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Abstract
Model-based reconstruction of magnetisation distributions
in nanostructures from electron optical phase images
Off-axis electron holography is a powerful technique for recording the phase shift of
high-energy electron waves that pass through a thin specimen in the transmission
electron microscope. Information about the electromagnetic field in and around the
specimen is encoded in the phase, according to the Aharonov-Bohm equations. In
this thesis, a model-based iterative reconstruction (MBIR) algorithm was developed,
which allows the retrieval of the projected in-plane magnetisation distribution from
individual magnetic phase images or a complete tomographic reconstruction of the
three-dimensional magnetisation distribution from two ideally orthogonal tilt series
of phase images. To guarantee efficient model-based reconstructions, an optimised
forward model implementation for fast and accurate simulations of magnetic phase
images from a given magnetisation distribution was derived. This new approach
utilises sparse matrix multiplications and fast convolutions in Fourier space with
pre-calculated convolution kernels based on known analytic solutions for the phase
contribution of simple geometries. As the inverse problem of retrieving the mag-
netisation distribution is ill-posed, regularisation techniques had to be applied, that
guarantee the existence of a solution and its uniqueness. Modelled after the minim-
isation of the exchange energy, Tikhonov regularisation of first order is used to apply
smoothness constraints to the solution of the reconstruction. In addition, a priori
knowledge about the position and size of the magnetised regions is utilised in the
form of a three-dimensional mask to significantly reduce the number of retrieval
targets. Optimal estimation diagnostic tools were adapted for the assessment of the
quality of the reconstruction results. The MBIR algorithm was successfully applied
to simulated phase images for the reconstruction of two-and three-dimensional mag-
netisation distributions. External sources of magnetisation outside the field of view
were addressed by linear phase ramp and offset fits, as well as with buffer pixels that
increase the number of degrees of freedom for the MBIR algorithm. A method to
account for the perturbed reference wave of the electron hologram was provided and
other artefacts in the magnetic phase images were tackled by excluding them from
the reconstruction process. In three dimensions, studies about the influence of the
maximum tilt angle and angular sampling were performed. The MBIR algorithm
was successfully used to reconstruct a projected in-plane magnetisation distribution
from a magnetic phase image of a lithographically patterned cobalt structure. Fi-
nally, a three-dimensional magnetisation distribution was reconstructed from a set of
simulated phase images with limited angular range under the influence of Gaussian
noise and random phase offsets and ramps, proving the feasibility of the algorithm
for future three-dimensional experimental studies.
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Kurzfassung
Modellbasierte Rekonstruktion von Magnetisierungsverteilungen
in Nanostrukturen aus elektronenoptischen Phasenbildern
Off-Axis-Elektronenholographie ist eine leistungsfähige Technik zur Erfassung der
Phasenverschiebung von hochenergetischen Elektronenwellen, die eine dünne Probe
im Transmissionselektronenmikroskop passieren. Informationen über das elektroma-
gnetische Feld in und um die Probe werden in der Phase nach den Aharonov-Bohm-
Gleichungen kodiert. In dieser Arbeit wurde ein modellbasierter iterativer Rekon-
struktionsalgorithmus (MBIR) entwickelt, der die Rekonstruktion der projizierten
Magnetisierungsverteilung aus einzelnen Phasenbildern oder eine vollständige tomo-
graphische Rekonstruktion der dreidimensionalen Verteilung aus zwei orthogonalen
Kippserien von Phasenbildern ermöglicht. Um effiziente modellbasierte Rekonstruk-
tionen zu gewährleisten, wurde ein optimiertes Vorwärtsmodell zur schnellen und
genauen Simulation von Phasenbildern aus einer gegebenen Magnetisierungsvertei-
lung implementiert. Das Modell nutzt Multiplikationen dünn besetzter Matrizen
und schnelle Faltungen im Fourier-Raum mit vorberechneten Faltungskernen, die
auf bekannten analytischen Lösungen für den Phasenbeitrag einfacher Geometrien
basieren. Da das inverse Problem der Rekonstruktion der Magnetisierung schlecht
gestellt ist, werden Regularisierungstechniken angewendet, welche die Existenz einer
Lösung und deren Einzigartigkeit garantieren. Basierend auf der Minimierung der
Austauschenergie wird Tikhonov-Regularisierung erster Ordnung verwendet, um die
Glattheit der Lösungen zu fordern. Zusätzlich wird a priori Wissen über die Positi-
on und Größe der magnetisierten Bereiche in Form einer dreidimensionalen Maske
genutzt, um die Anzahl der Unbekannten zu reduzieren. Zur Beurteilung der Qua-
lität der Rekonstruktionsergebnisse wurden diagnostische Größen eingeführt. Der
MBIR-Algorithmus wurde erfolgreich auf simulierte Phasenbilder zur Rekonstrukti-
on von zwei- und dreidimensionalen Magnetisierungsverteilungen angewendet. Ex-
terne Magnetisierungsquellen außerhalb des Sichtfeldes wurden durch Anpassung
linearer Phasenrampen und Offsets, sowie durch Pufferpixel berücksichtigt. Metho-
den zur Berücksichtigung der gestörten Referenzwelle des Elektronenhologramms,
sowie zum Ausschluss anderer Artefakte aus dem Rekonstruktionsprozess wurden
eingeführt. Studien über den Einfluss des maximalen Neigungswinkels und der Win-
kelabtastung in 3D wurden durchgeführt. Der MBIR-Algorithmus wurde erfolgreich
eingesetzt, um aus dem Phasenbild einer lithographisch aufgetragenen Kobaltstruk-
tur eine projizierte Magnetisierungsverteilung zu rekonstruieren. Schließlich wurde
eine dreidimensionale Magnetisierungsverteilung aus einer simulierten Kippserie mit
limitiertem Winkelbereich, Gauß’schem Rauschen, zufälligen Phasenverschiebungen
und Rampen rekonstruiert, was die Anwendbarkeit des Algorithmus für zukünftige
dreidimensionale experimentelle Studien zeigt.
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1. Introduction

Modern technology relies heavily on magnetic materials and, with today’s increasing
tendency towards miniaturisation, smaller magnetic structures are required. Mag-
netic nanostructures, ranging from single-domain particles [1] to more complex struc-
tures such as skyrmions [2–4], are promising candidates with attractive properties
for a wide range of fields. Implementations are prevalent in industrial and techno-
logical sectors such as data storage and processing [5, 6] or catalysis [7]. Further
applications can be found in the life sciences, e.g. in biomedicine [8, 9], cancer treat-
ment [10, 11], genetic engineering [12] and as contrast agents for imaging techniques
such as magnetic resonance imaging (MRI) [13]. Magnetic nanoparticles are also of
biological importance, e.g. as magnetosome chains in magnetotactic bacteria [14].
Due to their scale, magnetic nanoparticles can exhibit vastly different properties
compared to their macroscopic counterparts. Tailoring them to the specific needs of
the aforementioned fields necessitates the development of methods that are able to
reliably characterise their magnetic structures.
Highly sophisticated measurement instruments such as electron microscopes enable
access to the microstructure, chemical composition and functional properties of
nanoscale materials. Based on the development of electromagnetic lenses by Hans
Busch in 1926, the first prototype of an electron microscope was constructed by
Ernst Ruska and Max Knoll in 1931. After obtaining a patent in the same year
and in close cooperation with Ruska, Siemens made the technology commercially
available in 1938. In electron microscopy (EM), accelerated electrons are used for
the illumination of samples. The resolution of conventional light microscopes is in-
herently limited to around 300 nm by the wavelength of visible light. In contrast,
the de Broglie wavelength of the relativistic electrons that are used in EM would
theoretically, according to the Rayleigh criterion, allow resolutions in the range of
picometers (10−12 m). However, in analogy to light optics, aberrations occur for
electron optical lenses. As a result, the theoretical resolution limit has not yet been
reached1. In 1997, progress was made with the introduction of a hardware correc-
tion system for spherical aberration by Rose, Haider and Urban [15]. With this
technology, modern electron microscopes are able to resolve structures smaller than
one Ångström (0.1 nm).
Modern transmission electron microscopy (TEM) offers a wide variety of phase con-
trast techniques that are sensitive to the magnetic induction within and around a

1The image blurring due to, mainly, spherical aberration is often compared to a view through the
bottom of a glass bottle, which conveys the strength of this effect.
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Chapter 1 Introduction

sample. These techniques include off-axis electron holography [16–24], differential
phase contrast imaging in the scanning TEM (STEM) [25–30], ptychography [31, 32]
and the Fresnel and Foucault modes of Lorentz TEM [33–37]. The TEM mode of
off-axis electron holography is particularly powerful for characterising the magnetic
states of nanoscale materials and devices [14, 38, 39]. Electron holography was first
proposed by Gabor in 1948 [40, 41]. The most prominent operational mode is the
off-axis scheme, which was introduced by Leith and Upatnieks [42] in 1962. This
mode uses an electrostatic biprism [43] to overlap an electron wave that has passed
through a region of interest on the sample with a reference wave, thereby creating
an interference pattern, or hologram, in the image plane that enables recording of
the phase shift of the electron wave in addition to its intensity. The phase shift can
be recorded quantitatively and directly across all spatial frequencies and is sensitive
to the electromagnetic field within and around the sample. Figure 1.1 shows a con-
temporary electron microscope that is capable of conducting electron holography
measurements.

Figure 1.1.: Picture of the FEI Titan G2 60-300 HOLO, installed in the Ernst Ruska-
Centre for Microscopy and Spectroscopy with Electrons (ER-C) in the Jülich research
centre. This fourth generation TEM is optimised for the investigation of electromagnetic
fields in materials using off-axis electron holography. Image taken from [44].
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Introduction

The quantum mechanical relationship between the magnetisation distribution in a
nanostructure and the magnetic phase shift that it induces in an electron wave is
based on the Aharonov-Bohm effect [45], which was first proposed by Ehrenberg and
Siday in 1949 [46]. For characterisation of the magnetisation, the inverse problem
of reconstructing the underlying spatial distribution of magnetic moments from one
or more phase images has to be solved. In three dimensions, this equates to a vec-
tor field electron tomography problem. Standard methods for electron tomographic
reconstruction include filtered backprojection (FBP), the algebraic reconstruction
technique (ART) and the simultaneous iterative reconstruction technique (SIRT)
[47, 48]. These techniques are all affected by missing wedge artefacts, which occur
when the experimental images do not cover a full tilt range of 180°, as well as by
the influence of non-linear recorded intensities caused by diffraction effects [21, 49].
Other strategies such as geometric [50] and discrete [51, 52] tomography are able to
overcome some of these problems, e.g. by employing a priori knowledge about the
object geometry. However, they are often limited to convex structures and a discrete
number of grey levels. An evaluation of different geometric tomography algorithms
has been presented by Alpers et al. [48]. Additional complications arise from the
fact that magnetic properties are vector fields and thus have to be reconstructed
using algorithms for vector field tomography instead of scalar field tomography.
Backprojection-based formulae for electron vector field tomography have been de-
scribed by Lade et al. [53, 54].
When reconstructing a magnetic field using off-axis electron holography, projections
of two components of B are proportional to the gradients of two-dimensional recor-
ded phase images. Both components can therefore, in principle, be reconstructed
separately, using scalar FBP from two orthogonal tilt series of phase images, while
the third component can then be derived from the Maxwell equations (cf. e.g. Lai
et al. [55]). Other approaches for tackling the reconstruction of B can be found e.g.
in [56–67]. Instead of focusing on B, one can also reconstruct the magnetic vector
potential A [68–70]. Theoretically, A can be reconstructed from two orthogonal tilt
series. However, due to inaccuracies and instabilities in the presence of noise, either
a third tilt series or a limitation to divergence-free fields is necessary [54, 61, 69].
Instead of reconstructing the magnetic field B or the magnetic vector potential A,
this thesis goes one step further by reconstructing the magnetisation distribution
M , which is the source of A and in turn also B. A and B generally extend
outside the boundaries of a magnetic particle, while M is a material property and
thus implicitly restricted by an object’s shape. If this shape is known or can be
approximated, then it can be used as a priori knowledge, which significantly reduces
the number of unknown variables during the reconstruction process and also reduces
the influence of the missing wedge problem, just as for shape constraints used in
geometric tomography.
This thesis presents a novel model-based iterative reconstruction (MBIR) technique,
which enables the retrieval of either the projected magnetisation distribution of the
in-plane components of M inside a sample from a single recorded magnetic phase
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Chapter 1 Introduction

image or the three-dimensional distribution of the vector field M from a series of
magnetic phase images recorded as a function of sample tilt angle. The advantage
of using such a model-based approach is that each trial solution is guaranteed to
satisfy known physical laws. At the same time, it allows the inclusion of additional
a priori knowledge and constraints, which are of great benefit for the analysis of
noisy datasets [71]. MBIR techniques are currently employed in a wide variety of
fields, ranging from the km scale in atmospheric tomography by using plane-mounted
infrared sounders [72] to the mm scale in X-ray computed tomography (CT) [73].
In this thesis, the principle is adapted to the nanoscale for the reconstruction of
magnetisation distributions from electron optical phase images recorded in the TEM.

As a consequence of their iterative nature and the size of the matrices involved
in their calculation, MBIR techniques have the disadvantage of being slower and
more memory intensive than direct reconstruction techniques such as FBP. This
problem is overcome in this thesis by employing a range of optimisation strategies.
Pre-computed, known analytical solutions for the phase contributions of simple geo-
metries are employed to avoid costly full matrix calculations in favour of a novel
operator-based approach. Together with an efficient use of Fourier space convolu-
tion, this approach significantly speeds up the reconstruction process, while min-
imising memory consumption. The inherent ill-posed nature of the reconstruction
problem poses an additional challenge of finding the best solution from a pool of
possible distributions. In this thesis, this problem is solved by employing the known
location of the sample in the form of a mask and by constraining the spatial fre-
quencies that can be present in the recovered magnetisation distribution as physical
constraints.

This thesis achieves two main goals:

1. The development of a fast and accurate forward model, which maps an ar-
bitrary three-dimensional magnetisation distribution onto one or more phase
images.

2. Integration of this forward model into an iterative model-based algorithm for
the retrieval of two-dimensional and three-dimensional magnetisation distribu-
tions from either single phase images or tilt series of phase images, respectively.

The following questions are addressed:

• How good is the newly developed forward model in comparison to other ap-
proaches, in terms of speed and susceptibility to artefacts?

• How can a priori knowledge about magnetisation distributions and physical
constraints be utilised to find the best solution using the model-based recon-
struction algorithm?

• What influence on the reconstructed magnetisation distribution do these con-
straints have and how is their effect quantifiable?
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• Which artefacts can occur during the reconstruction of two- or three- dimen-
sional magnetisation distributions and what measures can be employed to deal
with them?

• Are there magnetisation distributions that are not retrievable using the new
reconstruction approach and, if yes, what is their nature?

Chapter 2 begins with an overview of the principles of off-axis electron holography
and the acquisition of phase images. The basic equation for the forward model,
which links a magnetisation distribution to the phase shift that it induces in a
passing electron wave, is derived. Analytical simplifications that can be made for the
phase shifts of simple magnetic geometries are described. The fundamental aspects
of solving inverse problems are then outlined and concretised for the problem of
magnetisation reconstruction.
An efficient model-based reconstruction algorithm necessitates a fast and accurate
implementation of a forward model, due to its iterative application during retrieval.
Chapter 3 describes existing implementations, which are based on simple integration
techniques. Discretisation approaches in Fourier space are discussed, in order to
point out problems and sources of artefacts. A new approach based on real space
discretisation, which utilises known analytical solutions for simple geometries in the
form of look-up tables, is then introduced. This chapter concludes with a comparison
of the different implementations in terms of computational time and accuracy.
Chapter 4 utilises the new forward model for the retrieval of two- and three- dimen-
sional magnetisation distributions using an MBIR algorithm. The ill-posed problem
of magnetisation retrieval is approximated by a discrete least squares minimisation
problem. A priori knowledge of the location of the magnetic object, as well as other
constraints, are employed to find the best reconstructed solution. Furthermore,
diagnostic measurements are derived, in order to provide a critical analysis of the
reconstruction results.
After introducing the reconstruction algorithm, Chapters 5 and 6 contain examples
of the reconstruction of two- and three-dimensional magnetisation distributions,
respectively. Particular emphasis is placed on the influence of noise, constraints and
a priori information on the retrieval process.
In Chapter 7, the results of this thesis are summarised and future perspectives are
outlined.
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2. Fundamentals and basic principles

This chapter presents the basic principles of the measurement technique of off-axis
electron holography and the reconstruction of a phase image from an electron holo-
gram. The basic equation for the forward model that links phase images to a mag-
netisation distribution is derived and analytical solutions for basic geometries are
described. This formulation of the forward model leads to the inverse problem of
retrieving the magnetisation distribution from a set of phase images and to an illus-
tration of the concepts of inverse problems in general.

2.1. Off-axis electron holography

The principle of electron holography was proposed by Gabor in 1948 [40, 41] as
a measurement technique that can be used to record not only the intensity of an
electron wave but also its phase. As the phase is only measurable if it can be
compared to a reference wave, the electron beam has to interfere with a “coherent
background”. In the off-axis holography scheme, the beam is split into two parts.
One half, the object wave, is sent through the sample and accumulates a phase
shift through interaction with its electromagnetic field. The second half bypasses
the sample, ideally through vacuum, and acts as a reference wave. In the image
plane, the two waves are then recombined to produce an interference pattern: the
hologram.

Modern implementations of the off-axis holography scheme in electron microscopy
utilise an electrostatic biprism, which was first introduced by Möllenstedt and Düker
in 1955 [43] as a beam splitter. The biprism consists of a metal-coated quartz
filament or a thin metal wire with a diameter of less than a micrometer and two
grounded electrodes on either side of the filament with an applied (usually positive)
voltage of between a few tens and a few hundreds of Volts. A schematic diagram
of the instrumental setup for a single biprism is shown in Fig. 2.1. More complex
setups with more than one biprism also exist and are described e.g. in [74]. The
applied voltage causes both the object wave and the reference wave to be deflected
towards the biprism, which results in two partially coherent, virtual electron sources
in the backfocal plane of the objective lens [75]. An electron hologram is formed in
the overlap region of the waves in the image plane (cf. Fig. 2.1). The superposition
angle α is approximately proportional to the applied voltage [76].
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𝛼 
+ 

Figure 2.1.: Schematic diagram showing the electron optical setup for the TEM mode
of off-axis electron holography. The electron beam is produced by an electron source at
the top of the microscope. After primary beam formation in the condenser lens system,
part of the electron beam passes through the sample, while the rest is used as a reference
beam. Both waves are imaged by the objective lens and tilted towards each other by a
biprism. In the image plane, they interfere to form a hologram.
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2.1 Off-axis electron holography

The reference wave in the object plane is assumed to be a normalised plane wave
with wave vector k, wave number k = |k| = 2π

λ
and electron wavelength λ. Writing

the coordinate vector r = (x, y, z) and the scalar product kr = kxx + kyy + kzz ,
the reference wave can be expressed in the form

Ψref (r) = eıkr, (2.1)

while the object wave is modulated in amplitude A and phase ϕ by the specimen
according to the expression

Ψobj (r) = A (x, y) eı[kr+ϕ(x,y)]. (2.2)

The biprism tilts the two waves towards each other by angles of ±α
2 , which changes

their k vectors to kobj for the object wave and kref for the reference wave, respect-
ively1, leading to the expressions

Ψref (r) = eıkrefr (2.3)

and

Ψobj (r) = A (x, y) eı[kobjr+ϕ(x,y)]. (2.4)

The hologram intensity distribution I (x, y) is then:

I (x, y) = ‖Ψref + Ψobj‖2 = Ψ2
ref + Ψ2

obj + Ψ∗refΨobj + ΨrefΨ∗obj (2.5)
= 1 + A2 (x, y)

+ A (x, y)
(
eı[(kobj−kref)r+ϕ(x,y)] + e−ı[(kobj−kref)r+ϕ(x,y)]

)
(2.6)

= 1 + A2 (x, y) + 2A (x, y) cos ((kobj − kref) r + ϕ (x, y)) (2.7)
≈ 1 + A2 (x, y) + 2A (x, y) cos (2πqcx+ ϕ (x, y)) . (2.8)

In the last step, with the help of the small angle approximation, the following relation
was used:

(kobj − kref) r = k sin (α)x ≈ kαx ≈ 2πqcx. (2.9)

The term qc ≡ 1
∆x ≈

kα
2π is referred to as the carrier spatial frequency [75] and

corresponds to the inverse of the interference fringe spacing in the hologram, as
derived in the appendix in Section A.1. It carries phase information about the
object wave and can be generalised to a two-dimensional vector qc ≈ kα

2π for an
arbitrary biprism orientation parallel to the projection plane.

1The effects of the remaining objective lens aberrations of the electron microscope [20], which
can be described as a convolution of the object wave with a point spread function [75], further
influence the transfer of amplitude and phase from the object to the image plane, but are
neglected here.
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Both the phase and the amplitude are encoded in the cosinusoidal interference term
of the intensity distribution I (x, y) in Eq. 2.8, thereby providing access to informa-
tion about the complete object wave. Extracting this information from the intensity
distribution is best performed in Fourier space. A two-dimensional Fourier trans-
formation is defined by the expression

f̃ (qx, qy) ≡ F2 {f (x, y)} =
x

f (x, y) e−ı(qxx+qyy)dxdy, (2.10)

where the two-dimensional spatial frequency is q = (qx, qy). The Fourier transform
of Eq. 2.8 then consists of three terms [75]:

F2 {I (x, y)} = δ (q) + F2 {A2 (x, y)} centreband
+δ (q − qc) ∗ F2

{
A (x, y) eıϕ(x,y)

}
+1 sideband

+δ (q + qc) ∗ F2
{
A (x, y) e−ıϕ(x,y)

}
−1 sideband. (2.11)

The centreband term consists of the contribution of electrons that did not interact
with the sample (resulting in a peak at the zero frequency q = 0) and the Fourier
transform of the object wave intensity, i.e., of the image that would be obtained
using conventional bright-field TEM [76]. The two sidebands represent the Fourier
spectra of the complete, complex image wave and its conjugate [75]. Both sidebands
contain the same information because the hologram intensity I (x, y) is a real-valued
function and therefore has a Hermitian-symmetric Fourier transform. An example
of a simulated off-axis electron hologram of a homogeneously magnetised disc with a
purely magnetic phase contribution and its Fourier transform are shown in Figs. 2.2a
and 2.2b, respectively.
Numerically masking the +1 sideband, centering it in Fourier space (cf. Fig 2.2c) and
subsequent back-transformation into real space allows reconstruction of the complex
object wave Ψobj,rec (x, y) = A (x, y) eıϕ(x,y) from the hologram2. The phase, which
can then be extracted from the complex object wave, is initially restricted to the
range [−π, π) and can be unwrapped digitally before further processing. It should
be noted that the phase of the electron wave can only ever be determined to an
arbitrary offset. If a vacuum region can be identified in the image that is sufficiently
far away from the object and any fields associated with it, then it can be used as a
zero reference for the phase to correct this offset. The resulting phase image allows
examination of the electromagnetic properties of the object, as described in the next
section.

2The size of the sideband mask determines the number of pixels in the resulting phase image.
The mask size has to be sufficiently small to not include parts of the centreband.
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2.1 Off-axis electron holography

(a) (b)

(c) (d)

Figure 2.2.: Steps in phase reconstruction from an off-axis electron hologram. (a) The
intensity distribution of a simulated hologram corresponding to the magnetic contri-
bution to the phase of a disc with a radius of 160 nm. The disc is homogeneously
magnetised at an angle of 45° with respect to the x axis. (b) The Fourier transform
of the hologram with the central point of the power spectrum and two distinct side-
bands. The right +1 sideband is cut out, centred, masked outside the marked circle
and shown in (c). (d) The extracted phase, which is calculated in two steps: First, the
inverse Fourier transform of the centred sideband is calculated, resulting in the recon-
structed complex object wave Ψobj,rec (x, y). Then, the phase can be calculated from
ϕ (x, y) = arctan (<{Ψobj,rec (x, y)} /={Ψobj,rec (x, y)}).

11



Chapter 2 Fundamentals and basic principles

2.2. Phase shifts of magnetisation distributions

The phase shift ϕ (x, y) of an electron wave that has passed through a sample in the
TEM can be expressed, in the projection approximation, as a sum of two contribu-
tions [77]:

ϕ(x, y) = ϕel(x, y) + ϕmag(x, y) (2.12)

= Cel

∫
V (r)dz − π

Φ0

∫
Az(r)dz, (2.13)

where ϕel (x, y) and ϕmag (x, y) are the electrostatic and magnetic contributions to
the phase shift, respectively. The incident electron beam direction is parallel to
the z axis, Cel = γmeleλ

~2 is an interaction constant, Φ0 = π~/e is the magnetic
flux quantum, γ is the Lorentz factor (used due to the relativistic velocity of the
electrons), mel is the electron rest mass, λ is the electron wavelength and Az (r) with
r = (x, y, z) is the z component of the magnetic vector potential A [45, 46]. The
electrostatic potential V typically comprises both the mean inner potential of the
sample V0 [78–83] and additional variations in potential associated with longer-range
charge redistribution in the sample [84–94] and electrostatic stray fields outside it
[95–106].

It is primarily the magnetic contribution to the phase ϕmag that is of interest in
this thesis. Compared to other phase contrast techniques, which typically record
either only some spatial frequencies of the phase or a signal that is approximately
proportional to the first or second derivative of the phase [77, 107], off-axis electron
holography provides direct access to complete phase information. Several different
experimental approaches, which are not described here, can be used to separate the
desired (but often very weak) magnetic contribution from the total recorded phase
shift.

The magnetic vector potential A (r) in Eq. 2.13 is linked to the magnetisation
distribution M (r) in the sample by the convolution integral [108]

A(r) = µ0

4π

∫
M (r′)× r − r′

|r − r′|3
dr′, (2.14)

where µ0 is the vacuum permeability. According to Eq. 2.14, the magnetisation
distribution M (r) is convolved with the kernel µ0

4π
r
|r|3 by a vector product. Equa-

tions 2.13 and 2.14 can be combined to provide a formula that links the magnetic
phase shift ϕmag (x, y) to the components M (r) = (Mx (r) ,My (r) ,Mz (r)) of the
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2.2 Phase shifts of magnetisation distributions

magnetisation distribution in the sample in the form

ϕmag (x, y) = − µ0

4Φ0

∫ [∫
M (r′)× r − r′

|r − r′|3
dr′
]
z

dz (2.15)

= − µ0

4Φ0

x (y − y′)Mx(r′)− (x− x′)My(r′)
|r − r′|3

dr′dz (2.16)

= − µ0

2Φ0

∫ (y − y′)Mx(r′)− (x− x′)My(r′)
(x− x′)2 + (y − y′)2 dr′. (2.17)

In this way, the vector product convolution is split into two separate additive convo-
lutions, each of which depends on only one component of the magnetisation (Mx (r)
or My (r)). The integration over z can be executed in the last step because only the
denominator |r − r′| depends on it, yielding a factor of 2 [76]. Because of the vector
product in Eq. 2.14, only the components of the magnetisation that are perpendicu-
lar to the electron beam direction contribute to ϕmag and no information about the
z component Mz (r) is contained in the magnetic contribution to the phase shift..

Equation 2.17 is the fundamental equation that describes the forward problem.
Unfortunately, it can only be solved analytically for a small number of simple object
geometries, a few of which are described in the following subsections. In Chapter 3,
numerical strategies for solving Eq. 2.17 are assessed and analytical solutions for
simple geometries are revisited and utilised for optimisation purposes.

2.2.1. Real space calculations of homogeneous distributions

For most magnetisation distributionsM (r), it is very difficult, if not impossible, to
evaluate the integral in Eq. 2.17 analytically. However, it is possible to obtain ana-
lytical solutions for homogeneously magnetised objects that have simple geometries.
Such objects can be described by a material-dependent saturation magnetisation
Msat and an angle β in the magnetisation plane, resulting in the following expres-
sion for the magnetisation

Mhom (r) =
Msat (cos (β) , sin (β) , 0) , r ∈ V

0, r /∈ V,
(2.18)

where V is the volume of the homogeneously-magnetised object. For a projection
along the z axis, the z component of M does not contribute to ϕmag (as shown in
Eq. 2.17) and can be set to zero without loss of generality.

By inserting Eq. 2.18 into Eq. 2.17, a simplified formula for the magnetic contribu-
tion to the phase shift can be obtained [76, 109]. The integrand no longer depends on
z′ and the integration yields the thickness of the object in the electron beam direc-
tion t (x′, y′), which is defined by the integration boundaries of the object volume V .
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In terms of the magnetic saturation induction Bsat = µ0Msat, Eq. 2.17 can then be
rewritten in the form

ϕmag(x, y) = −Bsat

2Φ0

x (y − y′) cos (β)− (x− x′) sin (β)
(x− x′)2 + (y − y′)2 t (x′, y′) dx′dy′. (2.19)

For simple object geometries, analytical solutions to Eq. 2.19 exist [109, 110]. For
example, the magnetic phase shift of a uniformly in-plane-magnetised disc of radius
R and thickness t oriented with its axis parallel to the z axis is given by the expression

ϕmag (x, y) =
−πt

Bsat
2Φ0

(y cos (β)− x sin (β)) , r ≤ R

−πtBsat
2Φ0

(
R
r

)2
(y cos (β)− x sin (β)) , r > R.

(2.20)

Analytical solutions also exist for more complicated object geometries, such as poly-
hedra [111, 112] and tilted slabs [76, 109].

