wesentlichen Eigenschaften einer DSL zusammen:

e A DSL is a language designed to be useful for a limited set of tasks, in contrast to
general-purpose languages that are supposed to be useful for much more generic
tasks, crossing multiple application domains [JBOG].

e A domain-specific language is a programming or executable specification langua-
ge that offers, through appropriate notations and abstractions, expressive power
focused on, and usually restricted to, a particular problem domain [VDKV00].

Das wichtigste Ziel von NESTML ist es, eine modulare, leichtgewichtige und einfach
zu erlernende Sprache zur Beschreibung von Punktneuronen fiir Neurowissenschaftler
zur Verfiigung zu stellen. NESTML erlaubt es, Neuronenmodelle in einer prézisen und
ausdrucksstarken Syntax zu formulieren. Die konkrete Syntax von NESTML ist primér
den Neurowissenschaftlern vertraut. NESTML besteht aus verschiedenen Subsprachen,

3http://kdiff3.sourceforge.net/
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die fiir die Modellierung einzelner Modellaspekte verantwortlich sind. Die Spezifikati-
on der im Neuronenmodell vorkommenden Differenzialgleichungen kann direkt in einer
mathematischen Notation abgefasst werden. Diese Gleichungen werden mithilfe eines
Frameworks fiir symbolische Mathematik analysiert und stets optimal gelst. Die ein-
gebettete prozedurale Sprache erlaubt es, komplexe Kontrolllogik auszudriicken, die fiir
die Implementierung der Zustandsaktualisierung notwendig sind. Physikalische Einheiten
kénnen direkt als Datentypen von Variablen verwendet werden.

Die Einfachheit und Abstraktion der NESTML-Syntax gewéhrleistet gute Verstédnd-
lichkeit von Neuronenmodellen in NESTML. Der hohe Abstraktionsgrad garantiert eine
klare Trennung zwischen der Modellspezifikation und der Modellimplementierung. Der
NEST-Codegenerator produziert eine performante C+-+-Implementierung aus NESTML-
Modellen, die dynamisch in NEST integriert wird. Andere Zielplattformen wie beispiels-
weise NeuroML [GCC'10] kénnten durch weitere Codegeneratoren unterstiitzt werden.

Modularisierungskonzepte, die direkt in die Sprache eingebaut sind, vereinfachen die
Modellspezifikation. Desweiteren fordern sie die Wiederverwendung von qualitétsgesi-
cherten und getesteten Komponenten, anstatt diese jedes mal neu zu implementieren.
Auch die Transformation von NESTML-Modellen in andere Notationen wird im Ver-
gleich zu in C4++ geschriebenen Modellen einfacher. NESTML ist im Vergleich zu C++
besser strukturiert, frei von technischen Details und einfacher in der Sprachstruktur.
Daher lassen sich entsprechende Transformationen zu anderen Notationen einfacher im-
plementieren.

NESTML wurde mithilfe von MontiCore [KRV07, KRV08] entwickelt. MontiCore er-
laubt es, DSLs agil und modular aufzubauen, um sie schnell an neue Anforderungen
anpassen zu konnen. Ausgehend von einer Grammatikdefinition, generiert MontiCore
eine Sprachverarbeitungsinfrastruktur inklusive Lexer, Parser, Symboltabellen [ASUSG|
und Generierungsinfrastruktur [Sch12].

Abbildung 1.3 fasst den NESTML-Ansatz zusammen. Einerseits wird NESTML be-
nutzt, um existierende NEST-Modelle durch aus NESTML-Modellen generierten Code
zu ersetzten. Andererseits wird NESTML verwendet, um neue Modelle in NEST zu in-
tegrieren. Somit wird NESMTL zur Schnittstelle zum Einbinden neuer und als auch
auch existierender Neuronenmodelle. Desweiteren wird es durch diesen modellbasierten
Ansatz zum ersten Mal moglich, die abstrakten NESTML-Modelle in die Darstellungs-
formate anderer Simulatoren zu exportieren. Dadurch kann ein in NEST ausgefiihrtes
Experiment einfacher in anderen Simulatoren wiederholt und validiert werden. Es exis-
tieren zwar bereits vergleichbare Modellierungsansétze und Sprachen, diese lassen sich
aus folgenden Griinden jedoch nicht fiir NEST verwenden:

Modularitit: Die Sprachen sind nicht modular aufgebaut, sodass sich Teile der Sprach-
definitionen nicht wiederverwenden lassen.

Notationsbarriere: Die Sprachen verfiigen iiber eine sehr schwer les- und erstellbare
Notation fiir die Neuronenmodelle.
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NESTML as a new layer

NEST standard
models

Module Extension API

Abbildung 1.3: NESTML als Fassade fiir die Integration von Neuronenmodellen in
NEST.

Werkzeugbindung: Die einem bestimmten Simulator eigene Sprache ist kaum auflerhalb
des jeweiligen Simulators nutzbar.

Die wichtigste Fragestellung dieser Arbeit lautet daher: Wie muss eine problemaddqua-
te, domdnenspezifische Sprache fir die Modellierung von biologischen Neuronen ausse-
hen, die sich zur Simulation auf Basis des NEST-Simulators eignet?

Aus dieser zentralen Frage lassen sich folgende Unterfragen ableiten:

(FF1): Wie sieht eine leichtgewichtige und einfach zu erlernende Neuronenbeschrei-
bungssprache aus?

(FF2): Wie kénnen Neuronenmodelle in eine fiir NEST ausfithrbare Form iibersetzt
werden?

(FF3): Wie sehen modulare und wiederverwendbare Sprachkomponenten aus?
(FF4): Welche Konzepte helfen dabei, Neuronenmodelle wiederverwendbar zu machen?

(FF5): Wie sieht die Methodik aus, um Modelle in der neuen DSL zu erstellen und in
den NEST-Simulator zu integrieren?

1.4 Wichtigste Resultate

Insgesamt setzt sich die fiir NESTML entwickelte Umsetzung aus folgenden Teilaspekten
zusamimen:
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e Einer modularen und anpassbaren DSL zur Beschreibung von Neuronen und Kom-
ponenten (vgl. Abschnitt 5.2).

e Einer modularen DSL zur Beschreibung von imperativer Programmlogik (vgl. Ab-
schnitt 5.3). Diese DSL lehnt sich syntaktisch an die Programmiersprache Python
an, um die Lernhiirde fiir die Anwender von NESTML zu erleichtern, da Python
auf dem Gebiet der Neurowissenschaften weit verbreitet ist [MBDT15].

e Finer modularen DSL fiir die Spezifikation von Differenzialgleichungen in einer ma-
thematischen Notation (vgl. Abschnitt 5.4). Differenzialgleichungen werden analy-
siert und fiir eine performante Simulation stets optimal gelost.

e Finer modularen DSL fiir die Spezifikation von Ausdriicken in einer an Python
angelehnten Notation (vgl. Abschnitt 5.5). Diese DSL erlaubt eine nahtlose Inter-
operabilitdt mit Python.

e Einer modularen DSL zur Beschreibung und einer Laufzeitumgebung fiir die Kor-
rektheitspriifung von physikalischen Einheiten (vgl. Abschnitt 5.6). Diese DSL er-
moglicht es, physikalische Einheiten als vordefinierten Datentypen zu verwenden.
Die Ausdriicke, in denen Variablen von einem Einheitentyp vorkommen, werden
auf die Typenkorrektheit automatisch iiberpriift.

e Eines Codegenerators fiir den NEST-Simulator (vgl. Kapitel 8). Mithilfe dieses
Generators werden NESTML-Modelle in eine ausfithrbare Form tibersetzt.

e Sprachverarbeitungswerkzeugen, die modular aufgebaut und auf die potenzielle
Erweiterung ausgelegt sind. Dies beinhaltet Symboltabellen, Kontextbedingungen
fiir die semantische Analyse von Neuronenmodellen, ein mathematisches Rahmen-
werk zur Analyse der Differenzialgleichungen, einen Codegenerator fiir den NEST-
Simulator und die Methodik fiir die Entwicklung neuer Neuronenmodelle.

Im Rahmen dieser Arbeit wurde NESTML in zwei Workshops mit insgesamt 27 Teil-
nehmern evaluiert. Dabei wurden die Hypothesen iiber die Benutzerfreundlichkeit von
NESTML anhand von Umfragen validiert (vgl. Kapitel 9).

1.5 Aufbau der Arbeit

Diese Arbeit ist wie folgt strukturiert:

Kapitel 1 stellt den Kontext dieser Ausarbeitung, Forschungsfragen und Ziele vor.

Kapitel 2 stellt kanonische mathematische Modelle fiir das Modellieren von Punkt-
neuronen vor, die auf Basis von dquivalenten elektrischen Schaltkreisen erstellt
werden.
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Kapitel 3 stellt die wichtigsten Anforderungen an Modellierungssprachen in dem neu-
rowissenschaftlichen Kontext vor. Die Anforderungen werden anhand einer Litera-
turrecherche definiert und anhand einer szenariobasierten Analyse motiviert. An-
schliefend untersucht das Kapitel existierende Modellierungsanséitze anhand der
erarbeiteten Anforderungen und fasst die Vor- und Nachteile dieser Anséitze zu-
sammen.

Kapitel 4 stellt die wesentlichen Mechanismen des MontiCore-Frameworks vor. Unter
anderem fithrt das Kapitel die Begriffe einer Grammatik, eines Metamodells, eines
Visitors, der Codegenerierung und Kontextbedingungen ein.

Kapitel 5 beschreibt die doménenspezifische Sprache NESTML fiir die Spezifikation
von Punktneuronen. Dabei werden alle vorkommenden Subsprachen ausfiihrlich
erldutert.

Kapitel 6 beschreibt die Umsetzung von NESTML und aller Subsprachen mit der
MontiCore Language Workbench.

Kapitel 7 enthilt eine detaillierte Vorgehensweise fiir die Entwicklung neuer Neuronen-
modelle mit NESTML. Anschlielend werden Kontextbedingungen von NESTML
erklart.

Kapitel 8 beschreibt den Aufbau und Funktionsweise des Codegenerators fiir den
NEST-Simulator.

Kapitel 9 stellt die Resultate der umfragebasierten Evaluierung von NESTML vor.

Kapitel 10 fasst die Ausarbeitung zusammen und diskutiert die wesentlichen Aspekte.
Desweiteren enthilt das Kapitel einen Ausblick auf moégliche Erweiterungen von
NESTML.
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Kapitel 2

Mathematische Modellierung von
biologischen Neuronen

In diesem Kapitel werden die biologischen und mathematischen Grundlagen erldutert,
die fiir das Verstédndnis der Modellbildung im Kontext von biologischen neuronalen Netz-
werken notwendig sind. In Abschnitt 2.1 wird das Nervensystem mit seinen Hauptbe-
standteilen, Neuronen und Synapsen, aus der biochemischen Perspektive erldutert. In
Abschnitt 2.2 und 2.3 werden die mathematische Grundlagen erldutert, die verwendet
werden, um die biologischen Eigenschaften von Neuronen zu spezifizieren.

2.1 Neuronen als Teil des Nervensystems

Das Nervensystem ist bei Tieren und Menschen dafiir verantwortlich, Signale und Reize
aus der Umwelt zu empfangen, zu verarbeiten und darauf zu reagieren. Dazu zéhlen
visuelle Reize, die im Auge empfangen werden, akustische Reize, olfaktorische Reize,
gustatorische Reize, die als Geschmack empfangen werden, haptische Reize, die durch den
Tastsinn empfangen werden, und Reize, die das Gefiihl des Gleichgewichts beeinflussen
und durch den vestibuldren Sinn empfangen werden. Diese Reize kommen von auflerhalb
des Organismus. Aber nicht nur die Signale von auflierhalb des Koérpers spielen bei der
Verarbeitung im Nervensystem eine Rolle. Auch innerhalb des Korpers kénnen Reize
entstehen und wahrgenommen werden. Dies sind Reize, die zum Beispiel durch Organe,
Muskeln oder Kérperbewegungen ausgelost werden [BSWOT].

Die Aufgabe des Nervensystems ist es, die aufgenommenen Reize zu verarbeiten, auf-
einander zu beziehen und mit Verdnderungen des Korpers zu reagieren. Dafiir kommen
sowohl bewusste Reaktionen wie z.B. Bewegungen der Muskulatur als auch unbewusste
Reaktionen wie beispielsweise Organtétigkeiten infrage. Das Nervensystem ist somit das
zentrale Element zur Steuerung des Korpers.

Das Nervensystem wird in das zentrale Nervensystem (zentrale Nervensystem (ZNS))
und das periphere Nervensystem (periphere Nervensystem (PNS)) unterteilt. Das ZNS
wird aus dem Gehirn und dem Riickenmark gebildet. Es hat drei Funktionen: Integration,
Koordination und Regulierung. Integration beinhaltet die Sammlung aller eingehenden
Reize (Afferenzen) sowohl von innerhalb des Korpers als auch von auerhalb. Koordi-

11
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Aufbau eines Neurons

Dendrit b
Endknépfchen

Zellkérper

Ranvierscher Schniirring

Zellkern
Oligodendrozyt

Abbildung 2.1: Schematischer Aufbau eines Neurons [eV12].

nation umfasst simtliche Bewegungen des Korpers. Schliellich bestimmt Regulierung
die Steuerung der organischen Abldufe. Das PNS umfasst den restlichen Teil des Ner-
vensystems ohne das Gehirn und das Riickenmark. Das PNS ist direkt mit dem ZNS
verbunden. Es hat den Zweck das ZNS mit den anderen Organen und Koérperteilen zu
verkniipfen.

Anatomisch setzt sich das gesamte Nervensystem, und damit sowohl das ZNS als auch
das PNS, aus Nervenzellen (Neuronen) und Gliazellen zusammen. Gliazellen bilden eine
stiitzende Matrix fiir die Neuronen und sind an Stoffwechselreaktionen der Neuronen so-
wie deren Nahrstoffversorgung beteiligt. Neuronen dienen der Verarbeitung von Signalen
im Nervensystem. Sie sind die Zellen, die die wesentlichen Funktionen des Nervensystems
ermdglichen. Ein Neuron ist in der Lage Signale von anderen Neuronen zu empfangen und
Signale an andere Neuronen weiterzugeben. Im Nervensystem sind mehrere Milliarden
Neuronen verkniipft. Sie kommunizieren miteinander und beeinflussen sich gegenseitig,
sodass die komplexen Ablidufe im Korper abgebildet und verarbeitet werden konnen. Der
typische Aufbau eines Neurons ist in Abbildung 2.1 skizziert. Ein Neuron besteht aus
Dendriten, einem Zellkorper (Soma) mit Zellkern und einem Axon.

12



2.1 NEURONEN ALS TEIL DES NERVENSYSTEMS

Bei einem Signal spricht man auf der Ebene eines Neurons von einer Erregung, die
meist aus Potenzialinderungen besteht und innerhalb des Neurons sowie von Neuron zu
Neuron weitergegeben werden kann. Die Erregungen von verschiedenen Neuronen werden
dabei iiber die Dendriten in einem Neuron empfangen und laufen im Soma zusammen.
Hat sich ein ausreichend grofies Potenzial am Neuron gebildet, wird ein Aktionspotenzial
(Spike) ausgelost und iiber das Axon an verbundene Neuronen oder andere Empfinger
wie Muskel- oder Driisenzellen weitergeleitet. Man spricht auch davon, dass das Neuron
feuert. Dieser Spike wird dann zu allen iiber Synapsen verbundenen Neuronen, die als
postsynaptische Neuronen bezeichnet werden, iibertragen. Auch bei diesen postsynapti-
schen Neuronen kommt es zu einer Membranpotenzialverschiebung, die moéglicherweise
in einem weiteren Spike resultiert. Ein Signal, das in Form eines Aktionspotenzials an-
kommt, fithrt zu einer kurzfristigen Verschiebung des Membranpotenzials. Die Richtung
der Verschiebung hingt vom Typ des sendenden Neurons ab, das als prdsynaptisches
Neuron bezeichnet wird. Man unterscheidet zwischen erregenden (ezcitatorischen) Neu-
ronen, die eine positive Verschiebung des postsynaptischen Membranpotenzials verursa-
chen, und hemmenden (inhibitorischen) Neuronen, die eine negative Verschiebung des
postsynaptischen Membranpotenzials verursachen.

Nach dem Feuern des Spikes bleibt das Neuron fiir eine bestimmte Zeit inaktiv. Diese
Zeit wird als Refraktérzeit (engl: refractory period) bezeichnet [NMWFO01]. Wihrend
dieser Zeit stellt die Zelle ihr Ruhepotenzial wieder her und es kann kein weiteres Akti-
onspotenzial ausgelost werden. Beim Wiederherstellen des Ruhemembranpotenzials kann
es vorkommen, dass die Zellmembran hyperpolarisiert wird, also das Membranpotenzial
iiber das Ruhepotenzial hinausgeht und anschlieend erst wieder dorthin zurtickkehrt.
Wenn Erregungen das Neuron erreichen, ohne ein Aktionspotenzial auszulésen, bildet
sich die ausgeloste Potenzialdifferenz nach kurzer Zeit wieder zuriick. Um ein Aktions-
potenzial auszul6sen, miissen also mehrere Reize in kurzer Zeit an einem Neuron eintref-
fen. Da das Verhalten des Neurons nur bis zum Erreichen eines bestimmten Potenzials,
der sogenannten Spike-Schwelle, genau spezifiziert wird, bezeichnet man diese Art von
Neuronendynamiken als eine unterschwellige Dynamik (engl: subthreshold dynamics).

Neuronen kénnen unterschiedlich aufgebaut sein. Dabei kommt es mafigeblich auf die
Anzahl der Fortsétze an. Abbildung 2.2 fasst die wesentlichen Neuronentypen zusam-
men. Unipolare Neuronen besitzen lediglich einen Fortsatz, der in der Regel dem Axon
entspricht. Diese Neuronen findet man zum Beispiel in der Netzhaut des Auges. Bipola-
re Neuronen sind mit zwei Fortsétzen, einem Axon und einem Dendriten, ausgestattet.
Sie dienen der Informationsiibertragung verschiedener Sinne. Die Formen der Neuronen,
die am héufigsten vorkommen, sind die multipolaren Neuronen mit mehreren Dendriten
und einem Axon. Die letzte Art besteht aus pseudounipolaren Neuronen. Sie sind den
bipolaren Neuronen &hnlich, allerdings gehen der Dendrit und das Axon nahe dem Zell-
korper ineinander iiber, sodass eine Erregung nicht das ganze Soma durchlauft, sondern
sie springt direkt vom Dendrit zum Axon.
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Abbildung 2.2: Aufbau verschiedener Neuronen. 1: unipolares Neuron; 2: bipolares Neu-
ron; 3: multipolares Neuron; 4: pseudo-unipolares Neuron.

2.2 Mathematische Spezifikation der Neuronendynamik

In der Computational Neuroscience versteht man unter Neuronenmodellen mathemati-
sche Beschreibungen der biochemischen Ablaufe im Nervensystem. Dabei werden charak-
teristische Eigenschaften eines Neurons wie beispielsweise das Membranpotenzial oder
der Tonenstrom in der Membran mithilfe von mathematischen Gleichungen beschrieben.
Diese Gleichungen konnen komplex aufgebaut sein und sowohl voneinander, als auch
von der Zeit abhéngen. Es gibt unterschiedliche Modelle, die biologische Vorginge aus
verschiedenen Perspektiven und mit der unterschiedlichen Genauigkeit abbilden. Einige
Modelle verzichten zugunsten der Einfachheit und hoéherer Performance auf Genauig-
keit. Andere Neuronenmodelle sind verhdltnisméfig genauer, was jedoch oft zu héheren
Rechenkosten fiihrt. Neue Neuronenmodelle werden entwickelt, um neue und prézisere
Forschungsdaten einzubeziehen. Bei der Beobachtung von Neuronen {iber einen ldngeren
Zeitraum und mit verschiedenen Stimulationsprotokollen kénnen die Ergebnisse unter
anderem als eine Funktion von Aktionspotenzialen iiber die Zeit (sogenannte Spike-
Trains) dargestellt werden. Verschiedene Neuronen und verschiedene Stimulationen fiih-
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ren zu unterschiedlichen Spike-Trains [GKNP14]. Je groer der Detailgrad des jeweiligen
Neuronenmodells ist, desto genauer kann es die beobachteten Spike-Trains nachahmen.

In den Neurowissenschaften stehen groffe Datenmengen aus verschiedenen in vivo und
in vitro Experimenten zur Verfiigung. Diese Daten erlauben genauere Charakterisie-
rungen der internen Abldufe in den Neuronen und insbesondere der Spike-Trains der
unterschiedlichen Arten von Neuronen. Die gemessenen elektrischen und chemischen
Eigenschaften der Neuronen stellen eine Basis dar, um das Verhalten durch passende
Modelle zu reproduzieren. 3D-Rekonstruktionen von realen Neuronen in Form von elek-
trisch gekoppelten Kompartimenten erlauben eine exakte Modellierung der Vorgénge in
komplexen morphologischen Neutronenstrukturen. Die Arbeit von Lapicque [Lap07] und
spater Hodgkin und Huxley [HH52] bilden die Grundlagen zur Neuronenmodellierung mit
biologisch plausiblen Eigenschaften durch Differenzialgleichungen. Die Verdnderung des
Membranpotenzials des Neurons kann mithilfe eines dquivalenten elektrischen Schalt-
kreises untersucht werden, indem ein Schaltkreis bestehend aus einem Widerstand und
Kondensator [TS90] erstellt wird. Das Membranpotenzial des Neurons bzw. eines Kom-
partiments entspricht in diesem Modell der Spannung am Kondensator C, Ionenkanle
entsprechen dem Widerstand R und externe Eingaben werden durch den Strom Iy,
modelliert. Wenn ankommende Spikes so lange aufsummiert werden, bis eine Schranke
iiberschritten wird und ein Spike gefeuert wird, spricht man von einem Integrate-and-Fire
Neuronenmodell. Mithilfe der Kabeltheorie [JNT75] konnen die einzelnen Schaltkreise im
Zusammenhang simuliert werden. Neuronenmodelle, die aus genau einem Kompartiment
bestehen, werden als Punktneuron bezeichnet.

(A) (B)
Isyn l d

extracellular
A e By C HR ....................

intracellular

Abbildung 2.3: Exemplarische Darstellung eines Hodgkin-und-Huxley Schaltkrei-
ses [HH52] zur Modellierung des Membranpotenzials: (A) Schaltkreisdia-
gramm (B) Die Differenzialgleichung, die anhand der Kapazitdt C, des
Widerstandes R und eines externen Stroms gy, den Verlauf der Span-
nung V iiber die Zeit bestimmt [T'S90].

Ein exemplarischer Schaltkreis wird in Abbildung 2.3 (A) gezeigt. Die Differenzialglei-
chung in Abbildung 2.3 (B) spezifiziert die Dynamik des so modellierten Membranpo-
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tenzials des Neurons. Die von anderen Neuronen gefeuerte Spikes gelangen in Form eines
externen Stroms Iy, zum Neuron. I, kann durch die Faltung aller einkommenden
Spikes mit einer Kernel-Funktion modelliert werden. Dieser legt die Entwicklung des
postsynaptischen Membranpotenzials (engl. post-synaptic potential) fest. Beispiele fiir
oft verwendete Kernel-Funktionen sind die a-Funktion (vgl. Gleichung 2.3), exponentiell
abklingende Funktionen und die Delta-Funktion.

Der zuvor beschriebene Ansatz, Spikes zu einem Strom gy, aufzusummieren, wird als
Strom-basierter (engl: current-based) Ansatz bezeichnet [KAM92]. Zwar fithrt der Strom-
basierte Ansatz zu einem aus mathematischer Sicht einfacherem Problem, vereinfacht
jedoch die in der Zelle ablaufenden Prozesse fiir manche Zwecke zu sehr. Der Leitwert-
basierte (engl: conductance-based) Ansatz [KAM92] stellt hier eine bessere Alternative
dar. Anstatt die durch prisynaptischen Spikes induzierte Strome einfach aufzusummie-
ren, wird eine Beeinflussung dieser Spikes auf die Leitfahigkeit der Membran modelliert.
Zwar werden Leitwert-basierte Modelle als realistischer angesehen, erfordern bei der Lo-
sung der entsprechenden Differenzialgleichungen aber in der Regel ein nummerisches und
damit approximatives Verfahren.

2.3 Charakteristische Neuronendynamiken

Dieser Abschnitt stellt unterschiedliche charakteristische Neuronendynamiken vor, die
einige wesentliche Eigenschaften der biologischen Neuronen modellieren. Die vorliegende
Auswahl der Dynamiken beruht auf deren Verbreitung in der Literatur iiber neuronale
Simulationen.

Im Folgenden wird anhand einer spezifischen Dynamik detailliert erldutert, wie eine
exakte inkrementelle Losung der darin vorkommenden Differenzialgleichung bestimmt
werden kann, die eine ressourcensparende nummerische Simulation erlaubt. Diese Lo-
sung ist in Unterabschnitt 8.1.6 als ein symbolisches mathematisches Programm imple-
mentiert.

Das Substituieren des Terms C - R in Abbildung 2.3 (B) durch die Membranzeitkon-
stante 7y, ergibt die kanonische Form der Differenzialgleichung fiir das Integrate-and-Fire
Neuronenmodell [DMW89]:

d V 1
av = + 6Isyn (2.1)
Die oben eingefiihrte Differenzialgleichung beschreibt, wie sich das Membranpoten-
zial bei eingehenden Strémen, gy, verhidlt. Die Form der Strome ist im Modell nicht
beschrieben. In einer realistischen Simulation empfingt das Neuron die Strome iiber
Synapsen von prasynaptischen Neuronen. Der gesamte Strom Iy, (t) zum Zeitpunkt ¢,
der in ein Neuron flief3t, ldsst sich dabei als Summe aller eingehenden Stréme berechnen:
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I (t) = Z wj Z kernel(t — t§-f)) (2.2)
J !

> ; summiert die Strome aller eingehenden Synapsen j mit dem Gewicht der jeweiligen
Synapse w;. Y ¢ summiert dabei die Stréme einer einzelnen Synapse iiber alle Aktions-

potenziale f. Fiir jedes Aktionspotenzial f gibt t;f ) den Zeitpunkt des Aktionspotenzials

an, withrend die Funktion kernel(t) den zeitlichen Verlauf des postsynaptischen Stroms,
angestofien durch ein Aktionspotenzial, darstellt [GKNP14].
Der zeitliche Verlauf der kernel-Funktion wird unterschiedlich modelliert. Beispiels-
weise ist der a-Kernel durch folgende Gleichung gegeben:
e t
a(t) = camp—teT™ (2.3)
Ta
Qamp bestimmt die maximale Auslenkung. Diese a-Funktion hat eine feste Anstiegs-
zeit, die durch die Zeitkonstante 7, definiert ist. «(t) hat einen exponentiellen Verfall,
wodurch die Dauer des Stromflusses eines Aktionspotenzials begrenzt wird. Beispielhafte
Funktionsverliufe mit unterschiedlichen Zeitkonstanten sind in Abbildung 2.4 zu sehen.

Abbildung 2.4: Unterschiedliche Verldufe der a-Funktion mit Anstiegszeiten 7y, = 1ms
(erste), Toyn = 2ms (zweite), Tsyn = 3ms (dritte), jeweils fir aamp = 1.

Durch das Einsetzen des a-Kernel in das Integrate-and-Fire-Modell, das durch Glei-
chung 2.1 definiert ist, ergibt sich der folgende synaptische Strom zum Zeitpunkt ¢:

e -t
W(t) =i—tema. (2.4)

Ta
Im vorliegenden Fall ist ¢ der Hochstwert des postsynaptischen Potentials und 7,
die Anstiegszeitkonstante des verwendeten a-Kernels. Die inhomogene Differenzialglei-
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chung Gleichung 2.4 (I =) kann wie folgt als ein homogenes Differenzialgleichungssys-
tem umformuliert werden:

d 1 1 d 1
g [t + 2 — 01 0 gttt
dt V4 0 1% 1 v
C Tm

Bei konstantem Zeitschritt h kann dieses homogene Gleichungssystem durch die ein-
malige Berechnung eines Matrixexponentials [HJ12] der vorliegenden Matrix exakt gelost
werden [RD99]. Diese Losung berechnet numerisch das beste Ergebnis im Rahmen der
Maschinengenauigkeit und sie ist auch algorithmisch effizient, da sie im Vergleich zum
einem numerischen (nicht-analytischen) Verfahren weniger Rechenoperationen und stets
dieselbe Anzahl von Schritten fiir die Losung benotigt.

Mit einem &hnlichen Ansatz kénnen auch synaptische Verbindungen zwischen Neuro-
nen mathematisch modelliert werden. Man kann bereits jetzt erkennen, dass der Prozess
der Simulation eines Neuronenmodells vom Modellierer ein tiefes Versténdnis der Ma-
thematik, insbesondere der Numerik, erfordert. Daher wird im Laufe dieser Arbeit eine
dedizierte DSL entwickelt, mit deren Hilfe Differenzialgleichungen spezifiziert (vgl. Ab-
schnitt 5.4) und anschliefend analysiert werden kénnen (vgl. Unterabschnitt 8.1.6).

Eingehende Strome veriandern das Membranpotenzial kontinuierlich in Abhéngigkeit
zur Membrankapazitdt C'. Dies geschieht so lange, bis das Membranpotenzial einen vor-
definierten Schwellenwert V4, erreicht. Beim Erreichen von Vi, wird ein Aktionspotenzial
ausgelost, dessen Form im Modell allerdings nicht beschrieben ist. Auf die Aussendung
des Aktionspotenzials folgt schliefllich eine Refraktérphase, in der es nicht zu einem
erneuten Aktionspotenzial kommen kann.

Im Gegensatz zur deklarativen Notation der Differenzialgleichungen, werden die Logik
und Priifung des Schwellendurchstofles, die Spikeerzeugung und der Eintritt und das
Verlassen der Refraktidrphase imperativ spezifiziert (vgl. Abschnitt 5.3).

Das Integrate-and-Fire Modell beschreibt nur einige wichtige Eigenschaften der bio-
logischen Neuronen. Ein wesentlicher Bestandteil, der in diesem Modell fehlt, ist die
Diffusion der Ionen in der Zelle, die mit der Zeit das Ruhemembranpotenzial wiederher-
stellt. Im oben beschriebenen Modell wird jeder eingehende Strom aufgenommen und
gespeichert, ohne dass dieser Strom das Neuron wieder verldasst. Nachfolgend werden
detailliertere Modelle erldutert, die diese und weitere wichtige Eigenschaften ebenfalls
mit einbeziehen.

Leaky Integrate-and-Fire: Das Leaky Integrate-and-Fire Neuronenmodell [Bur06] ist
eine direkte Erweiterung des Integrate-and-Fire-Modells, das die Diffusion von Ionen
und deren Auswirkung auf das Membranpotenzials mit in Betracht zieht. Dabei wird die
Modellgleichung des Integrate-and-Fire Modell um einen zusétzlichen Term erweitert,
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der die Diffusion beschreibt. Die resultierende Gleichung fiir dieses Modell lautet wie
folgt:

Vo= —— 4+ (4T 2.

dtV P + C( + leak) ( 6)
C

leak = ——V (2.7)
Tm

Zusitzlich zur Gleichung aus Abbildung 2.3 (B) enthiilt das Leaky Integrate-and-Fire
Modell einen Term [jos, der die Leckstrome reprisentiert. Der Strom [je, wird in Ab-
héngigkeit vom Membranpotenzial V' definiert.

Adaptive Integrate-and-Fire: Aufgrund eingehender Strome koénnen in Neuronen Ak-
tionspotenziale ausgelést werden. Die zuvor erlduterten Neuronenmodelle beschreiben
eine mogliche Art, die zu einem Aktionspotenzial fithrt. Beim Beobachten der Neuronen
iiber einen léingeren Zeitraum kénnen allerdings Veréinderungen in der Feuerrate der Neu-
ronen festgestellt werden. Die Feuerrate bezeichnet die Haufigkeit, mit der ein Neuron in
einem bestimmten Zeitraum Aktionspotenziale aussendet. Viele Neuronen zeigen unter
bestimmten Umsténden einen Riickgang der Feuerrate mit fortschreitender Zeit [BHO03].

Um diese Eigenschaft abzubilden, kann das Leaky Integrate-and-Fire Modell um einen
Adaptationsterm w erweitert werden [BGO05]:

d \% 1
—V=-—F —(I+ Leak —w 2.8
dt Tm+C( + Deak ) (28)
w beschreibt hier einen Adaptationsstrom. Der Adaptationsstrom ergibt sich aus der
folgenden Differenzialgleichung:
d a
S = —
dt Tw
Die Konstante a ist ein Parameter, der die Abhéngigkeit vom Membranpotenzial bein-
flusst. Gleichzeitig wird w um einen konstanten Wert erhéht, wenn ein Aktionspoten-
zial aufgetreten ist. Somit ergibt sich eine Adaptation im unterschwelligen Bereich des
Membranpotenzials durch den Parameter a und eine Adaptation bei Uberschreiten des
Schwellenwertes.

(V —w) (2.9)

Hodgkin-Huxley: Wie alle anderen Korperzellen sind auch Neuronen durch eine Mem-
bran von ihrer Umgebung abgegrenzt. Diese Membran ist jedoch nicht komplett undurch-
lidssig. Passive Kanile (engl: channels), die in die Membran eingebettet sind, erlauben es
bestimmten Arten von Ionen selektiv die Membran nach auflen und nach innen zu pas-
sieren. Zusétzlich bewegen aktive Transportermolekiile Ionen in und aus der Zelle. Diese
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beiden Mechanismen halten ein Landungsgefille aufrecht, das als elektrisches Potenzial
iiber die Membran gemessen werden kann.

Das Leitwert-basierte Hodgkin-Huzley-Modell [KAM92], gehort zu den grundlegenden
Neuronenmodellen [GKNP14]. Seine Modellgleichungen beschreiben die biochemischen
Abldufe im Neuron direkt, weshalb dieses Modell im Vergleich zu den zuvor beschriebe-
nen abstrakteren Neuronenmodellen als realistischeres Modell fiir biologische Neuronen
gilt.

Die Kernidee des Modells ist es, die Ionenkanéle in der Zellmembran zu modellieren
und aus den resultierenden Stromen das Membranpotenzial zu bestimmen. Dabei werden
im einfachsten Fall Kanéle fiir Natrium- (In,) und Kalium-Tonen (/k) und ein weiterer
Term fiir Leckstrome (I1,) verwendet. Somit ergibt sich die folgende Gleichung fiir das
Membranpotenzial:

d
—V=I-Ix—Ina— I, (2.10)
dt
Auch hier repriisentiert I den synaptischen Strom. Die Gleichungen fiir die Tonenstro-

me Ik, In, und I, sind wie folgt definiert:

Ix = gk -n* - (V = Vi) (2.11)
INa = gNa-m° - - (V = Viva) (2.12)
I =gr-(V-W) (2.13)

n, m und h sind sogenannte Gatingvariablen, die den Offnungsgrad der Ionenkanile
jeweils als Wert zwischen 0 und 1 beschreiben. Gatingvariablen und maximale Leitwerte
von g;,i € K, Na, L bilden die Leitwerte fiir die Kanéle. Der Leitwert des Leckstroms
ist stets konstant. Die Strome ergeben sich aus den Leitwerten und der Potentialdiffe-
renz zwischen dem Membranpotenzial und den Gleichgewichtspotenzialen des jeweiligen
Tonenkanals Vi, Vna und V7,.

Im Zusammenspiel mit den jeweiligen Ionenkanélen sorgen die Dynamiken der Ga-
tingvariablen dafiir, dass das Neuron ein Aktionspotenzial aufbauen und anschliefend in
eine Refraktédrphase iibergehen kann. Die biologischen Eigenschaften des Neurons sind
damit direkt im Modell enthalten. Die Gatingvariablen werden durch folgende Differen-
zialgleichungen fiir jedes x € {n,m, h} wie folgt spezifiziert:

d

%Jc:ax-(V)~(l—x)—/8x-V-x (2.14)
ax und Py sind vom Membranpotenzial V' abhéngige exponentielle Funktionen, deren

genaue Form in Experimenten bestimmt wurde. Beispielsweise sieht die Definition von

ay, wie folgt aus:
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on(V) = 0.032- (15 — V) /(elI5=V)/5) _ 1) (2.15)

Das einfache Hodgkin- Huzley-Modell sieht nur drei Ionenkanéle I, I, und Iy, vor. Der
grundsétzliche Formalismus lisst sich allerdings beliebig auf weitere Kanaltypen erwei-
tern. Die Komplexitdt und Kopplung der Gleichungen fithrt dazu, dass sich das Modell
nur approximativ und mit erhéhten rechnerischen Aufwand l6sen liasst. Eine Moglichkeit
zur Vereinfachung des Hodgkin- Huzley-Modells besteht darin, die vierdimensionale Dif-
ferenzialgleichung durch ein zweidimensionales Gleichungssystem auszudriicken. Dabei
werden die zeitabhéngigen Eigenschaften der Gatingvariablen analysiert und ausgenutzt,
um sich der vierdimensionalen Gleichung anzun&hern. In diesem Sinne kénnen die oben
erlduterten Integrate-and-Fire-Modelle als Spezialfille des Hodgkin-Huzley-Neurons an-
gesehen werden.

Mehrsegment-Modelle: Neuronenmodelle, die aus mehreren Kompartimenten beste-
hen (engl: multi-compartment models) bilden die gesamte Form des Neurons, speziell sei-
nem veréstelten Dendriten, ab [GKNP14]. Dabei wird das Neuron in einzelne Abschnitte
eingeteilt, zum Beispiel in Soma, Axon und Dendriten. Die Abschnitte sind miteinander
verbunden und kénnen beliebig verzweigt sein. Thre biochemischen Eigenschaften kénnen
mithilfe des Hodgkin-Huzley-Neuronenmodells spezifiziert werden. Die Modellierung der
Verbindung der Abschnitte untereinander findet auf der Basis der Kabeltheorie [JNT75]
statt. Damit ergénzen die Mehrsegment-Modelle den Hodgkin- Huzley-Ansatz um die
Moglichkeit einer genaueren Spezifikation der Morphologie des Neurons.

2.4 Zusammenfassung

Dieses Kapitel hat die biologischen und mathematischen Grundlagen der neuronalen Mo-
dellierung vorgestellt, die fiir das Verstédndnis der vorliegenden Arbeit notwendig sind.
Mathematische Methoden zur numerischen Simulation von neuronalen Netzwerke wur-
den an einem Beispiel detailliert erldutert. Desweiteren wurden Ansétze zur zeitlichen
Auswertung von neuronalen Netzwerken in Simulationen behandelt. Auf diesen Grund-
lagen aufbauend werden im kommenden Kapitel bereits existierende Modellierungsspra-
chen vorgestellt und analysiert.
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Kapitel 3

Nutzungsszenarien und Anforderungen fiir
eine Neuronen-Modellierungssprache

Dieses Kapitel stellt die Nutzerszenarien und die wesentlichen Rollen vor, die fiir die Ent-
wicklung von Neuronenmodellen und deren anschliefende Simulation relevant sind. Die-
sen Uberlegungen folgend und basierend auf einer Literaturrecherche werden die Anfor-
derungen an Modellierungssprachen fiir biologisch motivierte Neuronen definiert. Danach
werden die wichtigsten existierenden Modellierungsansétze fiir die Neuronenspezifikation
prasentiert und evaluiert. Die Resultate dieser Evaluierung begriinden die Entscheidung,
eine dedizierte fiir NEST spezialisierte Sprache zu entwickeln, statte eine der bereits
existierenden Sprachen fiir NEST zu verwenden.

3.1 Nutzungsszenarien mit ihren Rollen

Dieser Abschnitt stellt wichtige Rollen vor, die bei der Entwicklung von Experimenten
in der Computational Neuroscience, von Neuronenmodellen bzw. der darunter liegenden
Infrastruktur relevant sind. Grundlegend fiir eine Differenzierung sind hierbei unter-
schiedliche Sichtweisen auf die Entwicklung von Softwaremodulen und Experimenten.
Einerseits werden Neuronenmodelle entwickelt und benutzt, um konkrete Simulationen
durchzufithren, andererseits kénnen die verwendeten Modellierungssprache und deren
Verarbeitungstools an sich weiterentwickelt werden. Schliellich werden alle entwickelten
Module benutzt, um die eigentliche Simulation durchzufiihren.

Abbildung 3.1 illustriert dies anhand einer abstrakten Instanz der Simulationsumge-
bung bestehend aus einer Modellierungssprache, einem Simulator und einem Generator,
der die Neuronenmodellbeschreibung in eine vom Simulator ausfithrbare [Rum02] Form
iiberfiihrt. Dabei sind die folgenden Komponenten relevant [KRV06]:

e Eine Grammatik ist ein formales Modell, das die Struktur der Modellierungsspra-
che definiert. Des Weiteren dient die Grammatik der Definition des Metamodells
der Modellierungssprache, das die maschinelle Verarbeitung der Neuronenmodelle
erlaubt.
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Structure

Language % Model Library
e.g. MontiCore Developer Developer
Grammar ‘\/De’v‘e’/—qg?_r ----- e ~

\/ ~defines [ N - >
--------- >| Neuron R tt Library
Grammar defi
erines Models wes Models

<

g-g- N Ef T Code % % Generator
enerator
Generator ~__/ Developer <<modelling
\/ framework>>
Simulation <<runtime>>
Designer Statistics:
e.g. NEST spike trains, fire rates

%

S
E ~ o = JJ/&/UUU/

e.g. yNEST Simulator i
~__~ Developer (,%

neuron = nest.Create ('izhikevich nestml"') ‘ Data Analyst

nest.Simulate (1000.0)

Abbildung 3.1: Ablauf bei der Entwicklung eines Modells und dessen Simulation ein-
schliefllich der entsprechenden Rollen.

e Neuronenmodelle sind Instanzen der Modellierungssprache. Diese Modelle liegen
in Form von Dateien vor. Neuronenmodelle sind konform zur Grammatik.

e Eine Modellbibliothek besteht aus einer Sammlung der Neuronenmodellen, die
komplett oder in Teilen wiederverwendet werden koénnen.

e Ein Codegenerator ist ein Programm, das aus einer Menge von Input-Artefakten
eine Menge von Output-Artefakten erzeugt ("generiert”). In diesem Fall produziert
der Generator eine fiir einen Simulator ausfithrbare Repréisentation aus Input-
Dateien. Typischerweise wird fiir jeden Simulator ein spezieller Generator entwi-
ckelt.

e Ein Simulator ist ein Programm, das die Neuronenmodelle ausfithren kann. Zur
Ausfithrung gehoren sowohl die Simulation des einzelnen Neurons als auch eines
Verbundes von Neuronen.
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Steuerungsskripte beschreiben ein bestimmtes wissenschaftliches Experiment
flir einen bestimmten Simulator.

Simulationsstatistiken sind Ergebnisdaten, die wéhrend der Simulation erzeugt
werden und die Grundlage fiir die Auswertung der Simulation darstellen. Zu solchen
Statistiken gehoren Daten wie Membranpotenzialverliufe und Spike-Trains.

An diesem Prozess sind die folgenden Rollen beteiligt:

Der Sprachentwickler kennt die innere Struktur der Sprache und der entspre-
chenden Werkzeuge. Er realisiert neue Funktionen in dessen Kern. Dazu gehoren
die Definition und Anderungen der internen Struktur der Sprache bzw. der syn-
taktischen Form der Modelle dieser Sprache.

Der Modellierer ist der eigentliche Benutzer der Modellierungssprache. Im All-
gemeinen ist er kein Computerwissenschaftler oder Mathematiker und entwickelt
Neuronenmodelle mit dem Ziel diese anschliefend in einer Simulationsumgebung
zu evaluieren.

Der Bibliothekentwickler definiert wiederverwendbare qualitdtsgesicherte Mo-
delle bzw. Modellteile. Wie in der Softwareentwicklung existieren auch bei Neuro-
nenmodellen wiederkehrende Aspekte der Modellspezifikation, die in einer Biblio-
thek zur allgemeinen Verfiigung gestellt werden konnen.

Der Generatorentwickler ist dafiir zustdndig, die in der Modellierungssprache
spezifizierten Modelle, in eine ausfithrbare Form zu bringen. Es kénnen mehre-
re Generatoren existieren, um die Modelle derselben Sprache fiir unterschiedliche
Plattformen zu iibersetzen.

Der Simulatorentwickler beschéftigt sich mit der Entwicklung und Optimierung
der Simulationsumgebung fiir neuronale Netzwerke, deren Bestandteil die Neuro-
nenmodelle sind. Da an solchen Simulationen eine Vielzahl von Neuronen und
Synapsen beteiligt sein konnen, werden die Modelle typischerweise in einer Sy-
stemprogrammiersprache wie C oder C++ implementiert, um moglichst optimal
die verfiigharen Hardwareressourcen auszunutzen.

Der Simulationsentwickler entwirft Simulationen auf Basis von Neuronenmodel-
len, um die Funktionsweise von realen biologischen Neuronen nachzuahmen. Dabei
werden neuronale Aktivititen oft in einem grofien Netzwerk untersucht.

Waéhrend einer Simulation fallen typischerweise sehr grole Datenmengen an. Der
Datenanalyst versucht aus den gesammelten Simulationsdaten wissenschaftliche
Erkenntnisse zu gewinnen. Dabei benétigt er Kenntnisse iiber mathematische Ei-
genschaften der zugrundeliegenden Neuronenmodelle, sowie iiber die Biologie des
simulierten Systems.
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Im Weiteren werden Nutzungsszenarien auf Basis der eingefiithrten Rollen definiert, die
von einer gewiinschten Modellierungssprache und deren Werkzeugen unterstiitzt werden
sollen. Die Szenarien beschreiben einen exemplarischen Vorgang und stellen die Benut-
zung des Systems durch eine Sequenz von Nutzeraktionen dar [G1i00]. Die Beschreibung
der Szenarien erfolgt in natiirlicher Sprache. Zur Strukturierung der Szenarien wird da-
bei die Interaktion der Nutzer mit der Modellierungssprache und Werkzeuge explizit
hervorgehoben.

(S1) Modellbildung: In diesem Szenario wird ein neues Neuronenmodell erstellt. Da-
bei wird ein in der Literatur beschriebenes Modell bzw. ein eigens entwickelter
Ansatz simuliert. Im allgemeinen Fall wird das Modell komplett vom Grund auf
neu erstellt. Es findet keine Wiederverwendung statt. Dazu erstellt der Modellie-
rer zuerst die mathematische Beschreibung des Modells in Form der Differenzial-
gleichungen. Der Modellierer dokumentiert dieses Modell mit Kommentaren und
benutzt einen Codegenerator, um das Modell in den ausgesuchten Simulator zu
integrieren.

(S1.1) Vererbung: In diesem Szenario wéhlt der Modellierer ein bereits existie-
rendes Modell aus und erweitert es um neue Funktionalitdt. Dabei wird das
zu erweiternde Modell im Erweiterungsmodell lediglich referenziert. In die-
sem Erweiterungsszenario konnen sowohl Daten als auch das Verhalten des
zu erweiternden Modells verdndert werden. Beim Datenzustand kénnen neue
Variablen hinzukommen. Bei der Verhaltenséinderung kénnen sowohl das pro-
zedurale Verhalten der Dynamik als auch die deklarativen Beschreibungen der
Variablen angepasst werden.

(S1.2) Komposition: Auch wenn das Modell neu erstellt wird, kénnen manche
wiederkehrende Programmabschnitte bereits in einer modularen Komponente
zur Verfiigung stehen. Bei diesem Szenario sucht der Modellierer ein passendes
Modul in der Modellbibliothek aus und integriert dieses in das neue Neuro-
nenmodell durch eine Kompositionsbeziehung. Dafiir importiert er das Modul
und benutzt es anhand der 6ffentlichen Schnittstelle. Der Bibliothekentwickler
stellt eine qualitétsgesicherte Sammlung solcher Module zur Verfiigung.

(S2) Spracherweiterung: In diesem Szenario wird die Modellierungssprache an sich
verandert. Dabei wird die Sprache an neue Anforderungen angepasst. Der Sprach-
entwickler integriert ein neues Sprachonstrukt in die Modellierungssprache. Dafiir
verandert er direkt die Grammatik, die die Sprache definiert. Alternativ kann er
die Spracherweiterungsmechanismen [HLMSNT15, KKP*09, KRV07, KRV08] be-

nutzen, um die Anderungen in einer neuen Grammatik zu manifestieren.

(S3) Anpassung des Generierungsframeworks: In den folgenden Szenarien wird
der Codegenerator entweder erweitert oder komplett neu entwickelt.

26



3.2 ANFORDERUNGEN AN DIE NEURONENBESCHREIBUNGSSPRACHE

(S3.1) Neuer Generator: Der Generatorentwickler erstellt einen Generator,
um eine neue Zielplattform zu bedienen.

(S3.2) Handgeschriebener Code: In bestimmten Fillen kann der generierte
Code durch optimierte handgeschriebene Codeabschnitte ergédnzt bzw. ersetzt
werden. Der Generatorentwickler benutzt einen vordefinierten Mechanismus
fiir die Integration des handgeschriebenen Codes.

(S4) Erweiterung des Simulators: In diesem Szenario wird wihrend der Weiter-
entwicklung des Simulators durch den Simulatorentwickler die Schnittstelle der
Neuronenmodelle verdndert. Anstatt alle Modelle an die neue Schnittstelle ma-
nuell anzupassen, wird lediglich der entsprechende Codegenerator durch den Ge-
neratorentwickler entsprechend aktualisiert. Alle Neuronenmodelle bleiben dabei
unveréandert,.

(S5) Durchfiihrung einer Simulation: Der Simulationsentwickler erstellt eine Simu-
lation fiir ein neurowissenschaftliches Experiment. Dabei ist fiir ihn die Dokumen-
tation der Neuronenmodelle wichtig. Neben der statischen Schnittstelle des Modells
(d.h. die Menge der moglichen einstellbaren Parameter) sind auch mathematische
Eigenschaften des jeweiligen Modells von Bedeutung. Als erstes will der Simula-
tionsentwickler sich einen Uberblick iiber die statische Schnittstelle des Modells
verschaffen bzw. iiber die Standardwerte der Variablen. In Kapitel 2 wurde bereits
erldutert, dass Spike-Trains eine wichtige Rolle bei der Beurteilung des Simulati-
onsergebnisses spielen. Um ein Modell mit einem bestimmten Spiking-Verhalten
auszusuchen, will der Simulationsentwickler einen Uberblick iiber Modellgleichun-
gen haben.

(S6) Analyse der Simulation: Der Datenanalyst untersucht eine durchgefiihrte Si-
mulation und versucht, daraus wissenschaftliche Erkenntnisse zu gewinnen. Um
die Befunde besser zu verstehen, sind fiir ihn vor allem die mathematischen Eigen-
schaften der zugrunde liegenden Neuronenmodelle wichtig.

3.2 Anforderungen an die Neuronenbeschreibungssprache

Um bereits existierende Modellierungssprachen aus der Computational Neuroscience zu
evaluieren, stellt dieser Abschnitt einen Anforderungskatalog vor. Dieser Katalog basiert
einerseits auf den Forschungsfragen Q1, Q2, Q3, Q4 und Q5 aus Abschnitt 1.3 bzw. Nut-
zungsszenarien aus Abschnitt 3.1. Andererseits werden die in den Arbeiten [GHHT01,
KKPT09] vorgestellten Anforderungen aufgearbeitet. Dabei werden die fiir die vorlie-
gende Arbeit am meisten relevanten Anforderungen identifiziert und auf die neurowis-
senschaftliche Doméne angepasst und erweitert.
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(RQ1) Modellierungsstil: Im Unterschied zu einer General Purpose Language (General

Purpose Lanuage (GPL)) dienen Domain Specific Languages (DSLs) einem be-
stimmten wohldefinierten Zweck, der auf die Anwendungsdoméne eingegrenzt ist.
Im Falle der vorliegenden Arbeit ist dieser Zweck die Spezifikation von Neuronen.
Dadurch wird es erst moglich, die Sprache auf Definition von Neuronenmodellen
zu spezialisieren. Um die Vorteile dieser Spezialisierung voll auszunutzen, sollte der
Entwurf der Modellierungssprache die folgenden Anforderungen beriicksichtigen:

(RQL1.1) Klarheit: Da der Prozess der Entwicklung neuer Neuronenmodelle bzw.
das Nachvollziehen der bereits existierenden Modelle eine komplexe Unterneh-
mung ist, sollte die Komplexitéit der Sprache diesen Prozesse nicht unnétig
erschweren. Der Kern des Neuronenmodells soll fiir den Modellierer direkt
klar und ersichtlich sein. Wortreiche Definitionen sollen vermieden werden.

(RQL1.2) Portabilitit: Jede Simulationsumgebung verwendet eine eigene Modells-
pezifikation. Daher sollte die Modellierungssprache Simulator-agnostisch bzw.
zumindest portierbar definiert werden, um das Teilen der Modelle zwischen
verschiedenen Simulatoren zu ermdglichen. Um dies zu gewéhrleisten, diir-
fen keine simulatorspezifischen Modellierungskonzepte benutzt werden. Bei
Bedarf kénnen Neuoronmodelle erst zur Generierungszeit um diese kontext-
abhéngigen Aspekte ergénzt werden. Dies kann durch den Codegenerator oder
Markierungen [GLRR15] erfolgen, die in separaten Dateien gespeichert sind.

(RQ1.3) Modularitit: Da die Neuronenmodelle in unterschiedlichen Kontexten
eingesetzt werden, miissen diese modular spezifiziert sein. Die Modularitét
bildet die Grundlage fiir die Wiederverwendung der Neuronenmodelle [BRO7]
(vgl. (RQ3)).

(RQ1.4) Kompaktheit: Die Modellnotation soll kompakt sein, da die Kompakt-
heit sowohl das Verstehen als auch das Verfassen von Modellen positiv beein-
flusst.

(RQ2) Konkrete Syntaz: Dem Entwickler einer DSL stehen viele Méglichkeiten zur
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syntaktischen Realisierung einer doménenspezifischen Sprache zur Verfiigung. Den-
noch birgt dies auch die Gefahr, dass die DSL mit diversen syntaktischen Elementen
itberladen wird. Dann wiirde die DSL deren Vorteile im Vergleich zu einer GPL
verlieren. Die konkrete Syntax der DSL soll so gewdhlt werden, dass die Syntax
leicht verstidndlich und erlernbar ist. Beispielsweise sollten Sprachkonstrukte, die
Neuronen oder Kanéle modellieren, als Konstrukte erster Klasse in der Sprache
zur Verfligung stehen. Um die Vorteile der DSL im Vergleich zu einer GPL zu
stiarken, sind die folgenden Anforderungen an die konkrete Syntax der Sprache zu
beriicksichtigen:

(RQ2.1) Konsistenz: Da die DSLs fiir die Losung eines bestimmten Problems
erstellt werden, soll jedes Konzept der DSL entweder diesem Zweck dienen



3.2 ANFORDERUNGEN AN DIE NEURONENBESCHREIBUNGSSPRACHE

oder komplett ausgelassen werden [POB00]. Beispielsweise sollte die Sprache
von der technischen Schicht abstrahieren und die technischen Details eines
spezifischen Simulators in der konkreten Syntax nicht widerspiegeln.

(RQ2.2) Minimalitit: Nur die notigen Doménenkonzepte werden in der DSL

widergespiegelt. Fiir jedes Konzept soll die DSL auch genau eine Alternative
zur Verfiigung stellen.

(RQ2.3) Simplizitit: Die Simplizitéit einer Sprache trigt dazu bei, die Verstéind-

lichkeit und Erlernbarkeit dieser Sprache zu erhshen [Hoa73, Wir74, POB00].
Diese Anforderung ist auch wichtig, weil eine einfache Sprache typischerweise
die Entwicklung der Sprachwerkzeuge vereinfacht. Des Weiteren senkt eine
einfache Sprache die Barriere, die Sprache bei potenziellen Anwendern einzu-
fiihren. Die folgenden Anforderungen RQ2.4, RQ2.5, RQ2.6 helfen dabei,
dieses Ziel zu erreichen.

(RQ2.4) Vermeidung unndtiger Generalisierung: Nur die fiir die Losung des Pro-

blems der Neuronenspezifikation nétigen Konzepte sollen unterstiitzt werden.
Die vorzeitige Verallgemeinerung bzw. Parametrisierung der Modelle sollte
vermieden werden, da dies in Widerspruch zu (RQ2.3) stiinde. Beispielswei-
se sollte eine Modellierungssprache fiir Neuronen ein eingebautes Konstrukt
fiir die Definition der Neuronen besitzen und dies nicht durch eine Instanzi-
ierung einer abstrakten Klasse modellieren.

(RQ2.5) Begrenzung der Sprachelemente: Eine Modellierungssprache mit hun-

derten von Sprachelementen wire sehr schwer zu verstehen. Um die Ver-
standlichkeit und Erlernbarkeit der Modellierungssprache zu verbessern, soll
die Anzahl der zu erlernenden Elemente begrenzt werden. Dies kann dadurch
erreicht werden, dass die DSL in Subsprachen aufgeteilt wird, die dedizierte
Aspekte der Neuronenmodellierung abdecken. Subsprachen wiirden es erlau-
ben, im Nachhinein den Umfang der Modellierungssprache zu erweitern. Eine
andere Moglichkeit wére es, Konzepte in eine Modellbibliothek auszulagern.

(RQ2.6) Bekannte Notationen: Neurowissenschaftler sind klassischerweise keine

Computerwissenschaftler. Es ist schwierig fiir sie, neue an Programmierspra-
chen angelehnte Notationen zu erlernen. Deswegen sollte die bereits bekann-
ten und in der Doméne zur Anwendung kommenden Notationen mdoglichst
wiederverwendet werden [Wil03]. Im Falle der Neurowissenschaften genief3t
insbesondere die Programmiersprache Python besonders grofle Verbreitung.
Daher sollte die konkrete Syntax der Modellierungssprache der Python-Syntax
dhneln. Auch eine mathematische Notation von Differenzialgleichungen und
physikalische Einheiten miissen fester Bestandteil der DSL sein.

(RQ2.7) Deskriptive Notationen: Eine deskriptive Notation unterstiitzt die Er-

lernbarkeit der Sprache und vereinfacht das Nachvollziehen der Modelle, wenn
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die in der Doméne bekannten Terme wiederverwendet werden. Um potenzi-
elle Missverstindnisse zu vermeiden, muss die urspriingliche Semantik dieser
Elemente erhalten bleiben. Beispielsweise miissen Neuronen in der konkreten
Syntax der Sprache den Neuronen aus der neurowissenschaftlichen Doméne
entsprechen.

(RQ2.8) Unterscheidbare Notationen: Eine leicht unterscheidbare Représentati-
on der Sprachelemente ist eine wichtige Voraussetzung fiir die Verstéandlichkeit
der DSL. In der konkreten Syntax der Modelle dienen die Schliisselworter da-
zu, unterschiedliche Konzepte voneinander zu trennen. Schliisselworter sollen
an passenden Stellen in der konkreten Syntax des Modells benutzt werden.
Daher muss die Struktur des Neurons in passende Blocke aufgeteilt werden.
Die Blocke miissen leicht voneinander unterscheidbar sein und mit einleuch-
tenden Schliisselwortern eingeleitet werden.

