
pneumatic actuators. As shown in Figure 1, the pneumatic actuator system consists of pneumatic actuators, regulating valves 
and valve positioner.  

 

 
 
CV—Control signal 
E/P—Converter of electrical /pneumatic  
X—Stem displacement 
ZT—Stem position sensor 
TT—Temperature sensor 
F—Main channel flow 
d—Duty cycle 

V1   V1、V2—Shut-off valve 
PSP—Gas supply 
ps—Air supply pressure 
FT—Flow sensor 
PT—Pressure sensor 
p1'、p2'— The pressure before and after 
regulating valve 
p—Pressure of membrane gas chamber 
PV—Valve position feedback signal 

Figure 1.  Composition of the pneumatic actuator system 

In order to simulate the conditions of pneumatic actuator system in normal and under the faults and obtain the experimental 
data, the virtual prototype model of pneumatic actuators is built by using DAMADICS simulation platform under the 
environment of MATLAB/Simulink. 

The simulation platform of DAMADICS is an actuator model library based on MATLAB / Simulink, which is developed by 
European Training Foundation (ETF). The model can effectively simulate the operation process as well as the input and output 
data of the pneumatic actuator. Each module has an interface of fault input. By connecting to the fault generation module, 19 
typical faults of pneumatic actuator can be simulated that listed in Table 1. 

Table 1.  Typical faults of pneumatic actuator 

NO. Failure mode Fault type NO. Failure mode Fault type 

1 Valve body obstruction Jump failure 11 Spring failure Jump failure 

2 Core or seat deposits Gradual failure 12 
Electric/Pneumatic converter 

failure 
Jump failure 

3 Core or seat corrosion Gradual failure 13 
Position feedback signal sensor 

failure 
Slow drift fault 

4 
The friction increases of the 

valve or bushing  
Gradual failure 14 Pressure signal sensor failure Jump failure 

5 External leakage Gradual failure 15 Locator spring failure Jump failure 

6 Internal leakage Gradual failure 16 Air supply pressure drop Gradual failure 

7 
Medium evaporation or critical 

flow 
Jump failure 17 

Valve body differential pressure 
abnormal change 

Gradual failure 

8 Stem bending Jump failure 18 The bypass valve open Jump failure 

9 Membrane cap too tight Random failure 19 Flow sensor failure Jump failure 

10 Membrane damage Jump failure    
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Aiming at the difficult problem of obtaining typical fault samples of pneumatic actuators in engineering practice and basing on  
the working principles of pneumatic diaphragm actuator, a model of pneumatic diaphragm actuator system was established by 
using DAMADICS. Then we simulated its common and typical faults and obtained a lot of samples. In this research, using 
KPCA to reduce the date dimension that obtained by the established system. We use the method of fault detection and 
diagnosis based on artificial immune algorithm to pneumatic diaphragm actuator’s fault diagnosis. The experimental results 
indicate that the fault detection method based on artificial immune algorithm performs well. 

Keywords: Virtual prototype; Pneumatic diaphragm actuator; Fault diagnosis; Artificial immune algorithm  
Target audience: Pneumatic Transmission, Fault Diagnosis, Fault Simulation 

1 Introduction 

As the process control systems are becoming larger and more complex, its work environment is usually in high temperature 
and pressure, low temperature vacuum or flammable and explosive extreme conditions. If there is a fault in such a system, it 
will cause significant security incidents and serious environmental pollution. The actuator (also called the regulating valve) is 
the terminal execution device that executes the automatic control command in the process control system. Its performance is 
directly related to the fact that whether automatic control system can run smoothly and safely or not. Pneumatic diaphragm 
actuator, for example, once fault in operation is likely to cause major security incidents such as stopping production or a 
leakage of toxic substances. With the extensive application of pneumatic actuators, the fault diagnosis problem will become 
more and more prominent. So this research has a wide range of practical prospects. 

In the engineering practice, the typical fault samples of the pneumatic actuators are difficult to obtain. Not only because the 
research on fault diagnosis of the pneumatic actuators often requires a lot of manpower and material resources, but the fault 
simulation method is limited. Therefore the research cannot be carried out. Establishing a virtual prototype to simulate the 
operating state of the real pneumatic actuator system. It can overcome the problems that fault samples are difficult to be 
obtained in practical engineering and the typical fault of the actuator is difficult to be simulated. This has higher application 
value. 