2.2.2. Fourier space calculations of homogeneous distributions

By applying the convolution theorem, the magnetic vector potential A (r) can also
be calculated in Fourier space. When applied to Eq. 2.14, the convolution of A (r)
with the kernel µ0

4π
r
|r|3 becomes [108]

F3 {A(r)} = µ0

4πF3 {M (r)} × F3

{
r

|r|3

}
(2.21)

⇔ A (r) = −µ0F−1
3

{
F3 {M (r)} × ı k

|k|2

}
, (2.22)

where the three-dimensional Fourier transform is defined according to the expression

F3 {f (r)} =
∫
f (r) exp (−2πırk) dr = f̃ (k) . (2.23)

The tilde symbol is used to represent a Fourier transformed function and the trans-
formed convolution kernel is F3

{
r
|r|3
}

= −4πı k|k|2 [108].

In 1991, Mansuripur used this approach to calculate the phase shifts of magnetised
objects of constant thickness and periodicity in the x and y directions. Subsequently,
Beleggia and Zhu [111, 112] proposed a way to apply the Fourier space approach
to homogeneously magnetised objects. The magnetisation distribution in such an
object can be expressed in the form Mhom (r) = MsatemagD (r), where the unit
vector emag points in the magnetisation direction and the shape function D (r) rep-
resents the region of space that is bounded by the magnetised object (taking a value
of zero outside it and unity inside it). The Fourier transform of the magnetisa-
tion distribution is then M̃hom (k) = MsatemagD̃ (k). By making use of Eq. 2.22,
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the magnetic vector potential can be written in terms of the magnetic saturation
induction Bsat = µ0Msat in the form

Ã (k) = −µ0M̃(k)× ı k
|k|2

(2.24)

= −ıBsatD̃ (k)
(
emag ×

k

|k|2

)
. (2.25)

For a projection along the z axis, the magnetic phase shift can then be written

ϕ̃mag (kx, ky) = ıπBsat

Φ0

D̃ (kx,ky,0)(
k2
x + k2

y

) (emag × k) |z. (2.26)

If the saturation magnetisation, the magnetisation direction and the shape function
D (r) are all known and the Fourier transform D̃ (k), which is referred to as the shape
amplitude, can be calculated, then it is straightforward to find an analytical solution
for ϕ̃mag. However, transforming this solution back to real space analytically is then
often much more difficult. Nevertheless, in [111] analytical solutions for rectangular,
cylindrical and spherical object geometries were reported. The same concept was
applied to polyhedral particles in [112].

2.2.3. Phase of a magnetic vortex state

It is also possible to analytically calculate ϕmag for a circular disc of radius R and
height t that is oriented with its axis parallel to the z axis and supports an infinitely
sharp magnetic vortex state. In cylindrical coordinates (ρ, φ, z), the magnetisation
distribution is given by the expression

M vortex (ρ, φ, z) = Msatemag (φ) Θ (R− ρ) Θ
(
t

2 − |z|
)
, (2.27)

where the unit vector emag (φ) = (− sin (φ) , cos (φ) , 0) for the magnetisation direc-
tion depends on the angle φ in the magnetisation plane and Θ is the box function.
The magnetic contribution to the phase shift is then simply [111]

ϕmag (ρ) =

πBsatt

Φ0
(R− ρ) , ρ ≤ R

0, ρ > R.
(2.28)

In practise, a vortex core is never infinitely sharp. According to Humphrey and de
Graef [71], a better approximation can be made by modifying the magnetisation
vector to smoothly transition to be pointing out-of-plane in the centre, according to
the expression

M vortex (ρ, φ, z) = Msat


− sin (φ)

√
1− ν (ρ)

cos (φ)
√

1− ν (ρ)
ν (ρ)

Θ (R− ρ) Θ
(
t

2 − |z|
)
, (2.29)
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where ν (ρ) ≡ 1 − 2
π

arcsin
(
tanh

(
πρ
Rν

))
and Rν is the vortex core radius. However,

an easy analytical solution for the resulting magnetic contribution to the phase shift
is not available and numerical methods are required.

2.2.4. Projected magnetisation distributions

An arbitrary magnetisation distribution can be described relative to a material-
dependent saturation magnetisation Msat, in the form of a relative magnetisation
distribution

m (r) ≡M (r) /Msat, (2.30)

that is dimensionless. Making use of this definition, Eq. 2.17 can be further simplified
to

ϕmag(x, y) = −µ0Msat

2Φ0

∫ (y − y′)mx(r′)− (x− x′)my(r′)
(x− x′)2 + (y − y′)2 dr′ (2.31)

= −Bsat

2Φ0

x (y − y′)mpr,x(x′, y′)− (x− x′)mpr,y(x′, y′)
(x− x′)2 + (y − y′)2 dx′dy′.

(2.32)

In the second step, the fact that only m (r) depends on the z coordinate is used
to evaluate the integral over the z coordinate first. The resulting projection (which
has physical units of length) makes use of the relation

mpr (x, y) ≡
∫
m (r) dz, (2.33)

which describes the areal density of magnetic moments in the projection plane.
Without loss of generality, this definition can be extended to arbitrary projection
directions onto any two-dimensional plane with axis coordinates u and v:

ϕmag(u, v) = −Bsat

2Φ0

x (v − v′)mpr,u(u′, v′)− (u− u′)mpr,v(u′, v′)
(u− u′)2 + (v − v′)2 du′dv′. (2.34)

In general, u and v do not have to be aligned with x and y. In this way, Eq. 2.34
separates the calculation of ϕmag into two steps:

• A calculation of the areal magnetisation distributionmpr by projectingm (r)
along the beam direction.

• A convolution of the two components of this projection with the convolution
kernels v

u2+v2 and −u
u2+v2 , in order to calculate the magnetic contribution to the

phase shift.
This separation is used in Chapter 3, with Eq. 2.34 providing an analytical founda-
tion for an optimised forward model.
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2.3 Basic concepts of inverse problems

The transformation of Eq. 2.34 into Fourier space then turns the convolutions into
simple multiplications that lead to the following analytical formula for the magnetic
contribution to the phase shift [113]:

ϕ̃mag (ku, kv) = ıπBsat

Φ0

m̃pr,u (ku, kv) · kv − m̃pr,v (ku, kv) · ku
k2
u + k2

v

, (2.35)

where the Fourier transformations are two-dimensional.
It should be noted that for a very thick sample (or a very rapidly varying magnetisa-
tion distribution) it may not be valid to approximate the propagation of the electron
beam through the sample by a simple integration along the beam direction, i.e. the
projection approximation is no longer valid. Electron scattering then needs to be
taken into account, e.g., by using a multislice approach [114]. In such a situation,
the order in which the electron beam traverses through the sample matters and a
simple projection cannot be used.

2.3. Basic concepts of inverse problems

After establishing the mathematical link between the magnetisation distribution
M (r) and the magnetic contribution to the phase shift ϕmag (u, v), the inverse
problem of reconstructingM (r) from a set of phase images has to be tackled. This
section provides a brief introduction to the solution of inverse problems and applies
its formalisms to the specific case of magnetisation reconstruction from electron op-
tical phase images. The interdependence between the forward and inverse problems
is illustrated schematically in Fig. 2.3.

  
  

Figure 2.3.: Illustration of the forward and inverse problems that link the magnetisation
distribution M and the magnetic contribution to the phase shift ϕmag.

In general, if a function F : Rn 7→ Rm, which defines a forward model, maps
a physical quantity onto a set of observable data, then the reconstruction of the
quantity from the data is referred to as an inverse problem. In this thesis, the
function F maps the magnetisation distributionM (r) onto a set of magnetic phase
images ϕmag (u, v).
A forward model can be defined mathematically in such a way that it operates on
vectorised quantities x and y instead of multi-dimensional fields such as the magnet-
isation or the phase. For the specific case of the reconstruction of a magnetisation
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Chapter 2 Fundamentals and basic principles

distribution, the so-called input state vector x ∈ Rn is the vectorised form of the
magnetisation distribution M . The n entries of the input state vector x corres-
pond to the degrees of freedom of the reconstruction, which are determined by the
vector components of each magnetised voxel in the magnetisation distribution. The
so-called measurement vector y ∈ Rm contains the vectorised concatenation of all of
the measured phase images ϕmag, whose pixels correspond to m individual measure-
ments. The exact vectorisation formalism, which is needed to set up x and y from
M and ϕmag, is further explained in Chapter 3. With these quantities defined, the
forward model can be expressed as

F (M ) = ϕmag
vectorisation
→ F (x) = y. (2.36)

If the forward model describes the underlying physical process accurately and com-
pletely, then F can be used to create a “true”, error-free simulation yt ∈ Rm.
However, in reality, measurements are usually affected by errors ε ∈ Rm originating
from different sources. If the true state is denoted xt ∈ Rn, then the error-afflicted
measurements y ∈ Rm can be expressed in the form

y = yt + ε = F (xt) + ε. (2.37)

The errors ε cannot be separated from the measurements y after acquisition, i.e. it
is usually impossible to reconstruct the true state xt. Nevertheless, it is often still
possible to reconstruct at least an approximation xrec ∈ Rn and the inverse problem
can be expressed as in the form

xrec = F−1 (y) . (2.38)

If the inverse problem is well-posed, then this equation is usually solvable. A well-
posed problem is defined by three fundamental conditions [115]:

• A solution to the problem exists.

• The solution is unique.

• The solution depends continuously on the data.

If any one of these conditions is not met, then the problem is ill-posed and more
sophisticated strategies have to be employed to try to solve it. If F is not injective,
i.e., there is no “one-to-one” mapping, then the inverse problem does not necessarily
have a unique solution. If F is not surjective, i.e., there is no “onto” mapping, then
the inverse problem may have no solution, e.g., because of errors shifting y outside
the range (or image / target set) of F . In both cases, F−1 does not exist and direct
inversion is impossible.

In order to solve an ill-posed inverse problem, it can be approximated by a well-
posed problem. This process is referred to as regularisation and is described in depth
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2.3 Basic concepts of inverse problems

in [115–118]. First, the inverse problem (Eq. 2.38) is replaced by a minimisation
problem, which searches for a solution to the expression

min
x
‖F (x)− y‖2

2 . (2.39)

This relaxation ensures that at least one solution can be found. In order to further
ensure that exactly one unique solution is found, a regularisation term Rλ (x) is
added to the minimisation problem. This term operates on the state vector x and
usually acts as a penalty on the complexity of x. Rλ (x) can be used to model
physical constraints that describe a priori knowledge about the system. The sum
of the norm of the residual vector F (x) − y and the regularisation term Rλ (x) is
termed the cost function

C (x) ≡ ‖F (x)− y‖2
2 +Rλ (x) . (2.40)

The minimisation in Eq. 2.39 is replaced by a minimisation of the cost function
C : Rn 7→ R. The regularisation term Rλ (x) depends on a regularisation para-
meter λ, which controls the importance of Rλ (x) in comparison to the norm of
the residual vector. Basically, λ is used to balance the trade-off between the com-
pliance with the measurements (the first term in Eq. 2.40) and adherence to the
regularisation (the second term in Eq. 2.40)3. As λ → 0, the regularisation term
vanishes and the minimisation of the cost function converges to its unregularised
form. Rλ (x) is often given by a norm that operates on the state vector x. A simple
example is the Euclidean norm ‖x‖2. If a pool of possible solutions exists for the
unregularised problem, then a regularisation term Rλ (x) = ‖x‖2 will choose the
smallest and simplest solution, effectively applying Occam’s razor. The basics of
the reconstruction process are summarised in Fig. 2.4.
Minimisation of the cost function depends not only on the forward model F (x),
but also on its derivative F ′ (x) and its adjoint4 F ′ (x)†. Because this minimisation
is usually executed in an iterative fashion, these quantities have to be calculated
several hundreds if not thousands of times. The next chapter therefore focuses on
an optimised implementation of the forward model, which can be used to map a
magnetisation distribution to a set of phase images, as well as on its derivative
and adjoint. Subsequently, Chapter 4 is dedicated to the application of the forward
model in an efficient MBIR algorithm and to the modelling of a fitting regularisation
term, following the steps presented in this section.

3In more complex cases,Rλ (x) can be a sum of different regularisation terms, each with a separate
regularisation parameter λ, in order to balance them against each other and the measurements.

4The adjoint is usually denoted by a dagger †. As an example, the adjoint of a linear operator F
is the complex conjugate (denoted by ∗) of its transpose (denoted by T ): F† = (F∗)T .
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𝒚

𝐶(𝒙) 𝒙rec

𝑅𝜆(𝒙)

𝑭(𝒙)

𝑭 𝒙 −  𝒚 𝟐𝒙 = 𝑭−𝟏 𝒚

Figure 2.4.: Illustration of the reconstruction process. A forward model F (x) maps a
physical quantity x onto a set of observable data described by the measurement vector
y. The inverse problem is ill-posed and has to be substituted by a minimisation problem.
Together with a regularisation term Rλ (x), which can be based on a priori knowledge
about the system, a cost function C (x) is constructed and minimised iteratively in an
MBIR algorithm to find the best-fitting solution xrec.

2.4. Summary

In this chapter, the basic principles of off-axis electron holography were described. It
was shown that the electromagnetic phase shift is encoded in electron holograms and
can be extracted from the sidebands of their Fourier transforms. If the magnetisation
distribution of a sample is known, then the magnetic contribution to the phase shift
can be expressed as a convolution integral. In the projection approximation, only
the components of the magnetisation that are perpendicular to the electron beam
direction contribute to the phase shift. The resulting integral equation can only
be solved analytically for simple geometries and magnetisation configurations; some
of which were outlined in this chapter. Solutions for the integral can be obtained
either in real space or in Fourier space. The integral can be simplified further by
performing a projection along the electron beam direction, on the assumption that
the sample is sufficiently thin. This concept constitutes the basis of the optimised
implementation of a forward model in Chapter 3. Finally, the mathematical basis
for inverse problem solving was introduced. This approach is developed into an
MBIR algorithm for the reconstruction of magnetisation distributions from electron
optical phase images in Chapter 4.
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3. A forward model for the
calculation of the magnetic phase

This chapter is adapted from [P1] in the list of own publications, submitted to
Ultramicroscopy.

In comparison to direct tomographic reconstruction techniques such as FBP, MBIR
techniques have the disadvantage that their iterative approach is often much more
costly in terms of computation time and memory space. In this thesis, the com-
putational bottleneck is the forward model, which maps a chosen magnetisation
distribution onto the corresponding phase images. This forward model is invoked
up to several thousand times per reconstruction. It also has to reflect the underlying
physics (described in Section 2.2) as accurately and completely as possible. If this is
not the case, then one risks introducing additional artefacts into the reconstruction.
In addition, an efficient MBIR algorithm requires not only the forward model itself,
but also its derivative and adjoint, to be known.

The mathematical basis for the forward model that is used in this thesis is given by
Eq. 2.34. This equation shows that the forward model can be split into a projection
along the electron beam direction and a subsequent phase mapping operation that
is described by convolutions. Whereas the projection is relatively straightforward,
the phase mapping step proves to be more complicated. An analytical solution
to Eq. 2.34 only exists for a few selected magnetisation distributions, as shown in
Section 2.2. For an arbitrary magnetisation distribution, the integral therefore has
to be solved numerically. Two approaches currently exist to tackle this problem:

• Direct solution of Eq. 2.34 in real space by applying the trapezium rule to
discretise the convolution integral. This approach yields an accurate phase
image, but the computation is very slow, as the convolutions are executed in
real space.

• Discretisation of the analytical equation in Fourier space (cf. Eq. 2.35), where
the two convolutions are expressed as multiplications. The result must then
be transformed back to real space to calculate the phase image. This approach
is much faster, but it suffers from artefacts that are linked to Fourier space
discretisation.
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Chapter 3 A forward model for the calculation of the magnetic phase

Both approaches have desirable aspects but also downsides. The goal of this chapter
is to introduce a novel phase mapping approach that combines the accuracy of real
space integration with the speed of the Fourier space approach. Together with
an efficient projection scheme, this phase mapping approach leads to an overall
optimised forward model and provides all of the tools that are necessary for an
MBIR algorithm.

The first part of this chapter provides a mathematical formulation of the forward
model as a nested matrix equation. As a prerequisite, the three-dimensional space of
the magnetisation distribution and the two-dimensional spaces of the phase images
are discretised so that they can be used in numerical calculations. A magnetisation
state vector and a measurement vector are introduced (cf. Section 2.3). The forward
model can then be expressed as a matrix equation, because projections and convo-
lutions are linear transformations. For the projection, special emphasis is placed on
the intricacies of vector fields. Techniques that are applicable to sparse matrices,
i.e., matrices that have relatively few non-zero entries, are used for computational
optimisation. The second part of this chapter focuses on an efficient phase map-
ping implementation. First, prevailing approaches for numerically calculating the
phase are illuminated. A novel and improved combined approach is then introduced.
Finally, this new approach is compared with the currently more prevalent Fourier
space approach, with regard to computational speed and accuracy.

3.1. Matrix formalism of the forward model

3.1.1. Discretisation

The starting point for a numerical calculation of the magnetic contribution to the
phase shift ϕmag of a magnetisation distribution M is a suitable discretisation of
the relevant physical quantities. The three-dimensional magnetisation distribution
can be discretised on a Cartesian grid of edge length a (defining the grid spacing)
by assigning a local magnetisation M [i, j, k] = (Mx [i, j, k] ,My [i, j, k] ,Mz [i, j, k])
to each grid point r [i, j, k]. The grid points divide the three-dimensional space into
cubic voxels of volume Vvx = a3, which are labelled by three indices1 i, j and k. Each
voxel is represented by its centre positions along the x, y and z axes (cf. Fig. 3.1),
such that

r [i, j, k] = (x [i] , y [j] , z [k]) = a
(
i+ 1

2 , j + 1
2 , k + 1

2

)
. (3.1)

1In all of the following discussions, spatial indices are always denoted by square brackets to
separate them from other parameters.
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3.1 Matrix formalism of the forward model

∙

Figure 3.1.: Definition of the coordinate system used to discretise a three-dimensional
magnetisation distribution with spatial coordinates x, y and z, shown alongside three
exemplary two-dimensional projections with spatial coordinates u and v. Such projec-
tions are used to discretise the projected magnetisation distributions and phase images.
One such coordinate system exists for each projection direction. For simplification, only
coordinate systems along the three major axes (x, y and z) are shown.
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Chapter 3 A forward model for the calculation of the magnetic phase

The total dimensions of the grid are Lx × Ly × Lz, with Lx = Nxa, Ly = Nya
and Lz = Nza. The number of grid points along the x, y and z directions is then
denoted Nx, Ny and Nz. M [i, j, k] can always be described relative to a (material-
dependent) saturation magnetisation Msat in the form of a relative magnetisation
distribution2

m [i, j, k] ≡M [i, j, k] /Msat, (3.2)

which is the discretised form of Eq. 2.30.
Application of the forward model to a magnetisation distribution results in a set of
Nb discretised magnetic phase images ϕmag,b [p, q], which are labelled with two spatial
indices3 p and q. The parameter b specifies the index of the image. The coordinate
system uv of each magnetic phase image (cf. Fig. 3.1) does not need to be aligned
with the xyz coordinates of the magnetisation distribution. Each magnetic phase
image contains Nu,b × Nv,b pixels. Here, the grid spacing a of the two-dimensional
coordinate systems is chosen to be the same as that of the three-dimensional space,
with each pixel having an area of Apx = a2. Just as for the three-dimensional
discretisation (cf. Eq. 3.1), each pixel is represented by its centre position along the
u and v axes (cf. Fig. 3.1), such that

(u [p] , v [q]) = a
(
p+ 1

2 , q + 1
2

)
. (3.3)

In general, each magnetic phase image could vary in the number of pixels in the
field of view. Here, it is assumed that all sizes are the same, i.e., Nu,b ≡ Nu and
Nv,b ≡ Nv. The sizes of the phase images can be selected during the reconstruction
of the phase from the corresponding hologram (cf. Section 2.1). This size is usually
chosen to be the same for all of the phase images in a tilt series. The chosen
simplification is therefore justified in nearly all cases.
In addition to the discretisation of the three-dimensional magnetisation distribution
m [i, j, k] and the phase images ϕmag,b [p, q], the intermediate result for the projec-
ted magnetisation distribution mpr is needed. In the simple case of a projection
along the z direction, mpr can be discretised by turning the projection integral
mpr (x, y) =

∫
m (r) dz (cf. Eq. 2.33) into a sum4 over all of the voxels along the

z axis, which results in the expression

mpr [i, j] =
∑
k

m [i, j, k] · a ≡ a ·ms [i, j] . (3.4)

2Msat is factored out to simplify the following formulas and calculations. In general, Msat can
vary across the field of view if, e.g., different magnetic materials are present. If this is the case,
Msat can just be set to 1 A

m , so that m [i, j, k] is numerically equal to M [i, j, k], just without
units.

3The indices p and q were chosen for the two-dimensional coordinate systems to distinguish them
from the three-dimensional coordinate system, indexed by i, j and k.

4All of the sums in the following discussions implicitly go from 0 to the corresponding number of
pixels Nx/y/z, or Nu/v minus one, respectively.
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3.1 Matrix formalism of the forward model

The infinitesimal term dz in the integral is thereby to the grid spacing a during dis-
cretisation. For convenience, a new measure ms [i, j] is used to represent the sum,
so that a can be factored out5. Although Eq. 3.4 is only valid for a projection along
z, without loss of generality, the projection can be generalised to the established
coordinate systems uv for arbitrary projection directions. The resulting general-
ised form ms,b [p, q] also includes the image index b, so that different projection
directions can be distinguished. The mapping m [i, j, k] → ms,b [p, q] between the
three-dimensional magnetisation distribution and its projection is then no longer as
simple as a sum along a major axis and is described in depth in Section 3.1.3. The
same coordinate system is used below for the projected magnetisation distributions
and the resulting phase images, i.e., both have image dimensions Nu×Nv. The grid
spacing a is used by all discretised quantities.

3.1.2. Vectorisation

The formulation of the forward model, which is described in Eq. 2.36, necessit-
ates vectorisation of the discretised quantities m [i, j, k], ms,b [p, q] and ϕmag [p, q].
Vectorisation in this sense means that a multi-dimensional field is reduced to a one-
dimensional field by listing all of the entries in a single vector. The inverse operation
is referred to as reshaping and returns an appropriate vector to its multi-dimensional
shape.

Here, the magnetisation state vector x ∈ R3NxNyNz , which serves as input for the
forward model, is the vectorised form of the three-dimensional magnetisation distri-
bution m [i, j, k]. It is constructed by separately vectorising the three components
mx [i, j, k], my [i, j, k] and mz [i, j, k], and concatenating them to create a single vec-
tor:

x =

xxxy
xz

 =

(
mx [0, 0, 0] , . . . ,mx [Nx − 1, Ny − 1, Nz − 1] ,
my [0, 0, 0] , . . . ,my [Nx − 1, Ny − 1, Nz − 1] ,
mz [0, 0, 0] , . . . ,mz [Nx − 1, Ny − 1, Nz − 1]

)T
.

(3.5)

For each component sub-vector xx, xy and xz, the first index i of the x coordinate
changes the fastest, while the last index k of the z coordinate changes the slowest6.
This means that xx [1, 0, 0] follows xx [0, 0, 0] and so on. The same principle is
applied to all of the following vectorisations.

Similarly, both components ms,b,u and ms,b,v of each projected relative magnetisation
distribution ms,b [p, q] can be vectorised to form the two sub-vectors xpr,b,u and

5Whereas ms has no units (it is a sum of unit-less relative magnetisation voxels), mpr contains
the grid spacing a and has units of length.

6In an algorithmic implementation, this order is in accordance with the memory order of most
“row-major” programming languages, e.g. C or Python. A counter-example is Fortran, which
is a “column-major” language.
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xpr,b,v. Their concatenation xpr,b ∈ R2NuNv can be written

xpr,b =
(
xpr,b,u
xpr,b,v

)
=

(
ms,b,u [0, 0] , . . . ,ms,b,u [Nu − 1, Nv − 1] ,
ms,b,v [0, 0] , . . . ,ms,b,v [Nu − 1, Nv − 1]

)T
.

(3.6)

Overall, there are Nb projection vectors xpr,b, one corresponding to each measured
phase image. These projection vectors can be concatenated to form one collective
vector xpr ∈ RNb2NuNv , with

xpr =


xpr,1
...

xpr,Nb

 . (3.7)

In vectorised form, the projection of the three-dimensional magnetisation distri-
bution x onto the collection of projected distributions xpr can be expressed as a
projection function

P (x) ≡ xpr. (3.8)

The vector y ∈ RNbNuNv contains the vectorised magnetic phase images ϕmag,b [p, q]
in order of ascending image number b:

y =


y1
...
yNb

 =
(ϕmag,1 [0, 0] , . . . , ϕmag,1 [Nu − 1, Nv − 1] ,

. . . ,

ϕmag,Nb [0, 0] , . . . , ϕmag,Nb [Nu − 1, Nv − 1]
)T
.

(3.9)

For the inverse problem of reconstructing a magnetisation distribution, which is the
goal of this thesis, y describes the measured phase images and is referred to as
the “measurement vector” below. The measurement vector y can be related to the
collection of projected distributions xpr by a “phase mapping” function

Q (xpr) = y, (3.10)

which describes the two convolutions that appear in Eq. 2.34.

After all of the relevant quantities have been vectorised, an equation for the forward
model can be defined. Starting from the general equation (cf. Eq. 2.36) and utilising
Eqs. 3.8 and 3.10, the expression for the forward model is

F (x) = y = Q (xpr) = Q (P (x)) . (3.11)

The two steps of projection and phase mapping are described in the following sec-
tions, with the goal of finding a complete system matrix that describes the forward
model.
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3.1.3. Projection matrix

The projection P (x) is a linear transformation and can therefore be expressed as a
matrix operation

P (x) = Px =


P1
...

PNb


xxxy
xz

 ≡

xpr,1
...

xpr,Nb

 = xpr, (3.12)

where P ∈ RNb2NuNv×3NxNyNz is the projection matrix, which itself consists of Nb

sub-matrices that correspond to the projection directions of the individual images.
The projection sub-matrices

Pb =
(
cb,uxWb cb,uyWb cb,uzWb

cb,vxWb cb,vyWb cb,vzWb

)
, (3.13)

where Pb ∈ R2NuNv×3NxNyNz , describe the parallel projection of a three-dimensional
three-component vector field onto a two-dimensional two-component vector field.
They consist of six entries, which are themselves expressed as products of six coeffi-
cients (e.g. cb,ux ∈ R) and a weighting matrix Wb ∈ RNuNv×NxNyNz . The weighting
matrix Wb describes the weighting impact of the 3D voxels on the 2D pixels of the
projection. The coefficients determine the contributions of the three-dimensional
magnetisation components xyz (columns) to the projected magnetisation compon-
ents uv (rows).
The projection sub-matrix Pb is best illustrated by a simple example of a small
volume of 2× 2× 2 voxels. For a simple projection along the z direction, the matrix
is given by the expression

Pb =
(

Wb 0 0
0 Wb 0

)
. (3.14)

Here, the x component is mapped onto the u component, the y component is mapped
onto the v component and the z component of the three-dimensional magnetisation is
lost during the projection. All of the coefficients are zero, except for cb,ux = cb,vy = 1.
The weighting matrix is then

Wb =
(
I4 I4

)
=


1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

 . (3.15)

In this case, the weighting matrix consists of two 4×4 identity matrices I4. They are
each applied to one of the two slices in the z direction. In this simple example, both
slices are just summed up without being modified. Therefore, Wb is essentially just
a matrix representation of the summation that was already described in Eq. 3.4.
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For different projection directions, the calculation is more complicated. The two
vector field components of the projection are then given by a linear combination of
the three-dimensional components. This linear combination is determined by the
coefficients, e.g. cb,ux and the complexity of the weighting matrix also increases.
Nonetheless, some general characteristics of Wb can be noted:

• Each column of Wb has to add up to one, i.e., no magnetisation is lost during
the projection7. If the projection of a voxel centre does not coincide with the
centre of a pixel in the two-dimensional coordinate system uv, then the entry
in the corresponding column of Wb has a value between 0 and 1, indicating
that the magnetisation inside the voxel is redistributed between several pixels
upon projection. This redistribution increases the number of non-zero entries
in Wb, in comparison to a projection along a major axis.

• The row sum of Wb is an indicator of the number of voxels that are projected
onto a specific pixel. In the example of a z projection described above, each
row sum has to be equal to the number of pixels Nz along the z direction.
As above, the row sum can in general also be fractional when a voxel only
contributes part of its magnetisation to a pixel upon projection.

Wb has to be set up only once at the beginning of the reconstruction process. The
construction of the weighting matrices is rather verbose and is not discussed in
depth in this chapter. Section A.2 in the appendix describes implementations for
projections along the three major axes (xyz) and for projections with a tilt about the
x or the y axis. It should be noted that Wb and therefore also Pb are very sparse
matrices, i.e., they have very few non-zero entries. By storing only the non-zero
entries in combination with their location in the matrix, memory consumption can
be reduced to a tiny fraction of that for a naive implementation. As an additional
benefit, matrix vector multiplications can be carried out several orders of magnitude
faster. The sparse nature of Pb therefore enables efficient implementation for the
thousands of projections that are necessary for the execution of an MBIR algorithm8.

3.1.4. Phase mapping matrix

The second part of the forward model is described by the function Q (xpr) = y,
whose implementation involves a convolution of the components of the projected
magnetisation xpr by two convolution kernels. This convolution process is referred to
as “phase mapping” below. As the convolutions are linear operations, phase mapping

7The exceptions for slanted projections are voxels at the edges and corners of the three-dimensional
volume, whose projection rays can “miss” the projected coordinate systems. If the magnetised
volume is located in the centre of the three-dimensional space, then no magnetisation is lost.