(RQ3) Wiederverwendung: Die modulare Entwicklung ist ein wichtiger Beitrag zur
Reduktion der Komplexitéit eines Systems. Durch die Definition von Komponen-
ten, die eine explizite Schnittstelle zur Kommunikation anbieten, bleiben Details
der internen Implementierung nach dem Prinzip des ,information hidings“ verbor-
gen [Par72]. Die Komponenten werden nur mithilfe der vorgesehenen Schnittstelle
benutzt. Das erlaubt Anderungen an der internen Implementierung einer Kompo-
nente durchzufithren, ohne dass die benutzenden Komponenten angepasst werden
miissen, wodurch eine Skalierung des Entwicklungsprozesses und die Verwendung
heterogener Modelle erlaubt wird [HKR'09]. Auch ein transparenter Austausch
der Komponenten, durch andere Komponenten mit kompatibler Schnittstelle, ist
moglich [RSWT15, BMP116]. Insbesondere fiir komplexe Modelle ist eine Auftei-
lung in kleine modulare Komponenten unabdingbar.

(RQ3.1) Komponentenkonzept: Die Modellierungssprache muss eine explizite No-
tation fiir die Definition eines Moduls bzw. einer Komponente zur Verfiigung
stellen. Komponenten sollen eine wohldefinierte Schnittstelle anbieten. An-
hand dieser Schnittstelle findet die Kommunikation zwischen verschiedenen
Neuronen statt.

(RQ3.2) Anpassung durch Vererbung: Das Konzept der Vererbung [Sch99] in Pro-
grammiersprachen ist eine bewédhrte Technik fiir die Wiederverwendung. Da-
her soll die Neuronenmodellierungssprache erlauben, Neuronenmodelle durch
Uberschreibung eines Teilaspekts in einem Erweiterungsmodell anzupassen.

(RQ4) Metamodell: Das Metamodell einer DSL stellt die strukturelle Essenz dieser
Sprache dar [Kiith06]. Es ldsst sich auf verschiedene Arten beschreiben. In den
grammatikbasierten Formalismen entspricht das Metamodell den Klassen des Ab-
stract Syntax Trees (Abstract Syntax Tree (AST)). Da die Sprachen im Laufe der
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Zeit weiterentwickelt werden bzw. an neue Anforderungen angepasst werden, ist
eine geeignete Wahl des erweiterbaren Metamodells wichtig.

(RQ4.1) Aufbau des Metamodells: Der grammatikalische Aufbau der DSL und
des entsprechenden Metamodells miissen flexibel, modular und erweiterbar
sein (um RQ2.5 zu ermoglichen). Es muss moglich sein, die Grammatikde-
finition und die entsprechende Sprachinfrastruktur an neue Anforderungen
anzupassen. Um die Implementierung der Sprachverarbeitungswerzeuge zu
vereinfachen, sollten konkrete Syntax und das Metamodell aufeinander abge-
stimmt sein.

(RQ4.2) Sprachverarbeitungsinfrastuktur: Die Werkzeuge zum Parsen, Traversie-
ren des Metamodells und Priifung der Kontextbedingungen sollen fiir Sprach-
entwickler zur Verfiigung stehen. Diese Werkzeuge sollen modular, kombinier-
bar und erweiterbar aufgebaut sein.

(RQ5) Codegenerierung: Das Modellierungsframework muss eine gute Unterstiitzung
fiir die Codegenerierung anbieten.

(RQ5.1) Mehrere Zielplattformen: Es muss moglich sein, aus denselben Neu-
ronenmodellen ausfithrbare Implementierung fiir unterschiedliche Zielplatt-
formen zu generieren. Das Modellierungsframework soll eine unterstiitzende
Infrastruktur anbieten, um Codegeneratoren komfortabel zu implementieren.

(RQ5.2) Handgeschriebene Erweiterungen: Fiir leistungskritische Implementie-
rungsteile soll es méglich sein, eine handgeschriebene Implementierung in den
generierten Code zu integrieren. Dabei muss der handgeschriebene Code nicht
Teil des Neuronenmodells sein.

(RQ5.3) Dokumentation: Die Dokumentation bzw. Modellkommentare miissen
im generierten Code widergespiegelt sein.

(RQ5.4) Differenzialgleichungen: Aus deklarativen Modellbeschreibungselemen-
ten soll eine lauffihige Implementierung generiert werden, die eine effiziente
Losung dieser Differenzialgleichungen unterstiitzt.

(RQ6) Benutzerfreundlichkeit: Die Modellierungssprache und deren Werkzeuge sollten
einfach zu benutzen sein.

(RQ6.1) Self-contained: Die Modellierungssprache und deren Werkzeuge sollten
alle Module, die fiir die Ausfithrung notwendig sind, beinhalten und keine
aufwendige vorinstallierte Infrastruktur erfordern.

(RQ6.2) API: Es muss moglich sein, die Neuronenmodelle auch programma-
tisch zu erstellen. Dafiir muss eine entsprechende API zur Verfiigung stehen.
Sprachwerkzeuge sollten sich iiber das Command Line Interface bedienen
lassen.
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(RQ6.3) Tutorial: Um den Modellierungsansatz Anwendern vorzustellen, bedarf
es einer passenden Anleitung, die den Anwender durch die Entwicklung von
Neuronen leitet. Dies schliefit unter anderem die folgenden Punkte mit ein:

e Installation der Sprachverarbeitungs- und Analyseinfrastruktur.
e Modellierung eines illustrativen Beispiels.

e Nutzung von Neuronen in einem Simulator.

3.3 Verwandte Arbeiten

Auf dem Gebiet der Computational Neuroscience [CKS93] existieren bereits diverse Mo-
dellierungssprachen fiir die Spezifikation von Neuronenmodellen. Zu den am weitesten
verbreiteten gehoren NineML [GRHLF11, RCC*11, Dav15], NeuroML [GCC"10] und
LEMS [CGC™14]. Diese Ansitze haben jedoch zwei entscheidende Nachteile. Zum einen
sind diese Sprachen iiberwiegend XML basiert, was die Verstdndlichkeit, Pflege und
Weiterentwicklung der so beschriebenen Neuronenmodelle erheblich erschwert. Zum an-
deren sind diese Ansétze rein deskriptiv und enthalten deshalb keine Werkzeugunter-
stiitzung fiir die Losung oder Analyse der in Neuronenmodellen vorkommenden Dif-
ferenzialgleichungen. Desweiteren verfiigen Simulatoren wie Topographica [Bed15] und
Brian [SGB15] iiber eingebettete Modellierungssprachen. Daher werden hier all diese Mo-
dellierungsansitze detailliert beschrieben und mithilfe der aufgestellten Anforderungen
(vgl. Abschnitt 3.2) analysiert.

3.3.1 NineML

NineML [GRHLF11, RCCT11, Dav15] stellt einen Ansatz dar, biologische Neuronenmo-
delle und neuronale Netzwerkmodelle eindeutig zu beschreiben, um Ergebnisse zwischen
unterschiedlichen Forschungseinrichtungen und Simulatoren zu teilen und wiederzuver-
wenden. Dafiir definiert NineML ein generisches Objektmodel, um unterschiedliche Ele-
mente eines neuronalen Netzwerks einheitlich zu modellieren. Im Kontext dieser Arbeit
entspricht das Objektmodell dem Metamodell einer grammatikbasierten DSL [Kiih06].

NineML ist in zwei semantische Schichten unterteilt: eine abstrakte Schicht (engl:
abstract-layer) und eine Benutzer-Schicht (engl: user-layer). Die abstrakte Schicht be-
schreibt wesentliche Elemente der Neuronen- und Netzwerkmodelle zusammen mit den
entsprechenden mathematischen Definitionen, Parametern, Zustandsvariablen und Re-
geln fiir die Aktualisierung der Zustandsvariablen (vgl. Abschnitt 2.2). Die Benutzer-
Schicht erlaubt es, Elemente aus der abstrakten Schicht zu instanziieren und mit kon-
kreten Werten zu parametrisieren. Unter anderem definiert diese Schicht Anfangs- und
Standardwerte der jeweiligen abstrakten Elemente.

Im Weiteren werden die wesentlichen Elemente der abstrakten Schichten detaillierter
beschrieben und an einem Beispiel erkldrt. In der abstrakten Schicht werden Neuronen
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und Jonenkanile jeweils durch eine ComponentClass représentiert. Die ComponentClass
besteht aus einem Dynamics-Block und aus einer Menge von Interface-Elementen. Der
Dynamics-Block definiert das Laufzeitverhalten des Neurons bzw. lonenkanals. Beispiels-
weise kann die Verdnderung der Zustandsvariablen iiber die Zeit mithilfe von Differen-
zialgleichungen beschrieben werden. Ein Interface kann unterschiedliche Parameter
und Ports beinhalten. Die Parameter konnen von der Benutzer-Schicht aus wahrend
der Instanziierung verdndert werden. Beispiele fiir Parameter sind Werte fiir das initiale
Membranpotenzial oder die Refraktéirzeit des Neurons. Ports dienen dem Zweck, Nach-
richten mit anderen Elementen des Netzwerkes auszutauschen. Beispielsweise werden
iiber solche Ports Spikes an weitere Elemente des Netzwerkes gesendet. Ein Vorteil die-
ser Art der Modellierung aus der Sicht des Metamodells ist es, dass alle Elemente eines
neuronalen Netzwerkes wie Neuronen, Synapsen oder lonenkanéle gleichartig dargestellt
werden konnen. Das hat wiederum einen signifikanten Nachteil fiir die Verstandlichkeit
solcher Modelle: Das Vorkommen eines ComponentClass-Elements im Modelltext erlaubt
keine Riickschliisse auf die Doménenkonzepte, die durch dieses Vorkommen modelliert
werden. Es konnte sich um ein Neuron, eine Synapse oder einen Ionenkanal handeln, was
nur durch weitere Analyse des vorliegenden Modells gekliart werden kann.

1 <ComponentClass name="izhikevich cell"> Stored in a izhikevich.9ml
2 <Parameter name="a" dimension="none"/> «abstract>
3 P a,c, theta are further parameters of the neuron
4 <AnalogPort name="iSyn" mode="reduce" reduce op="+" dimension="current"/>
5 .
6 <EventPort name="spikeOutput" mode="send"/>
7 .
8 <Dynamics>
9 <StateVariable name="V" dimension="voltage"/>
10 <StateVariable name="U" dimension="voltage_per_time"/>
11 ’<Regime name="subthresholdRegime">
12 & <TimeDerivative variable="U">
13 _8 <MathInline>a* (b*V - U)</MathInline>
14 S </TimeDerivative>
£
15 © e
16 ?5 <OnCondition target regime="subthresholdRegime">
17 3 <Trigger>
18 -G 7 <MathInline>V \> theta </MathInline>
19 4 </Trigger>
20 <StateAssignment variable="V" >
21 <MathInline>c</MathInline> }cwrwpmﬁsm:vzc
22 </StateAssignment>
23 .
24 </OnCondition>
25 L </Regime>
26 </Dynamics>

27 </ComponentClass>

Abbildung 3.2: Ein Izhikevich Neurons [Izh03, 1zh04] modelliert als NineML-Modell.

Der Modellausschnitt in Abbildung 3.2 demonstriert die erlduterten Konzepte an ei-
nem Beispiel. Die Definition des Neurons beginnt mit der ComponentClass-Deklaration.
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Dabei wird der Name izhikevich_cell des Neurons festgelegt, der in der Benutzer-
Schicht referenziert werden darf. In den Zeilen 2-8 werden Parameter, Input- und Output-
Ports deklariert. Zusétzlich werden in den Zeilen 9-10 zwei Zustandsvariablen U und V'
deklariert. SchlieBlich wird in den Zeilen 11-26 der endliche Zustandsautomat [Bra84,
HUMO02, Rum96] definiert, der das Laufzeitverhalten des Neurons spezifiziert. Der Au-
tomat besteht aus einem Zustand mit einer Transition, die von diesem Zustand ausgeht
und im selben Zustand endet. Der Automat spiegelt die Logik des Aktualisierungs-
schrittes des Izhikevich-Neurons wider. U wird stets anhand der Differenzialgleichung
U' =ax(bxV —U) verindert. Wenn das Membranpotenzial V' den vordefiniert Schwel-
lenwert theta iiberschreitet, wird die Transition ausgefithrt. Wihrend der Ausfithrung
der Transition wird die Variable V' auf den Wert ¢ gesetzt (vgl. Zeilen 20-22).

Das Component-Objekt ist der Hauptbaustein der Benutzer-Schich. Ein Component-
Objekt ist eine konkrete Instanz eines ComponentClass-Elements der abstrakten Schicht.
Ein Component-Objekt spezifiziert die Parameter und ausgehenden Ports der dazuge-
horigen ComponentClass. Parameter werden dazu konkrete Werte zugeordnet. Bei aus-
gehenden Ports wird spezifiziert, welche Werte gesendet werden. Es ist moglich unter-
schiedliche Instanzen einer ComponentClass in der Benutzer-Schicht zu erstellen.

<?xml version='1.0' encoding='UTF-8'?>

1

2 <nineml xmlns="http://www.NineML.org/9ML/1.0" ... > «user»
3 <import language="NineML">

4 http://www.NineML.org/1l.0/dimensions.9ml

5 </import>

6 <component name="izhikevich neuron">

7 <definition url="izhikevich.9ml">

8

izhikevic cell« - Component which is defined

9 </definition> in the abstract layer
10 <property name="c'">
11 <quantity>
12 <value> \ c is defined as a parameter in
13 <scalar> -65 </scalar> the abstract layer
14 <unit> none </unit>
15 </value>
16 </quantity>
17 <note><String> Paper:Izhikevich03 at el. </String></note>
18 </property>

20 </nineml>

Abbildung 3.3: Instanziierung des Izhikevich-Neurons (vgl. Abbildung 3.2). Der Para-
meter ¢ wird dabei auf den Wert -65 gesetzt.

Abbildung 3.3 demonstriert die Instanziierung der zuvor eingefithrten Component-
Class. In den Zeilen 3-5 werden vordefinierte physikalische Einheiten importiert, damit
diese nicht erneut im Neuronenmodell definiert werden miissen. Die Zeilen 7-8 referen-
zieren das izhikevich_cell-Neuron und spezifizieren, dass das vorliegende Neuron eine
Instanz des Neurons aus Abbildung 3.2 ist. Anschliefend findet in den Zeilen 10-18 eine
Zuweisung eines skalaren Wertes zum Parameter ¢ des Izhikevich-Modells statt. Zeile 17
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definiert eine Metainformation, die eine Literaturangabe fiir die vorliegende Parametrie-
rung des Neurons angibt.

Modelle in NineML sind generell Simulator-agnostisch konzipiert. Auf der einen Seite
hat das den Vorteil, dass die Neuronenmodelle in unterschiedlichen Simulationsumgebun-
gen ausgefithrt werden konnen. Auf der anderen Seite iiberldsst dieser Ansatz die Wahl
des richtigen Losers und deren Integration mit der Modellspezifikation dem Anwender der
Sprache. Das setzt das Wissen des Anwenders sowohl iiber die mathematischen Hinter-
griinde des Modells als auch iiber die Implementierungsdetails des jeweiligen Simulators
voraus. Die Modellierung der Dynamik von Neuronen und Synapsen ausschliefSlich durch
einen deterministischen Automaten ist nicht optimal, da die Codierung des Automaten
in Form des XML Textes mithsam und fehleranfillig ist.

RQ1 Modellierung: NineML erlaubt plattformunabhéngige und somit portable Neu-
ronenmodelle zu erstellen. NineML bietet durch die Trennung von Modellen und
Modellinstanzen ein Konzept, welches ein gewisses Mafl an Modularitdt ermog-
licht. Der generische Ansatz alle Modellierungselemente im Metamodell homogen
zu behandeln ist als Nachteil zu bewerten. Da das XSD-basierte Metamodell sich
unmittelbar auf die Syntax der Sprache auswirkt, beeinflusst dies sowohl die Klar-
heit als auch die Kompaktheit der NineML-Modelle eher negativ.

RQ2 Konkrete Syntax: In NineML ist die Anzahl der Sprachelemente stark be-
schrénkt; grundsétzlich unterscheidet man zwischen ComponentClass- und Com-
ponent-Elementen. Dies kann man zunéchst als positiv auffassen, da damit die
Sprache hinsichtlich der Elemente sehr kompakt bleibt. Mit Hinblick auf Benut-
zerfreundlichkeit und Unterscheidbarkeit von Sprachelementen ist dies jedoch als
negativ zu werten. So kann ein ComponentClass-Element einen einzelnen Ionen-
kanal darstellen, es kann aber auch ein ganzes Neuron beschreiben. Ohne wei-
tere Kommentare bzw. Inspektion des Modells wire der Unterschied zunéchst
nicht direkt erkennbar. Somit sind die Modellierungselemente unnétig allgemein-
giiltig konzipiert. Die XML-Représentation der Modelle ist schwer nachvollzieh-
bar und schwer zu erstellen. Beide Aktionen erfordern die Erstellung neuer Werk-
zeuge fiir die benutzerfreundliche Darstellung und Bearbeitung der Modelle. Dies
steht dem Vorteil der Wiederverwendung von existierenden Werkzeugen fiir XML-
Verarbeitung [RCC*11] entgegen. Die Elemente der konkreten Syntax sind nur
bedingt an die Doménenbegriffe der Neurowissenschaften angelehnt, was die Ak-
zeptanz und Erlernbarkeit der Sprache erschwert. Die verpflichtende Modellierung
der Neuronendynamik mithilfe eines Mealy-Automaten erschwert die Modellbil-
dung der Neuronen fiir codeaffine Modellierer. Insbesondere gab es zum Zeitpunkt
der Erstellung dieser Arbeit keine unterstiitzenden Werkzeuge fiir die grafische
Modellierung solcher Automaten fiir NineML. Der Automat musste von Hand im
XML-Format codiert werden.
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RQ3 Wiederverwendung: Die Wiederverwendung findet auf zwei Ebenen statt. Zum
einen konnen die ComponentClass-Elemente wihrend der Instanziierung parame-
trisiert werden. Zum anderen koénnen die ComponentClass-Elemente selber in einer
Vererbungsbeziehung stehen. Zusammenhéngende Funktionalitdt kann in Form ei-
nes Moduls wiederverwendet werden. Dabei arbeitet NineML auf der Abstraktion
von XML und nicht auf der Modellebene, was negativ zu werten ist.

RQ4 Metamodell: Das Metamodell von NineML ist durch das zugrundeliegende XSD-
Schema definiert. Somit bietet es nur eingeschrénkt eine Unterstiitzung fiir eine
Spracherweiterung. Das Metamodell ist nicht modular aufgebaut. Der aus dem
Modell resultierende AST ist nicht stark typisiert. Dies beeintriachtigt die Entwick-
lung der Sprachverarbeitungswerkzeuge. Somit konnen mogliche Typfehler erst zur
Laufzeit des Werkzeugs identifiziert werden. Die Sprachberarbeitungswerkzeuge
konnen nur bedingt wiederverwendet bzw. kombiniert werden.

RQ5 Generatoren: NineML ist eine rein deskriptive Sprache zur Modellspezifikation
und bietet somit vorerst keine direkte Unterstiitzung fiir die Codegenerierung bzw.
fiir die Losung der Differenzialgleichungen. Daher wird bei NineML ein externes
Generierungsframework bzw. ein externer Solver fiir Gleichungen vorausgesetzt.
NineML gibt dariiber hinaus auch keine methodischen und technologischen Vorga-
ben fiir diese Komponenten vor.

RQ6 Benutzerfreundlichkeit: Das Metamodell von NineML ist durch ein XSD-
Schema beschrieben. Somit konnten die NineML Modelle durch ein kompatibles
Framework eingelesen werden. NineML stellt zwei unterschiedliche Schnittstellen
bereit, um mit Modellen zu arbeiten [Ninl7a]. Zum einen ist dies eine Python-
basierte Schnittstelle, die das Einlesen bzw. das Verarbeiten der Modelle erlaubt.
Zum anderen existiert eine Schnittstelle im LISP Dialekt Chicken Scheme [Chil7],
die denselben Funktionsumfang anbietet. Die Arbeitsweise von NineML wird in ei-
nem technischen Bericht beschrieben. Die Benutzung wird in einem Tutorial [nin17b]
dokumentiert. Da NineML keine Moglichkeit zur Simulation bzw. Analyse der Dif-
ferenzialgleichungen anbieten, miissen diese Funktionen von dem Endanwender ei-
genstandig implementiert und integriert werden.

3.3.2 Low Entropy Model Specification

Low Entropy Model Specification (LEMS) [CGC*14] ist eine XML-basierte Modellie-
rungssprache, mit der die Struktur und das dynamische Verhalten von biologischen Mo-
dellen spezifiziert werden konnen. LEMS stellt eine Grundstruktur fiir andere Modellie-
rungssprachen bereit, auf welcher hohere Modellierungssprachen aufbauen kénnen. Die
konkrete Syntax von LEMS wird wie im Fall von NineML durch ein XML-Schema defi-
niert.
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Der grundlegende Gedanke hinter LEMS ist, eine klare Trennung zwischen Modellen
und Modellinstanzen zu schaffen. In LEMS bedeutet dies speziell, dass mathematische
Gleichungen und Parameter, welche biologische und chemische Vorgénge beschreiben,
strikt von konkreten Instanzen getrennt werden. Somit ist es zum Beispiel moglich, die
generelle Verhaltensweise eines ITonenkanals durch mathematische Ausdriicke mit Para-
metern zu beschreiben und dann einen konkreten Ionenkanal durch eine Belegung dieser
Parameter zu definieren. Ein Modellelement wird in LEMS durch ein ComponentTy-
pe-Element definiert. Dieses spezifiziert lediglich die Struktur und Dynamik einer Men-
ge von Modellen, welche die gleichen zugrundeliegenden mathematischen Definitionen
verwenden. ComponentType-Elemente erlauben es, andere ComponentType-Elemente zu
erweitern. Dies ist sehr &hnlich zum Prinzip der Vererbung in einer polymorphen objek-
torientierten Programmiersprache.

Ein wesentlicher Bestandteil eines ComponentType ist der Dynamics-Block, welcher auf
der rechten Seite in Abbildung 3.4 zu sehen ist. Der Dynamics-Block spezifiziert das Lauf-
zeitverhalten eines Modellelements (beispielsweise eines Neurons oder eines Ionenkanals).
Es gibt die Moglichkeit, zeitabhéingige Gleichungen aufzustellen. Diese Gleichungen defi-
nieren, wie sich Zustandsvariablen in Abhingigkeit mit der Zeit veréndern. Weiterhin ist
es moglich, sogenannte Events zu beschreiben. Events kénnen einen diskreten Einfluss
auf die Werte der Zustandsvariablen haben.

[ 1<ComponentType name="celll">
2 <Parameter name="threshold" dimension="voltage" />
3 <Parameter name="refractoryPeriod" dimension="time" />
4 <Parameter name="capacitance" dimension="capacitance" />
5 </ComponentType>
6
7 <ComponentType name="cell2" extends="celll">
. 8 <Parameter name="leakConductance" dimension="conductance" />
g 9 <Parameter name="leakReversal" dimension="voltage" />
S 10 <Parameter name="deltaV" dimension="voltage" />
% +11 <EventPort name="spikes-in" direction="in" />
I 12 <Exposure name="v" dimension="voltage" />
% 13 <Dynamics>
'8 14 <StateVariable name="v" exposure="v" dimension="voltage" />
15 <TimeDerivative variable="v" value="leakConductance *
16 (leakReversal - v) / capacitance" />
17 <OnEvent port="spikes-in">
18 <StateAssignment variable="v" value="v + deltav" />
19 </OnEvent>
20 </Dynamics>
22 </ComponentType> Variable which is defihed as a
23 parameter
S 24
%‘ 25 <Component id="cell2cpt" type="cell2" leakReversal="-50mv"
T 126 deltav="50mV" threshold="-30mV" leakConductance="50pS"
‘Qg) 27 refractoryPeriod="4ms" capacitance="1pF" />

Abbildung 3.4: Ein einfaches Integrate-and-Fire Modell als LEMS Model [lem17]. Die
Vererbungsbeziehung zwischen celll und cell2 erlaubt die Benutzung
von Parametern in celll im cell2-Neuron.
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Dariiberhinaus bietet LEMS die Moglichkeit, das Verhalten mittels eines endlichen
Automaten zu spezifizieren. Die zur Anwendung kommende Automatenart basiert auf
dem Konzept des endlichen Automaten [Bra84, HUMO02, Rum96|. Bei diesem Forma-
lismus kann eine Ausgabe erfolgen, wahrend ein Zustand des Automaten aktiviert ist.
Innerhalb eines Zustandes konnen verschiedene Gleichungen fiir Zustandsvariablen de-
finiert werden, welche genau dann aktualisiert werden, wenn dieser Zustand aktiv ist.
Verschiedene Zustéinde kénnen via Transitionen mit optionalen Bedingungen verbunden
werden. Eine Transition wird genau dann ausgefiihrt, wenn der Quellzustand aktiv ist
und die Bedingung der Transition erfiillt ist.

Abbildung 3.4 demonstriert ein Beispiel der Definition zweier Neuronenmodelle im
Abstract-Layer und deren exemplarische Instanziierung im User-Layer. Zunéchst wer-
den zwei ComponentType-Elemente deklariert, welche jeweils Neuronen darstellen. cell1
(vgl. Zeilen 1-5) enthiilt lediglich drei Parameter. ce112 (eine Spezialisierung von cell1)
konkretisiert die Beschreibung weiter durch neue Parameter. Dabei erbt cell2 alle Ele-
mente von celll. Das cell2-Element demonstriert auch, wie eine Dynamik in LEMS
spezifiziert werden kann. Die Zustandsvariable V (vgl. Zeile 14) gibt an, wie sich das
Potential iiber die Zellmembran in Abhéngigkeit der Zeit innerhalb der Zelle verdndert.
Dies wird mithilfe einer mathematischem Gleichung definiert (vgl. Zeile 15). Schlie8lich
konnen die zuvor definierten Modelle im User-Layer benutzt werden. Die Zeilen 25-27
demonstrieren die Instanziierung des cell2-Neurons.

RQ1 Modellierung: Ahnlich zu NinenML bietet LEMS durch die Trennung von Mo-
dellen und Modellinstanzen ein Konzept an, welches ein gewisses Mafl an Modula-~
ritdt ermoglicht. Die abstrakte Spezifikation der LEMS-Modelle erméglicht deren
einfache Portierung auf unterschiedliche Plattformen. Das XSD-basierte Metamo-
dell wirkt sich unmittelbar auf die Syntax der Sprache aus, was sowohl die Klarheit
als auch die Kompaktheit der NineML-Modelle negativ beeinflusst.

RQ2 Syntax: Die LEMS-Syntax hat zwei wesentliche Defizite. Zum einen ist sie auf-
grund der XML-Reprisentation schwer nachvollziehbar. Zum anderen sind die
Modelle schwer zu schreiben. Zwar wére es moglich passende Editoren dafiir zu
schreiben, zum Zeitpunkt der Erstellung dieser Arbeit existierte jedoch keine Werk-
zeugunterstiitzung. Die verwendeten sprachlichen Elemente sind sehr abstrakt und
Allgemeingiiltig definiert. So kann ein ComponentType ein Neuron oder ein Ionen-
Kanal sein.

RQ3 Wiederverwendung: Ahnlich zu NineML findet die Wiederverwendung in
LEMS auf zwei Ebenen statt. Zum einen kénnen die ComponentClass-Elemente
wahrend der Instanziierung parametrisiert werden. Zum anderen konnen die Com-
ponentClass-Elemente selbst in einer Vererbungsbeziehung stehen um auf diese
Art und Weise Modellabschnitte gemeinsam und nicht redundant wiederzuverwen-
den.
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RQ4 Metamodell: Das Metamodell wird mithilfe eines XSD-Schemas definiert. Das
hat den Vorteil, dass es durch existierende XSD-Bibliotheken und Werkzeuge ver-
arbeitet werden kann. Andererseits gibt es keine direkte Unterstiitzung fiir die
sprachliche Wiederverwendung und Erweiterung.

RQ5 Generatoren: Es gibt eine Menge an Codegeneratoren fiir LEMS, die ver-
schiedene Zielplattformen unterstiitzen [VCC*14, CGC*14]. Dazu gehéren Mo-
delica [Fril0], MATLAB [GBYO08] und die Simulatoren NEURON und Brian (vgl.
Unterabschnitt 3.3.5 fiir Details dieser Simulatoren). Auch benutzerdefinierte Co-
degeneratoren konnen entwickelt werden. Fiir die Codegenerierung benutzt LEMS
einen templatebasierten Ansatz. Dennoch stellt LEMS keine dedizierten Mechanis-
men fiir das Traversieren der Modelle bereit: Die Unterstiitzung der Codegenerie-
rung beschrénkt sich auf das Bereitstellen eines Template-Frameworks, bietet aber
keine Verzahnung mit dem Modell-AST.

RQ6 Benutzerfreundlichkeit: LEMS bietet unterschiedliche Schnittstellen um Mo-
delle zu parsen, validieren und simulieren. Zum einen existiert eine Java-Schnittstelle.
Zum anderen konnen LEMS-Modelle aus einer Python-Schnittstelle verarbeitet
werden. Es existieren zwei Simulatoren [VCCT14] (einer ist Java-basiert, der an-
dere ist Python-basiert), die in der Lage sind, LEMS Modelle zu validieren und
zu simulieren. Wéhrend der Simulation werden auch die Differenzialgleichungen
gelost. Dafiir wird stets das Runge-Kutta-Verfahren [AP98] verwendet.

3.3.3 NeuroML

Die NeuroML [GHHT01, CGC™15] ist ein Ansatz um detaillierte Neuronenmodelle und
neuronale Netzwerke zu beschreiben, mit dem Ziel des Austausches komplexer Neuronen-
und Netzwerkmodelle zwischen Simulatoren. Im Unterschied zu NineML und LEMS
konnen NeuroML-Modelle sehr komplexe morphologische Eigenschaften aufweisen. Ein
Alleinstellungsmerkmal von NeuroML ist die Moglichkeit, die dreidimensionale Struktur
von Neuronen, Synapsen und darauf aufbauenden Netzwerken zu spezifizieren, indem
dreidimensionale Koordinaten fiir die Modellelemente angegeben werden.

NeuroML ist dafiir optimiert komplexe Neuronen aus mehreren Segmenten (engl: com-
partmental models) darzustellen. Strukturell wird die Sprache in drei Schichten unter-
teilt, die fiir die Beschreibung der Elemente auf unterschiedlichen Skalen der biologischen
Detaillierung verantwortlich sind. Jede Schichte wird durch eine eigene Sprache definiert.

Level 1 Diese Schicht beschreibt die Morphologie der Zelle mithilfe der MorphML. Ein
MorphML-Modell besteht aus mehreren Segmenten (compartments) einschlielich
deren Raumposition, Grole und Form. Zusétzlich ist es moglich, Metadaten zu
modellieren. Zum Beispiel konnen Angaben zum Experiment bzw. der Publikation,
aus welchem das Modell hervorgegangen ist, als Metadaten gespeichert werden.
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Level 2 Diese Schicht benutzt die ChannelML, um spannungsgesteuerte Membraneigen-
schaften einschliellich der statischen und plastischen Leitwerte zu beschreiben. Die
ChannelML erweitert die MorphML um die Moglichkeit, die genaue Platzierung
und Dichte der Membran im Zellmodell des Neurons zu definieren.

Level 3 Diese Schicht benutzt NetworkML, um neuronale Netzwerke aus einzelnen Neu-
ronen zu beschreiben, die mithilfe von MorphML und ChannelML spezifiziert sind.
Dies schlielt deren synaptische Verbindungen mit ein.

Vordefinierte Modellierungselemente kénnen in NeuroML benutzt werden, um die Dy-
namik der Segmente, Ionenkanidle und Synapsen zu beschreiben. Die Wiederverwen-
dung der vordefinierten Basiselemente erlaubt eine kompakte Darstellung der NeuroML-
Modelle. Falls kein passendes vordefiniertes Element bereits existiert, kann ein neues
Element mithilfe von LEMS (vgl. Unterabschnitt 3.3.2) definiert werden. Auch bei Neu-
roML handelt es sich um eine XML-basierte Modellierungssprache. In Weiteren wird
ein konkretes Beispiel fiir ein Neuronenmodells mit mehreren Segmenten vorgestellt. Es
handelt sich um ein Modell aus der MorphML.

MorphML verfolgt hauptsichlich zwei Ziele. Zum einen wird sie verwendet, um die
Morphologie (d.h. die Struktur und Form) von Neuronen zu definieren. Zum anderen
koénnen weiterfithrende Informationen (Metadaten) iiber Modellbestandteile ergénzt wer-
den. Im Gegensatz zu NineML setzt NeuroML einen grofien Fokus auf die Morphologie
einzelner Neuronen. Um Neuronen und deren Bestandteile, wie etwa Dendriten, in Form
und Struktur zu beschreiben, ist es notig, von der Realitdt zu abstrahieren, da die Mor-
phologie eines Neurons nicht mit beliebigem Detailgrad dargestellt werden kann. Dabei
héingt der Grad der Abstrahierung vom jeweiligen Ziel des Modells ab. Um dreidimensio-
nale Elemente wie Neuronen zu beschreiben, verwendet MorphML segment-Elemente.
Diese Elemente bestehen aus einem Start- und Endpunkt. Diese Punkte sind dreidi-
mensionale Vektoren. Zusétzlich wird der Durchmesser angegeben. Dadurch wird eine
dreidimensionale Form mit dem gewiinschten Detaillierungsgrad approximiert.

In Abbildung 3.5 wird dieser Ansatz verdeutlicht. segment-Elemente stellen den fun-
damentalen Baustein fiir die Beschreibung der Form und Struktur von Neuronen in
NeuroML dar. Neben den einzelnen segment-Elementen besteht die Moglichkeit, mehre-
re segment-Elemente zu einer semantischen Einheit zusammenzufassen. Dieser Zusam-
menschluss von mehreren segment-Elementen wird durch ein cable-Element realisiert.
Fiir cable-Elemente ist es moglich, auf hoheren Schichten elektrische Eigenschaften zu
definieren. Dies kann beispielsweise dazu genutzt werden, um die Leitfadhigkeit einzelner
Dendriten zu beschreiben.

Die zuvor erwdhnten Metadaten ermoglichen es Forschern, die Herkunft von Modell-
komponenten zu verfolgen und Hintergrundinformationen zu Modellen bereitzustellen.
Weitere Metadaten konnen unter anderem Autorenlisten, Literaturangaben, Referenzen
und Ahnliches sein. Diese Informationen helfen dabei, das Modell besser zu verstehen.
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Abbildung 3.5: Stilisierte Darstellung eines Neurons mithilfe einer endlichen Approxima-
tion durch zylindrische Segmente [GHH'01]

23

<morphml>
<cells>
<cell name = "SimpleCell">

<segments>
<segment id ="0" name="Soma" cable="0">
<proximal x="0" y="0" z="0" diameter="10"/>
<distal x="10" y="0" z="0" diameter="10"/>
</segment>

<segment id ="1" name="Dendrite" parent="0" cable="1">

<proximal x="10" y="0" z="0" diameter="3"/>
<distal x="20" y="0" z="0" diameter="3"/>
</segment>
</segments>
<cables>
<cable id="0" name="SomaCable">
<meta:group>soma_group</meta:group>
</cable>
<cable id="1" name="DendriteCable" >
<meta:group>dendrite group</meta:group>
</cable>
</cables>

</cell>
</cells>

24 </morphml>

Abbildung 3.6: Eine Umsetzung des Beispieles aus Abbildung 3.5 als MorphML-Modell

In Abbildung 3.6 ist ein MorphML-Beispiel zu sehen, in dem eine Zelle definiert wird.

Die Zellform wird durch zwei segment-Elemente beschrieben (vgl. Zeilen 5-11). In den
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Zeilen 15-20 werden semantische Einheiten aus den segment-Elementen gebildet. So
beschreibt ein segment-Element den Zellkérper und das andere segment-Element be-
schreibt einen Dendriten.

NeuroML LEMS
) ) e | ComponentType: izhikevichCell
izhikevichCell id = bursting . Parameters: a, b, c, d, thresh
a= 0.02_, b=02,c=-50d=2 " Dynamics
thresh = 30mV StateVariables: v, U B
TimeDerivatives: X
dv/dt = 0.04*v*2 + 5*v + 140.0 - U 2
du/dt = a * (b*v - U) 3
OnConditions:
v > thresh =>
v=c
U=U+d
( expTwoSynapse id = excitatory ] - ComponentType: expTwoSynapse ] =
tauRise = 1ms, tauDecay = 15ms Parameters: tauRise, tauDecay, X
erev = 0mV, gbase = 1nA erev, gbase 2
/ : 2
Dynamics g
>
L [2)
[ionChannelHH id = kDr —— Y ;ComponentType: ionChannelHH
gateHHrates id = n ) Children: gateHHrates £
forwardRate ... L ;
L — = y [
( ) ComponentType: gateHHrates ]
 HaclwardRate Child: forwardRate §
Child: backwardRate o

Abbildung 3.7: Zusammenhang zwischen LEMS und NeuroML. NeuroML greift fiir
die Deklaration von Neuronen und Ionen-Kanilen auf die LEMS-
Definitionen zuriirck [VCCT14]. Im vorliegenden Beispiel wird ein Neu-
ron, eine Synapse und ein Ionen-Kanal aus LEMS in NeuroML instanzi-
iert.

Um das physikalische Verhalten der einzelnen Bestandteile zu beschreiben, greift Neu-
roML auf LEMS zuriick. Abbildung 3.7 visualisiert diesen Zusammenhang. LEMS defi-
niert die Dynamik der einzelnen Bestandteile beispielsweise von einem Neuron. Dieses
Neuron kann dhnlich wie im User-Layer von LEMS instantiiert werden. Level 2 und 3
der NeuroML beschéftigen sich mit dem Aufbau von neuronalen Netzwerken und wer-
den, da es nicht der Fokus dieser Ausarbeitung ist, nicht tiefer behandelt. Abbildung 3.7
visualisiert den erlduterten Zusammenhang zwischen NeuroML und LEMS.
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RQ1Modellierung: NeuroML in der neusten Version greift fiir das Modellieren des Neu-
ronenverhaltens [VCC*14] auf LEMS zuriick. Das XSD-basierte Metamodell wirkt
sich unmittelbar auf die Syntax der Sprache aus, was sowohl die Klarheit als auch
die Kompaktheit der NeuroML-Modelle negativ beeinflusst. Im Gegensatz zu Ni-
neML gibt es in NeuroML jedoch wesentlich mehr Sprachelemente, welche klar
voneinander unterscheidbar sind. Dadurch sind Modelle besser zu verstehen, da
Sprachelemente direkt Elementen aus den Neurowissenschaften zugeordnet wer-
den konnen. Ein weiterer Vorteil ist, dass aufgrund der Aufteilung der Sprache in
drei Ebenen die Modularitét einzelner Sprachkomponenten gegeben ist.

RQ2Syntax: Ein wesentlicher Kritikpunkt bei NeuroML ist, dass Modelle in XML ge-
schrieben werden. XML wurde in erster Linie dafiir entwickelt, um Daten platt-
formunabh#ngig auszutauschen. Daher scheint es zunéchst sinnvoll, diese Technik
zu verwenden. Jedoch ist es schwierig, grole neuronale Modelle, welche in XML
definiert wurden, zu lesen und zu verstehen. Dieser Kritikpunkt wird etwas ab-
geschwiicht, da es fiir die oben genannten Sprachen viele Tools gibt, die das Mo-
dellieren erleichtern. Zum Beispiel ist neuroConstruct [GSS07] ein grafisches Tool,
welches es ermdoglicht, Modelle fiir NeuroML grafisch zu erstellen.

RQ3 Wiederverwendung: Ahnlich zu NineML und LEMS findet die Wiederverwendung
auf der Ebene der Instanziierung von bereits existierenden Modellen statt. Dabei
besteht die Moglichkeit, Modelle an den vorgesehenen Stellen zu parametrisieren.

RQ4Metamodell: Da das Metamodell von NeuroML nach demselben Prinzip wie das
von LEMS aufgebaut ist, teilt es die selben Vor- und Nachteile. Das Metamodell
wird durch ein XSD-Schema definiert. Das hat den Vorteil, dass es durch existie-
rende XSD-Bibliotheken und -Werkzeuge verarbeitet werden kann. Es gibt jedoch
keine direkte Unterstiitzung fiir die Sprachwiederverwendung und Spracherweite-
rung. Auch die Ausdruckskraft des Metamodells ist durch die Allgemeingiiltigkeit
des XML Formats eher schwach ausgepréigt.

RQ5 Generatoren: Da NeuroML gemeinsam mit LEMS entwickelt wird, stehen diesel-
ben Ansitze fiir die Codegenerierung zur Verfiigung. Die Codegeneratoren von
NeuroML unterstiitzen verschiedene Zielplattformen [VCC*14, CGC*14]. Dazu
gehoren Modelica [Fril0], MATLAB [GBYO08], sowie die Simulatoren NEURON
und Brian (vgl. Unterabschnitt 3.3.5). Auch eigene Codegeneratoren kénnen entwi-
ckelt werden. Fiir die Codegenerierung benutzt NeuroML einen Template-basierten
Ansatz. Auch NeuroML stellt keine Mechanismen fiir das Traversieren der Modelle
bereit. Die Unterstiitzung der Codegenerierung beschriankt sich auf das Bereit-

stellen eines Template-Frameworks. Es bietet ebenfalls keine Verzahnung mit dem
Modell-AST.
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RQ6 Benutzerfreundlichkeit: Auch NeuroML bietet unterschiedliche Schnittstellen, um
Modelle zu parsen, validieren und simulieren. Zum einen ist es eine Java-Schnittstelle,
zum anderen eine Python-Schnittstelle.

3.3.4 XML als konkrete Syntax

Alle oben vorgestellten Sprachen basieren auf XML [YBP*04]. Die XML-Notation wird
auch dafiir verwendet, um die konkrete Syntax der jeweiligen Sprache zu reprisentieren.
Der Grund fiir diese Wahl ist, dass ein ausgereiftes Okosystem fiir die XML-Verarbeitung
existiert. Deswegen konnen Lexer und Parser [ASU86] aus diesem Ecosystem wieder-
verwendet werden. Auch wenn dieser Ansatz auf den ersten Blick Vorteile verspricht,
iiberwiegen doch die Nachteile.

Als erstes erschwert die Ausfiihrlichkeit der XML-Modelle sowohl das Nachvollziehen
als auch das Erstellen dieser Modelle [Che01]. Deswegen bendstigt die praktische An-
wendung dieser Sprachen die Entwicklung neuer aufwendiger Visualisierungs- bzw. Ver-
arbeitungswerkzeuge. Das wiederum nivelliert die Vorteile der Wiederverwendung der
Sprachverarbeitungswerkzeuge aus dem XML-Okosystem. Als zweites reichen die exis-
tierenden Sprachwerkzeuge wie beispielsweise Parser 6ftmals nicht aus, um beispielsweise
mathematische Ausdriicke zu verarbeiten, was abermals eine Eigenentwicklung von Spra-
chinfrastruktur bedeutet. Im Falle von NineML gibt es die Moéglichkeit, mathematische
Ausdriicke in einem MathInline-Block zu definieren (vgl. Zeile 13 in Abbildung 3.8). Um
die syntaktische Korrektheit dieses Ausdrucks in NineML zu iiberpriifen, muss jedoch
wieder ein neuer Parser entwickelt werden.

1 <Dynamics > XML |
2 <StateVariable name ="V" dimension ="voltage" />

3 <StateVariable name ="U" dimension ="voltagePerTime " />

4 <Alias name ="rv" dimension = "none">

5 <MathInline >V*U</ MathInline>

6  </alias>

; <Regime name = "subthresholdRegime">

<TimeDerivative variable ="U">
<MathInline>a* (b*V - U)</MathInline>

1 </TimeDerivative>

12 <TimeDerivative variable ="V">

13 <MathInline>0.04* V*V + 5*V + 140.0 - U + iSyn </MathInline>
14 </TimeDerivative>

15 </Regime>

16 </Dynamics>

Abbildung 3.8: Ausschnitt eines NineML-Modells. Um einen mathematischen Term rv =
V/U zu definieren, sind drei Zeilen XML-Code notwendig (vgl. Zeilen 4-
6). Der MathInline-Block in Zeile 13 enthélt eine syntaktisch unstruktu-
rierte Zeichenkette, die nicht mithilfe von XML-Tools auf die syntaktische
Korrektheit validiert werden kann.
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3.3.5 Simulator-spezifische Modellierungssprachen

Neben den externen deskriptiven Modellierungssprachen existieren auch DSLs, die naht-
los in einen Simulator eingebettet sind. Aufgrund der Verbreitung und Qualitét stellt die-
ses Kapitel den Simulator NEURON [Hin93, HC97] fiir biologisch realistische Neuronen
und Brian als Beispiel fiir die schnelle und leichtgewichtige Entwicklung von Neuronen
und Netzwerksimulationen mit eher prototypischem Charakter vor.

NEURON

NEURON [Hin93, HC97, Bed15] ist ein neuronaler Simulator mit einer vielseitigen Um-
gebung fiir die Simulation von detailierten biologischen neuronalen Netzwerken. Fiir die
Modellierung von Neuronen und die Durchfiihrung von Simulationen stellt NEURON ein
grafisches Werkzeug und eine interpretierte DSL Higher Order Calculator (HOC) [HC15]
zur Verfiigung. Auf der zelluliren Ebene kann NEURON die Zusammenhénge von pra-
und postsynaptischen Prozessen darstellen. Auch fein granulierte Dendriten und mor-
phologische Eigenschaften eines Neurons kénnen modelliert werden. Auf der Netzwer-
kebene ist es moglich, mithilfe von Neuronen Prozesse der Informationsverarbeitung in
biologischen neuronalen Netzwerken zu untersuchen.

Die eingebaute Sprache HOC lehnt sich syntaktisch an C an. Neben vordefinierten
biologischen Neuronenmodellen bietet NEURON mit NMODL [CHO06a, HC00] eine DSL
an, um neue Neuronenmodelle zu definieren. NMODL strukturiert Neuronen mithilfe
von Blocken, die bestimmte Namen und Attribute zusammenfassen. Mit solchen Blocken
kann das Verhalten des Neurons durch imperativen Code bzw. Differenzialgleichungen
definiert werden. SchliefSlich erlaubt NMODL es, C-Code direkt ins Neuronenmodell zu
integrieren, um performancekritische Bereiche zu optimieren. Ein wichtiges Merkmal von
NMODL ist, dass Syntax und Semantik der Domé&nennotation und -terminologie &hneln.
Dadurch kénnen Neurowissenschaftler kompakte Modellspezifikation erstellen, ohne sich
mit Implementierungsdetails zu beschéftigen.

Der Ansatz von NEURON ist es, biologische und morphologische Aspekte des Neu-
ronenmodells, wie z.B. die Form eines Neurons, von der numerischen Modellierung zu
trennen. Der grundlegende Baustein des Neurons in NMODL ist ein Abschnitt (engl: sec-
tion). Ein Abschnitt ist ein unverzweigtes durchgehendes Kabel mit variierenden anato-
mischen und biophysiologischen Eigenschaften entlang dessen Léange. Da solche Modelle
sehr komplex werden konnen, bietet NEURON einen grafischen Editor, in dem diese
komplexen verzweigten Gebilde grafisch aufgebaut werden kénnen. Der Editor erlaubt
es, Neuronen auf Basis von Kabelabschnitten zu erstellen, denen physikalische Eigen-
schaften zugeordnet werden kénnen, ohne programmieren zu miissen.

In Abbildung 3.9 wird ein Beispiel eines NMODL-Neurons vorgestellt. Im UNITS-Block
definiert das Beispiel kiirzere Synonyme fiir die physikalischen Einheiten. Danach folgt
die Definition des eigentlichen Neurons. Die Anweisung SUFFIX CaT definiert einen Na-
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men, mit dem dieses Neuron aus anderen Modellen referenziert werden kann. Somit
kann auf die im Neuron definierten Variablen nach folgendem Schema zugegriffen wer-
den: var Name_CaT.

UNITS { PROCEDURE settables (v (mV)) {

(mV) = (millivolt) LOCAL bd
(mA) = (milliamp)
} ralpha = 1.0/ (1.7+exp(-(v+28.2)/13.5))
rbeta = exp(-(v+63.0)/7.8)/ (exp(-(v+28.8)/13.1)+1.7)
NEURON {
SUFFIX CaT salpha = exp(-(v+160.3)/17.8
USEION ca READ eca WRITE ica sbeta = (sqrt(0.25+exp((v+83.5)/6.3))-0.5) *
RANGE gmax (exp (- (v+160.3)/17.8))
}
bd = sqrt (0.25+exp ((v+83.5)/6.3))
dalpha = (1.0+exp((v+37.4)/30.0))/(240.0%(0.5+bd))
PARAMETER { dbeta = (bd-0.5)*dalpha

gmax = 0.002 (mho/cm2) }
}
DERIVATIVE states {

STATE { settables (v)
r s d r' = ((ralpha*(l-r)) - (rbeta*r))
} d' = ((dbeta*(l-s-d)) - (dalpha*d)
s' = ((salpha*(l-s-d)) - (sbeta*s))

}

Abbildung 3.9: Eine exemplarische NMODL-Implementierung eines Neurons basierend
auf der Dynamik aus [WH91]. Dieses Beispiel zeigt die wesentlichen Kom-
ponenten: Zustands-, Parameter-, Alias- und Aktualisierungsblock fiir die
Zustandsvariablen. Dieses Modell lehnt sich an [GS117] an.

Mit der USEION-Anweisung im NEURON-Block werden die Ionenkanéle des Neurons de-
finiert. Im vorliegenden Beispiel wird ein Calcium-Ionenkanal verwendet. Dieser Kanal
bekommt das Equilibriumpotential als Eingabe und berechnet den Strom von Calci-
umionen als Ausgabe. Auch andere Ionenmechanismen kénnten definiert werden. Die
Variablen aus dem PARAMETER-Block sind dadurch charakterisiert, dass sie sich nicht
aus dem Zustand des Neurons ableiten lassen und wéhrend der Simulationszeit konstant
bleiben. Diese Werte konnen aus dem grafischen Editor oder einem HOC-Programm ge-
setzt werden. NMODL bietet zudem einen Mechanismus, um abgeleitete Variablen zu
definieren. In Abbildung 3.9 definiert die settables-Methode Regeln dafiir, wie sich
beispielsweise ralpha oder rbeta aus dem Wert von v bestimmen lassen [WH91]. Die
Aktualisierungsvorschrift von Zustandsvariablen aus dem STATE-Block wird im vorlie-
genden Beispiel anhand dreier Differenzialgleichungen im DERIVATIVE-Block definiert.

RQ1Modellierung: NEURON bietet die Moglichkeit, Neuronen, Netzwerke und Simu-
lationen in einer kompakten doménennahen Notation zu formulieren. Das fithrt zu
einer klaren Modellbeschreibung. Dennoch leidet die Portabilitéit aufgrund der star-
ken Kopplung der Modelle bzw. der entsprechenden Werkzeuge an die NEURON-
Infrastruktur. Desweiteren erlaubt NEURON, nativen C-Code direkt in die Mo-
dellspezifikation einzubetten und von da aus auf die Interna des Simulators zuzu-
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greifen. In diesem Fall beeinflusst dies die Portabilitdt und Klarheit der Modelle
jedoch negativ. Die Wiederverwendung der Modelle basiert auf der Verwendung
der impliziten Namensgebung, was bei einer Vielzahl von Modelle uniibersichtlich
werden kann.

RQ2Sprache: Die Syntax von NMODL dient dazu, das Problem der Definition ei-
nes Neurons zu losen. Dafiir benutzt NMODL eine kleine Menge von einfachen
Sprachelementen, die spezifische Aspekte der Modellierung lésen. Die Syntax von
NMODL lehnt sich an die Syntax der Programmiersprache C an. Diese Wahl rich-
tet sich daher eher an Computerwissenschaftler, die mit der Sprache vertraut sind.
Manche Sprachelemente sind dennoch nicht deskriptiv und konsistent (vgl. die
USEION-Anweisung).

RQ3 Wiederverwendung: Die Wiederverwendung ist kaum gegeben. Zwar kénnen Ilo-
nenkanile wiederverwendet werden, es gibt jedoch keine Moglichkeit fiir die Wie-
derverwendung von Neuronenteilen.

RQ4Metamodell: Das Metamodell von NMODL steht fiir die Erweiterung nicht zur
Verfiigung. Daher ist es auch nicht moéglich, die Sprache an eigene Anforderungen
anzupassen, zu erweitern oder wiederzuverwenden. Die Modellierungssprache ist
mit dem Simulator monolithisch verzahnt.

RQ5Generatoren: Aus NMODL-Modellen wird eine C++-Implementierung fiir den
NEURON-Simulator generiert. Dieser Generator ist fest in den NEURON-Simulator
eingebettet und lésst sich nicht austauschen. Der Generator ist mit einem Visitor-
basierten Ansatz implementiert, der den Zielcode wiahrend der Traversierung des
ASTs erstellt.

RQ6 Benutzerfreundlichkeit: NMODL ist ein inh&renter und untrennbarer Teil von
NEURON, der mit dem Simulator stets ausgeliefert wird. Fiir die Benutzung des
Simulators bzw. der NMODL-Sprache existiert eine Vielzahl von Anleitungen und
Biicher [HC97, CHOGa).

Brian

Der Simulator Brian [GBO08], der zum Zeitpunkt der Erstellung dieser Arbeit in Version
2 vorliegt [SGB15], ist ein Python-basierter Simulator fiir die Entwicklung und Simulati-
on von biologischen Neuronen und Netzwerken. Ein wichtiges Ziel von Brian ist es, eine
einfach nutzbare Simulations- und Modellierungsumgebung zur Verfiigung zu stellen, um
somit die Zeit fiir die Entwicklung und Formulierung des neuronalen Simulationsquell-
codes zu minimieren. Brian und die eingebettete interne DSL soll es Forschern erlauben,
eigene Modelle einfach in den Simulator zu integrieren. Somit sind Forscher nicht auf die
von Brian bereitgestellte Auswahl von eingebauten Modellen eingeschriankt [GBO0S|.

47



KAPITEL 3 NUTZUNGSSZENARIEN UND ANFORDERUNGEN FUR EINE
NEURONEN-MODELLIERUNGSSPRACHE

Brian wurde ausschliefilich mit Python [Lut96] entwickelt, da Python eine leichtge-
wichtige und flexible Programmiersprache mit hohem Verbreitungsgrad in den Neuro-
wissenschaften [LHB14] ist. Zum einen vereinfacht das den Zugang zum Simulator, da
die Anwender grundsétzlich mit der Technologie vertraut sind. Zum anderen erlaubt die
Walhl einer interpretierten Sprache es, den Simulator auf unterschiedlichen Zielplattfor-
men zu portieren.

Der Brian-Simulator ist so entworfen, dass er gleichzeitig auch ein Python-Modul ist.
Dadurch kann der Brian-Simulator transparent in Python-Scripts direkt als Bibliothek
eingebunden werden. Um die Leistung des Simulators zu verbessern, verwendet Brian
die Bibliotheken NumPy [VDWCV11] und SciPy [JOP14]. Diese konnen mathemati-
sche Berechnungen signifikant beschleunigen. Um eine Simulation durchzufiihren, kann
entweder ein Skript erstellt oder interaktiv gearbeitet werden.

Um ein eigenes Neuronenmodell zu erstellen, bietet Brian vordefinierte Klassen an. Die
Modellierung eines Neurons wird durch eine Klasse MembraneEquation realisiert. Abbil-
dung 3.10 demonstriert die Definition eines Integrate-and-Fire-Neurons mit Brian. Um
mogliche Fehler zu vermeiden, erlaubt Brian es, SI Einheiten zu benutzen. Diese werden
sowohl in der Annotation (vgl. Zeile 1), als auch in der Gleichung (vgl. Zeile 7) selbst
deklariert. Eine wesentliche Rolle spielt bei der Spezifiaktion die textuelle Definition der
Differenzialgleichung, die die Dynamik des Neurons beschreibt (vgl. Zeile 7).

@check units (tau=second, v0=volt)

def integrate and fire(tua, vO0):

rror

tau*dv/dt = v0 - vm

rror

1
2
3
4 A leaky integrate-and-fire model.
5
6
7

return MembraneEquation (’dv/dt = - (v-v0)/tau:volt’)

Abbildung 3.10: Modellierung eines TaF-Neurons im Brian-Simulator,.

RQ1 Modellierung: Die Mischung aus Python-Klassen und textuellen deklarativen Bau-
steinen fiir die Definition von Differenzialgleichungen beeinflusst die Klarheit und
die Kompaktheit der Neuronenmodelle negativ. Die enge Bindung der Neuronen-
modelle an die Simulationsinfrastruktur macht die Neuronenmodelle weder modu-
lar noch portierbar.

RQ2Syntax: Syntaktisch baut Brian auf der Python-Programmiersprache auf. Ein Bei-
spiel dafiir sind die Differenzialgleichungen, die als Zeichenketten dargestellt wer-
den. Dies hat als Konsequenz, dass keine statischen semantischen Priifungen durch-
gefithrt werden konnen, sondern potenzielle Fehler erst wihrend der Laufzeit des
Programms erkannt werden. Dadurch leidet auch die Konsistenz und Minimalitét
der Modellierunssprache, da alle Pythonkonstrukte erlaubt sind.
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RQ3 Wiederverwendung: Der Brian-Simulator greift auf die Mechanismen der Python-
Infrastruktur zuriick, um die Wiederverwendung der Neuronenmodelle zu unter-
stiitzen. Da Brian-Neuronenmodelle valide Python-Programme sind, kénnen auch
alle Mechanismen fiir die Modulverwaltung und Wiederverwendung benutzt wer-
den, die in Python zur Verfiigung stehen.

RQ4Metamodell: Das Metamodell von Brian-Neuronen ist vollstindig im Simulator
selbst gekapselt. Es kann nicht erweitert werden. Anstatt des Metamodells stehen
dem Anwender die vordefinierten Bibliothekenklassen zur Verfiigung, die entweder
erweitert oder parametrisiert werden kénnen.

RQ5 Generatoren: Der Brian-Simulator ist so entworfen, dass eine Codegenerierung aus
Modellen nicht notwendig ist. Die deklarativen Teile der Neuronenmodelle werden
intern im Simulator interpretiert. Der Ansatz von Brian fiir die Portierung auf
neue Plattformen ist es, den vollstdndigen Simulator auf der jeweiligen Plattform
direkt auszufiithren. Dafiir wird ein plattformspezifischer Python-Interpreter vor-
ausgesetzt.