2 The Establishment Principle of Virtual Prototype of Pneumatic Actuator 

Pneumatic actuator systems are essentially non-linear systems. It is difficult to establish accurate mathematical models of 
pneumatic actuators due to the facts that gas inherent compressibility, low damping characteristics of pneumatic systems, non-
linearity of valve port flow and some time-varying factors. Traditional modeling method cannot simulate typical faults of 
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Setting the simulation time to 800 seconds. The fault type of the actuator system is selected by FSel module. The occurrence 
time and strength of the fault is set by FGen module. 

In this paper, we have selected five conditions for fault diagnosis. They are the condition of normal operation condition, 
electrical/pneumatic converter blockage, position feedback sensor failure, valve body blockage and valve pressure difference 
abnormal. The fault occurred at the time of 300 seconds. The strength of fault is fs = 0.8. The simulation data of each fault 
mode is output to the working space of MATLAB. And 50 fault samples are extracted for each output variable after the fault. 
The corresponding fault sample set is formed. At the same strength of fault (fs = 0.8) for each failure mode to do two 
simulations. The sample set get from the first failure simulation serves as a training set for the production and training of 
antibodies. The sample set get from the second failure simulation serves as a test set for fault diagnosis. 

Figure 4 shows the waveforms of the four output signals of the simulation results of the electrical/pneumatic converter 
blockage. The pneumatic actuator is often operated in dusty and polluted conditions. If the gas source is not effectively filtered, 
there will be large particles of impurities in the air. The impurities will accumulate at the nozzle of the electrical/pneumatic 
converter, which will eventually lead to nozzle clogging. When this fault occurs, the gas cannot pass through the nozzle of the 
electrical/pneumatic converter into the membrane chamber. The valve stem of the pneumatic actuator cannot normally follow 
the control signal to do reciprocating motion. The valve fluid flow is also affected and the control deviation will become larger. 
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a) Displacement of the stem b) Valve pressure difference  
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c) The fluid flow in the valve d) Control deviation 

Figure 4. Simulation results of electrical/pneumatic converter blockage fault  

4 The Dimension Reduction of Actuator Failure Sample Based on KPCA 

Tests are taken by using five kinds of data samples of the condition of normal operation condition, electrical/pneumatic 
converter blockage, position feedback sensor failure, valve body blockage and valve pressure difference abnormal. Each type 
of data samples contain control signals CV, stem displacement X', pressures p1', p2' before and after the valve, fluid flow F' in 
the control valve and fluid temperature T1' in the regulating valve. The number of samples sampled in each state is 50. 

The Kernel Principal Component Analysis (KPCA) method is used to process the fault sample data of the pneumatic actuator. 
The fault feature is extracted to reduce the dimension of the fault sample data [2]. The KPCA method uses the radial basis 
function as the kernel function. Selecting =10, and the result of the data processing is shown in Table 2: 
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Pneumatic actuator system consists of three parts. We can divide the model into three basic functional units, namely pneumatic 
servo actuator unit, regulating valve unit and valve positioner unit. Then we can establish serval sub-modules according to the 
typical parts. Each sub-modules will be connected according to the relationship between input and output. Finally, we set up a 
complete virtual prototype model of pneumatic actuator. As shown in Picture 2. 

 

Figure 2.  Virtual Prototype Model of Pneumatic Actuator  

3 Typical Fault Simulation of Pneumatic Actuator 

The entire pneumatic actuator system as shown in Figure 2 is packaged into a subsystem. The input and output parameters are 
set. Then the fault simulation model as shown in Figure 3 is established. The input of the simulation model is the control signal 
CV=25sin(0.02t)+50. The upstream pressure of regulating valve is p1=3.5MPa. The downstream pressure of regulating valve 
is p2=2.6MPa. The fluid temperature in regulating valve is T1=20℃. The output is set as a control signal CV. The stem 
displacement is X'. The difference pressure between front and rear of regulating valve is p1'-p2'.The fluid flow in regulating 
valve is F'. The control deviation is E. 

 

Figure 3.  Failure Simulation Model of Virtual Prototype of Pneumatic Actuator 
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5.1 Antibody training 

5.1.1 The design and coding of antigen and antibody  

In an n-dimensional state space Sn, the antibody and antigen are described by n normalized variables, ie, the antigen 
Ag={x1,x2,…,xn} and the antibody Ab={y1,y2,…,yn}. xi and  yi(i=1,2,…,n), respectively, known as the antigen Ag and antibody 
Ab gene, corresponding to the n eigenvalues of the state in fault diagnosis. The antigen and antibody sets are shown below: 
AG={Agi|i=1,2,…,M}, AB={Abi|i=1,2,…,N}.  M and N are the number of antigens and antibodies. 