8All of the methods that are described here can also be applied to scalar fields. The weighting
matrix then directly describes the projection withPb = Wb.
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can therefore also be expressed in terms of a matrix operation Q ∈ RNbNuNv×Nb2NuNv .
As a result of the independence of the individual phase images, Q has a block
diagonal structure:

Q (xpr) = y = Qxpr =


Q1 0 · · · 0
0 . . . ...
... . . . 0
0 · · · 0 QNb



xpr,1
...

xpr,Nb

 =


Q1xpr,1

...
QNbxpr,Nb

 .
(3.16)

Every sub-matrix Qb ∈ RNuNv×2NuNv describes the convolution process for a single
projection xpr,b. Qb, in turn, is a block matrix that is composed of two square
sub-matrices Qb,u ∈ RNuNv×NuNv and Qb,v ∈ RNuNv×NuNv , which separate the con-
volutions of the two projected magnetisation components in the u and v directions:

Qbxpr,b =
(
Qb,u Qb,v

)(xpr,b,u
xpr,b,v

)
= Qb,uxpr,b,u + Qb,vxpr,b,v (3.17)

≡ yb,u + yb,v = yb. (3.18)

In contrast to the sparse projection matrix P, the phase mapping matrices Qb for
single images are dense. For non-trivial forward models containing many projections
it is thus infeasible to compute all entries of Qb or store the matrices Qb in memory.
The entire second half of this chapter (cf. Section 3.2) is consequently dedicated to
finding the most efficient implementation of the operation Qbxpr,b.

3.1.5. Complete system matrix

In summary, the (very nested) complete system system matrix F ∈ RNbNuNv×3NxNyNz

of the forward model, which is illustrated in Fig. 3.2, is given by the expression

F = QP =


Q1 0 · · · 0
0 . . . ...
... . . . 0
0 · · · 0 QNb

 ·


P1
...

PNb

 =


Q1P1

...
QNbPNb

 . (3.19)

Because of the block diagonal nature of this matrix, the measurement vector yb of
each magnetic phase image can be calculated separately by splitting the forward
model into Nb individual sub-problems QbPb ≡ Fb ∈ RNuNv×3NxNyNz . This formu-
lation results in a complete model description as a linear problem:

y = Fx = QPx =


y1
...
yNb

 =


Q1P1x

...
QNbPNbx

 ≡


F1x
...

FNbx

 . (3.20)
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Figure 3.2.: Illustration of the nested nature of the system matrix F, which consists of
a stack of Nb sub-matrices Fb, each of which describes the forward model for a single
image and can be expressed as a matrix product Fb = QbPb. The projection matrix
Pb ∈ R2NuNv×3NxNyNz can be further decomposed into six entries of a weighting matrix
Wb ∈ RNuNv×NxNyNz with different coefficients. In contrast, the phase mapping matrix
Qb ∈ RNuNv×2NuNv consists of two sub-matrices, which describe convolutions of the u
and v components of the projected magnetisation distribution, respectively.

Splitting the forward model into Nb independent sub-problems for each phase image
is important, as it can be used in a parallelised implementation in the future. In the
case of a reconstruction of the projected in-plane magnetisation from a single phase
image, i.e. Nb = 1, F can be simplified to:

y = F1x = Q1P1x. (3.21)

3.1.6. Derivatives and adjoints

An efficient solution to the inverse problem requires that the derivative of the forward
model, i.e., the Jacobi matrix ∂F (x)

∂x
, must be known (cf. Section 2.3). Although

finite differences are often used to calculate ∂F (x)
∂x

for non-linear models [72], for the
linear problem at hand the Jacobi matrix is just equal to the system matrix itself:

∂F (x)
∂x

= ∂

∂x
(Fx) = F = QP. (3.22)

In practice, only the product of the Jacobi matrix F with a vector x is needed. This
product is trivial and reduces to an evaluation of the forward model itself:

∂F (x)
∂x

· x = Fx = F (x) (3.23)
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In addition, the adjoint of the Jacobi matrix F† is needed, in order to map the
measurements back onto the underlying model. The adjoint of a matrix F is defined
as its conjugate transpose

F† = (F∗)T . (3.24)

An adjoint operation can be interpreted as a “back-propagation” of information
[119]. As the system matrix F and its sub-matrices are all real-valued, the adjoint
F† is equal to the transposed FT and can be expressed as

FT = (QP)T = PTQT . (3.25)

The adjoint phase mapping matrix takes the form

QT =


QT

1 0 · · · 0
0 . . . ...
... . . . 0
0 · · · 0 QT

Nb

 , (3.26)

with

QT
b =

(
QT
b,u

QT
b,u

)
. (3.27)

The adjoint projection matrix is

PT =
(
PT

1 · · · PT
Nb

)
, (3.28)

with

PT
b =

cb,uxW
T
b cb,vxWT

b

cb,uyWT
b cb,vyWT

b

cb,uzWT
b cb,vzWT

b

 . (3.29)

In analogy to Pb, matrix-vector multiplications with PT
b can be efficiently executed

by using sparse matrix techniques.

3.2. Phase mapping strategies

Whereas the sparse projection matrix P can be implemented efficiently by using
sparse matrix multiplications (cf. Section 3.1.3), the phase mapping matrix Q poses
additional challenges because of its high density. As discussed in Section 3.1.5,
the complete forward model can be split into Nb independent sub-problems. It
therefore makes sense to address the phase mapping matrix Qb for each sub-problem
separately.
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Chapter 3 A forward model for the calculation of the magnetic phase

In general, Qb can be interpreted as an operator, i.e., a mathematical relation
that maps a vectorised projected magnetisation distribution xpr,b onto a vectorised
phase image yb. What is crucial for the efficiency of the algorithm is the concrete
implementation of this operator. A trivial approach would be to set up the complete
matrix Qb ∈ RNuNv×2NuNv and to evaluate the matrix-vector calculation Qbxpr,b.
However, as Qb scales as O (2N4), this strategy is extremely memory-inefficient.
Even for a relatively small number of pixels along each axis, e.g., N = 128, 4GB
would be needed if Qb is saved as a standard 64 bit floating point array. In the
worst case, if each phase image requires a different matrix Qb, the overall memory
consumption further increases by a factor of Nb.
The goal of this section is the derivation of a more efficient operator implementa-
tion of Qb. The convolutions that are involved in calculating the phase are best
understood and executed on two-dimensional arrays instead of their vectorisations.
Therefore, it makes sense to implicitly assume the reshaping of the projected mag-
netisation xpr,b → ms,b [p, q] as the first mathematical step of the operator Qb.
Independent of how the convolutions are executed, the result will then always be a
two-dimensional phase image ϕmag,b [p, q]. Analogously, the last mathematical step
of the operator Qb has to be a re-vectorisation ϕmag,b [p, q] → yb. After all of the
phase images yb have been calculated separately, they can be concatenated to cre-
ate a complete measurement vector y (cf. Eq. 3.9). In summary, the order of
mathematical operations is:

xpr,b
reshaping
→ ms,b [p, q]

phase mapping
→ ϕmag,b [p, q]

vectorisation
→ yb. (3.30)

The starting point for an efficient phase mapping operator is always the formula for
the magnetic phase shift (cf. Eq. 2.34)

ϕmag(x, y) = −Bsat

2Φ0

x (y − y′)mpr,x(x′, y′)− (x− x′)mpr,y(x′, y′)
(x− x′)2 + (y − y′)2 dx′dy′.

(3.31)
For an arbitrary magnetisation distribution, discretised numerical approaches have
to be used to calculate the phase. The choice of discretisation strategy for the calcu-
lation of the phase is very important, as it determines factors such as computational
speed and accuracy and therefore the overall efficiency of the forward model. The
space in which discretisation takes place is particularly important. Both a real space
discretisation (RD) strategy (based on Eq. 2.34) and a Fourier space discretisation
(FD) strategy (based on Eq. 2.35) are discussed in this section. The computationally
most expensive parts of this calculation are the convolutions themselves. They can
also be performed either in real space (RC) or in Fourier space (FC). Fourier space
convolution is significantly faster than real space convolution. The advantages and
disadvantages of each strategy are discussed, before introducing a novel approach
that combines the benefits of both approaches9.

9For the sake of simplicity, the image indices b of the phase images ϕmag,b [p, q] and the projected
magnetisation distributions ms,b [p, q] are dropped in the following discussions.
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3.2.1. Existing real space approach (RDRC)

The most simple approach to calculate a phase image from an arbitrary projected
magnetisation distribution is to directly solve Eq. 2.34 in real space by applying the
trapezium rule to discretise the convolution integral. The direct implementation
of Eqs. 3.3 and 3.4 results in the following formula for the discretised magnetic
contribution to the phase shift at a given pixel with indices (p, q):

ϕmag [p, q] = −Bsat

2Φ0

∑
p′q′

 (v [q]− v [q′])mpr,u [p′, q′]
(u [p]− u [p′])2 + (v [q]− v [q′])2

− (u [p]− u [p′])mpr,v [p′, q′]
(u [p]− u [p′])2 + (v [q]− v [q′])2

 · a2 (3.32)

= −Bsata
2

2Φ0

∑
p′q′

(q − q′)ms,u [p′, q′]− (p− p′)ms,v [p′, q′]
(p− p′)2 + (q − q′)2 . (3.33)

For a complete phase image, Eq. 3.33 has to be evaluated separately for every
pixel (p, q), which corresponds to Nu ×Nv integral calculations. It should be noted
that Eq. 3.33 differentiates between pixels in the phase image that are denoted by
unprimed indices (p, q) and pixels in the projected magnetisation distribution that
are denoted by primed indices (p′, q′). The sum iterates over the latter indices and
effectively collects the phase contributions of all Nu×Nv magnetised pixels at (p′, q′)
to the current pixel (p, q) in the phase image.
Therefore, a simple numerical algorithm scales as O (N4), which can become very
time-consuming for larger grids. Keimpema et al. have shown that, despite the
computational effort, this numerical approach results in excellent agreement with
analytical results for known object geometries [109]. Furthermore, it avoids arte-
facts, which are introduced by discretising in Fourier space according to Eq. 2.35.
These artefacts are explained in Section 3.2.3. As a result of the fact that both the
discretisation and the convolution are performed in real space, this simple numerical
algorithm is referred to as RDRC.

3.2.2. Existing Fourier space approach (FDFC)

An alternative numerical approach for calculating the magnetic contribution to the
phase shift uses discretisation in Fourier space. The starting point for this approach
is Eq. 2.35, in which discretisation takes the form

ϕ̃mag [p, q] = ıπB0

Φ0

m̃pr,u [p, q] · kv [q]− m̃pr,v [p, q] · ku [p]
k2
u [p] + k2

v [q] (3.34)

= ıB0a
2

2Φ0

m̃s,u [p, q] · f̂v [q]− m̃s,v [p, q] · f̂u [p]
f̂ 2
u [p] + f̂ 2

v [q]
. (3.35)
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Chapter 3 A forward model for the calculation of the magnetic phase

Because the magnetisation distribution is a real-valued quantity, the Fourier trans-
formed components m̃s,u [p, q] and m̃s,u [p, q] can be calculated using a real-valued
fast Fourier transform (RFFT). As a result, half of the computational cost can be
saved when compared to using a complex fast Fourier transformation (FFT). The
discrete frequencies that are used in the convolution kernels in Fourier space have
to reflect this choice. The frequencies are given by the expressions

ku [p] = 2πfu [p] = 2πfaf̂u [p] = 2π
a
· f̂u [p] (3.36)

kv [q] = 2πfv [q] = 2πfaf̂v [q] = 2π
a
· f̂v [q] (3.37)

f̂u [p] =

[
0, 1, ..., Nu

2 − 1, Nu
2

]
/Nu, Nu even[

0, 1, ..., Nu−1
2 − 1, Nu−1

2

]
/Nu, Nu odd

(3.38)

f̂v [p] =

[
0, 1, ..., Nv2 − 1, −Nv

2 , ...,−1
]
/Nv, Nv even[

0, 1, ..., Nv−1
2 ,−Nv−1

2 , ...,−1
]
/Nv, Nv odd.

(3.39)

In Eqs. 3.36–3.39, f̂u and f̂v are normalised frequencies with respect to the sampling
frequency fa, which is defined as the inverse of the grid spacing a. Eqs. 3.35–3.39
provide a numerical approach for calculating the magnetic phase shift based on
Fourier space discretisation. As a result of the use of a fast Fourier transformation,
the calculation scales as O (N2 logN), which is significantly faster than the RDRC
approach. Several software packages for simulating magnetic contributions to phase
images from magnetisation distributions (e.g., MALTS [120] and ATHLETICS [121])
implement this numerical scheme. As the kernels are discretised in Fourier space
and the convolution is also performed in Fourier space, this approach is referred to
as FDFC.

3.2.3. Artefacts introduced by discrete Fourier transformations

Despite the significantly faster computational time, the FDFC approach has several
shortcomings. The zero frequency contribution is undefined as a result of the diver-
gence of the convolution kernel k/ |k|2 at k = 0 (i.e., for the indices p = q = 0). The
average phase within the field of view (FOV) is therefore not known and is implicitly
set to zero. This missing information can lead to phase offset errors, which are in
general not difficult to deal with (see e.g. Section 5.4.1).
A more serious limitation results from the presence of wrap-around artefacts, which
are introduced by Fourier space discretisation (FD) of the kernel. The discretisation
of a continuous function, in its simplest form, is performed by multiplication with a
Dirac comb, which represents perfect sampling and is illustrated in Fig. 3.3. A Dirac
comb, which is also known as an “impulse train”, is a periodic distribution of Dirac
delta functions. It is a fixed point of the Fourier transformation, i.e., a transform of
a Dirac comb is also a Dirac comb, although the spacing between the delta functions
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Figure 3.3.: Schematic diagram illustrating the fact that perfect sampling of a function
f̃ (k) (marked in green) in Fourier space can be expressed as a multiplication with a
Dirac comb (marked in red), i.e., a distribution of Dirac delta functions with periodicity
ka. In real space, this multiplication corresponds to a convolution of the inverse Fourier
transformed function f (x) with a Dirac comb that has inverted periodic length 1/ka,
leading to a periodic repetition of f (x) in real space. If f (x) does not decay to zero
fast enough, then an overlap of these periodic distributions (marked by dashed green
lines) leads to aliasing artefacts. This illustration does not consider the finite size of an
image, which is taken into account separately, in the main text below.

is inverted after transformation. The transformation of a Dirac comb with a small
periodic length in one space has a large periodic length in the other space and vice
versa. If discretisation is performed in Fourier space, then the real space function
is convolved with a Dirac comb, resulting in periodic repetition of the kernel in real
space at its edges. The periodic length depends on the sampling interval (denoted
ka in Fig. 3.3) in Fourier space. The real space kernel does not decay to zero at
its borders (∝ r/ |r|3) and is also not band-limited in Fourier space (∝ k/ |k|2).
Therefore, discretisation in one space always leads to aliasing in the other space.

In the case of FD, periodic repetition of the kernel occurs in real space and contri-
butions from “phantom” kernels spill into the original kernel. After the convolution
with the magnetisation distribution, this situation leads to artefacts, which can be
described as periodic “phantom” magnetisation distributions, whose phase contri-
butions spill into the FOV. In the case of RD, corresponding artefacts can occur in
Fourier space, whereas the phase in real space is free of aliasing artefacts. RD im-
plicitly sets the magnetisation outside the FOV to zero, which is often much closer
to reality, e.g., for samples such as isolated nanoparticles. In contrast, FD assumes
periodicity in real space, which leads to the artefacts that are described above.

As a result of the fact that the kernel never decays completely to zero and is not
band-limited, the Nyquist–Shannon sampling theorem cannot be satisfied. There-
fore, aliasing artefacts cannot be avoided completely. However, their influence can
be minimised by zero-padding the magnetisation distribution in real space. Zero-
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padding increases the effective FOV by extending it with zeros at the borders until
a chosen size is reached. The result of zero-padding is a finer frequency sampling
in Fourier space, which equates to a decrease in the periodic length between the
delta peaks of the Dirac comb in Fourier space. The convolution kernels must be
discretised in Fourier space with the same Dirac comb to enable element-wise mul-
tiplication with the transformed magnetisation distribution. The finer frequency
sampling results in a larger periodic length in real space, i.e., in an increase in the
distance between the “phantom” distributions. Therefore, the kernel decays further
before reaching the edge of the FOV, which decreases the phase contributions of
overlapping repetitions at the kernel borders. Zero-padding of the magnetisation
implicitly assumes zero magnetisation in the padded regions and subsequent peri-
odic repetition due to FD of the convolution kernels. This assumption is a weaker
form of the assumption used in the RDRC approach that no magnetisation resides
outside the FOV. An increase in zero-padding can decrease wrap-around artefacts,
but it does not eliminate them completely. The use of an increased FOV also re-
quires more memory to store the kernels and magnetisation distributions and the
element-wise multiplication takes longer.

Figure 3.4.: Schematic diagram illustrating the definition of the zero-padding number η.
The example shows a FOV of 2×2 pixels, which is marked in blue. If no padding is used,
then the FOV stays the same size and the padding number is η = 0. For a padding
number of η = 1, the axes are extended by the length of the FOV in each direction
(4 × 4 pixels). A number of η = 2 adds twice the length of the FOV (6 × 6 pixels) and
so on.

In order to quantify the effect of the increase in FOV, a zero-padding number η is
introduced. A value of η = 0 means no padding is applied, a value of η = 1 means
that both axes are extended by the length of the original FOV (quadrupling its
area), a value of η = 2 means that both axes are extended by twice the length of
the original FOV, etc. (cf. Fig. 3.4 for an illustration).
A discrete approach must also cut off at some point, which is equivalent to multi-
plication by a windowing box function. Windowing of the kernel by a box function
in Fourier space corresponds to convolution by a cardinal sine function (sinc) in
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real space and vice versa, with a broader box resulting in a narrower sinc function.
Higher frequencies are then cut off, leading to ringing due to the Gibbs phenomenon
at sharp boundaries and edges. The highest available frequency is the Nyquist
frequency, which is given by half of the sampling frequency fa = 1

a
, which is in

turn determined by the inverse of the grid spacing a in real space. Gibbs ringing
can be reduced by choosing a finer grid spacing and thus including higher frequen-
cies in Fourier space. If discretisation takes place in real space instead of Fourier
space, then windowing results in frequency-domain ripples that are similar to Gibbs
ringing. However, because only the real space phase image is of interest here, the
artefacts in Fourier space can be neglected without further consequences.

All of these effects are summarised in Tab. 3.1. In the following section, a new
approach for magnetic phase calculation is introduced. The new approach makes
use of discretisation in real space and circumvents the artefacts that are linked to
Fourier space discretisation, while maintaining high computational speed.

Table 3.1.: Overview of artefacts resulting from discretisation and windowing in real
space and in Fourier space.

Operation Resulting operation and artefacts in target space
Windowing with a box-
function in real space

Convolution with a sinc function in Fourier space:
frequency-domain ripple

Windowing with a box-
function in Fourier space

Convolution with a sinc function in real space:
Gibbs phenomenon / ringing in real space

Discretisation
in real space

Convolution with a Dirac comb in Fourier space:
aliasing in the frequency domain

Discretisation
in Fourier space

Convolution with a Dirac comb in real space:
periodic repetition in real space

3.2.4. Introduction of a novel and optimised approach (RDFC)

Despite the accuracy of the RDRC approach described by Eq. 3.33, the scaling as
O (N4) makes its practical use unfeasible for larger grids. In contrast, the FDFC
approach suffers from a range of artefacts as a result of discretisation in Fourier
space. In this section, a novel approach that combines the benefits of both ap-
proaches is introduced. The approach is termed RDFC, as it combines the accuracy
of real space discretisation (RD) with the fast computational speed and scaling as
O (N2 log (N)) of Fourier space convolution (FC). The starting point is real space
discretisation. However, it is approached from a different perspective than for the
RDRC approach, thereby allowing for several optimisations, which are used to speed
up the calculation without loss of accuracy.

37



Chapter 3 A forward model for the calculation of the magnetic phase

In Eq. 3.33, the collective magnetic phase shift for each pixel (p, q) in a phase
image ϕmag [p, q] is calculated sequentially by integrating the contributions of all
magnetised pixels (p′, q′) in the FOV to each pixel (p, q). Instead, the order can be
reversed. First, the phase contribution of each magnetised pixel (p′, q′) to the whole
FOV can be calculated. These contributions are denoted ϕp′q′ [p, q] and are added
up to form the collective magnetic phase shift ϕmag [p, q]. The magnetic phase shift
can then be expressed as a sum over the contributions of all magnetised pixels in
the form

ϕmag [p, q] =
∑
p′q′

ϕp′q′ [p, q] (3.40)

=
∑
p′q′

ϕu [p− p′, q − q′] ·ms,u [p′, q′]

+
∑
p′q′

ϕv [p− p′, q − q′] ·ms,v [p′, q′] (3.41)

= (ms,u ∗ ϕu) [p, q] + (ms,v ∗ ϕv) [p, q] , (3.42)

where ϕmag, ϕp′q′ and ϕu/v are all arrays of size Nu × Nv. The contribution to the
phase of a specific magnetised pixel at position (p′, q′) can be expressed as the linear
combination

ϕp′q′ [p, q] = ϕu [p− p′, q − q′] ·ms,u [p′, q′] + ϕv [p− p′, q − q′] ·ms,v [p′, q′] .
(3.43)

The phase contribution components ϕu [p, q] and ϕv [p, q] can be identified from
Eq. 3.33 as the convolution kernels and can be interpreted as the phase shifts of single
magnetic dipoles that are normalised relative to Msat and oriented perpendicular to
each other. With Cmag = −Bsata2

2φ0
, the kernels ϕu/v [p, q] can be expressed in the form

ϕu [p, q] ≡ Cmag
q

p2 + q2 , ϕv [p, q] ≡ Cmag
−p

p2 + q2 . (3.44)

In order to avoid the problem that the kernels are not well defined at p = q = 0,
they are interpreted here as two orientations of homogeneously magnetised discs, for
which the analytical solution was presented in Section 2.2. The discretised expression
for Eq. 2.20 is given by:

ϕ◦ [p, q, β] =
−πt

Bsat
2Φ0

a (q cos (β)− p sin (β)) , p2 + q2 ≤ R

−πtBsat
2Φ0

R2

a
(q cos(β)−p sin(β))

p2+q2 , p2 + q2 > R.
(3.45)

The thickness t of the disc is set to the size of a single pixel (t = a). Each pixel on
the two-dimensional grid is represented by such a disc with a base area of πR2 and
the radius R of the disc is chosen so that the area Apx and thus the magnetisation
is preserved:

Apx ≡ a2 != πR2 ⇔ R = a√
π
< a. (3.46)
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The centres of neighbouring pixels are separated by a distance of at least a > R.
The condition p2 + q2 ≤ R of the first part of Eq. 3.45 is therefore only fulfilled for
the centre of the homogeneously magnetised disc at p = q = 0, for which the phase
is zero. The second part of Eq. 3.45 then describes the contribution of the pixel at
position (p, q) to every other pixel (p′, q′) except to itself, leading to the expression

ϕ◦ [p, q, β] =
0, p = q = 0
Cmag

(q cos(β)−p sin(β))
p2+q2 else.

(3.47)

For orientations of the homogeneously magnetised discs along the u or v axes and for
all pixels except p = q = 0 where the phase is zero, Eq. 3.44 is recovered, including
the resolved discontinuity:

ϕu [p, q] ≡ ϕ◦ [p, q, β = 0] = Cmag
q

p2 + q2 (3.48)

ϕv [p, q] ≡ ϕ◦ [p, q, β = π/2] = Cmag
−p

p2 + q2 . (3.49)

= 𝑚s,𝑢 𝑝′, 𝑞′ ⋅  + 𝑚s,𝑣 𝑝′, 𝑞′ ⋅

𝜑𝑝′𝑞′ 𝑝, 𝑞 = 𝑚s,𝑢 𝑝′, 𝑞′ ⋅ 𝜑𝑢 𝑝 − 𝑝′, 𝑞 − 𝑞′ + 𝑚s,𝑣 𝑝′, 𝑞′ ⋅ 𝜑𝑣 𝑝 − 𝑝′, 𝑞 − 𝑞′

Figure 3.5.: Schematic diagram illustrating the magnetic phase contribution of each mag-
netised pixel in the RDFC approach. The contribution of each pixel can be expressed
as a linear combination of two convolution kernels (oriented in the u and v directions),
with the projected relative magnetisation distribution components as coefficients.

The representation of a single magnetised pixel by a disc is further illustrated in
Fig. 3.5. Both convolution kernels can be pre-computed in advance and stored in
look-up arrays. The magnetisation components ms,u and ms,v are arrays of size
Nu × Nv. The lookup arrays of the convolution kernels must therefore have sizes
(2Nu − 1) × (2Nv − 1), so that the appropriate sub-arrays for each position of a
magnetised pixel can be used. These sub-arrays are illustrated in Fig. 3.6.
Pre-calculation of the look-up arrays and iterating over the contributing magnetised
pixels instead of the affected pixels in the phase image saves calculation time and
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Figure 3.6.: Schematic diagram illustrating the approach used to determine the u com-
ponent of ϕmag from a look-up array (left side). The look-up array must have size
(2Nu − 1) × (2Nv − 1). Different “cut-out” sub-arrays are used, depending on the po-
sition of the magnetised pixel, as shown for two pixels at different positions. The
sub-arrays are chosen so that the centre of the convolution kernel coincides with the
position of the current magnetised pixel.

memory space. However, it does not change the overall scaling as O (N4). Perform-
ing the convolutions in Eq. 3.42 in Fourier space (FC), where they take the form of
simple multiplications, reduces the computational complexity to O (N2 log (N)). In
order to perform these element-wise multiplications, the magnetisation components
and the convolution kernels must have the same size. This criterion can be satisfied
by applying zero-padding at their borders until their sizes match. As illustrated in
Fig. 3.7, all of the involved arrays are padded to a size of 2Nu × 2Nv pixels10.
In the new approach, both the magnetisation distributions ms,u [p, q] and ms,v [p, q]
and the convolution kernels ϕu/v [p, q] are discretised in real space, instead of just
the magnetisation distribution, as in the FDFC approach. The use of real space
discretisation avoids the artefacts that are associated with discretisation in Fourier
space, as discussed in Section 3.2.2. Zero-padding is applied in both approaches.
However, in the FDFC approach it is used to diminish the Fourier-space-related
artefacts, without eliminating them completely. In the new approach, it is just used
to enable element-wise multiplication by equalizing the array sizes. Therefore, in
contrast to the FDFC approach, an upper zero-padding boundary of 2Nu × 2Nv

exists, for which the solution is free of the aforementioned artefacts.
In summary, the calculation of a magnetic phase image using the novel approach
can be described in terms of a linear combination of two Fourier space convolutions,
where the tilde represents Fourier transformed quantities:

ϕmag [p, q] = F−1
2 {m̃s,u · ϕ̃u} [p, q] + F−1

2 {m̃s,v · ϕ̃v} [p, q] . (3.50)
10FFT algorithms usually operate best on arrays with dimensions that are powers of two. If Nu

and Nv were already chosen accordingly, then 2Nu and 2Nv automatically satisfy this criterion.
Otherwise, additional zero-padding to the next power of two may be necessary.
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Figure 3.7.: Schematic diagram illustrating the zero-padding procedure used for the
RDFC approach. The example shows a FOV of Nu × Nv = 3 × 3 pixels, marked in
blue on the right. The convolution kernel of the u component is shown on the left, has
size 2Nu − 1 × 2Nv − 1 = 5 × 5 pixels and is also marked in blue. Both arrays must
be zero-padded so that they have the same size 2Nu × 2Nv = 6 × 6 pixels, in order to
allow element-wise array-multiplications. The even axis length is chosen for faster FFT
calculations. Zero-padding is indicated by white pixels. For the kernel, this procedure
is very computationally efficient as only one pixel has to be added to each axis.

The vectorised form of the two terms in Eq. 3.50 corresponds to the two matrix-
vector products Qb,uxpr,b,u and Qb,vxpr,b,v in Eq. 3.17. Each column of Qb,u and Qb,v

consists of a vectorised sub-array of the convolution kernel ϕu or ϕv, as described
in Fig. 3.6. From left to right, the columns correspond to the entries of xpr,b,u and
xpr,b,v, respectively. The entire procedure is illustrated11 in Fig. 3.8.
As the convolution kernel does not decay completely to zero, the matrices Qb,u ∈
RNuNv×NuNv and Qb,v ∈ RNuNv×NuNv and therefore Qb are very dense. The high
density of Qb prohibits the use of sparse matrix operations, while its large size
makes it unfeasible for it to be set up and stored in memory efficiently. However,
during the reconstruction process, only the product of Qb with a vector and never
the full matrix itself is required. Despite its high density, the information in Qb

in fact has a high level of redundancy. The RDFC approach exploits this fact by
only keeping the significantly smaller convolution kernels ϕu and ϕv, or rather their
Fourier transforms, in memory. The convolutions are carried out in Fourier space by
using a sophisticated FFT implementation12 (cf. Fig. 3.9 for an illustration). The
workflow that describes the action of Qb as an operator on the input vector xpr,b
can be broken down into the following steps:

11The pixel-by-pixel description of the RDRC algorithm (cf. Section 3.2.1) can also be illustrated
using Fig. 3.8. For a chosen pixel (p, q), Eq. 3.33 corresponds to one row of Qb. Each row is
calculated on demand, without ever setting up the full matrix Qb completely.