RQ6 Benutzerfreundlichkeit: Der Brian-Simulator ist ein gut dokumentiertes Projekt.
Alle fiir eine Simulation notwendigen Komponenten sind nach seiner Installati-
on verfiighbar. Da der Brian-Simulator als eine Python-Bibliothek umgesetzt ist,
bietet er eine nahtlose Anbindung an die Python-Infrastruktur. Die notwendigen
Bibliotheken miissen manuell installiert werden.

3.4 Evaluierung der existieren Ansatze

Die Evaluierung der Anforderungen aus Abschnitt 3.2 ist in Tabelle 3.1 zusammenge-
fasst. Es ist leicht ersichtlich, dass keiner der vorgestellten Anséitze alle Anforderungen
erfiillen kann. Die meisten Modellierungssprachen sind im Prinzip geeignet, um Neuro-
nenmodelle auszudriicken. Somit wiren diese auch Kandidaten fiir den NEST-Simulator.
Dennoch handelt es sich bei den existierenden Sprachen entweder um rein deskriptive
XML-basierte Modellierungssprachen oder die jeweilige Modellierungssprache ist sehr
stark mit einem Simulator verzahnt und kann nicht erweitert werden.

Eine Moglichkeit die restlichen Anforderungen zu erfiillen wiire eines der existierenden
Werkzeuge zu erweitern. NineML, NEUROML und LEMS sind dafiir leider ungeeignet,
da sie auf einer Seite rein deklarativ und auf der anderen Seite XMUL-basiert sind. Der
Aufwand, die Sprachen an die neuen Anforderungen anzupassen, wére somit vergleich-
bar mit der Neuentwicklung einer eigenen DSL. Am passendsten wiren die Sprachen
von Brian und NEURON, da diese syntaktisch gut strukturierte DSLs sind. Diese Simu-
latoren bieten jedoch keine Moglichkeit, deren Sprachverarbeitungswerkzeuge modular
wiederzuverwenden bzw. zu erweitern [V6l11]. Die jeweiligen Lexer, Parser und Symbol-
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tabellen sind eng mit dem jeweiligen Simulator verzahnt und lassen sich nicht modular
wiederverwenden.
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Kapitel 4
Die MontiCore Language Workbench

Die MontiCore Workbench [KRV07, KRV08, Kral0] generiert die konkrete und abstrakte
Syntax einer doménenspezifischen Sprache auf der Grundlage einer formalen Gramma-
tik [ASU86]. Die konkrete Syntax beschreibt dabei die #uflere Form der Sprache, die
textuell oder grafisch sein kann. Die abstrakte Syntax definiert die interne Repriisenta-
tion der konkreten Syntax in einer fiir einen Computer effizient verarbeitbaren Form.
In [HRO4] werden die Begriffe der konkreten und abstrakten Syntax einer DSL detal-
liert diskutiert. Die MonitCore Workbench stellt zusétzlich eine modulare Infrastruktur
fiir das Parsen von Modellen, den Aufbau der Symboltabllen und zum Priifen der Kon-
textbedingungen bereit. Die Codegenerierung wird durch ein erweitertes Freemarker-
Framework [Sch12] unterstiitzt.

Somit unterstiitzt die MontiCore Workbench alle wesentlichen Aktivitédten wihrend
der Sprach- und Generatorentwicklung im Kontext einer Domain Specific Language
(DSL). Neben der MontiCore Workbench existieren andere Language Workbenches.
Zu den bekanntesten Vertretern zihlen: X Text [EB10], Spoofaz [KV10] und MetaEdit+
[KLRY6]. Diese und weitere Language Workbenches wurden in [EVDSV 13, Voel4] aus-
fithrlich analysiert und diskutiert.

Die Entscheidung fiir die MontiCore Workbench resultiert aus ihrer Eigenschaft, DSLs
und deren Verarbeitungswerkzeuge agil, modular und wiederverwendbar definieren zu
konnen, wodurch sich die Komplexitéit der Entwicklung einer DSL erheblich reduziert.

4.1 Domanenspezifische Sprachen

Im Laufe dieser Arbeit wird die neue DSL Nest Modeling Language (NESTML) [PBI*16]
fiir die Beschreibung der Neuronen zur Simulation im NEST-Simulator entwickelt. Nach-
dem die grundlegende Definition einer DSL bereits in der Einleitung gegeben wurde, wird
dieser Begriff hier nun detaillierter erklért. In [Fow10] wird eine DSL definiert als:

Definition 4.1. (DSL) A computer programming language of limited expressiveness
focused on a particular domain.

Diese Definition hebt zwei wesentliche Eigenschaften einer DSL hervor. Zum einen ist
eine DSL eine Programmiersprache, zum anderen besitzt eine DSL eine eingeschrinkte
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Ausdrucksfihigkeit, die im Vergleich zu einer General Purpose Language (GPL) eine
verbesserte Modellierung in einem bestimmten fachlichen Bereich ermdglicht. DSLs ori-
entieren sich an der fachlichen Anwendung in einem bestimmten wohldefinierten Bereich
und nicht an deren technischer Realisierung. Die verkleinerte Ausdrucksfiahigkeit bedeu-
tet wiederum, dass es moglich ist, bessere semantische Analysen der in dieser Sprache
formulierten Modelle durchzufiihren.

DSLs konnen aufgrund ihrer Beschaffenheit in zwei grobe Kategorien eingeteilt wer-
den. [Fow10] unterscheidet zwischen internen und externen DSLs. Eine interne DSL ent-
steht im einfachsten Fall durch eine sprechende API (engl: fluent API) [Blo08] oder
durch die in der Sprache verfiigharen Erweiterungspunkte. Beispielsweise wéren das
Priprozessor-Framework in den Programmiersprachen Go [DK15] und C++ [Str86]
solche Erweiterungspunkte. Mithilfe dieser eingebauten Codegenerierungsfunktionalitat
kann der Quellcode dieser Sprachen wihrend der Kompilierung verédndert und erweitert
werden. Einerseits ist es dadurch moglich, kompaktere Programme zu schreiben. Ande-
rerseits leidet die Lesbarkeit und Nachvollziehbarkeit solcher Programme, da die voll-
standige Intention des Programms nicht direkt aus dem Programmcode ersichtlich ist.
Hingegen ist eine externe DSL eine eigensténdige Sprache, deren Modelle typischerweise
in eigenstidndigen Dateien gespeichert sind. Eine externe DSL hingt weder syntaktisch
noch semantisch von einer iibergeordneten Sprache ab. Sie verfiigt somit {iber groferes
Potential, die fachlichen Konzepte adéiquat abzubilden.

Die erhohte Produktivitéit der Entwickler und verbesserte Qualitéit der resultierenden
Softwaresysteme [VDK98, SEHV12, FHRO8] gelten als Vorteile einer DSL. Die erhhte
Produktivitét resultiert aus der Tatsache, dass Modelle in einer passend gewéhlten No-
tation im Vergleich zu einer dquivalenten Darstellung in einer GPL kompakter sind. Stu-
dien berichten dabei von einer Produktivitéitssteigerung um den Faktor drei [KMBT96]
bis zehn [Met10]. Die verbesserte Qualitit des Softwaresystems hingt vor allem mit der
engen Einbindung der Doménenexperten zusammen. Experten konnen das modellierte
System aufgrund ihrer fachlichen Expertise besser verstehen. Durch die Abstraktion von
technischen Details kénnen die Experten Modelle optimieren oder sogar neue Modelle
eigensténdig entwickeln [VS10].

Ein weiterer Vorteil von DSLs ist die klare Trennung der fachlichen Logik von der
technischen Implementierung dieser Logik. Diese klare Trennung macht es auch einfacher,
Fachwissen in unterschiedlichen Kontexten wiederzuverwenden. Dieses Wissen kann fiir
viele Aufgaben verwendet werden. Zum Beispiel wird dadurch die Migration zu einer
anderen technischen Plattform enorm vereinfacht. Die kompakte und fachliche Notation
der Modelle fithrt auch zu einer verbesserten Selbstdokumentation der so modellierten
Systeme.

Neben den erlduterten Vorteilen existieren aber auch Risiken im Softwareentwicklungs-
prozess bei der Verwendung von DSLs. Die hohen Entwicklungskosten fiir die Konzeption
und Umsetzung einer neuen DSL sind das groite Risiko. Zu diesen Kosten zdhlen so-
wohl die Kosten fiir die Implementierung, die Weiterentwicklung und die Wartung der
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DSL selbst, als auch Kosten fiir die Entwicklung der Infrastruktur fiir die Analyse, die
Codegenerierung bzw. die Interpretierung der Modelle.

Die Vorteile einer DSL im Vergleich zur konventionellen Softwareentwicklung werden
erst dann bemerkbar, wenn die Kosten der Anfangsinvestition fiir die DSL-Entwicklung
amortisiert sind. Paul Hudak verwendet die 6konomische Break-Even-Analyse [Hud98|,
um Potenziale der DSL-basierten Entwicklung im Vergleich zu entsprechenden Entwick-
lungskosten abzuschétzen. Leider ist es nicht ohne weiteres moglich, die Maflzahl fiir
den konkreten Break-Even-Punkt in einem spezifischen Projekt zu bestimmen. Dennoch
helfen Language Workbenches, wie MontiCore, diese Maflzahl signifikant zu senken.

4.2 MontiCore

Die MontiCore Workbench' ist eine Workbench zur Erstellung von doménenspezifischen
Sprachen. MontiCore verwendet und erweitert das Grammatikformat vom ANTLR/-
Parsergenerator [Parl3], das auf dem EBNF-Formalismus [ASU86| basiert, um zusétzli-
che Konzepte fiir die Grammatikwiederverwendung. Die MontiCore-Grammatik ermog-
licht lediglich die Definition kontextfreier Sprachen. Neben dem Parser, dem Lexer und
Klassen fiir die abstrakte Syntax, die aus der Grammatik automatisch abgeleitet wer-
den, stellt die MontiCore Workbench eine Infrastruktur bereit, um doménenspezifische
Sprachen in den Softwareentwicklungsprozess besser zu integrieren.

Folgende Eigenschaften heben MontiCore gegeniiber konkurrierenden Ansétzen her-
vor:

e MontiCore nutzt ein erweitertes Grammatikformat, das sowohl konkrete als auch
abstrakte Syntax definiert. Aus der Grammatik werden Sprachverarbeitungswerk-
zeuge und Sprachinfrastruktur abgeleitet. Auf der Grundlage einer Grammatik
kénnen Delta-Sprachen [HRRS12, HHK ™ 15] transparent spezifiziert werden.

e MontiCore erlaubt eine modulare Definition der konkreten und abstrakten Syn-
tax [Volll].

e MontiCore realisiert explizite Schnittstellen zwischen Modellen, die eine unab-
héngige und modulare Verarbeitung und Verschmelzung heterogener Modelle er-
laubt [MSNRR16].

e MontiCore unterstiitzt Techniken fiir die Sprachkombination einschliellich der Spra-
cherweiterung, Sprachvererbung, Spracheinbettung und Komposition der entspre-
chenden Sprachverarbeitungswerkzeuge [Vol11].

"MontiCore in der Version 4.5.0 wurde fiir die Erstllung dieser Ausarbeitung verwendet.
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e MontiCore besitzt eine Infrastruktur fiir semantische Modellanalysen [Sch12] sowie
Modelltransformationen, die die konkrete Syntax der zu transformierenden DSL
wiederverwenden [Weil2, HRW15].

e MontiCore erlaubte die teilweise Generierung der sprachspezifischen Teile der Sym-
boltabellen [HMSNR15].

e MontiCore ermoglicht eine transparente Integration mit der Eclipse IDE? [Bud04].
Die MontiCore Workbench generiert dabei die Grundstruktur eines Editors [V6111],
der durch manuelle Erweiterungen um weitergehende Funktionalitdt ergénzt wer-
den kann.

e MontiCore bietet eine explizite Verwaltung der Variabilitat sowohl in Sprachdefi-
nitionen als auch in Generierungswerkzeugen [KRR15, GR11, CGR09].

< i > N
Language Grammar DF—-€9P-9-r-rP-S->--- Model D‘ Structure
F *
' <<reads>>§ Languagj %j
%j prreenrenseaseesseesd i Visitors E+-»-‘ Fronten
<<gener t i Context |
LWB <sgenerates>|  parer B |l text g
Conditions :
§<<generates>> ;
Meta [] <<conforms>> 1 e
Model B i |
Language Frontend_ _ __ __ __ __ | st oo Ll symbol g
Generation Backend  -~Processeszz.y Table :
¥ ¥
Templates D } _________________ . GPL D ________________
' Helpers ﬂ‘
Artifacts [ flerrooenn iGemtessy T Freemarker E

Abbildung 4.1: Wesentliche Komponenten und Aufbau der Sprachverarbeitungsinfras-
ruktur in der MontiCore Language Workbench.

Abbildung 4.1 gibt eine Ubersicht der wesentlichen Bestandteile der MontiCore Work-
bench anhand eines konkreten Grammatikbeispieles. Die priméren Artefakte fiir die
Sprachdefinition sind formale Grammatiken. Das Grammatikformat wird im kommenden
Abschnitt detailliert vorgestellt. Auf Basis dieser Grammatiken generiert die MontiCore

’http://www.eclipse.org/
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Workbench Klassen der abstrakten Syntax, die in dieser Ausarbeitung als Metamodell
bezeichnet werden. AnschliefSend erstellt MontiCore Parser-Werkzeuge und Visitoren,
die in der Lage sind, das Metamodell als AST zu instanziieren und dabei zu helfen,
Algorithmen auf ASTs auszufithren. Zusammen mit der Symboltabelle und den Kon-
textbedingungen bilden diese Komponenten das Sprachfrontend.

Das Generierungsbackend besteht aus einer Menge von Generierungstemplates und
Generierungshilfsklassen. Im Folgenden werden diese Komponenten anhand der NESTML-
Sprache erldutert.

4.3 Integriertes MontiCore-Grammatikformat

Die MontiCore Workbench benutzt eine erweiterte Version der Extended Backus—Naur
Form (EBNF)-Grammatik, um eine DSL zu spezifizieren. MontiCore leitet anhand der
Grammatik sowohl den Parser als auch die Klassen des korrespondierenden Metamodells
ab, die dann vom Parser zum einen AST instanziiert werden.

Eine wichtige Eigenschaft der MontiCore-Grammatik ist es, dass die Grammatik nicht
nur das Aussehen der konkreten Syntax definiert, sondern sie kann auch die Struktur
des Metamodells kontrollieren. Dabei kénnen in der Grammatik spezielle Konstrukte be-
nutzt werden, um einen direkten Einfluss auf die Namen von Attributen, Methoden und
Vererbungsbeziehungen der Klassen des Metamodells zu nehmen. Im Weiteren werden
diese Konstrukte exemplarisch an ausgewéhlten Grammatikabschnitten der NESTML-
Grammatik erklart.

1 package org.nest; MCG
2

3 /**

4 Grammar defining the structure of neurons and components

5 */

6 grammar NESTML extends org.nest.Procedural, org.nest.Equations {
7 // Elements of the NESTML grammar
8}

Abbildung 4.2: Auszug der NESTML-Grammatik, die die Struktur eines Neurons bzw.
einer Komponente definiert.

Abbildung 4.2 enthilt eine exemplarische MontiCore-Grammatikdeklaration. Die Mon-
tiCore Workbench erméglicht es, Grammatiken hierarchisch zu strukturieren, indem sie
in einem Paket hinterlegt werden. Dafiir wird die Grammatikdefinition um eine packa-
ge-Deklaration ergiinzt (vgl. Zeile 1).

Die Grammatikdefinition beginnt mit dem Schliisselwort grammar gefolgt von einem
Namen. In Anlehnung an die Namenskonvention in Java beginnt der Grammatikname
stets mit einem Grobuchstaben. Mit dem Schliisselwort extends gefolgt vom Namen
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wird das Konzept der Grammatikvererbung unterstiitzt, das in Abschnitt 4.4 genau-
er vorgestellt wird. Die Grammatikvererbung erlaubt es, Teile anderer Grammatiken
wiederzuverwenden oder zu erweitern. Alle Grammatikproduktionen werden innerhalb
dieser benannten Grammatikdefintion deklariert.

Innerhalb der Grammatikdefinition unterscheidet das MontiCore-Grammatikformat
zwischen Lexer-Produktionen und Parser-Produktionen. Eine Lexer-Produktion startet
mit dem Schliisselwort token. Sie besteht aus einem Namen und einem Rumpf, der durch
einen reguldren Ausdruck definiert ist. Um die Grammatik zu dokumentieren, ist es
moglich, Kommentare im Java-Stil zu verwenden.

1 token Name = ( 'a'..'z' | '"A'..'Z" | ' ' | '$") MCG |
2 ('a'..'z" | 'A'..'Z"' | v | 'O'..'O" | 'S o )*;

Abbildung 4.3: Eine Lexer-Produktion in MontiCore-Syntax, die einen Name definiert.

Abbildung 4.3 demonstriert eine Lexer-Produktion Name, mit der valide Bezeichner
von Neuronen, Variablen und Methoden definiert werden. Im Unterschied zu Parser-
Produktionen werden die Lexer-Produktionen von einem Lezxer erkannt. Ein Lexer liefert
eine Sequenz von Tokens fiir die weitere syntaktische Analyse. Weiterfithrenden Infor-
mationen zur lexikalischen Analyse finden sich in [ASUS6].

Im Beispiel aus Abbildung 4.3 werden Alternativen durch einen [-Operator model-
liert. Zusammenhéngende Wertebereiche kénnen durch den . .-Operator spezifiziert wer-
den. Beispielsweise entspricht der Term a. .z einem beliebigen Kleinbuchstaben des la-
teinischen Alphabets. Kardinalititen konnen benutzt werden, um die Héufigkeit eines
Terms zu spezifizieren. Die unterstiitzten Kardinalititen sind: *, +, 7. Dabei steht die
Stern-Kardinalitét (%) fiir beliebig viele Vorkommen eines Terms. Die Plus-Kardinalitét
(+) steht fiir beliebig viele, aber mindestens einem Vorkommen eines Terms. Die ?-
Kardinalitdt steht fiir genau ein oder kein Vorkommen eines Terms. Zudem koénnen
runde Klammern zur Strukturierung der Produktion verwendet werden.

Man kann bereits an dieser einfachen Regel sehen, dass die reguléren Ausdriicke in
Lexer-Produktionen durchaus sehr komplex werden kénnen. Dennoch unterscheiden sich
diese Produktionen in unterschiedlichen Sprachen kaum voneinander. Beispielsweise kann
die Name-Produktion genauso in den Programmiersprachen Java und C++ zur Anwen-
dung kommen. Daher stellt MontiCore eine Menge vordefinierter Grammatiken mit gén-
gigen lexikalischen Produktionen fiir beispielsweise Namen, Zeichenketten und Zahlen
bereit. Diese Regeln werden in NESTML durch die Erweiterung der existierenden Ty-
pes-Grammatik? wiederverwendet.

Eine Parser-Produktion besteht aus einem Regelkopf und dem Regelrumpf. Da die
MontiCore Workbench auf kontextfreien Grammatiken basiert, enthélt der Regelkopf ei-
ne Deklaration eines Nichtterminals. Das Nichtterminal ist durch den Regelrumpf auf der

3https://github.com/MontiCore/monticore/tree/master /monticore-grammar/
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1 Neuron = "neuron" Name ":" MCG
2 (BodyElement) *
3 llend";

Abbildung 4.4: Eine Parserproduktion in MontiCore-Syntax, mit der die Definition eines
Neurons modelliert wird.

rechten Regelseite definiert. Der Rumpf besteht aus einer Folge von Symbolen, die ent-
weder Zeichenketten, Tokens oder andere Parser-Produktionen sind. Dabei kénnen diese
Elemente durch runde Klammern, Alternativen und Kardinalitdten verkniipft werden.

Abbildung 4.4 zeigt eine Parser-Produktion fiir die Deklaration eines Neurons. Jede
Definition eines Neurons beginnt mit dem Schliisselwort neuron, das ein Schliisselwort
der konkreten Syntax von NESTML ist. Danach folgt ein Name mit einem Doppelpunkt-
zeichen (:) am Ende. Die Neuronendefinition endet mit dem Schliisselwort end. Innerhalb
der Neurondefinition koénnen beliebig viele Nichtterminale BodyElement vorkommen.

Auf Basis der Grammatik wird mithilfe von ANTLR [Parl3, Parl7] ein Parser gene-
riert. Zusétzlich zum Parser erstellt MontiCore Klassen des Metamodells. Diese Klassen
werden dabei nach einem bestimmten Schema erzeugt.

MCG | Classes of The/—»

metamodel

LFunction = "function" funName:Name ASTFunction
" (pars:Parameter

2

3 ("," pars:Parameter)*)? String funName

4 "y " String returnType

5 (returnType :Name) ?

6 BLOCK_OPEN * pars 1 block
; Block ASTParameter ASTBIock

BLOCK_CLOSE;

Abbildung 4.5: Parser-Produktion, die die Moglichkeit zur Spezifikation von Listen und
expliziten Attributnamen im generierten Metamodell demonstriert. Auf
der rechten Seite werden die abgeleiteten Klassen des Metamodells und
deren schematische Ableitung aus der Grammatikproduktion dargestellt.

Fiir jede Parser-Produktion in der Grammatik wird eine Klasse im Metamodell erstellt.
Die generierten Klassen erhalten dabei die Namen der Nichtterminale mit vorangestell-
tem Priifix AST (vgl. ASTFunction, ASTParameter und ASTBlock in Abbildung 4.5). Die
Attribute dieser Klasse werden auf Basis der rechten Seite der Parser-Produktion gene-
riert. Aufgrund des einfachen Vorkommens eines Nichtterminals wird ein Attribut in der
AST-Klasse erstellt. Zum Beispiel wird das block-Attribut in der ASTFunction-Klasse
deswegen erzeugt. Fiir die Kardinalititen + und * werden auflerdem Listen generiert
(vgl. pars). Fiir jede Interface-Produktion wird ein Interface generiert. Fiir die Lexer-
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Produktion kann der Typ prézisiert werden. So werden beispielsweise die Name-Tokens
direkt auf den Stringtyp abgebildet (vgl. funName und returnType).

Dariiber hinaus bietet MontiCore die Moglichkeit, einen Namen vor einem Nichttermi-
nal im Regelrumpf zu spezifizieren. Dies fiithrt dazu, dass innerhalb des Metamodells an
dieser Stelle ebenfalls eine Variable mit demselben Namen generiert wird. Abbildung 4.5
demonstriert dies am Beispiel einer Produktion, mit der die Funktionsdefinition model-
liert wird. Dabei wird das generierte Metamodell so modifiziert, dass die ASTFunction-
Klasse zwei Attribute funName und returnTyp erhilt. Alle Funktionsparameter werden
zu einer Liste pars zusammengefasst. Dies wird durch die Angabe des gleichen Namens
bei jedem Vorkommen der Parameter-Produktion im Regelrumpf erreicht.

Die BodyElement-Produktion aus Abbildung 4.4 spielt eine besondere Rolle innerhalb
der NESTML-Grammatik. Die MontiCore Workbench erlaubt die Definition von Inter-
face-Nichtterminalen. Dabei konnen Interface-Nichtterminale wie normale Parser- bzw.
Lexer-Produktionen innerhalb NESTML-Grammatik verwendet werden. Eine Produk-
tion kann das Interface implementieren. Somit kénnen die implementierenden Produk-
tionen {iiberall dort verwendet werden, wo auch das implementierte Interface zuléssig
war.

MG Classes of ‘rhe/N

linterface BodyElement; metamodel
2

3Dynamics implements BodyElement = <<interface>>

4 "update" ":" ASTBodyElement
5 Block

6 "end"; N

7 i e ‘
8Equations implements BodyElement = ASTDynamics ASTEquations
9 "equations" ":"

10 OdeDeclaration

11 "end";

Abbildung 4.6: Definition des Interface-Nichtterminals BodyElement und dessen Im-
plementierungen durch die Dynamics- und Equations-Produktionen.

Abbildung 4.6 zeigt die Definition des BodyElement-Interfaces. Zudem zeigt dieses
Beispiel noch zwei weitere Parser-Produktionen, die dieses Interface implementieren: die
Dynamics-Produktion und die Equations-Produktion. Auf der AST-Ebene fiihrt das
dazu, dass die entsprechenden AST-Klassen das Interface ASTBodyElemente implemen-
tieren.

Der wesentliche Vorteil der Benutzung einer Interface-Produktion besteht darin, dass
die NESTML-Grammatik zu einem spéteren Zeitpunkt an dieser Stelle erweitert wer-
den kann, sodass zusétzliche Modellierungselemente innerhalb des Neuronenrumpfes vor-
kommen konnen. Dafiir muss nur das Interface durch Produktionen aus Subsprachen
implementiert werden. Alle Sprachverarbeitungswerkzeuge, die mit dem BodyElement-
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Interface arbeiten, kénnen in diesem Fall unveréindert weiterverwendet werden.

4.4 Wiederverwendung der Grammatikdefinition

Die zuvor vorgestellten Konzepte in MontiCore beziehen sich fast ausschliellich auf die
Definition einer einzelnen Grammatik und die Modellierung einer einzelnen DSL. In Mon-
tiCore existieren zuétzlich Konstrukte, die die Sprachkomposition auf unterschiedliche
Arten ermdoglichen. Dem Entwickler stehen unterschiedliche Konzepte fiir die Sprachin-
tegration [V6l11] zur Verfiigung. Die einzelnen Sprachdefinitionen bleiben dadurch kom-
pakt und modular. Mithilfe der Sprachintegration kénnen Subsprachen in eine homogene
Gesamtsprache integriert werden. Dies verbessert die Wiederverwendbarkeit der Sprach-
grammatiken und senkt die Gesamtkomplexitét der einzelnen Grammatiken. Details zu
den Integrationsmechanismen sind in [V6111, LNPR"13, HLMSN'15] zu finden.

AST of first AST of second AST nodes extended

language /anguage by 5ub<guage
ASTs o f
embedded

Ianguages (b) (C)

Abbildung 4.7: Schematische Darstellung der unterschiedlichen Sprachwiederverwen-
dungsmechanismen [HLMSNT15 LNPR'13, Lool7]. Dabei entspricht
(a) der Sprachaggregation (b) der Einbettung (c) der Sprachvererbung

Abbildung 4.7 fasst diese Mechanismen zusammen. Die erste Moglichkeit ist die Sprach-
aggregation, die Referenzen zwischen Modellen verschiedener Sprachen erlaubt (vgl. Ab-
bildung 4.7 (a)). Bei der Sprachaggregation werden aus unterschiedlichen Modellen un-
abhéingige ASTs instanziiert. Die Verbindung zwischen Modellelementen ist iiber Na-
mensreferenzen angegeben.

Die zweite Moglichkeit ist die Spracheinbettung (vgl. Abbildung 4.7 (b)). Sie ermog-
licht es, unterschiedliche Sprachen ineinander einzubetten. Auf der Ebene des Metamo-
dells einsteht ein AST, der gleichzeitig Knoten der einbettenden und der eingebetteten
Sprache enthalten kann.

Die letzte Moglichkeit, Sprachen zu integrieren, ist die Sprachvererbung. Diese Mo6g-
lichkeit kommt bei der Implementierung von NESTML haupséchlich zur Anwendung. Die
Sprachvererbung erlaubt es, die Produktionen aus einer iibergeordneten Sprache bzw.
Grammatik wiederzuverwenden oder zu verfeinern. In Grammatiken wird die Vererbung
durch das Schliisselwort extends definiert, wie in Abbildung 4.2 dargestellt. Dadurch
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konnen in der NESTML-Grammatik alle Produktionen verwendet werden, die in den
Procedural- und Units-Grammatiken definiert werden (vgl. Kapitel 6 fiir den Uber-
blick aller NESTML-Subsprachen). Auf der AST-Ebene fithrt das dazu, dass Knoten
der iibergeordneten Sprache im AST der erweiternden Sprache enthalten sein und durch
Subklassenbildung erweitert werden kénnen.

4.5 Symboltabelle

Eine weitere Stérke von MontiCore ist die Moglichkeit, die Symboltabelleninfrastruk-
tur [Par09, Volll, Sch12, MSNRR16] fiir eine DSL zu erstellen. Die MontiCore Work-
bench ist dabei in der Lage, Teile der Symboltabellenimplementierung auf der Basis der
Grammatik zu generieren. Die restlichen Teile werden durch das Implementieren der vor-
definierten Schnittstellen in das Symboltabellenframework integriert. SchliefSlich stellen
generierte Klassen und vorgeschriebene Schnittstellen wohldefinierte Anbindungspunkte
fiir handgeschriebenen Code dar.

Die Symboltabelle bildet unter anderem die Grundlage zur Uberpriifung der Kontext-
bedingungen. Da die MontiCore Workbench auf einem kontextfreien Grammatikformat
basiert, ist die Ausdrucksstéirke der resultierenden Parser eingeschriinkt [ASUS86], sodass
die Kontextbedingungen erst nach dem Parsen gepriift werden kénnen. Zum Beispiel
wére es mithilfe eines kontextfreien Parsers nicht moglich, zu priifen, ob ein in einem
Ausdruck verwendeter Bezeichner im Modell auch definiert ist. Diese Priifung setzt einen
kontextsensitiven Parser voraus. In MontiCore wird dafiir die Symboltabelle benutzt, die
erst nach dem Parsen des Modells aufgebaut wird.

Definition 4.2. (Symboltabelle). Eine Symboltabelle ist eine Datenstruktur zum Spei-
chern und Aufiésen von Bezeichnern in einer Sprache. Kernaufgabe besteht im Auflisen

von Namen mit dem Ziel, weitere Informationen wie Typ oder Signatur zu diesem Namen
zu erhalten [Volll1].

Die Bezeichner werden in MontiCore durch Symbole modelliert, die Instanzen eines
Symbol-Interfaces sind. Symbole erlauben eine schnelle und transparente Navigation zwi-
schen Benutzung und Deklaration eines Bezeichners anhand des Namens. Ein Symbol
ist genau einmal definiert. Die Definition eines Symbols in MontiCore lautet wie folgt:

Definition 4.3. (Symbol) Eine Symboldefinition oder ein Symbol enthdlt alle wesentli-
chen Informationen tiber ein benanntes Modellelement. Es hat eine bestimmte Art (Sym-
bolKind) abhingig von dem Modellelement, das es bezeichnet [MSN17].

Das Beispiel in Abbildung 4.8 modelliert ein Symbol, das die Informationen iiber eine
Methode speichert, die in einem Neuron definiert ist. Dieses Symbol ist mit dem definie-
renden Knoten ASTFunction iiber die vererbte Assoziation verbunden. Des Weiteren ist
das MethodSymbol mit einem MethodKind verbunden.
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«interface» kind «abstract»
Symbol SymbolKind «hc»
often usable default ~ ‘ £ 1
implementation for PN s;JIper g/ple 0
symbols i all symbols
«abstract» node «abstract» represents a symbol kind,
ASTNode CommonSymbol e.g., state or variable

CD
ASTFunction *~ MethodSymbol —" MethodKind

List< TypeSymbol> getSignature() represents the symbol
TypeSymbol getReturnType() L kirf)d for fields 4

Abbildung 4.8: Ein Ausschnitt der Symbolinfrastruktur von NESTML.

Im Falle einer Methode speichert das Symbol die essentielle Information iiber das Mo-
dellelement wie seinen Namen, die Parameter und den Riickgabewert. In der Sprachim-
plementierung werden Symbole durch Erweiterung der abstrakten Klasse CommonSymbol
definiert. Jedes Symbol verfiigt iiber ein spezielles Attribut vom SymbolKind-Typ, das
abhéingig vom modellierten Modellelement definiert wird. Es ist zu beachten, dass unter-
schiedliche Symbole dieselbe SymbolKind-Klasse teilen kénnen. Wenn unterschiedliche
Symbolspezialisierungen dieselbe SymbolKind-Klasse teilen, werden diese von MontiCore
als gleicher Symboltyp behandelt. Somit wird die transparente Sprachkomposition unter-
stiitzt, da MontiCore nicht unterscheidet, aus welcher Subsprache das Symbol stammt.

Typischerweise stellen Symbole Komfortfunktionen zur Verfiigung. Die Methode get-
Signature aus der MethodSymbol-Klasse liefert eine Liste mit Symbolen, die anhand der
textuellen Darstellung des jeweiligen Typs aus dem Neuronenmodell bestimmt wurden.
Die Methode getReturnType 16st den Riickgabetyp auf und liefert das entsprechende
Symbol an den Aufrufer zuriick.

Der Zugriff auf ein Symbol innerhalb eines Modells kann nicht von iiberall erfolgen. Die
Sichtbarkeit eines Symbols konnte durch sprachspezifische Regeln eingeschrankt werden.
In den Programmiersprachen Java und C++ stehen lokale Variablen einer Methode z.B.
nur innerhalb der Methode selbst zur Verfiigung. Des Weiteren kénnen Symbole durch
gleichnamige Symbole in hierarchisch geschachtelten Modellen verdeckt werden. In der
Programmiersprache Java ist es beispielsweise moglich, dass eine lokale Variable in einer
Methode eine Klassenvariable verdeckt.

Somit ergibt sich die Definition der Sichtbarkeit eines Symbols wie folgt:

Definition 4.4. (Sichtbarkeit) Die Sichtbarkeit eines Symbols ist die logische Region, in
der das Symbol durch seinen (einfachen) Namen potenziell zugdinglich ist [MSN17].

In NESTML kann eine Variable, die zum Beispiel im state-Block definiert wird, durch
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eine gleichnamige Variable im update-Block verdeckt werden. Abbildung 4.9 demons-
triert dieser Art der Verdeckung (engl:shadowing) an einem konkreten Beispiel. Die Va-
riable V_m ist im state-Block in der Zeile 3 definiert. In Zeile 6 wird die urspriingliche
Definition durch die neue Definition verdeckt. In Zeile 9 wird aber die Variable V_m aus
Zeile 3 benutzt.

1| neuron iaf neuron: NESTML) Visibility of 15t V_m

2| state: } (lines 2 — 4)

3 V. m mV .

4 end shadows V_m declared above (First part)

5| wupdate; Visibility of 20 V_m

6 V. _m real i

7 end (lines5-7)

8 function set V m(V_new mV): Visibility of 15t V_m (lines 8 — 10)

9 V_m = V_new S d
10 end (Second part)
11 |end

Abbildung 4.9: Beispiel der Verdeckung einer Variable im update-Block, hier V_m.

Um die Sichtbarkeitsregeln transparent zu verwalten, verwendet die MontiCore Work-
bench eine hierarchische Scope-Datenstruktur. Ein konkreter Scope kann als Symbolcon-
tainer angesehen werden, der nach dem Composite-Muster [GHJV93] aufgebaut ist. Ein
Scope enthélt beliebig viele eingebettete Scopes, die ihrerseits weitere Scopes einbetten
konnen.

Es ergibt sich folgende Definition eines Scope:

Definition 4.5. (Scope) Scope ist eine logische Gruppierung der Symboldefinitionen mit
den zugehorigen Sichtbarkeitsregeln.

Abbildung 4.10 illustriert diesen Ansatz am Ausschnitt der entsprechenden NESTML-
Umsetzung. Der GlobalScope verwaltet alle Scopes und spielt eine wesentliche Rolle
beim modelliibergreifenden Auflésen der Symbole. Um dies zu ermdglichen, werden Ar-
tifactScopes erzeugt, die unterschiedliche Modelldateien reprisentieren. Anhand voll-
qualifizierter Namen kann der GlobalScope den richtigen ArtifactScope identifizieren
und Anfragen an diesen Scope weiterleiten.

Eine weitere Aufgabe des GlobalScopes ist die Verwaltung der vordefinierten Datenty-
pen (z.B. integer), Konstanten (z.B. t) und Methoden (z.B. emit_spike). Diese Sym-
bole werden bei der Erstellung im GlobalScope registriert und stehen allen NESTML-
Modellen stets zur Verfiigung,.

Jede NESTML-Datei wird als eine Instanz des ArtifactScope behandelt. Der Sprach-
entwickler kann weitere Scopes bei Bedarf definieren. Im vorliegenden Beispiel stellt
NeuronScope einen benutzerdefinierten Scope dar. Der Zweck dieses Scopes ist es, beim
Auflosen der Symbole Anfragen an andere Artefakte weiterzuleiten, falls das anfragende
Neuron eine Import-Beziehung zu anderen NESTML-Modellen hat.
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subScopes super type of N
N v~ all scopes

@interfaee» o * «interface»
enclosingScope Scope enclosingScope Symbol

default implementation EY

for scopes \\

CommonScope
&
\ \
GlobalScope ArtifactScope
I.___/modelPath____t*
predefine& — N
TypeSymbols contains models from the NeuronScope \T?mﬁ
model path String getName()
predefined types: e.g. integer, string, real, void ... List<VariableSymbols> getAllVariables()

Abbildung 4.10: Ein Ausschnitt der NESTML-spezifischen Umsetzung der Scope-
Hierarchie in der MontiCore Workbench.

Den Autbau der Scope-Hierarchie fithrt die MontiCore Workbench semi-automatisiert
durch. Dies geschieht durch das Implementieren eines vordefinierten Interfaces Scope-
SpanningSymbol in den sprachspezifischen Symbolen. In diesem Fall erzeugt die Mon-
tiCore Workbench die passende Hierarchie der Scopes automatisch, sobald das entspre-
chende Symbol erzeugt und in der Symboltabelle registriert wird.

Eine wichtige Rolle beim Erzeugen der Symbole und der Scope-Hierarchie spielt der
SymbolTableCreator. Der SymbolTableCreator ist ein vordefiniertes Interface, das
sprachspezifisch implementiert wird und fiir jede Sprache in der Symboltabelleninfra-
struktur registriert wird.

Um die Scope-Hierarchie korrekt aufzubauen, verwaltet MontiCore intern eine Stack-
Datenstruktur [CSRLO1]. Abbildung 4.11 visualisiert eine beispielhafte Implementierung
des NestmlSymbolTableCreators. Dabei stehen der implementierenden Klasse einige
Komfortfunktionen als Teil des Interfaces SymbolTableCreator zur Verfiigung, um die
Scope-Hierarchie zu verwalten:

createFromAST: Diese Methode wird benutzt, um die Erstellung der gesamten Symbol-
tabelle zu initiieren. Dabei muss das geparste Modell der Methode als ein Argument
iibergeben werden.

putOnStack: Diese Methode wird benutzt, um einen neuen Scope auf dem Scope-Stack
abzulegen.

removeScope: Diese Methode ist das Gegenstiick der putOnStack-Methode. Mit dem
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provides default «interface»
implementation CommonSymbolTableCreator «rty

| adds a scope to the
void putOnStack(Scope scope) [ scope-stack and sets

Optional<Scope> currentScope() il
returns the / Optional<Scope> removeCurrentScope() :Z/Zl]f,‘noi]los ng/sub
top scope void addToScopeAndLinkWithNode(Symbol s, ASTNode n)
of the scope Scope createFromAST(ASTNESTMLNode node) ”Q adds a symbol
stack A to the current
T scope

P-CD )
NestmISymbolTableCreator «hc»

1 | public class NestmlSymboltableCreator implements SymbolTableCreator { N
2 Scope createFromAST (final ASTNESTMLNode rootNode) {
3 rootNode.accept (this) ;

4 return getFirstCreatedScope () ;

5 }

6 /..

7 public void visit (final ASTNeuron ast) {

8 final NeuronSymbol neuronSymbol = new NeuronSymbol (astNeuron.getName (), NEURON) ;
9 addToScopeAndLinkWithNode (neuronSymbol, astNeuron) ;

10 }

111}

Abbildung 4.11: Ein  Auszug des sprachspezifischen SymbolTableCreators der
NESTML-Sprache.

Aufruf dieser Methode wird der aktuelle Scope aus dem Stack entfernt.

currentScope: Diese Methode wird benutzt, um beim Aufbau der Symboltablle auf den
alktuellen Scope zuzugreifen.

putInScopeAndLinkWithAst: Diese Methode legt ein Symbol im aktuellen Scope ab
und assoziiert das Symbol mit einem AST-Knoten aus dem Quellmodell. In Ab-
bildung 4.11 wird beispielsweise das NeuronSymbol mit dem ASTNeuron-Knoten
verbunden (vgl. Zeile 9).

Auf diese Weise verbindet der NestmlSymbolTableCreator die Erzeugung der Sym-
bole aus NESTML-Modellen mit der Verwaltung der Sichtbarkeitsregeln dieser Symbole.

Die Symboltabelle wird auch zur Modellkomposition verwendet. Sie ermdglicht das
aus der komponentenbasierten Softwareentwicklung bekannte Konzept der Modularitét.
Jedes Modell wird dabei als ein eigenstdndiges und abgeschlossenes Modul angesehen.
Modelle konnen, solange sich die Schnittstelle nicht dndert, verdndert und gleichzeitig
von anderen Modellen ohne Anpassung weiter benutzt werden.
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4.6 Visitoren zum Traversieren der ASTs

Wie zuvor beschrieben, werden Instanzen der MontiCore-Sprachen als komplexe Baum-
strukturen (ASTSs) instanziiert. Das Riickgrat aller Algorithmen, die auf dem AST aus-
gefiihrt werden, bildet der Visitor-Ansatz [HMSNRW16], der durch Anwendung des
Double-Dispatch Musters [V1i04], eine transparente Trennung dieser Datenstrukturen
von den darauf laufenden Berechnungen ermoglicht.

Urspriinglich wurde dieses Muster in [GHIV93] vorgestellt und liegt in MontiCore in
einer erweiterter Form vor. Der Name des Musters resultiert aus seiner grundlegenden
Funktionsweise. Dabei besucht (engl: visits) der Visitor alle Konten des ASTs und ruft
dabei jeweils die Methode visit auf.

Generated default
(depth first) ™ Four methods for

each node type of the AST or
Grammar-Production

«interface»
NESTMLVisitor «gen»
handle(ASTNeuron n) <—

traverse(ASTNeuron n) <——\

visit(n);
traverse(n);
endVisit(n);

Called when visit(ASTNeuron n)

- entering the node — endVisit(ASTNeuron n) Climb-down strategy

- leaving the node (e.g. order of children)
(empty hot spots) visit(ASTFunction n)

visit(ASTBodyElement n)

Abbildung 4.12: Ein Ausschnitt des Visitors, der auf der Grundlage der NESTML-
Grammatik generiert wird.

Die MontiCore Workbench generiert dabei die Basisfunktionalitéit eines Visitors aus je-
der Grammatik. Der Ausschnitt des NESTML-Visitors, der aus der NESTML-Grammatik
generiert wird, ist in Abbildung 4.12 zu sehen. Fiir jedes Nichtterminal aus der ent-
sprechenden Grammatik werden jeweils vier Methoden generiert, die in den konkreten
Visitoren iiberschrieben werden konnen. Die folgende Liste erldutert diese Methoden:

handle: Diese Methode kontrolliert die Abstiegsstrategie des Visitors. Falls nicht anders
spezifiziert, verwendet der Visitor eine Tiefensuche [CSRLO1].

traverse: Diese Methode kontrolliert, in welcher Reihenfolge die direkten Nachkommen
eines Knotens besucht werden. Normalerweise wird von der MontiCore Workbench
keine bestimmte Reihenfolge garantiert. Diese Methode ist dafiir zustédndig, dass
alle Nachkommen eines Knotens besucht werden.

visit: Diese Methode wird beim Vorkommen einer Knotens vom entsprechenden Typ
im AST aufgerugen. Der Typ wird durch die Signatur der Methode festgelegt.
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endVisit: Diese Methode wird aufgerufen, nachdem der Knoten selbst und alle seine
Nachkommen besucht wurden.

Der Sprachentwickler kann den generierten Visitor benutzen, um eigene Berechnun-
gen und Analysen auf dem AST durchzufithren. Dabei sieht die MontiCore Workbench
vor, dass zuséitzliche Funktionalitéit innerhalb der visit- bzw. endVisit-Methoden im-
plementiert wird. Dafiir iiberschreibt der Sprachentwickler die visit-Methoden bzw.
endVisit-Methoden fiir die gewiinschten Signatur und implementiert darin eigene Lo-
gik.

4.7 Kontextbedingungen

Wie bereits bei der Vorstellung der MontiCore-Grammatik erldutert, baut die Gram-
matik auf den kontextfreien Grammatiken auf. Das fithrt dazu, dass kontextabhéngige
Bedingungen durch den MontiCore-Parser nicht gepriift werden kénnen. Aber selbst Be-
dingungen, die durch einen kontextfreien Parser theoretisch erkannt werden konnten,
sind in einer kontextsensitiven Weise oft einfacher zu formulieren. Um diesem Nachteil
zu entgegnen, bietet die MontiCore Workbench ein integriertes Framework zur Definiti-
on von Kontextbedingungen an, die sowohl den Modell-AST als auch die Symboltabelle
verwenden [Sch12, Vol11].

Dabei werden Kontextbedingungen in unterschiedliche Kategorien eingeordnet. Martin
Schindler [Sch12] unterscheidet zwischen den folgenden Kategorien von Kontextbedin-
gungen:

Sprachinterne Intra-Modell-Bedingungen sind Bedingungen, die innerhalb eines Mo-
dells gepriift werden.

Sprachinterne Inter-Modell-Bedingungen sind Bedingungen, die zwischen mehreren Mo-
dellen derselben Sprache gepriift werden.

Sprachiibergreifende Intra-Modell-Bedingungen sind Bedingungen, die innerhalb ei-
nes Modells gepriift werden. In diesem Fall werden Teile desselben Modells durch
unterschiedliche Sprachen definiert oder Symbole verwendet, die in Modellen an-
derer Sprachen definiert worden sind.

Sprachiibergreifende Inter-Modell-Bedingungen sind Bedingungen, die zwischen meh-
reren Modellen gepriift werden, wobei diese in Unterschiedlichen Sprachen definiert
werden.

Ein weiterer Vorteil der MontiCore Workbench besteht darin, dass der Sprachentwick-

ler sich nicht manuell um diese Unterscheidung kiimmern muss. Die Symboltabllenin-
frastruktur ist in der Lage, die unterschiedlichen Beziehungen zwischen Modellen und

68



4.7 KONTEXTBEDINGUNGEN

Sprachen automatisch zu erkennen. Bei Bedarf werden die ausstehenden Symbole aus
anderen Modellen nachgeladen. Wenn die Symbole aus heterogenen Sprachen stammen,
konnen diese durch passende Adapter korrekt umgewandelt werden.

Die Kontextpriifungen sind technisch gesehen eine spezielle Form des Visitor-Musters
(vgl. Abschnitt 4.6). Fiir jedes Nichtterminal aus der Grammatik generiert die Mon-
tiCore Workbench ein Interface, das genau eine check-Methode enthilt. Die konkrete
Kontextbedingung implementiert dieses Interface und iiberschreibt die check-Methode
mit der passenden Signatur.

common interface «interface» cocos NESTMLCocoChecker MCD
for neuron cocos ASTN CoC “ «gen»
curonore checkAl(ASTNESTMLNode node)

L_/ check(ASTNeuron node) 0..1 checker

A concrete coco
implementation §

validating the \ ‘
existence of

an input port | NolnputCheck NESTMLCocoManager
check(ASTNeuron node) createChecker()

@Override

public void check (ASTNeuron node) {
// do checks on node
// 1f check fails: Log.error (..);

}

Abbildung 4.13: Sprachspezifische Implementierung der Registrierung von Kontextbe-
dingungen.

Abbildung 4.13 demonstriert eine exemplarische Implementierung einer NESTML-
Kontextbedingung. Sie priift, dass jedes Neuron stets mindestens einen eingehenden Port
besitzt (vgl. Abschnitt 7.3). Um diese Priifung umzusetzen, implementiert die Klasse
NoInputCheck das ASTNeuronCoco-Interface und iiberschreibt die check-Methode mit
dem ASTNeuron-Parameter in der Methodensignatur. Da der AST-Knoten zur Verfiigung
steht, kann die Kontextbedingung einfach die Anzahl der Ports in der abstrakten Syntax
zihlen. Wenn deren Anzahl gleich 0 ist, wird ein Fehlereintrag mithilfe der Log-Methode
erstellt. Bei diesem Fehler wire es moglich, ihn bereits beim Aufbau des AST durch den
Parser zu identifizieren. Dadurch, dass eine Kontextbedingung allerdings den kompletten
AST sowie die Symboltabelle zur Verfiigung hat, kann sie weitaus informativere Fehler-
nachrichten erstellen. Daher sollten moglichst viele Fehlerabfragen auf der Ebene der
Kontextbedingungen umgesetzt werden und nicht in der Grammatik bzw. dem Parser
spezifiziert werden.
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Fiir die Verwaltung der Kontextbedingungen einer Sprache schreibt MontiCore eine
Methodik fiir die Organisation der Kontextbedingungen vor. Fiir jede Sprache wird eine
Manager-Klasse erstellt (vgl. NESTMLCocoManager in Abbildung 4.13). Der Manager ist
fiir die Instanziierung aller Kontextbedingungen und deren Registrierung beim sprachs-
pezifisch generierten Priifer zustindig (vgl. NESTMLCococChecker). Schliefllich kann der
NESTMLCocoChecker alle bei ihm registrierten Kontextbedingungen auf einem NESTML-
AST priifen.

4.8 Codegenerierung

Nachdem alle Elemente zum Einlesen und Validieren der Modelle erlautert wurden, stellt
dieser Abschnitt die von MontiCore angebotene Codegenerierungsinfrastruktur vor und
legt die Grundlage fiir ein genaueres Verstindnis des in der Arbeit entwickelten NEST-
Generators.

Die MontiCore Workbench verwendet das Freemarker-Framework? [GBR04] zur Co-
degenerierung. MontiCore erweitert Freemarker um eine transparente Anbindung an
Modell-ASTs und deren Symboltabelle. Freemarker stellt ein Model-to-Text (M2T)-
Framework dar, das einen AST in einen Text transformiert. Die MontiCore Workbench
unterstiitzt auch Visitor-basierte Model-to-Model (M2M)-Ansétze. Eine ausfiihrliche
Ubersicht der moglichen Transformationsansitze mit deren Vor- und Nachteilen fin-
det sich in [CHO6b]. NESTML benutzt eine Kombination aus templatebasiertem M2T-
Ansatz und einer Reihe von M2M-Transformationen, die Vereinfachungen und Optimie-
rungen von NESTML-Modellen durchfiihren.

Im Rahmen dieser Arbeit wird ein Codegenerator entwickelt, der ausfithrbaren Python-
und C++-Quellcode aus NESTML-Modellen generiert. Um die Codegenerierung zu star-
ten, wird ein ausgezeichnetes Starttemplate mit einem initialen AST-Knoten initiiert.
Innerhalb dieses Templates konnen weitere Subtemplates eingebunden werden, die Teile
des Zielsystems generieren.

Freemarker selbst bietet eine eingebaute Kontrollsprache, die verschiedene Direkti-
ven fiir die Ausfithrungskontrolle beinhaltet. So kénnen einfache Schleifenoperationen,
Bedingungen und Zeichenkettenoperation direkt als Freemarker-Direktiven umgesetzt
werden. Freemarker ermoglicht es, auf Java-Objekte zuzugreifen und Methoden dieser
Objekte auszufiihren.

Das Codegenerierungsframework stellt ein ausgezeichnetes Objekt tc zur Verfiigung,
das innerhalb von Generierungstemplates benutzt werden kann. Dabei handelt es sich um
eine Instanz der TemplateController-Klasse. Mithilfe dieses Objekts konnen Templates
eingebunden werden oder Variablen instanziiert werden, die dem Datentausch zwischen
Templates dienen kénnen.

‘http://freemarker.org/
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Templates, die in MontiCore zur Codegenerierung verwendet werden, kénnen mit Si-
gnaturen angereichert werden, um sie moglichst wiederverwendbar zu machen. Eine Si-
gnatur wird am Anfang des Templates deklariert. Die Signatur eines Templates definiert,
welche Parameter beim Einbinden des Templates iibergeben werden miissen. Die Mon-
tiCore Workbench kontrolliert dabei, dass alle geforderten Parameter beim Aufruf des
Templates iibergeben wurden. Dies ermoglicht es, Templates von der Struktur eines spe-
zifischen ASTs zu entkoppeln und in unterschiedlichen Kontexten wiederzuverwenden.

[NESTML) :ASTNeuron :ASTState CPPConverter
1 neuron iaf neuron: " N - -
2 state: name = "iaf_neuron vars + String type(ASTVariable var)
3 V_m mV
4 end :AST Variable
5 end
name ="V_m"
fype ='mv" <<source>>
<<neuron.ft|>> <<varftl>>
1 class ${neuron.name} { 1 ${tc.signature (“var")}
2 struct State_ { 2 <#assign conv
3 <#list neron.getState() .getVars() as state> 3 = tc.instantiate ("CPPConverter")>
4 ${tc.includeArgs (“var", [state])} 4
5 </#list> 5 ${conv.type(var)} ${var.name} ;
6 }
7 <<generator>>
1 class iaf neuron { C++
2 struct State_ {
3 double V. m ;
4 }
> <<target>>

Abbildung 4.14: Verschiedene Codegenerierungsphasen, um aus einem Modell-AST mit-
hilfe der Generierungstemplates eine C+-+-Implementierung zu generie-
ren.

Abbildung 4.14 erldutert die vorgestellte Funktionalitéit von MontiCore an einem Bei-
spiel. Die source-Schicht erzeugt lediglich den AST, der als Haupteingabe fiir die Co-
degenerierung dient. Die Generatortemplates konnen innerhalb eines ${. .. }-Ausdrucks
direkt auf die Attribute des AST zugreifen. Im vorliegenden Beispiel wird der ${neu-
ron.name}-Ausdruck durch den im ASTNeuron-Objekt gespeicherten Wert des Attributs
ersetzt. Ein weiterer Teil der source-Schicht ist die Runtime-Klasse CPPConverter.

Die generator-Schicht enthilt zwei Generierungstemplates, die mithilfe der Runtime-
Klassen eine C++-Implementierung generieren. Dabei werden Ausdriicke, wie ${neu-
ron.name} in Zeile 1, durch den im jeweiligen Attribut gespeicherten Wert ersetzt. Im
vorliegenden Beispiel wird der Ausdruck ${neuron.name} durch den String "iaf_neu-
ron" ersetzt. Die #1ist-Anweisung iteriert durch eine Liste aus Eintrdgen {vm, thres},
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die in einem Listenobjekt vars gespeichert sind. Zeile 4 bindet fiir alle Elemente der Liste
vars den Text ein, der durch ein weiteres Template var.ftl erzeugt wird. Das Template
var.ftl verwendet eine Signatur. Diese legt fest, dass beim Aufruf des Templates ein
Parameter iibergeben werden muss.

Um ein Template einzubinden, wird die Methode includeArgs des TemplateCon-—
trollers benutzt. Als einziges Argument wird ihr der AST-Knoten iibergeben, der die
NESTML-Variable speichert. In den Zeilen 2-3 wird eine Instanz der Runtime-Klasse
CPPConverter erzeugt. Der Converter ist dafiir zustéindig, NESTML-Typen (z.B. real
oder mV) in passende C++-Datentypen zu konvertieren. Mit der assign-Anweisung kann
diese Instanz an einen Variablennamen gebunden werden. In diesem Fall wird sie einer
Variable conv zugeordnet. Anschliefend wird in Zeile 5 diese Variable benutzt, um einen
NESTML-Typ in einen C++-Typ zu transformieren.

Die target-Schicht enthilt den generierten Code. In diesem Fall ist der Code eine
C++-Klasse mit eingebettetem C++-struct.

NestExpressions| ... CPPConverter HeaderGenerator
Printer Path generateHeader(Path baseOutput,
printer °°”VT ASTNeuron neuron)-{--+
GlobalExtension | glex Generator
Management Setup

var_-ftID ASTNeuron
L headerdtl i A
GeneratorEngine < absiracts

ast S ke

| void generate( ASTNode
B kb - String template,
Path outputFile,-----------7--------------- '
ASTNode ast, v

Object params...) NeuronName.h D‘

Abbildung 4.15: Ein Ausschnitt aus dem vereinfachten NEST-Codegenerator.

Abbildung 4.15 zwigt das Klassendiagramm eines exemplarischen MontiCore Code-
generators, der fiir die Generierung eines Neuronenheaders zustédndig ist. Die zentrale
Klasse ist die GenerationEngine. Mit der Methode generate, einem Starttemplate,
z.B. header.ftl, und einem AST-Knoten wird die Generierung einer Zieldatei initiiert.
Die technische Information wie beispielsweise das Zielverzeichnis wird in einem Objekt
GeneratorSetup gespeichert. Die Klasse GlobalExtensionManagement verwaltet Ab-
héangigkeiten und Erweiterungen des Generators. Anstatt die Hilfsklassen in dem Tem-
plate selbst zu instanziieren (vgl. Abbildung 4.15), ist es auch méoglich, diese im Objekt
der Klasse GlobalExtensionManagement zu kapseln. Das entspricht dem Inversion-of-
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Control-Entwurfsmuster [Fow04]. Auf diese Weise sind die Templates einfacher zu pfle-
gen, zu testen und zu erweitern. Im vorliegenden Fall werden die Objekte printer und
conv als Abhéngigkeiten des Generators iibergeben. Schlieflich ist die Klasse HeaderGe-
nerator fiir die korrekte Instanziierung und Registrierung der Hilfsobjekte in der Klasse
GlobalExtensionManagement zustidndig.

Insgesamt stellt die MontiCore Workbench ein gut integriertes und homogenes Werk-
zeug zur Codegenerierung dar. Es ermoglicht, Generatoren auf Basis der Symboltabelle
und Modell-AST's zu erstellen und unterstiitzt den Sprachentwickler auch bei der Erstel-
lung von M2T- und M2M-Generierungskomponenten.

4.9 Zusammenfassung

Dieses Kapitel stellt zunéichst doménenspezifische Sprachen als einen Ansatz zur Reduk-
tion der Komplexitéit der Softwareentwicklung in den Neurowissenschaften vor. Darauf
aufbauend werden die Elemente einer DSL erklart und eine Kosten-Nutzen-Analyse der
Verwendung von DSLs im Softwareentwicklungsprozess durchgefiihrt. Anschlieflend wird
die MontiCore Language Workbench vorgestellt, mit deren Hilfe DSLs agil und kosten-
glinstig erstellt werden kénnen. Das Grammatikformat von MontiCore ermoglicht es, die
abstrakte und konkrete Syntax in einem homogenen Artefakt zu definieren und Sprach-
verarbeitungswerkzeuge aus dieser Grammatik zu generieren. Auch die Moglichkeit der
Komposition verschiedener Grammatiken zu einer DSL wird vorgestellt. Dariiber hin-
aus wird die Funktionsweise von Symboltabellen, Visitoren und Kontextbedingungen
erkldart. Anschlieend werden die Méglichkeiten zur Codegenerierung mithilfe der Mon-
tiCore Workbench und Freemarker erldutert.