Firstly, the fault feature samples after dimension reduction by KPCA method are normalized so that the values of all samples 
are between[0,1]. Each feature of each fault is defined as a different kind of antigen. In this paper, the antigens and antibodies 
are used in the form of real-number coding. 

5.1.2 The calculation of affinity 

In the n-dimensional state space Sn, the affinity between the antigen Agi and the antibody Abi is expressed by the formula (1): 

( , ) ED

i iaff eAg Ab                                                                                                                                                                 （1） 

ED  is the Euclidean distance of Agi and Abi: 

 2

1

n

E i i
i

D yx


    (1≤i≤n)                                                                                                                                                               （2） 

By the formulas (1) and (2), it can be concluded that the amaller the Euclidean distance DE, the greater the value of the affinity. 
The degree of matching of the antigen Agi with the antibody Abi will be better. 

5.1.3 The definition of fitness function 

The fitness function is a criterion for evaluating the quality of antibodies determined by the objective function. The fitness 
function is always nonnegative. The greater the value, the better the trained antibody. The fitness of antibody is the driving 
force of antibody in training process. While it’s also one of the bases for natural selection of antibodies. In this paper, the 
fitness function is defined as: 

1

1 E

f
D




                                                                                                                                                                               （3） 

It can be seen from the formula (3) that the value of the fitness function f approaches the maximum value 1 when the value of 
the Euclidean distance DE approaches zero. 

5.1.4 The operation of genetic operator 

To make the antibodies produced by the algorithm covering the areas of each type of antigen in the state space as much as 
possible, we introduced the selection, crossover and mutation operator operations from the genetic algorithm to accelerate the 
speed of antibody training and to increase the diversity of the antibody. 

1. Selection 

The antibodies that need to be cross-operated are selected from the initial antibody population . Firstly, the fitness value fi of 
each initial antibody Abi was calculated according to the formula (3). In this paper, the Monte Carlo method is used to assign a 

Table 2. The processing results of KPCA 

Eigenvalue number i  
1

n

i i
i

 
 

Cumulative contribution rate 

1 4.967 0.706 0.706 

2 1.832 0.193 0.899 

3 0.764 0.041 0.94 

4 0.218 0.037 0.977 

5 0.091 0.021 0.998 

6 0.013 0.002 1.000 

According to the results in the table, the cumulative contribution rate of the first two eigenvalues has exceeded 85%. Then the 
first and second principal elements are selected as the fault feature information. Finally, the fault sample data is reduced from 
six to two dimensions. 

Figure 5 shows the projection of the first and second principal elements extracted by the KPCA method. The KPCA method 
not only greatly reduces the dimension of the feature set, but also makes a clear distinction between the samples of each fault 
state of the pneumatic actuator. It lays the foundation for the next fault diagnosis. 
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○ valve pressure 
difference abnormal 

Figure 5.The projection of  first and second principal elements extracted by KPCA 

5 Fault Diagnosis of Pneumatic Actuator Based on Artificial Immune Mechanism 

Inspired by the biological immune system, in recent years, the academic community setsup the artificial immune system (AIS) 
research boom which is more and more widely used to solve practical problems [3, 4]. The immune system has a strong 
information processing capabilities and many excellent features. The artificial immune system can enrich the theoretical 
system of fault diagnosis and engineering application and expand the research idea. The artificial immune system provides new 
theoretical and technical support for the research and development of fault diagnosis. 
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5.1.5 The promotion and inhibition of antibody 

In the biological immune system, the number of each type antibodies will change dynamically with the stimulation of the 
antigens. When the concentration of some kind of antibodies is too high, the amount of the antibody will be inhibited. Whereas 
the amount of antibodies will be promoted so that the immune response can maintain a suitable strength[5]. 

The distance between the antibody Abi and any other antibody Abj in the antibody population (population number N) is DE. 
Given a constant a1 and a1>0 as a similarity threshold. If DE > a1, the antibody Abi and antibody Abj are similar. In this paper, 
the concentration of antibody Abi is defined as Li. The formula is as follows: 

1

1 N

i ij
j

L C
N 

                                                                                                                                                                         （7） 

In this formula, 1

1

1,

0,
E

ij

E
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
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



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The desired reproduction rate for the  antibody Abi is defined as ei, which can be expressed by: 

i
i div

i

e I
L

f
                                                                                                                                                                        （8） 

In the formula, Idiv is the diversity index of antibody population and Idiv=B/N.B is the number of groups after grouping of 
antibody group. N is the individual number of the antibody population. fi is the fitness value of antibody Abi. 