12e.g., the FFTW library (“The Fastest Fourier Transform of the West” [122]), which was used in
this thesis.
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𝑦𝑏 Q𝑏 𝑥pr,𝑏

𝜑𝑢 𝜑𝑣

Figure 3.8.: Schematic diagram illustrating the magnetic phase mapping process for a
3× 3 pixel magnetisation distribution by full matrix multiplication with Qb. Equa-
tion 3.17 is represented at the top. The matrix Qb and the vector xpr,b are both split
into their u and v parts, as indicated by bold black lines. The sub-matrices Qb,u and
Qb,v represent the convolution with the kernels ϕu and ϕv, respectively. xpr,b is the vec-
torised form (cf. Eq. 3.6) of the projected magnetisation distribution (bottom right). In
this case, it has one pixel magnetised in the u direction (red) and one in the v direction
(green). Two columns of Qb,u are coloured. They show the relevant sub-arrays of the
convolution kernels, which are used for the two magnetised pixels. The resulting vector
yb can be reshaped to the resulting magnetic phase image (bottom left).
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1. The input vector xpr,b is separated into its components xpr,b,u and xpr,b,u.
2. Both components are reshaped into two-dimensional arrays ms,b,u and ms,b,u

of size Nu ×Nv and zero-padded to size 2Nu × 2Nv.
3. ms,b,u and ms,b,u are Fourier transformed using an RFFT algorithm13.
4. They are multiplied by the pre-computed Fourier transforms of the convolution

kernels ϕu and ϕv.
5. The results of the two products are transformed back into real space.
6. The zero-padding is inverted by cutting out14 a sub-array of size Nu ×Nv.
7. Both results are added together to calculate a phase image ϕmag,b.
8. The phase image ϕmag,b is vectorised to obtain the measurement vector yb.

For the reconstruction process, the adjoint operator QT
b , as defined in Eq. 3.27,

is needed in addition to Qb. The discrete Fourier transformation employed in Qb

is a unitary linear operator, i.e., its adjoint is equal to its inverse. Just as for Qb,
the description of QT

b as an operator improves the performance of the calculation
significantly, in comparison to setting up the full matrix. The workflow of QT

b can be
broken down into the following steps (cf. Fig. 3.10 for an illustration of the process):

1. The input vector for adjoint phase mapping is reshaped into an array of size
Nu ×Nv and zero-padded to size 2Nu × 2Nv.

2. This array is Fourier transformed and multiplied by the complex conjugates
of the Fourier transforms of the convolution kernels ϕu and ϕv.

3. The resulting arrays are then transformed back into real space and sub-arrays
of shape Nu ×Nv are extracted.

4. These arrays are combined to obtain the u and v components of a two-
dimensional vector field, which is vectorised in the last step.

13The RFFT algorithm can be used because ms,b,u and ms,b,u only contain real values, which
results in an improvement in speed of a factor of two.

14Due to the kernel centre being at pixel [Nu − 1, Nv − 1] instead of at the origin, the cut-out
region has to be shifted to [Nu − 1 : 2Nu − 1, Nu − 1 : 2Nv − 1].
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𝜑𝑢 𝜑𝑣 𝑦𝑏

Figure 3.9.: Schematic diagram illustrating the magnetic phase mapping process for a
3 × 3 pixel magnetisation distribution using Fourier space convolution. Only the real
parts of imaginary numbers are shown, where applicable. The left side shows the input
vector xpr,b for a single image, which is split into its two components xpr,b,u and xpr,b,v.
These components are reshaped into two-dimensional arrays, then zero-padded (bold
outline) and Fourier transformed by an RFFT. They are then multiplied by Fourier
transforms of the pre-computed convolution kernels. Both products are converted back
to real space by an IRFFT, in order to recover the complete phase contribution of each
magnetisation component. Appropriate sub-arrays of size Nu × Nv are extracted to
reverse the zero-padding. The sub-arrays are added to calculate the magnetic phase
image, which is then vectorised into the measurement vector yb (shown on the right).
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Figure 3.10.: Schematic diagram illustrating the adjoint magnetic phase mapping process
using Fourier space convolution. The phase input shown is the result from Fig. 3.9.
Again, only the real parts of imaginary numbers are shown, where applicable. The
input vector on the left is reshaped into an array of size Nu × Nv. This array and
the two convolution kernels are zero-padded. Tracing back the steps of the procedure
described in Fig. 3.9, the input array is placed into a zero array of size 2Nu × 2Nv at
position [Nu − 1 : 2Nu − 1, Nu − 1 : 2Nv − 1]. The input array is Fourier transformed
and multiplied by the complex conjugates of the Fourier transforms of the convolution
kernels ϕu and ϕv. Both convolution products are then transformed back into real
space. Before proceeding, sub-arrays [0 : Nu, 0 : Nv] are extracted (shown using bold
outlines), in order to reverse the zero-padding. These two sub-arrays are combined as
the u and v components of a two-dimensional vector field, which is vectorised in a final
step (shown on the right).
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3.3. Comparison of the RDFC and FDFC approaches

In this section, the RDFC and FDFC approaches for magnetic phase image calcula-
tion are evaluated with regard to computational speed and accuracy by comparing
their results with known solutions for simple geometrical objects15. The RDRC
approach is not addressed here, because it was already compared with the FDFC
approach by Keimpema et al. [109]. Furthermore, the FDFC approach is currently
more prevalent due to its significantly faster scaling. For a comparison of the two
algorithms, two different test magnetisation distributions for which analytical solu-
tions are available are considered:

• A homogeneously magnetised disc in the xy plane with its magnetisation dir-
ected along the positive y axis, corresponding to an angle of π/2 from the
x axis (cf. Eq. 2.20).

• A disc magnetised in a counter-clockwise vortex state, with the centre of the
vortex corresponding to the centre of the disc (cf. Eq. 2.28).

Each disc has a radius of 32 nm, a thickness of 8 nm and is placed in a volume of
size 128 × 128 × 16 nm3, with the z axis being the symmetry axis. The resulting
grid spacing is a = 1nm and the saturation magnetic induction is Bsat = 1T. Slices
through the xy plane at z = 0 are shown in Fig. 3.11. The z axis is also the
projection axis. Therefore, the coordinate axes u and v of the projection coincide
with the x and y axes of the three-dimensional distribution.

Figure 3.12 shows the analytical solutions for ϕmag for the two test distributions
(Figs. 3.12a and 3.12c) and the corresponding holographic contour maps (Figs. 3.12b
and 3.12d). The contour maps are generated by taking the cosine of the amplified
phase ϕmag, in this case by a gain factor of 100. The colours that are superimposed
on the magnetic induction maps are determined from the gradient of ϕmag. This
gradient is an indicator for the direction of the projected in-plane magnetic flux
density. The chosen colour scheme, which is used for holographic contour maps and
vector plots, is derived in the appendix in Section A.5.

The two test distributions have distinctly different magnetic vector potentials A
and magnetic contributions to the phase shift. Whereas the vortex state generates
no vector potential outside the disc, A decreases slowly outside the homogeneously
magnetised disc without reaching zero at the edge of the FOV. In both distributions,
the disc occupies only a quarter of the FOV, so that the phase outside the discs due
to the different stray fields can be assessed for both numerical approaches.

15All of the simulation scripts that are used in these sections were written in the Python program-
ming language (version 3.5) and executed on a Lenovo T430 Thinkpad with 16GB RAM, Intel
Core i7-3520M CPU on Windows 64bit OS.
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30 nm

(a)

30 nm

(b)

Figure 3.11.: Slice in the xy plane through the centres of the magnetisation distributions
of discs that are (a) homogeneously magnetised and (b) support a magnetic vortex state.
For visualisation purposes, each arrow represents an average over an area of 2× 2 nm2.
The discs each have a radius of 32 nm, a thickness of 8 nm and are placed in a volume
of size 128× 128× 16 nm3. The magnetisation direction is colour-coded according to a
colour scheme that is derived in the appendix in Section A.5.

3.3.1. Assessment of the FDFC approach

In order to assess the results of the FDFC approach described by Eq. 3.35, they are
compared with “true” analytical solutions, which are shown in Fig. 3.12. For this
purpose, a line profile of ϕmag through the centre of each disc is extracted for the
analytical solution and for numerical solutions calculated for different grid spacings
a (cf. [71]). The position of the line profile is marked by a red dashed line in the
phase images shown in Fig. 3.12. The resulting comparison is shown in Fig. 3.13.

To assess the accuracy of the FDFC approach across the entire FOV, the root
mean square (RMS) value ∆ϕRMS of the pixel-wise difference between the numerical
results and the analytical solution is evaluated. The resulting difference images and
∆ϕRMS values are shown for both test objects in Fig. 3.14. The FDFC approach
assumes periodic repetition of each magnetisation distribution, thereby introducing
the artefacts that were discussed in Section 3.2.3. These artefacts influence ϕmag, as
shown in Figs. 3.13 and 3.14.

For the homogeneously magnetised disc, the magnetic vector potential A and the
magnetic contribution to the phase ϕmag are not zero at the edges of the FOV. The
phase therefore “overlaps” onto the other side of the image, resulting in a sloped
difference between the numerical and analytical solutions (cf. Figs. 3.13a and 3.14a).
Due to the symmetry of the image, the phase at the edges of the FOV becomes zero.
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Figure 3.12.: Analytical solutions for ϕmag for discs that are (a) homogeneously mag-
netised and (c) support a magnetic vortex state. (b) and (d) show the corresponding
magnetic induction maps generated by taking the cosine of the amplified phase ϕmag
(gain factor: 100). The red dashed lines in (a) and (c) indicate the positions to extract
line profiles of the phase, which are shown in Figs. 3.13 and 3.16. The FOV used for
each calculation is 128× 128 nm2.
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Figure 3.13.: Line profiles of ϕmag obtained from Fourier space FDFC calculations per-
formed for discs that are (a, c) homogeneously magnetised and (b, d) support a mag-
netic vortex state for different sampling grid spacings, as well as for the analytical
solution for each disc. (a) and (b) are calculated for an unpadded FOV, while (c) and
(d) are calculated for a zero-padding number of η = 10. The insets show magnified re-
gions, in order to better illustrate the behaviours of the numerical solutions for different
grid spacings a at the borders (c) or the centres (d) of the discs. The number of pixels
along the 128 nm length of the image is stated in parentheses for each grid spacing.
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Figure 3.14.: Difference between FDFC and analytical solutions for ϕmag for discs that
are (a, c) homogeneously magnetised and (b, d) support a magnetic vortex state. The
grid spacing is a = 1nm. (a) and (b) are calculated for an unpadded FOV, while
(c) and (d) are calculated for a zero-padding number of η = 10. The colour scale is
not linear and is used to emphasise different magnitudes of error. The maximum error
is much higher for the unpadded case in (a) and (b). The annotation at the top of
each image gives the RMS difference ∆ϕRMS of the pixel-wise difference between the
numerical result and the analytical solution for each calculation.
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Zero-padding is commonly used to reduce such artefacts, as discussed in Section 3.2.2
(cf. Fig. 3.4 for an illustration). The amount of zero-padding needed depends on
the fraction of the FOV that is occupied by the magnetic object and on the decay
behaviour of A outside the object, which is often not known beforehand. The extent
of zero-padding should be chosen so that A is sufficiently small at the edges of the
padded FOV. Figures 3.13c and 3.14c show the influence of a zero-padding number
of η = 10 on the phase calculated using the FDFC approach. The aliasing artefacts
are suppressed and the underlying slope vanishes.

For the vortex state, the magnetic vector potential A is zero outside the magnet-
isation distribution and therefore no phase overlap occurs (cf. Fig. 3.13b). As
mentioned in Section 3.2.3, the zero frequency coefficient is implicitly set to zero
for the FDFC approach. The zero frequency coefficient corresponds to the average
value of the calculated phase image, which can be interpreted as a global phase
offset. Implicitly pinning this value to zero means that a phase image calculated
using the FDFC approach is phase shifted relative to the analytical solution, as it
must always have an average value of zero. For the homogeneously magnetised disc,
whose phase is symmetric about zero, no artefact is introduced. In contrast, the
analytical solution for the magnetic phase of the vortex disc is positive across the
entire FOV. This situation results in a negative global offset, which dominates the
RMS difference ∆ϕRMS, as can be seen in Fig. 3.14b. It should be noted that, in
contrast to aliasing artefacts, this global offset can usually be corrected after the
phase is calculated. Zero-padding can be used to reduce the influence of this arte-
fact, as can be seen in Fig. 3.14d for a zero-padding number of η = 10. Padding the
magnetisation distribution in real space with empty space brings the average phase
asymptotically closer to zero, which is in accordance with the implicit assumption
of the FDFC approach, therefore reducing ∆ϕRMS. The only remaining artefact is
Gibbs ringing at the edges of the disc. The Gibbs ringing is parallel to the grid
axes, as a result of the windowing of the convolution kernels in Fourier space (cf.
Section 3.2.3).

In Fig. 3.15, the RMS difference ∆ϕRMS and the computation time tcomp are assessed
for both test distributions for a pixel size of a = 1nm and a FOV of 128 × 128
pixels, as a function of the padding number η. Figure 3.15b shows that zero-padding
drastically increases the computation time. Furthermore, the increasing grid size can
also cause memory problems if the original FOV was already large. Figure 3.15a
shows the development of ∆ϕRMS with increasing zero-padding for both objects. For
the calculation of ∆ϕRMS, only pixels in the original FOV and not those added by
zero-padding are considered. For both distributions, the Fourier-specific artefacts
and therefore ∆ϕRMS decrease rapidly with increased zero-padding. The trade-off
in both cases is a significant increase in computation time.
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Figure 3.15.: (a) Dependence of the RMS difference ∆ϕRMS on zero-padding number
η for the FDFC approach for the homogeneously magnetised disc (blue triangles and
dashed line) and the disc containing a magnetic vortex state (green circles and solid
line). (b) Corresponding computation times tcomp, which are virtually identical for
both objects.

3.3.2. Assessment of the RDFC approach

The same assessments were performed for the RDFC approach described in Sec-
tion 3.2.4. The resulting comparison is shown in Figs. 3.16 and 3.17. The RDFC
approach matches the analytical solutions to a very high degree, without being in-
fluenced by Fourier-related artefacts. For finer grid spacings, even the sharp peaks
in the phase at the edges of the homogeneously magnetised disc and the centre of
the vortex disc are reproduced (see the insets in Fig. 3.16).

The RMS difference ∆ϕRMS is shown for both test objects in Fig. 3.17 for a grid
spacing a of 1 nm and a field of view of 128×128 pixels. The line profiles in Fig. 3.16
show that the grid spacing has to be sufficiently small to accurately describe regions
such as the boundaries of a magnetised object or points where the magnetisation
direction changes rapidly (e.g., at the centre of a magnetic vortex). The RMS
difference ∆ϕRMS for both objects is approximately 0.2mrad, which is 3 orders
of magnitude smaller than the maximum phase shift shown in Fig. 3.12. This
assessment further confirms the accuracy of the RDFC approach.

3.3.3. RDFC and FDFC comparison for different grid spacings

In this section, the RDFC and FDFC approaches are compared for different grid
sizes, with regard to both computation time and accuracy. Four different zero-
padding numbers η are used for the FDFC approach and are listed in Tab. 3.2a.
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Figure 3.16.: Line profiles of ϕmag obtained from RDFC calculations performed for discs
that are (a) homogeneously magnetised and (b) support a vortex state for different
grid spacings, as well as for the analytical solution for each disc. The insets show
magnified regions, in order to better illustrate the behaviours of the numerical solutions
for different grid spacings a at the border (a) and the centre (b) of the disc. The
number of pixels along the 128 nm length of the image is stated in parentheses for each
grid spacing.
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Figure 3.17.: Difference between RDFC and analytical solutions for ϕmag for discs that
are (a) homogeneously magnetised and (b) support a magnetic vortex state. The grid
spacing is a = 1nm. The colour scale is not linear and is used to emphasise different
magnitudes of error. The annotation at the top of each image gives the RMS difference
∆ϕRMS of the pixel-wise difference between the numerical result and the analytical
solution for each calculation.
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Each value guarantees that the dimensions of the padded field of view are a power of
two, which is beneficial for the FFT computation for both approaches. At the same
time, the grid spacing a is varied, starting from a = 0.5 nm and doubling in steps up
to a value of a = 4nm. The corresponding grid sizes range from 256×256×32 voxels
to 32×32×4 voxels. An overview of the calculations is given in Tab. 3.2b. As before,
the projection direction is always parallel to the z axis.

Table 3.2.: (a) Overview of the different zero-padding numbers η that are used in the
following discussions and the resulting FOV, relative to a starting image size of N ×N
pixels. (b) Overview of the different grid spacings a that are used and the corresponding
grid size, which is chosen so that the three-dimensional volume is fixed to be 128×128×
64 nm3.

(a) Variation of zero-padding η

Zero-padding η Field of view
0 N ×N
1 2N × 2N
3 4N × 4N
7 8N × 8N

(b) Variation of grid spacing a

Grid spacing a Grid size
0.5 nm 256× 256× 32 voxels
1 nm 128× 128× 16 voxels
2 nm 64× 64× 8 voxels
4 nm 32× 32× 4 voxels

The results of the comparison are shown in Fig. 3.18 on a logarithmic scale in the
form of plots of computation time tcomp (Figs. 3.18a and 3.18b) and RMS difference
∆ϕRMS (Figs. 3.18c and 3.18d). Both quantities are plotted as a function of grid
spacing a.
The results indicate that the Fourier space method without zero-padding is the
fastest numerical approach because the convolution operates on arrays of size N×N .
For a zero-padding number of η = 1, the convolution operates on a FOV of size
2N × 2N , which is also the size that is used for the RDFC approach. As a result of
the fact that the RDFC approach pre-computes the convolution kernels, it is closer
to the FDFC approach with η = 0 than to η = 1, with regard to the computational
speed. Furthermore, it is significantly faster than the FDFC approach for higher
zero-padding numbers.
For the homogeneously magnetised disc, ∆ϕRMS for the FDFC approach is domin-
ated by aliasing artefacts resulting from the periodic repetition in real space. The
RMS difference ∆ϕRMS decreases with increasing zero-padding and only depends
slightly on grid size for higher values of η, which increasingly suppress aliasing arte-
facts. ∆ϕRMS is determined by both η and the distance of the object from the
edge of the field of view. For the RDFC approach, ∆ϕRMS is many orders of mag-
nitudes lower than for the FDFC approach because it does not suffer from such
artefacts. The primary factor that determines the accuracy of the RDFC approach,
as expressed by the RMS difference ∆ϕRMS, is the grid spacing and therefore the
sampling density of the discretisation. For the disc that supports a magnetic vortex,
similar results are obtained. However, the dominating artefact for this distribution
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Figure 3.18.: (a) Computation time tcomp plotted for the different approaches for the
homogeneously magnetised disc as a function of grid spacing a. (c) RMS difference
∆ϕRMS plotted for the different approaches. (b) and (d) show corresponding plots for
the vortex disc. FDFC results are shown using dashed lines and in blue. RDFC results
are shown using solid lines and in red.
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when using the FDFC approach is not aliasing due to periodic repetition, but the
missing zero frequency, which results in a phase offset. Aliasing does not occur
because the periodic distributions outside the FOV produce no stray fields and are
therefore disjoint.
The two test distributions represent different behaviours that a magnetisation dis-
tribution can exhibit. The difference between these behaviours is similar in some
respects to the Helmholtz decomposition, which separates a vector field into a curl-
free and a divergence-free part. Whereas homogeneously magnetised objects have
slowly decaying stray fields that produce a phase shift outside the object, vortex
states produce more localised phase shift distributions. In an experimental sample
of unknown magnetic configuration, in general both contributions may be expec-
ted. The FDFC approach is prone to Fourier-specific artefacts, which can only
be circumvented by using extensive zero-padding. In contrast, the novel RDFC
approach produces very accurate phase images for arbitrary magnetisation distribu-
tions without having to trade off computational speed, as in the RDRC approach.
This makes the RDFC approach the ideal implementation for the phase mapping
matrix Qb in the forward model for an MBIR algorithm, for which accuracy and
computational speed are essential.

3.4. Summary

In this chapter, a forward model for calculating the magnetic contribution to the
electron optical phase shift from a three-dimensional magnetisation distributions has
been developed and assessed. The forward model was initially expressed as a matrix
equation. To this end, the involved quantities had to be discretised and vectorised.
The nested nature of the system matrix F was explored, resulting in a separation
of the forward model into sub-problems for each phase image. Each of these sub-
problems was split further into a projection matrix Pb and a phase mapping matrix
Qb. An optimised implementation of the projection matrix was realised by using
sparse matrix calculations. In contrast, the dense nature of the phase mapping
matrix required a more complex approach. Existing phase mapping strategies were
then explored. It was established that the RDRC (“real space discretisation, real
space convolution”) approach calculates phase images that are in accordance with
analytical solutions, but is very slow and scales as O (N4). The FDFC (“Fourier
space discretisation, Fourier space convolution”) approach is significantly faster and
scales as O (N2 logN). However, as a result of the implicit assumption of periodic
repetition of the magnetisation distribution at the borders of the FOV, it exhibits
deviations from analytical results in the case of slowly decaying fields outside a
magnetised object. In order to combine the advantages of both approaches, an
optimised phase mapping strategy was proposed. The resulting RDFC approach is
based on convolution kernels that are discretised in real space and pre-calculated
from a known analytical solution for a homogeneously magnetised disc. The RDFC
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3.4 Summary

approach was compared with the currently prevalent FDFC approach and was shown
to minimise artefacts, while maximising computational speed. Table 3.3 shows an
overview of all three approaches, their scaling and their assumptions about the
magnetisation distribution. In the next chapter, the optimised forward model is
employed in an MBIR algorithm to reconstruct magnetisation distributions from
magnetic phase images.

Table 3.3.: Comparison of the different phase mapping approaches, with regard to the
assumption that is implicitly made about the magnetisation distribution and the scaling
with axis length N .

Approach Implicit assumption Scaling
RDRC No magnetisation outside the FOV O (N4)
FDFC Periodic magnetisation outside the FOV O (N2 logN)
RDFC No magnetisation outside the FOV O (N2 logN)
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4. Solving the inverse problem of
magnetisation retrieval

In this chapter, the retrieval of a magnetisation distribution M from one or more
magnetic phase images, i.e., the inverse problem to the forward model, is discussed.
The system matrix F ∈ Rm×n of the forward model with n = 3NxNyNz retrieval
targets and m = NbNuNv measurements is, in general, rank-deficient (i.e., singular)
and a simple inversion of the form

x = F−1y (4.1)

is not possible. F is most likely not a square matrix (i.e., n = m), because the
number of images Nb is generally a lot smaller than any of the spatial dimensions
(Nx, Ny or Nz). In an underdetermined system with more retrieval targets than
individual measurements (n > m), the system matrix F is rank deficient and the
resulting linear equation system (LES)

y = Fx (4.2)

is not uniquely solvable.
The use of a coarser grid spacing a reduces the number of voxels and can potentially
result in Nb being larger than Nx, Ny or Nz. In this way, an overdetermined situation
involving fewer unknowns than measurements (n < m) can be ensured. However, if
a coarse grid is used, then information about magnetic structures that have higher
spatial frequencies cannot be reconstructed.
In the rare case of a square matrix F, i.e., n = m, the invertibility of F is still not
guaranteed, because a non-trivial null space null (F) of F can exist. The null space
of a matrix is defined by the expression

null (F) = {x ∈ Rn|Fx = 0} . (4.3)

Here, it describes all magnetisation state vectors1 x that map onto the zero meas-
urement vector y = 0, i.e., they produce no magnetic phase. If the null space is
non-trivial, then there exist magnetisation states x ∈ null (F) that are “invisible” to
the measurement technique of off-axis electron holography and to the corresponding

1If the null space only contains the zero vector, then it is referred to as trivial. If it contains
additional vectors, it is called non-trivial.
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Chapter 4 Solving the inverse problem of magnetisation retrieval

forward model. An arbitrary linear combination of such states could then be added
to a magnetisation distribution without changing the resulting magnetic contribu-
tion to the phase. The solution to the inverse problem is then not unique and the
rank of F is decreased according to the rank-nullity theorem

rank (F) = n− rank (null (F)) . (4.4)

The term rank (null (F)), the so-called nullity, denotes the dimension of the null
space null (F). An illustration of the null space is presented in Fig. 4.1.

𝑭

𝑭 𝑭

𝟎 𝟎

null 𝑭 range 𝑭

Figure 4.1.: null space and range (or image) of the forward model described by the system
matrix F. Here, the domain of F is the set of all magnetisation state vectors x, while
the codomain is the set of all possible measurement vectors y. The null space null (F)
is the set of all magnetisation states x that are mapped onto the zero vector y = 0,
i.e., no phase is produced. The range (F) is the image of the forward model. It contains
all measurement vectors y that can be produced by all magnetisation state vectors x.
Not all measurements y in the codomain necessarily have to be attainable by F. For
example, if they are noisy, they can lie outside of range (F). No magnetisation state x
then exists, which would be able to produce the corresponding phase images.

Furthermore, calculation of the magnetic contribution to the electron optical phase
shift for a given magnetisation distribution involves the calculation of projection and
convolution integrals. The latter integrals act as smoothing low-pass filters. The
inverse to an integral is a derivative which acts as a high-pass filter and is sensitive
to errors, effectively amplifying noise in the data. Whenever a forward model has
smoothing properties, the appearance of strong oscillations resulting from small data
perturbations with high frequencies is to be expected in the solution to the inverse
problem [115]. An error-affected measurement y could lie outside the image2 of F.
No magnetisation state x with {x ∈ Rn|Fx = y} could produce the measured phase
images y.
All of the issues that are described above contribute to the ill-posed nature of the
inverse problem. As outlined in Section 2.3, a number of steps have to be taken
to tackle magnetisation reconstruction. In Section 4.1, the original ill-posed inverse
problem is first replaced by a least squares minimisation problem. In Section 4.2,

2The image of F is often also called range (F) and is illustrated in Fig. 4.1.
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4.1 Approximation by least squares minimisation

regularisation is introduced. Minimisation of the resulting cost function to retrieve
the best fitting solution is discussed in Section 4.3. Diagnostic measures to evalu-
ate the quality of the reconstructed magnetisation distribution are illuminated in
Section 4.4. An in-depth analysis of the null space of F, which is deeply linked to
the question of whether all arbitrary magnetisation distributions can be retrieved,
is conducted in Section 4.5.

4.1. Approximation by least squares minimisation

The problem of solving Fx = y for x, which is in general ill-posed for the reasons
stated above, can be approximated by a least squares minimisation problem (cf.
Eq. 2.39) in the form

min
x
‖Fx− y‖2

S−1
ε

= min
x

[
(Fx− y)T S−1

ε (Fx− y)
]
. (4.5)

Such a minimisation guarantees the existence of at least one solution. The least
squares term of the residual vector Fx− y uses a Euclidean norm that is weighted
by the inverse of the covariance matrix of the measurement errors Sε ∈ Rm×m.
The covariance matrix Sε is included based on optimal estimation theory [116], as
discussed further in Section 4.4 and Section A.3. It is assumed to be diagonal [72].
Its inverse S−1

ε , which is used in Eq. 4.5, has the same sparse structure and essentially
determines the weights of different entries in the residual vector Fx−y in the overall
“cost” of the minimisation. Inverse variances can be used as the diagonal entries of
S−1
ε if statistical error estimates are available for all of the pixels in the measured

phase images. Alternatively, S−1
ε can be interpreted in terms of the confidence in

the measurements y by introducing a “confidence array” Γb [p, q] for each magnetic
phase image. Each entry in Γb then acts as a weight, with which the associated
pixel in the phase image contributes to the reconstruction and can lie between 0 and
1. An example of Γb is shown in Fig. 4.3d. S−1

ε is then constructed as a diagonal
matrix with

diag
(
S−1
ε

)
=
(
Γ1 [0, 0] , . . . ,Γ1 [Nu − 1, Nv − 1] ,

· · · ,
ΓNb [0, 0] , . . . ,ΓNb [Nu − 1, Nv − 1] ,

)
. (4.6)

A confidence value of 0 in S−1
ε translates to a variance that goes to ∞ in Sε, i.e.,

the corresponding measurement is not trustworthy and that pixel is ignored. Values
of 0 could, e.g., be assigned to clearly identifiable artefacts, such as dead pixels or
phase unwrapping errors. Values of 1 denote full contributions and complete trust
in the corresponding pixels in the phase images.
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Chapter 4 Solving the inverse problem of magnetisation retrieval

4.2. Regularisation

Even though substitution of the original problem by a least squares minimisation
ensures the existence of a solution, its uniqueness is not guaranteed. In order to en-
sure uniqueness, regularisation techniques are required. As explained in Section 2.3,
regularisation refers to the approximation of an ill-posed problem by a solvable
better-posed one. The most simple regularisation technique, which has already
been applied implicitly, is the discretisation of the magnetisation distribution and
the magnetic phase images, without which a matrix formulation could not have been
used. Discretisation reduces an infinite-dimensional problem to a finite-dimensional
one. The choice of a coarser grid spacing a during discretisation reduces the com-
plexity of the problem. However, it also limits the maximum spatial frequency,
with which features in the magnetisation distribution can be represented. Another
regularisation strategy is the introduction of additional a priori information, which
often amounts to the application of Occam’s razor and results in selecting the most
sensible solution from a pool of possible solutions. Two regularisation techniques
are described below.