Die vorgestellten Konzepte zeigen nur einen Auszug der Funktionalitéit der MontiCore
Workbench. Diese sind aber ausreichend, um die Anwendung von MontiCore im Rahmen
dieser Arbeit zu verstehen. Weitere Details werden nachfolgend an den Stellen eingefiihrt,
wo sie fiir das weitere Verstdndnis notwendig sind.

Im Rahmen dieser Arbeit wird die NESTML-Modellierungssprache erarbeitet, die
der Spezifikation von Punktneuronen dienen soll. Diese DSL ist mithilfe der MontiCore
Workbench entwickelt und durch geeignete Kontextbedingungen semantisch gesichert.
Auf Basis dieser DSL werden dann Neuronenmodelle entwickelt und die Modellierungs-
methodik zur Entwicklung neuer Neuronenmodelle definiert (vgl. Kapitel 7). Der Code-
generator fiir den NEST-Simulator wird auf Basis des hier vorgestellten Codegenerie-
rungansatzes erstellt (vgl. Kapitel 8) und evaluiert (vgl. Kapitel 9).
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Kapitel 5

NESTML: eine domanenspezifische Sprache
fiir die Spezifikation von Punktneuronen

Modellierungssprachen spielen in der Neurowissenschaft eine wichtige Rolle fiir das Tei-
len und Wiederverwenden von Forschungsergebnissen. In Kapitel 3 wurde allerdings
gezeigt, dass die bereits existierten Modellierungssprachen essenzielle Anforderungen an
eine Modellierungssprache fiir den NEST-Simulator nicht im vollen Umfang erfiillen. Da
Erweiterungen und Anpassungen dieser Modellierungssprachen aufgrund ihrer techni-
schen Umsetzung nicht moéglich sind, wird in diesem Kapitel eine neue doménenspezifi-
sche Sprache NESTML [PBI*16] fiir den NEST-Simulator erarbeitet.

Um die Anforderungen an das Metamodell (vgl. RQ4) und die Codegenerierung (vgl.
RQ®5) durch die Wahl der passenden Language Workbench zu erfiillen, wird NESTML
und ihre Sprachverarbeitungswerkzeuge mithilfe der MontiCore Workbench entwickelt
(vgl. Kapitel 4). Somit wird der sprachliche Unterbau von NESTML modular und er-
weiterbar aufgebaut. NESTML abstrahiert von der konkreten technischen Realisierung
in einem Simulator (vgl. RQ1). Diese Sprache enthilt eine beschriinkte Menge der fiir
die Modellierung von Punktneuronen notwendigen Modellierungselemente mit klarer Se-
mantik (vgl. RQ2). Daher bleibt die Sprache leicht erlernbar und portabel. Sie verfiigt
iiber eine klare und kompakte Syntax. NESTML unterstiitzt dennoch eine Vielzahl von
biologischen Neuronen, die aufgrund der Portabilitdt in unterschiedlichen Simulatoren
ausgefiihrt werden kénnten.

5.1 Exemplarisches NESTML-Neuron

Die konzeptionelle Arbeitsweise von Punktneuronen, die mithilfe von NESTML spezifi-
ziert werden, wurde bereits in Kapitel 2 erldautert. Die Syntax von NESTML ist durch
die der Programmiersprache Python inspiriert. Da diese in den Neurowissenschaften
sehr stark verbreitet ist [MBD"09, DDG*13] und Neurowissenschaftlern somit bereits
bekannt ist, senkt diese syntaktische Anlehnung die Einstiegshiirde fiir NESTML und
erhoht die Versténdlichkeit der Modelle fiir neurowissenschaftliche Anwender.

Im Laufe des Kapitels wird die NESTML-Syntax anhand einiger konkreten Neuro-
nenmodelle vorgestellt. In Abbildung 5.1 wird ein Integrate-and-Fire-Neuronenmodell
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in der Syntax von NESTML definiert. Das Membranpotenzial des Neurons wird durch
die Variable V_m modelliert, deren Dynamik mit einer Differenzialgleichung deklarativ
beschrieben wird. Zur Laufzeit integriert das Neuron eingehende Strome so lange, bis
die vordefinierte Schranke iiberschritten ist und das Neuron feuert einen Spike. Nach
dem Feuern eines Spikes versetzt sich das Neuron in einen Refraktérzustand, in dem alle
eingehenden Ereignisse ignoriert werden.

1 neuron rc_neuron: 27 input: # input events NESTML

2 28 spikes <- spike

3 state: # Captures the dynamic state of the neuron 29 currents <- current

4 V_m mv 30 end

5 end 31

6 32 output: spike # output events
7 equations: # Declarative description of equations 33

8 shape I_a = (e/tau_syn) * t * exp(-t/tau_syn) 34 update: # neuron's state update
9 function I pA = (I_sum(I_a, spikes) + currents) 35 if r == 0: # not refractory
10 vm' =-1/Tau * (V.m - E_L) + 1/C_m * I 36 integrate_odes ()

11 end 37 # threshold crossing

12 38 if V.m >= Theta:

13 parameters: +# can be set from outside 39 r = ref_counts

14 C m pF = 250pF [[C m > 0]] # Capacity 40 V_m = V_reset

15 Tau ms = 10ms # Membrane time constant 41 emit_spike ()

16 tau_syn ms = 2ms # Synaptic current 42 end

17 t_ref ms = 2ms # Refractory period 43 else:

18 E L mvV = -70mV # Resting potential 44 r=1r -1

19 V_reset mV = -70mV - E_L # Reset potential 45 end

20 Theta mV = -55mV - E L # Spiking threshold 46

21 end 47 end

22 48

23 internals: # auxiliary variables 49 end

24 ref coutns integer = steps(t_ref)

25 r integer

26 end

Abbildung 5.1: Ein Integrate-and-Fire-Neuronenmodell als NESTML-Modell.

Die Definition eines Neurons beginnt mit dem Schliisselwort neuron gefolgt vom Na-
men des Neurons. Im vorliegenden Fall wird das Neuron rc_neuron spezifiziert (vgl.
Zeile 1).

Jedes NESTML-Neuron besteht aus verschiedenen Blocken. Unter anderem sind dies
Blocke, in denen Variablen definiert werden kénnen wie der state-Block (vgl. Zeilen 3-5),
der parameters-Block (vgl. Zeilen 13-21) und der internals-Block (vgl. Zeilen 23-26).
Variablendeklarationen innerhalb dieser Blocke erlauben die Verwendung sowohl von
primitiven Datentypen (z.B. integer oder boolean) als auch physikalischer Einheiten
(z.B. Picoamper: pA) und zusammengesetzter physikalischer Einheiten (z.B. m?V)

Fiir Variablen aus dem state-Block konnen zusétzlich Gleichungen im equations-
Block spezifiziert werden (vgl. Zeilen 7-11). Differenzialgleichungen werden mithilfe von
Aufrufen der integrate_odes-Methode im update-Block schrittweise entwickelt (vgl.
Zeile 36).

Variablen, deren Werte sich ausschliellich aus anderen Variablen zusammensetzen,
konnen mithilfe der function-Deklarationen modelliert werden (vgl. Zeile 9). Im vorlie-
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genden Beispiel akkumuliert die Variable I alle eingehenden Stréme.

Die eingehenden bzw. ausgehenden Ports werden in einem input- bzw. output-Block
definiert. Fingehende Ports kénnen unterschiedliche Typen von Ereignissen erhalten.
Der genaue Typ des Ports wird durch ein Schliisselwort spike oder current festgelegt.
Das Neuron rc_neuron deklariert zwei eingehende Ports: den spikes-Port in Zeile 28
und den currents-Port in Zeile 29. Diese werden innerhalb des input-Blockes definiert.
SchlieBlich legt der ausgehende Port in Zeile 32 fest, dass das Neuron rc_neuron in der
Lage ist, Spikes zu feuern.

Specification of the imperative Specification of dynamics
parts (e.g. for an algorithmic (e.g. ordinary differential
description of the update step) equations, shape functions)

@D (s

Python-inspired domain Definition of physical units
specific language for all
expressions in NESTML

NEST Modeling Language
Description of neuron models

. J

Abbildung 5.2: Struktureller Aufbau der NESTML-Sprachen.

Auf Grammatikebene setzt sich die NESTML-Sprache aus verschiedenen Subsprachen
zusammen. Dabei werden die Spracheinbettung und Sprachvererbung aus der MontiCore
Language Workbench benutzt, um die einzelnen Subsprachen zu einer monolithischen
Sprache zusammenzufiigen.

Abbildung 5.2 visualisiert den schematischen Aufbau von NESTML inklusive aller
Subsprachen. NESTML ist dabei eine iibergeordnete Sprache, die andere Subsprachen
einbettet und erweitert (vgl Abschnitt 5.2). Der Zweck von NESTML ist es, die grund-
legenden Modellierungselemente zu definieren, mit denen Struktur Verhalten eines Neu-
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rons spezifiziert werden kénnen. Die Differenzialgleichungen kénnen mithilfe der Fquati-
onsDSL spezifiziert werden (vgl. Abschnitt 5.4). Die in einem Neuronenmodell definierten
Variablen koénnen physikalische Einheiten verwenden, die mithilfe der UnitsDSL model-
liert werden (vgl. Abschnitt 5.6). Die ExpressionsDSL definiert die Struktur und Form
der in NESTML zuléssigen Ausdriicke (vgl. Abschnitt 5.5). Schliefilich erméglicht die
ProceduralDSL die Definition von Modellabschnitten, die nicht durch andere deklarative
Konstrukte ausgedriickt werden kénnen und stattdessen in einem imperativen Stil er-
stellt werden sollen (vgl. Abschnitt 5.3). Im Weiteren werden die einzelnen Subsprachen
erldutert.

5.2 NEST Modeling Language

NESTML bietet eine einfache und prézise Syntax fiir die Definition von biologischen
Neuronen. Dennoch verfiigt die Sprache aufgrund der Erweiterungsmoglichkeiten und
der eingebauten prozeduralen Subsprache iiber grofle Flexibilitéit, wodurch die meisten
Punktneuronenmodelle spezifiziert werden kénnen.

Die NESTML-Syntax wurde an die Python-Syntax angelehnt, um die Lernhiirde fiir
NESTML-Nutzer zu senken. Unter anderem wird auf die in vielen anderen Program-
miersprachen iiblichen Semikolons (;) am Ende einer Anweisung verzichtet. Auch die
Syntax der eingebauten Aktionssprache bedient sich vieler Sprachkonzepte aus der Pro-
grammiersprache Python.

Grundsétzlich werden Neuronen und Neuronenkomponenten in Dateien mit der Da-
teiendung .nestml gespeichert. Eine NESTML-Datei kann eine beliebige Anzahl von
Neuronen bzw. Komponenten enthalten. Daher ist keine Ubereinstimmung zwischen Da-
teinamen und Inhalt der Datei gefordert.

5.2.1 Neuronen- und Komponentendefinition

Die Definition eines Neurons beginnt mit dem Schliisselwort neuron, gefolgt von seinem
Namen. Ein Neuron in NESTML wird anhand seines Namens dateiiibergreifend eindeutig
identifiziert. Abbildung 5.3 zeigt die Definition eines exemplarischen Neurons mit dem
Namen iaf_neuron.

package example NESTML |

1
2
3 # example neuron definition
4 neuron iaf neuron:

5

6

end

Abbildung 5.3: Eine exemplarische Definition des Neurons iaf _neuron in der NESTML-
Syntax.
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Der vollqualifizierte Name des Neurons setzt sich automatisch aus dem Namen der
Datei, dem relativen Pfad der Datei und dem Namen des Neurons bzw. der Komponente
zusammen. Dadurch bleibt es dem Modellierer erspart, manuell die Konsistenz zwischen
Modellen mit deren Ablageort zu sichern. Potenzielle Fehler werden dennoch von den
NESTML-Sprachwerkzeugen erkannt und berichtet.

Wiére das vorliegende Neuron ist in einer Datei examples.nestml gespeichert, wére
der qualifizierte Name des Neurons examples.iaf_neuron. Die Deklaration des Pak-
etnamens (package, vgl. Zeile 1) ist optional und wird, falls ausgelassen, automatisch
anhand des Dateinamens bestimmt und nach dem Parsen der Datei gesetzt.

Die erste Art der Wiederverwendung wird in NESTML durch die Vererbungsbeziehung
auf Modellebene realisiert (vgl. RQ2.1). Syntaktisch wird die Vererbung zwischen zwei
Neuronen durch das Schliisselwort extends realisiert, das vom Namen des zu erweitern-
den Neurons gefolgt wird. Durch die Erweiterung eines Neurons werden alle Elemente
des vererbenden Neurons in das erbende Neuron integriert. Attribute, Gleichungen und
shape-Funktionen kénnen anschliefend im erbenden Neuron iiberschieben werden.

Abbildung 5.4 demonstriert diese Art der Erweiterung. Dabei wird ein Basisneuron
iaf_base mit Zustandsvariablen fiir die Modellierung des Membranpotenzials und der
Schranke durch das Neuron iaf_neuron erweitert. Das Neuron iaf_neuron erhilt da-
durch Zugriff auf die im Neuron base_iaf definierten Variablen V_m, theta und V_reset.

. . /\ X N
1 neuron iaf neuron extends base iaf: 1 neuron base iaf:
2 update: 2 state:
3 if V.m >= theta: 3 V.m mV = -60mV
4 V. m = V reset 4 theta mV = -45mV
5 end 5 V_reset mV = -60mV
6 end 6 end
7 end 7

8 end

Abbildung 5.4: Definition eines Neurons iaf_neuron als Erweiterung des Neurons ba-
se_neuron. Dabei stehen die im Neuron base_iaf definierten Zustands-
variablen im Neuron iaf_neuron zur Verfiigung.

Der hier vorgestellte Vererbungsmechanismus hat einige Vorteile. Die in der Neuro-
wissenschaft tiblichen Variablennamen mit etablierter Semantik (z.B. V_m fir das Mem-
branpotenzial) kénnen so in einem Basismodell definiert werden um die implizite Kon-
vention explizit festzuhalten. Die Vererbung 16st auch das Problem der Redundanz, das
in Kapitel 1 ausfiihrlich diskutiert wurde. Durch das gezielte Uberschreiben der shape-
Funktionen in Erweiterungsneuronen kénnen die Basisimplementierungen fiir Differen-
zialgleichungen und Dynamik vollstdndig wiederverwendet werden.

Eine andere Art der Wiederverwendung ist durch die Definition von Komponenten
gegeben. NESTML erlaubt es, wiederverwendbare und modulare Teile der Spezifikation
in Form einer Komponente zu definierten (vgl. RQ3.2). Die Definition einer Komponente

79



KaAPITEL 5 NESTML: EINE DOMANENSPEZIFISCHE SPRACHE FUR DIE
SPEZIFIKATION VON PUNKTNEURONEN

beginnt mit dem Schliisselwort component, gefolgt von einem Namen. Im Rumpf einer

Komponente kénnen dieselben Elemente wie im Rumpf eines Neurons verwendet werden.
Abbildung 5.5 (A) zeigt die Definition einer wiederverwendbaren Komponente Ref-

Component. RefComponent kapselt dabei die Logik der Refraktdrphasenberechnung.

(A) (B)

1 component RefComponent: 1 import refractory.RefComponent
2 function is refractory() boolean: 2
3 . 3 neuron iaf neuron:
4 end 4 use RefComponent as refr
5 5 .
6 function decrease () wvoid: 6 update:
7 7 if refr.is refractory():
8 end 8 refr.decrease ()
9 9 .
10 end 10 end
11 end
12 end

Abbildung 5.5: Der Komponentenmechanismus von NESTML. (A) zeigt die Definition
einer wiederverwendbaren Komponente, die die Logik der Refraktarpha-
senberechnung kapselt. (B) zeigt die Verwendung der Komponente aus
(A) im Neuron iaf_neuron.

Um auf Komponenten zuzugreifen, die in anderen Dateien gespeichert sind, werden in
NESTML explizite import-Anweisungen verwendet (vgl. Zeile 1 in Abbildung 5.5 (B)).
Im vorliegenden Beispiel stellt die Schnittstelle von RefComponent zwei Methoden zur
Verfiigung. Nach dem Importieren kann RefComponent mithilfe einer use-Anweisung
im importierenden Neuron als lokale Variable verwendet werden (vgl. Zeile 4 in Ab-
bildung 5.5 (B)). Der lokal nutzbare Name wird nach dem Schliisselwort as definiert.
Beispielsweise werden die Methoden is_refractory() und decrease () auf diese Weise
im update-Block des Neurons iaf_neuron wiederverwendet.

5.2.2 Variablenblocke

Variablen die biologische Eigenschaften eines Neurons modellieren spielen eine wichtige
Rolle bei der Neuronenspezifikation. Im Folgenden werden drei NESTML-Variablenblocke
vorgestellt, die innerhalb eines Neurons unterstiitzt werden. Die prézise Semantik der
Variablen aus den einzelnen Blocken wird in Kapitel 8 eingefiihrt.

State Der Zustandsblock enthilt Variablen, die fiir den zeitlich verdnderlichen Zustand
des Neurons stehen. In der NESTML-Syntax beginnt der Zustandsblock mit dem Schliis-
selwort state, gefolgt von einem Doppelpunkt, und endet mit dem Schliisselwort end.
Innerhalb des Blockes kann eine beliebige Anzahl von Variablen deklariert werden.
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1 state: Requires that v_m value is always above -90mV
2 VmmV = 60mV [[V m >= -90mV]]

3

4 function V_rel mV = V. m -70mV

5 end

Abbildung 5.6: Exemplarischer state-Block bestehend aus zwei Variablen, die das Mem-
branpotenzial und ein zu einer Konstante relatives Membranpotenzial
modellieren.

Ein exemplarischer state-Block wird in Abbildung 5.6 veranschaulicht. Das kanoni-
sche Beispiel fiir eine Zustandsvariable ist die Variable V_m, die das Membranpotenzial
darstellt (vgl. Zeile 2). Der Aufbau einer Deklaration wird in Abschnitt 5.3 genauer
erldutert.

Abgeleitete Variablen sind Variablen, deren Werte sich ausschliefllich aus Werten
anderer Variablen ableiten lassen. In NESTML werden sie mithilfe einer function-
Deklaration modelliert (vgl. V_rel in Zeile 4). Diese Deklaration besteht aus einem
Schliisselwort function, dem Namen, dem Typ und einem definierenden Term. Dabei
muss der Term, mit dem man den Wert der Variable bestimmt, stets angegeben werden.

Schlielich kénnen Invarianten fiir eine Variablendeklaration in doppelten eckigen
Klammern definiert werden. Dabei kann eine Invariante ein beliebiger boolescher Aus-
druck sein. Die genaue Interpretation der Invarianten aus dem state-Block wird in Ka-
pitel 8 gegeben.

Parameters Dieser Block enthilt Variablen, die wihrend einer Simulation konstant
sind und bei der Instanziierung eines Neurons eingestellt werden. Dieser Block beginnt
mit dem Schliisselwort parameters, gefolgt von einem Doppelpunkt, und endet mit
dem Schliisselwort end. Innerhalb des Blockes kann eine beliebige Anzahl von Variablen
deklariert werden.

1 parameters:

2 C m pF = 250pF [[C m > OpF]] # Membrane capacity constant
3 E L mVv = -70mvV # Resting potential
4 end

Abbildung 5.7: Exemplarischer parameters-Block bestehend aus zwei Variablen. Die Va-
riable C_m modelliert die Membrankapazitéit, E_L das Ruhepotenzial des
Neurons.

Beispiele fiir Variablen aus dem parameters-Block sind die Lénge der Refraktérpe-
riode oder die Grofle der Membrankapazitdt. Abbildung 5.7 zeigt exemplarisch einen
parameters-Block. Die Variable C_m in Zeile 3 modelliert die Membrankapazitit, E_L in
Zeile 4 das Ruhepotenzial des Neurons.
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Um zu gewéhrleisten, dass die an das Neuron iibergebenen Werte im vom Modellie-
rer vorgesehenen Bereich sind, kénnen Plausibilitdtspriifungen spezifiziert werden. Die
Plausibilitéitspriifungen werden am Ende der Variablendeklaration in doppelten eckigen
Klammern definiert. Sie werden immer dann gepriift, wenn die Parameter vim Benutzer
des Neuronenmodells verédndert werden. Die genaue Interpretation der Invarianten aus
dem parameters-Block wird in Kapitel 8 gegeben.

Internals Variablen, die keiner der beiden vorher genanten Kategorien zuzuordnen sind,
konnen im internals-Block definiert werden. Typischerweise hingen diese Variablen von
den parameters-Variablen ab und werden einmalig vor jeder Simulation berechnet. In
der NESTML-Syntax beginnt dieser Block mit dem Schliisselwort internals, gefolgt von
einem Doppelpunkt, und endet mit dem Schliisselwort end. Innerhalb des internals-
Blockes kann eine beliebige Anzahl von Variablen deklariert werden.

1 internals:
2 # Number of simulation steps in order to simulate 2 milliseconds

3 ref counts integer = steps (2 ms)

4 end

Abbildung 5.8: Exemplarischer internals-Block, der eine Variablendeklaration enthélt.

Abbildung 5.8 zeigt einen exemplarischen internals-Block, der eine Variable ref -
counts in Zeile 3 enthilt. Die Variable ref_counts modelliert die Anzahl der Schritte,
die in einer zeitdiskreten Simulation notwendig sind, um 2 Millisekunden Realzeit zu
simulieren.

5.2.3 Ein- und ausgehende Ports

Damit Neuronen mit anderen Neuronen kommunizieren kénnen, stellt NESTML unter-
schiedliche Moglichkeiten bereit, um ein- und ausgehende Ports eines Neurons zu spe-
zifizieren. Die eingehenden Ports werden innerhalb eines input-Blockes spezifiziert. Der
eindeutig spezifizierte ausgehende Port wird innerhalb des output-Blockes spezifiziert.

Um Ereignisse von anderen Neuronen oder von der Umgebung zu empfangen, spezifi-
zieren NESTML-Neuronen den input-Block. Dieser Block beginnt mit dem Schliisselwort
input, gefolgt von einem Doppelpunkt, und endet mit dem Schliisselwort end. Innerhalb
dieses Blockes kénnen mehrere benannte eingehende Ports vom Typ spike oder current
definiert werden. Die spike-Ports kénnen zusétzlich als inhibitatory oder excitato-
ry qualifiziert werden, was durch das entsprechende Schliisselwort definiert wird. Diese
Schliisselworter beziehen sich jeweils auf die Selektion der eingehenden Signale entspre-
chend ihrem Gewicht. Falls kein spezifischer Typ bei einem spike-Port angegeben wird,
empfiangt der Port beide Arten von Ereignissen.

Bei der Sperzifikation des input-Blockes stehen dem Modellierer einige Freiheiten zur
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Verfiigung. Abbildung 5.9 listet exemplarisch giiltige Kombinationen der Ports innerhalb
des input-Blockes.

(A)

1 input:

2 spikes <- spike # Receives positive and negative weighted spikes
3

4 currents <- current

5 end

(B)

1 input:

2 spikes in <- spike inhibitory # Receives negative weighted spikes
3 spikes ex <- spike excitatory # Receives positive weighted spikes
4 end

©

1 input:

2 receptor A <- spike # Receptor with the index 1

3 receptor B <- spike # Receptor with the index 2
4 end

D)

1 output: spike # 'current' can be used instead

Abbildung 5.9: Einige exemplarische input-Blocke. (A) Hier wird ein Block mit zwei
Ports definiert. (B) Hier werde zwei spike-Ports, die jeweils unterschied-
lich gewichtete Spikes verarbeiten, definiert. (C) Hier werden mehrere
Ports vom gleichen Typ definiert. (D) Hier wird ein Ausgangsport vom
Typ spike definiert.

Fall (A) zeigt einen Block bestehend aus zwei Ports von unterschiedlichem Typ. Dieser
Fall definiert einen spikes-Port, der sowohl positiv als auch negativ gewichtete Spikes
empfangen kann. Des Weiteren wird ein currents-Port definiert, der Strome, also Er-
eignisse vom Typ current, empfangen kann.

Fall (B) definiert zwei unterschiedlich benannte Ports, die inhibitatory- bzw. exci-
tatory-Ereignisse vom Typ spike verarbeiten.

Fall (C) zeigt, wie mehrere Ports vom selben Typ im Neuron modelliert werden kon-
nen. Hier wird eine Menge von spike-Ports definiert, die sich lediglich durch ihre Namen
unterscheiden. Dabei kénnen alle Ports sowohl inhibitatory- als auch excitatory-
Spikes verarbeiten. Das biologische Aquivalent ist ein Neuron mit mehreren Rezepto-
ren [PL95].

Unzuléssige Kombinationen der Ports im input-Block werden durch Kontextbedin-
gungen gepriift. Beispielsweise wiirde die Konstellation mit genau einem inhibitory-
spike-Port, ohne einen weiteren excitatory-Port als Fehler interpretiert, da in dieser
Konstellation alle excitatory-Ereignisse verloren gehen wiirden, da kein Port im Modell
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diese Spikes verarbeiten konnte.

Damit Neuronen Ereignisse an andere Neuronen oder die Umgebung senden kénnen,
wird der output-Block verwendet. Dieser Block beginnt mit dem Schliisselwort out-
put, gefolgt von einem Doppelpunkt. Anschliefend kann entweder das spike- oder das
current-Schliisselwort spezifiziert werden. Beispielsweise spezifiziert Abbildung 5.9 (D)
einen output-Block vom Typ spike.

5.2.4 Spezifikation von Differenzialgleichungen

Differenzialgleichungen stellen das wesentliche Instrument fiir die Modellierung des Ver-
haltens eines biologischen Neurons dar (vgl. Abschnitt 2.2). Daher bietet NESTML die
Moglichkeit, Differenzialgleichungen in mathematischer Notation innerhalb des Neuro-
nenmodells zu spezifizieren.

Gleichungen werden innerhalb des equations-Blockes spezifiziert. Dieser Block be-
ginnt mit dem Schliisselwort equations, gefolgt von einem Doppelpunkt, und endet mit
dem Schliisselwort end. Der equations-Block kann eine beliebige Anzahl von Gleichun-
gen, shape-Funktionen und function-Variablen enthalten. function-Variablen werden
in diesem Block genutzt, um die Spezifikation einer Differenzialgleichung leserlicher zu
machen. Die genaue Form der einzelnen Differenzialgleichungen wird durch eine dedi-
zierte EquationsDSL definiert, die in die NESTML-Sprache eingebettet wird (vgl. Ab-
schnitt 5.4).

1 equations:
2 shape I a = (e/tau syn) * t * exp(-t/tau syn)

3 function I pA = (I _sum(I a, spikes) + currents)

4 v.m' =-1/Tau * (V.m - E_ L) + 1/Cm * I

5 end

Abbildung 5.10: Ein exemplarischer equations-Block. Die Funktion I_a definiert die
Form der postsynaptischen Antwort, die in der darauffolgenden Glei-
chung zusammen mit einem spike-Port im Aufruf der vordefinierten
Methode conv verkniipft wird.

Abbildung 5.10 demonstriert die Verwendung des equations-Blockes an einem konkre-
ten Beispiel. Das Membranpotenzial wird durch eine state-Variable V_m modelliert. Der
Verlauf des Membranpotenzials wird durch eine Differenzialgleichung beschrieben (vgl.
Zeile 4). Diese Gleichung verwebdet eine shape-Funktion I_a, die die postsynaptische
Antwort des Neurons beschreibt und eine abgeleitete Variable in Zeile 3. Die Variable
I biindelt alle ankommenden Stréme. Somit kann die eigentliche Differenzialgleichung
kompakt definiert werden.
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5.2.5 Spezifikation des Verhaltens

Das Laufzeitverhalten der Neuronen wird innerhalb des update-Blockes definiert. Die-
ser Block beginnt mit dem Schliisselwort update, gefolgt von einem Doppelpunkt, und
endet mit dem Schliisselwort end. Fiir die Implementierung des Blockrumpfes kann
der Modellierer auf die imperative eingebettete Sprache ProceduralDSL zuriickgreifen
(vgl. Abschnitt 5.3). Die ProceduralDSL verfiigt iiber die géngigen Kontrollstrukturen
einer imperativen Programmiersprache. Um die im Gleichungsblock definierten Varia-
blen schrittweise zu losen, steht die integrate_odes-Funktion zur Verfiigung. Jedes
Neuronenmodell muss genau einen update-Block besitzen. Dies wird durch eine Kon-
textbedingung gepriift (vgl. Abschnitt 7.3).

Eine exemplarische Implementierung der unterschwelligen Dynamik (vgl. Kapitel 2)
zeigt Abbildung 5.11. In diesem Beispiel wird die Differenzialgleichung so lange schritt-
weise gelost, bis der Wert des Membranpotenzials eine vordefinierte Schranke iiberschrei-
tet. Danach feuert das Neuron einen Spike und der Wert des Membranpotenzials wird
auf den vordefinierten Wert V_reset zuriickgesetzt.

1 update:
2 integrate odes ()

3 if V. m >= Theta: # threshold crossing

4 V. m = V reset

5 emit spike ()

6 end

7 end

Abbildung 5.11: Beispiel fiir eine unterschwellige Neuronendynamik ohne Refraktiarpha-
se.

Wiederverwendbare Funktionalitdt kann in NESTML in Methoden gekapselt sein. Me-
thoden kénnen entweder direkt im definierenden Neuron oder aus einer Komponente re-
ferenziert werden. Der Mechanismus fiir den Aufruf einer Methode aus einer Komponente
ist in Abbildung 5.5 erldutert. Eine Methode in einem Neuron bzw. einer Komponente
beginnt mit dem Schliisselwort function und endet mit dem Schliisselwort end. Nach
dem Schliisselwort function folgt der Methodenname, gefolgt von einer eventuell leeren
Liste der Funktionsparameter. Die Parameterliste wird innerhalb von runden Klammern
definiert. Jeder Parameter besteht aus einem Namen und seinem Typ. Die Parameter
werden durch Kommas voneinander getrennt. Danach kommt ein optionaler Riickgabe-
wert, gefolgt von einem Doppelpunkt. In der Implementierung der Methode steht dem
Modellierer die eingebettete ProceduralDSL zur Verfiigung (vgl. Abschnitt 5.3), um die
Logik der Methode umzusetzen.

Abbildung 5.12 zeigt zwei exemplarische Methodendefinitionen, die jeweils fiir das
Setzen und Auslesen einer Zustandsvariablen verantwortlich sind. Die set_V_m-Methode
weist der Zustandsvariable V_m den Wert des Funktionsparameters V_value zu. Da der
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1 function set V m(V value mV):
2 Vm=Vvalue - E L # E L is a variable from the parameters block
3 end

4

5 function get V m() mV:

6 return V.m + E_L

7 end

8

9 update:

10 .

11 V_m old mV = get V m()

12 c.

13 end

Abbildung 5.12: Eine exemplarische Definition der get_V_m()- und set_V_m-Methoden.

Riickgabetyp der Methode ausgelassen ist, wird als Typ void angenommenen, der die
iibliche Semantik hat. Die get_V_m-Methode berechnet den Wert der Zustandsvariable
V_m relativ zur Variable E_L und gibt diesen anschliefend zuriick. die Benutzung der
get_V_m-Methode im update-Block ist im Beispiel in Zeile 11 zu sehen.

Sowohl der update-Block als auch der function-Block benutzen die ProceduralDSL,
um die Implementierung des Blockes zu spezifizieren. Der folgende Abschnitt erldutert
die Funktionsweise der ProceduralDSL.

5.3 ProceduralDSL: Aktionssprache fiir die imperative
Spezifikation

Im Rahmen dieser Arbeit wird eine Aktionssprache [KT08] entwickelt, die in Neuro-
nen benutzt werden kann, um das Verhalten von Funktionen und Neuronendynamiken
zu spezifizieren. Vor allem fiir die Spezifikation der Neuronendynamik existieren einige
Modellierungsansitze, die Variationen eines Mealy-Automaten [Bra84, HUM02, Rum96]
darstellen. Auch wenn der Automatenansatz sich in der Theorie fiir die Spezifikation der
Dynamik gut eignet, verwendet NESTML eine textuelle Aktionssprache [GKRT07], die
den gleichen Funktionsumfang bietet.

Ein Problem des Mealy-Ansatzes ist, dass Neuronenentwickler sich einerseits mit der
formalen Theorie der Mealy-Automaten in der Regel nicht gut auskennen und ander-
seits das Erstellen eines solchen Automaten ohne ein passendes grafisches Werkzeug
schwierig ist. Dennoch bietet NESTML die Moglichkeit, mithilfe der Spracherweiterung
spéter eine Automatenspezifikation zu integrieren. Dafiir miisste eine entsprechende Au-
tomatengrammatik [RRW14, Worl6, RRW16] in die NESTML-Grammatik eingebettet
werden.

Da die deklarativen Elemente von NESTML aufgrund ihres Fokus auf das Losen ei-
nes bestimmten Problems, nicht immer ausreichen um die vielféltigen Anforderungen an
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die Spezifizierung des Neuronenverhaltens zu erfiillen, stellt NESTML mit der Procedu-
ralDSL eine plattformunabhéngige prozedurale imperative Sprache zur Verfiigung. Die
Plattformunabhéngigkeit der ProceduralDSL wird dadurch gewihrleistet, dass sie nur
modellierte Elemente referenzieren darf. Die Ubersetzung der ProceduralDSL in lauffi-
higen Code findet durch einen Generator statt. Dieser Ansatz wird in der Literatur als
ActionLanguage bezeichnet [GHK™15a, GHK15b, KTO08].

Der Generator entkoppelt das modellierte System und die Laufzeitumgebung, in der
die Simulation der Neuronen stattfindet, vom Neuronenmodell.

Eine Aktionssprache hat im Vergleich zur direkten Einbettung einer GPL in die Mo-
dellspezifikation [Sch12] viele Vorteile. Der wesentliche Vorteil besteht darin, dass das
modellierte System vom Systemcode getrennt wird. Insgesamt hat die Trennung folgende
Vorteile:

Konsistente Modellierung: Aufgrund des Bezugs der ProceduralDSL auf die Modellele-
mente, die in einem Neuron- oder Komponentenmodell definiert sind, entstehen
konsistente Modelle, die bereits zur Modellierungszeit semantisch gepriift werden
konnen. In der ProceduralDSL kénnen keine Ausdriicke verwendet werden, die die
Kenntnis des Generators oder Zielsystems voraussetzen und sich nicht aus Model-
len alleine ableiten lassen.

Modulare Weiterentwicklung: Aufgrund dieser Trennung kann ein Generator oder das
Zielsystem ausgetauscht werden, ohne dass Anderungen an bestehenden Model-
len vorgenommen werden miissen [LRSS]. Die Modelle sind dadurch modular und
simulatoragnostisch definiert.

Trennung der Zusténdigkeiten [HLI5]: Der Modellierer benétigt keine Kenntnisse iiber
das Zielsystem oder die Details des Generators. Somit ist die Entwicklung des
Generators und der Neuronenmodelle getrennt und parallel moglich.

Zielplattformunabhéingiger Code: Da sich der modellierte Code im Neuronenmodell
nicht auf das Zielsystem bezieht und somit keine plattformspezifischen Aspekte
des Zielsystemcodegenerators voraussetzt, konnen gleichzeitig verschiedene Ziel-
systeme iiber unterschiedliche Codegeneratoren adressiert werden.

Auch in der konkreten Syntax der ProceduralDSL setzt sich die Anlehnung an die
Programmiersprache Python fort. Ein wesentlicher Aspekt ist die Art und Weise wie
Anweisungen im Programmtext voneinander getrennt werden. Im Unterschied zu Pro-
grammiersprachen wie C und Java, in denen Anweisungen durch Semikolons getrennt
werden, werden in NESTML und insbesondere in der ProceduralDSL stattdessen Zeile-
numbriiche benutzt. Auch bei der Umsetzung der bedingten Anweisungen und Schleifen
wurde der Python-Stil eingehalten. Beispielsweise miissen Bedingungen nicht innerhalb
von runden Klammern definiert werden.
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Generell besteht ein ProceduralDSL-Programm aus einfachen und zusammengesetzten
Anweisungen. Zu den einfachen Anweisungen zéhlen Deklarationen, Funktionsaufrufe
und Zuweisungen. Die zusammengesetzten Anweisungen sind entweder Verzweigungen
oder Schleifen. Dabei diirfen die zusammengesetzten Anweisungen beliebige Anweisun-
gen enthalten.

Alle Variablen in der ProceduralDSL miissen vor der ersten Benutzung deklariert sein.
Variablen sind generell stark typisiert. In Anlehnung an die physikalische Notation bzw.
die UML [RJB04] besteht die Deklaration aus einer nicht leeren Liste von Variablen-
namen gefolgt von deren Typ. Als Datentypen werden in der ProceduralDSL primitive
Datentypen (z.B. integer oder real) und die fiir die Anwendungsdomiine notwendi-
gen physikalischen Einheiten unterstiitzt (z.B. mV, vgl. Abschnitt 5.6 fiir eine detaillierte
Vorstellung der physikalischen Typen). Nach einem optionalen Gleichheitszeichen kann
anschlieflend ein optionaler Initialisierungsausdruck folgen.

Multiple variables in [‘ thiofml initial value, ‘

the same declaration if omitted the default values is used
la, b, c \fﬂ- = -0.42

i x real D:?a-gtpialue for the real type is O

4 - Yp

5f mVe = -20mv o~ STUnit literal

Datatypes and SI physical types are supported: integer, real, string, ms, mV, ...

Abbildung 5.13: Unterschiedliche Arten von in NESTML unterstiitzten Variablendekla-
rationen.

Abbildung 5.13 zeigt unterschiedliche Varianten von Variablendeklarationen. In Zeile
1 werden drei Variablen a, b, und ¢ vom Typ real deklariert und mit demselben skalaren
Wert initialisiert. Zeile 3 demonstriert die Moglichkeit, einen wohldefinierten Standard-
wert fiir die Initialisierung einer Variablen zu benutzen. Wenn der Initialisierungsaus-
druck fiir eine Variable vom Datentyp real ausgelassen wird, wird die Standardbelegung
verwendet (in diesem Fall der Wert 0). SchlieBlich zeigt Zeile 5 die Verwendung von phy-
sikalischen Datentypen, die in Abschnitt 5.6 ndher beschrieben werden. Im vorliegenden
Fall wird eine Variable £ vom Typ Millivolt deklariert. Um die Variable £ korrekt zu
initialisieren, muss ein Einheitenliteral verwendet werden (im Beispiel -20mV). Einhei-
tenliterale sind im Prinzip numerische Gleitkommazahlen mit einem Postfix, in dem die
Einheit spezifiziert wird. Die Details iiber Einheitendatentypen und Einheitenliteralen
werden in Abschnitt 5.6 erldutert.

void: Dieser Datentyp dient als Riickgabewert fiir Methoden, die keinen Wert zuriick-

geben. Der Typ entspricht dem Typ void aus Programmiersprachen wie Java bzw.
C. void darf nicht als Typ einer Deklaration benutzt werden.
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boolean: Dieser Datentyp entspricht dem binédren Typ, der aus der booleschen Logik
bekannt ist [Boo48]. Die moglichen und ausschlieBlichen Auspréigungen sind: true
und false. Die Standardbelegung ist der Wert false.

string: Dieser Datentyp modelliert den Zeichenkettendatentyp (engl: string). Beispiele
fiir seine Auspragungen sind "Bob", "Hello World" und "". Die Standardbelegung
ist der leere String: "".

integer: Dieser Datentyp modelliert Ganzzahlen. Exemplarische Ausprigungen sind 0,
1 und 42. Der Standardwert ist O.

real: Dieser Datentyp modelliert die rationalen Zahlen mit doppelter Genauigkeit (engl:
double precision). Exemplarische Ausprigungen sind 0.0 oder 3. 14. Der Standard-
wert ist 0.0.

SI Einheiten (z.B. mV, nS, [nS/s]: Diese kénnen mit einfachen arithmetischen Ope-
rationen zu komplexen Einheiten kombiniert werden, z.B. [nS/s]. Mogliche Aus-
prigungen sind: 1.0mV, 20[nS], 5.0[nS/s]. Der Standardwert ist 0 [type]. Die
Details werden in Abschnitt 5.6 erlautert.

Die Liste oben fasst die verfiighbaren Datentypen zusammen und erlédutern deren Wer-
tebereich. Zeichenketten (engl: strings) werden mit dem Datentyp string definiert. Mit
dem Typ boolean kénnen Variablen modelliert werden, die die zwei Wahrheitswerte
true und false annehmen konnen. Es werden zwei numerische Datentypen unterstiitzt.
Ganzzahlige Variablen werden mit dem Datentyp integer, Gleitkommazahlen mit dem
Datentyp real modelliert. Physikalische Einheiten kénnen in einer doménennahen No-
tation spezifiziert werden.

Die Procedural DSL unterstiitzt eine implizite Konvertierung einer Variablen vom Typ
integer zu einer Variablen vom Typ real. Als Fehler werden Konvertierungen von
Variablen vom Typ real und Variablen von beliebigem Einheitentyp behandelt. Auch
Konvertierungen anderer Typen sind in NESTML generell verboten.

Eine Zuweisung in der ProceduralDSL besteht aus einer linken Seite, auf der eine
Variable referenziert wird, einem Zuweisungsoperator (=) und einem Term auf der rechten
Seite. Abbildung 5.14 fasst die unterstiitzen Arten von Zuweisungen zusammen. Neben
der einfachen Zuweisung, die den Wert der rechten Seite der Variable auf der linken Seite
direkt zuweist, bietet die ProceduralDSL auch zusammengesetzte Zuweisungen.

Eine zusammengesetzte Zuweisung a $0P= b ist eine Abkiirzung fiir einen Ausdruck
der Form a = a $0P b, wobei $0P einer der folgenden Operatoren sein kann: +, -, *, /.
So ist die Zuweisung a *= b zum Beispiel dquivalent zu folgendem Term: a = a * b.

Bei allen Zuweisungen muss der Typ der linken Seite kompatibel mit dem Typ der
rechten Seite sein. Da es keine implizite Typkonvertierung gibt, miissen diese Typen
entweder iibereinstimmen oder es muss eine Zuweisung eine Wertes vom Typ integer
zu einer Variable vom Typ double sein.
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1 a, b integer 1 a, b integer 1 a, b integer ProceduralDSL

2 2 2
3a=>b 3a +=Db 3a-=>b
1 a, b integer la, b real = 1.0

2

3a *=b 3a/=b

Abbildung 5.14: Exemplarische Beispiele fiir einfache und zusammengesetzte Zuweisun-
gen.

Die letzte Art der einfachen ProceduralDSL-Anweisungen sind Funktionsaufrufe. Ein
Funktionsaufruf besteht aus dem Namen der aufzurufenden Funktion und einer Liste
der Argumente. Diese werden innerhalb runder Klammern spezifiziert. Dabei muss je-
der Term, der als Argument iibergeben wird, ein valider ExpressionsDSL-Ausdruck sein
(vgl. Abschnitt 5.5). Beispielsweise wiirde der Funktionsaufruf pow(2.,2.) die Potenz-
funktion fiir die vorliegenden Argumente berechnen. Auch bei einem Funktionsaufruf
miissen die Typen der Argumente mit den erwarteten Typen der Funktionsparameter
kompatibel sein.

Die PreceduralDSL stellt einige vordefinierte Funktionen bereit. Neben den reinen ma-
thematischen Funktionen (z.B. log, pow) und Logging-Funktionen (z.B. info, warning)
bietet die ProceduralDSL einige fiir NESTML spezialisierten Funktionen an. Auch die in
einem Neuron bzw. einer Komponente definierten Methoden kénnen fiir einen Funkti-
onsaufruf verwendet werden. Nachfolgend werden alle in der PrceduralDSL verfiigbaren
Funktionen erldutert.

conv: Diese Funktion kann ausschliellich in Differenzialgleichungen verwendet werden,
um einen Port, der im input-Block definiert ist, mit einer shape-Funktion zu falten.

emit_spike: Der Aufruf dieser Methode modelliert das Feuern eines Spikes. Diese
Funktion kann ausschlieBlich im update-Block verwendet werden.

integrate_odes: Mithilfe dieser Funktion werden alle Differenzialgleichungen aus dem
equations-Block einen Simulationsschritt propagiert. Diese Funktion kann aus-
schlieflich im update-Block verwendet werden.

resolution: Mit dem Aufruf dieser Funktion wird die aktuelle Auflésung der Simula-
tion als Wert in ms bestimmt. Das Zeitmodell der Simulation ist in Abschnitt 8.1
diskutiert. Die Funktion darf im internals- oder update-Block benutzt werden.

steps: Mithilfe dieser Funktion wird eine Zeit in Millisekunden in die Anzahl von
Simulationsschritten umgerechnet. Die Anzahl der Schritte entspricht der Dauer
des Zeitintervalls unter der vorliegenden Simulationsauflosung. Das Zeitmodell der
Simulation ist in Abschnitt 8.1 diskutiert.
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delta: Eine spezielle shape-Funktion, die eine Deltaverteilung [Pet12] modelliert. Die
Funktion darf ausschliefSlich als Argument der conv-Methode verwendet werden.

Dariiber hinaus unterstiitzt die ProceduralDSL Logging mithilfe der Methoden info
und warning und das Ziehen von Zufallszahlen vom Typ real und integer durch die
Methoden random und randomInt.

Die ProceduralDSL unterstiitzt unterschiedliche Anweisungen fiir die bedingte Aus-
fiihrung bzw. Verzweigung. Abbildung 5.15 fasst diese Moglichkeiten zusammen.

() (8)

1if 2 < 3: 1if 2 < 3:

2 [statements]+ 2 [statements]+

3 end 3 else:
4 [statements]+
5 end

(©) (D)

1if 2 < 3: 1if 1 < 4:

2 [statements]+ 2 if 2 < 3:

3 elif 4>6: 3 [statements]+

4 [statements]+ 4 end

5 else: 5 end

6 [statements]+

7 end

Abbildung 5.15: Zusammenfassung der sprachlichen Konstrukte fiir bedingte Ausfiih-
rung von Anweisungen.

Fall (A) demonstriert den einfachsten Fall, in dem die Ausfithrung von Anweisungen
von einer einzelnen Bedingung abhéingt. Syntaktisch beginnt die bedingte Anweisung mit
einem Schliisselwort if, gefolgt von einem booleschen Ausdruck. Anschliefend wird ein
Doppelpunkt (:) gesetzt. Der Rumpf der if-Verzweigung kann beliebige Anweisungen
enthalten. Das Ende der Verzweigung wird durch das Schliisselwort end gekennzeichnet.

Fall (B) demonstriert ein Beispiel der Verzweigung mit einem zusétzlichen else-Zweig.
Der else-Zweig ist immer der letzte Zweig einer Verzweigung, falls er vorkommt. Er wird
ausgefiithrt, wenn keine der vorherigen Bedingungen efiillt ist. Syntaktisch wird dieser
Zweig mit einem Schliisselwort else, gefolgt von einem Doppelpunkt eingeleitet. Der
Rumpf des else-Zweigs kann beliebige Anweisungen enthalten.

Fall (C) demonstriert die Verwendung des elseif-Zweigs. Der elseif-Zweig ermog-
licht es, mehrere Bedingungen in einem Anweisungsblock zu definieren. Syntaktisch
gleicht dieser Block dem einfachen if-Zweig. Der Rumpf des elseif-Zweigs kann belie-
bige Anweisungen enthalten.

if-Anweisungen konnen beliebig tief geschachtelt werden. Fall (D) zeigt eine exempla-
rische zweifache Schachtelung einer if-Anweisung. Dabei wird die Moglichkeit genutzt,
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dass der Rumpf der if-Anweisung sowohl einfache als auch zusammengesetzte Anwei-
sungen enthalten darf.

Die letzte Art der zusammengesetzten Anweisungen sind Schleifen. Um eine sich wie-
derholende Folge von Anweisungen in der ProceduralDSL auszudriicken, kénnen zwei
Arten von Schleifenkonstrukten verwendet werden. Zum einen steht eine universelle whi-
le-Schleife zur Verfiigung. Syntaktisch beginnt die while-Schleife mit einem Schliissel-
wort while, gefolgt von einer booleschen Bedingung. Am Ende der Bedingung wird ein
Doppelpunkt (:) gesetzt. Das Ende der while-Schleife wird durch das Schliisselwort end
gekennzeichnet. Der Rumpf der while-Schleife kann beliebige Anweisungen enthalten.

Eine stets terminierende while-Schleife zu erstellen, ist im Allgemeinen eine fehler-
anfillige Aufgabe, da sich der Benutzer selbst um deren Terminierung kiimmern muss.
Daher bietet die ProceduralDSL eine for-Schleife mit einer expliziten Zéhlervariablen an.
Diese Art der Schleife erlaubt es, iiber eine endliche Menge von Zahlen zu iterieren. Die
Menge wird dabei durch Angabe der unteren bzw. oberen Grenze und der Schrittweite
definiert. Dadurch wird gewéhrleistet, dass die Iteration stets terminiert.

" ®

1 a integer 1 a integer

2 2

3 while a <= 10: 3for ainl ... 5:
4 [statements]+ 4 [statements]+
5 end 5 end

©) (D)

1 a integer 1 a integer

2 2

3for ainl ... 5 step 2: 3 for a in 0.1 ... 0.5 step 0.1:
4 [statements]+ 4 [statements]+
5 end 5 end

Abbildung 5.16: Unterschiedliche Arten von Schleifen in der ProceduralDSL. Fall (A)
zeigt eine while-Schleife, Fille (B), (C) und (D) unterschiedliche Arten
von for-Schleifen.

Abbildung 5.16 gibt einen Uberblick iiber die verfiigbaren Schleifenkonstrukte. Fall
(A) zeigt ein einfaches Beispiel einer while-Schleife. Bei dieser while-Schleife miisste der
Modellierer sich im Rumpf selbststdndig darum kiimmern, dass die Schleife terminiert.

Die anderen Fille demonstrieren unterschiedliche Arten von for-Schleifen. In Fall
(B) iteriert die Variable a iiber eine Menge aus Ganzzahlen ({1, 2, 3, 4, 5}). Die
Schrittweite kann beim Generieren des Zahlenbereichs mithilfe des Schliisselworts step
kontrolliert werden. Im Beispiel (C) wird die Schrittweite auf den Wert 2 gesetzt. Das
hat zur Folge, dass die Variable a iiber die Menge {1, 3, 5} iteriert. Schliellich kénnen
Intervalle aus rationalen Zahlen fiir die Iteration verwendet werden. Fall (D) zeigt das
Intervall bestehend aus den rationalen Zahlen {0.1, 0.2, 0.3, 0.4, 0.5}.
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5.4 EquationsDSL fiir die Beschreibung der
Differenzialgleichungen

Differenzialgleichungen spielen eine wichtige Rolle bei der Spezifikation von Neuronen-
modellen (vgl. Kapitel 2). NESTML unterstiitzt deshalb die Spezifikation von Differen-
zialgleichungen in einer anwenderfreundlichen Notation. Dabei werden Differenzialglei-
chungen durch die in der Mathematik {ibliche Apostrophennotation definiert (z.B. V'),
die im Kontext von NESTML einer Ableitung nach Zeit (z.B. %—‘t/) entspricht.

@

1 equations:

2 shape I a = (e/tau) * t * exp(-t/tau)

3 V. m' = -V m/Tau + conv(I a, spikes)/C m

4 end

(B) ) T

1 state: Defines explicit initial values for
2 I_a [pA] = OpA } \id‘}de"

3 I a' [pA/ms] = (e * 1pA) / tau syn

4 end

5

6 equations:

7 I a'' =-g1I'/ tau

9 I a'"=1Ia"'"-1a/tau

10 v.m' = -V m/Tau + conv(I a, spikes)/C m

11 end

(©)

1 equations:

2 shape I a = (e/tau) * t * exp(-1/tau*t) Factorsoutacomplex term
3 I syn pA = conv (I a, spikes)

4 Vm' = -V m/Tau + I syn/C m

5 end

Abbildung 5.17: Verschiedene Modellierungselemente im equations-Block. (A) zeigt ei-
ne shape-basierte Notation fiir die Definition der Faltung der post-
synaptischen Strome (B) zeigt eine zu (A) dquivalente Darstellung als
Gleichungssystem mit Anfangswerten (C) zeigt die Definition eines Syn-
onyms fiir die klarere Definition von Differenzialgleichung.

Abbildung 5.17 zeigt drei wesentliche Elemente dieser Sprache:

Gleichungen: Differenzialgleichungen werden syntaktisch durch eine Referenz zu einer
Zustandsvariablen und einem Postfix, bestehend aus einer nicht leeren Liste aus ’-
Symbolen deklariert. Die Anzahl von ’-Symbolen gibt die Ordnung der jeweiligen
Differenzialgleichung an.

Shapes: shape-Funktionen sind explizite Funktionen, die in Abhéngigkeit der Zeitva-
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riable t, den Verlauf der postsynaptischen Stréme beschreiben. Nach der Definiti-
on der analytischen Darstellung konnen shape-Funktionen ausschliefllich in einem
conv-Aufruf verwendet werden (vgl. die Zeilen 2 und 3 in Abbildung 5.17 (4)).

Funktionen: Da Gleichungsdefinitionen im Allgemeinen komplex und uniibersichtlich
werden konnen, erlaubt die EquationsDSL Teile der Gleichung in separierte be-
nannte Ausdriicke auszulagern (vgl. Iy, in Abbildung 5.17 (C)).

Fall (B) in Abbildung 5.17 weist eine Besonderheit auf. Im Unterschied zu Fall (A)
miissen die Anfangswerte fiir jede Differenzialgleichung explizit angeben werden (vgl.
Zeile 2 und 3). Dabei miissen stets alle Anfangswerte angegeben werden, da die Spezifi-
kation der Differenzialgleichungen sonst nicht eindeutig wére.

5.5 Ausdruckssprache ExpressionsDSL

In der vorliegenden Arbeit spielt die Kompatibilitit der EzpressinsDSL zu Python-
Ausdriicken eine wichtige Rolle. Neben der besseren Vertrautheit fiir Python-affine Mo-
dellierer hat dies den Vorteil, dass diese Ausdriicke direkt in validen Python-Code iiber-
fithrt werden konnen. Die Kompatibilitdt zu Python erlaubt eine nahtlose Integration
mit generierten Python-Scripten, die zum Loésen der im Modell definierten Differenzi-
algleichungen verwendet werden. Die Verwendung von Python zur Modellanalyse ist
in Unterabschnitt 8.1.6 diskutiert.

Die ExpressionsDSL kann auf eine rekursive Weise spezifiziert werden. Dabei sind die
folgenden, als Terme bezeichneten Ausdriicke valide ExpressionsDSL-Modelle:

Variablen: Damit sind alle Variablen gemeint, die anhand ihrer Namen referenziert
werden konnen.

Funktionsaufrufe: Das sind Referenzen zu den vordefinierten Funktionen (z.B. log)
oder Funktionen, die innerhalb der Komponenten bzw. Neuronen definiert sind.

Boolesche Literale: true, false.
Numerische Literale: 1, 20.0, 5.0.
Physikalische Literale: 1.0mV, 20nS 5.0[nS/s].

Unendlichkeit-Symbol: Das Symbol inf représentiert positive Unendlichkeit. Mit
dem Symbol -inf wird negative Unendlichkeit dargestellt.

String-Literale: Alle Stringliterale wie zum Beispiel "Bob" und "".
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Operator

Beschreibung

Beispiel

0O

Klammerausdriicke

(a)

* %

Potenzierungsausdriicke, d.h. baseP°e",
wobei base und power beides vali-
de Ausdriicke sind. Dieser Operator
ist rechtsassoziativ, d.h ax*b*xc <>
(ax* (b*x*xc))

a ** b

Unéres Plus, unédres Minus und bitweise
Negation

-a, -b ~c

Multiplikations-, Divisions- und Modu-
looperation

a*xb,a¥%b

Additions- und Subtraktionsoperation

a+ba-»>b

Bit-Shift nach links und rechts. Der
rechte Operand des Operators bestimmt
die Anzahl der zu verschieben Bits

a<<mna>nmn

Bitweise-Operationen: bitweises UND,
bitweises ODER und bitweises XOR

a&b, a”b

Relationsoperationen wie bspw. kleiner,
grofler, gleich oder ungleich.

a<=b,al=b

Logische Konjunktion, logische Disjunk-
tion und logische Negation

not a,a or b

Der ternire logische Operator, der ab-
héngig von der Bedingung entweder das
erste oder zweite Argument des Opera-
tors zuriickgibt

c?a:b

Tabelle 5.1: Zusammenfassung der verfiigharen Operatoren, um neue EzpressionsDSL-
Ausdriicke aus anderen validen FExpressionsDSL Ausdriicken zu bilden.

Vordefinierte Operatoren werden verwendet, um neue Ausdriicke zu erstellen. Zwei be-

liebige valide Ausdriicke a und b, ein boolescher Ausdruck ¢ und ein integer-Ausdruck n
konnen mithilfe der vordefinierten Operationen (vgl. Tabelle 5.1), zu validen Ausdriicken
verkniipft werden.

5.6 UnitsDSL: Sprache fiir der physikalischen Einheiten

Das International System of Units (SI) [Tay95] ist ein international festgelegtes Einhei-
tensystem. Unter die SI-Einheiten fallen die meisten physikalischen bzw. naturwissen-
schaftlichen Einheiten [GMWO06]. Um das System moglichst flexibel und einheitlich zu
gestalten, definiert das SI-System Basiseinheiten und abgeleitete Einheiten. Die Basisein-
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heiten werden als atomar angesehen. Die abgeleiteten Einheiten werden in Abhéngigkeit
von Basiseinheiten definiert. Tabelle 5.2 fasst die sieben Basiseinheiten zusammen.

Quantitat Symbol | SI Name | UnitsDSL Name
Lénge L Meter m
Masse M Kilogramm kg
Zeit T Sekunde S
Elektrischer Strom I Ampere A
Temperatur ] Kelvin K
Menge einer Substanz N Mol mol
Helligkeitsintensitét J Candela cd

Tabelle 5.2: Spezifikation der sieben festgelegten SI-Basiseinheiten [Tay95].

Alle Einheiten im SI-System konnen um einen multiplikativen Faktor erweitert werden.
Dabei wird ein festgelegtes Préafix dem SI-Einheitennamen hinzugefiigt. Tabelle 5.3 fasst
alle zuléssigen Priifixe zusammen.

Faktor | SI Name | UnitsDSL Prifix | Faktor | SI Name | UnitsDSL Prifix
1071 deci d 10! deca da
1072 centi c 10° hecto h
1073 milli m 103 kilo k
1076 micro I 100 mega M
1077 nano n 107 giga G
10712 pico p 10%? tera T
10°P femto f 101 peta P
10-18 atto a 1018 exa E
102! zepto 7 102! zetta 7
10~ yocto y 107 yotta Y

Tabelle 5.3: Eine Zusammenfassung der festgelegten multiplikativen Faktoren [Tay95].