From the formula (8), it can be concluded that the expected reproductive rate ei of the antibody is proportional to the fitness fi 
and is inversely proportional to the antibody concentration Li. By introducing the expected reproductive rate of the antibody, 
both the antibody diversity can be maintained and the convergence speed of immune algorithm can be increased. 

5.1.6 The update of memory antibody  

Immune memory characteristic is an important feature of the immune system, which ensures that the host clears pathogens in 
the fastest and most effective way when re-infected. According to this characteristic, a memory threshold f0 is set during the 
update of each generation of antibody population. When there is excellent individual and its fitness value fi > f0 in the 
population. It is added to the memory subgroup and the same individual in the original population are deleted. During each 
time the memory antibody is renewed, if the memory antibody population is full, the antibody with the worst fitness is replaced. 
And then check whether there is a good individual in the original population or not, if any, continue to add, otherwise stop the 
memory update operation. 

5.1.7 The steps of antibody training  

Antibody training process is shown in Figure 7, the specific steps are: 

1. Initialization 

Setting the size of antigen set AG and antibody set AB as Nag and Nab. The maximum cyclic algebra is gmax. The antigen and 
the antibody are encoded. 

2. Creating the initial antibody 

The initial antibody set AB1 is generated. If the number of memory antibodies is less than Nab, the initial antibody is randomly 
produced to fill the memory antibody population. The antigen set AG consists of some type of training data. 

3. The calculation of the indexes 

selection probability pi to each antibody Abi in the initial antibody set. The probability that the antibody Abi is selected is 
expressed as: 

1

i
i N

i
i

f
p

f





                                                                                                                                                                      （4） 

Where N is the size of the initial antibody population. 
1

N
ii

f
 is called the cumulative fitness of N initial antibodies. 

In this paper, the roulette selection method was used to select the initial antibody to be crossed. The fitness value fi, the 
selection probability pi of each antibody and the cumulative fitness in the initial antibody group were calculated. In order to 
select the cross individuals, multiple rounds of selection are required. Each round produces a uniform random number in the 
interval [0,1] as the selection pointer to determine the selected primary antibody. 

2. Crossover 

Crossover refers to the process of selecting any two parent individuals to produce new individuals by exchanging their partial 
genes. The real-coded chromosomes of the algorithmic training are used to obtain new antibodies by intermediate cross: 

 1

1 2 1

n n n n   Ab Ab Ab Ab                                                                                                                                               （5） 

Where 1

nAb  and 2

nAb represent the parent antibody 1 and 2. 1nAb  represents the offspring antibody. α is a scale factor, which 
is generated by a random number evenly distributed over [0,1]. And a new α value is selected for each pair of cross antibodies. 

3. Mutation 

Mutation is a localized random search, which enables the immune algorithm to have a local random searching ability. 
Improving the diversity of antibody populations to prevent premature convergence (early maturity). According to the distance 
between any antibody Abi and the center of a certain antigen Agi, take the antigen Agi as the center, take R1 and R2 as the 
radiuses. The antibody Abi was divided into three different areas of A, B and C. As shown in Figure 6. 

 

 

Figure 6.  Division of antibody region variable 

When the antibody Abi is located in the region A or C, The mutation operation does not performed; When the antibody Abi is 
located in the region B, according to formula (6) to perform mutation operation: 

1 ( )n n n
i i i i   Ab Ab Ag Ab                                                                                                                                           （6） 

Where   is the mutation rate. iAg  is the antigen. n
iAb  is the pre-mutation antibody. 1n

i
Ab  is the antibody after mutation. 

i 
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Table 3. Initial parameters of the artificial immune algorithm 

Nab gmax   f0 β R1 R2 

500 200 0.1 0.96 0.3 0.025 0.15 
 

 
The set of fault samples generated by the first simulation is extracted by KPCA method as a training set for the generation and 
training of antibody. Then the memory antibody library is obtained. 
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Figure 8 Antibody fitness function values for each generation 

Figure 8 shows the changes of the fitness function value of each generation with the evolutionary algebra. It can be seen from 
the figure that when the algorithm is circulated to the 72nd generation, the value of the antibody fitness function reaches and in 
the maximum value of 0.9812. Indicating that the algorithm has a better ability to search for antibodies with the highest fitness 
less evolutionary algebra. 
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Figure 9 Memory antibody training results 
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For each antigen Agi in AG, the affinity of antigen Agi and all antibodies Abi in AB1 are calculated according to formula (1). 
Calculating the fitness, antibody concentration and expected reproductive rate of antibodies and antigens,. 