4.2.1. Tikhonov regularisation

One of the most commonly used regularisation techniques is Tikhonov regularisation
[123], of which a first order variant is used in this thesis. Generalised Tikhonov regu-
larisation utilises a weighted Euclidean norm which operates on differences between
a state vector x and an a priori state xa that can represent expectations about the
state that should be retrieved. The regularisation term Rλ (x) in Eq. 2.40 takes the
form

Rλ (x) = ‖x− xa‖2
S−1

a
= (x− xa)T S−1

a (x− xa) (4.7)

in the minimisation process. The matrix Sa ∈ Rn×n, which contains the dependency
on the regularisation parameters (cf. λ in Section 2.3), can be interpreted as the
covariance matrix of the a priori state xa. Its inverse S−1

a is referred to as the
precision matrix [72] and directly dictates the physical constraints that should be
applied to the solution x. For a Tikhonov regularisation of zeroth order, the precision
matrix S−1

a is a diagonal matrix. In its simplest implementation, S−1
a is a scaled

identity matrix λIn ∈ Rn×n, which favours solutions with a small Euclidean norm
‖x− xa‖2, i.e., solutions that are close to xa. For a simple Tikhonov regularisation
with S−1

a = λIn and xa = 0, the regularisation favours overall small magnetisation
distributions [115, 117].
The general expression for a Tikhonov regularisation that also constrains first order
derivatives takes the form [72, 124]:

S−1
a = λ0DTD + λx∇T

x∇x + λy∇T
y ∇y + λz∇T

z ∇z, (4.8)
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4.2 Regularisation

where D is a diagonal matrix (often the identity matrix) and the other terms include
simple positive semi-definite Tikhonov regularisation matrices of first order, e.g.,

∇x =



−1 1 0 · · · 0
0 −1 1 . . . 0
... . . . . . . . . . ...
0 · · · 0 −1 1
0 · · · 0 0 0

 . (4.9)

The last three terms in Eq. 4.8 apply smoothness constraints to the solution x by
applying gradients in all three spatial directions x, y and z. The regularisation
parameters λ0, λx, λy and λz are used to weight the different contributions against
each other and against the norm in Eq. 4.5 describing the measurement residuals.
Enforcing the smoothness of the magnetisation can be physically motivated by re-
lating it to the minimisation of the exchange energy. The exchange energy can be
expressed in the continuum approximation [125] by an integral form

Eexch. = J
∫
V

(∇M)2 dV = J
∫
V

(
(∇Mx)2 + (∇My)2 + (∇Mz)2

)
dV, (4.10)

where J is a phenomenological exchange constant. A regularisation which selects a
solution with minimised exchange energy is very reasonable from a physical point
of view and is modelled by comparing Eq. 4.8 with Eq. 4.10. The squared partial
derivatives of the magnetisation in Eq. 4.10 correspond to the Tikhonov regularisa-
tion matrices of first order in Eq. 4.8. All of the partial derivatives in Eq. 4.10 are
equally weighted. The regularisation parameters for the first order derivatives in
Eq. 4.8 are therefore chosen to be the same, i.e.,

λx = λy = λz ≡ λ. (4.11)

The diagonal matrix in Eq. 4.8 is not present in Eq. 4.10. The parameter λ0, which is
associated with the zero order term in Eq. 4.8, is therefore set to zero. The resulting
precision matrix S−1

a then depends linearly on a single regularisation parameter3 λ
and can be expressed in the form

S−1
a (λ) = λ

(
∇T

x∇x + ∇T
y ∇y + ∇T

z ∇z

)
. (4.12)

Furthermore, the derivatives in Eq. 4.10 operateon the magnetisation directly and
not on differences to another magnetisation state. For the regularisation to accur-
ately reflect the exchange energy minimisation, the a priori state xa should therefore
be set to the zero vector, so that with xa = 0 in Eq. 4.7, the derivatives in S−1

a op-
erate on the unbiased magnetisation state x.

3The regularisation parameter λ and the exchange constant J are not equivalent. While λ is a
flexible parameter that is used to control the strength of the regularisation, J is a fixed property
of the magnetisation state.
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Chapter 4 Solving the inverse problem of magnetisation retrieval

In summary, the constructed regularisation term in Eq. 4.7 is a measure of the
smoothness of the solution and penalises its discontinuities. The chosen Tikhonov
regularisation effectively selects the magnetisation state that has minimal exchange
energy from the pool of all possible solutions.

4.2.2. Regularisation by applying a mask

In addition to Tikhonov regularisation, another regularisation method involves the
application of a mask Ξ [i, j, k]. This mask is a boolean array that has the same
shape as the magnetisation distributionM [i, j, k]. It describes the known positions
of magnetised regions in the vector field space and greatly reduces the number n
of retrieval targets in x by fixing values outside of Ξ to zero. The state vector x
is shortened to a smaller number of entries, which is equivalent to the number of
voxels that are masked by Ξ. Figure 4.3c shows an example of a mask Ξ for a
two-dimensional case. The precision matrix S−1

a (λ,Ξ) has to account for the mask
Ξ to ensure that derivatives are only calculated inside its boundaries. Otherwise,
sudden drops to zero of the magnetisation at these boundaries would be erroneously
punished by the smoothness constraint.
In contrast to, e.g., the B field, which can continue smoothly outside a magnetised
region, the magnetisation M is usually more localised and is characterised by the
mask Ξ. The mask therefore has a significant influence on the reconstruction and the
correct identification of the magnetised regions before a reconstruction is attempted
is therefore of great importance. This point is discussed further in Chapter 5.

4.3. Minimisation of the cost function

Figure 4.2 provides a summary of the listed steps that are required to solve the
inverse problem. Taking into account that the a priori state was set to zero in
Section 4.2.1, these methods lead to a cost function C : Rn 7→ R that is given by
the expression

C (x) = ‖Fx− y‖2
S−1
ε

+ ‖x‖2
S−1

a
(4.13)

= (Fx− y)T S−1
ε (Fx− y) + xTS−1

a x, (4.14)

where the aim is to find the minimum minx [C (x)] of the cost function.
The regularisation parameter λ, on which the precision matrix S−1

a depends linearly,
is used to balance the compliance of the solution to the measurements (the first term
in Eq. 4.13) and its compliance to the physical constraints that are imposed by the
regularisation (the second term in Eq. 4.13). The regularisation parameter can also
be interpreted as a Lagrange multiplier, whereby Eq. 4.5 is minimised while being
subjected to the physical constraint that is described by Eq. 4.7 [118].
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   𝐅𝒙 = 𝒚       ⇒       min 𝐅𝒙 − 𝒚
𝐒𝜖

−𝟏
2 + 𝒙 − 𝒙a 𝐒a

−1
2  

Figure 4.2.: Summary of the steps which are taken to replace the ill-posed inverse problem
by a better posed one. 1) The linear equation system is replaced by a least squares
minimisation, which ensures at least one solution. 2) The magnetisation state and the
measured phase images are discretised, so the problem is finite-dimensional. 3) A mask
is used to locate magnetised regions, which sets the magnetisation to zero outside and
thus reduces the amount of retrieval targets. 4) Tikhonov regularisation of first order is
applied to minimise the exchange energy of the system and choose a smooth solution.

As mentioned above, minimisation of only the norm of the residual vector ‖Fx− y‖2
S−1
ε

does not provide a unique solution for x if F is rank deficient, i.e., it has non-trivial
null space [118]. However, the addition of a non-degenerate regularisation term in
quadratic form xTS−1

a x, where S−1
a is a positive definite matrix, guarantees overall

non-degeneracy. Minimisation of the cost function C (x) then leads to a unique
solution4.

The final rows of ∇x/y/z contain only zeros, in order to guarantee the square n× n
shape. Because of these rows, S−1

a has a single zero eigenvalue, effectively reducing
its rank to n − 1. S−1

a is therefore only semi-positive definite. Its null space is
non-trivial according to the rank-nullity theorem (cf. Eq. 4.4) and consists of all
homogeneously-magnetised distributions. Because the amplitudes and directions of
those distributions are the same everywhere5, they are “invisible” to the derivatives
that are applied by S−1

a . Even though a homogeneous magnetisation distribution
passes through the regularisation without penalty, its characteristic phase contribu-
tion makes it easy to determine its orientation and amplitude from the measurements
y. Examples of a homogeneous magnetisation distribution (4.3a) and the magnetic
phase image that it produces (4.3b) are shown in Fig. 4.3.

In order to find the best-fitting solution xrec to the inverse problem, the cost function
C (x) has to be minimised. The minimum must be a root of the first derivative of
C (x). Therefore, identification of the roots of the gradient vector C ′ (x) ∈ Rn

4Taken from “Numerical Recipes: The art of scientific computing” (2007) [118]: “When a quad-
ratic minimization principle is combined with a quadratic constraint, and both are positive,
only one of the two need be non-degenerate for the overall problem to be well-posed.”

5Or at least the same for every disjoint magnetised region.
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Figure 4.3.: Illustration of a simulated phase image and corresponding arrays. (a) shows
a projected magnetisation distribution for a simple t = 1nm thick homogeneously-
magnetised disc with a radius of R = 8nm and a grid spacing of a = 1nm, magnetised
at an angle of β = 45°. The resulting magnetic phase image in rad is shown in (b).
Both images show the projection of the mask Ξ, which determines the localisation of
the magnetised disc, as a dotted outline. The two-dimensional projection of Ξ is shown
separately in (c) as a boolean image, with white corresponding to “True”. The phase
image contains a simulated artefact in the upper left corner, which is not taken into
account in the reconstruction ofM by setting the corresponding values in the confidence
array Γ in (d) to zero (black pixels). The value everywhere else is set to unity, which
means the corresponding pixels go into the reconstruction with full weight.
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allows identification of candidate solutions according to the expression:

C ′ (x) = 2FTS−1
ε (Fx− y) + 2S−1

a x
!= 0. (4.15)

The sufficient condition for a minimum in C (x) is fulfilled if the Hessian matrix
C′′ ∈ Rn×n, which is given by the expression

C′′ = 2FTS−1
ε F + 2S−1

a , (4.16)

is positive semi-definite. As S−1
ε is a positive diagonal matrix, the first term FTS−1

ε F
in Eq. 4.16 can be written as a Gramian matrix

(
S−1/2
ε F

)T (
S−1/2
ε F

)
and, as such,

is positive semi-definite. As stated above, the precision matrix S−1
a is also posit-

ive semi-definite. Therefore, the Hessian matrix C′′ always satisfies the sufficient
condition for a minimum to be found. It should be noted that Sa and Sε do not
have to be known explicitly, as only their inverses are used in the present equations.
An alternative Bayesian interpretation of these matrices is given in the appendix in
Section A.3.
In order to find the root xrec from C ′ (x), Newton’s method [126] is utilised by
employing a Taylor expansion about an arbitrary starting point x0 in the form

C ′ (xrec) = C ′ (x0) + C′′ · (xrec − x0) != 0. (4.17)
⇔ C′′ (x0 − xrec) = C ′ (x0) (4.18)
⇔ C′′xrec = C′′x0 −C ′ (x0) (4.19)
⇔ xrec = x0 −C′′−1C ′ (x0) . (4.20)

As a result of the linearity of the forward model, the Hessian matrix C′′ does not
depend on x. Therefore, no higher orders are present in the Taylor expansion.
Equation 4.20 can be identified as the Newton iteration scheme. Because the cost
function is quadratic in x, it converges in only one step. The choice of starting
point is therefore not important and it can be set to the zero vector x0 = 0 without
loss of generality, i.e., the reconstruction starts with an “empty” magnetisation
distribution.
The dimensions of C ′′ ∈ Rn×n scale as O (n2) = O (N6) for an axis length of N
pixels. A large Hessian matrix results in a very high computation time and memory
consumption. Direct matrix inversion (as implied by Eq. 4.20) is therefore unfeasible.
Instead, by inserting Eq. 4.15 and Eq. 4.16 into Eq. 4.18 while using x0 = 0, the
linear system of equations(

2FTS−1
ε F + 2S−1

a

)
(x0 − xrec) = 2FTS−1

ε (Fx0 − y) + 2S−1
a x0 (4.21)

⇔
(
FTS−1

ε F + S−1
a

)
xrec = FTS−1

ε y (4.22)

can be constructed and interpreted as the weighted (S−1
ε ) and regularised (S−1

a )
normal equations of the original LES Fx = y. Equation 4.22 can then be solved
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iteratively for xrec by employing a conjugate gradient (CG) scheme. CG is the
industry standard for solving equation systems with a symmetric positive definite
matrix [127]. As stated above, the Hessian matrix fulfils this condition6. The
conjugate gradient scheme does not require a full Hessian matrix, but instead only
the result of its product with a vector [129]. This product is itself a concatenation
of different matrix-vector products. With the aid of the optimised forward model
implementation derived in Chapter 3, the product of the Hessian matrix and a vector
x can be expressed in the form

C′′x = 2PT
(
QT

(
S−1
ε (Q (Px))

))
+ 2S−1

a x. (4.23)

Equation 4.23 emphasises the importance of the adjoint operators QT and PT .
They are executed once every CG iteration and therefore necessitate the efficient
implementation derived in Section 3.2.4. Whereas Q and QT employ sophisticated
Fourier space convolutions with pre-computed kernels, P, PT , S−1

a and S−1
ε utilise

sparse matrix multiplications. Instead of having to set up the full Hessian matrix C′′,
only the sparse matrices and lookup kernels for the phase mapping and its adjoint
in Q and QT have to be kept in memory. These measures enable very efficient
iteration steps during the CG calculations. The optimised forward model, which
uses dedicated data structures for its operations, thereby reduces both memory
consumption and computation time for an efficient reconstruction.

4.4. Diagnostics

A reconstruction result should not only consist of a reconstructed magnetisation
distribution, but also diagnostic measures that can be used to assess its quality.
Linear diagnostic tools are presented below, in order to allow an evaluation of the
goodness of fit of specific parts of a retrieved solution and overall measures of quality.
Root-mean-square diagnostics, which can be used to assess the overall closeness of
a solution to a “true” magnetisation state are also introduced.

4.4.1. Optimal estimation linear diagnostics

In this section, optimal estimation linear diagnostics based on Bayes theorem are
illuminated. These diagnostics make use of the interpretation of the norm weights
S−1
ε and S−1

a as inverse covariance matrices (cf. Eq. 4.14). This Bayesian inter-
pretation is derived in depth in the appendix in Section A.3. It leads to the same
reconstruction formula as Eq. 4.20. However, instead of only delivering an optimal
solution xrec, it provides a complete probability density function (PDF) with an

6C′′ is, strictly speaking, only positive semi-definite with rank n− 1. In practice, the single zero
eigenvalue due to S−1

a does not cause problems during the CG scheme [128].
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expected value xrec and a covariance matrix Sx. This covariance matrix allows as-
sertions to be made about the statistics of a reconstructed magnetisation state. The
covariance matrix Sx can be identified as twice the inverse of the Hessian matrix of
the cost function (cf. Eq. A.40):

Sx = 2 (C′′)−1 =
(
FTS−1

ε F + S−1
a

)−1
. (4.24)

It should be noted that the inverse of the covariance matrix S−1
x is a linear function

of the inverse covariance matrix of the measurements S−1
ε and the inverse covari-

ance matrix of the a priori information S−1
a [116]. S−1

x should not be interpreted
statistically, because S−1

ε and S−1
a are generated ad hoc to describe the confidence

in the measurements (cf. Eq. 4.6) and the precision matrix of the regularisation (cf.
Eq. 4.12), respectively. However, it can be used as a diagnostic tool [72], as shown
below.
In order to assess how a reconstructed magnetisation state xrec depends on the true
solution xt and on the measurement errors ε (cf. Eq. 2.37), Eq. 4.22 is solved for
xrec according to the expressions

xrec =
(
FTS−1

ε F + S−1
a

)−1
FTS−1

ε y (4.25)
= SxFTS−1

ε y (4.26)
= SxFTS−1

ε (Fxt + ε) (4.27)
≡ G (Fxt + ε) (4.28)
≡ Axt + Gε, (4.29)

where Eq. 2.37 was used in the second step to include a dependency on xt. Equa-
tion 4.29 introduces two important matrices [72, 116]: the gain matrix G ∈ Rn×m

given by the expression

G = SxFTS−1
ε =

(
FTS−1

ε F + S−1
a

)−1
FTS−1

ε (4.30)

and the averaging kernel A ∈ Rn×n given by the expression

A = GF. (4.31)

G and A are independent of the actual measurements y and depend only on the
chosen forward model F, the mask Ξ, the covariance matrix of the measurements
Sε and the precision matrix Sa of the regularisation.
The gain matrix G maps perturbations in measured magnetic phase images onto
differences in the reconstructed magnetisation state xrec. It can be interpreted
as the regularised Moore-Penrose pseudo-inverse of the system matrix F. Each
rowi (G) ∈ Rm in the gain matrix can be reshaped into a series of Nb images,
one for each measured magnetic phase image. These so-called gain maps show the
amplification with which the magnetic phase images and their corresponding errors
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Chapter 4 Solving the inverse problem of magnetisation retrieval

are mapped onto the magnetic vector component that is determined by each row
index i. The units of the gain maps are given in 1/rad, because the normalised
magnetisation distribution m is dimensionless.

The averaging kernel A describes how a true solution xt would be distorted by the
reconstruction procedure. It is calculated as the product of the gain matrix G and
the system matrix F. As stated above, the former matrix can be interpreted as
the pseudo-inverse of the latter. In the ideal case, A should be the identity mat-
rix, which would correspond to perfect recovery of the true state xt through the
reconstruction. However, as a result of rank deficiencies in F and because of the
regularisation, this is generally not the case. A rowi (A) ∈ Rn in the averaging kernel
corresponds to one of the three vector components of one voxel (specified by the row
index i). It can be reshaped into a three-dimensional vector field of the same shape
as the reconstructed magnetisation distribution and then describes the smoothing
properties of the reconstruction. For perfect retrieval, only one component of a
single voxel, which is determined by the row index i, should be non-zero, similar to
a multi-dimensional delta-peak. In practice, information about the magnetisation
that is contained in one vector component of one voxel will “leak” into neighbouring
voxels, while possibly also diffusing into the other two vector components. Because
Tikhonov regularisation of first order and not zeroth order is employed, no damping
occurs in addition to the smoothing. Without damping and for an a priori distri-
bution of xa = 0, a given rowi (A) should always sum to one (apart from small
numerical errors). Information about the true state is therefore just diffused during
reconstruction and no information is lost7. The spatial distribution of this diffu-
sion can be assessed by placing line scans throughout the reshaped volume of the
averaging kernel distribution in different spatial directions (cf. Fig. 4.4). The full
width at half maximum (FWHM) of these line scans can be used as a directionally
dependent indicator of the resolution of the reconstruction algorithm. Structures
that are smaller than the FWHM are not resolved properly. The vector field of a
reshaped averaging kernel row (cf. Fig. 4.4a) resembles the field of a magnetic dipole
with closed field line loops on both sides of the orientation axis. The negative values
of the line scan in the y direction for the x component in Fig. 4.4b indicates regions
where those field lines loop around and point in negative x direction.

It is also of interest to assess how measurement perturbations, which can be de-
scribed by a covariance matrix Sin, are propagated to perturbations of a reconstruc-
ted magnetisation state (i.e., reconstruction noise), as described by a covariance
matrix Sout. The relationship between both matrices can be expressed in terms of

7In particular for an a priori distribution xa 6= 0, information loss can occur because the recon-
struction also partly contains the a priori state. For an a priori state that is different to the
zero vector, Eq. 4.29 contains an additional term: xrec = Axt + (In −A)xa + Gε.
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Figure 4.4.: (a) In-plane vector field of the reshaped averaging kernel row for the x
component of a voxel located in the centre (indicated by the rectangle) of a FOV of
size 32× 32 pixels and λ = 10−5. The position of the line scans are indicated by dashed
lines in the x and y directions and shown in (b) in the form of linear plots. The line
scans are centred on the analysed voxel at position 0, where the maximum information
content (solid black line at the top) is contained. A dotted horizontal line indicates
half of this value. The values of FWHM for both spatial directions are marked with
coloured dashed vertical lines, whose positions are determined by linear interpolation
between the nearest points. The FWHM values are indicators of the resolution in each
spatial direction and are illustrated in (a) as the minor and major axes of an ellipse.
The negative values for the variation of the x component in y direction (green plot
in (b)), result from the closed field lines of the averaging kernel on both sides of the
orientation axis. The averaging kernel for the y component at the same spatial position
would deliver the same result, but rotated by 90°.
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the gain matrix G as

Sout = GSinGT (4.32)

= SxFTS−1
ε Sin

(
SxFTS−1

ε

)T
(4.33)

= SxFTS−1
ε SinS−1

ε FSx. (4.34)

Equating Sin and Sε is only valid if Sε truly represents an estimate of the statistics
of the measurements. However, as stated above, Sε is usually generated ad hoc by
the confidence arrays Γb and therefore has no rigorous statistical meaning. On the
assumption of uniform and uncorrelated errors in the phase images, the covariance
matrix of the measurements can instead be set to Sin = σ2

ε Im with a measurement
error variance of σ2

ε , leading to the simplified formula

Sout = σ2
ε ·GGT . (4.35)

which allows a simple estimate of the reconstruction noise to be obtained. Simil-
arly, Sin can be set up as a diagonal matrix with variances σ2

b for each phase image
denoted by the index b, or alternatively as a full statistical description of the meas-
urement errors, if this is available. Stronger regularisation leads to lower noise in
the reconstruction because the regularisation acts like a low-pass-filter [118]. Cau-
tion is therefore advised, because stronger regularisation leads to the suppression of
higher-frequency features in the true magnetic state.
All of these diagnostics depend on the calculation of the covariance matrix Sx, which
is given by Eq. 4.24 and requires the inverse of the Hessian of the cost function.
Just as for the reconstruction itself, inverting C′′ is complicated, if not impossible.
Instead, a set of linear equation systems

C′′Sx = 2In (4.36)

can be constructed. Each pair of columns coli (In) ∈ Rn and coli (Sx) ∈ Rn repres-
ents a single LES C′′coli (Sx) = 2coli (In). Each of these equation systems can be
solved separately by using the conjugate gradient scheme in the same way as for the
original reconstruction described in Eq. 4.23. Each column of coli (In) corresponds
to one vector component of one reconstructed voxel of the magnetisation distribu-
tion (determined by the column index i). Therefore, n LES would have to be solved
by using CG methods to calculate the covariance matrix Sx. A complete calculation
is generally not desirable as a result of time and memory constraints. Instead, it
is more sensible to apply the above diagnostic concepts to only selected points of
interest in the reconstruction xrec, especially as the characteristics of neighbouring
points are strongly correlated. For each point of interest, only a single row of the
averaging kernel A or the gain matrix G is needed [72]:

rowi (G) = rowi (Sx) FTS−1
ε = coli (Sx) FTS−1

ε (4.37)
rowi (A) = rowi (Sx) FTS−1

ε F = coli (Sx) FTS−1
ε F. (4.38)
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The rows and columns of Sx are identical, i.e., rowi (Sx) = coli (Sx), because Sx
is a covariance matrix and therefore symmetric and positive semi-definite. The
reconstruction noise in a single point of interest can be calculated from the expression

rowi (Sout) = rowi (G) Sin (rowi (G))T . (4.39)

In this way, diagnostic properties can be calculated for individual points in the
reconstruction. However, their numerical complexity is similar to that of the recon-
struction itself. Both the resolution of the reconstruction and the reconstruction
noise depend heavily on the chosen regularisation strength (defined by the para-
meter λ). The choice of λ determines how well a solution fits the measurements and
if it is artificially “oversmoothed” by the regularisation, as discussed in more detail
below.

4.4.2. Root mean square diagnostics

Whereas the diagnostics described above allow for the detailed assessment of the
statistical properties of localised points and the resolution of the reconstructed dis-
tributions xrec, it is often advantageous to have a global measure of the the goodness
of fit of the entire distribution. If a reference magnetisation state xref exists, then
simple root mean square (RMS) metrics can be used to quantify deviations of the
reconstruction from the reference solution. An example of a reference solution is a
“true” analytical solution xt, assuming this is known. In the following definitions,
the non-vectorised forms of xrec and xref , i.e., the three-dimensional magnetisation
distributions mrec and mref are used. For the reconstruction of an arbitrary scalar
field srec [i, j, k], errors from a reference sref [i, j, k] can be described by using a single
metric

εtot =

√√√√∑i,j,k ‖srec [i, j, k]− sref [i, j, k]‖2∑
i,j,k ‖sref [i, j, k]‖2 . (4.40)

In contrast, errors in a vector field can be described either by their direction or by
their magnitude. A decision about which of these parameters is more important
depends on the application at hand. Appropriate RMS metrics for these properties
have been described by Kemp et al. [70] and take the forms

εmag =

√√√√∑i,j,k (‖mrec [i, j, k]‖ − ‖mref [i, j, k]‖)2∑
i,j,k ‖mref [i, j, k]‖2 (4.41)

for the normalised errors in magnitude8 and

εdir = 1
π

√√√√√ 1
NxNyNz

∑
i,j,k

[
cos−1

(
mref [i, j, k] ·mrec [i, j, k]
‖mref [i, j, k]‖ ‖mrec [i, j, k]‖

)]2

(4.42)

8The index “mag” in this case has a double meaning as both “magnitude” and “magnetisation”.
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for the directional error. The latter error is defined as the RMS of the angle between
the reference vector and the reconstructed vector at each voxel, divided by π to re-
flect a fractional error and not an angle in radians. These metrics are useful for
investigating the different artefacts that can influence a reconstruction in a con-
trolled, simulated environment, if an unperturbed reference state xref is known.
Some of these artefacts are discussed in Chapters 5 and 6.

4.5. Reconstructibility and null spaces

As mentioned in Section 4.3, the null spaces of the forward model and its sub-
matrices play an important role in determining which magnetisation states can be
retrieved and which are “invisible” to the reconstruction, as they do not produce a
magnetic phase shift. In this section, the null spaces of the projection matrix P and
the phase mapping matrix Q are illuminated.

4.5.1. The null space of the projection matrix

The null space of the complete projection matrix P depends directly on the null
spaces of the sub-matrices Pb for each projection direction and can be understood
in an intuitive way. The projection process that is described by each sub-matrix Pb

can be split into two steps. Each step results in a loss of information, which leads
to a contribution to the null space, as follows:
First, the vector field is projected in three-dimensional space (xyz) along a chosen
projection direction. The resulting projected vector field resides in a two-dimensional
subspace of three-dimensional space. The projection plane is oriented perpendicular
to the projection direction and all of the information about the distribution along
this direction is lost upon projection. The resulting vector field still possesses three
vector components (xyz). The null space contains all of the vector field distributions
that sum up to zero along the projection direction.
A transformation from the three-dimensional coordinate system (xyz) to a two-
dimensional coordinate system (uv), which is specific to the current projection, is
then performed. The third component of the vector field, which is perpendicular
to the projection plane uv, is dropped. The perpendicular component does not
contribute to the phase mapping (cf. Eq. 2.34) and always lies in the null space
of the phase mapping matrix Q. Dropping this component during the projection
instead of keeping it as input for Q is computationally efficient9. The null space
therefore also includes all distributions with vectors that are solely oriented along
the projection direction.

9This procedure effectively reduces the dimension of xpr by one third from 3NuNv to 2NuNv
and “shifts the blame” for the information loss of the third vector component from the phase
mapping Q to the projection P.
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4.5 Reconstructibility and null spaces

This split into two steps is purely theoretical and is used to illustrate the two con-
tributions to the null space. In practice, it is performed in one step during the
projection using Pb. A mathematical description of both steps can be found in
Section A.4 in the appendix, where Pb is split into two sub-matrices.

A magnetisation distribution therefore lies in the null space of the projection if
the magnetisation vectors are either parallel to the projection direction or zero,
when they are summed up along the projection direction. The null space of Pb ∈
R2NuNv×3NxNyNz has nullity rank (null (Pb)) = 3NxNyNz − 2NuNv. An illustrative
example of such a null space is shown in Fig. 4.5a.

x y
z

(a)

x
z

(b)

Figure 4.5.: (a) shows two slabs that are magnetised in the positive and negative x dir-
ections, respectively. The distribution lies in the null space of a projection along the
z direction, due to its moments cancelling in the projection direction. It also lies in
the null space of a projection along the x direction because the projected moments are
parallel to the projection direction. Of the three main axes, only a projection along the
y direction, which is shown in (b) is in the range of the corresponding projection matrix
Pb, i.e., x ∈ range (Pb).

A distribution that is invisible in one specific projection direction, specified by Pb,
is not necessarily invisible for all projection directions. The complete projection
matrix P (defined in Eq. 3.12) incorporates b projection directions, each of which
has its own projection sub-matrix Pb and null space null (Pb). In order to guarantee
that a magnetisation state x lies outside the null space of the complete projection
matrix P, i.e. that it is not completely invisible for the forward model, x has to lie
in the range (or image) of at least one sub-matrix10 Pb, i.e., x ∈ range (Pb).

10x ∈ range (P) only means that information about x can be obtained with the projection matrix
P at all and that the distribution is not completely invisible. However, it does not automatically
guarantee a satisfactory reconstruction result.
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Chapter 4 Solving the inverse problem of magnetisation retrieval

For a scalar field, a complete11 series of projections around one tilt axis can be
described by the Radon transformation [130]. An inverse Radon transformation can
then be used to reconstruct the original three-dimensional distribution analytically.
The null space for a single tilt series is trivial in the scalar case, as a complete
tilt series around one tilt axis guarantees that all distributions are visible. Vector
field reconstructions are more complicated. They have been examined by Hauck
[131] for two-dimensional vector fields. A generalisation to three-dimensional fields
can be made by applying the rules for the two-dimensional case for each slice that
is perpendicular to the tilt axis. Although the projection of a scalar field can be
expressed intuitively as a simple integral along the projection direction, two kinds
of interactions have to be distinguished for a vector field [53]:

• A longitudinal interaction, which can be expressed mathematically as a scalar
product of the vector field and the tangential vector of the projection direction.

• A transversal interaction, which can be expressed as a vector product of the
vector field and the tangential vector of the projection direction.

Using a Helmholtz decomposition [132], a fundamental theorem of vector calculus,
any three-dimensional, rapidly decaying and smooth vector field12 can be expressed
as a sum of a curl-free (“irrotational”) and a divergence-free (“solenoidal”) vector
field. For the two-dimensional case, Hauck was able to show that, for a longitudinal
interaction with a vector field and a complete tilt series, only the solenoidal contri-
bution can be reconstructed [131]. In contrast, for a transversal interaction only the
irrotational contribution can be reconstructed, while no information about the curls
in the vector field are contained in the projections.