Im SI-System werden alle zusétzlichen Einheiten als Kombination der Basiseinheiten
definiert. Dies geschieht auf folgende Weise: Jede der sieben Einheiten wird ein rationaler
Koeffizient zugeordnet. Zusammen mit der Magnitude entsteht eine achtstellige Signatur,
die eine beliebige Einheit beschreiben kann. Diese Signatur kann als Formel nach dem
folgenden Schema aufgefasst werden:

Q=10"x L% x M? x T7 x I’ x ©° x N¢ x J"

Diese Signatur wird hier exemplarisch verwendet, um die Einheit Millifarad darzustel-
len:
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mF =107 xm ™2 x kg~! x s* x A% x K° x mol® x ¢d’

Auch in der UnitsDSL werden die Einheiten in zwei Kategorien eingeteilt: Die erste Ka-
tegorie besteht aus einfachen Basiseinheiten, die anhand des Namens und eines Préfixes
referenziert werden. Um abgeleitete Einheiten zu definieren, kénnen die Basiseinheiten
zu zusammengesetzten Einheiten verkniipft werden.

Alle einfachen Basiseinheiten sind valide Einheiten. Zwei valide Einheitenausdriicke a,

b und eine Ganzzahl n konnen dann mit folgenden Operatoren neue Einheitenausdriicke
bilden:

ax*n (Die Potenzfunktion): Da in Neuronenmodelle viele Einheiten der Form a**-1
vorkommen, kann diese Notation durch Ausdriicke der Form 1/a ersetzt werden.
Das Exponentialargument kann nur eine ganzzahlige Zahl sein.

axb, a/b: Multiplikations- und Divisions-Operationen.

(a): Klammerung, z.B. (1/b)*x-2

Nach der initialen Analyse der bereits existierenden Neuronenmodelle wurden einige
abgeleitete Einheiten identifiziert, die immer wiederkehren. Fiir diese Einheiten wurden
einfache Einheitensymbole definiert, so dass diese mit ihren Namen direkt verwendet
werden konnen. Tabelle 5.4 fasst diese neuen Symbole zusammen.

Bq| C | F Gy
Hz | J N | Ohm
Pa| S| Sv | TH
V | W | Wb | kat

Tabelle 5.4: Zusammenfassung der abgeleiteten physikalischen Einheiten, die in der
NESTML-Notation unter einfachen Namen zur Verfiigung stehen.

Statt der Entwicklung eines neuen Einheitensystems, wire auch eine Integration bzw.
Erweiterung eines bereits existierten Ansatzes denkbar. Abschliefend werden hier exem-
plarisch zwei solcher Systeme diskutiert:

Modelica [Fril0] ist eine Modellierungssprache mit einem starken Fokus auf die Mo-
dellierung von Differenzialgleichungen. Diese kann zur Modellierung verschiedener
mechanischer, elektrischer oder physikalischer Prozesse verwendet werden. Teil der
Modellierungssprache ist auch ein System fiir physikalische Einheiten. Dennoch
sieht die Ausfithrungsumgebung von Modelica keine Ankniipfungspunkte vor, mit
denen eine Integration mit der restlichen NESTML Infrastruktur realisierbar wire.
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SymPy [MSPT16]: Es wiire moglich das Einheitensystem des SymPy-Frameworks zu
adoptieren, da NESTML dieses Framework bereits fiir die Analyse von Gleichun-
gen wihrend der Codegenerierung verwendet (vgl. Unterabschnitt 8.1.6). Diese
Alternative wurde jedoch aus zwei Griinden verworfen: Zum einen wire NESTML
dann an die syntaktische Form der Einheiten in SymPy angewiesen, zum anderen
ist eine nahtlose Integration ai die restlichen Abldufe der Sprachverarbeitungsin-
frastruktur von NESTML nicht méglich, da dieses Analyse- und Sprachmodul als
externes Modul keine passenden Ankniipfungspunkte vorsieht.

5.7 Zusammenfassung

Dieses Kapitel hat die NESTML-Syntax vorgestellt. Dabei wurde der sprachliche Aufbau
von NESTML erkldrt und die beteiligten Subsprachen mit ihren Modellierungselemen-
ten ausfithrlich und vollstdndig erldutert. Nachfolgend wird die Implementierung von
NESTML mithilfe der MontiCore Language Workbench erklédrt. F
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Kapitel 6

Umsetzung von NESTML mit der
MontiCore Workbench

Nach der Vorstellung der konkreten Syntax von NESTML im vorherigen Kapitel, wer-
den nun die Besonderheiten der Implementierung aller NESTML-Subsprachen mit der
MontiCore Workbench erldutert. Der Fokus dieses Kapitel liegt auf der grammatikali-
schen Umsetzung und der Konzeption der Symboltabelle. Dabei werden die Grundlagen
aus Kapitel 4 als bekannt vorausgesetzt.

Die hier diskutierten Grammatiken sind im Vergleich zu Grammatiken fiir das Erstel-
len des NESTML-Frontends weniger detailiert. Dennoch demonstrieren sie die wesentli-
chen FEigenschaften der zugrundeliegenden Grammatiken, so dass die grammatikalische
Umsetzung der in NESTML verwendeten Sprachen mit der MontiCore Workbench nach-
vollzogen werden kann. Die vollstindigen Grammatikdefinitionen sind in Anhang D zu
finden.

6.1 Grammatikuberblick

Die MontiCore Workbench unterstiitzt verschiedene Mechanismen zur Erweiterung von
Grammatiken. Beispielsweise sind die Grammatikvererbung und die Grammatikeinbet-
tung wichtige Methoden, um die Komplexitit der grammatikalischen Spezifikation ei-
ner DSL zu reduzieren. Die Grammatikerweiterung erlaubt es, eine Menge von bereits
existierenden Grammatiken wiederzuverwenden. In der aktuellen Version der MontiCore
Workbench wird die Grammatikvererbung auch dazu benutzt, die Grammatikeinbettung
zu realisieren.

Die sprachliche Realisierung von NESTML ist in mehrere Subsprachen aufgeglie-
dert, um eine modulare und unabhéngige Weiterentwicklung der Subsprachen zu er-
moglichen. Abbildung 6.1 visualisiert diese Dekomposition anhand der definierenden
Grammatiken der einzelnen Subsprachen. Dabei wird jede Subsprache als eigenstén-
dige Grammatik aufgefasst. Somit kénnen die einzelnen Subsprachen modular und un-
abhéingig weiterentwickelt werden. Desweiteren werden die Grammatiken mit Produk-
tionen fiir Literale (z.B. Name oder Gleitkommazahlen) vollstindig aus der MontiCore-
Grammatiksammlung wiederverwendet.
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< NESTML >

<<builds on>> <<builds on>>
< Procedural > < Equations >
<<builds on>> <<builds on>>

< Expressions >

<<builds on>>
A

( units )

<<builds on>>

< Commons >

<<builds on>>
MontiCore
Commons
Abbildung 6.1: Die  Grammatikhierarchie der Modellierungssprache NESTML.
NESTML setzt sich aus verschiedenen Grammatiken zusammen.

Jede Grammatik ist fiir die Spezifikation eines Teilaspekts des Neurons
verantwortlich.

MontiCore Commons: Diese Grammatiken sind Teil der Distribution von MontiCo-
re. In diesen Grammatiken werden unter anderem Lexer- und Parser-Produktionen
fiir Namen, Leerzeichen (engl: whitespaces) und verschiedene Literale definiert.
Ausfiihrliche Erlduterungen zu diesen Grammatiken ist in [Sch12] zu finden.

Commons: In dieser Grammatik werden der Stil von NESTML-Kommentaren und die
Handhabung von Zeilenumbriichen definiert. Zum einen werden Zeilenumbriiche
nicht ignoriert, wie es in den herkémmlichen Programmiersprachen {iblich ist, zum
anderen werden Kommentare entsprechend der Form von Kommentaren in der
Programmiersprache Python festgelegt.

Units: Diese Grammatik definiert Produktionen fiir die Modellierung von physikali-
schen Einheiten (vgl. Abschnitt 5.6).

Expressions: Diese Grammatik definiert Produktionen fiir die giiltigen Ausdriicke (vgl.
Abschnitt 5.5).
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Procedural: Diese Grammatik definiert die imperative Sprache ProceduralDSL (vgl. Ab-
schnitt 5.3). Dabei werden neben den Produktionen fiir Literale auch die Ausdriicke
aus der Expressions-Grammatik eingebettet.

Equations: Diese Grammatik definiert die in Abschnitt 5.4 erldutertete deklarative
Sprache fiir die Spezifikation von Differenzialgleichungen. Dabei werden auch Aus-
driicke aus der Expressions-Grammatik eingebettet.

NESTML: Schliefllich erweitert diese Grammatik die Procedual- und Equations-
Grammatiken, um mit deren Hilfe die Struktur von Neuronen und Komponenten
festzulegen.

Die Commons-Grammatik erfiillt zwei Aufgaben. Zum einen wird der Stil der Kom-
mentare in dieser Grammatik konfiguriert, zum anderen wird der von MotiCore gene-
rierte Parser angepasst, damit Leerzeichen nicht ignoriert werden. Auch die NEWLINE-,
BLOCK_OPEN- und BLOCK_CLOSE-Produktionen sind Teil der Commons-Grammatik. Wei-
tere Hintergrundinformationen zur technischen Umsetzung der vollstdndigen Commons-
Grammatik (vgl. Listing D.2) sind in [Par13] zu finden.

Im Weiteren werden die wesentlichen Eigenschaften der in Abbildung 6.1 eingefiihrten
Grammatiken an auf das wesentliche reduzierten Versionen dieser Grammatiken erldu-
tert. Die vollstdndigen Grammatikdefinitionen sind in Anhang D zu finden.

6.1.1 NESTML-Grammatik

Neuronen werden in Dateien gespeichert. Die gesamte Datei wird auf der Grammatike-
bene durch eine NESTMLCompilationUnit-Produktion reprisentiert (vgl. Abbildung 6.2).
Die NESTMLCompilationUnit beginnt mit einer beliebigen Anzahl von import-Anweisungen
(vgl. Zeile 2) und kann eine beliebige Anzahl von Neuronen enthalten (vgl. Zeile 3). Eine
import-Anweisung (vgl. Zeile 5) ist dabei ein vollqualifizierter Name des zu importieren-
den Elements oder eine Stern-Importanweisung, die alle Elemente aus der referenzierten
Datei importiert (vgl. Abschnitt 6.2).

1 NESTMLCompilationUnit = MCG |
2 (Import | NEWLINE) *

3 (Neuron | NEWLINE) *;

4

5 Import = "import" QualifiedName ([star:".*"])?2;

6 Neuron = "neuron" Name ("extends" base:Name)? Body;

Abbildung 6.2: Definition der Nichtterminale fiir die Definition einer Datei mit Neuro-
nenmodellen.

Die Produktion fiir die Sperzifikation eines Neurons besteht aus dem Schliisselwort
neuron, einem Namen, einer optionalen Referenz zu einem Basisneuron und dem Rumpf
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(vgl. Zeile 6). Eine Besonderheit der NESTMLCompilationUnit-Produktion ist die Hand-
habung von Zeilenumbriichen. Im Unterschied zur herkémmlichen Interpretation in Pro-
grammiersprachen, wie Java oder C++, werden Zeilenumbriiche in NESTML nicht igno-
riert, sondern dienen dazu, Anweisungen voneinander zu trennen. Auf der Grammati-
kebene wird dies durch das Vorkommen des NEWLINE-Nichtterminals festgelegt (vgl. die
Zeilen 2-3).

Die MontiCore Workbench erlaubt es, eine Grammatik durch Alternativen in Sub-
sprachen zu erweitern, indem ein Interface-Nichtterminal der ersten Grammatik in der
Subsprache durch neue Produktionen implementiert wird. In Abbildung 6.3 wird die-
se Funktionalitit von MontiCore benutzt, um die Struktur der Neuronen-Definitionen
flexibel zu gestalten.

1 interface BodyElement; MCG <<nterface>> | Metamodel _"ep™
2 ASTBodyE lement
3 Body = BLOCK_OPEN ASTVar Block
4 (NEWLINE | BodyElement)* =
5 BLOCK_CLOSE;
6 .
7 Var_Block implements BodyElement = ASTEquations
8 Equations implements BodyElement =
9 Dynamics implements BodyElement =
,,,,,,,,,,,,,,,,,,,,,,,,,,,, ASTDynamics

Abbildung 6.3: Definition der Nichtterminale fiir die Spezifikation des Neuronenrumpfes.
Das Klassendiagramm auf der rechten Seit zeigt das generierte Metamo-
dell.

Wenn Parser-Produktionen ein Interface-Nichtterminal auf der Grammatikebene im-
plementieren, implementieren auch die Klassen des generierten Metamodells das entspre-
chende Interface. Im vorliegenden Fall wird dadurch eine konsistente Verarbeitung von
allen moglichen ASTBodyElementen ermoglicht. Das BodyElement-Interface erlaubt es,
NESTML nachtraglich durch neue Blocktypen in Subsprachen zu erweitern. Dafiir miiss-
te die NESTML-Grammatik erweitert werden. In der Grammatik der Subsprache wiére es
moglich, das BodyElement-Interface durch neue Produktionen zu implementieren. Unter
anderem konnte auf diese Weise eine Automatengrammatik [Worl6] eingebettet werden,
um die Dynamik des Neurons als Mealy Automaten [Rum96] spezifizieren zu kénnen.

Alle Variablenblocke des Neurons (z.B. die state-, parameters- und internals-
Blscke) werden durch dieselbe Produktion Var_Block modelliert. Abbildung 6.4 de-
monstriert diese Produktionen. Der Rumpf aller Variablenblocke befindet sich zwischen
den Schliisselwortern : und end. Die genaue Unterscheidung des Blockes findet durch
das Erkennen eines lexikalischen Tokens statt (vgl. den ["state"]-Ausdruck in Zeile
2). Auf der Ebene des Metamodells werden drei Methoden (e. g. isState()) in der
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1 Var_Block implements BodyElement = MCG |
2 (["state"] | ["parameter"] | ["internal"])

3 BLOCK_OPEN

4 (AliasDecl | NEWLINE) * This production is defined

5 BLOCK_CLOSE; in the Procedural-grammar

6

7 AliasDecl = (["recordable"])? Declaration; )

Abbildung 6.4: Definition des Nichtterminals fiir die Spezifikation der unterschiedlichen
Variablenblocken

generierten ASTVar_Block-Klasse erzeugt. Die jeweilige Methode gibt genau dann den
Wert true zuriick, wenn das entsprechende Schliisselwort in der konkreten Syntax eines
NESTML-Modells erkannt wurde.

AliasDecl-Produktionen legen die innere Struktur der Variablenblocke fest. Die Ali-
asDecl-Produktion bettet eine Produktion aus der Grammatik der ProceduralDSL ein
(vgl. Zeile 7). Die eingebettete Declaration-Produktion wird lediglich um ein optionales
Schliisselwort recordable erginzt.

Abbildung 6.5 zeigt die grammatikalische Umsetzung des equations-Blockes. Dieser
Block wird durch ein Schliisselwort equations in der konkreten Syntax eines NESTML-
Modells eingeleitet. Der Rumpf des Blockes befindet sich zwischen den Schliisselwortern
: und end. Die innere Struktur des Blockes wird vollstiéindig mithilfe der eingebetteten
Produktion OdeDeclaration aus der Equations-Grammatik definiert. Diese Produktion
wird in Unterabschnitt 6.1.3 niher erldutert.

Equations implements BodyElement = MCG |

1

2 equations This production is defined
3 BLOCK_OPEN

4

5

in the Equations-grammar
OdeDeclaration k/ “ 9

BLOCK CLOSE;

Abbildung 6.5: Definition des Nichtterminals fiir die Spezifikation des equations-
Blockes

Als Letztes wird die grammatikalische Umsetzung des updates-Blockes vorgestellt
(vgl. Abbildung 6.6). Dieser Block wird durch ein Schliisselwort update in der konkre-
ten Syntax eines NESTML-Modells eingeleitet. Der Rumpf des Blockes befindet sich
zwischen den Schliisselwortern : end. Die innere Struktur des Blockes wird vollsténdig
mithilfe der eingebetteten Block-Produktion aus der Procedural-Grammatik definiert.
Die Block-Produktion wird in Unterabschnitt 6.1.2 ndher erldutert.

Die NESTML-Grammatik ist so konzipiert, dass in der Grammatik nur die Struk-
tur des Neurons spezifiziert wird. Der Inhalt der unterschiedlichen Blocke kommt erst
aufgrund der Einbettung anderer Grammatiken zustande. Somit bleibt die NESTML
Modellierungssprache sehr modular und flexibel. Einerseits konnen die einzelnen Gram-
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Dynamics implements BodyElement = MCG |
"update"

1
2
3 BLOCK_OPEN This production is defined
4 Block /\in the Procedural-grammar
5 BLOCK CLOSE;

Abbildung 6.6: Definition des Nichtterminals fiir die Spezifikation des update-Blockes

matiken so unabhéngig von der NESTML-Grammatik entwickelt werden, andererseits
kann die NESTML-Grammatik dadurch an die Einbettung anderer bzw. neuer Sprachen
angepasst werden. Dadurch ergeben sich kleinere und modulare Grammatiken, die besser
wiederverwendet werden koénnen. Die vollstdndige NESTML-Grammatik ist in Listing D.5
zu finden.

6.1.2 Procedural-Grammatik

In diesem Abschnitt wird die Grammatikstruktur der ProceduralDSL vorgestellt. Dabei
wird eine vereinfachte Version der Grammatik benutzt, die die wesentlichen Eigenschaf-
ten der zugrunde liegenden vollstdndigen Grammatik erklért. Die vollstdndige Gramma-
tikdefinition ist in Listing D.4 zu finden.

Die Hauptaufgabe der ProceduralDSL ist es, eine Moglichkeit zur Verfiigung zu stellen,
eine Folge von imperativen Anweisungen an vorgesehenen Stellen in einem Neuronenmo-
dell zu spezifizieren. Um diese Anforderung zu erfiillen, wird die Block-Produktion auf
der Grammatikebene bereitgestellt (vgl. Abbildung 6.7). Die Block-Produktion wird bei-
spielsweise in der NESTML-Grammatik fiir die Spezifikation des Rumpfes von Methoden
und der Neuronendynamik im update-Block benutzt.

1 Block = ( Stmt | NEWLINE )*; MCG |
2
3 Stmt = Small Stmt | Compound Stmt;

Abbildung 6.7: Produktionen fiir einen Block mit beliebigen Anweisungen.

Ahnlich zur NESTML-Grammatik werden auch in der Procedural-Grammatik Anwei-
sungen mithilfe von Zeilenumbriichen voneinander getrennt. Dies wird durch ein expli-
zites Vorkommen der NEWLINE-Produktion erreicht (vgl. Zeile 1). Die Anweisungen sind
in einfache Anweisungen (vgl. Small_Stmt) und zusammengesetzte Anweisungen (vgl.
Compound_Stmt) unterteilt. Diese Unterscheidung ist notwendig, um den Aufbau der
Scope-Hierarchie eleganter implementieren zu kénnen. Alle Compound_Stmt-Elemente
Offnen stets neue Giiltigkeitsbereiche. Durch die Unterscheidung der Anweisungen kann
der NESTMLSymbolTableCreator diesen jeweils in der entsprechenden visit-Methode
erstellen.

Die Small_Stmt- und Compound_Stmt-Produktionen sind als interface-Produktionen
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umgesetzt (vgl. Zeilen 1 und 7 in Abbildung 6.8), um eine Anpassung und Erweiterung
in Subsprachen zu ermoglichen. Auf diese Weise konnen beide Typen von Anweisungen
in Subsprachen erweitert werden.

interface Small Stmt; MCG
Assignment implements Small Stmt = ... ;

FunctionCall implements Small Stmt = ... ;

Declaration implements Small Stmt = ... ;

ReturnStmt implements Small Stmt = ... ;

interface Compound Stmt;

IF_Stmt implements Compound Stmt = ... ;
FOR_Stmt implements Compound Stmt = ... ;
WHILE Stmt implements Compound Stmt = ...;

O W W Jo U b W

[y

Abbildung 6.8: Zusammenfassung der Produktionen fiir alle Anweisungsarten.

Die Zuweisungsvarianten werden durch verschieden Alternativen innerhalb derselben
Produktion modelliert. Abbildung 6.9 demonstriert diese Produktion. Auf der Ebene
des Metamodells wird fiir jede Alternative ein boolean-Getter generiert (bspw. isCom-
poundSum fiir die +=-Zuweisung). Diese Vorgehensweise bietet eine bessere Handhabung
der Klasse im Codegenerator. Im Vergleich zu einer interface-Produktion fiir die Mo-
dellierung einer Zuweisung gibt es einen Nachteil. Eine transparente Integration weiterer
Arten von zusammengesetzten Zuweisungen (beispielsweise fiir andere Operatoren) ist
in Subsprachen schwierig. Man kann dennoch die ganze Produktion in einer Subsprache
iiberschrieben und auf diese Weise weitere Operatoren integrieren.

Assignment = lhsVarialbe:Variable MCG |
(assignment: ["="] |
compoundSum: ["+="]
compoundMinus: ["-="]
compoundProduct: ["*="]

1
2
3 I
4 |
5 \
6 compoundQuotient: ["/="]) Expr;

Abbildung 6.9: Produktion fiir einfache und zusammengesetzte Zuweisungen.

Die zusammengesetzten Anweisungen werden in Abbildung 6.10 exemplarisch am Bei-
spiel der Produktion fiir for-Schleifen erlautert. Die Struktur der FOR_Stmt-Produktion
ist darauf ausgelegt, im Falle eines Fehlers moglichst gute diagnostische Nachrichten
generieren zu konnen. Die Zihlervariable (vgl. var:Name in Zeile 1) wird durch eine
einfache Namensreferenz eingeleitet. Die Korrektheit der Verwendung der referenzierten
Variablen wird erst nach dem Parsen des Modells durch eine Kontextbedingung gepriift.
Im Unterschied zu den Parser-Fehlern, erlaubt diese Priifung es, aufschlussreichere Infor-
mationsnachrichten zu erzeugen, da der Kontext des Fehlers zu diesem Zeitpunkt bereits
bekannt ist. Der Kontext kann dann als Teil der Fehlerbeschreibung ausgegeben werden.
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Auch bei den beiden Intervallgrenzen (vgl. from- und to-Ausdriicke) werden beim Par-
sen beliebige Ausdriicke akzeptiert. Die Typkorrektheit der Ausdriicke wird erst nach
dem Parsen gepriift.

1 FOR Stmt = "for" var:Name "in" from:Expr "..." to:Expr MCG |
2 ("step" step:SignedNumericLiteral)?

3 BLOCK OPEN

4 Block

5 BLOCK_CLOSE;

Abbildung 6.10: Produktion fiir die Spezifikation von for-Schleifen.

Der Rumpf der for-Schleife befindet sich zwischen den Schliisselwortern : und end.
Der Rumpf wird in Zeile 4 mithilfe der Block-Produktion spezifiziert. Auf der Ebene des
Metamodells resultiert das im Composit-Muster [GHIJV93]. Somit kann die for-Schleife
beliebige ProceduralDSL-Anweisungen enthalten.

6.1.3 Equations-Grammatik

Abbildung 6.11 demonstriert die grammatikalische Umsetzung der EquationsDSL. Dabei
fasst die OdeDeclaration-Produktion (vgl. Zeile 1) alle fiir die FquationsDSL relevan-
ten Produktionen zusammen. Desweiteren werden Zeilenumbriiche in dieser Produktion
explizit behandelt, da sie in NESTML nicht ignoriert werden.

OdeDeclaration = (Equation | Shape | OdeFunction | NEWLINE) *; MCG |
OdeFunction = (["recordable"])? "function" Name Datatype "=" Expr;

Equation = lhs:Variable "=" rhs:Expri<~ " This production is defined

in the Expressions-grammar
Shape = "shape" lhs:Variable "=" rhs:Expr;s\\_,///

Abbildung 6.11: Produktionen fiir die Spezifikation von Funktionen, Differenzialglei-
chungen und shape-Funktionen im equations-Block.

1
2
3
4
5
6
7

Die iibrigen Produktionen setzen die Sprachkonzepte der Funktionen (vgl. Zeile 3)
Gleichungen (vgl. Zeile 5) und shape-Funktion (vgl. Zeile 7) um. Die Equations-Grammatik
greift auf die eingebettete Expr-Produktion zuriick, um die rechten Seiten der modellier-
ten Elemente zu spezifizieren. Die 0deDeclarations-Produktion definiert den Ankniip-
fungspunkt fiir die Einbettung der FquationsDSL in andere Subsprachen. Die vollstén-
dige Grammatikdefinition ist in Listing D.3 zu finden.

6.1.4 Expressions-Grammatik

Das Ziel der ExpressionsDSL ist es, eine modulare und universelle Ausdruckssprache zu
schaffen. Die EzpressionsDSL wird an den Stellen in der Neuronenspezifikation benutzt,
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wo ein Ausdruck notwendig ist. Sie wird deshalb in die EquationsDSL und ProzeduralDSL
eingebettet.

Abbildung 6.12 demonstriert einen Ausschnitt der Expressions-Grammatik. Die Gram-
matik beginnt mit der Definition von Termen, die als atomare Ausdriicke angesehen wer-
den. Dazu zéhlen Literale aller Datentypen, Variablen und Funktionsaufrufe. Es werden
sowohl Literale aus der MontiCore-Bibliothek benutzt als auch neue in der Gramma-
tik definiert (vgl. die Zeilen 2 und 3). Alle Terme werden unter der Term-Produktion
zusammengefasst (vgl. Zeile 5).

1 SILiteral = NumericLiteral ("["type:UnitType"]" | plainType:Name)?; MCG |
2 Variable = name:QualifiedName (order:"\'")*;

3 FunctionCall = name:QualifiedName " (" args: (Expr& || ",")* ")";

4

5 Term = FunctionCall | SILiteral | ["inf"] | Variable | StringlLiteral;

6

7 Expr = ["("] p:Expr [")"]

8 | <rightassoc> base:Expr ["**"] expongnt:Expr Decr‘easing priority
9 | left:Expr (["*"] | ["/"] | .["%"]) right:Expr of alternatives

10 | left:Expr (["+"] | ["-"]) right:Expr \)

11 | (uPlus:["+"] | uMinus:["="] | uTilde:["~"]) u:Expr

12 | Term;

Abbildung 6.12: Produktion fiir die Terme und Ausdriicke der FxpressionsDSL.

Die rekursive Natur der Sprachdefinition der Ausdriicke wird grammatikalisch durch
eine direkte Linksrekursion umgesetzt [ASU86]. Eine Grammatikregel ist direkt links-
rekursiv, wenn sie der folgenden Form entspricht: A — Aa. Dabei entspricht A einem
beliebigen Nichtterminal gefolgt von einer beliebigen Folge von Terminalen und Nichtter-
minalen. Im vorliegenden Beispiel demonstriert die Expr-Produktion diese Eigenschaft.
Beispielsweise sind die Alternativen in den Zeilen 8, 9 und 10 genau nach diesem Muster
aufgebaut.

Hierbei spielt die Reihenfolge der Alternativen innerhalb derselben Produktion bei
der Modellierung von Prioritdten der zugrundeliegenden Operatoren eine Rolle. Da die
Produktion fiir den Multiplikationsoperator (vgl. Zeile 9) vor der Produktion fiir den
Additionsoperator (vgl. Zeile 10) in der Produktion Expr vorkommt, bindet der Multi-
plikationsoperator stiarker als der Additionsoperator. Dies hat zur Folge, dass der nicht
geklammerte Ausdruck a + b * c wie folgt interpretiert wird: a + (b * ¢).

Es ist zusétzlich moglich, die Assoziativitit einer Regel explizit zu kontrollieren. Bei-
spielsweise wird in der Alternative fiir den Operator der Potenzfunktion (vgl. Zeile 8) die
Standardassoziativitit verédndert. Diese Alternative wird mit dem Schliisselwort <asso-
cright> markiert. Dadurch werden Ausdriicke der Form a**b**c wie folgt interpretiert:
a ** (b ** c). Ohne diese Markierung wire der Ausdruck wie folgt interpretiert: (a
%% b) ** C.
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6.1.5 Units-Grammatik

Die in Abschnitt 5.6 beschriebene Aufteilung der Datentypen in primitive und physi-
kalische Datentypen besteht auch in der grammatikalischen Umsetzung der Sprache.
Alle primitiven Datentypen werden durch entsprechende Schliisselworter in der Data-
type-Produktion aufgelistet. Diese Schliisselworter werden in eckige Klammern gesetzt,
sodass fiir jedes der Schliisselworter eine boolesche Getter-Funktion erzeugt wird. Bei-
spielsweise wird aufgrund des string-Schliisselwortes die isString-Methode generiert.
Die physikalischen Einheiten werden durch die UnitType-Produktion spezifiziert. Die
rekursive Natur der Sprachdefinition von zusammengesetzten Einheiten wird grammati-
kalisch durch eine direkte Linksrekursion umgesetzt [ASUS6].

1 Datatype = ["integer"] | ["real"] | ["string"] \/—\ Primi‘riveda‘ra'fypes MCG |
2 ["boolean"] | ["void"] |

3 UnitType;

4

5 UnitType = " (" UnitType ")"

7 | base:UnitType pow:["**"] exponent:IntLiteral

8 | left:UnitType (timesOp:["*"] | divOp:["/"]) right:UnitType

9 | unitlessLiteral:IntLiteral divOp:["/"] right:UnitType

10 | unit:Name;

Abbildung 6.13: Produktionen fiir die Spezifikation von unterstiitzen primitiven und
physikalischen Datentypen.

In den Zeilen 7 bis 8 werden der Multiplikationsoperator, der Divisionoperator und
der Operator fiir die Potenzfunktion definiert. Nur diese Operationen diirfen zur Ver-
kniipfung von einfachen Einheiten zu zusammengesetzten Einheiten verwendet werden.
Die Grammatik stellt sicher, dass Argumente der Exponentialfuntion vorzeichenbehaf-
tete Festkommazahlen sind. Die Einheiten kénnen geklammert werden (vgl. Zeile 5).
Zeile 9 fithrt die Moglichkeit ein, Typen der Art unit#**(-1) in der Form 1/unit zu
spezifizieren. Die Typnamen werden auf der Grammatikebene durch Namen modelliert.
Die semantische Korrektheit der verwendeten Datentypen wird wieder durch passende
Kontextbedingungen sichergestellt. Beispielsweise wire die folgende zusammengesetzte
Einheit 1/string zwar syntaktisch zuléssig, sie wird an dem Modellierer dennoch als
Fehler gemeldet. Zwar wére es auch hier moglich, den Fehler bereits beim Aufbau des
AST durch den Parser zu erkennen, die vom Parser produzierte Fehlerbeschreibung wé-
re jedoch schwer nachzuvollziehen. Aus diesem Grund wurde diese Priifung ebenfalls als
Kontextbedingung umgesetzt.

6.2 Symboltabelle von NESTML

Nach der Vorstellung der Grammatiken aller NESTML-Subsprachen wird in diesem Ab-
schnitt der Aufbau der Symboltabelle von NESTML diskutiert. Wie in Kapitel 4 er-
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ldutert, spielen Bezeichner bzw. deren Représentation als Symbole in der MontiCore
Workbench eine wichtige Rolle fiir das Priifen von Kontextbedingungen und der Modell-
komposition.

NESTML benutzt insbesondere die Moglichkeit der MontiCore Workbench, Sprachen
aufzuteilen und mithilfe der Sprachvererbung und Spracheinbettung zu einer vereinten
Sprache zusammenzufiigen. Die semantische Verzahnung der einzelnen Subsprachen ge-
schieht dann hauptséchlich mithilfe der Symboltabelle. Die Symboltabelleninfrastruktur,
die das Auflésen der Bezeichner transparent iibernimmt, ist in der Lage die Dekompo-
sition von Subsprachen vor dem Sprachentwickler zu verbergen. Dabei regelt die Sym-
boltabelleninfrastruktur eigensténdig die Suche und Adaption von Symbolen, die aus
unterschiedlichen Sprachen stammen kénnen.

Die Symboltabelle von NESTML wird in drei sequenziell ablaufenden Phasen auf-
gebaut. Vor bzw. nach jeder dieser Phasen wird eine Menge von Kontextbedingungen
gepriift, die die notwendige Konsistenz des vorliegenden Modells fiir den darauffolgenden
Schritt sicherstellen.

Building symbol table \

NESTML File

Check [error] ®
Types T
[oK]

2nd Phase:
Create Symbols for

1st Phase:

Neurons, Variables Nor_:_nalizse si
and Methods yp

Check Context Conditions

[ Check Variables

Check [error]

Ambiguity

and Methods for

EX|stence

3rd Phase:

Context Conditions Register Equations

[ Check Remaining ®

[error]

gok]
\__| AST+SymbolTable | J

Abbildung 6.14: Schritte zum Aufbau der Symboltabelle aus einer NESTML-Datei.

Der Prozess ist in Abbildung 6.14 als Aktivitdtsdiagramm abgebildet. Die einzelnen
Phasen sind:
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1. Parse: Eine im Filesystem gespeicherte NESTML-Datei wird durch den generier-
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ten NESTML-Parser verarbeitet. Der Parser instanziiert die Klassen des gene-
rierten Metamodells zu einem AST. Falls die NESTML-Datei syntaktische Fehler
enthélt, wird der Prozess mit einer Fehlermeldung abgebrochen.

Check Types: Alle Datentypen werden mithilfe eines speziellen Visitors besucht
(vgl. Abschnitt 4.6). Fiir jedem Datentyp im Modell wird gepriift, ob dieser Typ
ein valider Datentyp ist. Da die Korrektheit der benutzten Typen eine zwingen-
de Voraussetzung fiir die darauffolgenden Schritte ist, wird der Prozess mit einer
Fehlernachricht terminiert, falls ein undefinierter Typ im Modell vorkommt. Ab-
schnitt 5.3 und Abschnitt 5.6 listen die unterstiitzten Datentypen auf.

Normalize SI Types: Alle im Modell benutzten physikalischen Einheiten werden
in eine Normalform transformiert. Dabei wird das Modell wieder mit dem entspre-
chenden Visitor traversiert, der alle relevanten Knoten besucht, die eine Typre-
ferenz enthalten (d.h. Deklarationen, Funktionsparameter und Einheitenliterale).
Um die Konvertierung vorzunehmen, wird das in [BMP*16] vorgestellte Verfahren
benutzt. Dabei werden die einfachen Einheiten direkt in die entsprechenden Signa-
turen konvertiert (vgl. Abbildung 6.16). Die zusammengesetzten Einheiten werden
mit einem weiteren Visitor traversiert. Dabei werden die Operationen ausgewertet,
die mit Einheiten verkniipft sind und eine resultierende Signatur berechnet.

. Register Symbols: Wenn die vorherigen Schritte erfolgreich abgeschlossen wur-

den, werden fiir alle im Modell definierten Variablen und Methoden Symbole in-
nerhalb der Symboltabelle erstellt und registriert.

Check Unambiguity: Die Eindeutigkeit und Existenz der referenzierten Varia-
blen und Methoden ist eine zwingende Voraussetzung fiir die letzte Aufbauphase.
Daher werden in diesem Arbeitsschritt Kontextbedingungen gepriift, die diese Kon-
sistenz gewihrleisten. Im Fehlerfall wird der Prozess des Symboltabellenaufbaus
mit einer Fehlernachricht terminiert.

Register Equations: In dieser Aufbauphase der Symboltabelle findet eine Zuwei-
sung der Differenzialgleichungen zu den entsprechenden Zustandsvariablen statt.

Check Context Conditions: Nach dem vollstindigen und erfolgreichen Auf-
bau der Symboltabelle werden die Kontextbedingungen gepriift. Die Priifungen
werden in zwei sequenziellen Schritten ausgefithrt. Zuerst werden alle Sprachkon-
strukte gepriift, die eine Variable oder Methode referenzieren. Dabei wird eine
Existenzpriifung durchgefiihrt, die gewéhrleistet, dass alle referenzierten Varia-
blen und Methoden entweder im Modell selbst definiert sind oder es sich um eine
vordefinierte Variable bzw. Methode handelt. Anschliefend werden die restlichen
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Priifungen durchgefiihrt, die die Existenz dieser Modellelemente voraussetzen. Die
vollstandige Spezifikation der Kontextbedingungen ist in Abschnitt 7.3 zu finden.

«interface»

Symbol

i

«interface»

«abstract»

ScopeS panningSymbol CommonSymbol
e |
NeuronSymbol MethodSymbol UsageSymbol TypeSymbol VariableSymbol
methods * T T* predefinedMethods " *I'predefinedTypes * predefinedConstants

T4

¢

ArtifactScope

—_—

*modelPath GlobalScope @

Abbildung 6.15: Uberblick aller NESTML-Symbole und Scopes.

Abbildung 6.15 fasst die Symbole grafisch zusammen und visualisiert die Beziehungen
der Symbole zueinander. Der GlobalScope verwaltet sowohl die NESTML-Dateien als
auch alle vordefinierten Konstanten, Methoden und Datentypen. Der GlobalScope baut
auch die Symboltabelle bei Bedarf automatisch auf. Das NeuronSymbol reprisentiert
die Essenz des Neurons bzw. einer Komponente. Es besteht aus Symbolreferenzen zu
Variablen, Methoden und anderen Neuronen. Die einzelnen Symbole hierbei sind:

TypeSymbol wird fiir alle vordefinierten Typen erstellt (vgl. Abschnitt 5.3 und Ab-

schnitt 5.6). Ein TypeSymbol enthilt neben dem Namen des modellierten Daten-
typs, auch die Information dariiber, ob es sich um einen UNIT-, PRIMITIVE- oder
BUFFER-Datentyp handelt. Ein TypeSymbol wird ausschlieBlich implizit wéihrend
des Aufbaues der Symboltabelle instanziiert und im GlobalScope registriert.

VariableSymbol wird fiir jede Blockvariable, lokale Variable und jeden input-Port

registriert. Wéahrend der Erzeugung der Symboltabelle werden die vordefinierten
Variablen (beispielsweise t und e) als VariableSymbol im GlobalScope regis-
triert. Ein VariableSymbol speichert auch die Information, in welchem Block die
entsprechende Modellvariable definiert wurde. Dabei wird zwischen den folgenden
Alternativen unterschieden: STATE, PARAMETERS, INTERNALS, LOCALS, INPUT. LO-
CALS-Symbole werden fiir Variablen erzeugt, die innerhalb einer Methode oder des
update-Blockes definiert sind.
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MethodSymbol wird fiir jede in einem Neuron oder in einer Komponente definier-
te Methode erstellt. Wihrend der Erzeugung der Symboltabelle werden die vor-
definierten Funktionen (beispielsweise min und log) als MethodSymbol im Glo-
balScope registriert. Neben dem Variablennamen wird die Signatur der Methode
gespeichert. Die Signatur der Methode besteht aus den Namen und Typen der
Argumente und dem Riickgabetyp.

NeuronSymbol wird fiir jedes Neuron bzw. jede Komponente erstellt. Es speichert
die Information, ob es sich um ein Neuron oder eine Komponente handelt. Das
NeuronSymbol stellt eine Schnittstelle bereit, um auf die im Neuron bzw. der Kom-
ponente modellierten Informationen zuzugreifen. Es verwaltet den Zugang zu den
Blockvariablen, Methoden, input- und output-Ports.

UsageSymbol Dieses Symbol wird fiir jeden use-Block erzeugt. Mithilfe dieses Sym-
bols wird eine Referenz zu einem anderen NeuronSymbol modelliert, das eine Kom-
ponente reprisentiert. Die Implementierung des Symbols ist nach dem Delegation-
Muster aufgebaut [GHJIV93, Gra03]. Das UsageSymbol delegiert alle Aufrufe an
das Delegate-Symbol, das im use-Block referenziert ist.

. . . siDim .
TypeSymbol PhysicalDimension YR QuantityKind @

double currentExp String name
double lengthExp -
double luminousExp 1 .
double massExp ql:é:}ngty
double molarExp in
double tempExp . .
double timeExp DerivedUnit
double magnitude Expr baseUnit

Unit 1.

String name <)7
<F BaseUnit

unit0 .1

T T1 base

Abbildung 6.16: Uberblick des Datenmodells fiir die Reprisentation der physikalischen
Einheiten. Die Abbildung ist nach [BMP*16] adaptiert.

Das in Abbildung 6.16 dargestellte Datenmodell wurde entwickelt, um die Informa-
tionen iiber die physikalischen Einheiten zu speichern. Das Datenmodell unterscheidet
zwischen einfachen und zusammengesetzten Einheiten. Die PhysicalDimensions-Klasse
speichert die Signatur des physikalischen Typs als ein 8-Tupel von Gleitkommazahlen.
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Damit werden alle einfachen Einheiten modelliert. Fiir zusammengesetzte Einheiten wird
zusitzlich der definierende Ausdruck gespeichert damit die Nachvollziehbarkeit der Ein-
heitendefinition erhalten bleibt.

Die QuanityKind-Klasse wird benutzt, um die Einheit eindeutig zu spezifizieren. Sie ist
notwendig, da im SI-Einheitensystem unterschiedliche Einheiten existieren, die dieselbe
Signatur teilen (z.B. das Drehmoment und die Energie). Anhand der Signatur und des
Namens konnen Einheiten eindeutig identifiziert werden.

Die MontiCore Workbench bietet ein transparentes Verfahren, um die Geltungsberei-
che von Variablen als eine hierarchische Scope-Struktur zu verwalten. Fiir jede NESTML-
Datei wird ein AritfaktScope erstellt. Neue Scopes innerhalb des ArtifactScope wer-
den automatisch aufgespannt, sobald ein NeuronSymbol oder MethodSymbol beim Auf-
bau der Symboltabelle erstellt wird. Dies wird dadurch erreicht, dass die beiden Symbole
ein vordefiniertes Interface ScopeSpanningSymbol implementieren.

<J_ :GlobalScope M
1 neuron iaf neuron: NESTML :NeuronScope — :ArtifactScope
2 state: _65\/_/% T
3 V_mmy = -65mv :NeuronSymbol f+
4 end <spans
5 ™ l
6 update:
7 localvarl integer = 1 :CommonScope <spans :MethodSymbol |«
8 end
9 /—\\s
10 function fl(): | :CommonScope :MethodSymbol [+
11 localvar2 string = "2" <spans
12 if true: l
13 localVar2 integer = 2
14 end N__ | :CommonScope
15 end
16 isShadowing = true
17 end

Abbildung 6.17: Abbildung der Geltungsbereiche von Variablen auf die Scope-
Hierarchie.

Desweiteren spielen die Scopes bei Methoden und im update-Block eine wichtige Rolle.
Dabei wird ein Scope immer dann aufgespannt, wenn eine zusammengesetzte Anweisung
der ProceduralDSL vorkommt. Innerhalb dieses Scopes konnen Variablen aus iiberge-
ordneten Scopes iiberschrieben werden. Diese Funktionalitit wird von der MontiCore
Workbench bereitgestellt, wenn beim Erzeugen des Scopes der isShadowing-Parameter
auf den Wert true gesetzt wird. Abbildung 6.17 demonstriert das erlduterte Verfah-
ren an einem Beispiel. Alle Methoden und der update-Block spannen stets einen Scope
auf, der im Scope des definierenden Neuron enthalten ist. Innerhalb dieser Scopes kon-
nen Variablen verdeckt werden. Beispielsweise wird die Variable localVar2 innerhalb
des Scopes definiert, der aufgrund der if-Anweisung aufgespannt wird und verdeckt die
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entsprechende Variable aus dem iibergeordneten Scope der f1-Methode.

= models

1 import utils.refractory.*
2
3 neuron iaf neuron:

. utils
4 use RefComponent as refr -E.refractory.nestml
5

>
6 end J
1 component RefComponent:

2 function is_refractory() boolean:
3 end
4 end

|—e iaf_neuron.nestml

Abbildung 6.18: Funktionsweise des Import-Mechanismus ausgehend vom Modellpfad
models.

Um Komponenten aus anderen Dateien zu importieren, wird fiir das Auflosen der Im-
portanweisungen der Ansatz aus Python adaptiert. Fiir das Auflésen der importierten
Elemente spielen die Namen der Dateien und Verzeichnisse, in denen das zu importie-
rende Element gespeichert ist, eine entscheidende Rolle. Das Basisverzeichnis, in dem
NESTML-Dateien gespeichert sind, wird als Modellpfad (engl. Modelpath) bezeichnet.
Alle ITmport-Anweisungen, die innerhalb einer Datei spezifiziert sind, werden relativ zm
Modellpfad interpretiert.

Abbildung 6.18 demonstriert den Mechanismus am konkreten Beispiel. Dabei ist der
Modellpfad auf ein Verzeichnis models gesetzt. Mit der import-Anweisung in Zeile 1
werden alle Elemente importiet, die in der Datei refractory.nestml im Unterverzeich-
nis utils liegt. Durch den Import steht RefComponent in der importierenden Datei zur
Verfiigung.

Auf Modellebene ist es nicht nétig, die Paketinformation explizit zu deklarieren. Statt-
dessen wird die Paketspezifikation im Laufe einer Vortransformation erzénzt, die direkt
nach dem Parsen des Modells ausgefiihrt wird. Im Allgemeinen wird die Information wie
folgt berechnet: Ausgehend vom Modellpfad wird der relative Pfad zur Datei bestimmt
indem der relative Pfad wird mit dem Dateinamen verkniipft wird.

Abbildung 6.19 demonstriert die Bestimmung der Paketdeklaration an einem Beispiel.
Ausgehend vom Modellpfad models ist der relative Pfad der neurons-Datei leer. Daher
besteht der Paketname nur aus dem Dateinamen.

114



6.2 SYMBOLTABELLE VON NESTML

. models Filesystem

1 neuron iaf neuron:
neurons.nestml -

2 #

Q/ 3 end

1 package neurons

2

3 neuron iaf neuron:
4 # ...

5 end

Abbildung 6.19: Exemplarische Ergéinzung der Paketinformation anhand des Datein-
amens der NESTML-Datei mithilfe der Modelltransformation.
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Kapitel 7

Methodik fiir die Entwicklung neuer
Neuronen mit NESTML

In diesem Kapitel wird die Verwendung von NESTML in Form einer detaillierten An-
leitung vorgestellt. Die Anleitung demonstriert den Prozess der Neuronenmodellbildung
mit NESTML. Die entwickelten Modelle kénnen anschlieend in NEST fiir eine neuro-
nale Simulation verwendet werden. Wihrend der Vorstellung von verschiedenen Neuro-
nenmodellen werden die wichtigen Eigenschaften von NESTML an konkreten Beispielen
demonstriert. Die Verwendung des NESTML Sprachwerkzeugs wird anhand der Beispiele
schrittweise erlautert. Anschlieend werden alle Kontextbedingungen von NESTML aus-
fithrlich diskutiert. Sie gewihrleisten die semantische Korrektheit von Neuronenmodellen
in NESTML.

Diese Anleitung wird in englischer Sprache vorgestellt, da sie in dieser Form auch fiir
die Evaluierung des NESTML-Ansatzes verwendet wurde.

7.1 Developing biological neuron models with NESTML

Throughout this tutorial, a set of increasingly more complex neuron models will be
developed. Each of these example models serves to motivate and explain the different
language concepts for modeling different aspects of point neurons in NESTML.

7.1.1 Derivation of a mathematical model for biological neurons

Over time researchers in computational neuroscience created a multitude of biological
neuron models. This variety ranges from precise 3d reconstructions of real neurons
over multi-compartment neurons to simplified point neurons in which the morphology is
collapsed into a single point. Figure 7.1 shows representative examples of models with
different levels of detail.

Multi-compartment models promise better insights into the biophysical processes in a
single biological neuron, but there are only a few effects on the network scale, which can-
not be reproduced using simple point neurons. Therefore, the primary focus of NESTML
is to provide a solid basis for modeling point neurons. The simulation of a point neuron
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}V

N

Ability to simulate large networks

——— |

Increasing complexity of single elements

Figure 7.1: Different level of details for neuron models. Starting from a cortical pyrami-
dal neuron, the level of detail reduces towards a point neuron model. Adapted
from [Eppl0] and [GKNP14].

requires less computational resources and memory compared to more detailed types of
neuron models. Using point neurons thus enables researchers to simulate bigger net-
works, albeit at a lower level of detail.

Before proceeding to the introduction of the NESTML language itself, a simple deriva-
tion of a biological neuron model will be given first in order to introduce the basic terms
and concepts. Figure 7.2 explains the process of building a biological neuron model
based on an equivalent electrical circuit. The membrane of the nerve cell consists of a
bi-lipid layer and can be regarded as an isolator separaring the inside from the outside.
It is largely impermeable for ions and larger molecules. Active ion pumps and passive
channels are built into the membrane and allow the selective passage of certain ions.
Through the active transport of ions the neuron creates and maintains an electrical po-
tential across the membrane. This potential is called the neuron’s resting potential (cf.
Figure 7.2 (A) and (B)).

The canonical approach for creating a computational model of a neuron is to build an
electrical circuit (cf. panel (C)). Due to the separation of charges, the membrane can be
represented by a capacitor, the membrane potential corresponds to the voltage over the
capacitor. Different channels in the membrane transport ions into and out of the cell.
These channels can be seen as resistors, which withstand the flow of current. External
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(A) jon pumps (B)
extracellular
memebrane \ .
®
ion channels intracellular
(D) (©)

intracellular

Figure 7.2: (A) Cross section of the cell membrane. (B) An abstract model of the mem-
brane cross section. (C) An equivalent electrical circuit. (D) Differential
equation that specifies the evolution of the membrane potential in the elec-
trical circuit in (C).

stimulation of the neuron can be modelled as a source of current in the circuit. The

synaptic current Iy, thus may add further charge into the capacitor. Additional leak

currents can be added to model the flow of ions out of the cell through channels in the

membrane.

The temporal dynamics of the RC circuit and thus of the membrane potential can be
described by the following differential equation:

iVm _ Vm + Isyn

dt Cm ‘R Cm

By substituting Cy, - R by the time constant 7, of the RC chain and the membrane,
the equation is turned into its canonical form:

d Vin | Isyn

*va - -
it ™

(7.1)

(7.2)

Parameters of the neuron model (e.g. resistance, resting potential, etc.) can be
extracted from real neurons in neurobiological experiments. The synaptic current Igy,

119



KAPITEL 7 METHODIK FUR DIE ENTWICKLUNG NEUER NEURONEN MIT NESTML

can be chosen to be more or less complex to reflect certain properties of real biological
neurons. Depending on their exact definition, the equation can be either solved exactly
or by means of a numeric solver.

7.1.2 NEST Modeling Language

The mathematical foundation in the previous section allows to model biologically real-
istic point neurons. Based on this methodology, this section derives the corresponding
representation for a model in NESTML.

neuron rc_neuron: \
- NESTML

<<rc_neuron.nestml>>

1
1
1
: state:
T V.m mV = OmV
| end
1
1
1 equations:
Vm' = -V m/tau m + I syn/C m
dVy :_V_m+15yn : end
dt Tm Cn 1
I parameters:
: # values taken from experiments
C m pF = 250pF
— Vm 1 tau m ms = 10ms
w ' I sy - 376
/ 1 _syn pA = PA
il 1 end
10] (‘ 1
8 / : update:
of 1 integrate odes|()
A 1 end
“ 1
’ 1
1 end
E S I = )

Figure 7.3: NESTML neuron model based on the mathematical formalism established
in Figure 7.2 (D).

Figure 7.3 shows a direct mapping of the mathematical model to the corresponding
model in NESTML. The depicted neuron named rc_neuron has a body which consists
of different blocks where variables, equations, and the dynamic behavior are defined.
The body of every block (including the neuron-block) starts with a colon character and
ends with the end keyword.

Different blocks with variables exist to reflect the different semantics of the corre-
sponding variables. The state-block contains variables which describe the temporally
changing state of the neuron. state-variables can be additionally specified through dif-
ferential equations which are stated in the equations-block. This is not possible for
variables in other blocks. A differential equation is marked by a variable name followed
by a non-empty list of ’-characters. The parameters-block contains variables which
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remain constant during the simulation but can vary among different neuron instances or
simulations. Different parametrizations can be used to create a different spiking behavior
using the same neuron model [JLGO04]. The support for parametrizing neurons is thus
an important feature of NESTML.

In general, all variable blocks are composed of variable declarations. A variable decla-
ration consists of a non-empty list of variable names followed by the type of the variables.
A type can be either a primitive datatype or a physical unit. Physical units can be com-
plex units which are composed of units using multiplications, divisions, and powers: e.g.
1/ms or nS/ms**2, which corresponds to % Supported primitive types and physi-
cal units are listed in section 5.3 and section 5.6. Declarations end with an optional
initialization expression.

The update-block enables a fine-grained specification of the neuron’s temporal be-
havior. In the shown example, it only states the propagation of the equation in the
equation-block by calling NESTML’s predefined function integrate_odes. NESTML
doesn’t require that statements are concluded with a semicolon character (;). The
NESTML parser instead uses the newline-whitespace character for this purpose sim-
ilar to what is done in Python. Finally, NESTML models can be documented using
comments which start after the #-character.

integrate_ odes ()

Integrate

NEST
<<Runtime>>

emit spike ()

output:spike
end

1
1
1
1
1
1
1
V_m=V_reset 1 v m
_m=v \ _
neuron rc_fire: NESTML 1
equations: <<rc_fire.nestml>> :
vV.m' = -(V.m-E L)/taum + I_syn/C_m 1
end :
1
parameters: 1
. I . ! .
E L mv = -70mv \ 0 200 400 600 800 1000
\Ilfth mVA: igsz ;106 ‘ ‘ ; ‘
_sSyn pA = P. I . -
1
1 1.02 1
date: 1
up‘ 1 1.00
integrate_odes () .
if V.m > V_th: ) 0.98
Vvm=EL : 0.96
emit spike
-SP 0 1 0.94 . . . .
end 1 0 200 400 600 800 1000
end 1
1
1
1
1

Figure 7.4: The depicted neuron defines the variable V_m for the membrane potential to
always be relative to the resting membrane potential E_L. The update-block
implements a simple subthreshold dynamics which is specified as an activity
diagram.
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The neuron model defined in Figure 7.3 shows two major differences to a real biological
neuron: first, it always has a strictly positive membrane potential, which converges to
OmV without external input. Second, the neuron isn’t able to fire spikes, since this
functionality is not implemented in the update-block.

In order to shift the membrane potential to the physiological range, the V_m variable
is replaced by the term V_m - E_L in the differential equation. The variable E_L models
the resting potential of the neuron, e.g. the value the membrane potential relaxes to in
absence of external input. Figure 7.4 exemplifiex this approach by setting the membrane
potential initially to the value of E_L. The differential equation is now expressed in terms
of V_m - E_L. This means that negative values of E_L shift the membrane potential into
the desired range. The example plot of the membrane potential on the right demonstrates
this for E_L=-70mV.

The update-block implements a sub-threshold dynamics which integrates the mem-
brane potential until the value of the threshold is reached. At this point in time a spike
is fired and the membrane potential is reset to the resting potential. The predefined
function integrate_odes propagates all differential equations in the equations-block
for one time step. The fact that the example neuron should be able to fire spikes is en-
coded in the output-block. By calling the emit_spike method inside the update-block,
the spike is actally fired and sent to all connected neurons.

A

Figure 7.5: A post-synaptic neuron C receives input from two pre-synaptic neurons A and
B. Each pre-synaptic spike evokes an excitatory postsynaptic potential in A.
Adapted from [GKNP14].

Figure 7.5 shows a small neuronal network composed of two neurons A and B both
connected to a third neuron C. In this constellation neurons A and B are called pre-
synaptic neurons relative to the neuron C, which is called the post-synaptic neuron for
A and B. Spikes which are fired by neurons A and B invoke an excitatory response in the
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neuron C. In this example, neurons A and B are firing a spike at two different points of
time, which leads to a positive excursion of the membrane potential of neuron C.

In order to support the neural network depicted in Figure 7.5, the neurons need to be
able to process incoming spikes. This is enabled in the model by using an input-block.
The input-block defines a list of named input ports with additional optional modifiers.
In the case which is shown in Figure 7.6 the input-block contains only one port named
spikes. The spikes-port is set up to receive inhibitory and excitatory inputs. In the
context of NEST, this has the interpretation that incoming spikes with both negative
and positive are routed to the port spikes. Alternatively two separate ports could be
defined, e.g. I_inh <- inhibitory spike and I_exc <- excitatory spike. In the
latter case, spikes with positive weight would be routed to the port I_exc, while spikes
with negative weight would end up in the port I_inh.

NESTML NEST |
. <<rc_alpha>> -
neuron rc_alpha_response: P ~6.997e1 <<Runtime>>
state: T T T T
V.mmv=EL //7 ~0.015} v_m ||
I_a pA = OpA
I_a' pA/ms = 1pA*e / tau_syn ODEsofordernrequire
end all initial values of the -0.020 |
derivatives up to order n-1
equations: -0.025|
I_a'' = (-2/tau_syn) * I_a'-(l/tau_syn**2) * I_a
V_m' = -(V_m-E_L)/tau_m + conv(I_a, spikes)/C m

-0.030

end h
. 0.06
input:
spikes <- spike 0.04 1
t.<tieN wespikes
output: spike Z L(t — 1) Z w 0.00 |

i<t iel wespikes ~0.02}

update:
integrate_odes () -0.04

end -0.06 ! ! . : :
end -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06

Figure 7.6: Modeling the post-synaptic response by convolving an « kernel with incoming
spikes arriving at the named port spikes. The « kernel is modeled as a set
of differential equations and an initial value.

The conv-function is used to create a temporally varying post-synaptic response. It
expects the name of the port and the shape of the kernel as arguments. Mathematically,
the conv-function performs the following computation:

conv(I_a, spikes) = Z Z wx I_a(t; —t) (7.3)

t; <t,ieNweEspikes
One disadvantage of the previous approach for specifying the kernel is that the user
must state both the differential equation and all initial values. To ease this often-needed
operation, NESTML offers a more convenient way to model kernel functions. Figure 7.7
demonstrates this functionality with the example of the same a-shaped kernel that was
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defined in the previous example as a system of differential equations. This time the
kernel is specified as a function of ¢. It is defined with the shape keyword after which
the kernel function is explicitly defined as an analytical function.

neuron rc alpha response shape:
— — — NESTML

<<rc_shape>>

equations:
shape I a=(e/tau syn) * t * exp(-t/tau syn)
Vm' = -(Vm-E L)/tau m + conv(I a, spikes)/C m
end
end

Figure 7.7: Convolution of incoming spikes with an « kernel with incoming spikes which
arrive via the named port spikes. The a kernel is modeled as a function of
the time variable ¢.

shape functions describe the shape of a post-synaptic response. They are functions
of t, where t is an implicitly defined variable that represents the current time of the
simulation. The function I_a(t) in the example multiplies incoming spike weights w
from the spikes port to compose the synaptic input. The advantage of this notation is
the increased expressiveness of the model since the shape function is modeled explicitly.
It is now also possible to derive all initial values automatically.