4. Producing new antibodies 

The initial antibodies in AB1 are first determined by the selecting operator. The antibodies in AB1 are then executed crossover 
operator operation according to formula(5). Determining the parameters R1 and R2. Calculating the Euclidean distance DE 
between antibody Abi and antigen Agi. When DE＜R1 or DE＞R2, the antibody Abi is not executed a mutation operation. When 
R1≤DE≤R2, the antibodies in AB1 are mutated according to the formula (6) to obtain the progeny antibodies AB2 of size Nab  
are added to the parent antibodies to obtain the set AB1 of size 2Nab. 

5. Antibody promotion and inhibition 

The value of the expected reproductive rate of the antibodies in AB1 is calculated according to formula(8). Removing 
antibodies with low expected reproductive rates until Nab antibodies are remained in AB1. 

6. Update the memory antibody group 

The value of the fitness fi of the antibody Abi is recalculated to determine the memory threshold f0. When fi＞f0, it is added to 
the subgroup Mi corresponding to the i -th antigen Agi, while the same individual in the original population are deleted. 

7. Termination discrimination 

Determine the termination condition, that is, whether to reach the maximum cyclic algebra gmax or not. If the condition is 
satisfied, stop the calculation. Otherwise, perform steps 3 to 6 until the termination condition is met. 

8. The memory bank Mi corresponding to the antigen Agi are combined to obtain the antibody memory bank M. 

9. Output the result M. 

Antigen
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Genetic operation
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Recalculating antibody fitness fi
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Figure 7. Antibody training process 

 

The initial parameters of the algorithm are finally determined, as shown in Table 3: 
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pneumatic diaphragm actuator are simulated according to the simulation. Obtaining a large number of fault samples. solving 
the problem that typical failure samples are difficult to be obtained in engineering practice. 

The artificial immune algorithm is analyzed systematically and the KPCA technique is combined with the artificial immune 
algorithm. A method of artificial immune complex diagnosis is proposed, which is successfully applied to the fault diagnosis 
of pneumatic actuators. The validity of the method was verified by using the fault sample data of the virtual prototype of the 
pneumatic actuator. The experimental results indicate that the fault detection method performs well. 
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Figure 9 illustrates that the algorithm is effective in learning the training samples and that the resulting memory antibodies can 
effectively cover the antigens. Besides, there is a clearer classification between each type antibodies. 

5.2 The identification and diagnosis of faults 

Fault identification and diagnosis are the second phase of the artificial immune algorithm, which is equivalent to the secondary 
immune response of the biological immune system.  

The fault diagnosis concrete steps are as follows: 

1.   Getting and normalize the fault test samples. And the preprocessed test samples are set as  antigens for input; 

2.  Setting a threshold upper limit y0 based on the fault samples. Calculate the Euclidean distance DE between each antigen 
and the memory antibodies of all fault types. If DE＜y0, the memory antibody is considered to be activated by the antigen and 
copied into set D. Circulating in this way, until all the activated memory antibodies are obtained in set D; 

3. The type of input fault is identified and diagnosed according to the type of failure to which the vast majority of the 
memory antibodies in set D belongs. The membership degree of the antigen belongs to a failure mode i is taken as the 
diagnostic accuracy of the corresponding fault [6]; 

i
i

i

C

N
                                                                                                                                                                                      （9） 

In this formula, Ci is the number of antibodies that are activated by the antigen in the memory antibody set in failure 
mode i. Ni is the total number of antibodies in the memory antibody set in failure mode i. 

Combining the memory antibody bank M of each type of failure. The KPCA method is used to extract the fault characteristics 
of the data generated by the second simulation. And then normalizing and constituting the test sample set as the antigen input. 
Identifying and diagnosiing it according to the above method. Setting the threshold is y0=0.08. The final results are shown in 
Table 4: 

Table 4 the results of troubleshooting 

Working state 
The number of test 

samples 
Correct diagnosis 

number 
Correct diagnosis rate 

Normal 50 49 98% 

Electrical/Pneumatic converter blockage 50 47 94% 

Position feedback sensor failure 50 49 98% 

Valve body blockage 50 45 90% 

Valve pressure difference  abnormal 50 46 92% 

The diagnosis results show that the fault diagnosis algorithm based on artificial immune can effectively study the various types 
of fault samples of pneumatic actuators, generate the memory antibody group, and can accurately detect the type of fault that 
the test samples belongs to. 

6 Conclusion 

Based on the operation principle and characteristics of the pneumatic diaphragm actuator, a virtual prototype model of the 
pneumatic diaphragm actuator system is established under the DAMADICS software environment. The typical faults of the 
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