As mentioned above, when executing a set of projections described by P, the vector
component along the projection direction vanishes and only components that lie
perpendicular to it are relevant. Therefore, P has to describe a set of transversal
interactions. An example that showcases the inability to map the curls of a vector
field is shown in Fig. 4.6a. A magnetised cylinder supports a vortex distribution
that is aligned along its symmetry axis. For a tilt series acquired perpendicular
to the cylinder axis, the sum of the magnetisation vectors is zero for all of the
projection directions. The distribution lies in the null space of all single image
projection matrices Pb and is therefore invisible for the complete projection matrix
P. In general, a single tilt series will always be insensitive to any curls in the vector
field around the tilt axis.

In order to circumvent this limitation, a second tilt axis, which is ideally perpen-
dicular to the first tilt axis, is required. Any curl that is invisible in the first series
appears as an irrotational contribution in the second tilt series and vice versa. The

11Here, “complete” means that the projection is known for every angle around the chosen tilt
axis. In practice, only a finite number of projections is available, which leads to artefacts in
the reconstruction.

12This assumption is justified for localised magnetisation distributions.
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Figure 4.6.: (a) shows a magnetised disc, which supports a vortex distribution that is
oriented along the z axis. A slice in the xy plane is illustrated in (b). This distribution
is invisible to all projections that are perpendicular to the z direction because all of the
moments along these lines add up to zero or are oriented along the projection direction.

null space of the complete projection matrix P therefore becomes trivial when two
orthogonal tilt series are available.
The results of this section can be summarised as follows:

• A single projection Pb is insensitive to a magnetisation distribution if the
vectors that are summed along the projection direction are zero or have no
components in the projection plane.

• A complete projection matrix P corresponding to a single tilt series is insens-
itive to curls of the vector field around the tilt axis.

• A complete projection matrix P describing two (ideally orthogonal) tilt series
has a trivial null space. No non-zero magnetisation distribution is mapped
onto the zero vector.

4.5.2. The null space of the phase mapping matrix

Even after guaranteeing that the null space of the projection matrix P is trivial,
a projected magnetisation distribution xpr 6= 0 can still be mapped onto the zero
vector by the phase mapping matrix Q. If a projected distribution xpr = Px 6= 0
lies in the null space of the phase mapping matrix Q, then the original distribu-
tion x automatically lies in the null space of the complete system matrix F. The
mathematical expression for this relation is:

Px = xpr ∈ null (Q)⇔ QPx = 0⇔ x ∈ null (QP)⇔ x ∈ null (F) . (4.43)
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The matrix Q and its null space are described in this section. As null (Q) is not
as intuitive as the null space for the projection, it is analysed by singular value
decomposition (SVD). A SVD is only feasible for matrices that are not too large.
Without loss of generality, it can be assumed that all of the axes have the same size
(Nx = Ny = Nz = Nu = Nv ≡ N) so that the phase mapping matrix takes the
form Q ∈ RN2×2N2 and the number of entries scales as O (N4). A SVD of the phase
mapping matrix can be expressed in the form

Q = UΣVT , (4.44)

where Σ ∈ RN2×2N2 is a diagonal matrix with the singular values on its diagonal,
while U ∈ RN2×N2 and V ∈ R2N2×2N2 are unitary matrices, whose columns contain
the left and right singular vectors, respectively. The null space of Q cannot be trivial
because it maps from the two-dimensional vector field onto a two-dimensional scalar
field, i.e., there are twice as many unknowns as there are measurements. According
to the rank-nullity theorem (cf. Eq. 4.4), the null space and range (or image) must
therefore have equal sizes, as reflected in the singular value matrix

Σ =


σ1 · · · 0 0 · · · 0
... . . . ... ... . . . ...
0 · · · σN2 0 · · · 0

 . (4.45)

Σ has exactly N2 unique non-zero singular values on its diagonal and N2 zero
columns afterwards. Similarly, the first N2 columns of V represent the singular
vectors, while the second half of column vectors comprise a basis of the null space,
i.e., that every element of the null space can be expressed as a linear combination
of these basis vectors. All of the column vectors of V can be reshaped into two-
dimensional projected magnetisation distributions. These distributions can be used
to illustrate the range and the null space of the phase mapping matrix Q. They
determine which parts of a magnetisation distribution contribute the most to the
phase and which parts do not generate a contribution to the phase.
Figure 4.7 shows the singular values for a phase mapping matrix Q ∈ R256×512 that
operates on a FOV of 16×16 pixels. Each singular value has a corresponding singular
vector, which can be reshaped into an in-plane vector field of size 16×16 pixels. Ap-
plying the phase mapping matrix Q to each of these vector fields reveals the phase
contribution of the corresponding singular value. The maximum of the absolute
value of the phase is also shown in Fig. 4.7. Both curves exhibit the same mono-
tonically decreasing trend, with high singular values being linked to distributions
which produce larger phase differences. Figure 4.8 illustrates examples of the pro-
jected magnetisation distributions, into which the singular vectors can be reshaped.
Familiar shapes such as vortex structures or largely uniformly magnetised distribu-
tions can be recognised as the main contributors (in the first row of Fig. 4.8). With
decreasing singular value, the phase contribution diminishes. At the same time, the
spatial frequency with which the magnetisation distribution varies across the FOV
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Figure 4.7.: Singular value decomposition of a phase mapping matrix Q ∈ R256×512 for an
axis length ofN = 16. The 256 singular values are shown as green circles. The maximum
of the absolute phase contribution that the corresponding singular vector distribution
generates is shown as blue squares on the left. Similarly, the phase contribution of
all 256 null space basis vector distributions is shown. They are labelled with indices
from 257 to 512 and only generate numerical noise in the range of 10−10 rad, which is
effectively zero, as expected.

increases. The frequency of the spatial variation eventually reaches the sampling
frequency, which leads to vector field directions that vary from pixel to pixel. The
resulting checkerboard pattern that arises can be interpreted as two separate mag-
netisation distributions (on the “white” and “black” tiles of the checkerboard) with
similar magnitudes but opposite directions. The frequency of the spatial variation
for these two opposite distributions decreases until, for the last three singular values,
they are reminiscent of the homogeneous distributions and the vortex from the three
highest-valued singular values (see the second row in Fig. 4.8). This situation cre-
ates a symmetry, which reflects the symmetrical distribution of the singular values
(marked green in Fig. 4.7). The opposite nature of the two checkerboard distri-
butions for the lower-valued singular values creates phase distributions that nearly
cancel each other out. In practice, the regularisation, which has to be chosen appro-
priately for the present level of noise, suppresses these singular vector contributions
due to their high spatial frequencies. The determining factor for where this singular
value “cut-off” takes place is equivalent to the resolution derived from the averaging
kernel (cf. Section 4.4.1). The checkerboard patterns strongly conflict with the
smoothness constraint and are energetically extremely unfavourable. It therefore
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Figure 4.8.: Examples of singular vectors and null space basis vectors from the SVD of
Fig. 4.7. The first row shows distributions that belong to the four highest-valued sin-
gular values. The second row shows distributions that belong to the four lowest-valued
singular values, which show a distinct checkerboard pattern. The distributions on the
“black” and “white” tiles of this pattern show similarities to distributions corresponding
to the highest singular values. The last row shows four arbitrary reshaped basis vectors
of the null space.

makes sense to prohibit them from mixing into the reconstructed distribution.
The null space of Q is independent of regularisation or noise and is determined by
the basis that is spanned by the last N2 columns of V, some of which are illustrated
in the last row of Fig. 4.8 in reshaped form. Even though the null space basis
vectors look non-intuitive on their own, recognisable structures can be built by
superposition. One example is that of a Halbach disc of first order [133, 134], whose
magnetisation distribution points radially outwards from the centre and which is
illustrated in Fig. 4.9a. The vectorised Halbach distribution xhal can be expressed
as a superposition of the column vectors of V. Figure 4.9b shows the coefficients
chal for the superposition, which can be calculated as:

xhal = Vchal ⇔ chal = VTxhal. (4.46)

xhal can be expressed exclusively by the null space basis, i.e., the Halbach distribu-
tion does not produce any phase contribution and is therefore invisible to the phase
mapping matrix Q. Mathematically, the null space can not enter the solution of
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the reconstruction. The low-value singular values on the other hand will dominate
the solution unless they are dampened by the regularisation. As such, the actual,
regularised solution is an approximation of the “true solution”, consisting only of
the singular vectors.
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Figure 4.9.: (a) Magnetic configuration of a Halbach cylinder of first order (in which the
magnetisation rotates once while going around the cylinder, causing it to always point
radially outwards) with a radius of 8 px in a FOV of 32 × 32 px. (b) Decomposition
of the vectorised Halbach cylinder distribution into a linear combination of singular
vectors and the null space basis, showing the coefficients for the respective vectors. The
distribution can be expressed exclusively by the null space basis, i.e., it produces no
phase.

4.6. Summary

In this chapter, the principles for the implementation of an efficient model-based,
iterative reconstruction algorithm for solving the inverse problem of reconstruct-
ing a magnetisation distribution from a set of electron optical phase images were
derived. The initially ill-posed problem was first replaced by a least-squares min-
imisation problem. First order Tikhonov regularisation, motivated by minimisation
of the exchange energy of the magnetisation distribution, was applied. A mask
was introduced to localise magnetised objects and to further decrease the number
of unknowns. All of these measures were combined into a cost function, whose
minimisation is facilitated by conjugate gradient methods and which replaces the
original problem. Diagnostic tools were introduced to assess the quality of the re-
construction. Root mean square diagnostics can be used to examine the closeness
of the solution to a reference state while optimal estimation linear diagnostics are
employed to judge the goodness-of-fit at specific points of interest. An averaging
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kernel A can be used to calculate the resolution of the reconstruction, which de-
pends directly on the chosen regularisation strength. A gain matrix G determines
the influence of measurement errors in specific phase image pixels on the reconstruc-
ted distribution. The retrievability of magnetisation distributions was evaluated by
examining the null spaces of the projection matrix P and the phase mapping mat-
rix Q. It was established that two (optimally orthogonal) tilt series are required
to trivialise the null space of the projection, in particular if curls are present in the
magnetisation vector field. The phase mapping matrix Q was examined by means of
a SVD. Singular vectors that are linked to the lower values exhibit a checkerboard
pattern. The corresponding magnetisation distributions produce only a minimal
phase contribution and conflict strongly with the smoothness constraint of the reg-
ularisation. This situation emphasises the significant influence of the regularisation
strength on the resolution of the reconstruction. A non-trivial null space of Q de-
scribes magnetisation distributions that cannot be reconstructed using the MBIR
algorithm.
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two dimensions

In general, two, optimally orthogonal, tilt series of magnetic phase images are neces-
sary for a full, three-dimensional reconstruction of the magnetisation distribution in
a given sample, as discussed in Section 4.5. However, even a single magnetic phase
image provides insight into the magnetic state of the sample. Although spatial
information in the projection direction and the vector component of the magnetisa-
tion that is oriented perpendicular to the projection plane are lost upon projection,
the in-plane components of the projected magnetisation distribution can still, in
principle, be reconstructed. For a two-dimensional material, e.g., a lithographically
patterned structure, a measurement of the projected in-plane magnetisation may be
sufficient to understand the magnetic microstructure of the material. However, the
fidelity of such a reconstructed magnetisation state depends on many parameters,
including:

• the chosen regularisation strength and the associated averaging kernel;

• the measurement noise in the magnetic phase images;

• the chosen mask that defines position and size of the magnetised region;

• the presence of magnetisation sources outside the FOV;

• other artefacts in the magnetic phase images.

All of these factors can result in the presence of artefacts in the reconstruction or
deviations from the true magnetic state if they are not addressed appropriately.
This chapter discusses all of these parameters, assesses the nature of the corres-
ponding artefacts and introduces measures that can be used to identify or suppress
them. All of these influences affect both two-dimensional and three-dimensional
reconstructions. Here, they are tackled for the two-dimensional case, because their
visualisation in two dimensions is more intuitive and easier to interpret than in three
dimensions. Chapter 6 deals with artefacts that are specific to the three-dimensional
case.

For a single magnetic phase image, i.e., for Nb = 1, with the projection direction
chosen to be the z direction, the forward model is reduced to the expression

y = Qxpr (5.1)
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Chapter 5 Magnetisation reconstruction in two dimensions

and the retrieval target is the two-dimensional projected in-plane magnetisation xpr.
The phase mapping matrix Q consists of only one sub-matrix (cf. Eq. 3.16). The
image index b can therefore be dropped and Q is obtained directly from Eq. 3.17 in
the form

Q =
(
Qu Qv

)
. (5.2)

5.1. Resolution and reconstruction noise

As mentioned in Section 4.4, the resolution of a reconstruction is influenced signific-
antly by the chosen regularisation strength. Stronger regularisation, which is con-
trolled by the regularisation parameter λ, suppresses high frequency contributions
to the reconstructed magnetisation distribution. On the one hand, strong regular-
isation diminishes noise in the reconstruction resulting from noise in the magnetic
phase image (described as reconstruction noise Sout in Eq. 4.32). On the other
hand, over-regularisation risks smoothing out relevant features in the magnetisation
distribution.
In this section, the dependence of both the spatial resolution and the noise in a
reconstruction in dependence of the chosen regularisation parameter λ are assessed.
As outlined in Section 4.4, the averaging kernel A does not depend on the measure-
ments. For illustrative purposes, a magnetic phase image resulting from a simulated
180° magnetic domain boundary was used as an example of a magnetic feature, for
which the resolution of the reconstruction is very important. The original magnet-
isation distribution and the resulting magnetic phase image, which was calculated
by applying the RDFC phase mapping approach (cf. Section 3.2.4), are shown in
Fig. 5.1. The magnetic phase image shown in Fig. 5.1b was used as input for the
MBIR algorithm described in Chapter 4 while varying the regularisation parameter
λ over several orders of magnitude from 10−8 to 10−2.
The top row of Fig. 5.2 shows the resulting reconstructed projected in-plane magnet-
isation distributions for four different regularisation parameters λ. The middle row
shows the corresponding averaging kernel rows (cf. Eq. 4.38) for the y component
for a point in the centre of the FOV in their reshaped forms as vector fields. The
relevant point is marked by a square. The resulting gain maps (cf. Eq. 4.37) are
shown in the third row.
The vector fields of the corresponding averaging kernel rows are each very similar
to the field of a magnetic dipole, i.e., they exhibit closed field line loops on both
sides of the orientation axis. For low values of λ, this dipole field is localised on the
point of interest and quickly decays to zero. The FWHM of the averaging kernel
rows in the x and y directions determine the best possible spatial resolution of the
reconstruction (cf. Section 4.4.1). The spatial resolutions in x and y direction are
visualised as the minor and major axes of an ellipse and increase with regularisation
strength λ. This increase manifests itself as a smoothing of the originally sharp
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Figure 5.1.: (a) In-plane magnetisation distribution in a 12 × 12 × 1 nm3 slab, which
contains a magnetic domain wall at its centre. The saturation magnetic induction was
set to 1T (cf. the arrow at the lower right corner). The FOV is 16 × 16 pixels with a
grid spacing of a = 1nm. (b) The resulting magnetic phase image, calculated using the
forward model for the RDFC phase mapping approach.

domain wall along the y axis. The width of this region is proportional to the spatial
resolution of the y component in the x direction in the reconstruction and can be
seen in the first row of Fig. 5.2. As mentioned in Section 4.4.1, this smoothing effect
can be regarded as a diffusion of information. For very high values of λ, such as
10−2, the magnetisation distribution is completely smoothed away, as indicated by
the low maximum magnetisation amplitude of 0.0152T in the rightmost image of
the first row of Fig. 5.2.

With increasing λ, the averaging kernel row size approaches the dimensions of the
magnetised object. In contrast to the use of lower values of λ, the dipole field of
the averaging kernel row can then not decay sufficiently before reaching the borders
of the mask and the field lines cannot close properly. The averaging kernel row is
then forced to compensate the missing regions outside the mask Ξ by increasing the
vector field inside the mask near its borders. This compensation is visible as an
increase in the vector field of the averaging kernel row for λ = 10−5 at the corners
and for λ = 10−2 also along the edges.

A similar effect can be seen in the gain maps. For a low value of the regularisation
parameter λ, the main information sources for the reconstruction of the chosen
magnetisation vector component at each point of interest are the directly adjacent
pixels. These pixels have the highest gain values, as can be seen, e.g., in the first
image in the last row of Fig. 5.2. A higher regularisation parameter results in a
flatter gain distribution. Pixels that are further away from the point of interest are
then included, effectively resulting in averaging over a larger region.
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λ = 10−8 λ = 10−6 λ = 10−5 λ = 10−2

1.14 T 1.07 T 1.08 T 0.0152 T

0.314 0.0749 0.0303 0.0199 

Figure 5.2.: Reconstructed magnetisation distributions for a simplified magnetic domain
wall for four different regularisation parameters λ are shown in the first row. A central
point of interest is marked by a square. Corresponding averaging kernel rows, calcu-
lated for the y vector component and reshaped into two-dimensional vector fields, are
displayed in the second row. The axes of the marked ellipses define the FWHM of the
averaging kernel, as described in Fig. 4.4. An increase of the regularisation parameter
leads to an increase in the size of the averaging kernel and to a smoothing effect. The
last row shows the gain maps, which determine the influence of the pixels in the mag-
netic phase image on the reconstruction of the point of interest. The gain maps are
normalised to the highest value for each map and do not have the same scale. An arrow
in the lower right corner of each vector field indicates the scale of the largest vector.
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Figure 5.3.: Dependence of reconstruction noise and maximum spatial resolution on λ
for the point of interest shown in Fig. 5.2. (a) Reconstruction noise σrec for three
different levels of measurement noise σε. (b) Maximum spatial resolution in the x and
y directions for the y component of the vector field at the central point of interest,
marked in Fig. 5.2. Both plots show saturation for larger values of the regularisation
parameter λ.

Figure 5.3 plots the maximum spatial resolution in the x and y directions, determ-
ined from the averaging kernel row for the y component of the central point of
interest shown in Fig. 5.2. The reconstruction noise σrec is also shown for three
different levels of Gaussian measurement noise σε (0.1, 0.5 and 1mrad), according
to Eq. 4.35.

An increase in the regularisation parameter leads to poorer spatial resolution of the
reconstruction in the x and y directions. For higher regularisation parameters, the
spatial resolution shows a saturation behaviour, as the averaging kernel row cannot
expand any further (cf. the last image in the second row of Fig. 5.2). Here, satura-
tion occurs at approximately λ = 10−4 for the spatial resolution in the x direction.
It already occurs at λ = 10−5 for the spatial resolution in the y direction, as a result
of the elliptical shape of the averaging kernel row, which has a larger half axis in
y direction1.

The reconstruction noise σrec is directly proportional to the measurement noise σε
and decreases linearly for lower regularisation parameters λ when plotted on a double
logarithmic scale. Here, saturation of σrec begins at values of λ between 10−4 and
10−5. The proportionality between the reconstruction noise σrec and the measure-
ment error noise σε is maintained, i.e., the graphs in Fig. 5.3a stay equidistant from
each other vertically.

1The small peak for the y direction at approximately λ = 5 · 10−5 appears to be an artefact that
results from the way that the FWHM is calculated (cf. Fig. 4.4b).
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Chapter 5 Magnetisation reconstruction in two dimensions

Figures 5.2 and 5.3 show that an increase in regularisation parameter λ is accom-
panied by a decrease in reconstruction noise σrec and by poorer spatial resolutions.
A trade-off between these quantities is required in order to achieve the best possible
reconstruction. The reconstruction noise must be sufficiently low to guarantee a
good signal-to-noise ratio in the reconstructed magnetisation distribution, without
sacrificing too much spatial resolution by enforcing too much smoothness through
the regularisation. The optimal regularisation parameter λ depends on the level of
noise in the input phase images and must be identified on a case by case basis. The
next section discusses the influence of noise on the reconstruction in greater depth
and describes a method for finding an optimal value of λ.

Both, spatial resolution and reconstruction noise are limited by the size of the mask
Ξ for large regularisation parameters. In practice, this situation should be avoided,
because it usually signifies over-regularisation of the problem.

5.2. Influence of Gaussian measurement noise

As discussed above, finding the optimal regularisation parameter λ is not a trivial
task. The required regularisation parameter primarily depends on the level of noise
in the magnetic phase images that are used as input to the reconstruction. An
approach that can be used to find an optimal value for λ is discussed in this section
by examining the reconstruction for different levels of Gaussian noise. This and
the following sections focus on two test cases, which are similar to those used in
Section 3.3:

• A homogeneously magnetised disc in the xy plane with its magnetisation dir-
ected at an angle of 45° (or π/4) to the x axis (cf. Eq. 2.20);

• A disc that is magnetised in a counter-clockwise vortex state, with a smooth
vortex core at its centre (cf. Eq. 2.29).

Each disc has a radius of R = 8nm, a thickness of t = 1nm and is placed in a
volume of size 32 × 32 × 1 nm3. The z axis is both the symmetry axis and the
projection direction. The magnetisation distributions represent different possible
behaviours of a vector field, i.e. curl-free and divergence-free fields, as described
by a Helmholtz decomposition (cf. Section 4.5). They are displayed in Fig. 5.4
alongside corresponding magnetic phase images, which were calculated using the
RDFC approach.

In order to assess the influence of noise on the dependence of the reconstruction on
the regularisation parameter λ, Gaussian noise levels σε of between 0 and 1.0mrad
in steps of 0.1mrad were added to the magnetic phase images shown in Figs. 5.4b
and 5.4d. For a maximum magnetic phase shift of roughly 10mrad in Fig. 5.4d,
these values for σε correspond to up to 10% noise. Regularisation parameters of
between λ = 10−8 and λ = 10−3 were used. Each combination of noise level σε and
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Figure 5.4.: Magnetisation distributions for the analysis of two-dimensional reconstruc-
tions of the projected in-plane magnetisation for (a) a homogeneously magnetised disc
in the xy plane oriented at an angle of 45° to the x axis and (c) a disc that supports
a counter-clockwise smooth magnetic vortex state. Corresponding magnetic phase im-
ages are shown in (b) and (d), respectively. Both discs have a radius of R = 8nm and
a thickness of t = 1nm. The FOV has a size of 32 × 32 nm2 and the grid spacing is
a = 1nm. The magnetisation amplitude of the largest arrow is indicated in the lower
right corner of (a) and (c).
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Chapter 5 Magnetisation reconstruction in two dimensions

regularisation parameter λ was repeated ten times with different distributions of the
same level of noise for statistical purposes.
The RMS quantities that were introduced in Section 4.4.2 were used to determine the
goodness of fit of each reconstruction result. The directional error εdir and the RMS
error in magnitude εmag, which are defined in Eqs. 4.42 and 4.41, respectively, were
calculated by using the original magnetisation distributions shown in Figs. 5.4a and
5.4c as references. The results for both RMS error quantities and both magnetised
discs are summarised in Fig. 5.5.
In all of the graphs for the homogeneously magnetised disc, both εmag and εdir
increase with higher noise levels σε. Increasing the regularisation strength λ then
decreases both the directional error and the error in magnitude of the reconstructed
vector field. The graphs for different values of λ do not intersect. For the magnetised
disc that supports a vortex state, the situation is different. Looking at the noise-
free case for σε = 0mrad, an increase in λ leads to an increase in the magnitude
error εmag, as the vortex distribution is in conflict with the smoothness constraint,
especially at its centre, where large angles between the vectors occur. Increasing the
regularisation enforces a smoother solution than that in the reference magnetisation
distribution. For higher levels of noise, an increase in λ initially decreases εmag,
as is the case for the homogeneously magnetised disc. This decrease is associated
with the successful suppression of noise. However, if the regularisation parameter
is increased too far, then over-regularisation occurs. A reversal in the behaviour of
εmag can be observed and the magnitude error rises again. For the highest noise
level of σε = 1mrad, this reversal occurs for values of λ above 10−5. The graphs
for the three highest regularisation parameters (10−5, 10−4 and 10−3) are nearly
flat. The magnitude errors for these values of λ are independent of the level of
noise because the smoothing effect is so strong. These phenomena also occur for
the directional error εdir, but are less pronounced. The amplitude of the vortex
is smoothed out, while the direction is less strongly affected. This reversal does
not occur for the homogeneously magnetised disc because it passes through the
regularisation unpunished, as described in Section 4.3.
A balance between too much and too little regularisation must be found. According
to Hansen [135], a so-called L-curve plot provides a heuristic method to discover
the regularisation strength λ that provides the best balance between the compliance
with the measurements and accordance to a priori information. Figure 5.6 shows
the normalised regularisation term 1

λ
‖x‖2

S−1
a

plotted on a double logarithmic scale
against the cost of the residual vector, which is expressed by the norm ‖Fx− y‖2

S−1
ε
,

in the form of an L-curve for the vortex distribution2.
Figure 5.6 shows one L-curve per level of Gaussian noise σε, with the regularisation
parameter λ varied along each curve. The starting point for nearly negligible regu-
larisation at λ = 10−8, which is marked by a downward triangle, is very distinct for

2As discussed above, for the homogeneously magnetised disc, no trade-off happens because it
passes through the regularisation unpunished. The corresponding plots are therefore omitted.
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Figure 5.5.: (a, b) Error εmag in magnitude and directional error εdir for the homo-
geneously magnetised disc plotted as a function of the level of Gaussian noise σε for
different regularisation parameters λ. (c, d) show εmag and εdir for the magnetic vortex
distribution. In each case, the original distributions shown in Figs. 5.4a and 5.4c are
used as references. For the homogeneously magnetised disc, an increase in the regu-
larisation parameter consistently decreases the noise. For low values of λ, the same
behaviour can be observed for the magnetic vortex state. For higher values, however,
over-regularisation occurs and smooths away features of the magnetisation distribution,
which causes the RMS errors to rise again.
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Figure 5.6.: L-curve overview for a magnetised vortex state. The normalised regular-
isation term is plotted on a double logarithmic scale against the norm of the residual
vector. One L-curve is displayed for each Gaussian noise level σε, with each curve
plotted in a different colour, as indicated in the legend on the right. Black outlines of
geometric shapes mark the point on each L-curve that corresponds to a reconstruction
performed using a specific regularisation parameter λ, as indicated in the legend on the
left.
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all of the noise levels and moves away from the origin of the plot with increasing σε.
The origin is an unreachable “optimal”, point where both the cost of the residual
term and the regularisation term are zero.
All of the L-curves starts with a vertical slope nearly parallel to the ordinate. Solu-
tions that lie on this vertical part are dominated by perturbation errors, which
manifest in magnetisation vectors which vary considerably from pixel to pixel. These
perturbations arise, because the MBIR algorithm tries to account for noise in the
input magnetic phase images, which is not sufficiently punished by the weak regu-
larisation. Increasing λ decreases the cost of the regularisation term by smoothing
away these perturbations and therefore moving downwards along the L-curve. The
position along the abscissa does not change significantly, i.e., the cost of the resid-
ual term stays approximately the same. The L-curves then exhibit a flat part. If
a reconstructed solution lies on this part of the curve, then λ is likely too large.
Not all of the information can be extracted from the measurements and high spatial
frequency features in the magnetisation are smoothed out. For even stronger regu-
larisation, the end points of all L-curves (marked by stars in Fig. 5.6) converge. The
corresponding solutions have a high cost of the residual vector term, as indicated
by the position on the far right of the abscissa. A magnetic phase image calculated
from this overly smooth solution may then not comply with the measured magnetic
phase image at all.
A distinct corner separates the steep part and the flat part of the L-curve. The
point of highest curvature at this corner is closest to the origin of the plot. It
therefore corresponds to a regularisation parameter λ, for which there is a good
trade-off between measurement compliance and smoothness. Nine L-curves, which
show magnified regions of these corner points, are plotted in Fig. 5.7 for the mag-
netised disc that supports a vortex state. The L-curve corner coincides with a larger
regularisation parameter λ for stronger noise levels σε in the input magnetic phase
images. For example, whereas a good trade-off for σε = 0.1mrad is reached for
approximately λ = 5 · 10−7, a higher noise level of σε = 0.9mrad requires a one
hundred times larger regularisation parameter3 of λ = 5 · 10−5. As described in Sec-
tion 5.1, stronger regularisation is accompanied by increased smoothing. The noise
level therefore indirectly determines the spatial resolution of the reconstruction and
should be decreased as far as possible during image acquisition.
In summary, the L-curve is a reliable heuristic tool that can be used to determine
a good starting choice for the regularisation parameter λ for both two- and three-
dimensional magnetisation reconstructions. The drawback is an increased time in-
vestment, as for each regularisation parameter that is evaluated along the L-curve
one complete reconstruction is required (cf. the analysis in Section 5.6).

3This behaviour is consistent with Eq. 4.35. An increase in the input noise σε goes quadratically
into the calculation of the covariance matrix Sout. The regularisation therefore has to be
adjusted accordingly.
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Figure 5.7.: Magnified views of the points of highest curvature in the L-curves in Fig. 5.6
for nine different Gaussian noise levels σε. Each “corner” corresponds to the regular-
isation parameter λ, for which there is the best trade-off between compliance with the
measurements and smoothness according to a priori information.
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5.3. Influence of the mask

One of the greatest advantages of reconstructing the magnetisation M instead of
the magnetic flux density B or the magnetic vector potential A is the significant re-
duction in unknown parameters that results from applying a mask Ξ, which specifies
the positions of magnetised regions (cf. Section 4.2.2). The influence of the mask Ξ
on the reconstruction is therefore very strong and is examined in this section. For
this purpose, both of the test distributions from the previous section are reconstruc-
ted using different mask sizes. In each case, the disc shape of the test distributions
allows a parametrisation, whereby the radius of the mask is varied relative to the
radius of the disc R = 8nm. The mask radius is increased in steps of 1 px (pixel),
which corresponds to an increase in steps of 1 nm. The variation ranges from −4 px,
corresponding to a mask that is smaller than the particle, to +14 px, where the
mask encompasses the entire FOV. The input phase images are noise-free and the
regularisation strength is set to a low value of λ = 10−8, so that the influence of the
mask can be examined without being affected by the artefacts discussed above4.
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Figure 5.8.: Plots of magnitude error εmag and directional error εdir as a function of
mask size. Results for the homogeneously magnetised disc and the vortex distribution
are shown in (a) and (b), respectively. A solid vertical line indicates a mask that exactly
fits the particle size. As expected, the errors are smallest for this radius. Dashed vertical
lines at a mask radius variation of +14 px correspond to masks that encompass the entire
FOV.