7.2 Installation and usage of the NESTML environment

The NESTML runtime environment currently requires a complex software setup com-
posed of different software modules in specific versions. Since some of these modules are
not purely Java-based, they don’t run in a Java Runtime Environment. In addition, the
Java Runtime Environment must be available in the latest version, which is not always
the case on the host system.

To ease usage, NESTML is packaged as a command line script backed by a Docker
container which encapsulates the software stack. The Docker container and bundled
management script provides a concise console API to work with NESTML. Users thus
only have to download the sources from the GitHub repository and install a Docker
environment in order to be able to execute NESTML on their local computer.

The first step for installing NESTML on the local computer is to clone the GitHub
repository [PBET17a]. For all further explanations, the folder <nestml_clone> is as-
sumed to be the local copy of this repository. Second, the latest version of Docker! must
be installed, which is often available from the package management system of current
Linux distributions. In order to execute the Docker commands without root permissions

"https://www.docker.com/
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[ nestml

(docker
DockerfileRelease

nestml_docker.sh

A helper script to provision and run the container

nestml docker. sh takes the command as an argument
and creates/runs the container with the current release

If ——dev s given, the current sources from GitHub are used.

cd <nestml clone>/docker NOTE: important: you must switch to the docker folder,

./nestml docker.sh provision otherwise the script could fail!
N NOTE: docker folder can be copied to another place.

creates a docker image 'nestml_release’ after typing: docker images
user@user-VirtualBox:~/nestml/docker$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
nestml_release latest b44e76b56chb9 5 days ago 817.8 MB
alpine 3.4 4e38e38c8cel 3 months ago 4.799 MB

Figure 7.8: Installing the NESTML environment on the local machine.

and access the files produced by NESTML, the user must be added to the docker group?.

To conveniently install and run NESTML, a management script called docker_-
nestml.sh is provided. It can be found in the <nestml_clone>/docker folder. To
set up the local Docker container, the following command has to be executed in the
console:

docker_nestml.sh provision

This step creates the container including all modules needed for NESTML’s runtime.
In the default case the latest released NESTML version is downloaded. To build the
current development version of NESTML from sources, an additional argument --dev
has to be provided to the installation command:

docker_nestml.sh provision --dev

The docker images command can be used to check if the Docker container was suc-
cessfully created. If everything went well it should list the newly created nestml_re-
lease container (or nestml_development in the case the development option was set).
The lower part of Figure 7.8 which summarizes all steps required for the NESTML-
installation.

After a successful installation of the NESTML Docker container, the docker_nestml.sh
script can be used to execute NESTML. The following command runs NESTML for all
models in the given folder:

docker_nestml.sh run $path_to_models

2https://docs.docker.com /engine/installation /linux /ubuntulinux/# /manage-docker-as-a-non-root-
user
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i\ <nestml_clone>/models

cd <nestml_clone>/docker

./nestml_docker.sh run ../models

! " models .
iaf_psc_alpha.nestml ]
: . build :
iaf_psc_alpha_neuron{.cpp,.h} !
models{.cpp,.h} i
CMakelist.txt

Figure 7.9: Execution of the NESTML tool on the models-folder. A successful run pro-
duces a set of C++ and CMake files in the subfolder build.

NESTML assumes that all neuron models are located in a dedicated folder $path_to_-
models. The name of this folder also becomes the name of the resulting NEST module.
The output of the script invocation is a set of C++ and CMake files which are written
to the subfolder build under the input folder. Figure 7.9 shows the whole process with
the example of the models which are provided as a part of the NESTML distribution.

The code generated in the previous step can be integrated into NEST. The NESTML
code generation framework is decoupled from the particular NEST installation and runs
entirely independently. This means that the neuron and module code can be created
on a different system than the system where the module will be built and integrated
into NEST. This is an important feature, since NEST is often used on high-performance
computer clusters without the possibility for a regular user to install Java or Docker. In
such a situation, the generated code is simply transferred to the target computer and
compiled and used there.

NEST offers an extension mechanism that allows to dynamically load new modules into
the already installed simulator®. Figure 7.10 summarizes the steps for how to integrate
NESTML models into NEST using this extension mechanism. First, the C4++ and
CMake code is generated from a set of NESTML models as described in the previous
steps. In order to compile and install the module, a NEST installation and its C++
header files are required. The path to the installation is set with the environment variable
NEST_INSTALL_DIR. After switching to the build-folder that contains the generated files
from the previous step, the NEST extension module can be configured, compiled and
installed with the following commands:

3http://nest.github.io/nest-simulator /extension_modules
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© 7 models [rites ). NESTML

g : Runtime
| I&f_.pee; lpifiestinl eﬂi ‘NESTML Docker }—>{ nestml.jar }7

cmake -Dwith-nest=${NEST_INSTALL_DIR}/bin/nest-config .

loads dynamically NEST simulator compilesTo CMake E

— —
* " models
NestKernel ‘ ‘ models.so : == build
T g

. iaf_psc_alpha_neuron.cpp
make install iaf_psc_alpha_neuron.h
models.cpp
models.h
CMakelList.txt

ifrom nest import *
iInstall ("models")

Figure 7.10: Generation and installation of a NEST extension module from a set of
NESTML models.

cmake —Dwith—nest=${NEST_INSTALL_DIR}/bin/nest—config .
make
make install

After executing these steps, the binary library models.so is available in NEST’s mod-
ule directory and ready for use. The extension module contains all neurons from the
models folder. The PyNEST script in Figure 7.10 demonstrates the usage of the module.
First, the module models must be loaded using a call to the Install function in the
PyNEST script. It makes all which are part of the module available for simulations. The
Create function is used to instantiate the neurons which are referenced by their names
as defined in the source NESTML files.

Figure 7.11 summarizes the PyNEST API for neurons. As already mentioned the
name of the extension module corresponds to the name of the folder where models were
stored, e.g. models. The Create-function instantiates a neuron. Values of all variables
from the state and parameters blocks can be set through the SetStatus function.
Their current value can be retrieved using the function GetStatus.

All variables from the state block are marked recordable and can be accessed from
different devices, e.g. the multimeter. In the example, the values of the V_m variable
is recorded with a multimeter throughout the simulation. This way the trace of the
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import nest.* h neuron rc neuron: h
<<rc_neuron.nestm|>>
Install ("models") l—— 2V m mV = 0mV
//EZd
neuron = Create("rc_neuron")
equations:
SetStatus (neuron, {"V m":-72.0, V.m' = -V m/taum + I_syn/C m
"C m":300.0}) end
mmeter=Create ('multimeter')
SetStatus (multimeterl, {"record from":["V m"]}) L parameters:
 ——>C m pF = 250pF
Connect (mmeter, neuron) tau m ms = 10ms
I syn = 10pA
end
end

Figure 7.11: Using NESTML models trough the PyNEST API

membrane potential can be plotted and analyzed after the simulation.

7.3 Semantic checks of NESTML neurons and components

NESTML catches a lot of potential modeling errors and gives early feedback on the model
specification in order to speed up the model creation. This section describes all errors
which are identified by NESTML. The error messages are grouped by the sublanguage
in which the error occurs (cf. chapter 5).

7.3.1 Parse errors

Parse error messages issued by the generated MontiCore parser are often rather hard to
understand due to the fact that the AST cannot be constructed in case of an error in
this stage. To ease debugging, NESTML provides the entire failing line from the source
model in addition to the plain error description. Figure 7.12 demonstrates this behavior
with a little example. The neuron cannot be parsed due to the misspelled keyword
neuron. The position of the error as identified by the parser is reported as part of the
€ITor message.

1 sneruon iaf: € # error: wrong keyword NESTML

4 C__ pARSER ERROR:

sneruon iaf:
~ <1,0> :no viable alternative at input '\nneurons'

Figure 7.12: Parse error due to a misspelled keyword neuron.
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7.3.2 Semantic errors in the ProceduralDSL

This sections describes errors that can occur in the ProceduralDSL code that is used for
the implementation of the update and function blocks.

CODE_AFTER_RETURN: There are unreachable statements in the model. Statements
which are located after a return statement are never executed and therefore have no
effect on the behavior on the model behavior. Often this hints at a misplaced return
statement.

In general, detecting dead code is a complex task. However for a set of trivial and
common errors such checks can be easily performed. These are implemented in this
context condition.

if true: ProceduralDSL

return 1 all branches have a
else: return statement

end
emit spike () these statements

1
2
8
4 return 2
5
6
7 return 3 o are unreachable

Figure 7.13: CODE_AFTER_RETURN: A program with two statements which are unreach-
able. Since all branches of the if-statement have a return statement, the
emit_spike function call in line 6 and a return statement in line 7 will be
never executed.

FUNCTION_DOES_NOT_EXIST: A function call used in an expression or statement is un-
defined. Eeach function referenced in an expression or statement must be either a pre-
defined function (cf. section 5.3) or a function defined by the user.

ILLEGAL_EXPRESSION: The type of the expression is not compatible with the expected
type. NESTML is strongly and statically typed and types are checked during model
analysis. All type violations are reported as errors. This context condition checks that

e the type of the declaration is compatible with the type of the initialization expres-
sion

e the type of the right-hand side of an assignment is compatible with the type of its
left-hand side

e types of function arguments are compatible with the types in the function signature

e if-statements and while-loops have a boolean condition
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e iterator variables and upper/lower bounds in for-loops have numeric type.

1 var real = "Bob" ca # A real cannot be initialized with ProceduralDSL
2 # string an expression of the type

3 if var: € # if statement expects a boolean condition,

4 # var is real.

5 end

6 pow ("bob", "alice") e’ # pow is defined for numeric arguments

Figure 7.14: ILLEGAL_EXPRESSION: Type mismatch errors during the declaration of a
variable, an if-statement, and a function call. In line 1 a variable of type
real is initialized with an expression of the incombativle type string. Line
3 shows that var cannot be used as condition for the if condition, since
its type is real instead of boolean. The function pow in line 6 expects two
parameter of type real, while two string typed variables are given.

VARIABLE_EXISTS_MULTIPLE_TIMES: A variable name must be unique in every scope
(cf. section 6.2). A new scope is opened by each of the blocks in NESTML and every
variable in every scope must have a unique name. While it is possible to redefine variables
defined in an enclosing scope it is not possible to define two variables with the same name
in a single scope.

1 varl integer ProceduralDSL
2 varl integer € # varl is already defined in line 1

3 var2 integer

4 if true:

5 var2 real # OK: var2 integer is overloaded

6 end

Figure 7.15: VARTABLE_EXISTS_MULTIPLE_TIMES: varl (defined in line 1) is defined a
second time within the same scope in line 2 which leads to an error. In

contrast, var2 (defined in line 3) is redefined in a subscope in line 5 which
is allowed in NESTML.

VARIABLE_HAS_TYPE_NAME: In order to reduce the ambiguity of neuron models, NESTML
forbids the usage of type names as variable names. This also holds for physical units.
The declaration V. mV is thus invalid, since the name V is used for the physical unit
Volt. The list of NESTML types can be found in section 5.3 and section 5.6.

VARIABLE_DOES_NOT_EXIST: Every variable which is used in an expression or as a part
of a compound statement must be defined.
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VARIABLE_NOT_DEFINED_BEFORE_USE: A variable can be used in an expression or state-
ment only after it was defined. This rule applies only to variables which are defined in
an alogithmic way in an update or function block using the ProceduralDSL. Member
variables from the state, parameters or internals blocks and predefined variables are
conceptually always defined.

1 varl integer = varl € # Error: varl is used in own definition ProceduralDSL
2 var2 integer = var3 € # Error: var3 is defined in line 3
3 var3 integer = 0

Figure 7.16: VARIABLE_NOT_DEFINED_BEFORE_USE: In line 1 vari is used as part of its
own initialization expression which is not allowed. The initialization ex-
pression of var2 in line 2 uses a variable which is only defined in line 3 and
thus results in an error.

7.3.3 Semantic errors in the neuron specification

This section describes semantic errors in the specification of neurons and components
Technically they belong to the NESTML sub-language.

BUFFER_NOT_ASSIGNABLE: It not allowed to assign a value to an input-buffer although
ports in the input-block can be used as if they were member variables. However, since
the port only allows one-way communication, it is not possible to assign a value to it.
In order to fire a spike, emit_spike-function has to be used instead.

1 neruon iaf: NESTML
2 input:

3 spikes <- spike

4 end

8 update:

6 spikes = 12 € # Error: use emit spike to emit a spike

7 end

8 end

Figure 7.17: BUFFER_NOT_ASSIGNABLE: An attempt to assign a value to an input-buffer
in line 6, which is not possible and thus reported as an error.

CURRENT_PORT_IS_INH_OR_EXC: Current ports are not allowed to have additional mod-
ifiers. In contrast to spike-ports which can be specialized by stating an additional
modifier inhibitory or excitatory, currents are always lump together inhibitory and
excitatory currents. Therefore no additional specializations are allowed.
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1 neruon iaf: NESTML
2 input:

3 currents <- current # OK

4 currentsInh <- inhibitor current €3

5 currentsExc <- excitator current €

6 currentsInhExc <- inhibitory excitator current

7 end

8 end

Figure 7.18: CURRENT_PORT_IS_INH_OR_EXC: Additional modifiers for the current-port
are not possible. Only the fist port declaration in line 3 is valid. The

following three declarations in line 4, 5 and 6 use at least one modifier
which is forbidden.

FUNCTION_DEFINED_MULTIPLE_TIMES: Every function name must be unique and un-
ambiguous. In contrast to other programming languages like C++ and Java, function
overloading is not available in NESTML.

neruon iaf: NESTML

1
2 function f1(V mV) wvoid:

8 end

4 function f1(I pA) void: ° # f1 is alredy defined in line 2
5 end

6 end

Figure 7.19: FUNCTION_DEFINED_MULTIPLE_TIMES: Two function definitions for £1 with
conflicting types for the single parameter. The second definition of f1 is
forbidden.

FUNCTION_PARAMETER_HAS_TYPE_NAME: It is forbidden to name a parameter using the
name of an existing NESTML type in order to reduce ambiguity in neuron models. This
also applies to physical units. As a consequence the function f(V mV) has an invalid
parameter declaration, since the name V is the NESTML name for the SI unit Volt.
The list of NESTML types can be found in section 5.3 and section 5.6.

FUNCTION_RETURNS_INCORRECT_VALUES: The types of all return statements inside a
function must be compatible with the function’s declared return type. If an explicit
return type is omitted, the type void assumed.

INVALID_TYPE_OF_INVARIANT: The type of the invariant expression must be boolean.
Syntactically, it is possible to state an arbitrary expression as an invariant. However,
only invariants of the type boolean are reasonable. Therefore using a non-boolean
invariant is regarded as an error.
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1 neruon iaf: NESTML
2 function f1(V mV):

3 return 1 0 # The void return type is assumed

4 end

8

6 function f2(V m mV) integer:

7 return "" @ # string cannot be converted to integer

8 end

9 end

Figure 7.20: FUNCTION_RETURNS_INCORRECT_VALUES: Definition of two functions £1 and
£2 which have invalid return values. £1 contains a return statement of type
integer while its return type is void. £2 contains a return statement of
type string, but is declared to return type integer.

1 neruon iaf: NESTML
2 parameters:

3 V_th mV = -50mV [[ V._th >= -100mV ]] # OK

4 V_reset mV = -70mV [[ V_reset + 10mV ]] 0 # the type is mV and not

B # as expected boolean

6 end

7 end

Figure 7.21: INVALID_TYPE_OF_INVARIANT: A neuron model with a correct invariant in
line 3 and an incorrect invariant of type mV instead of the expected type
boolean in line 4.

MEMBER_VARIABLES_INITIALIZED_IN_WRONG_ORDER: A member variable can be used
only after it was defined. In every variable block each variable must be declared before
it is used in an initialization expression or invariant. Declarations in the parameters
and internals blocks only have access to variables which are defined in the same block.
Declarations in the state block can access variables from the parameters block in
addition.

MEMBER_VARIABLE_DEFINED_MULTIPLE_TIMES: Independently of the block, every name
used for a member variable must be defined only once. It is, however, possible to overload
variables in the update and function blocks.

MISSING_RETURN_STATEMENT_IN_FUNCTION: A function with non-void return type must
have an explicit return statement. In case exit points are in the branches of an if state-
ment, all branches must have an explicit return statement.

NEST_FUNCTION_COLLISION: Neurons and components are not allowed to have func-
tions which are a part of the prescribed API of the target platform in order to avoid
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neuron iaf:

1

2 state:

3 stateVar real = 1.0 + internalVar (3 # cannot access internals
4 end

5 parameters:
6 parameterVar real = stateVar €@ # parameters cannot access state
7

8

end # variables

internals:
9 internalVar real = stateVar ° # internals cannot access state
10 end # variables
11 end

Figure 7.22: MEMBER_VARIABLES_INITIALIZED_IN_WRONG_ORDER: Several violations of
initialization rules referencing variables from a different block. The ini-
tialization expression of the declaration in line 3 uses uses a variable from
the internals block, which is not possible for declarations in the state
block. The declarations in line 6 and 9 are invalid, because these declara-
tions in the parameters and internals blocks are using variables from the
state block in their initialization expression.

1 neuron iaf:
2 state:

3 V_m mV

4 end

5

6 parameters:

7 V_m mvV @ # V.m is already defined in line 3
8 end

9

10 update:

11 V.m mV # OK, the V.m from line 3 is overloaded
12 end

13 end

Figure 7.23: MEMBER_VARIABLE_DEFINED_MULTIPLE_TIMES: The member variable V_m is
defined once in line 3 and once in line 7 which is not allowed, although the
conflicting definitions are in different blocks. In contrast, the redefinition of
V_m as a local variable in the update block (line 11) is allowed.

compilation errors of the generated code.
The entire list of forbidden function for the NEST simulator is given in the following
table:

NEURON_WITH_MULTIPLE_QUTPUTS: Neurons must have exactly one output-block. Syn-
tactically it would be possible to define a neuron model with no or several output blocks.
However, a neuron without an output is not reasonable.
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1 neuron iaf:
2 function f1l() real:

3 @ # missing return statement

4 end

5 function f2(x real) real:

6 if x > 0:

7 return x * 2

8 elif true:

9 0 # either all branches have a return or the
10 # last statement in function is return

1.2 end

12 end

13 end

Figure 7.24: MISSING_RETURN_STATEMENT_IN_FUNCTION: Functions with missing return
statements in their body. £1 has return type real, but no return statement
is present in its body. Only one branch of the if condition in £2 has a
return statement.

1 neuron iaf: NESTML

2 function calibrate () wvoid: 0 # 'calibrate' is part of the
8 end # generated neuron implementation
4 end

Figure 7.25: NEST_FUNCTION_COLLISION: A neuron model containing the function cali-
brate which collides with the corresponding function in the generated code
for NEST.

Table 7.1: Lift of NEST functions which cannot be used in NESTML

calibrate check_connection connect_sender
get_status handle init_buffers_
init_state_ set_status update

NEURON_WITH_MULTIPLE_OR_NO_INPUTS: Neurons must have exactly one input-block.
Syntactically it would be possible to define a neuron model with no or several input
blocks. However, a neuron without inputs is not reasonable and multiple inputs should
be defined in the same block to increase the clarity of the model.

NEURON_WITH_MULTIPLE_OR_NO_UPDATE: Neurons must have exactly one update-block.
Syntactically it would be possible to define a neuron model with no or several update
blocks. However, a neuron without an update block is not reasonable and all update
statements should be defined in a single block to increase the clarity of the model.
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VARIABLE_BLOCK_DEFINED_MULTIPLE_TIMES: Every NESTML block must be defined
at most once. Syntactically it would be possible to define a neuron model with several
variable blocks of the same type, e.g. several state-blocks. However, a neuron with
multiple state blocks is ambiguous.

7.3.4 Semantic errors in the equation specification

This section explains semantic checks for errors in the definition of differential equations.

MISSING_INITIAL_VALUE: For every order of the differential equation an initial value
must be stated. NESTML allows the specification of differential equations with arbitrary
order. In order to make the specification unambiguous, an initial value must be stated
for every order from 0 up to the highest order minus one.

neuron iaf: NESTML

1

2 state:

3 V.mmV = OmV # the initial value for the order 0

4 end € # There is a missing initial value for V.m', e.g V.m' mV/ms = OmV/ms
8 equations:

6 Vm' =Vm'

7 V.m'' =V m/taum + I_syn/C_m€# the order of the equation is 2

8 end

9 end

Figure 7.26: MISSING_INITIAL_VALUE: A neuron model with a missing initial value. The
highest order of the differential equation for the variable V_m in line t is 2
denoted by the two ’> characters. Thus, initial values for order 0 and 1 must
be given. As line 3 only specifis an initial value for order 0, this is treated
as an error.

EQUATIONS_ONLY_FOR_STATE_VARIABLE: Only variables from the state-block can be
further specified through a differential equation. As state variables are the only ones
which evolve over time, a differential equation in the equations-block can be defined
only for variables in the state block.
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Kapitel 8
Ein Codegenerator fiir den NEST-Simulator

Nachdem die grundsétzliche Funktionsweise und die wichtigsten Ausgabeartefakte des
NESTML-Generators fiir NEST in Kapitel 7 erldutert wurden, stellt dieses Kapitel den
Generierungsprozess der ausfithrbaren NEST-Implementierung aus NESTML-Modellen
vor. Mithilfe des generativen Ansatzes konnen diese Neuronen in den NEST-Simulator
integriert und fiir neurowissenschaftliche Simulationen verwendet werden.

Um Neuronenmodelle in die Simulationsumgebung zu integrieren, bietet der NEST-
Simulator einen vordefinierten Erweiterungsmechanismus® an. Die Benutzung dieses Me-
chanismus erfordert einiges an Wissen sowohl {iber die Modell- und Modulschnittstelle
als auch iiber die Interna des Build-Werkzeugs zur Integration neuer Neuronenmodelle.

Der generative Ansatz bietet eine einfache Moglichkeit, dem Modellierer die aufwendi-
gen und fehleranfilligen Aufgaben wihrend der manuellen Implementierung des NEST-
Codes abzunehmen. Die Konsolen-API des entwickelten NEST-Generators schafft eine
transparente und leichtgewichtige Integration der modellierten Neuronenmodelle in den
NEST-Simulator (vgl. Abschnitt 8.3).

Ein neues Neuronenmodell wird als C++4-Klasse in den NEST-Simulator integriert.
Die Ableitung dieser Klasse aus einem modellierten Neuron ist in Abschnitt 8.1 beschrie-
ben. Mehrere Neuronen konnen dann zum einen NEST-Erweiterungsmodul zusammen-
gefasst werden. Dieses Modul, das wiederum aus einer C++-Klasse mit vordefinierter
Signatur besteht, kann schlieBlich mithilfe des spezialisierten und Modell-abhéingigen
CMake-Scripts konfiguriert, kompiliert und in den Simulator integriert werden. Der Auf-
bau dieser Modulklasse wird in Abschnitt 8.2 vorgestellt.

8.1 Generierung des Simulationscodes fiir den NEST-Simulator

NEST ist ein neuronaler Simulator [GD07, KMW™17], der in der nativen Program-
miersprache C++ implementiert ist. Fiir die zeitliche Simulation verwendet NEST ein
diskretes Zeitmodell [MMG™05], d.h. die modellierte Zeit ist in ein festes Gitter von Inter-
vallen mit fester und dquidistanter Linge eingeteilt [MSPDO07]. Neuronen und Synapsen
werden jeweils nur an den Intervallgrenzen aktualisiert. Somit kénnen die Elemente des

"http:/ /nest.github.io/nest-simulator /extension_modules
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simulierten Netzwerkes (Neuronen, Synapsen, Mef- und Stimulationsgeriite) Ereignisse
nur an den Grenzen des jeweiligen Zeitintervalls austauschen. Die Linge eines Zeitinter-
valls wird als die Auflésung der Simulation bezeichnet. Die Auflésung kann individuell
eingestellt und beim Start einer Simulation jeweils neu eingestellt werden.

Der NEST-Simulator verfiigt iiber zwei native Schnittstellen zur Simulationssteuerung.
Die erste Schnittstelle ist als eine DSL mit dem Namen Simulation Language Interpre-
ter (SLI) realisiert [GD07]. SLI ist eine stackbasierte Sprache, die von PostScript [Pre85]
inspiriert ist. Die zweite Schnittstelle ist PyNEST [EHM™09]. Dabei handelt es sich um
eine Python-API, mit der NEST aus einem Python-Programm gesteuert werden kann.
PyNEST ermoglicht es, NEST nahtlos mit anderen in Python erstellten Werkzeugen zu
integrieren. Die beiden Schnittstellen bieten denselben Funktionsumfang. Da PyNEST
die modernere und komfortablere Schnittstelle ist, wird nur sie im Laufe der Ausarbei-
tung weiter behandelt.

. . ‘ \
;lmport nest. *oads the "models.so" library PyNEST
3 Tnstall ("models") < ) . ;

. nstall ("models") rc_neuron's constructor is called

5 neuron = Create("rc_neuron") &j
rc_ neurons's set_status(...) 6

rc_neurons's get_status (. L,ﬁ 7 SetStatus ("rc_neuron", { "V_m":0.0})
(___> 8C_m = GetStatus ("rc_neuron", "C_m")
9
10 multimeter = Create("multimeter") V_mmust be recordable

11 SetStatus (multimeter, { "record from":["V_m"]})
12 Connect (multimeter, neuron)
13

14 dc = Create("dc_generator", neuron)
test_handle_event (CurrentEvent) 15 getgtatus(dc, {"amplitude":1450.0})
\__ > 16 Connect (dc, neuron)
17
18 spikegen = Create("spike_ generator")
__—>19 Connect (neuron, spikegen)

test_handle_event (SpikeEvent)

20
21 Simulate (1000.0) update () \rc_neuron_dynamics ()
rc_neuron's destructor is called 22 \/ | N | | | |
(__> 23 ResetKernel () N T ‘ N T ‘

handle (SpikeEvent) handle (CurrentEvent)

Abbildung 8.1: Uberblick der Funktionalitét, die das integrierte NESTML-Modul im
NEST-Simulator zur Verfiigung stellt.

Abbildung 8.1 stellt am Beispiel eines PyNEST-Skripts die Funktionsweise der ge-
nerierten Implementierung des Neurons rc_neuron in NEST vor (vgl. Abbildung 8.2).
Die in der Abbildung motivieren Funktionen werden im Folgenden genauer eingefiihrt.
Eine zwingende Voraussetzung fiir die Ausfithrung des abgebildeten Skriptes ist die In-
tegration des entsprechenden Moduls in den NEST-Simulator (vgl. Abschnitt 7.2 fiir die
Beschreibung der Integrationsschritte).

Das generierte Modul und die darin enthaltenen Neuronen werden durch den Funkti-
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onsaufruf Install in Zeile 3 des Skriptes verfiigbar gemacht. In Zeile 5 wird ein Exemplar
des Neuronenmodells rc_neuron instanziiert. Dabei wird sein Konstruktor aufgerufen.
In den Zeilen 7 und 8 werden Variablen, die innerhalb dieses Neurons spezifiziert sind,
mithilfe der Funktionsaufrufe der Funktionen GetStatus und SetStatus abgefragt und
gesetzt. Diese Anfragen leiten an die get_status- und set_status-Methoden des Neu-
rons weiter. In Zeile 10 wird ein Multimeter (ein Messgerit fiir verschiedene analoge
Grofen) erstellt. Die aufzunehmende Grofie wird in Zeile 11 auf die Neuronenvariable
V_m gesetzt. Anschlieend wird das Multimeter in Zeile 12 mit dem Neuron verbunden,
um den Wert V_m dieses Neurons wihrend der Simulation aufzuzeichnen. In den Zei-
len 14-16 wird ein Gleichstromgenerator erzeugt und mit dem Neuron verbunden. Die
Amplitude des Generators wird auf 1450.0 pA gesetzt, was zu regelmiiffigen Spikes des
Neurons fiihrt. In den Zeilen 18 und 19 wird ein Spikegenerator erzeugt und mit dem
Neuron verbunden. Im vorliegenden Beispiel sendet er keine Spikes an das Neuron und
dient nur der Demonstration. In beiden Féllen, in denen ein Generator mit einem Neu-
ron verbunden wird, ist die Methode test_handle_event fiir die korrekte Verbindung
verantwortlich.

In Zeile 21 wird eine Simulation fiir 1000 Millisekunden gestartet. Wéhrend dieser
Simulationszeit erhélt das Neuron Ereignisse vom Typ SpikeEvent vom Spikegenera-
tor und vom Typ CurrentEvent vom Gleichstromgenerator. Die im Neuronenmodell
definierten Differenzialgleichungen werden mithilfe der Methode rc_neuron_dynamics
propagiert. Schliefllich wird in Zeile 23 der Zustand des NEST-Simulators mithilfe der
Funktion ResetKernel zuriickgesetzt. Dabei wird unter anderem der Destruktor des
Neurons rc_neuron aufgerufen.

Abbildung 8.2 stellt die Struktur der NEST-Neuronenklasse anhand des konkreten
Neurons rc_neuron vor, das in Kapitel 7 eingefiihrt wurde. Die Implementierung eines
Neurons fiir den NEST-Simulator ist in einer Klasse gekapselt, in die vier C++-structs
eingebettet sind, auf die die Ports und der Datenzustand des NESTML-Neurons abge-
bildet wird. Dariiberhinaus werden Getter- und Setter-Methoden fiir alle Datenmember
generiert.

Die Getter- und Setter-Methoden bilden eine Zugriffsfassade (vgl. das Fassadenmuster
aus [GHJV93]), die einen einheitlichen Zugriff auf die Variablen und Ports des Neurons
in generiertem und handgeschriebenem Code ermoglicht (vgl. Unterabschnitt 8.1.7 fiir
die Einfiihrung von handgeschriebenem Code). Handgeschriebener und generierte Code
kann stets auf eine konsistente Modell-API zuriickgreifen, um eigene Logik umzusetzen.
Einerseits vereinfacht das die Erstellung von handgeschriebenen Erweiterungen, anderer-
seits konnen mehrere NESTML-Neuronen unabhéngig und modular verarbeitet werden,
da die Resultate der Codegenerierung auf Basis dieser konsistenten API zusammenge-
fiihrt werden.

Der NEST-Generator erstellt eine Menge von im NEST-Simulator vorgeschriebener
Methoden, mit denen das Kommunikations- und Laufzeitverhalten des Neurons definiert
wird. Die wichtigsten Methoden werden in der folgenden Auflistung erldutert:
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neuron rc neuron: b b
state: NESTML /\
VmmVv=ETL [[V.m > -90.0mV]]
end State_ rc_neuron
j

@ rc_neuron()

equations: double V_m 1S_
Vm' = -(Vm-E L)/taum + I syn/C_ m— | _Nrc—neuron() .
end int rc_neuron_dynamics(double t,
double y[],
parameters: Parameter_ double f],
C_m pF - 250pF double V_m void* pnode)
taumms = 10ms ~ —0 | 5 double tau m J/ getter-/setter-methods
I_syn pA = 10pA double | syn 1P_ | get_status(DictionaryDatum& d)
E_L mV = -65mV —SY set_status(DictionaryDatum& d)
end

callibrate_()

; . Variables_ " update()
internals : ) i init_buffers_()
resolution integer = resolution

() : ; .
int resolution handles_test_event(SpikeEvent e, rport rp)
end \¥_,> - handle(SpikeEvent e) calibrate() ~_

update:

integrate_odes ()

end

input: /\_/
spikes <- spike
end \

output: spike
end

Buffers_

RingBuffer spikes

Abbildung 8.2: Uberblick der generierten Implementierung des NEST-Neurons anhand
einer vereinfachten Version des NESTML-Neurons rc_neuron.

Getter- und Setter-Methoden: Fiir alle Variablen aus den Variablenblocken eines
Neurons (d.h. aus den state-, parameters- und internals-Blécken) und fiir jeden
Port aus dem input-Block wird eine Getter-Methode generiert. Zusétzlich wird
eine Setter-Methode fiir alle Variablen aufler den function-Variablen aus allen
Variablenblocken erstellt.

get_status: Mithilfe dieser Methode werden Werte von Variablen eines Neurons in
PyNEST ausgelesen.

set_status: Mithilfe dieser Methode werden Werte von Variablen eines Neurons von
PyNEST aus gesetzt.

handle_test_event, handle: Mithilfe einer handle_test_event-Methode mit der
entsprechenden Signatur signalisiert das Neuron dem NEST-Simulator, welche Ty-
pen von Ereignissen das Modell unterstiitzt und auf welchem Port diese vom Neu-
ron empfangen werden konnen. Die momentan unterstiitzten Ereignistypen sind
SpikeEvent und CurrentEvent. handle_test_event wird beim Aufbau des neu-
ronalen Netzwerkes im Simulator aufgerufen, um die Kompatibilitdt von Sender
und Empfianger sicherzustellen. Die dazu passende handle-Methode wird zur Si-
mulationszeit aufgerufen, wenn das Neuron ein Ereignis des entsprechenden Typs
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an den vorgesehenen Port erhélt.
calibrate_: Diese Methode initialisiert alle Hilfsvariablen aus dem internals-Block.

init_buffers_: Diese Methode initialisiert NEST-Datenstrukturen, in denen die Er-
eignisse der input-Ports gespeichert werden.

rc_neuron_dynamics: Diese Methode fiihrt einen Schritt der Propagation der im Neu-
ronmodell definierten Differenzialgleichungen durch.

update: Diese Methode implementiert das Laufzeitverhalten des Neurons. Sie wird
nach jedem Ubergang ins neue Gitterintervall wihrend der Simulation aufgerufen,
damit das Neuron seinen Zustand entsprechend der Zeitentwicklung aktualisieren
kann.

Im Weiteren wird die Generierung einzelner Elementen und deren Zielsetzung er-
klart. Die Generierungsaspekte werden anhand einer an die Modelltransformationsnota-
tion [Weil2] angelehnten Notation [Rum12] visualisiert. Zur Veranschaulichung werden
jeweils Ausschnitte des Neurons aus Abbildung 8.2 verwendet.

8.1.1 Abbildung der Neuronendeklaration

Jedes NESTML-Neuron wird in eine eigenstédndige C++-Klasse transformiert. Abbil-
dung 8.3 demonstriert die Deklaration dieser Klasse fiir das Neuron rc_neuron. Wie alle
anderen Neuronen im NEST-Simulator erweitert auch rc_neuron die NEST-Basisklasse
Archiving_Node. Da die C++-Programmiersprache iiber keine automatische Speicher-
verwaltung (insb. Garbage Collection) verfiigt, muss der dynamisch belegte Speicher
im Destruktor der Klasse manuell freigegeben. Das Loggen des Neuronenzustands, der
sich typischerweise auf die Werte der Variablen aus dem state-Block beschriinkt, findet
mithilfe der statischen Variable recordablesMap_ statt.

Aufgrund von potenziellen Probleme beim Zusammenfiigen der Quelltexte und dem
anschlieendem Linken der bindren Artifakten in C++ [Str13] ist es eine iibliche Konven-
tion, Klassendeklarationen mit einer Folge von ifndef, define, endif Priprozessordi-
rektiven zu schiitzen. Ansonsten konnte dieselbe Klassendeklration vom C++-Compiler
mehrfach iibersetzt werden, was zu einem nicht ausfithrbaren Programm fithren wiirde.
Die Priaambel der Klassendeklaration bindet eine Menge von notwendigen Headerdatei-
en aus der NEST-Installation ein. Der Klassenname des NEST-Neurons entspricht im
generierten Code dem des entsprechenden NESTML-Neurons.

Alle Variablen, deren Historie wiihrend der Simulation potenziell aufgenommen wer-
den soll, miissen mit dem entsprechenden insert-Aufruf in der Klasse RecordablesMap
registriert werden. Wie in Abbildung 8.3 zu sehen ist, wird beim insert-Aufruf der
Name der Variable und ein Zeiger auf die korrespondierende Getter-Methode angege-
ben. Anhand des Namens kénnen die Werte dieser Variable von PyNEST aus ausgelesen
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neuron rc neuron: NESTML

b
end ﬂ
#ifndef RC NEURON H iy

#define RC NEURON H

// Includes from nestkernel:
#include "archiving node.h"
#include "connection.h"

/]

class rc neuron : public Archiving Node {
public:
rc_neuron() ;
~rc_neuron() ;
private:
/]
static RecordablesMap< rc neuron > recordablesMap_;

}

template <> void RecordablesMap< rc_neuron >::create() {
insert ( "V.m", &rc_neuron::get V. m );

}

#endif

Abbildung 8.3: Auszug der aus dem Neuron rc_neuron generierten CH+-
Klassendeklaration.

werden (vgl. Abbildung 8.1). Der Generator benutzt dazu stets den Namen der Varia-
ble im Modell, um die Konsistenz zwischen dem Namen im Modell und dem Namen,
der in PyNEST zur Verfiigung steht, zu gewéhrleisten. Im Normalfall werden alle Va-
riablen aus dem state-Block in die RecordablesMap aufgenommen. Weitere Variablen
konnen aufgenommen werden, wenn deren Deklaration mit dem Schliisselwort record
gekennzeichnet wird. Dies erleichtert insbesondere das Debugging wihrend der Modell-
entwicklung.

Im Weiteren wird die Generierung der in Abbildung 8.2 aufgelisteten C++-Structs
und Methoden erldutert, die innerhalb der Klassendeklaration implementiert sind.

8.1.2 Abbildung des Datenzustandes

Jeder Variablenblock von NESTML wird in eine C++-struct transformiert, die die
Variablen des jeweiligen Blockes kapselt. Abbildung 8.4 zeigt exemplarisch die Transfor-
mation eines Variablenblockes am Beispiel des parameters-Blockes, der auf eine Para-
meters_-Struct abgebildet wird. Die iibrigen NESTML-Variablenblocke (d.h. die state-
und internals-Blocke) werden entsprechend transformiert. Der state-Block wird da-
bei zu einer State_-struct, der internals-Block zu einer Variables_-struct trans-

142



8.1 GENERIERUNG DES SIMULATIONSCODES FUR DEN NEST-SIMULATOR

formiert.

parameters:

Cm pF = 250pF

tau_m ms 10ms

I syn pA = 10pA # constant current
end

tifruct Parameters_ { Qv; CH+

double C m;

double tau m;

double I_syn // constant current
}P_;

TypeCqnverter

double get I syn() { return P .I syn; }

void set I syn(double I syn) { P_.I syn = I syn; }

Abbildung 8.4: Exemplarische Ableitung der Parameters_-struct aus dem parame-
ters-Block. Die Abbildung demonstriert die Erstellung einer eingebet-
teten C++-struct, sowie der Getter- und Setter-Methoden.

Jede Variable aus dem parameters-Block wird auf eine entsprechende Variable in der
C++-struct abgebildet. Dabei wird der Name der Variable aus dem NESTML-Modell
als Variablenname in der C++-Struct iibernommen.

Alle SI-Typen werden auf den Typ double abgebildet, da der konkrete SI-Typ fiir die
Simulation nicht relevant ist und die explizite Implementierung der SI-Typen im gene-
rierten C+-+-Code nur die Performance verschlechtern wiirde. Da Code nur fiir Modelle
generiert wird, die alle Kontextbedingungen erfiillen ist die Typkorrektheit bereits ga-
rantiert und muss zur Laufzeit nicht erneut gepriift werden (vgl. Abschnitt 7.3). Die
Abbildung der anderen NESTML-Typen ist in Abschnitt 5.3 zusammengefasst.

Der TypeConverter ist fiir die Konvertierung von NESTML-Typen in entsprechende
C++-Typen verantwortlich. Bei Bedarf kénnte der TypeConverter durch die Subklas-
senbildung erweitert werden um die Konvertierung der Typen an neue Anforderungen
anzupassen. Zum Beispiel konnte durch die Verwendung des long double- bzw. float-
Typs anstelle vom Typ double eine hohere bzw. niedrigere Genauigkeit auf Kosten eines
niedrigeren bzw. hoheren Speicherverbrauches erreicht werden. Um die Versténdlichkeit
des generierten Codes zu erhohen bzw. auch die Generierung von Dokumentation zu
ermoglichen, werden Modellkommentare in den generierten C++-Code iibernommen.

Fiir jede Struktur wird eine klassenlokale Variable instantiiert: S_ fiir den state-Block,
V_ fiir den internals-Block und P_ fiir den parameters-Block.

Schliefllich wird fiir jede Variable aus allen Variablenblécken und fiir alle Ports aus
dem input-Block je eine Getter-Methode generiert. Somit werden explizite und konsis-
tente Schnittstellen fiir Variablen und Ports geschaffen. Diese Schnittstellen abstrahieren
von der konkreten Implementierung und erhéhen die Modularitit des generierten Codes.
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Mithilfe dieser Schnittstellen kann Code, der durch verschiedene Generatoren produziert
wird, transparent komponiert werden. Auch handgeschriebener Code kann auf diese Wei-
se mit dem generierten Code interagieren.

Variablen aus allen Variablenblocken kénnen mit Standardbelegungen initialisiert wer-
den. Die Initialisierung der Variablen aus den state- und parameters-Blocken findet im
Klassenkonstruktor statt. Dabei werden zuerst alle parameters-Variablen und erst dann
alle state-Variablen initialisiert. Die Reihenfolge dieser Blocke im NESTML-Modell ist
unerheblich. Abbildung 8.5 demonstriert diesen Sachverhalt an einem Beispiel. Zwar
steht der state-Block dort im Neuron vor dem parameters-Block, dennoch werden die
Variablen aus dem parameters-Block im Konstruktor zuerst initialisiert. Dadurch wird
es moglich, die parameters-Variablen im state-Block fiir die Initialisierung zu verwen-
den. Die Verletzung dieser Konvention wird durch eine Kontentextbedingung gepriift
(vgl. Abschnitt 7.3).

neuron rc neuron: NESTML

state:
Vmmv=EL
end

parameters:
E L mV = -65mV
end
end ﬂ

rc_neuron(): Archiving Node(), P (), S_(), B_() {
recordablesMap .create();

// initialize parameters

P .E L = -65.0;

// initialize state

S_.V.m=EL;

Abbildung 8.5: Exemplarische Initialisierung der Variablen mit den Standardbelegungen
aus den state- und parameters-Blocken im Klassenkonstruktor.

Die Variablen aus dem internals-Block werden in der calibrate_-Methode initiali-
siert. Die calibrate_-Methode wird bei jedem Aufruf der Simulate-Methode aufgerufen
wird. Dadurch kénnen in diesem Block Variablen definiert werden, die vom Wert der Si-
mulationsauflésung abhéngen. In Abbildung 8.6 wird die Variable resolution auf den
Wert der Simulationsauflésung initialisiert. Dafiir verantwortlich ist die in NESTML
vordefinierte resolution-Methode verwendet. Im generierten Code wird diese Methode
auf einen C++-Ausdruck abgebildet, der den Wert der Simulationsauflésung in NEST
annimmt.

Fiir die EzpressionsiDSL-Subsprache (vgl. Kapitel 5 fiir einen Uberblick aller NESTML-
Subsprachen) wurde ein modularer und erweiterbarer PrettyPrinter [V6111] bzw. Unpar-
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. NESTReferenceConverter N
internals: NESTML

resolution integer = resolution()

end ﬂ

void calibrate () { @ CH+ |
B_.logger .init();
V_.resolution = nest::Time::get resolution().get ms()

}

Abbildung 8.6: Initialisierung der NEST-Variablen mit den Standardbelegungen aus dem
internals-Block

ser [PE8S8] entwickelt. Die Konvertierung des ExpressionsDSL-Codes, der als Initialisie-
rungsausdruck der Variable resolution verwendet wird, findet mithilfe dieses Pret-
tyPrinters statt. Aufgrund der Moglichkeit, den PrettyPrinter zu konfigurieren, bietet
er hohes Mafl an Wiederverwendung. Im vorliegenden Fall wird der PrettyPrinter mit
einem NESTReferenceConverter komponiert. Der NESTReferenceConverter ist dann
dafiir verantwortlich, die Variablen- und Funktionsreferenzen in entsprechende NEST-
Referenzen abzubilden. Beispielsweise wird aus der vordefinierten NESTML-Funktion
resolution() ein NEST-spezifischer C++-Ausdruck generiert, der die Auflésung der
Simulation berechnet. Die genaue Abbildungsvorschrift ist im NESTReferenceConver-
ter gekapselt und kann fiir die Verwendung vom PrettyPrinter in unterschiedlichen
Kontexten durch andere Konverterklassen ausgetauscht werden.

NEST erlaubt es, die Werte der Variablen aus dem state- bzw. parameters-Block
von PyNEST aus zu setzen und auszulesen. Diese Funktionalitdt ist in den get_sta-
tus- und set_status-Methoden gekapselt. Abbildung 8.7 demonstriert exemplarisch die
Ableitung dieser Methoden anhand des state-Blockes im Neuron rc_neuron.

Das Kernkonzept fiir die Kommunikation mit PyNEST ist ein assoziatives Datenfeld
(engl: dictionary), das den beiden Methoden als Parameter iibergeben wird. Diese Da-
tenstruktur bildet einen Namen auf seinen aktuellen Wert ab. Die get_status-Methode
wird benutzt, um den aktuellen Wert einer Variablen aus dem Neuron auszulesen. Dafiir
wird die vordefinierte NEST-Funktion def benutzt. Die set_status-Methode wird be-
nutzt, um einen neuen Wert einer Variablen aus PyNEST im Neuron zu setzen. Dabei
wird die NEST-Funktion updateValue benutzt, um einen spezifischen Wert aus dem
Datenfeld auszulesen und diesen Wert der Variable zuzuordnen. Der passende Eintrag
im Datenfeld wird anhand des Variablennamens identifiziert. Auch hier stellt der NEST-
Generator sicher, dass der Variablenbezeichner, der beim Funktionsaufruf als String spe-
zifiziert ist, und die entsprechende C++-Variable konsistent sind.

Schlieflich werden am Ende der set_status-Methode alle Invarianten gepriift, die im
parameters- oder state-Block definiert sind. Wenn eine Invariante beim Setzen eines
neuen Wertes verletzt wird, 16st die set_status-Methode eine C++-Exception aus. Die
verletzte Invariante wird als Teil der Fehlerbeschreibung in der C++-Exception codiert.
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state:

V.mmV = -65.mV [[V.m >= -90.0mV]]
end ﬂ
L C++ |
void get_status( DictionaryDatum& __d ) const {
def< double >( __d, "v.m", S_.V.m );
}

void set_status( DictionaryDatum& _ d ) const {

updatevalue< double >( __d, "v.m", S_.V.m );
if (! (s_.Vv_m => -90.0)) {
BadProperty( "'V.m >= -90.0mV' constraint is violated" );

}

}

Abbildung 8.7: Exemplarische Generierung der get_status- und set_status-Methoden
aus dem state-Block. get_status sammelt Werte aller relevanten Varia-
blen in __d. set_status liest die Werte fiir die relevanten Variablen aus
__d und weist diese Werte den entsprechenden Variablen in der C+-+-
Implementierung zu.

Somit ist die Fehlernachricht fiir den Modellierer verstidndlich, da er die Fehlernachricht
auf Basis des Modells nachvollziehen kann.

8.1.3 Abbildung von Ports

Der input-Block eines Neurons, der in NESTML aus einer nicht leeren Menge von be-
nannten Ports besteht (vgl. Abschnitt 5.2 fiir die Beschreibung dieser Modellierungs-
elemente), wird auf die Buffers_-struct abgebildet. Jedes Vorkommen eines Ports im
Block wird in eine Variable vom Typ RingBuffer transformiert. In diesem Puffer werden
Ereignisse gespeichert, die am korrespondierenden Port ankommen. Per Konvention ent-
hélt die Buffers_-struct eine zusétzliche Logger-Variable, mit der der Datenzustand
des Neurons protokolliert werden kann. Genauso wie schon im Fall der Strukturen fiir
die Blockvariablen, wird auch die Buffers_-struct als klassenlokale Variable B_ instan-
ziiert.

Abbildung 8.8 demonstriert die exemplarische Generierung der Buffers_-struct. Um
eine Getter-Methode fiir Ports zu generieren, wird fiir jeden Port eine zusétzliche Variable
erzeugt. Der Name dieser Variable setzt sich aus dem Portnamen und dem Suffix _last_-
sum zusammen. Wahrend der Simulation enthélt diese Variable den Wert aller im letzten
Gitterfenster am Port angekommenen Spikes oder Strome (falls der korrespondierende
Port vom Typ current ist). Alle _last_sum-Variablen werden anschlieffend benutzt, um
die Getter-Methoden fiir die Ports umzusetzen. Somit wird die gleiche Schnittstelle wie
bei allen anderen Blockvariablen eingehalten, um auf die Modellelemente in der C++-
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input:

spikes <- spike
end ﬂ

struct Buffers ({ %v$ CH+
RingBuffer spikes;
double spikes last sum;
//! Logger for all analog data
UniversalDatalogger< rc_neuron > logger ;
} B_; // Create class variable B_;

double get spikes() { return spikes last sum; }

void init buffers () {
B .spikes.clear(); // includes resize
Archiving Node::clear history();

}

Abbildung 8.8: Exemplarische Generierung der Buffers_-struct aus dem input-Block.

Implementierung zuzugreifen.

Zwar konnen Ports aus dem input-Block weder mit initialen Werten belegt werden
noch aus PyNEST gesetzt werden, dennoch muss auch fiir diesen Block Initialisierungsco-
de generiert werden. Dafiir wird die init_buffers_-Methode iiberschrieben. Dabei wer-
den die fiir das Speichern der Ereignisse verantwortliche RingBuffer-Datenstrukturen
geleert.

Die init_buffers_-Methode aus Abbildung 8.8 demonstriert, wie diese Methode fiir
das Neuron rc_neuron aussieht. Zum einen wird innerhalb dieser Methode der Inhalt
des Puffers geleert. Zum anderen wird ein per Konvention festgelegter Nebeneffekt der
Methode ausgefiihrt. Mit dem Aufruf der clear_history-Methode wird die bis dahin
aufgenommene Historie des Neurons zuriickgesetzt.

Im NEST-Simulator wird die Kompatibilitéit zwischen Sender und Empféanger bereits
wéhrend der Erstellung von Verbindungen getestet, um Fehler zur Laufzeit zu vermei-
den. Diese Priifung wird durch das Uberschreiben der test_handle_event-Funktion mit
der passenden Signatur vorgenommen. Dabei soll die Implementierung dieser Methoden
einem vorgesehenen Protokoll [KSE114] folgen.

Abbildung 8.9 demonstriert die Kompatibilitdtspriifung der Ports im Neuron rc_neu-
ron fiir den Empfang der Ereignisse vom Typ SpikeEvent. Dabei wird die handles_-
test_event-Methode durch die Neuronenklasse iiberschrieben. Innerhalb dieser Metho-
de teilt das Neuron mit, dass es Ereignisse vom Typ SpikeEvent am Port mit der Num-
mer 0 empfangen kann. Fiir den Empfang der Ereignisse i{iber einen current-Port wiirde
einfach eine weitere Methode mit neuer Signatur generiert, in der der Typ SpikeEvent
durch den Typ CurrentEvent ersetzt wiirde. Da die Basisklasse fiir alle moglichen Event-
typen eine C++-Exception wirft, wird durch diese Uberladung eine Kompatibilitit des
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input:

spikes <- spike
end ﬂ

port handles test event( SpikeEvent&, rport r type ) {
if (r_type != 0)
throw UnknownReceptorType (r type , get name() );
return O;

) N___Inherited method that
returns the class name

C++

void handle( SpikeEvent& e ) {
double weighted spike = e.get weight() * e.get multiplicity();
B .spikes.add value(e.get rel delivery steps(
kernel () .simulation manager.get slice origin() ),
weighted spike );

}

Abbildung 8.9: Exemplarischer Code fiir die Kompatibilitdtspriifung der Ports aus dem
input-Block im NEST-Simulator.

Neurons mit dem entsprechenden Ereignistyp signalisiert.

SchlieBlich verarbeitet die handle-Methode ankommende Ereignisse vom Typ SpikeE-
vent. Dabei wird stets dasselbe Verfahren angewandt: das Gewicht des Ereignisses wird
mit seiner Multiplizitit verkniipft und im entsprechenden RingBuffer gespeichert. Wenn
im Neuronenmodell unterschiedliche Ports fiir inhibitory- und excitatory-Spikes de-
finiert werden, &ndert sich die generierte Implementierung nur insofern, dass eine Fall-
unterscheidung anhand des Vorzeichens beim Gewicht des Spikes stattfindet. Positiv
gewichtete Spikes werden dann entsprechend in den excitatory-Port und negativ ge-
wichteten Spikes in den inhibitory-Port sortiert. Somit sind die ersten beiden moglichen
Fille fiir die Spezifikation von Ports aus Abschnitt 5.2 behandelt.

In Fall (C) aus Abbildung 5.9 verfiigt das Neuron iiber mehrere Ports desselben
Typs. In diesem Fall wird die Generierung der Buffers_-struct und der Registrierung-
bzw. Verarbeitungsmethoden verdndert. Dabei folgt die generierte Implementierung die-
ser Neuronen einer NEST-Konvention. Anstelle der einzelnen RingBuffer-Instanzen fiir
jeden Rezeptorport wird ein Array von RingBuffer-Variablen und ein Enum mit symboli-
schen Indizes generiert (vgl. SynapseTypes und spike_inputs_). Die Namen der Indizes
entsprechen den Bezeichnern, die im Neuron fiir die Ports benutzt wurden. Die hand-
les_test_event-Methode verhandelt dabei, wie die Rezeptornummern auf die Portnum-
mer abgebildet werden. Die handle-Methode leitet die Ereignisse, die an einem Rezeptor
ankommen, an den korrespondierenden RingBuffer weiter.

Auch hier garantiert erst der generative Ansatz die konsistente Umsetzung der beiden
handles_test_event und handle-Methoden in allen unterstiitzen Konstellationen. In
manuell erzeugten Neuronenmodellen fiithrte die Komplexitédt in diesem Bereich oft zu
Fehlern und einem langwierigen Entwicklungsprozess.
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input:

receptor A <- spike
receptor B <- spike
end ﬂ

enum SynapseTypes { Jv; C+t |
INF = 0, receptor A, receptor B, SUP };

struct Buffers { std::vector< RingBuffer > spike inputs_; }

port handles test event( SpikeEvent&, rport receptor type ) {
if ( ! ( INF < receptor type && receptor type < SUP ) ) {
throw UnknownReceptorType ( receptor type, get name() );
}
else {
return receptor type - 1;
}
}

void handle( SpikeEvent& e ) {

B .spike inputs [ e.get rport() ].add value(
e.get rel delivery steps(
kernel () .simulation manager.get slice origin() ),

e.get weight() * e.get multiplicity() );
}

Abbildung 8.10: Exemplarische Abbildung des input-Blockes mit mehreren Rezeptoren.

8.1.4 Abbildung von update- und function-Blécken

update- und function-Blocke werden zu eigenstdndigen Methoden in der generierten
Neuronenklasse. Methoden, die im Neuron definiert sind, werden zu gleich benannten
Methoden in der Neuronenklasse. Die verwendeten NESTML-Typen werden zu den ent-
sprechenden C++-Typen konvertiert. Der in der Methodendefinition eingebettete Pro-
ceduralDSL-Code wird mithilfe des entsprechenden sprachspezifischen Generators trans-
formiert, der mithilfe der zuvor erlduterten TypeConverter- und NESTReferenceCon-
verter-Klassen umgesetzt ist.

Abbildung 8.13 demonstriert diesen Generierungsansatz am Beispiel einer Metho-
de und des update-Blocks. Die NESTML-Funktionsdeklaration wird zu einer C++-
Funktionsdeklaration. Referenzen zu state- und parameters-Variablen werden durch
Aufrufe der entsprechenden Getter und Setter-Methoden ersetzt. NESTML verbietet das
Uberladen einer Funktion (vgl. NESTML_FUNCTION_DEFINED_MULTIPLE_TIMES
aus Abschnitt 7.3). Diese Einschrinkung vermeidet Kollisionen im generierten Code,
wenn in einem Neuron zwei gleich benannte Methoden existieren, die sich nur anhand
der SI-Typen in der Parameterliste unterscheiden. Anderenfalls wiren diese Methoden im
C++-Code nicht mehr unterscheidbar, da alle SI-Typen auf den Typ double abgebildet
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function get V m abs(E L mV) mV: NESTML|

return/V m +7E7L

end

ngate : ProceduralDSL-Generator

end

double V m abs (double E L) t/ AV C++ |

return get V m() + get E L()
}

void update (Time const& origin, long from, long to ) {
for ( long lag = from; lag < to; ++lag ) {
/]
}

}

Abbildung 8.11: Exemplarische Abbildung einer Neuronenmethode und Generierung des
Grundgeriists fiir die Aktualisierung des Neuronenzustandes in der up-
date-Methode.

werden.

Der update-Block wird zu einer Methode mit der eingebetteten Schleife abgebildet.
Aufgrund der internen Optimierung verteilt der NEST-Simulator Ereignisse nicht di-
rekt, sondern akkumuliert sie wihrend eines bestimmten Intervalls. Entsprechend wird
die update-Methode nicht fiir jeden simulierten Zeitschritt aufgerufen, sondern jeweils
flir einen ganzen Block evaluiert. Die eingebettete Schleife iteriert {iber die einzelnen Git-
terpunkte des Blocks. Die from- und to-Variablen grenzen den zu behandelnden Gitter-
abschnitt ein. Die Schleifenvariable lag referenziert dann jeweils den aktuellen Abschnitt
des Zeitgitters. Innerhalb der Schleife wird der Inhalt des update-Blockes mithilfe des
ProceduralDSL Generators transformiert.

8.1.5 Abbildung des equations-Blockes

Differenzialgleichungen sind ein wesentlicher Bestandteil der Neuronendefinition. Ein
System von Differenzialgleichungen wird in NESTML-Neuronen innerhalb des equati-
ons-Blockes definiert (vgl. Abschnitt 5.4). In diesem und dem kommenden Abschnitt
werden Losungsstrategien fiir unterschiedliche Ausprigungen eines solchen Systems er-
lautert.

Anhand des Neurons rc_neuron werden unterschiedliche Strategien vorgestellt, wie
das Gleichungssystem mithilfe des Frameworks GNU Scientific Library (GSL) propagiert
und mit shape-Funktionen (vgl. Abschnitt 5.4), in Differenzialgleichungen umgegangen
werden kann.

Im einfachsten Fall besteht der equations-Block aus einem System von Differenzi-
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algleichungen, in denen keine shape-Funktionen vorkommen. In diesem Fall wird das
GSL-Framework? [Gou09] fiir die Losung verwendet. Dafiir wird aus dem equations-
Block eine Schrittfunktion (engl: step function) generiert, die an das GSL-Framework
itbergeben wird.

equations: NESTML
Vvm'=-(VmE L)/taum + I syn/C m
end ﬂ

CH
int rc_neuron dynamics (double, double y[], double f[],

void *pnode) {
typedef rc neuron::State State ;
rc _neuron &node = *(reinterpret cast<rc neuron *>(pnode));

// y[] here is the state vector supplied by the integrator,
f[State ::V m] = ((-y[State ::V m] - node.get E L() )) /
node.get tau m() + node.get I syn() /
node.get C m();
return GSL SUCCESS;
}

Abbildung 8.12: Exemplarische Generierung der Differenzierungsfunktion aus dem
equations-Block.

Abbildung 8.12 zeigt eine exemplarische Methode, die aus dem Neuron rc_neurons ge-
neriert wird. Alle Differenzialgleichungen werden dabei in einer fiir das GSL-Framework
passenden Darstellung ausgegeben.

Um eine nahtlose Integration mit dem GSL-Framework zu erméglichen, wird die
State_-struct erweitert. Ahnlich zu Multirezeptorports, werden fiir die Zustandsva-
riablen symbolische Indizes erzeugt. Die State_-struct enthélt ein Array, das als Zei-
ger an die Differenzierungsfunktion iibergeben wird. Diese symbolischen Indizes werden
verwendet, um auf die entsprechenden Zustandsvariablen innerhalb der Schrittfunktion
zuzugreifen.

Der Procedural DSL-Generator muss in diesem Fall angepasst werden. Die Anpassung
geschieht mithilfe der Komposition des Generators mit einem GSLReferenceConver-
ter. Dieser Konverter ist in der Lage, die Variablenreferenzen innerhalb des equati-
ons-Blockes korrekt zu behandeln. So wird beim Zugriff auf die Zustandsvariablen das
Zustandsarray und ein passender Index benutzt. Fiir die anderen Variablen wird ein no-
de-Prifix vor jede Getter-Methode hinzugefiigt. Dabei ist node eine Referenz, die auf das
zu differenzierende Neuron referenziert. Somit gewéahrt die node-Referenz den direkten
Zugriff auf Attribute und Methoden des Neurons.

Die eigentliche Propagation der Differenzialgleichungen aus dem equations-Block fin-
det durch den Aufruf der vordefinierten integrate_odes-Funktion innerhalb des upda-

2https://www.gnu.org/software/gsl/
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te-Blockes statt. Im Allgemeinen wird dieser Aufruf in eine while-Schleife transformiert.
Innerhalb der Schleife findet die wiederholte Integration des equations-Blockes statt.
Die Wiederholung des Integrationsschrittes ist aufgrund des adaptiven Verfahrens des
GSL-Frameworks notwendig.

update:

integrate odes(
end ﬂ

void update (Time consté& origin, long from, long to ) S

{ // glue code to integrate GSL into NEST time model
double step = nest::Time::get resolution().get _ms();
double int step = nest::Time::get_resolution().get ms();
double t gsl;

for ( long lag = from; lag < to; ++lag ) {

_t gsl =0y

while (t < step) {
int status = gsl odeiv_evolve apply(B .e , B .c_, B .s_,
&B_.sys_, & t gsl, step, &int step, S_.y);

Abbildung 8.13: Propagation der Differenzialgleichungen aus dem equations-Block

Somit ist der NEST-Generator in der Lage, alle Sprachkonzepte mit Ausnahme von
shape-Funktionen zu verarbeiten, die in Kapitel 5 vorgestellt wurden. Als Néchstes wird
vorgestellt, wie shape-Funktionen in eine Propagatormatrix oder eine Menge von Dif-
ferenzialgleichungen transformiert werden, sodass eine individuelle Behandlung dieser
Modellierungselemente im NEST-Codegenerator iiberfliissig wird.

8.1.6 Das Analyseframework fiir Differenzialgleichungen

Héngt eine der Differenzialgleichungen im equations-Block in einem Neuron von min-
destens einer shape-Funktion ab, wird eine Analyse und Modelltransformation durchge-
fithrt, um entweder eine exakte Losung zu berechnen oder das Gleichungssystem in eine
fiir das GSL-Framework passende Form zu transformieren. In beiden Féllen werden alle
shape-Funktionen durch ein dquivalentes Gleichungssystem substituiert.

Um die mathematische Analyse der Gleichungen durchzufiihren, wurde das SymPy-
Framework [MSP*16] ausgewihlt. SymPy? ist ein leichtgewichtiges, Python-basiertes
Framework fiir die symbolische Algebra. Im Unterschied zu kommerziellen Tools wie
Matlab [HV16], Mathematica [AB16] oder Modelica [Fril0] ist SymPy frei unter einer
BSD-Lizenz verfiigbar, womit auch die generierten Dateien frei verwendet werden kon-
nen [KR14]. SymPy lésst sich mithilfe der Konsolen-APT mit anderen NESTML-Modulen

3http://www.sympy.org/en/index.html
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nahtlos integrieren. Desweiteren unterstiitzt SymPy alle Anforderungen, um die notige
Analyse und Umformung der shape-Funktionen und Gleichungen durchzufiithren.

a Nest-Generator  Equation Processing i SymPy
Extract an - '
Neuron- e ; Equation, Solver Evaluate
quation and ) .
AST shapes Shapes Script Script
Generate
Solver
Script
Equations
Neuron- I:;?Lﬁirg;eimc? Initial values
AST* original AST State updates
Propagator matrix
O

%

Abbildung 8.14: Verkniipfung des NEST-Generators mit der SymPy-Laufzeitumgebung.

Abbildung 8.14 skizziert den Ablauf der Analyse der Differenzialgleichungen mithilfe
des entwickelten Analyseframeworks, das auf SymPy basiert. Die wesentlichen Schritte
dieser Analyse sind die folgenden:

1.

Die Gleichungen aus dem equations-Block werden auf Abhéngigkeiten untersucht.
Nur Gleichungen, die von mindestens einer shape-Funktion und von keiner anderen
Differenzialgleichung abh#ingen, werden genauer analysiert. Alle anderen Gleichun-
gen werden direkt mit dem GSL-Framework gelost.

Auf Basis einer Differenzialgleichung mit Abhéngigkeit von mindestens einer sha-
pe-Funktion wird ein modellspezifisches Losungsskript generiert. Somit kénnen je
nach Neuronenmodell mehrere solchee Skripte generiert und evaluiert werden. Die
Funktionsweise eines einzelnen Skripts ist in Abbildung 8.15 genau spezifiziert.

Generierte SymPy-Scripte werden wihrend der Laufzeit des Generators evaluiert.

Wihrend der Ausfithrung produziert das SymPy-Losungsskript Dateien, deren In-
halt syntaktisch zur ProceduralDSL-Sprache konform sind. Somit kann der Proce-
duralDSL-Parser diese Dateien zu einem validen ProceduralDSL-AST konvertieren.
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5. Die ProceduralDSL-ASTs koénnen nahtlos mit dem AST des initialen Neurons zu-
sammengefithrt werden. Auf diese Art und Weise werden neue Variablen, Gleichun-
gen und Anweisungen ins Ursprungsneuron integriert.

6. Der transformierte NESTML-AST* wird als Ergebnis zuriickgegeben. Er enthéilt
eine exakte bzw. numerische Losung fiir die Propagation der Differenzialgleichun-
gen.

4 Automatic solver selection algorithm \

E - Compute initial ( Is the equation a
quation, |1 yajyes for every constant linear
Shape functions shape function t coefficient ODE?

b

Does every shape W [yes]
function obey a IinearJ

homogeneous ODE?

[no] [no]
[yes] l

Exact solution Approximate Solution
Compute propagator] $
{ matrix Transform shape
— (@< functions to an ODE
system
Compute update -
step é

Equations, Initial values

N State updates )
Propagator matrix

Abbildung 8.15: Analyseverfahren fiir eine Differenzialgleichung der Form V’/ = RHS.
Die RHS héngt in diesem Fall von einer nicht leeren Menge von shape-
Funktionen ab.

Gleichungen, die mindestens eine shape-Funktion enthalten, miissen entweder exakt
gelost werden oder in eine fiir das GSL-Framework kompatible Form transformiert wer-
den. Um dies festzustellenn, wird der als SymPy-Skript implementierte Algorithmus
ausgewertet. Abbildung 8.15 fasst die essenziellen Schritte des Algorithmus zusammen,
der fiir eine Gleichung mit shape-Funktionen ausgefiihrt wird. Die wesentlichen Schritte
dieses Verfahrens lassen sich wie folgt zusammenfassen:
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. Die Eingabe fiir den Algorithmus ist eine Gleichung und eine nicht leere Menge von
shape-Funktionen. Um validen Code in der Programmiersprache Python zu erhal-
ten, werden die Aufrufe von conv-Funktionen in der rechten Seite der Gleichung
durch die darin vorkommende shape-Funktion ersetzt. Da das zweite Argument des
conv-Aufrufs fiir die Analyse unerheblich ist, bleibt die Semantik der Gleichungen
dadurch erhalten.

. Fiir alle shape-Funktionen werden alle Anfangswerte bestimmt, die fiir die Propa-
gation der Differenzialgleichungen innerhalb des update-Blockes notwendig sind.
Da die shape-Funktionen bereits als Funktion vorliegen, kénnen sie einfach fiir den
Wert 0 ausgewertet werden.

. Der Algorithmus priift, ob

a) die vorliegende Gleichung eine lineare Gleichung mit konstanten Koeffizienten
erfiillt. Diese Priifung wird durch die zweifache Ableitung der rechten Seite
der Differenzialgleichung durchgefiihrt. Fiir eine Differenzialgleichung V' =

% + % wird der folgende Test ausgefiihrt: %%(% + %) == 0.

b) alle shape-Funktionen eine lineare homogene Differenzialgleichung erfiillen.

. Wenn beide Bedingungen erfiillt sind, kann die Differenzialgleichung exakt und
inkrementell [PBIT16], gelost werden.

e Eine Differenzialgleichung mit linearen Koeffizienten kann effizient durch Be-
rechnung der Propagatormatrix gelost werden (vgl. Abschnitt 2.3). Auf dieser
Basis wird auch der Aktualisierungsschritt bestimmt.

e Ansonsten wird fiir die Propagation das GSL-Framework verwendet.

. Wenn eine Bedingung nicht erfiillt ist, wird die Gleichung fiir die Lésung mit dem
GSL-Framework vorbereitet. Jede shape-Funktion wird in ein dquivalentes Glei-
chungssystem transformiert. Zusammen mit den bereits bestimmten Anfangswer-
ten stellt diese neue Form eine dquivalente Schreibweise dar. Die neue Darstellung
kann vom GSL-Framework effektiv ausgewertet werden.

Das Resultat des Algorithmus kann wieder als valides NESTML-Modell angesehen
werden und das transformierte Modell kann mit dem NESTML-PrettyPrinter seriali-
siert werden. Dadurch kann der Modellierer die Losung einsehen und nachvollziehen.
Diese Moglichkeit steigert das Vertrauen des Modellierers in die vom NEST-Generator
durchgefiihrten Analysen. Der in diesem Kapitel beschriebene NEST-Generator ist in
der Lage, das transformierte Modell direkt zu verarbeiten und wird somit vollsténdig
wiederverwendet.

Das Analyseframework ist modular entworfen und implementiert. Die Eingabe des Al-
gorithmus beschriankt sich ausschliellich auf die Definition der Differenzialgleichungen
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und shape-Funktionen in textueller Form. Durch die syntaktische Kompatibilitéit der
ExpressionsDSL zu Python-Ausdriicken kénnen die Gleichungen und Funktionen direkt
mit Python-Werkzeugen verarbeitet werden. Dies hat den Vorteil, dass Analysen unab-
héngig von NESTML in anderen Kontexten wiederverwendet werden konnen. Die lose
Kopplung des Anslyseframeworks und der restlichen Teile von NESTML erméglicht die
unabhiingige Weiterentwicklung und ein einfaches Testen des Analyseframeworks.

8.1.7 Integration von handgeschriebenem Code

Fiir Anwendungsfille, in denen eine manuelle Optimierung von bestimmten Aspekten
der Neuronenimplementierung unabdingbar ist, bietet NESTML eine leichtgewichtige
und transparente Integration von handgeschriebenem Code.

In NESTML wird die Integration von handgeschriebenem Codes mithilfe des GAP-
Patterns [Fow10, V1i98] unterstiitzt. Die Wahl dieses Musters geschah aufgrund von zwei
wesentlichen Vorteilen des GAP-Patterns im Vergleich zu den anderen alternativen Er-
weiterungsmechanismen (vgl. [GHK'15a, GHK'15b] fiir einen ausfiihrlichen Vergleich
der unterschiedlichen Alternativen der Integration von handgeschriebenem und gene-
rierten Code). Der erste Vorteil ist, dass Neuronenmodelle mit plattformspezifischen
Informationen nicht iiberladen werden. Der zweite Vorteil besteht in einer sauberen
Trennung der handgeschriebenen Implementierung des Neuronenmodells von generier-
tem Code. Dies erlaubt eine modulare und unabhéngige Entwicklung des Codegenerators
und des handgeschriebenen Codes. Ein wesentlicher Nachteil des GAP-Patterns besteht
darin, dass die Erweiterung der Schnittstelle von generierten Klassen nicht erlaubt ist.
Dennoch ist es moglich, die Schnittstelle der generierten Klassen auf andere Weise zu
erweitern. Die NESTML-Sprache unterstiitzt die Schnittstellenerweiterung mithilfe der
eingebetteten Aktionssprache ProceduralDSL. ProceduralDSL ermdoglicht es, Methoden
direkt als Teil des Neuronenmodells zu implementieren. Somit bietet die Aktionsspra-
che konzeptionell eine bessere Losung an, da alle Referenzen stets auf der Modellebene
bleiben und dadurch keine Abhéngigkeiten zur technischen Realisierung entstehen.

Abbildung 8.16 demonstriert die Umsetzung des GAP-Patterns in NESTML an einem
Beispiel. Der NEST-Generator wird in diesem Fall so parametrisiert (vgl. Abschnitt 8.3
fiir die Liste aller Generatorparameter), dass aus NESTML-Neuronen Klassen mit ei-
nem top-Postfix generiert werden. Diese Klasse erweitert die Klasse, die der Benutzer
des Generators als handgeschriebene Klasse zur Verfiigung stellt. Im vorliegenden Bei-
spiel erweitert die handgeschrieben Klasse rc_neuron die generierte rc_neuron_top.
Die Erweiterung erméglicht beispielsweise die Uberschreibung der update-Methode, die
fiir das Laufzeitverhalten des Neurons verantwortlich ist. Auf diese Weise ist es auch
moglich, andere numerischen Frameworks zu integrieren und zu benutzten.
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State_ Parameter_ Variables_ Buffers_
double V_m double V_m int resolution RingBuffer spikes
1S_ 1P_ 1v_ 1B_

rc_neuron_top

__________ A

rc_neuron

void update()

CD
«gen»

«NC»

Abbildung 8.16: Erweiterung der generierten Neuronenklasse durch zwei handgeschrie-

8.2 Generierung des Modulintegrationscodes

bene Methoden.

Bis jetzt wurde die Generierung der NEST-Implementierung aus modellierten Neuronen
vorgestellt. Dieser Abschnitt erldutert den Integrationscode, mit dem Neuronenmodelle
dynamisch (d.h. ohne Neuinstallation der NEST-Umgebung) in den Simulator integriert
werden konnen. Abschnitt 7.2 erldutert die Verwendung des generierten Moduls bereits.
Im Unterschied zum bisherigen Generierungsansatz wird der Integrationscode ausschlie3-
lich auf Basis der Datei- und Neuronennamen und nicht auf Basis eines ASTs generiert.

. models

/

rc_neuron.nestml
rc_input.nestml

}

}

class models{
name ( void )

return std::string(

const { // Name of the module

"models'-Module" );

const std::string commandstring( void ) const
// Instruct the interpreter to load models-init.sli
" (models-init) run" );

}

return std::string(

void init( SLIInterpreter* i ) {

nest::kernel () .model_manager
.register_node_model< rc_neuron >("iaf psc_alpha" );

nest::kernel () .model manager

}

.register_node_model< rc_input>("rc_input" );

]
v

{

CH+

Abbildung 8.17: Exemplarische Ableitung des modellabhéngigen Abschnittes der NEST-
Modulintegrationsklasse.
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Auch beim Integrationscode ist der Kern der Implementierung in einer C++-Klasse
gekapselt. Abbildung 8.17 zeigt exemplarisch die Ableitung dieser Modulklasse. Die re-
levante Information besteht aus der Liste von Neuronen und des Speicherorts der ent-
sprechenden NESTML-Dateien, die diesem Fall im models-Verzeichnis gespeichert sind.
Diese Information wird aus den vorliegenden Dateien extrahiert und an den Modulge-
nerator iibergeben. Das Generierungstemplate traversiert die Liste mithilfe der in den
Freemarker-Templates eingebauten Kontrollsprache und erzeugt Referenzen zu den ge-
nerierten Neuronendateien.

Zusétzlich zur Modellintegrationsklasse ist eine CMake-Konfigurationsdatei notwen-
dig. Diese Konfigurationsdatei kann bis auf die Referenzen zu generierten Dateien und
Modulnamen mit einem ansonsten statischen Template erzeugt werden. Daher verwendet
der CMake-Generator ausschliefllich die templatebasierte Strategie [CH03, CHOGb].

|Fi|esvstenr‘ﬂ moduleName:String neurons:List | I@

. models

Erc_neuron.nestml |:> = nedels :String

rc_input.nestml - -
¢ = "rc_tutorial

:String
|—| ¢ ="rc_input"

# 1) Name your module here, i.e. add later

# with -Dexternal-modules=${moduleName} :
set ( SHORT_NAME ${moduleName} )
# the complete module name is here:
set ( MODULE NAME ${r"s$"}{SHORT_NAME} )
# 2) Add all your sources here
set ( MODULE SOURCES
${moduleName}.h ${moduleName}.cpp
<#list neurons as neuron> ${neuron.getName () }.cpp
${neuron.getName () } .h </#list>)

Abbildung 8.18: Ausschnitt des Generatortemplates fiir die Erzeugung der modellabhén-
gigen CMake-Konfigurationsdatei.

Abbildung 8.18 zeigt einen Ausschnitt des CMake-Generators, der die wesentliche mo-
dellabhéngige Funktionalitéit der Generierung beinhaltet. Die Eingabe fiir den Generator
wird aus der vorliegenden Dateikonstellation abgeleitet. Diese wird in Form von Strings
und Listen an das Generierungstemplate {ibergeben. Am Ende wird eine auf die vorlie-
genden Neuronenmodelle zugeschnittene CMake-Konfigurationsdatei erstellt.
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8.3 Konsolen-basierte Schnittstelle fiir das NESTML-Frontend

Um NESTML in existierende neurowissenschaftliche Werkzeuge zu integrieren [GKRS06]
und Qualitétssicherung auf einem Continuous Integration System [Duv07, SB14] zu er-
lauben, wurde eine Konsolen-basierte Schnittstelle fiir die in dieser Ausarbeitung entwi-
ckelte Implementierung erstellt. Diese Schnittstelle wird als NESTML-Frontend bezeich-
net.

Ein exemplarischer Aufruf des NESTML-Frontends, der als ein Java-Archiv zur Ver-
fiigung steht, sieht wie folgt aus:

java nestml.jar --target_path SHOME/output $HOME /nestml/models

Die folgende Liste fasst die verfiigharen Optionen des NESTML-Frontend zusammen:

$model_path: Dieses Argument beim Frontendaufruf ist der einfache Pfad, an dem
NESTML-Dateien gespeichert sind. Fiir das Auflosen der Importanweisungen (vgl.
Abschnitt 6.2) wird der Pfad als Modellpfad (engl: modelpath) verwendet. Die-
ses Argument ist das einzige obligatorische Argument beim Aufruf des NESTML-
Frontends.

--target $path: Mit diesem Argument und einem konkreten Pfad im Filesystem kann
der Pfad angegeben werden, an dem die generierten Dateien gespeichert werden
sollen. Wenn kein Argument angegeben ist, werden die generierten Dateien im
build-Subverzeichnis des Verzeichnisses gespeichert, von dem aus das NESTML-
Frontend gestartet wurde.

--enable_tracing: Mithilfe dieses Argumentes konnen Templates, die fiir die Gene-
rierung des Zielsystems verwendet wurden, nachverfolgt werden. Dafiir werden im
generierten Code spezielle Kommentare generiert.

——dry-run: Mithilfe dieses Arguments wird die Codegenerierung unterbunden. Dabei
werden aber alle Modelle aus dem $model_path geparst und alle Kontextbedin-
gungen gepriift.

--json_log $filename: Das NESTML-Frontend produziert eine weitreichende dia-
gnostische Ausgabe wihrend seiner Ausfiithrung. Im Standardfall wird diese Infor-
mation auf die Konsole geschrieben. Um eine Weiterverbreitung dieser Information
zu vereinfachen, kann das NESTML-Frontend mithilfe dieses Arguments angewie-
sen werden, die Ausgabe im JSON-Format in eine benutzerdefinierte Logdatei zu
schreiben und so eine automatisierte Auswertung zu ermdoglichen.

—--module_name $name: Im Standardfall wird der Name des Moduls aus dem $model_-
path-Argument abgeleitet. Dem NESTML-Frontend kann mit diesem Argument
ein anderer Name fiir das generierte Modul (vgl. Abschnitt 8.2) iibergeben werden.
Dabei bestimmt der $name-Parameter den zu verwendenden Modulnamen.
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—--hc $path: Der Pfad zu handgeschriebenem Code.

—-help: Mithilfe dieses Arguments kénnen Information {iber die Benutzung des NESMTL-
Frontends ausgegeben werden.

8.4 Zusammenfassung

In diesem Kapitel wurde die Generierung der ausfithrbaren Implementierung aus NESTML-
Neuronenmodellen fiir den NEST-Simulator vorgestellt. Bei der Konzeption des generier-
ten Codes wurde stets darauf geachtet, dass der resultierende Code sowohl effizient als
auch moglichst nah an der bereits existierenden Implementierung von Neuronenmodellen
in NEST ist. Diese Angleichung vereinfacht zum einen das Verstéindnis des generierten
Codes fiir die NEST-Entwickler, zum anderen erhoht dies die Akzeptanz des Generie-
rungsframeworks. Aus diesem Grund wurde in der aktuellen Version von NESTML die
Angleichung an existierende Implementierungsmuster der effizienteren Codegenerierung
vorgezogen, da dies die Akzeptanz des NEST-Generators bei den NEST-Entwicklern und
NEST-Benutzern steigert. Dank des modularen Aufbaus von NESTML koénnen weiter
Optimierungen in zukiinftigen Versionen nachgeriistet werden.

Die Verbindung der Modellierungssprache NESTML mit dem Codegenerierungsframe-
work erlaubt es, sowohl die existierenden als auch neue Neuronenmodelle ausschliellich
mit NESTML auszudriicken. Somit wird die manuelle Implementierung neuer Neuro-
nenmodelle in Form von C++-Code iiberfliissig. SchlieBlich erlaubt die entwickelte Kon-
solenschnittstelle eine flexible und transparente Integration des NESTML-Frontends in
bereits existierende neurowissenschaftliche Werkzeugen und zukiinftig entwickelte Sys-
teme und Plattformen wie das Kollaborationsportal des Human Brain Project?.

‘https://collab.humanbrainproject.eu
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Kapitel 9
Evaluierung von NESTML

Dieses Kapitel stellt die wichtigsten Resultate aus Umfragen zur Evaluierung von NESTML
vor. Insbesondere ging es dabei um die entwickelten Werkzeuge (vgl. Kapitel 8) und das
in dieser Ausarbeitung vorgestellte NESTML-Tutorial (vgl. Kapitel 7). Die Konzeption
und Umsetzung von NESTML und den zugehorigen Werkzeugen wurde durch regelmé-
Bige Evaluationen durch die Anwender und Entwickler des NEST-Simulators begleitet.
Diese beiden Gruppen wirkten in einer engen und agilen Kooperation auch direkt auf
die Entwicklung ein. Dabei fanden regelméflige Présentationen der NESTML-Sprache
und -Werkzeuge mit dem Ziel statt, die Sprache besser an die Bediirfnisse der Anwender
anzupassen.

9.1 NESTML-Workshops

Der modellbasierte Ansatz wurde im Kontext dieser Ausarbeitung auf zweierlei Ar-
ten evaluiert. Zum einen wurde eine Menge bereits existierender Neuronenmodelle aus
NEST! in NESTML spezifiziert, um den Anwendern der Modellierungssprache charak-
teristische Modellbeispiele aus der neurobiologischen Praxis zur Verfiigung zu stellen.
Dabei wurden im Laufe der Entwicklung alle Integrate-and-Fire-Neuronen, die in NEST
zur Verfiigung stehen, mithilfe von NESTML modelliert [PBET17b].

Zum anderen wurden wurden zwei dedizierte NESTML-Workshops organisiert und
durchgefiihrt, um potenzielle Nutzer in der neuen Modellierungssprache zu schulen und so
die Akzeptanz bei potenziellen Nutzern zu steigern. Im Rahmen dieser Workshops [PBET 15,
PBE'16] wurde die NESTML und ihre Werkzeuginfrastruktur detailliert vorgestellt.
Dabei wurden sowohl die sprachlichen Konstrukte und Konzepte zur Modellierung von
Neuronen als auch die Benutzung der Werkzeuge zum Generieren von C++Code sowie
dessen Benutzung ausfiihrlich an praktischen Beispielen demonstriert. Die Diskussionen
wihrend dieser Workshops fithrten zu einer signifikanten Verdnderung und Verbesserung
der konkreten Syntax von NESTML. Anschlieend wurden Benutzerumfragen wihrend
verschiedener Workshops durchgefiihrt und ausgewertet.

Das Benutzerfeedback hatte starken Einfluss auf die Weiterentwicklung von NESTML.

"https://github.com /nest/nest-simulator/blob/master /models
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Folgend werden beispielhaft zwei Anderungen an der NESTML-Syntax aufgelistet, die
aufgrund dieses Feedbacks umgesetzt wurden:

e Die Darstellung der Differenzialgleichungen wurde mehrfach iiberarbeitet. Initial
war es moglich, einen equation-Block innerhalb des update-Blockes bzw. einen
Block fiir jede Differenzialgleichung zu spezifizieren. Anstatt dieser Schreibweise
wurde ein dedizierter equations-Block im Rumpf des Neurons eingefithrt. Mit
der integrate_odes-Funktion werden die Gleichungen aus dem equations-Block
dann im update-Block propagiert.

e Das Einheitensystem wurde iiberarbeitet. Zusammengesetzte physikalische Ein-
heiten wurden erst auf Benutzerwunsch eingefiihrt. Ebenso wurde die verkiirzte
Schreibweise fiir die Einheiten der Form: ms**-1 eingefiihrt, die jetzt als 1/ms
spezifiziert werden koénnen.

Um NESTML als neue Modellierungssprache fiir den NEST-Simulator zu etablieren,
ist es notwendig, eine kritische Masse an Benutzern zu erreichen [MHO02, LC06]. Die
Workshops dienten deshalb neben der Moéglichkeit zum Sammeln von Feedback auch als
Plattform um neue Benutzer auf NESTML aufmerksam zu machen und Fragen direkt
beantworten zu konnen. Eine weitere Moglichkeit, die in diesem Kontext bereits rege
genutzt wird ist die NEST User Mailingliste?, auf der auch Fragen zu NESTML gestellt
und beantwortet werden.

Insgesamt wurden 27 Fragebogen wiithrend der beiden NESTML-Workshops ausgefiillt
und ausgewertet. Das obere Histogramm in Abbildung 9.1 fasst die akademischen Grade
der Teilnehmer zusammen. Uberwiegend handelte es sich um Studierende mit Master-
abschluss, die sich in einem Phd-Programm mit neurowissenschaftlichen Schwerpunkt
befanden. Auflerdem waren Bachelorstudenten, Postdoktoranden und ein Professor ver-
treten. Das untere Histogramm fasst die Erfahrung der Teilnehmer mit dem NEST-
Simulator zusammen. Die Erfahrung erstreckt sich iiber alle Auspriagungen mit klarem
Fokus auf den Erfahrungsstufen Little (wenig) und Medium (mittel).

Ein wichtiger Teil der beiden Workshops war eine praktische Aufgabe, die mithilfe
von NESTML gelost werden sollte. Die Aufgabe bestand darin, ein in einer wissen-
schaftlichen Publikation definiertes Neuronenmodell in Form eines NESTMI-Modells zu
spezifizieren. Dieses Neuronenmodell sollte anschliefend im NEST-Simulator simuliert
werden, um die publizierten Resultate zu reproduzieren (vgl. Abschnitt C.2). Beim Neu-
ronenmodell handelte es sich um das Izhikevich-Neuronenmodell [Izh03, 1zh04], das aus
zwei Differenzialgleichungen und einer Vorschrift fiir die Aktualisierung des Neuronen-
zustandes besteht. Alle Teilnehmer waren in der Lage innerhalb einer Stunde, sowohl
das Neuronenmodell zu spezifizieren als auch die vertffentlichten Spike-Trains mithilfe
des generierten NEST-Quellcodes zu reproduzieren.

2http:/ /www.nest-simulator.org/community/

162



9.1 NESTML-WORKSHOPS

20 20
»n 15
9]
z
E 10
* 5
5
0 ] |
B.Sc M.Sc. Phd Professor
10 10 10
8
2
s
Z 6
< 2 4
* 3
: -
0

None Little Medium A lot

Abbildung 9.1: Zusammenfassung der akademischen Grade der Teilnehmer der Evaluie-
rung (oben) und die Erfahrung der Teilnehmer mit dem NEST-Simulator
(unten).

Abbildung 9.2, Abbildung 9.3, Abbildung 9.4, Abbildung 9.5, Abbildung 9.6 und Ab-
bildung 9.7 fassen die Resultate der Auswertung zusammen. Dabei wurden die in der
Bildunterschrift erlduterten Fragen auf einer Skala von 0 (trifft nicht zu) bis 5 (trifft voll
zu) beantwortet.

Wiéhnend der Evaluierung wurden sowohl die NESTML-Sprache (vgl. Q1) als auch die
Funktionsweise der NESTML-Werkzeuge (vgl. Q2) als sehr gut verstéindlich eingestuft.
Die meisten Befragten gaben an, dass das Erstellen eines NESTML-Modells einfacher ist
als das Schreiben desselben Modells als eine C++-Erweiterung fiir den NEST-Simulator
(vgl. Q3). Die Spezifikation der mathematischen Ausdriicke mit NESTML wurde ein-
facher bewertet als die Spezifikation mit der C++-Programmiersprache (vgl. Q5). Die
Fehlerinformationen, die durch das NESTML-Werkzeug ausgegeben werden (vgl. Q4),
wurden befriedigend bewertet. Schliellich fanden alle Teilnehmer das Tutorial hilfreich

(vel. Q6).
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Abbildung 9.2: (Q1) Die Syntax von NESTML ist klar und versténdlich.
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Abbildung 9.3: (Q2) Es ist einfach, die Funktionsweise von NESTML und den Werk-
zeugen zu verstehen.
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Abbildung 9.4: (Q3) Das Erstellen von NESTML-Modellen ist einfacher als das Schrei-
ben von C++-Code fiir den NEST-Simulator.

9.2 Validitat von der Evaluierung

Aufgrund der Struktur der beiden Workshops und der geringen Teilnehmerzahl war es
nicht moglich, die Teilnehmer in eine randomisierte Test- bzw. Kontrollgruppe aufzutei-
len. Somit ist sowohl die interne als auch externe Validitéat der Untersuchung gefihrdet.

Die interne Validitét ist durch folgenden Beobachtungen gefihrdet: Teilnehmern fehl-
te die Erfahrung im Umgang mit NESTML-Werkzeugen, die Teilnehmer hatten jedoch
Erfahrung mit herkémmlichen Programmiersprachen wie C, C4++ und Python. Diese Be-
obachtung erklart die Verzerrung der Resultate beim direkten Vergleich von NESTML
mit der C+H+-Programmiersprache (vgl. Q2 und Q5). Eine umfragenbasierte Unter-
suchung konnte selbst ein Problem darstellen, da jeder Teilnehmer die Antwortskalen
anders interpretiert. Alle Teilnehmer wussten zudem, dass die Workshops unter ande-
rem zum Zweck der Evaluierung von NESTML durch die NESTML-Entwickler organi-
siert wurden. Dadurch entsteht eine Gefdhrdung aufgrund des kompensatorischen Wett-
streiteffekts [BDO7]. Allein schon eine gezielte Einladung kénnte demnach dazu fiihren,
dass sich Teilnehmer sehr engagiert mit NESTML befassen, was die Wahrnehmung von
NESTML verzerren kann. Da es keine randomisierten Kontrollgruppen gab, sind diese
Effekte quantitativ jedoch schwer abschétzbar.

Die Gefihrdung der externen Validitéit ist aufgrund der kleinen Stichprobe der aus-
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Abbildung 9.5: (Q4) Die Fehlerausgabe, die withrend der Modellverarbeitung produziert
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wird, ist hilfreich.

gewerteten Fragebogen gegeben. Daher ist eine Generalisierung der beobachteten Er-
gebnisse auf die Grundgesamtheit nicht ohne weiteres moglich. Dieses Risiko wurde da-
durch verkleinert, dass die Umfragen in zwei unabhéngigen und zeitversetzten Workshops

durchgefiihrt wurden.
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Abbildung 9.6: (Q5) Die Spezifikation von mathematischen Termen in NESTML ist
einfacher als in der Programmiersprache C++.

80%

N
N
N
.. N I

Abbildung 9.7: (Q6) Das Tutorial war hilfreich.
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Kapitel 10
Diskussion und Zusammenfassung

Im Rahmen der vorliegenden Ausarbeitung wurde die neue doménenspezifische Sprache
NESTML konzipiert und mithilfe der MontiCore Workbench umgesetzt. Der Entwurf
von NESTML basiert einerseits auf einer detaillierten Analyse der Nutzungsszenarien
von Neuronenmodellen im Simulator NEST und andererseits auf den Anforderungen an
eine Neuronenmodellierungssprache, die sich aus einer ausfiihrlichen Literaturrecherche
ergaben. Die Erfillung dieser Anforderungen war beim Entwurf und der Umsetzung
der Modellierungssprache wichtig, um eine einfach zu erlernende und wiederverwend-
bare Sprache zu erstellen. Dabei war insbesondere die Wiederverwendung sowohl auf
Grammatik- als auch auf Modellebene von grofier Bedeutung.

10.1 Evaluierung der Sprachanforderungen

Dieser Abschnitt diskutiert, ob NESTML alle in Kapitel 3 herausgearbeiteten Sprachan-
forderungen an eine Neuronenmodellierungssprache erfiillt.

RQ1 Modellierungsstil: Da die NESTML-Sprache als externe DSL entwickelt wur-
de, konnte deren Modellierungsstil frei gew#hlt werden. Aufgrund der kompakten Syn-
tax vermitteln NESTML-Modelle ihren Zweck klar und verstdndlich. NESTML-Modelle
haben keinen direkten Bezug zu einer bestimmten Simulationsumgebung. Dieser Be-
zug wird ausschliefllich durch einen Codegenerator hergestellt. Somit wird das Teilen
von NESTML-Modellen vereinfacht. Dennoch kénnen die Vorteile einzelner Simulatoren
durch handgeschriebene Codeerweiterungen vollstéindig ausgenutzt werden. NESTML-
Modelle sind stets in sich geschlossen formuliert. Auf der Modellebene sind keine Refe-
renzen zu nicht-Modellelementen erlaubt. Somit kénnen die NESTML-Modelle modular
verarbeitet werden.

RQ2 Konkrete Syntax: Die Syntax von NESTML wurde mit dem Fokus auf die Ver-
sténdlichkeit entwickelt. NESTML wurde primér fiir die Modellierung von biologischen
Punktneuronen konzipiert und umgesetzt. Daher wurden nur diejenigen fachlichen Kon-
zepte in die NESTML-Sprache integriert, die sich fiir die Modellierung von Punktneu-
ronen eignen. Da NESTML als externe DSL implementiert ist, konnte die syntaktische
Reprisentation dieser Elemente frei gewéhlt und als direkte Sprachelemente implemen-
tiert werden. NESTML ist modular und kompositionell aus verschiedenen Subsprachen
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aufgebaut. Jede Subsprache enthilt dabei eine minimale Anzahl der Sprachkonstrukte.
Somit ist NESTML auf der einen Seite iibersichtlich und einfach zu erlernen. Auf der
anderen Seite kann NESTML iiber die vorgesehenen Mechanismen der Sprachkompositi-
on erweitert werden. NESTML verwendet eine Notation, die an die konkrete Syntax von
Python angelehnt ist. Fiir die Modellierung von Differenzialgleichungen wurde eine ma-
thematische Notation entwickelt. Diese Notation erlaubt es, Gleichungen unkompliziert
in NESTML-Modelle zu iibertragen. Die Moglichkeit, physikalische Einheiten als Daten-
typen und Literale zu verwenden, ermoglicht es, die Konsistenz von Neuronenmodellen
bereits zur Modellierungszeit zu sichern. Neuronen und Komponenten sind in unter-
schiedliche Blocke strukturiert. Jeder Block wird durch ein passend gewihltes Schliis-
selwort eingeleitet. Die Bezeichnung des Blockes vermittelt die Semantik des Blockes.
Aufgrund der unterschiedlichen Schliisselworter konnen die Blocke sehr einfach vonein-
ander unterschieden werden.

RQ3 Wiederverwendung: Die Wiederverwendung wird in NESTML-Modellen auf
zwei Arten unterstiitzt. Zum einen konnen explizite und eindeutig definierte Komponen-
ten zur Verfiigung gestellt werden. Durch die klare Definition der 6ffentlichen Schnitt-
stelle von Komponenten, die explizit definiert ist, kann die innere Implementierung ver-
borgen bleiben. Zum anderen konnen Neuronen an sich durch eine Vererbungsbeziehung
erweitert und wiederverwendet werden. Dabei kénnen sowohl Variablen in unterschied-
lichen Blocken ergénzt bzw. iiberschrieben werden, als auch das dynamische Verhalten
angepasst werden, das durch die update- und equations-Blocke spezifiziert ist.

RQ4 Metamodell: Das von MontiCore auf Basis der Grammatik generierte Metamo-
dell ist per Konstruktion modular aufgebaut [KRV10]. Die sprachliche Dekomposition
von NESTML ermoglicht es, die Subsprachen und das aus diesen Sprachen generier-
te Metamodell gezielt und effizient anpassen. Alle generierten und handgeschriebenen
Werkzeuge sind sprachspezifisch und modular aufgebaut. Das erlaubt es, die Subspra-
chen und deren Analysewerkzeuge individuell zu entwickeln, zu testen und einzusetzen.
Die Verzahnung der Sprachkomponenten findet erst auf der Ebene der Symboltabelle
statt.

RQ5 Codegenerierung: Aufgrund der Modularitéit und Abstraktion von Neuronen-
modellen kénnen verschiedene Plattformen unterstiitzt werden. Bereits jetzt existiert ein
Codegenerator fiir den NEST-Simulator, vgl. Kapitel 8. Eine aktive Entwicklung des Ge-
nerators fiir die Modellierungssprache LEMS [PPET17] findet aktuell statt. NESTML
strebt an, moglichst alle Erweiterungen entweder durch die eingebauten Sprachkonstruk-
te, also auf der Abstraktionsebene der Modelle, oder durch eine Spracherweiterung zu
unterstiitzen. Wenn handgeschriebener Code unabdingbar ist, verwendet NESTML das
GAP-Pattern [Fow10, V1i98] fiir die Integration von handgeschriebenen Erweiterungen.
Dieser Integrationsmechamismus ermdoglicht es, plattformspezifischen Code in den Co-
degenerierungsporzess zu integrieren, ohne Neuronenmodelle mit unnétigen technischen
Details zu iiberladen. Modellkommentare aus Neuronen und Komponenten werden wéh-
rend der Codegenerierung ins Zielsystem iibernommen. Auf diese Weise wird ein agiler
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Entwicklungsprozess unterstiitzt, da externe Dokumentationsartefakte vermieden wer-
den und die Dokumentation durch den Code der Modelle selbst gegeben ist. Wenn Neu-
ronenmodelle sich &ndern, passt sich die Dokumentation automatisch an. NESTML stellt
ein modulares Framework zur effizienten Losung der Differenzialgleichungen zur Verfii-
gung (vgl. Unterabschnitt 8.1.6). Die Losung der Differenzialgleichungen wurde auf Basis
von SymPy umgesetzt. Die entwickelten Analysewerkzeuge sind modular aufgebaut und
lassen sich auch aulerhalb von NESTML verwenden.

RQ6 Benutzerfreundlichkeit: Die Modellierungssprache NESTML soll in einem
bereits existierenden und ausgereiften Softwaredkosystem zur Anwendung kommen. Um
den Prozess der Integration moglichst einfach zu gestalten, werden bei der Integration
von NESTML in den NEST-Simulator die dafiir vorgesehenen Erweiterungsschnittstel-
len bedient. Diese Entkopplung erlaubt eine unabhingige Entwicklung beider Produk-
te. Fiir die Benutzung von NESTML steht eine Konsolen-Schnittstelle zur Verfiigung.
NESTML wird sowohl als Quellcode als auch in Form eines Docker-Containers mit einer
Konsolen-API zur Verfiigung gestellt. Auf diese Weise werden alle fiir die Ausfithrung
von NESTML notwendigen Bibliotheken und Frameworks gekapselt. Desweiteren kann
NESTML auf diese Weise transparent mit anderen neurowissenschaftlichen Werkzeugen
integriert werden, die oft selbst eine Konsolen-API anbieten. Das Tutorial fiir NESTML
wurde in Kapitel 7 vorgestellt. Es wurde mehrfach in unterschiedlichen Workshops eva-
luiert und als hilfreich eingestuft.

10.2 Zusammenfassung
Diese Ausarbeitung stellt am Anfang die folgende Forschungsfrage auf:

Wie muss eine problemaddquate, domdnenspezifische Sprache fir die Mo-
dellierung von biologischen Neuronen aussehen, die sich zur Simulation auf
Basis des NEST-Simulators eignet?

Um diese Frage zu beantworten, wurden zuerst die existierenden Modellierungsansét-
ze fiir die Spezifikation von Neuronenmodellen analysiert. Dabei wurde festgestellt, dass
keine der existieren Modellierungssprachen die Anforderungen ausreichend erfiillt. Da
sich die existierenden Modellierungsansétze aufgrund deren technischer Beschaffenheit
nicht oder nur schlecht anpassen lassen, wurde eine neue doménenspezifische Modellie-
rungssprache NESTML entwickelt und folgende Forschungsfragen adressiert:

o FF1: Wie sieht eine leichtgewichtige und einfach zu erlernende Neuronenbeschrei-
bungssprache aus? Diese Frage ist durch die Entwicklung von NESTML beant-
wortet. Diese Modellierungssprache enthélt nur eine beschrankte Menge von de-
klarativen Modellierungselementen, die fiir die Modellierung der Punktneuronen
notwendig sind.
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e FF2: Wie kénnen Neuronenmodelle in eine fir den NEST-Simulator ausfiihrbare
Form iibersetzt werden? Diese Fragestellung wurde durch die Definition eines Co-
degenerators fiir den NEST-Simulator adressiert. Dieser Codegenerator ist in der
Lage den Quellcode fiir den NEST-Simulator zu erstellen.

e FF3: Wie werden die Sprachkomponenten modular und erweiterbar entworfen? Ei-
nerseits ist diese Frage durch den passenden Entwurf der Grammatiken beantwor-
tet, die Erweiterungspunkte zur Verfiigung stellen. Andererseits ist der Entwurf der
Sprachwerkzeuge wie Kontextbedingungen, PrettyPrinter, Symboltabellen und Co-
degenerierungswerkzeuge kompositionell aufgebaut. Diese Kompositionalitéit wird
erst durch die Anwendung einer kompositionalen und modularen Infrastruktur er-
moglicht, wie sie z.B. von der MontiCore Language Workbench zur Verfiigung
gestellt wird.

e FF4: Welche Konzepte helfen dabei, die Neuronenmodelle wiederverwendbar zu
machen? Um diese Fragestellung zu adressieren, wurden zwei unterschiedliche
Konzepte vorgeschlagen. Zum einen kénnen wiederverwendbare Komponenten mit
wohldefinierten Schnittstellen definiert werden. Zum anderen konnen Neuronen
durch die Vererbungsbeziehung erweitert werden. Die Vererbung erlaubt eine fein-
granulare Uberschreibung bestimmter Aspekte von Neuronen. Damit kann die Wie-
derverwendbarkeit erhoht und die gleichzeitig die Redundanz in der Modellspezi-
fikation minimiert werden.

o FF5: Wie sieht die Methodik aus, um Modelle in der neuen DSL zu erstellen und
in den NEST-Simulator zu integrieren? Um die Flexibilitdt und Agilitédt der Ent-
wicklung von Neuronen mit NESTML zu gewéhrleisten, wird NESTML als exter-
nes Modul entwickelt. Die Integration des generierten Codes findet mithilfe der
dafiir vorgesehenen Schnittstellen der Zielplattform statt. Des Weiteren wird der
technische Softwarestack in der Form eines Docker-Containers gebiindelt. Eine aus-
fiithrliche Vorgehensweise zur Entwicklung von Neueronenmodellen mit NESTML
ist in Kapitel 7 vorgestellt.

Erfahrungen, die wihrend der NESTML Entwicklung gesammelt wurden, wurden di-
rekt in die Weiterentwicklung der MontiCore Workbench integriert. Beispielsweise wurde
in diesem Kontext die Unterstiitzung fiir die Linksrekursion in MontiCore implementiert.
Auch die Stabilitdt und die Funktionalitdt von generierten Visitoren und der Symbol-
tablle verbessert und erweitert. NESTML wird als ein Projekt mit offenem Quellcode
auf GitHub [PBE*17a] entwickelt und durch die NEST-Community benutzt und wei-
terentwickelt. Ausgehend vom aktuellen Stand von NESTML koénnen nun die folgenden
Erweiterungen vorgenommen werden:

Modelle aus mehreren Segmenten: Die meisten existierenden Neuronenmodelle im NEST-
Simulator sind zum Zeitpunkt dieser Arbeit einfache Punktneuronen. Es gibt al-
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lerdings keine technische Einschrinkung fiir die Komplexitéat von Modellen, aufler
dass diese als eine einzelne C++-Klasse ausgedriickt sein miissen. Es ist in NEST
also auch moglich, Neuronenmodelle mit mehreren Segmenten zu simulieren. Dies
bedeutet jedoch oft eine grofle Menge von repetitivem Code, da fiir jedes der mo-
dellierten Segmente dhnlicher C++-Code erstellt werden muss. Der Umfang dieses
Codes héngt linear von der Anzahl der modellierten Segmente ab. Eine Erwei-
terung der NESTML-Sprache und des NEST-Generators wiirden dieses Problem
16sen.

Synapsen: NESTML wurde fiir die Modellierung der Neuronenmodelle entwickelt, da
dies bisher der héufigste Erweiterungsfall fiir den NEST-Simulator war. Dennoch
spielt die Modellierung von Synapsen eine immer wichtigere Rolle um Lern- und
Anpassungsprozesse im Gehirn zu verstehen. Bei der manuellen Implementierung
von Synapsenmodellen im NEST-Simulator treten grundsétzlich dieselben Proble-
me wie bei der von Neuronenmodellen auf. Die Implementierung neuer Synap-
senmodelle erfordert wieder Kenntnis der internen Struktur von NEST und der
Programmiersprache C++, was eine hohe Eintrittsbarriere fiir das Erstellen ei-
gener Synapsenmodelle darstellt. Ein modellbasierter Ansatz fiir die Spezifikation
von Synapsenmodellen wire deshalb eine wertvolle Erweiterung fiir NESTML.

Cross-validation: Auf Basis von NESTML kann eine Menge von Codegeneratoren ent-
wickelt werden, die es erlauben, unterschiedliche Zielplattformen mit demselben
Modell zu adressieren Beispielsweise kann auf der Basis von NESTML die Kreuz-
validierung (engl: cross-validation) [BPT94] von Neuronenmodellen in unterschied-
lichen Simulatoren und Plattformen ermdoglicht werden. Auf d&hnliche Weise kann
mithilfe von NESTML der Effekt verschiedener numerischer Methoden untersucht
werden, ohne die Modellbeschreibung édndern zu miissen.

Die rege Beteiligung an Workshops und Tutorials rund um NESTML, der Austausch
der Benutzer iiber entsprechende Online-Foren, sowie die Ergebnisse der empirischen
Fallstudie haben gezeigt, dass NESTML bereits in diesem frithen Entwicklungsstadi-
um erfolgreich verwendet werden kann. NESTML erméglicht es Wissenschaftlern in der
Computational Neuroscience somit, aktuelle und zukiinftige Forschungsfragen schneller
zu beantworten und durch die neuen Moglichkeiten der Sprache zu besserer Reprodu-
zierbarkeit in diesem Feld beizutragen.
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Anhang A
Abkiirzungsverzeichnis

AST Abstract Syntax Tree

ANN Artificial Neural Networks

DSL Domain Specific Language

EBNF Extended Backus—Naur Form
GPL General Purpose Lanuage

GSL GNU Scientific Library

HOC Higher Order Calculator

LEMS Low Entropy Model Specification
NineML Network Interchange for Neuroscience Modeling Language
M2T Model-to-Text

M2M Model-to-Model

NESTML Nest Modeling Language
PSA postsynaptische Antwort

PNS periphere Nervensystem

SLI Simulation Language Interpreter

ZNS zentrale Nervensystem
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Anhang B

Tags

\___Activity diagram

bClass diagram

<hc»
\__Hand written

class diagram

«gen»
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Runtime
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EquationsDSL MorphML
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LLOW entropy bA NESTML

modeling model stored
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MC6
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Abbildung B.1: Diese Abbildung fasst alle verwendeten Tags zusammen.
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Anhang C

Tutorialevaluierung

C.1

Fragebogen

Q1: What is your academic degree?
Q2: How much experience do you have with NEST? (None, Little, Medium, A lot)

Q3: How much programming experience do you have in general? (None, Little,
Medium,A lot)

Q4: The syntax of a NESTML language is clear. (0 strongly disagree - 5 strongly
agree)

Q5: Tt is easy to understand/learn the functionalities of NESTML. (0 strongly
disagree - 5 strongly agree)

Q6: Writing NESTML model is easier than writing a NEST C++ code. (0 strongly
disagree - 5 strongly agree)

Q7: Expressing mathematical statements in NESTML is easier than expressing
them in NEST C++ code. (0 strongly disagree - 5 strongly agree)

Q8: The error messages that are produced during the model analysis are helpful
(0 strongly disagree - 5 strongly agree).

Q9: This NESTML tutorial was useful for you. (0 strongly disagree - 5 strongly
agree)
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C.2 Praktische Aufgabe

Izhikevich: regular spiking plot

* State equations
v =004*xv*xv+5%xv+140—u+1
u=axb*xv—u)

* State dynamics:
v=cC

i >
if v=30mV then{uzu_l_d o

Abbildung C.1: Mathematische Spezifikation des Izhikevich-Neuorns.
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Anhang D
Grammatiken von NESTML

D.1 Units-Grammatik

grammars/Units.mc4

/*
x Copyright (¢) 2015 RWTH Aachen. All rights reserved.

*
% http://www.se—rwth.de/
*/

package org.nest;

/%%
Grammar representing ODE expressions.
*/

grammar Units extends de.monticore.types.Types {

/xx
ASTDatatype. Represents predefined datatypes and gives a possibility to use an unit
datatype.
@attribute boolean getters for integer, real,
@attribute unitType a SI datatype

*/
Datatype = ["integer”]
‘ [77 real 77]
| [”string”]
| ["boolean”)
| [?void”]
| UnitType;
*%

ASTUnitType. Represents an unit datatype. It can be a plain datatype as 'mV’ or a
complex data type as 'mV/s’
*
/
UnitType = leftParentheses:”(” UnitType rightParentheses:”)”
| base:UnitType pow:[’xx”] exponent:IntLiteral
| left :UnitType (timesOp:["+”] | divOp:["/”]) right:UnitType
| unit:Name;
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D.2 Commons-Grammatik

grammars/Commons.mc4

/%
% Copyright (c) 2015 RWTH Aachen. All rights reserved.
*

* http://www.se—rwth.de/
*/
package org.nest;

grammar Commons extends de.monticore.types. Types, org.nest.Units {

token SL_.COMMENT =
7’#7’ ("‘()\n! ‘
Ar’)
)i

{ _channel = HIDDEN;
if (getCompiler() != null) {
de.monticore.ast. Comment _comment = new de.monticore.ast.Comment(getText());
de.se_rwth.commons.SourcePosition startPos =
new de.se_rwth.commons.SourcePosition(_tokenStartLine, _tokenStartCharPositionInLine);
_comment.set_SourcePositionStart (startPos);
_comment.set_SourcePositionEnd(get Compiler().computeEndPosition(startPos, getText()));
getCompiler().addComment(_comment);
}
h

token NEWLINE = ("\r’ \n’ | \r’ | \n’ );

token WS = (* 7| "\t ’):{ _channel = HIDDEN;};

token LINE_ESCAPE = "\’ "\r’? "\n’:{_channel = HIDDEN;};
BLOCK_OPEN = "

BLOCK_CLOSE = "end”;

Expr = leftParentheses :[’(”] Expr rightParentheses :[")”]
<rightassoc> base:Expr pow:["«*”] exponent:Expr
(unaryPlus:["+”] | unaryMinus:[”—"] | unaryTilde:["""]) term:Expr
left :Expr (timesOp:["+”] | divOp:[’/”] | moduloOp:["%"]) right:Expr
left : Expr (plusOp:["+”] | minusOp:["—"]) right:Expr
left : Expr (shiftLeft:[’<<”] | shiftRight:[”>>"]) right :Expr
left : Expr bitAnd:["&”] right: Expr
left : Expr bitXor:[""”] right :Expr
left : Expr bitOr :[?]”] right:Expr
left :Expr (1t :[’<”] |
le:[77<:77] ‘
eql==" |
ne:[’I="] |
ne2:["<>" |
geil’>="] |
gt :[">"]) right:Expr
logicalNot :[" not”] Expr
left : Expr logicalAnd:[’and”] right : Expr
| left :Expr logicalOr:[”or”] right:Expr
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condition: Expr 7?” ifTrue: Expr ”:” ifNot:Expr
FunctionCall

BooleanLiteral // true & false;
NESTMLNumericLiteral

StringLiteral

[7’ lnf ’)]

Variable;

NESTMLNumericLiteral = NumericLiteral (”[’type:UnitType”]”|plainType:Name)?;

/xx%

ASTVariable Provides a 'marker’ AST node to identify variables used in expressions.

@attribute name
*/
Variable = name:QualifiedName (differentialOrder:”\"”)x;

/xx

ASTFunctionCall Represents a function call, e.g. myFun(’a”, ”b”).

@attribute name The (qualified) name of the fucntions

@attribute args Comma separated list of expressions representing parameters.
*
FunctionCall = name:QualifiedName ”(” args:(Expr& || 7,”)* 7)”;
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D.3 Equations-Grammatik

grammars/ODE.mc4

/*
* Copyright (c) 2015 RWTH Aachen. All rights reserved.
*
% http://www.se—rwth.de/
*/
package org.nest;

/x%

Grammar representing ODE expressions.
*/
grammar ODE extends org.nest.Commons, org.nest.Units {
/#x ASTOdeDeclaration. Represents a block of equations and
differential equations.

@attribute Equation List with equations, e.g. ”I = exp(t)” od
differential equations.
*/

OdeDeclaration = (Equation | Shape | ODEAlias | NEWLINE)+;

ODEAlias = ([record:"record”] | [suppress:”suppress”])?
variableName:Name Datatype "=" Expr (”;”)?;

/*x ASTeq Represents an equation, e.g. ”I = exp(t)” or epresents an
differential equations, e.g. "V_m’ = V_m+1"..
@attribute lhs Left hand side, e.g. a Variable.
@attribute rhs Expression defining the right hand side.

*/
Equation = lhs:Derivative =" rhs:Expr (”;”)7;

Derivative = name:QualifiedName (differentialOrder:”\"”)x;

Shape = “shape” lhs:Variable "=" rhs:Expr (7;”)7;
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D.4 Procedural-Grammatik

grammars/SPL.mc4

*
* Copyright (¢) 2015 RWTH Aachen. All rights reserved.
*

* http://www.se—rwth.de/
*/

package org.nest;

grammar SPL extends org.nest.Commons {
SPLFile = ModuleDefinitionStatement Block;
ModuleDefinitionStatement = ”"module” moduleName:QualifiedName;
Block = ( Stmt | NEWLINE )x;
Stmt = Small_Stmt | Compound_Stmt;

Compound_Stmt = IF_Stmt
| FOR_Stmt
| WHILE_Stmt;

Small Stmt = Assignment
| FunctionCall
| Declaration
| ReturnStmt;

Assignment = lhsVarialbe:Variable
(assignment:["=" |
compoundSum:["+="] |
compoundMinus:["—="]
compoundProduct:["+="] |
compoundQuotient:[”/="]) Expr;

/#% ASTDeclaration A variable declaration. It can be a simple
declaration defining one or multiple variables :
’a,b,c real = 0’. Or an alias declaration ’alias a = b + ¢’
@attribute vars List with variables
@attribute Datatype Obligatory data type, e.g. ’real’ or 'mV/s’
@attribute sizeParameter An optional array parameter. E.g. 'tau_syn ms[n receptros]
@attribute expr An optional initial expression, e.g. ’a real = 10410’
*/
Declaration =
vars:Name (”,” vars:Name)x
Datatype
(’[” sizeParameter:Name ”|”)?
( 7=" Expr)? SL_.COMMENT?;

)

/#* ASTDefiningVariable Signed variable name

@attribute minus An optional sing
@attribute definingVariable Name of the variable

*/
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DefiningVariable = (minus:[”—"])? definingVariable : Name;
/#* ATReturnStmt Models the return statement in a function.

@attribute minus An optional sing
@attribute definingVariable Name of the variable
*/

ReturnStmt = "return” Expr?;
IF_Stmt = IF_Clause

ELIF_Clausex

(ELSE_Clause)?

BLOCK_CLOSE;
IF_Clause = ”if” Expr BLOCK_OPEN Block;
ELIF_Clause = ”elif” Expr BLOCK_OPEN Block;
ELSE_Clause = 7else” BLOCK_OPEN Block;
FOR_Stmt = "for” var:Name ”in” from:Expr 7...” to:Expr

("step” step:SignedNumericLiteral)?
BLOCK_OPEN Block BLOCK_CLOSE;

WHILE_Stmt = "while” Expr BLOCK_OPEN Block BLOCK_CLOSE;
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D.5 NESTML-Grammatik

grammars/NESTML.mc4

*
* Copyright (¢) 2015 RWTH Aachen. All rights reserved.
*

* http://www.se—rwth.de/
*/

package org.nest;

/x%

Grammar representing the Simple Programming Language (SPL).