In order to analyse the results, the error quantities εmag and εdir are displayed, as in
the previous section. Both quantities are plotted in Fig. 5.8 for the homogeneously

4This value for λ is used in the following sections for the same reason, if not explicitly stated
otherwise.
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magnetised disc and the vortex state disc. Figure 5.9 shows a selection of recon-
struction results for the two magnetisation distributions. As expected, both εmag
and εdir reach their minimum values5 for a mask size that exactly fits the disc size
(marked at zero on the abscissa in Figs. 5.8a and 5.8b).

The use of a mask that is larger than the magnetised disc results in the MBIR
algorithm trying to fit magnetisation in regions that do not belong to the disc. The
magnetisation in this regions should ideally be reconstructed to zero. However, in
particular for the homogeneously magnetised disc, this is not the case. In contrast
to the vortex state, which does not result in a magnetic phase shift outside the disc,
the homogeneously magnetised disc is associated with a smoothly decaying magnetic
phase distribution outside its boundary (cf. Fig. 5.4b). As shown in the gain maps
for a low regularisation parameter in Fig. 5.2 in Section 5.1, a phase shift will always
be attributed primarily to the magnetisation of a neighbouring pixel, assuming this
pixel lies inside the mask Ξ. A smoothly decaying phase shift therefore leads to
a smoothly decaying magnetisation distribution inside the boundaries of the mask
Ξ. As the regularisation only calculates the magnetisation derivative inside the
mask (cf. Section 4.2.2), this smooth solution is chosen over the correct distribution
shown in Fig. 5.4a (or Fig. 5.9a for +0 px). If the mask extends beyond the particle
boundaries, then the derivatives at these positions are included and harshly punished
by the regularisation if sudden jumps occur. Therefore, the smoother solutions that
are seen in Fig. 5.9a for positive mask radius variations are retrieved instead. This
smoothing effect occurs for both magnetic discs and results in a jump in the error
quantities shown in Fig. 5.9 when the mask radius is increased by even a single
pixel. The error levels for the homogeneously magnetised disc become higher for
larger mask radii until they asymptotically approach a saturation level. The reason
for this saturation level is the fact that every increase in mask radius adds pixels
that have weaker and weaker magnetic phase contributions. For the vortex disc,
which exhibits no stray magnetic phase outside its boundary, no further increase in
the error quantities is observable after the mask radius has increased by one pixel6.

A decrease in the mask size leads to the magnetisation of regions at the outer border
of each magnetised disc being erroneously fixed to zero. The reconstruction there-
fore misses vital degrees of freedom and the magnetic phase contribution that the
magnetisation of these pixels at the borders would produce has to be compensated.
The MBIR algorithm achieves this compensation by increasing the magnetisation
of the outermost pixels at the borders of the smaller mask. This effect can be seen
in Fig. 5.9 for negative values of the mask radius variation. It is similar for both
distributions and results in significantly larger errors than for a mask that is too big.

5The errors are smaller for the homogeneously magnetised distribution because it passes unpun-
ished through the regularisation. This is not the case for the vortex distribution, as explained
in Section 5.3.

6A stronger regularisation would increase the observed smoothing effect. The resolution of the
averaging kernel (cf. Section 5.1) provides an estimate for how many pixels are affected outside
the particle boundaries for a mask that is too large.
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A good example is provided by the reconstruction of the homogeneously magnetised
disc for a mask variation of −4 pixels, for which the magnetisation at the boundary
pixels is increased by a factor of 17.4 when compared to the correct solution. Ex-
treme care therefore has to be taken when assigning a mask. The results that are
presented in this section indicate that it is better to choose a mask that is slightly
too large than too small if its exact position is not known sufficiently well.
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Figure 5.9.: Examples of reconstruction results for different mask radii for (a) the ho-
mogeneously magnetised disc and (b) the magnetised disc that supports a magnetic
vortex state. The mask variation, relative to the true mask size, is denoted at the top
left of each image. An arrow at the lower right of each image indicates the maximum
magnetisation in that image.
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5.4 Influence of magnetisation sources outside the FOV

5.4. Influence of magnetisation sources outside the
FOV

An MBIR algorithm that is based on real space discretisation implicitly assumes
that the area outside the FOV is devoid of sources of magnetisation (cf. Tab. 3.3).
If, however, this assumption does not hold true and magnetisation sources outside
the FOV exist, then the MBIR algorithm will falsely attribute magnetic phase con-
tributions from these external sources to masked regions that lie inside the FOV.
This incorrect attribution leads to artefacts that can be described by low spatial
frequencies in the magnetisation if the sources are far enough away from the FOV.
This section examines some of these artefacts and introduces different strategies
that can be used to deal with them.

5.4.1. Fitting of a phase offset and ramp

If the magnetisation sources that are outside the FOV are far enough away from the
measured region, then their magnetic phase contribution can usually be approxim-
ated using low order polynomials. As a first order approximation, this polynomial
can take the form of a phase ramp. The MBIR algorithm can be extended to include
a phase plane fit to each magnetic phase image. Each phase ramp can be described
by three parameters,

1. A phase offset, given in rad;
2. A phase ramp in the u direction, given in rad

nm ;
3. A phase ramp in the v direction, given in rad

nm .
As mentioned in Section 2.1, an incorrect value for the zero level of the phase outside
the magnetised object can lead to an additional phase offset, which is also included in
the proposed additional linear ramp and offset fit. The fit can furthermore account
for phase ramps that may be present due to artefacts such as specimen charging or
changes to the biprism wire over time.
In order to fit phase offsets and ramps, 3Nb unknown parameters are added to
the vector x of retrieval targets for a magnetisation reconstruction from Nb images.
Each set of three parameters describes the phase ramp for one phase image. The 3Nb

additional parameters are unaffected by the projection matrix P or by the phase
mapping matrix Q in the forward model. These calculation steps can therefore
be bypassed. The phase plane for each image is then simply added at the end of
each iteration step. The forward model is linear in the additional parameters, so
the derivative and adjoint operators are equally easy to implement. Theoretically,
polynomials of higher order could also be used for the fit. However, the use of such
polynomials is not encouraged due to the risk of falsely attributing magnetic phase
contributions from the magnetisation inside the FOV to these higher orders.
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Figure 5.10.: (a) Magnetic phase image of a homogeneously magnetised disc (cf.
Fig. 5.4b) with an additional phase offset of −5mrad and additional phase slopes of
60 µrad

nm in the u direction and 40 µrad
nm in the v direction. (b) Reconstruction of the

magnetisation without taking the additional phase ramp into account. The magnetisa-
tion amplitude, which is indicated by the scale on the lower right, is too high, when
compared to the original magnetised disc.

Figure 5.10a shows a magnetic phase image generated by a homogeneously magnet-
ised disc (cf. Fig. 5.4b) with an additional superimposed phase ramp with a phase
offset of −5mrad and phase slopes of 60 µrad

nm in the u direction and 40 µrad
nm in the

v direction. Reconstruction without the inclusion of the ramp and offset results in
the fitted magnetisation distribution shown in Fig. 5.4b. The magnetisation of the
outermost pixels is up to twelve times higher than in the reference magnetisation
distribution shown in Fig. 5.4a, leading to very high RMS error values of εmag = 2.38
and εdir = 0.15. The reason why the outermost pixels are particularly affected is
similar to the effect that was observed in Section 5.3. The MBIR algorithm adds
a magnetisation loop to the disc borders because a closed flux line with a constant
magnetisation amplitude is associated with a constant phase offset in the enclosed
area, as shown, e.g., in [111]. Slight asymmetries in the magnetisation of the loop
can be used to account for the slopes in the u and v directions. However, the al-
gorithm is only able to correctly recreate the phase, including the offset and ramp,
inside the disc. The additional phase across the complete FOV cannot be recreated
by making use of only the degrees of freedom that are provided by the mask Ξ.

The fitting of a phase ramp and offset during reconstruction shown in Fig. 5.10
increases its quality and decreases the error quantities to εmag = 1.69 · 10−4 and
εdir = 1.94 ·10−5, respectively. The ramp parameters can be retrieved perfectly. The
fitted phase ramp is shown in Fig. 5.11a. The reconstructed magnetisation is visually
indistinguishable from the original distribution (cf. Fig. 5.4a). Figure 5.11b shows
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5.4 Influence of magnetisation sources outside the FOV

only the difference between these two distributions. The largest error in amplitude is
smaller than approximately 0.5mT, which is less than 1h of the saturation magnetic
induction of Bsat = 1T in the original magnetisation distribution.
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Figure 5.11.: (a) Reconstruction of the additional phase ramp with an exactly retrieved
phase offset of −5mrad and slopes of 60 µrad

nm in the u direction and 40 µrad
nm in the v dir-

ection. (b) Difference between the original magnetisation distribution (cf. Fig. 5.4a)
and the reconstruction result when the phase ramp is fitted. The maximum relative
error in magnitude lies below 1h.

5.4.2. Magnetisation sources in the immediate vicinity

In the presence of magnetisation sources that are directly outside the FOV, the ad-
ditional magnetic phase can no longer be approximated sufficiently well by the linear
phase ramp that was introduced in Section 5.4.1. Figure 5.12a shows an example of
an array of homogeneously magnetised discs next to a slab that is magnetised along
the y axis. The phase image that is produced by this distribution is displayed in
Fig. 5.12b. The green square marks the FOV and extent of the input magnetic phase
image used in the reconstruction algorithm. For the purpose of the reconstruction,
only the magnetic phase and the position and size of the magnetised regions inside
the FOV in Fig. 5.12a are assumed to be known.
As expected, a “naive” reconstruction that does not consider external magnetisation
sources provides an unsatisfying result, which is shown in Fig. 5.13a. As before (cf.
Sections 5.3 and 5.4.1), the external sources are “buffered” by the nearest masked
pixels that are available for the MBIR algorithm, resulting in a magnetisation loop
in the outermost pixels of the disc. The use of a phase ramp fit, according to Sec-
tion 5.4.1, improves the reconstruction result. However, it can only fit a phase offset
and a linear phase ramp. All higher order phase contributions remain unaccounted
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Figure 5.12.: (a) Magnetisation distribution with magnetisation sources outside the
FOV, which is marked by a green square. (b) Resulting magnetic phase image. Only
the region marked by the green square is used as the input magnetic phase image in
the MBIR algorithm.

for, which leads to the reconstruction result shown in Fig. 5.13b. Even though the
amplitude of the magnetisation loop around the disc is now decreased by a factor
of three, the result is still unsatisfactory.
An alternative to the polynomial fit can be obtained if the magnetisation loop,
which is created by the MBIR algorithm to counter outside sources, is not seen as
an artefact but is made use of in another context. Instead of forcing the algorithm
to use the outermost pixels of the masked region of interest, which is detrimental
to the goodness of fit, an additional buffer region outside the borders of the FOV
is constructed. This buffer can serve the same purpose, without influencing the
retrieval targets. Figure 5.14a shows the reconstructed magnetisation distribution
for the previous example for a buffer region that has a thickness of one pixel on
all four edges of the FOV7. The buffer region, which contains fitted magnetisation
amplitudes that are up to six times higher than the original value of 1T, can be
discarded after reconstruction in order to extract the original FOV that contains
the region of interest. The original FOV with the reconstruction result is shown in
Fig. 5.14b. It accurately reproduces the original magnetisation distribution shown
in Fig. 5.4a, with RMS error quantities of just εmag = 8.25·10−4 and εdir = 1.27·10−4.
The use of buffer pixels is more flexible for two-dimensional reconstructions than
fitting a linear phase ramp and offset. However, problems may arise for three-
dimensional reconstructions. The phase ramp fits must be executed on an image-

7The buffer region does not necessarily have to correspond to a closed loop around the FOV. If
some directions are known to not contain any magnetisation, then no buffer pixels on that edge
are necessary. A closed loop is, however, recommended if such information is not known.
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Figure 5.13.: Magnetisation distributions reconstructed from the region marked by the
green square in Fig. 5.12b (a) without considering external magnetic sources and (b)
fitting a linear phase ramp, as described in Section 5.4.1.

6.05 T5 nm

(a)
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(b)

Figure 5.14.: (a) Magnetisation reconstruction for the example shown in Figs. 5.12 and
5.13 after including a buffer region of one pixel on each side of the FOV. Because the
arrows are scaled to the highest amplitude, which is six times higher in the buffer region
than in the disc, the magnetisation in the disc is not visible. The original FOV was
extracted by cropping the buffer pixels and is shown in (b). The resulting magnetisation
distribution accurately reproduces the original distribution (cf. Fig. 5.4a)
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Chapter 5 Magnetisation reconstruction in two dimensions

by-image basis and can therefore be used to account for artefacts that only appear
in single phase images or vary from image to image, e.g., with time. In contrast, buf-
fered regions have to be applied to a three-dimensional reconstruction volume that
is used for all images simultaneously. The image-by-image flexibility is then lost.
For a single image, separation of the buffer region from the magnetised region inside
the FOV is straightforward due to their spatial distance. For a three-dimensional
reconstruction, a buffer region would have to enclose the complete three-dimensional
volume in order to account for all projection directions. As a result of the relatively
large number of degrees of freedom in the buffer region8, features in the magnetisa-
tion distribution may then be falsely attributed to the buffer voxels by the MBIR
algorithm.

5.4.3. Inclusion of the perturbed reference wave

In Section 2.1, the assumption was tacitly made that the vacuum reference wave is
an unperturbed plane wave. Even if no other magnetisation sources are present in
or near the path of the object and reference beams, this assumption can, however,
be violated. In particular, if the magnetic stray field of the magnetised regions of
interest is strong enough and the vacuum reference wave is sufficiently close, then
the magnetic stray field arising from the specimen may modulate the magnetic phase
shift of the vacuum reference wave [103].

Figure 5.15 shows a schematic illustration of the formation of a perturbed reference
wave. The object wave and the FOV of the magnetic phase image are marked
by a green square, while the vacuum reference wave is marked by a red square.
Both waves are oriented symmetrically to the biprism, whose position is marked
by a blue line9. The recorded magnetic phase image is calculated by taking the
difference between the magnetic phase of the object wave and that of the vacuum
reference wave. The resulting magnetic phase image is shown in Fig. 5.16a. It
contains a slight asymmetry due to the perturbed reference wave, in comparison to
the unperturbed image shown in Fig. 5.4b. Attempting a naive reconstruction yields
the magnetisation distribution shown in Fig. 5.16a. The effect on the reconstruction
is similar to the influence of magnetisation distributions outside the FOV discussed
above. However, in this case, the artefacts do not arise from external sources, but due
to the influence of the magnetised disc on itself as a result of the perturbed reference
wave. The RMS error quantities for the naive reconstruction are εmag = 0.71 and
εdir = 0.08.

8In contrast to the phase ramp fits, where there are only 3Nb degrees of freedom.
9In practice, the waves are not positioned directly next to the biprism. The example is chosen
to emphasize the phenomenon. In consequence, the artefacts that are described here are less
pronounced in an actual experiment.
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Figure 5.15.: Illustration of the concept of a perturbed vacuum reference wave. (a)
The known magnetisation distribution of a homogeneously magnetised disc. (b) The
corresponding magnetic phase shift. The object wave and the FOV of the phase image
are marked by a green square. The vacuum reference wave, which is perturbed by the
magnetic phase shift of the magnetised disc, is marked by a red square. The biprism
orientation is indicated by a blue line.
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Figure 5.16.: (a) Magnetic phase image obtained by calculating the difference between
the object wave and the perturbed reference wave shown in Fig. 5.15b. (b) Naive recon-
struction of the magnetisation distribution containing artefacts due to the perturbed
reference wave.
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Chapter 5 Magnetisation reconstruction in two dimensions

The most efficient way to account for the perturbed reference wave is to include it
in the earliest possible stage of the reconstruction process, i.e., the calculation of
the convolution kernels. This procedure is illustrated in Figure 5.17a for a FOV
of 3 × 3 pixels and for the convolution kernel for the magnetisation component
in the y direction. As stated in Section 3.2.4, the convolution kernel then has to
have a size of 5 × 5 pixels10. The object wave and the FOV are marked by a solid
green square, while the convolution kernel is marked by a dashed green square. A
similar red square is used to mark the vacuum reference wave. If the position of the
biprism relative to the FOV is known, then a displacement vector can be constructed.
This vector is marked in purple and is calculated by doubling the perpendicular
vector onto the centre of the projected biprism, which is marked by a blue line.
The displacement vector determines the distance between corresponding points in
the object and reference waves. For the original convolution kernel (dashed green
square) and its counterpart associated with the perturbed reference wave (dashed
red square), the vector determines the displacement between their centre points. In
order to include the perturbed vacuum reference wave in the reconstruction, this
counterpart is simply subtracted from the original convolution kernel. The resulting
perturbed convolution kernel is shown in Fig. 5.17b.
Due to the pre-computation, the inclusion of the perturbed vacuum reference wave
does not increase the computation time during the reconstruction itself, making this
method very efficient. The original magnetisation distribution (cf. Fig. 5.4a) can be
reconstructed accurately by including the perturbed vacuum reference wave in the
reconstruction for the example shown in Fig. 5.16a. The RMS error quantities are
significantly reduced to εmag = 6.62 · 10−4 and εdir = 9.26 · 10−5, respectively. If the
position of the biprism is known for each magnetic phase image, then the perturbed
reference wave can also be included in three-dimensional reconstructions.

10The size would be 6 × 6 pixels after the zero-padding that is necessary for the convolution in
Fourier space in the RDFC approach. It is not taken into account here because the padding
takes place after pre-computation.
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Figure 5.17.: (a) Schematic diagram illustrating the construction of a convolution kernel
for a perturbed vacuum reference wave. The FOV is marked by a solid green square.
The corresponding convolution kernel is marked by a dashed green line. The same
markings in red are used for the reference wave and the corresponding counterpart
of the convolution kernel. The displacement vector between the object and vacuum
reference wave is marked by a purple arrow. The perturbed convolution kernel can be
calculated by subtracting the red dashed square from the green dashed square. It is
displayed in (b) and shows a slight asymmetry compared to the unperturbed kernel,
which can be seen in the colorbar.
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5.5. Use of a confidence array

The previous sections provided strategies to deal with external sources of magnet-
isation and the perturbed vacuum reference wave in order to correct for some of
the artefacts that can affect magnetic phase images. In some cases there are other
artefact sources that can be detrimental to the reconstruction process. Examples
include alignment errors during separation of the magnetic from the electrostatic
contribution to the phase shift and phase unwrapping errors, both of which are de-
scribed in Section 2.1. In order to account for these and other artefacts, a confidence
array Γ, which was introduced in Section 4.1, can be utilised. The trust values in
the affected regions of a magnetic phase image can be set to zero, so that they do
not influence the reconstruction11.
Figure 5.18a again shows a magnetic phase image of a homogeneously magnetised
disc (cf. Fig. 5.4b). Three areas of 2 × 2 pixels are artificially set to erroneous
values. The erroneous pixels inside the disc are set to 0mrad, while those outside
the disc are set to −6mrad. Performing a reconstruction with a uniform confidence
array Γ [p, q] = 1 results in the magnetisation distribution shown in Fig. 5.18b. The
fact that the artefacts in the phase image have propagated to the reconstructed
distribution is particularly visible in the area inside the disc, where a vortex with a
nearly four times higher magnetisation amplitude is produced in the reconstruction
to account for the erroneous phase values. Such vortices can arise to recreate small
areas that vary significantly in phase when compared to their surroundings, because
they are able to create a very localised change in phase (cf., e.g., Fig. 5.4d). The
erroneous phase areas outside the disc result in less highly pronounced artefacts.
The change in magnetisation is directly correlated to the distance to the masked
region. The artefact on the right is stronger than that at the bottom, because it is
closer to the magnetised disc. The RMS error quantities for this reconstruction are
εmag = 0.44 and εdir = 0.06. In contrast, a reconstruction that takes the erroneous
regions into account by setting their Γ values to zero accurately reconstructs the
original magnetisation distribution. The RMS errors in this case are decreased to
εmag = 1.15 · 10−4 and εdir = 1.67 · 10−5.

11Other values between 0 and 1 can also be chosen, if the trustworthiness of some magnetic phase
image regions are questionable.
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Figure 5.18.: (a) Magnetic phase image of a homogeneously magnetised disc with three
areas of 2× 2 pixels set to erroneous values. The erroneous area inside the disc is set to
0mrad, while both areas outside the disc are set to −6mrad. The erroneous regions are
marked by dark squares. (b) Reconstruction for a confidence array that is uniformly
Γ [p, q] = 1 and does not take the erroneous regions into account.

5.6. Reconstruction from an experimental phase
image

In this section, all of the analysis techniques and procedures to deal with artefacts
are applied to an experimentally acquired magnetic phase image to showcase the
potential applications of the new MBIR algorithm. For this purpose, a lithographic
cobalt structure was prepared. The structure was patterned by electron beam litho-
graphy on a 50 nm thick Si3N4 membrane. The cobalt and an 8 nm thick layer of
aluminium as a protection layer were deposited by electron beam evaporation. Al-
though the nominal thickness of the cobalt layer was 30 nm, shutter problems leading
to a longer evaporation time were discovered after acquisition. The true thickness
t was estimated to be 20% higher than the nominal thickness, i.e., t = 36 nm, with
an error of approximately 5%. Off-axis electron holograms were acquired in an FEI
Titan 60-300 [44] at 300 kV using a biprism voltage of 92V, resulting in a holo-
graphic interference fringe spacing of 3.1 nm. The sample was magnetised inside the
electron microscope by using the magnetic field of the objective lens. After the first
hologram was acquired, the magnetisation state of the sample was reversed and a
second hologram was recorded. After reconstructing the recorded phase images (cf.
Section 2.1), the electrostatic contribution to the phase shift was removed by taking
half of the difference between the aligned phase images. The resulting magnetic
phase image is shown in Fig. 5.19. A mask, which is visible as a dotted outline, was
constructed by using the electrostatic (i.e., mean inner potential) contribution to the
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phase shift (cf. Section 2.1) to locate four approximately rectangular regions, which
are oriented in a “plus” formation12. The two holograms that were used to generate
the magnetic phase image had to be shifted with respect to each other so that they
could be aligned before being subtracted. As a result of this alignment, regions at the
upper and right border contained artefacts and the confidence value in these regions
was set to zero, as marked in Fig. 5.19. The confidence values of regions corres-
ponding to phase unwrapping errors in the magnetised regions were also set to zero.
The grid spacing in the image and therefore in the reconstruction is a = 1.85 nm.
Preparation of the sample, acquisition of the holograms, reconstruction of the phase
images and subsequent assessment of the magnetisation position and trustworthy
phase regions were conducted by Patrick Diehle from the Ernst Ruska-Centre for
Microscopy and Spectroscopy with Electrons in Forschungszentrum Jülich.
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Figure 5.19.: Experimentally acquired magnetic phase image of a lithographically pat-
terned structure. A 36 nm thick cobalt layer was deposited in a “plus” shape on a 50 nm
thick Si3N4 membrane. The dotted lines mark the positions of the deposited magnetic
regions. The dark regions mark untrustworthy regions, in which the confidence value
was set to zero. The direction along which the sample was magnetised is indicated by
the black arrow.

An L-curve analysis, as introduced in Section 5.2, was first conducted in order to
determine an optimal value for the regularisation parameter λ. As described above,
the choice of regularisation parameter depends on the level of measurement noise.
The goal is to find a value for λ that results in a sufficiently smooth solution and also
12Identification of the correct mask can be challenging, especially in three dimensions. For example,

oxidation of magnetic regions can lead to layers that are not magnetic but exhibit a change in
mean inner potential, leading to a mask that is too large.
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accurately reproduces the measured magnetic phase image. Reconstructions were
performed for 18 regularisation parameters, ranging from very weak regularisation
(λ = 10−7) to very strong regularisation (λ = 5). The results, which are shown in
Fig. 5.20, indicate that an adequate balance between smoothness and measurement
compliance can be reached for a value of λ = 0.01. The reconstruction results do not
vary drastically for regularisation parameters in the corner region of the L-curve,
i.e., for values between 0.001 and 0.1. The MBIR algorithm is not overly sensitive
to λ in this region and all of these values lead to reasonable results.
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Figure 5.20.: L-curve analysis of the experimentally acquired magnetic phase image
shown in Fig. 5.19. The cost of the residual vector, which is expressed by the norm
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The resulting reconstructed projected in-plane magnetisation distribution is dis-
played in Fig. 5.21. In addition to the magnetisation, a linear phase ramp was
fitted, as described in Section 5.4.1. This fit yielded a phase offset of −1.77 rad and
a linear phase ramp of 1.42 mrad

nm in the u direction and −1.46 mrad
nm in the v direc-

tion. The four rectangular magnetised regions contain a variety of different magnetic
configurations. The upper and lower regions are nearly homogeneously magnetised
along their long axes. The left region supports two clockwise vortices, while the
right region shows a clockwise and a counter-clockwise vortex. The reconstruction
result showcases the capability of the MBIR algorithm to simultaneously retrieve
structures that have vastly differing magnetic configurations.

For such a two-dimensional reconstruction, the magnetisation is by default calcu-
lated for a slice of one pixel thickness (i.e., a = 1.85 nm). Because the true thickness
of the lithographically patterned structure is known to be t = 36 nm, a correction
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200 nm
2.37 T

Figure 5.21.: Projected in-plane magnetisation distribution that was reconstructed from
the experimentally acquired phase image shown in Fig. 5.19. A regularisation parameter
of λ = 0.01 was used. For visualisation purposes, only every 4th arrow is displayed in
the vector plot.
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factor of a
t
has to be applied to obtain meaningful values for the magnetisation as

a volume density of magnetic moments. The corrected maximum strength of the
measured magnetisation is 2.37T and is indicated by the arrow on the lower right
of Fig. 5.21.

The magnitude of the reconstructed magnetisation and a corresponding histogram
are show in Fig. 5.22. The peak of the magnitude histogram is in good agreement
with the literature value for the saturation magnetic induction of 1.79T [136]. Values
on the left side of the histogram peak represent magnetised pixels which are not fully
saturated in-plane. In particular the cores of the magnetic vortices and the regions
between each pair of vortices are likely magnetised out-of-plane. Magnetised pixels,
which have higher magnitudes than the saturation magnetic induction are likely
caused by erroneously masked regions (cf. Section 5.3). This is indicated by the
fact that the highest magnitude values were reconstructed at the borders of the
mask (cf. Fig. 5.22a).
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Figure 5.22.: (a) Plot of the magnitude of the reconstructed magnetisation distribu-
tion. (b) Correspoding histogram plot. The blue line indicates a literature value of
µ0Msat = 1.79T [136], which is in good agreement with the peak of the histogram.
Only magnetised regions of the FOV were taken into account for the histogram.

The reconstructed magnetisation distribution can be used to calculate a magnetic
phase image by applying the RDFC forward model introduced in Section 3.2.4. The
resulting image is displayed in Fig. 5.23a. The calculated phase reproduces the
input phase image shown in Fig. 5.19 without measurement noise and without the
phase ramp that was fitted. Subtraction of the phase ramp emphasises the phase
symmetry around the homogeneously magnetised regions at the top and bottom.
Figure 5.23b shows a magnetic induction map for the calculated magnetic phase
image.
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Figure 5.23.: (a) Magnetic phase image calculated by applying the forward model to
the reconstructed magnetisation distribution shown in Fig. 5.21. (b) Corresponding
magnetic induction map. The phase amplification factor is 3.

The calculated phase image shown in Fig. 5.23a can be used to retrospectively
assess the measurement errors in the input phase image shown in Fig. 5.19. For
this purpose, the input phase image was first ramp-corrected by subtracting the
fitted phase ramp from it. The difference between the ramp-corrected input phase
and the magnetic phase calculated from the reconstructed magnetisation is shown
in Fig. 5.24a. Regions with a confidence value of zero are not taken into account.
Plotting the resulting phase differences in a histogram, as depicted in Fig. 5.24b,
reveals a Gaussian distribution, whose standard deviation of 138mrad provides an
estimate of the measurement noise.

For further analysis, the upper homogeneously magnetised region is shown separ-
ately in Fig. 5.25a. The averaging kernel row for the y component, which corres-
ponds approximately to the magnetisation direction, was calculated as described in
Section 5.1 for a central pixel. The spatial resolution of the reconstruction for the
chosen parameters can be estimated from the FWHM of the reshaped averaging
kernel row, which is shown in Fig. 5.25b and explained in Section 4.4.1. The spatial
resolution in the y direction parallel to the magnetisation direction is approximately
34.1 nm, while the resolution in the x direction perpendicular to the magnetisation
direction is approximately 16.1 nm. The relatively high values are caused by the ap-
plied regularisation and the corresponding smoothing effect to compensate for the
noise in the input magnetic phase image. Both values are illustrated as an ellipse in
Fig. 5.25b. Figure 5.25c shows the gain map of the chosen central pixel. It indicates
which phase information has the biggest influence on the reconstructed y component
of the magnetisation at the specified location.
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5.6 Reconstruction from an experimental phase image
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Figure 5.24.: (a) Difference between the ramp-corrected input phase and the phase image
calculated from the reconstructed magnetisation distribution shown in Fig. 5.21. (b)
Histogram of the phase differences. The standard deviation of 138mrad is an indicator
for the measurement error of the phase image.