It is easy to learn imperative language which leans on the Python syntax.
*/
grammar NESTML extends org.nest.SPL, org.nest. ODE {

/*x ASTNESTMLCompilationUnit represents the complete entire file with neuron
and component models.
@attribute packageName  The qualified name to artifact

@attribute Import List of imported elements

@attribute Neuron The neuron representation

@attribute Component The component representation
*/

NESTMLCompilationUnit =
(Import | NEWLINE)x*
(Neuron | Component | NEWLINE)x
EOF;

/#% ASTImport represents the import line. Can be the qualified name oder a
wirldcard import.
@attribute qualifiedName  The qualified name to artifact
@attribute star Optional wildcard (’x’)
*
/

Import = "import” QualifiedName ([star:”.%”])? (";")?;

/#* ASTNeuron represents neuron.

@attribute Name The name of the neuron

@attribute Body The body of the neuron, e.g. internal, state, parameter...
*/

Neuron = "neuron” Name ("extends” base:Name)? Body;

/#* ASTComponent represents neuron.
@attribute Name The name of the component

@attribute Body The body of the component, e.g. internal, state, parameter...

*/

Component = "component” Name Body;

/#+* ASTBodyElement represents a single entry in the neuron or component:
e.g. internal, state, parameter... The interface is used to enable
language extension.

*/

interface BodyElement;

/#* ASTBody The body of the neuron, e.g. internal, state, parameter-...
*

Body = BLOCK_OPEN
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(NEWLINE | BodyElement )
BLOCK_CLOSE;

/#+* ASTUSE_Stmt represent a reference to an another neuron or component. E.g.:
neuron AliasNeuron:
use nest.EmptyComponent as Soma
end

@attribute Name  The name of the referenced component
@attribute alias The name under which the referenced component can be used.
*/

USE_Stmt implements BodyElement = "use” name:QualifiedName "as” alias:Name;

/#% ASTVar_Block represent a block with variables, e.g.:
state:
v0, y1, y2, y3mV [yl > 0; y2 > 0]
end

@attribute state true if the varblock ist a state.

@attribute parameter true if the varblock ist a parameter.
@attribute internal true if the varblock ist a state internal.
@attribute AliasDecl a list with variable declarations.

*/

Var_Block implements BodyElement =
([” state ”]|[” parameter”]|[” internal ”])
BLOCK_OPEN

(AliasDecl | NEWLINE)x*
BLOCK_CLOSE;

/#+* ASTDynamics a special function definition:

update:
if r == 0: # not refractory
integrate (V)
end
end
@attribute block Implementation of the dynamics.
X
/
Dynamics implements BodyElement =
“update”
BLOCK_OPEN
Block

BLOCK_CLOSE;

/#x ASTEquations a special function definition:
equations:
G = (e/tawsyn) x t * exp(—1/tau_synxt)
V' = —1/Tau * V + 1/C_m * (I.sum(G, spikes) + Le + currents)
end
@attribute ddeDeclaration Block with equations and differential equations.
*
/
Equations implements BodyElement =
?equations”
BLOCK_OPEN
OdeDeclaration
BLOCK_CLOSE;

/#% ASTVar_Block represents a block with variables, e.g.:
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@attribute hide is true iff . declaration is not trackable.
@attribute alias is true iff . declaration is an alias.
@attribute declaration embeds the SPL variable declaration.
@attribute invariants List with optional invariants.

*/

AliasDecl =
([record:"record”] | [suppress:’suppress”])? ([” alias ”])?
Declaration

([’ invariant : Expr ”]]”)?;

/#% ASTInput represents the input block:
input:
spikeBuffer =~ <— inhibitory excitatory spike
currentBuffer <— current
end

@attribute inputLine set of input lines .
*/
Input implements BodyElement = "input”
BLOCK_OPEN
(InputLine | NEWLINE)x*
BLOCK_CLOSE;

/#* ASTInputLine represents a single line form the input, e.g.:
spikeBuffer =~ <— inhibitory excitatory spike

@attribute sizeParameter Optional parameter representing multisynapse neuron.
@attribute sizeParameter Type of the inputchannel: e.g.
inhibitory or excitatory (or both).
@attribute spike true iff the neuron is a spike.
@attribute current true iff . the neuron is a current.
*/
InputLine =
Name
("7 sizeParameter:Name 7]”)?
<=7 InputTypes
([”spike”] | [’current ]);

/#% ASTInputType represents the type of the inputline e.g.: inhibitory or excitatory:

@attribute inhibitory true iff the neuron is a inhibitory .
@attribute excitatory true iff . the neuron is a excitatory.
*/
InputType = (["inhibitory”] | [”excitatory ”]);

/#x ASTOutput represents the output block of the neuron:
output: spike
@attribute spike true iff the neuron has a spike output.
@attribute current true iff . the neuron is a current output.
*/
Output implements BodyElement = “output” BLOCK_OPEN ([’spike”] | [’current”]) ;

/#+* ASTFunction a function definition:
function set_V_m(v mV):
y3=v — EL
end
@attribute name Functionname.
@attribute parameters List with function parameters.
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170 @attribute returnType Complex return type, e.g. String
171 @attribute primitiveType Primitive return type, e.g. int
172 @attribute block Implementation of the function.

173 */

174 Function implements BodyElement = ”function” Name ”(” Parameters? ”)”
175 (returnType:Datatype)?

176 BLOCK_OPEN

177 Block

178 BLOCK_CLOSE;

179

180 /*x ASTParameters models parameter list in function declaration.
181 @attribute parameters List with parameters.

182 */

183 Parameters = Parameter (”,” Parameter)x;

184

185 /#*x ASTParameter represents singe:

186 output: spike

187 @attribute compartments Lists with compartments.

188 |/

189 Parameter = Name Datatype;

190 |}
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Anhang E

Modelle fur Tutorial

E.1 rc_neuron

tutorial_models/11.rc_neuron.nestml

/*

A straight forward implementation of the RC circuit approach
*/
neuron rc_neuron:

state:

V_abs mV = 0mV
end
equations:
V_abs’ = —1/taum * V_abs + 1/C_mx*I syn
end
parameter:

E.L mV = —-65mV

C_m pF = 250pF

tauum ms = 10ms

Isyn pA = 10pA
end

input:
spikes ~<— spike
end
output: spike
update:
integrate_odes ()

end

end
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E.2 alpha-shaped postsynaptic responce

tutorial_models/32_rc_alpha.nestml

/x
RC circuit approach and alpha shapes for synaptic currents.
*
/
neuron rc_alpha:
state:
V_om mV = E_L
gex pA = OpA
end

equations:

gex” = —g_ex’ / tausyn

gex’ =gex — (gex/ tausyn)

Isyn pA = g ex + currents + Le

Vom’ = —(Vom — E_L)/taum + Lsyn/C_m
end

parameter:
EL mV=-70mV
C_m pF = 250pF
taum ms = 10ms
tau_syn ms = 2.0ms
alias V_th mV = —55mV — E_L
alias V_reset mV = —70mV — E_L
refractory_timeout ms = 2ms
refractory_counts integer = 0
Ie pA = OpA

end

internal :
PSConlnit_E pA/ms = 1.0 pA * e / tau_syn
end

input:
spikes <— spike
currents <— current
end

output: spike

update:
if refractory_counts ==
integrate_odes ()
if V_om > V_th:
V_m = V_reset

emit_spike ()
refractory_counts = steps(refractory_timeout)
end
else:
refractory_counts —= 1
end
g ex’ += PSConlnit_E * spikes
end
end
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E.3 shapes

tutorial models/33_rc_shape.nestml

/*

A straight forward implementation of the RC circuit approach.
Adds alpha shapes for synaptic currents which is modelled as an excplicit function.

*/
neuron rc_shape:
state:
V_m mV = E_L
end
equations:

shape g ex = (e/tau_syn) * t * exp(—1/tau_synxt)
Lsyn pA = Lsum(g ex, spikes) + currents + Le
Vom’ = —(Vom — E_L)/taum + Lsyn/C_m

end

parameter:
E.L mV = -70mV
C_m pF = 250pF
tau_m ms = 10ms
tau_syn ms = 2.0ms

alias V_th mV = —55mV — E_L
alias V_reset mV = —70mV — E_L
refractory_timeout ms = 2ms
refractory_counts integer = 0
Ie pA = OpA

end

internal :
PSConlnit_E real = 1.0 * e / tau_syn
end

input:
spikes  <— spike
currents <— current
end

output: spike

update:
if refractory_counts == 0:
integrate_odes ()
if Vom > V_th:
V_m = V_reset
emit_spike ()
refractory_counts = steps(refractory_timeout)
end
else:
refractory_counts —= 1
end
end
end
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E.4 lzhikevich neuron

tutorial_models/izhikevich.nestml

/*
Solution to the tutorial exercise. It is a reference
implementation of the izhikevich_neuron.

X
/
neuron izhikevich_neuron:
state:
V_om mV = —65mV # Membrane potential in mV
U_m real

# TODO add new variable U_m with the type real
# NESTML syntax for variables: variable_name real = initial_value
end

equations:
# TODO Add 2 ODE:s for the V_m und U_m.
# You can use current buffer I directly in the ODE
Vom’ =0.04 *V_m *V_m + 5 * V_m + 140 — U.m + I
U_m’ = ax(b+*V_m —U_m)

end
parameter:
# Add 4 variables a,b,c, d of real type
a real = 0.02
b real = 0.2
¢ mV = —65.0mV
d real = 2mV
end
input:

# TODO add current buffer named 1
# NESTML Syntax for current buffers: buffer_name <— current
I <— current

end

output: spike

update:
integrate_odes ()
# TODO: Implement threshold crossing check

# use an if—conditional. The NESTML systax looks like:

#if a >=Db:

# a+=Db

# b=a

# emit_spike()

# end

# threshold crossing

if Vom >= 30.0mV:
V_om =c
U.m +=d

end

end
end
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3.7 Zusammenhang zwischen LEMS und NeuroML. NeuroML greift fiir die
Deklaration von Neuronen und Ionen-Kanélen auf die LEMS-Definitionen
zuriirck [VCCT14]. Im vorliegenden Beispiel wird ein Neuron, eine Syn-
apse und ein Ionen-Kanal aus LEMS in NeuroML instanziiert. . . . . . . .

3.8 Ausschnitt eines NineML-Modells. Um einen mathematischen Term rv =
V/U zu definieren, sind drei Zeilen XML-Code notwendig (vgl. Zeilen 4-6).
Der MathInline-Block in Zeile 13 enthilt eine syntaktisch unstrukturier-
te Zeichenkette, die nicht mithilfe von XML-Tools auf die syntaktische
Korrektheit validiert werden kann. . . . . . . . .. ... ...

3.9 Eine exemplarische NMODL-Implementierung eines Neurons basierend
auf der Dynamik aus [WH91]. Dieses Beispiel zeigt die wesentlichen Kom-
ponenten: Zustands-, Parameter-, Alias- und Aktualisierungsblock fiir die
Zustandsvariablen. Dieses Modell lehnt sich an [GS117] an. . . . . . . ..

3.10 Modellierung eines IaF-Neurons im Brian-Simulator,. . . . . . . . . . . ..
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tur in der MontiCore Language Workbench. . . . . . . ... ... .. ...
4.2 Auszug der NESTML-Grammatik, die die Struktur eines Neurons bzw.
einer Komponente definiert. . . . . . ... ... ... ... ... ...
4.3 Eine Lexer-Produktion in MontiCore-Syntax, die einen Name definiert.
4.4  FEine Parserproduktion in MontiCore-Syntax, mit der die Definition eines
Neurons modelliert wird. . . . . . . . . . .. .. .. L o
4.5 Parser-Produktion, die die Moglichkeit zur Spezifikation von Listen und
expliziten Attributnamen im generierten Metamodell demonstriert. Auf
der rechten Seite werden die abgeleiteten Klassen des Metamodells und
deren schematische Ableitung aus der Grammatikproduktion dargestellt. .
4.6 Definition des Interface-Nichtterminals BodyElement und dessen Imple-
mentierungen durch die Dynamics- und Equations-Produktionen.. . . . .
4.7 Schematische Darstellung der unterschiedlichen Sprachwiederverwendungs-
mechanismen [HLMSNT15, LNPR*13, Lool7]. Dabei entspricht (a) der
Sprachaggregation (b) der Einbettung (c) der Sprachvererbung . . . . . .
4.8 Ein Ausschnitt der Symbolinfrastruktur von NESTML. . . .. ... ...
4.9 Beispiel der Verdeckung einer Variable im update-Block, hier V_m. .
4.10 Ein Ausschnitt der NESTML-spezifischen Umsetzung der Scope-Hierarchie
in der MontiCore Workbench. . . . . . . ... ... .. ... ...
4.11 Ein Auszug des sprachspezifischen SymbolTableCreators der NESTML-
Sprache. . . . . . ..
4.12 Ein Ausschnitt des Visitors, der auf der Grundlage der NESTML-Grammatik
generiert wird. . . . ... oL L
4.13 Sprachspezifische Implementierung der Registrierung von Kontextbedin-
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4.14 Verschiedene Codegenerierungsphasen, um aus einem Modell-AST mithil-
fe der Generierungstemplates eine C++-Implementierung zu generieren. .
4.15 FEin Ausschnitt aus dem vereinfachten NEST-Codegenerator. . . . . . ..
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5.2  Struktureller Aufbau der NESTML-Sprachen. . . . . ... ... ... ...
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Syntax. ... e e
5.4 Definition eines Neurons iaf_neuron als Erweiterung des Neurons ba-
se_neuron. Dabei stehen die im Neuron base_iaf definierten Zustands-
variablen im Neuron iaf_neuron zur Verfiigung. . . . ... .. ... ...
5.5 Der Komponentenmechanismus von NESTML. (A) zeigt die Definition
einer wiederverwendbaren Komponente, die die Logik der Refraktérpha-
senberechnung kapselt. (B) zeigt die Verwendung der Komponente aus
(A) im Neuron iaf_neuron. . . . . . . . . .. ... ...
5.6 Exemplarischer state-Block bestehend aus zwei Variablen, die das Mem-
branpotenzial und ein zu einer Konstante relatives Membranpotenzial mo-
dellieren. . . . . . . . L
5.7 Exemplarischer parameters-Block bestehend aus zwei Variablen. Die Va-
riable C_m modelliert die Membrankapazitéit, E_L das Ruhepotenzial des
Neurons. . . . . . . o v i e
5.8 Exemplarischer internals-Block, der eine Variablendeklaration enthélt. .
5.9 Einige exemplarische input-Blocke. (A) Hier wird ein Block mit zwei Ports
definiert. (B) Hier werde zwei spike-Ports, die jeweils unterschiedlich ge-
wichtete Spikes verarbeiten, definiert. (C) Hier werden mehrere Ports vom
gleichen Typ definiert. (D) Hier wird ein Ausgangsport vom Typ spike
definiert. . . . . . . . .
5.10 Ein exemplarischer equations-Block. Die Funktion I_a definiert die Form
der postsynaptischen Antwort, die in der darauffolgenden Gleichung zu-
sammen mit einem spike-Port im Aufruf der vordefinierten Methode conv
verkniipft wird. . . . . . . ...
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5.14 Exemplarische Beispiele fiir einfache und zusammengesetzte Zuweisungen.

5.15 Zusammenfassung der sprachlichen Konstrukte fiir bedingte Ausfithrung
von ANWEISUNZEN. . . . .« o vt e e

5.16 Unterschiedliche Arten von Schleifen in der ProceduralDSL. Fall (A) zeigt
eine while-Schleife, Fille (B), (C) und (D) unterschiedliche Arten von
for-Schleifen. . . . . . . ..
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5.17 Verschiedene Modellierungselemente im equations-Block. (A) zeigt eine
shape-basierte Notation fiir die Definition der Faltung der postsynapti-
schen Strome (B) zeigt eine zu (A) dquivalente Darstellung als Gleichungs-
system mit Anfangswerten (C) zeigt die Definition eines Synonyms fiir die
klarere Definition von Differenzialgleichung. . . . . . . ... ... ... ..

6.1 Die Grammatikhierarchie der Modellierungssprache NESTML. NESTML
setzt sich aus verschiedenen Grammatiken zusammen. Jede Grammatik
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6.2 Definition der Nichtterminale fiir die Definition einer Datei mit Neuro-
nenmodellen. . . . ..

6.3 Definition der Nichtterminale fiir die Spezifikation des Neuronenrumpfes.
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Agile Model Based Software Engineering

Agility and modeling in the same project? This question was raised in [Rum04]: “Using an exe-
cutable, yet abstract and multi-view modeling language for modeling, designing and programming
still allows to use an agile development process.” Modeling will be used in development projects
much more, if the benefits become evident early, e.g with executable UML [Rum02] and tests
[Rumo03]. In [GKRSO06], for example, we concentrate on the integration of models and ordina-
ry programming code. In [Rum12] and [Ruml6], the UML/P, a variant of the UML especially
designed for programming, refactoring and evolution, is defined. The language workbench Mon-
tiCore [GKR ™06, GKR108] is used to realize the UML/P [Sch12]. Links to further research, e.g.,
include a general discussion of how to manage and evolve models [LRSS10], a precise definition
for model composition as well as model languages [HKR109] and refactoring in various mode-
ling and programming languages [PR03]. In [FHRO8] we describe a set of general requirements
for model quality. Finally [KRVO06] discusses the additional roles and activities necessary in a
DSL-based software development project. In [CEG'14] we discuss how to improve reliability of
adaprivity through models at runtime, which will allow developers to delay design decisions to
runtime adaptation.

Generative Software Engineering

The UML/P language family [Rum12, Rum11, Rum16] is a simplified and semantically sound de-
rivate of the UML designed for product and test code generation. [Sch12] describes a flexible gene-
rator for the UML/P based on the MontiCore language workbench [KRV10, GKR*06, GKR'08].
In [KRV06], we discuss additional roles necessary in a model-based software development pro-
ject. In [GKRSO06] we discuss mechanisms to keep generated and handwritten code separated. In
[Weil2] demonstrate how to systematically derive a transformation language in concrete syntax.
To understand the implications of executability for UML, we discuss needs and advantages of
executable modeling with UML in agile projects in [Rum04], how to apply UML for testing in
[Rum03] and the advantages and perils of using modeling languages for programming in [Rum02].

Unified Modeling Language (UML)

Starting with an early identification of challenges for the standardization of the UML in [KER99]
many of our contributions build on the UML/P variant, which is described in the two books
[Rum16] and [Rum12] implemented in [Sch12]. Semantic variation points of the UML are dis-
cussed in [GR11]. We discuss formal semantics for UML [BHP 98] and describe UML semantics
using the “System Model” [BCGR09a], [BCGR09b], [BCRO7b] and [BCRO7a]. Semantic variation
points have, e.g., been applied to define class diagram semantics [CGRO8]. A precisely defined
semantics for variations is applied, when checking variants of class diagrams [MRR11c] and ob-
jects diagrams [MRR11d] or the consistency of both kinds of diagrams [MRR11e]. We also apply
these concepts to activity diagrams [MRR11b] which allows us to check for semantic differences
of activity diagrams [MRR11a]. The basic semantics for ADs and their semantic variation points
is given in [GRR10]. We also discuss how to ensure and identify model quality [FHROS], how
models, views and the system under development correlate to each other [BGH98] and how to
use modeling in agile development projects [Rum04], [Rum02]. The question how to adapt and
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extend the UML is discussed in [PFR02] describing product line annotations for UML and more
general discussions and insights on how to use meta-modeling for defining and adapting the UML
are included in [EFLR99], [FELR98] and [SRVK10].

Domain Specific Languages (DSLs)

Computer science is about languages. Domain Specific Languages (DSLs) are better to use,
but need appropriate tooling. The MontiCore language workbench [GKRT06, KRV10, Kral0,
GKR108] allows the specification of an integrated abstract and concrete syntax format [KRV07b]
for easy development. New languages and tools can be defined in modular forms [KRV08S,
GKR107, Vél11] and can, thus, easily be reused. [Weil2] presents a tool that allows to crea-
te transformation rules tailored to an underlying DSL. Variability in DSL definitions has been
examined in [GR11]. A successful application has been carried out in the Air Traffic Management
domain [ZPK™11]. Based on the concepts described above, meta modeling, model analyses and
model evolution have been discussed in [LRSS10] and [SRVK10]. DSL quality [FHRO8], instructi-
ons for defining views [GHK™07], guidelines to define DSLs [KKP09] and Eclipse-based tooling
for DSLs [KRV07a] complete the collection.

Software Language Engineering

For a systematic definition of languages using composition of reusable and adaptable langua-
ge components, we adopt an engineering viewpoint on these techniques. General ideas on how
to engineer a language can be found in the GeMoC initiative [CBCR15, CCFT15]. As said,
the MontiCore language workbench provides techniques for an integrated definition of languages
[KRV07b, Kral0, KRV10]. In [SRVK10] we discuss the possibilities and the challenges using meta-
models for language definition. Modular composition, however, is a core concept to reuse language
components like in MontiCore for the frontend [V6111, KRV08] and the backend [RRRW15]]. Lan-
guage derivation is to our believe a promising technique to develop new languages for a specific
purpose that rely on existing basic languages. How to automatically derive such a transformation
language using concrete syntax of the base language is described in [HRW15, Weil2] and suc-
cessfully applied to various DSLs. We also applied the language derivation technique to tagging
languages that decorate a base language [GLRR15] and delta languages [HHK™15a, HHK™13],
where a delta language is derived from a base language to be able to constructively describe
differences between model variants usable to build feature sets.

Modeling Software Architecture & the MontiArc Tool

Distributed interactive systems communicate via messages on a bus, discrete event signals, stre-
ams of telephone or video data, method invocation, or data structures passed between software
services. We use streams, statemachines and components [BR07] as well as expressive forms of
composition and refinement [PR99] for semantics. Furthermore, we built a concrete tooling infra-
structure called MontiArc [HRR12] for architecture design and extensions for states [RRW13b].
MontiArc was extended to describe variability [HRR*11] using deltas [HRRS11, ?] and evoluti-
on on deltas [HRRS12]. [GHK™07] and [GHK08] close the gap between the requirements and
the logical architecture and [GKPROS] extends it to model variants. [MRR14] provides a precise
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technique to verify consistency of architectural views [Rinl4, MRR13] against a complete archi-
tecture in order to increase reusability. Co-evolution of architecture is discussed in [MMR10] and
a modeling technique to describe dynamic architectures is shown in [HRR98].

Compositionality & Modularity of Models

[HKRT09] motivates the basic mechanisms for modularity and compositionality for modeling.
The mechanisms for distributed systems are shown in [BR07] and algebraically underpinned in
[HKRT07]. Semantic and methodical aspects of model composition [KRV08] led to the language
workbench MontiCore [KRV10] that can even be used to develop modeling tools in a composi-
tional form. A set of DSL design guidelines incorporates reuse through this form of composition
[KKPT09]. [V6111] examines the composition of context conditions respectively the underlying in-
frastructure of the symbol table. Modular editor generation is discussed in [KRV07a]. [RRRW15]
applies compositionality to Robotics control. [CBCR15] (published in [CCFT15]) summarizes
our approach to composition and remaining challenges in form of a conceptual model of the “glo-
balized” use of DSLs. As a new form of decomposition of model information we have developed
the concept of tagging languages in [GLRR15]. It allows to describe additional information for
model elements in separated documents, facilitates reuse, and allows to type tags.

Semantics of Modeling Languages

The meaning of semantics and its principles like underspecification, language precision and de-
tailedness is discussed in [HR04]. We defined a semantic domain called “System Model” by using
mathematical theory in [RKB95, BHPT98] and [GKR96, KRB96]. An extended version espe-
cially suited for the UML is given in [BCGRO09b] and in [BCGR09a] its rationale is discussed.
[BCRO7a, BCRO7b] contain detailed versions that are applied to class diagrams in [CGR08]. To
better understand the effect of an evolved design, detection of semantic differencing as oppo-
sed to pure syntactical differences is needed [MRR10]. [MRR11a, MRR11b] encode a part of
the semantics to handle semantic differences of activity diagrams and [MRR11e| compares class
and object diagrams with regard to their semantics. In [BR07], a simplified mathematical model
for distributed systems based on black-box behaviors of components is defined. Meta-modeling
semantics is discussed in [EFLR99]. [BGHT97] discusses potential modeling languages for the
description of an exemplary object interaction, today called sequence diagram. [BGHT98] dis-
cusses the relationships between a system, a view and a complete model in the context of the
UML. [GR11] and [CGRO09] discuss general requirements for a framework to describe semantic
and syntactic variations of a modeling language. We apply these on class and object diagrams in
[MRR11e] as well as activity diagrams in [GRR10]. [Rum12] defines the semantics in a variety of
code and test case generation, refactoring and evolution techniques. [LRSS10] discusses evolution
and related issues in greater detail.

Evolution & Transformation of Models

Models are the central artifact in model driven development, but as code they are not initially
correct and need to be changed, evolved and maintained over time. Model transformation is the-
refore essential to effectively deal with models. Many concrete model transformation problems
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are discussed: evolution [LRSS10, MMR10, Rum04], refinement [PR99, KPR97, PR94], refacto-
ring [Rum12, PRO3], translating models from one language into another [MRR11c, Rum12] and
systematic model transformation language development [Weil2]. [Rum04] describes how compre-
hensible sets of such transformations support software development and maintenance [LRSS10],
technologies for evolving models within a language and across languages, and mapping archi-
tecture descriptions to their implementation [MMR10]. Automaton refinement is discussed in
[PR94, KPRIT7], refining pipe-and-filter architectures is explained in [PR99]. Refactorings of
models are important for model driven engineering as discussed in [PR01, PR03, Rum12|. Trans-
lation between languages, e.g., from class diagrams into Alloy [MRR11c| allows for comparing
class diagrams on a semantic level.

Variability & Software Product Lines (SPL)

Products often exist in various variants, for example cars or mobile phones, where one manu-
facturer develops several products with many similarities but also many variations. Variants are
managed in a Software Product Line (SPL) that captures product commonalities as well as dif-
ferences. Feature diagrams describe variability in a top down fashion, e.g., in the automotive
domain [GHK108| using 150% models. Reducing overhead and associated costs is discussed in
[GRJA12]. Delta modeling is a bottom up technique starting with a small, but complete base
variant. Features are additive, but also can modify the core. A set of commonly applicable del-
tas configures a system variant. We discuss the application of this technique to Delta-MontiArc
[HRR*11, HRR"11] and to Delta-Simulink [HKM™"13]. Deltas can not only describe spacial
variability but also temporal variability which allows for using them for software product line
evolution [HRRS12]. [HHK™13] and [HRW15] describe an approach to systematically derive del-
ta languages. We also apply variability to modeling languages in order to describe syntactic and
semantic variation points, e.g., in UML for frameworks [PFR02]. Furthermore, we specified a
systematic way to define variants of modeling languages [CGR09] and applied this as a semantic
language refinement on Statecharts in [GR11].

Cyber-Physical Systems (CPS)

Cyber-Physical Systems (CPS) [KRS12] are complex, distributed systems which control physi-
cal entities. Contributions for individual aspects range from requirements [GRJA12], complete
product lines [HRRW12], the improvement of engineering for distributed automotive systems
[HRR12] and autonomous driving [BR12a] to processes and tools to improve the development as
well as the product itself [BBROT7]. In the aviation domain, a modeling language for uncertainty
and safety events was developed, which is of interest for the European airspace [ZPK*T11]. A
component and connector architecture description language suitable for the specific challenges in
robotics is discussed in [RRW13b, RRW14]. Monitoring for smart and energy efficient buildings
is developed as Energy Navigator toolset [KPR12, FPPR12, KLPR12].

State Based Modeling (Automata)

Today, many computer science theories are based on statemachines in various forms including
Petri nets or temporal logics. Software engineering is particularly interested in using statema-
chines for modeling systems. Our contributions to state based modeling can currently be split
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into three parts: (1) understanding how to model object-oriented and distributed software using
statemachines resp. Statecharts [GKR96, BCR07b, BCGR09b, BCGR09a], (2) understanding the
refinement [PR94, RK96, Rum96] and composition [GR95] of statemachines, and (3) applying
statemachines for modeling systems. In [Rum96] constructive transformation rules for refining
automata behavior are given and proven correct. This theory is applied to features in [KPR97].
Statemachines are embedded in the composition and behavioral specification concepts of Focus
[BRO7]. We apply these techniques, e.g., in MontiArcAutomaton [RRW13a, RRW14] as well as
in building management systems [FLPT11].

Robotics

Robotics can be considered a special field within Cyber-Physical Systems which is defined by an
inherent heterogeneity of involved domains, relevant platforms, and challenges. The engineering
of robotics applications requires composition and interaction of diverse distributed software mo-
dules. This usually leads to complex monolithic software solutions hardly reusable, maintainable,
and comprehensible, which hampers broad propagation of robotics applications. The MontiAr-
cAutomaton language [RRW13a] extends ADL MontiArc and integrates various implemented
behavior modeling languages using MontiCore [RRW13b, RRW14, RRRW15] that perfectly fit
Robotic architectural modelling. The LightRocks [THR™13] framework allows robotics experts
and laymen to model robotic assembly tasks.

Automotive, Autonomic Driving & Intelligent Driver Assistance

Introducing and connecting sophisticated driver assistance, infotainment and communication
systems as well as advanced active and passive safety-systems result in complex embedded sys-
tems. As these feature-driven subsystems may be arbitrarily combined by the customer, a huge
amount of distinct variants needs to be managed, developed and tested. A consistent require-
ments management that connects requirements with features in all phases of the development
for the automotive domain is described in [GRJA12]. The conceptual gap between requirements
and the logical architecture of a car is closed in [GHKT07, GHK'08]. [HKM™13] describes a tool
for delta modeling for Simulink [HKM™13]. [HRRW12] discusses means to extract a well-defined
Software Product Line from a set of copy and paste variants. [RSW™15] describes an approach
to use model checking techniques to identify behavioral differences of Simulink models. Quality
assurance, especially of safety-related functions, is a highly important task. In the Carolo project
[BR12a, BR12b], we developed a rigorous test infrastructure for intelligent, sensor-based func-
tions through fully-automatic simulation [BBRO7]. This technique allows a dramatic speedup
in development and evolution of autonomous car functionality, and thus enables us to develop
software in an agile way [BR12a]. [MMR10] gives an overview of the current state-of-the-art in
development and evolution on a more general level by considering any kind of critical system
that relies on architectural descriptions. As tooling infrastructure, the SSElab storage, versioning
and management services [HKR12] are essential for many projects.

Energy Management

In the past years, it became more and more evident that saving energy and reducing CO2 emis-
sions is an important challenge. Thus, energy management in buildings as well as in neighbour-
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hoods becomes equally important to efficiently use the generated energy. Within several research
projects, we developed methodologies and solutions for integrating heterogeneous systems at dif-
ferent scales. During the design phase, the Energy Navigators Active Functional Specification
(AFS) [FPPR12, KPR12] is used for technical specification of building services already. We ad-
apted the well-known concept of statemachines to be able to describe different states of a facility
and to validate it against the monitored values [FLP*11]. We show how our data model, the
constraint rules and the evaluation approach to compare sensor data can be applied [KLPR12].

Cloud Computing & Enterprise Information Systems

The paradigm of Cloud Computing is arising out of a convergence of existing technologies for
web-based application and service architectures with high complexity, criticality and new appli-
cation domains. It promises to enable new business models, to lower the barrier for web-based
innovations and to increase the efficiency and cost-effectiveness of web development [KRR14].
Application classes like Cyber-Physical Systems and their privacy [HHK*14, HHK*15b], Big
Data, App and Service Ecosystems bring attention to aspects like responsiveness, privacy and
open platforms. Regardless of the application domain, developers of such systems are in need
for robust methods and efficient, easy-to-use languages and tools [KRS12]. We tackle these chal-
lenges by perusing a model-based, generative approach [NPR13]. The core of this approach are
different modeling languages that describe different aspects of a cloud-based system in a concise
and technology-agnostic way. Software architecture and infrastructure models describe the sys-
tem and its physical distribution on a large scale. We apply cloud technology for the services we
develop, e.g., the SSELab [HKR12] and the Energy Navigator [FPPR12, KPR12] but also for
our tool demonstrators and our own development platforms. New services, e.g., collecting data
from temperature, cars etc. can now easily be developed.

230



RELATED INTERESTING WORK FROM THE SE GrRouP, RWTH AACHEN

[BBRO7]

[BCGRO09a)

[BCGRO9D)

[BCRO7a]

[BCROTD)]

[BGH*97]

[BGH 93

[BHP+98]

[BRO7]

[BR12a]

[BR12b)

[CBCR15]

Christian Basarke, Christian Berger, and Bernhard Rumpe. Software & Systems
Engineering Process and Tools for the Development of Autonomous Driving Intel-
ligence. Journal of Aerospace Computing, Information, and Communication (JA-
CIC), 4(12):1158-1174, 2007.

Manfred Broy, Maria Victoria Cengarle, Hans Gronniger, and Bernhard Rumpe.
Considerations and Rationale for a UML System Model. In K. Lano, editor, UML
2 Semantics and Applications, pages 43-61. John Wiley & Sons, November 2009.

Manfred Broy, Marfa Victoria Cengarle, Hans Gronniger, and Bernhard Rumpe.
Definition of the UML System Model. In K. Lano, editor, UML 2 Semantics and
Applications, pages 63-93. John Wiley & Sons, November 2009.

Manfred Broy, Marfa Victoria Cengarle, and Bernhard Rumpe. Towards a System
Model for UML. Part 2: The Control Model. Technical Report TUM-10710, TU
Munich, Germany, February 2007.

Manfred Broy, Marfa Victoria Cengarle, and Bernhard Rumpe. Towards a System
Model for UML. Part 3: The State Machine Model. Technical Report TUM-10711,
TU Munich, Germany, February 2007.

Ruth Breu, Radu Grosu, Christoph Hofmann, Franz Huber, Ingolf Kriiger, Bern-
hard Rumpe, Monika Schmidt, and Wolfgang Schwerin. Exemplary and Complete
Object Interaction Descriptions. In Object-oriented Behavioral Semantics Workshop
(OOPSLA’97), Technical Report TUM-19737, Germany, 1997. TU Munich.

Ruth Breu, Radu Grosu, Franz Huber, Bernhard Rumpe, and Wolfgang Schwerin.
Systems, Views and Models of UML. In Proceedings of the Unified Modeling Langua-
ge, Technical Aspects and Applications, pages 93-109. Physica Verlag, Heidelberg,
Germany, 1998.

Manfred Broy, Franz Huber, Barbara Paech, Bernhard Rumpe, and Katharina Spies.
Software and System Modeling Based on a Unified Formal Semantics. In Workshop
on Requirements Targeting Software and Systems Engineering (RTSE’97), LNCS
1526, pages 43-68. Springer, 1998.

Manfred Broy and Bernhard Rumpe. Modulare hierarchische Modellierung als
Grundlage der Software- und Systementwicklung. Informatik-Spektrum, 30(1):3—
18, Februar 2007.

Christian Berger and Bernhard Rumpe. Autonomous Driving - 5 Years after the
Urban Challenge: The Anticipatory Vehicle as a Cyber-Physical System. In Auto-
motive Software Engineering Workshop (ASE’12), pages 789-798, 2012.

Christian Berger and Bernhard Rumpe. Engineering Autonomous Driving Software.
In C. Rouff and M. Hinchey, editors, Experience from the DARPA Urban Challenge,
pages 243-271. Springer, Germany, 2012.

Tony Clark, Mark van den Brand, Benoit Combemale, and Bernhard Rumpe. Con-
ceptual Model of the Globalization for Domain-Specific Languages. In Globalizing
Domain-Specific Languages, LNCS 9400, pages 7-20. Springer, 2015.

231



RELATED INTERESTING WORK FROM THE SE Grour, RWTH AACHEN

[CCF+15)

[CEG*14]

[CGROS]

[CGRO9]

[EFLR99)]

[FELRYS]

[FHROS]

[FLP*11]

[FPPR12]

[GHK*07]

[GHK*08]

[GKPROS]

232

Betty H. C. Cheng, Benoit Combemale, Robert B. France, Jean-Marc Jézéquel,
and Bernhard Rumpe, editors. Globalizing Domain-Specific Languages, LNCS 9400.
Springer, 2015.

Betty Cheng, Kerstin Eder, Martin Gogolla, Lars Grunske, Marin Litoiu, Hausi
Miiller, Patrizio Pelliccione, Anna Perini, Nauman Qureshi, Bernhard Rumpe, Da-
niel Schneider, Frank Trollmann, and Norha Villegas. Using Models at Runtime
to Address Assurance for Self-Adaptive Systems. In Models@run.time, LNCS 8378,
pages 101-136. Springer, Germany, 2014.

Maria Victoria Cengarle, Hans Gronniger, and Bernhard Rumpe. System Model
Semantics of Class Diagrams. Informatik-Bericht 2008-05, TU Braunschweig, Ger-
many, 2008.

Maria Victoria Cengarle, Hans Gronniger, and Bernhard Rumpe. Variability wi-
thin Modeling Language Definitions. In Conference on Model Driven Engineering
Languages and Systems (MODELS’09), LNCS 5795, pages 670-684. Springer, 2009.

Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. Meta-Modelling
Semantics of UML. In H. Kilov, B. Rumpe, and I. Simmonds, editors, Behavioral
Specifications of Businesses and Systems, pages 45-60. Kluver Academic Publisher,
1999.

Robert France, Andy Evans, Kevin Lano, and Bernhard Rumpe. The UML as a for-
mal modeling notation. Computer Standards €& Interfaces, 19(7):325-334, November
1998.

Florian Fieber, Michaela Huhn, and Bernhard Rumpe. Modellqualitéit als Indikator
fiir Softwarequalitit: eine Taxonomie. Informatik-Spektrum, 31(5):408-424, Oktober
2008.

M. Norbert Fisch, Markus Look, Claas Pinkernell, Stefan Plesser, and Bernhard
Rumpe. State-based Modeling of Buildings and Facilities. In Enhanced Building
Operations Conference (ICEBO’11), 2011.

M. Norbert Fisch, Claas Pinkernell, Stefan Plesser, and Bernhard Rumpe. The
Energy Navigator - A Web-Platform for Performance Design and Management. In
Energy Efficiency in Commercial Buildings Conference(IEECB’12), 2012.

Hans Gronniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, and Bernhard
Rumpe. View-based Modeling of Function Nets. In Object-oriented Modelling of
Embedded Real-Time Systems Workshop (OMER/’07), 2007.

Hans Gronniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, Lutz Rothhardt,
and Bernhard Rumpe. Modelling Automotive Function Nets with Views for Featu-
res, Variants, and Modes. In Proceedings of 4th European Congress ERTS - Embed-
ded Real Time Software, 2008.

Hans Gronniger, Holger Krahn, Claas Pinkernell, and Bernhard Rumpe. Mode-
ling Variants of Automotive Systems using Views. In Modellbasierte Entwicklung
von eingebetteten Fahrzeugfunktionen, Informatik Bericht 2008-01, pages 76-89. TU
Braunschweig, 2008.



RELATED INTERESTING WORK FROM THE SE GrRouP, RWTH AACHEN

[GKRO6)]

[GKR*06]

[GKR*07]

[GKR*08]

[GKRS06]

[GLRR15]

[GR95)]

[GR11]

[GRJA12]

[GRR10]

[HHK*13]

[HHK*14]

Radu Grosu, Cornel Klein, and Bernhard Rumpe. Enhancing the SysLab System
Model with State. Technical Report TUM-19631, TU Munich, Germany, July 1996.

Hans Gronniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Volkel. MontiCore 1.0 - Ein Framework zur Erstellung und Verarbeitung doménspe-
zifischer Sprachen. Informatik-Bericht 2006-04, CFG-Fakultéit, TU Braunschweig,
August 2006.

Hans Gronniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Volkel. Textbased Modeling. In 4th International Workshop on Software Language
Engineering, Nashville, Informatik-Bericht 4/2007. Johannes-Gutenberg-Universitéit
Mainz, 2007.

Hans Gronniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Volkel. MontiCore: A Framework for the Development of Textual Domain Specific
Languages. In 30th International Conference on Software Engineering (ICSE 2008),
Leipzig, Germany, May 10-18, 2008, Companion Volume, pages 925-926, 2008.

Hans Gronniger, Holger Krahn, Bernhard Rumpe, and Martin Schindler. Integration
von Modellen in einen codebasierten Softwareentwicklungsprozess. In Modellierung
2006 Conference, LNI 82, Seiten 67-81, 2006.

Timo Greifenberg, Markus Look, Sebastian Roidl, and Bernhard Rumpe. Engi-
neering Tagging Languages for DSLs. In Conference on Model Driven Engineering
Languages and Systems (MODELS’15), pages 34-43. ACM/IEEE, 2015.

Radu Grosu and Bernhard Rumpe. Concurrent Timed Port Automata. Technical
Report TUM-19533, TU Munich, Germany, October 1995.

Hans Gronniger and Bernhard Rumpe. Modeling Language Variability. In Workshop
on Modeling, Development and Verification of Adaptive Systems, LNCS 6662, pages
17-32. Springer, 2011.

Tim Giilke, Bernhard Rumpe, Martin Jansen, and Joachim Axmann. High-Level
Requirements Management and Complexity Costs in Automotive Development Pro-
jects: A Problem Statement. In Requirements Engineering: Foundation for Software
Quality (REFSQ’12), 2012.

Hans Gronniger, Dirk Reif}, and Bernhard Rumpe. Towards a Semantics of Activity
Diagrams with Semantic Variation Points. In Conference on Model Driven Enginee-
ring Languages and Systems (MODELS’10), LNCS 6394, pages 331-345. Springer,
2010.

Arne Haber, Katrin Holldobler, Carsten Kolassa, Markus Look, Klaus Miiller, Bern-
hard Rumpe, and Ina Schaefer. Engineering Delta Modeling Languages. In Software
Product Line Conference (SPLC’18), pages 22-31. ACM, 2013.

Martin Henze, Lars Hermerschmidt, Daniel Kerpen, Roger H&uflling, Bernhard
Rumpe, and Klaus Wehrle. User-driven Privacy Enforcement for Cloud-based Ser-
vices in the Internet of Things. In Conference on Future Internet of Things and
Cloud (FiCloud’14). IEEE, 2014.

233



RELATED INTERESTING WORK FROM THE SE Grour, RWTH AACHEN

[HHK ™ 15a]

[HHK ™ 15b]

[HKM*13]

[HKR*07]

[HKR*09]

[HKR*11]

[HKR12]

[HRO4]

[HRROS]

[HRR*11]

[HRR12]

[HRRS11]

234

Arne Haber, Katrin Holldobler, Carsten Kolassa, Markus Look, Klaus Miiller, Bern-
hard Rumpe, Ina Schaefer, and Christoph Schulze. Systematic Synthesis of Delta
Modeling Languages. Journal on Software Tools for Technology Transfer (STTT),
17(5):601-626, October 2015.

Martin Henze, Lars Hermerschmidt, Daniel Kerpen, Roger Hiuflling, Bernhard
Rumpe, and Klaus Wehrle. A comprehensive approach to privacy in the cloud-
based Internet of Things. Future Generation Computer Systems, 56:701-718, 2015.

Arne Haber, Carsten Kolassa, Peter Manhart, Pedram Mir Seyed Nazari, Bernhard
Rumpe, and Ina Schaefer. First-Class Variability Modeling in Matlab/Simulink. In
Variability Modelling of Software-intensive Systems Workshop (VaMoS’13), pages
11-18. ACM, 2013.

Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Ste-
ven Volkel. An Algebraic View on the Semantics of Model Composition. In Con-
ference on Model Driven Architecture - Foundations and Applications (ECMDA-
FA’07), LNCS 4530, pages 99-113. Springer, Germany, 2007.

Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Ste-
ven Volkel. Scaling-Up Model-Based-Development for Large Heterogeneous Systems
with Compositional Modeling. In Conference on Software Engineeering in Research
and Practice (SERP’09), pages 172-176, July 2009.

Arne Haber, Thomas Kutz, Holger Rendel, Bernhard Rumpe, and Ina Schaefer.
Delta-oriented Architectural Variability Using MontiCore. In Software Architecture
Conference (ECSA’11), pages 6:1-6:10. ACM, 2011.

Christoph Herrmann, Thomas Kurpick, and Bernhard Rumpe. SSELab: A Plug-In-
Based Framework for Web-Based Project Portals. In Developing Tools as Plug-Ins
Workshop (TOPI’12), pages 61-66. IEEE, 2012.

David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the Semantics of
"Semantics™ IEEE Computer, 37(10):64-72, October 2004.

Franz Huber, Andreas Rausch, and Bernhard Rumpe. Modeling Dynamic Compo-
nent Interfaces. In Technology of Object-Oriented Languages and Systems (TOOLS
26), pages 58-70. IEEE, 1998.

Arne Haber, Holger Rendel, Bernhard Rumpe, Ina Schaefer, and Frank van der
Linden. Hierarchical Variability Modeling for Software Architectures. In Software
Product Lines Conference (SPLC’11), pages 150-159. IEEE, 2011.

Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. MontiArc - Architectural
Modeling of Interactive Distributed and Cyber-Physical Systems. Technical Report
AIB-2012-03, RWTH Aachen University, February 2012.

Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Delta Modeling for
Software Architectures. In Tagungsband des Dagstuhl-Workshop MBEES: Modell-
basierte Entwicklung eingebetteterSysteme VII, pages 1 — 10. fortiss GmbH, 2011.



RELATED INTERESTING WORK FROM THE SE GrRouP, RWTH AACHEN

[HRRS12]

[HRRW12]

[HRW15]

[KER9Y]

[KKP+09)

[KLPR12]

[KPRO7]

[KPR12]

[Kral0]

[KRBY6]

[KRR14]

Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Evolving Delta-
oriented Software Product Line Architectures. In Large-Scale Complex IT Systems.
Development, Operation and Management, 17th Monterey Workshop 2012, LNCS
7539, pages 183-208. Springer, 2012.

Christian Hopp, Holger Rendel, Bernhard Rumpe, and Fabian Wolf. Einfithrung
eines Produktlinienansatzes in die automotive Softwareentwicklung am Beispiel von
Steuergerétesoftware. In Software Engineering Conference (SE’12), LNI 198, Seiten
181-192, 2012.

Katrin Holldobler, Bernhard Rumpe, and Ingo Weisemoller. Systematically Deri-
ving Domain-Specific Transformation Languages. In Conference on Model Driven
Engineering Languages and Systems (MODFELS’15), pages 136-145. ACM/IEEE,
2015.

Stuart Kent, Andy Evans, and Bernhard Rumpe. UML Semantics FAQ. In A. Mo-
reira and S. Demeyer, editors, Object-Oriented Technology, ECOOP’99 Workshop
Reader, LNCS 1743, Berlin, 1999. Springer Verlag.

Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin Schind-
ler, and Steven Volkel. Design Guidelines for Domain Specific Languages. In
Domain-Specific Modeling Workshop (DSM’09), Techreport B-108, pages 7-13. Hel-
sinki School of Economics, October 2009.

Thomas Kurpick, Markus Look, Claas Pinkernell, and Bernhard Rumpe. Modeling
Cyber-Physical Systems: Model-Driven Specification of Energy Efficient Buildings.
In Modelling of the Physical World Workshop (MOTPW’12), pages 2:1-2:6. ACM,
October 2012.

Cornel Klein, Christian Prehofer, and Bernhard Rumpe. Feature Specification and
Refinement with State Transition Diagrams. In Workshop on Feature Interactions in
Telecommunications Networks and Distributed Systems, pages 284—297. 10S-Press,
1997.

Thomas Kurpick, Claas Pinkernell, and Bernhard Rumpe. Der Energie Navigator. In
H. Lichter and B. Rumpe, Editoren, Entwicklung und Evolution von Forschungssoft-
ware. Tagungsband, Rolduc, 10.-11.11.2011, Aachener Informatik-Berichte, Software
Engineering, Band 14. Shaker Verlag, Aachen, Deutschland, 2012.

Holger Krahn. MontiCore: Agile Entwicklung von domdnenspezifischen Sprachen im
Software-Engineering. Aachener Informatik-Berichte, Software Engineering, Band
1. Shaker Verlag, Mérz 2010.

Cornel Klein, Bernhard Rumpe, and Manfred Broy. A stream-based mathematical
model for distributed information processing systems - SysLab system model. In
Workshop on Formal Methods for Open Object-based Distributed Systems, IFIP Ad-
vances in Information and Communication Technology, pages 323-338. Chapmann
& Hall, 1996.

Helmut Kremar, Ralf Reussner, and Bernhard Rumpe. Trusted Cloud Computing.
Springer, Schweiz, December 2014.

235



RELATED INTERESTING WORK FROM THE SE Grour, RWTH AACHEN

[KRS12]

[KRVO06]

[KRV07a]

[KRVO7b]

[KRV0S]

[KRV10]

[LRSS10]

[MMR10]

[MRR10]

[MRR11a]

[MRR11b]

[MRR11c]

236

Stefan Kowalewski, Bernhard Rumpe, and Andre Stollenwerk. Cyber-Physical Sys-
tems - eine Herausforderung fiir die Automatisierungstechnik? In Proceedings of
Automation 2012, VDI Berichte 2012, Seiten 113-116. VDI Verlag, 2012.

Holger Krahn, Bernhard Rumpe, and Steven Vélkel. Roles in Software Develop-
ment using Domain Specific Modelling Languages. In Domain-Specific Modeling
Workshop (DSM’06), Technical Report TR-37, pages 150-158. Jyvéskyld Universi-
ty, Finland, 2006.

Holger Krahn, Bernhard Rumpe, and Steven Vélkel. Efficient Editor Generation for
Compositional DSLs in Eclipse. In Domain-Specific Modeling Workshop (DSM’07),
Technical Reports TR-38. Jyviskyld University, Finland, 2007.

Holger Krahn, Bernhard Rumpe, and Steven Voélkel. Integrated Definition of Ab-
stract and Concrete Syntax for Textual Languages. In Conference on Model Driven
Engineering Languages and Systems (MODELS’07), LNCS 4735, pages 286-300.
Springer, 2007.

Holger Krahn, Bernhard Rumpe, and Steven Vélkel. Monticore: Modular Develop-
ment of Textual Domain Specific Languages. In Conference on Objects, Models,
Components, Patterns (TOOLS-Europe’08), LNBIP 11, pages 297-315. Springer,
2008.

Holger Krahn, Bernhard Rumpe, and Stefen Volkel. MontiCore: a Framework for
Compositional Development of Domain Specific Languages. International Journal
on Software Tools for Technology Transfer (STTT), 12(5):353-372, September 2010.

Tihamer Levendovszky, Bernhard Rumpe, Bernhard Schétz, and Jonathan Sprinkle.
Model Evolution and Management. In Model-Based Engineering of Embedded Real-
Time Systems Workshop (MBEERTS’10), LNCS 6100, pages 241-270. Springer,
2010.

Tom Mens, Jeff Magee, and Bernhard Rumpe. FEvolving Software Architecture
Descriptions of Critical Systems. IEEE Computer, 43(5):42-48, May 2010.

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. A Manifesto for Seman-
tic Model Differencing. In Proceedings Int. Workshop on Models and FEvolution
(ME’10), LNCS 6627, pages 194-203. Springer, 2010.

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. ADDiff: Semantic Differen-
cing for Activity Diagrams. In Conference on Foundations of Software Engineering
(ESEC/FSE ’11), pages 179-189. ACM, 2011.

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. An Operational Semantics
for Activity Diagrams using SMV. Technical Report AIB-2011-07, RWTH Aachen
University, Aachen, Germany, July 2011.

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CD2Alloy: Class Dia-
grams Analysis Using Alloy Revisited. In Conference on Model Driven Engineering
Languages and Systems (MODELS’11), LNCS 6981, pages 592—607. Springer, 2011.



RELATED INTERESTING WORK FROM THE SE GrRouP, RWTH AACHEN

[MRR11d]

[MRR11¢]

[MRR13]

[MRR14]

[NPR13)]

[PFRO2]

[PR94]

[PR99]

[PRO1]

[PRO3]

[Rin14]

[RK96]

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Modal Object Diagrams.
In Object-Oriented Programming Conference (ECOOP’11), LNCS 6813, pages 281
305. Springer, 2011.

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Semantically Configura-
ble Consistency Analysis for Class and Object Diagrams. In Conference on Model
Driven Engineering Languages and Systems (MODELS’11), LNCS 6981, pages 153~
167. Springer, 2011.

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Synthesis of Component
and Connector Models from Crosscutting Structural Views. In Meyer, B. and Baresi,
L. and Mezini, M., editor, Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE’13), pages 444-454. ACM New York, 2013.

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Verifying Component and
Connector Models against Crosscutting Structural Views. In Software Engineering
Conference (ICSE’1]), pages 95-105. ACM, 2014.

Antonio Navarro Pérez and Bernhard Rumpe. Modeling Cloud Architectures as
Interactive Systems. In Model-Driven Engineering for High Performance and Cloud
Computing Workshop, CEUR Workshop Proceedings 1118, pages 15-24, 2013.

Wolfgang Pree, Marcus Fontoura, and Bernhard Rumpe. Product Line Annotations
with UML-F. In Software Product Lines Conference (SPLC’02), LNCS 2379, pages
188-197. Springer, 2002.

Barbara Paech and Bernhard Rumpe. A new Concept of Refinement used for Beha-
viour Modelling with Automata. In Proceedings of the Industrial Benefit of Formal
Methods (FME’94), LNCS 873, pages 154-174. Springer, 1994.

Jan Philipps and Bernhard Rumpe. Refinement of Pipe-and-Filter Architectures.
In Congress on Formal Methods in the Development of Computing System (FM’99),
LNCS 1708, pages 96-115. Springer, 1999.

Jan Philipps and Bernhard Rumpe. Roots of Refactoring. In Kilov, H. and
Baclavski, K., editor, Tenth OOPSLA Workshop on Behavioral Semantics. Tam-
pa Bay, Florida, USA, October 15. Northeastern University, 2001.

Jan Philipps and Bernhard Rumpe. Refactoring of Programs and Specifications. In
Kilov, H. and Baclavski, K., editor, Practical Foundations of Business and System
Specifications, pages 281-297. Kluwer Academic Publishers, 2003.

Jan Oliver Ringert. Analysis and Synthesis of Interactive Component and Connector
Systems. Aachener Informatik-Berichte, Software Engineering, Band 19. Shaker
Verlag, 2014.

Bernhard Rumpe and Cornel Klein. Automata Describing Object Behavior. In
B. Harvey and H. Kilov, editors, Object-Oriented Behavioral Specifications, pages
265—286. Kluwer Academic Publishers, 1996.

237



RELATED INTERESTING WORK FROM THE SE Grour, RWTH AACHEN

[RKBO5]

[RRRW15]

[RRW13a

[RRW13b]

[RRW14]

[RSW+15]

[Rum96]

[Rum02]

[Rum03]

[Rum04]

[Rum11]
[Rum12]

[Rum16]

238

Bernhard Rumpe, Cornel Klein, and Manfred Broy. Ein strombasiertes mathemati-
sches Modell verteilter informationsverarbeitender Systeme - Syslab-Systemmodell.
Technischer Bericht TUM-19510, TU Miinchen, Deutschland, Mérz 1995.

Jan Oliver Ringert, Alexander Roth, Bernhard Rumpe, and Andreas Wortmann.
Language and Code Generator Composition for Model-Driven Engineering of Robo-
tics Component & Connector Systems. Journal of Software Engineering for Robotics
(JOSER), 6(1):33-57, 2015.

Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. From Software Ar-
chitecture Structure and Behavior Modeling to Implementations of Cyber-Physical
Systems. In Software Engineering Workshopband (SE’13), LNI 215, pages 155-170,
2013.

Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. MontiArcAutoma-
ton: Modeling Architecture and Behavior of Robotic Systems. In Conference on
Robotics and Automation (ICRA’13), pages 10-12. IEEE, 2013.

Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Architecture and
Behavior Modeling of Cyber-Physical Systems with MontiArcAutomaton. Aachener
Informatik-Berichte, Software Engineering, Band 20. Shaker Verlag, December 2014.

Bernhard Rumpe, Christoph Schulze, Michael von Wenckstern, Jan Oliver Ringert,
and Peter Manhart. Behavioral Compatibility of Simulink Models for Product Line
Maintenance and Evolution. In Software Product Line Conference (SPLC’15), pages
141-150. ACM, 2015.

Bernhard Rumpe. Formale Methodik des Entwurfs verteilter objektorientierter Sys-
teme. Herbert Utz Verlag Wissenschaft, Miinchen, Deutschland, 1996.

Bernhard Rumpe. Executable Modeling with UML - A Vision or a Nightmare?
In T. Clark and J. Warmer, editors, Issues € Trends of Information Technology
Management in Contemporary Associations, Seattle, pages 697-701. Idea Group
Publishing, London, 2002.

Bernhard Rumpe. Model-Based Testing of Object-Oriented Systems. In Symposium
on Formal Methods for Components and Objects (FMCO’02), LNCS 2852, pages
380—-402. Springer, November 2003.

Bernhard Rumpe. Agile Modeling with the UML. In Workshop on Radical Innova-
tions of Software and Systems Engineering in the Future (RISSEF’02), LNCS 2941,
pages 297-309. Springer, October 2004.

Bernhard Rumpe. Modellierung mit UML, 2te Auflage. Springer Berlin, September
2011.

Bernhard Rumpe. Agile Modellierung mit UML: Codegenerierung, Testfdlle, Refac-
toring, 2te Auflage. Springer Berlin, Juni 2012.

Bernhard Rumpe. Modeling with UML: Language, Concepts, Methods. Springer
International, July 2016.



RELATED INTERESTING WORK FROM THE SE GrRouP, RWTH AACHEN

[Sch12]

[SRVK10]

[THR*+13]

[Voll1]
[Weil2]

[ZPK*11]

Martin Schindler. Fine Werkzeuginfrastruktur zur agilen Entwicklung mit der UM-
L/P. Aachener Informatik-Berichte, Software Engineering, Band 11. Shaker Verlag,
2012.

Jonathan Sprinkle, Bernhard Rumpe, Hans Vangheluwe, and Gabor Karsai. Meta-
modelling: State of the Art and Research Challenges. In Model-Based Engineering of
Embedded Real-Time Systems Workshop (MBEERTS’10), LNCS 6100, pages 57-76.
Springer, 2010.

Ulrike Thomas, Gerd Hirzinger, Bernhard Rumpe, Christoph Schulze, and Andre-
as Wortmann. A New Skill Based Robot Programming Language Using UML/P
Statecharts. In Conference on Robotics and Automation (ICRA’13), pages 461-466.
IEEE, 2013.

Steven Volkel. Kompositionale Entwicklung domddnenspezifischer Sprachen. Aache-
ner Informatik-Berichte, Software Engineering, Band 9. Shaker Verlag, 2011.

Ingo Weisemoller. Generierung domdnenspezifischer Transformationssprachen. Aa-
chener Informatik-Berichte, Software Engineering, Band 12. Shaker Verlag, 2012.

Massimiliano Zanin, David Perez, Dimitrios S Kolovos, Richard F Paige, Kumardev
Chatterjee, Andreas Horst, and Bernhard Rumpe. On Demand Data Analysis and
Filtering for Inaccurate Flight Trajectories. In Proceedings of the SESAR Innovation
Days. EUROCONTROL, 2011.

239