The mean value of the in-plane magnetisation in the upper magnetised region is
calculated to be 1.73± 0.20T on the assumption of a magnetic specimen thickness
of t = 36 nm. The error in the thickness t of 5% can be propagated to the magnet-
isation and yields another uncertainty of ±0.09T. The estimate of the measurement
error in the phase image of 138mrad can be converted to an error in the reconstruc-
ted magnetisation of 0.22T by using the gain matrix according to Eq. 4.39 in its
simplified form (cf. Eq. 4.35). In order to account for the known thickness, this
reconstruction noise has to be multiplied by the correction factor a

t
. The result is

a value of 0.01T. By using error propagation as a summation of variances, the
mean magnetisation and the corresponding error are calculated to be 1.73± 0.22T,
which is in good agreement with the literature value for cobalt of 1.79T [136]. The
standard deviation of 0.22T is much higher than the reconstruction noise of 0.01T,
which only takes the noise of the input magnetic phase image into account. The
reason for this difference may result from the out-of-plane moments and erroneously
masked regions, which were already mentioned above. The total magnetic moment
of the upper magnetised region is calculated to be 1.592 ·10−15 Am2 = 1.715 ·108 µB,
with µB being the Bohr magneton, by summing up the magnetic moments of all
involved voxels.
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Figure 5.25.: (a) Reconstruction of the upper magnetised region in Fig. 5.21. (b) Av-
eraging kernel row, calculated for the y component of a pixel that is positioned in the
centre of the magnetised region. (c) Corresponding gain map for the same position.
For visualisation purposes, only every 4th arrow is displayed in the vector plots shown
in (a) and (b).
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5.7 Summary

5.7. Summary

The aim of this chapter was the reconstruction of two-dimensional projected mag-
netisation distributions. The influence of the regularisation parameter on the recon-
struction was evaluated by examining the associated averaging kernel. By calculat-
ing the FWHM of the averaging kernel rows, the resolution of the reconstruction
can be estimated. The determination of an optimal regularisation parameter λ that
balances compliance with the measurements and the smoothness of the solution was
tackled by introducing the L-curve method, which was conducted for different test
distributions and different levels of Gaussian noise. The importance of the choice
of mask was emphasized and artefacts resulting from variations in mask size were
evaluated. It was found that masks that underestimate the size of the magnetised
regions lead to larger artefacts than masks whose size is overestimated. Methods
to account for sources of magnetisation outside the FOV were proposed. The fit
of a phase ramp in two- and three-dimensional reconstructions yields a phase offset
and a linear phase ramp for each phase image in the MBIR algorithm. However,
for very close magnetisation sources, a phase ramp does not sufficiently reproduce
the additional contributions to the phase. In order to account for such magnetisa-
tion sources, buffer pixels were introduced in order to “shield” the reconstruction
inside the FOV from the external sources. This method is more flexible than the
use of a phase ramp. However, its application to three-dimensional reconstructions
is significantly more complicated, if not unfeasible. Perturbation of the vacuum
reference wave, as a result of the presence of long-range stray magnetic fields of
the magnetised object itself, was addressed by modifying the convolution kernels.
For other artefacts, a confidence array, which was introduced in Section 4.3, was
used successfully to exclude erroneous regions from the reconstruction process. A
two-dimensional reconstruction was performed successfully on an experimentally ac-
quired phase image and was analysed quantitatively, using strategies developed in
this chapter.
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6. Magnetisation reconstruction in
three dimensions

The reconstruction of three-dimensional magnetisation distributions from tilt series
of phase images poses a set of unique challenges, which are tackled in this chapter.
First, three test magnetisation distributions are introduced. These distributions
are utilised to assess the dependence of the reconstruction results on the maximum
tilt angle and the angular sampling of the tilt series of magnetic phase images,
which are used as input for the MBIR algorithm. The importance of the mask
in three dimensions is then examined. A reconstruction from phase images that
include Gaussian noise, as well as random phase ramps and offsets, is conducted
for one of the magnetisation distributions. This reconstruction and the subsequent
analysis demonstrate the capabilities of the MBIR algorithm in three dimensions
under realistic conditions.

6.1. Test magnetisation distributions

Three test magnetisation distributions were each placed in a volume ofNx×Ny×Nz=
32 × 32 × 32 voxels. The grid spacing was chosen as a = 5nm, resulting in a
spatial volume of 160 × 160 × 160 nm3. The magnetic phase images are therefore
comparable to the experimental results presented in Section 5.6. Each of the three
test magnetisation distributions was used to construct two simulated orthogonal tilt
series of magnetic phase images by applying the new RDFC forward model for tilts
about both the x and the y axis. The resulting simulated magnetic phase images
were used as input for a magnetisation reconstruction using the MBIR algorithm.
Each image had a size of Nu × Nv = 64 × 64 pixels, corresponding to a FOV of
320×320 nm2. The saturation magnetic induction in each of the test magnetisation
distributions was set to a value of Bsat = 1T.
The first test distribution is a magnetic disc with a radius R = 80 nm and a thickness
of t = 80 nm, which supports a clockwise magnetic vortex state in the xy plane. This
distribution is shown in Fig. 6.1a in the form of a vector plot. The colour scheme
for this and all of the following three-dimensional vector plots is explained in the
appendix in Section A.5. As stated in Section 4.5.1, homogeneous magnetisation
distributions and magnetic vortex states result in two different behaviours that can
be compared to the Helmholtz decomposition of a vector field into a curl-free and
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Chapter 6 Magnetisation reconstruction in three dimensions

a divergence-free part. In order to assess whether the MBIR algorithm is able to
successfully reconstruct both a vortex state and a homogeneously magnetised region,
the core of the disc was magnetised out-of-plane in positive z direction. The radius
of the core was chosen to be 20 nm, so that the phase contributions of the vortex and
the core would be of the same order of magnitude. The magnetisation direction of the
core is marked with white arrows in Fig. 6.1a. When approaching the homogeneously
magnetised core from the surrounding vortex state, the magnetic moments gradually
rotate out of the xy plane, according to Eq. 2.29. Along the z axis, each xy slice of
the magnetisation distribution is equal, i.e., that the distribution does not vary along
the z direction in magnitude or direction of the magnetisation. In general, the most
information about the variation in the z direction of a magnetic object is obtained
for projections with high tilt angles about the x or the y axis. Reconstruction of
the magnetic vortex state in the xy plane therefore should not change significantly
when these hight tilt angles are missing, which is examined in the next section.
Figure 6.1b shows a magnetic phase image that corresponds to a projection along
the z direction, while Fig. 6.1c corresponds to a projection along the y direction.
The homogeneously magnetised core lies in the null space of the z projection and
therefore does not contribute to the magnetic phase in this direction. In turn, the
vortex does not contribute to the magnetic phase when projected along any direction
that is perpendicular to the z axis. In order to reconstruct all of the important
features of the magnetisation distribution, tilt series of magnetic phase images are
therefore absolutely necessary.

The second test distribution is constructed similarly to the previous vortex structure,
but is oriented in the yz plane, instead of the the xy plane. The corresponding vector
plot of the magnetisation is shown in Fig. 6.2a. The homogeneously magnetised
core is now magnetised along the positive x direction, as indicated by red arrows.
In contrast to the first test distribution, the vortex in the yz plane varies strongly in
magnetisation magnitude and direction along the z direction. Reconstruction of the
magnetic vortex state in the yz plane should therefore be more sensitive to missing
high tilt angles. Figure 6.2b shows a magnetic phase image for a projection along
the z direction, while Fig. 6.2c corresponds to a projection along the x direction.

The third test distribution is chosen to be difficult to reconstruct, in order to explore
the capabilities and limits of the MBIR algorithm. As for the previous distributions,
the geometrical shape is again a disc with a radius of R = 80 nm, but with a greater
thickness of t = 90 nm and without a homogeneously magnetised core. The disc
is now built out of three layers. The uppermost layer is 30 nm thick and supports
a clockwise magnetic vortex state, similar to the first test distribution. The mag-
netic moments rotate to an out-of-plane orientation in positive z direction when
approaching the vortex core, according to Eq. 2.29. The lowermost layer contains
the same vortex structure, but turned over in the xy plane. The vortex therefore
spins counter-clockwise and the magnetisation in the centre points in negative z dir-
ection. The two vortices are separated by a non-magnetic layer of the same thickness
and radius. The resulting stack is illustrated in Figs. 6.3a and 6.3b. The experi-
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6.1 Test magnetisation distributions

mental identification of such a non-magnetic layer is likely to be very challenging.
If the mask is constructed using the mean inner potential contribution, it may be
difficult to distinguish between magnetised and non-magnetised regions, in partic-
ular if the mean inner potentials of the three layers are similar. In order to assess
this difficulty, the non-magnetic layer is included in the three-dimensional mask for
the reconstruction below. The MBIR algorithm is therefore allowed to falsely fit
magnetisation in this region. The magnetisation distributions of the two vortices
sum up to zero for a projection along the z direction. The vortices therefore lie
in the null space of a z projection and no magnetic phase is produced. Further-
more, each vortex separately adds up to zero for any projection perpendicular to
the z axis. Only the small component along the z axis in the vortex cores produces
any magnetic phase when it is projected in these directions. The resulting magnetic
phase is shown in Fig. 6.3c and is significantly smaller than that produced by the
previous distributions. Information about the vortices can only be obtained from
projections in directions that are oblique to the three major axes. Out of the three
presented distributions, this vortex stack poses the biggest challenge for the MBIR
algorithm.
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Figure 6.1.: (a) Vector plot of the magnetisation of a magnetised disc of radius R = 80nm
and thickness t = 80nm in a volume of 160 × 160 × 160 nm3. The disc supports a
clockwise vortex state in the xy plane. The grid spacing is a = 5nm, which results in
a size of Nx ×Ny ×Nz = 32× 32× 32 pixels along the axes. The core of the disc has a
radius of 20 nm and is magnetised out-of-plane in the positive z direction. The colour
wheel in the upper right corner describes the direction of magnetisation in the xy plane.
White arrows point in the positive z direction, while black arrows point in the negative
z direction. The coordinate system at the lower left indicates the x , y and z axes. (b)
Magnetic phase image for a projection along the z direction. (c) Magnetic phase image
for a projection along the y direction. Both magnetic phase images are calculated for a
FOV of 320× 320 nm2, corresponding to Nu ×Nv = 64× 64 pixels.
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Figure 6.2.: (a) Vector plot of the magnetisation of a magnetised disc of radius R = 80nm
and thickness t = 80nm in a volume of 160 × 160 × 160 nm3. The disc supports a
clockwise vortex state in the yz plane. The grid spacing is a = 5nm, which results in a
size of Nx ×Ny ×Nz = 32 × 32 × 32 pixels along the axes. The core of the disc has a
radius of 20 nm and is magnetised in the positive x direction, as indicated by red arrows.
The colour wheel in the upper right corner describes the direction of magnetisation in
the xy plane. White arrows point in the positive z direction, while black arrows point in
the negative z direction. The coordinate system at the lower left indicates the x, y and
z axes. (b) Magnetic phase image for a projection along the z direction. (c) Magnetic
phase image for a projection along the x direction. Both magnetic phase images are
calculated for a FOV of 320× 320 nm2, corresponding to Nu ×Nv = 64× 64 pixels.
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Figure 6.3.: (a) Vector plot of the magnetisation of a magnetised disc of radius R = 80nm
and thickness t = 90nm in a volume of 160×160×160 nm3. The grid spacing is a = 5nm,
which results in a size of Nx×Ny×Nz = 32× 32× 32 pixels along the axes. The disc is
built out of three layers, each of which has a thickness of 30 nm. The uppermost layer
supports a clockwise magnetic vortex with a smooth core. The magnetisation of the
core points in the positive z direction. The lowermost layer supports a counter-clockwise
magnetic vortex with a smooth core, whose magnetisation points in the negative z dir-
ection. The two vortices are separated by a 30 nm thick non-magnetic layer. The
colour wheel in the upper right corner describes the direction of magnetisation in the
xy plane. (b) shows the same vector plot viewed along the negative x direction. (c)
Magnetic phase image for a projection along the negative x direction. The image was
calculated for a FOV of 320× 320 nm2, corresponding to Nu ×Nv = 64× 64 pixels.
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6.2 Influence of the maximum tilt angle

6.2. Influence of the maximum tilt angle

Ideally, the two tilt series of magnetic phase images that are used as input for the
MBIR algorithm, should cover the full range of tilt angles from +90° to −90° in order
to collect information about the sample from all projection directions. However, in
practice the maximum tilt angle is often limited by the capabilities of the sample
stage of the microscope, as well as by the geometry of the sample and the holder
inside the TEM, which may result in shadowing at high tilt angles. Furthermore,
the effective thickness of the sample and its substrate can increase significantly for
tilts approaching ±90°. A realistic practical tilt range reaches maximum angles of
between 60° and 75°.
The influence of the maximum tilt angle on the reconstruction using the MBIR
algorithm is assessed in this section. For this purpose, the maximum tilt angle is
varied between ±10° and ±90° in steps of 10°. Reconstructions are performed for
all three test distributions, which were introduced in Section 6.1. 27 magnetisation
distributions are therefore retrieved in total. The angular sampling is chosen to be 5°
for all of the reconstructions. As a result, the number of magnetic phase images per
reconstruction also varies from reconstruction to reconstruction. For a maximum
tilt angle of ±10°, 10 input magnetic phase images (5 per tilt series) are required,
while for a maximum tilt angle of ±90° this number rises to 74 input magnetic phase
images (37 per tilt series). Variations in angular sampling are analysed separately
in Section 6.3. The three-dimensional mask Ξ, which determines the position of
the magnetised disc, is assumed to be known exactly. The influence of the mask
was assessed for the two-dimensional case in Section 5.3 and is discussed briefly for
the three-dimensional case in Section 6.4. The regularisation parameter is set to a
relatively low value1 of λ = 10−5 in order to isolate the influence of the maximum tilt
angle on the reconstruction from regularisation effects. It is important to note that
values for λ cannot be simply transferred from the two- to the three-dimensional
case.
The RMS error quantities, which were introduced in Section 4.4.2, are employed for
the evaluation of the reconstruction results and displayed in Fig. 6.4 as a function
of the maximum tilt angle. RMS errors are calculated from the differences between
the reconstructions and their corresponding original distributions from Section 6.1.
Figure 6.4a shows the magnitude error εmag for the two vortex structures with ho-
mogeneously magnetised core. The according directional error is shown in Fig. 6.4b.
For the disc that supports a magnetic vortex state in the xy plane, no significant
dependence on maximum tilt angle is observed. As a result of the orientation of
the magnetic vortex in the xy plane, it lies in the null space of projections that
are perpendicular to the z axis, i.e., for tilt angles of exactly ±90° about the x
or y axis, as discussed in Section 4.5.1. Projections along angles that are close to
±90° only produce weak magnetic phase images. These angles are in the tilt range

1An L-curve analysis that justifies this choice is conducted in Section 6.5.
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of the missing wedge for lower maximum tilt angles, such as ±60°. Most of the
information about the magnetic vortex is obtained from projections along the z axis,
which explains why the reconstruction works well even for maximum tilt angles of
only ±10°. The opposite situation holds for the homogeneously magnetised vortex
core in the same test magnetisation distribution, which lies in the null space for a
projection parallel to the z axis and produces no magnetic phase. The magnetic
phase contribution of the core is greatest at tilts angles of ±90° (cf. Fig. 6.2b).
Nevertheless, it was found that the vortex core is reconstructible even if only weak
phase contributions (e.g. for ±10°) are available, as the first test distribution does
not change along the z axis, as mentioned in Section 6.1
For the second test distribution, which supports a vortex state in the yz plane (cf.
Fig. 6.2), a significant dependence on the maximum tilt angle was found, as can
be seen in the form of plots of εmag and εdir in Figs. 6.4a and 6.4b, respectively.
The magnetic vortex lies in the null space of projections in the z direction and its
reconstruction therefore relies on the tilts about the x and the y axis. A signific-
ant decrease in the RMS error quantities is already apparent when relatively low
maximum tilt angles of ±30° are available. In order to illustrate the influence of
the maximum tilt angle, reconstructed magnetisation distributions for maximum
tilt angles of ±10° and ±90° are shown in Fig. 6.5. By increasing the maximum tilt
angle from ±10° to ±90°, the RMS error quantities were reduced from εmag = 0.043
and εdir = 0.016 to εmag = 0.008 and εdir = 0.002.
Reconstruction results for the third test distribution, which contains the stack of
two opposing vortices separated by a non-magnetic layer, are shown in Figs. 6.4c
and 6.4d. They are displayed separately because εmag and εdir are larger than for the
first two distributions. The errors are larger because the MBIR algorithm is allowed
to erroneously fit magnetisation within the non-magnetic layer, which is included
in the masked region, as stated in Section 6.1. In order to correctly identify the
non-magnetic layer, magnetic phase images recorded perpendicular to the z axis are
of utmost importance. These projections correspond to tilts of ±90° about the x or
y axis. For all other projection directions, the non-magnetic region is at least partly
shadowed by the two vortex layers. When compared with the test distribution that
contains a vortex in the yz plane, the most significant improvement in εmag for the
vortex stack occurs when the highest tilt angles of ±90° are included (cf. Fig. 6.4c).
The choice of maximum tilt angle does not affect the directional error εdir noticeably.
The erroneous assignment of magnetisation to non-magnetic regions emphasises the
importance of the mask Ξ, which is further examined in Section 6.4.
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Figure 6.4.: RMS error quantities plotted as a function of maximum tilt angle for three-
dimensional magnetisation reconstructions. (a) Magnitude error εmag for the vortex
distribution in the xy plane (marked in blue) and the vortex in the yz plane (marked in
green). (b) Corresponding directional error εdir. The results for the vortex stack distri-
bution are shown separately in (c) and (d) (marked in red). No significant dependence
of the errors on the maximum tilt angle can be inferred for the vortex in xy plane.
For the other two test distributions, a higher maximum tilt angle leads to a significant
improvement of the goodness of fit.
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Figure 6.5.: (a) 3D vector plot of the reconstructed magnetisation distribution of the
disc that supports a magnetic vortex state in the yz plane with a maximum tilt angle
of ±10° and an angular sampling of 5°. The colour wheel encodes the magnetisation
direction in the xy plane. (b) 3D vector plot of the difference between the original
magnetisation distribution and its reconstruction. The amplitude of the arrows is colour-
coded according to the colour bar on the left side. (c) and (d) show corresponding plots
for a reconstruction with a maximum tilt angle of ±90° and an angular sampling of 5°.
The higher maximum tilt angle significantly improves the reconstruction results. The
difference plots are shown with the same scale and a maximum value of 0.3T, which
causes the arrows in (d) to be barely visible.
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6.3. Influence of the angular sampling

This section focuses on the influence of the angular sampling on the reconstruction
results. Two sets of reconstructions are performed for each test distribution: one for
the ideal case of a maximum tilt angle of ±90° and one for the more realistic case of
a maximum tilt angle of ±60°. Reconstruction results for both maximum tilt angles
are obtained for angular samplings of 1°, 2°, 5°, 10° and 20°. The number of input
phase images varies from 14 for angles of ±60° and an angular sampling of 20° to 362
for angles of ±90° and an angular sampling of 1°. The three-dimensional mask Ξ is
assumed to be known exactly and the regularisation parameter is set to a relatively
low value of λ = 10−5. As in the previous section, the RMS error quantities εmag
and εdir are used to assess the reconstruction results.
Figures 6.6a and 6.6b show that the reconstruction results depend only slightly on
angular sampling for the first test distribution, which supports a vortex state in the
xy plane, as a result of the fact that the magnetisation distribution does not vary
along the z axis. Even when coarse angular sampling is used, the important features
of the magnetisation distribution can be effectively reproduced. The same lack of
dependence on angular sampling can be observed for the second test distribution,
which supports a vortex state in the yz plane, for a maximum tilt angle of ±90° (cf.
Figs. 6.6a and 6.6b). However, the reconstruction results do show a dependence on
angular sampling if the maximum tilt angle is decreased to ±60°. As shown in the
last section, a reduction in maximum tilt angle leads to a decrease in reconstruction
quality, due to the loss of information along the missing projection directions. Finer
angular sampling can only partly compensate for this loss of information. Results
for the vortex stack distribution are shown in Fig. 6.6c. Here, finer angular sampling
leads to an improvement in εmag for both maximum tilt angles of±60° and±90°. The
angular sampling has no significant effect on the directional error εdir (cf. Fig. 6.6d).
The influence of angular sampling on the reconstructed magnetisation distribution
of the vortex stack is shown in Fig 6.5 for a maximum tilt angle of ±90° and angular
samplings of ±20° and ±1°. The magnitude error was reduced from εmag = 0.197 to
εmag = 0.085, by changing the angular sampling from ±20° to ±1°.
In conclusion, the maximum tilt angle is more important for the quality of the
reconstruction than the angular sampling for the presented test magnetisation dis-
tributions. An angular sampling of 5° proved to be enough to produce acceptable
reconstruction results in all three cases. The orientation of the magnetic features
of the sample relative to the tilt axes also plays an important role on the quality of
the reconstruction.
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Figure 6.6.: RMS error quantities plotted as functions of angular sampling for three-
dimensional magnetisation reconstructions. (a) Magnitude error εmag for the vortex
distribution in the xy plane (marked in blue) and the vortex in yz plane (marked in
green). (b) Corresponding directional error εdir. Larger errors occur for the reconstruc-
tion of the vortex stack distribution, for which the results are shown separately in (c)
and (d) (marked in red). All of the displayed plots contain results for a maximum tilt
angle of ±90° (marked with solid lines) and for a maximum tilt angle of ±60° (marked
with dashed lines).
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Figure 6.7.: (a) 3D vector plot of the reconstructed magnetisation distribution of the
vortex stack for a maximum tilt angle of ±90° and an angular sampling of 20°, viewed
along the x axis. The colour wheel encodes the magnetisation direction in the xy plane.
(b) 3D vector plot of the difference between the original magnetisation distribution and
its reconstruction. The amplitude of the arrows is colour-coded according to the colour
bar on the left side. (c) and (d) show corresponding plots for a reconstruction with a
maximum tilt angle of ±90° and an angular sampling of 1°. The finer angular sampling
improves the reconstruction results. Both difference plots use the same colour bar scale
with a maximum value of 0.5T
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6.4. Influence of the three-dimensional mask

As discussed above, a mask that does not accurately reflect the position of the mag-
netic object can lead to artefacts. The two-dimensional case was assessed in depth in
Section 5.3. A mask that is too small increases the magnetisation in the outermost
voxels, while a mask that is too large leads to a diffusion of magnetisation from
correctly to erroneously masked regions. Equivalent artefacts also occur in three
dimensions and are exacerbated by the fact the construction of a three-dimensional
mask is not a trivial task. Although the mean inner potential contribution to the
phase can in principle be used to obtain insight about the projected positions of
magnetised objects, finding the three-dimensional mask is ultimately a tomographic
problem in itself. Depending on the tomographic approach that is used to construct
the mask, the presence of a missing wedge can lead to elongation of the mask in the
corresponding direction. In order to assess the extent of the problem, two recon-
structions of the magnetised disc that supports a vortex state in the xy plane were
performed with different masks. Two tilt series of magnetic phase images about
the x and y axes with a maximum tilt angle of ±90° and an angular sampling of
5° were created by applying the forward model to this magnetisation distribution.
The tilt series were used for both reconstructions with a regularisation parameter
of λ = 10−5. The first reconstruction used the optimal mask, which was given by
the known shape of the magnetised disc. The mask for the second reconstruction
was constructed by applying a simple discrete tomography algorithm2 to the two-
dimensional masks for all angles between ±60° (cf. [51, 52]). The missing angles
cause the mask to be extended in the form of pyramid-shaped structures above and
below the magnetised disc along the z direction.

Three-dimensional vector plots of both reconstructions are shown in Fig. 6.8. Cor-
responding central slices perpendicular to the x axis are shown in Fig. 6.9. The
reconstruction performed using the optimal mask is in very good agreement with
the original magnetisation distribution, with RMS errors that are calculated to be
εmag = 0.007 and εdir = 0.002. When using the imperfect mask, the magnetisa-
tion in the homogeneous core diffuses into the erroneously masked, pyramid-shaped
structures above and below the disc. The RMS error values rise to εmag = 0.29
and εdir = 0.035. The maximum magnetisation in the centre of the vortex core is
reduced by approximately 25% in comparison to the original distribution. Similar
outward diffusion of homogeneous magnetisation distributions when using masks
that are too large was observed for two-dimensional reconstructions in Section 5.3
(cf. Fig. 5.9a). The vortex state only diffuses into the nearest neighbouring voxels,
which is also in agreement with the results for the two-dimensional reconstructions.

2The discrete tomography algorithm uses the transposed projection matrices Pb to calculate
three-dimensional back-projections of the two-dimensional masks. These back-projections are
then summed up and a threshold is used to define which voxels lie inside and outside the mask.
The strictest setting defines the mask as the three-dimensional region where all back-projections
overlap.
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Figure 6.8.: (a) 3D Vector plot of the reconstructed magnetisation distribution of the
vortex state in the xy plane for an optimal mask. The colour wheel encodes the magnet-
isation direction in the xy plane, while white arrows point in the positive z direction. A
view along the x axis is shown in (b). Equivalent plots are shown in (c) and (d) for a re-
construction performed using a mask that was generated by applying a simple discrete
tomography algorithm to the two-dimensional masks available for all angles between
±60°. The magnetisation of the homogeneous core diffuses into the erroneously masked
regions. This diffusion is visible in (d) as small white arrows above and below the mag-
netised disc. The vortex does not diffuse significantly. The backgrounds of the views
along the x axis in (c) and (d) are set to a darker tone to increase visibility of the white
arrows.
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Chapter 6 Magnetisation reconstruction in three dimensions

The results once more emphasise the importance of a correctly assigned mask for
the reconstruction process.

1.02 T40 nm

(a)

0.771 T40 nm

(b)

Figure 6.9.: (a) Central slice viewed along the x direction of the vector plot shown in
Fig. 6.8b for the optimal mask. The colours are encoded in the same way as in the three-
dimensional vector plot, with white pointing in the positive z direction, red pointing in
the positive x direction and blue pointing in the negative x direction. The arrows only
show the magnetisation in the yz plane and not in x direction, which would be out of
plane for the slice. (b) shows the same slice for the reconstruction with an imperfect
mask, which was generated by applying discrete tomography to the two-dimensional
masks for an incomplete range of angles (cf. Fig 6.8d). The magnetisation in the
homogeneous core diffuses into the erroneously masked regions, reducing the maximum
magnetisation in the centre of the core by approximately 25% (denoted by the arrow at
the lower right). The input phase images for both reconstructions were calculated for a
maximum tilt angle of ±90° in steps of 5°.

6.5. Reconstruction in three dimensions with noise
and phase ramps

In this section, a realistic three-dimensional reconstruction that is affected by Gaus-
sian noise, phase offsets and ramps is conducted for the first test distribution, which
supports a vortex state in the xy plane and a homogeneous core pointing in the
z direction. It is assumed that the mask is known accurately for the following re-
constructions. Input phase images were constructed by applying the forward model
based on the RDFC approach to the chosen magnetisation distribution for a limited
angular range between ±60° and an angular sampling of 5° about both the x and
the y axis. Gaussian noise with σε = 100mrad was added to all magnetic phase
images to emulate experimental conditions. This level of noise is representative of
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that measured in the experimental phase image in Section 5.6. In addition, a phase
offset and a phase ramp were added to each magnetic phase image. The offsets
were chosen randomly from a uniform distribution with a range of ±5 rad, while the
slopes of the ramp in the u and the v directions were chosen independently from
ranges of ±10 mrad

nm . Figure 6.10 shows a resulting input magnetic phase image for
a projection along the z axis to illustrate the level of noise. Figure 6.11 displays a
selection of other phase images of the same tilt series about the x axis, in order to
show the variation in phase offsets and phase ramps.
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Figure 6.10.: Simulated input magnetic phase image for the three-dimensional magnet-

isation reconstruction of a vortex state in the xy plane for a tilt angle of 0° about the
x axis. Gaussian noise with σε = 100mrad has been added, as well as a phase offset of
3.5 rad and phase slopes of −8.0 mrad

nm in the u direction and 5.1 mrad
nm in the v direction.

The two-dimensional projection of the mask is marked by a dashed line.

An L-curve analysis was performed for the three-dimensional reconstruction in order
to determine an optimal regularisation parameter λ, as described in Section 5.6.
The reconstructions included fits of phase ramps and offsets. Figure 6.12 shows
the resulting L-curve, which suggests values between λ = 0.1 and λ = 10. A
regularisation parameter of λ = 1, approximately at the point of the maximum
curvature, was therefore chosen for the reconstruction.
The resulting reconstructed magnetisation distribution is displayed as a vector plot
in Fig. 6.13a. Figure 6.13b shows the difference between the reconstructed and
original magnetisation distribution in the form of a vector plot. The corresponding
RMS measures of εmag = 0.035 and εdir = 0.010 are indicative of the quality of the
reconstruction (cf., e.g., Fig. 6.4).
The centre of the homogeneously magnetised core of the vortex structure was chosen
as a point of interest for further analysis. The averaging kernel rows for the x, y and
z components of the chosen voxel were calculated and the resolution of the recon-
struction was determined by analysing the corresponding FWHM. Figure 6.14 shows
slices through the averaging kernel rows, which provide a visual representation of the
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Figure 6.11.: Simulated input magnetic phase images the for three-dimensional magnet-
isation reconstruction of a vortex state in the xy plane for tilts about the x axis. Only
every other phase image (in 10° steps) is displayed, with the exception of the 0° tilt im-
age, which is shown in Fig. 6.10 instead. Gaussian noise with σε = 100mrad has been
added to all of the magnetic phase images. Phase offsets were chosen randomly from a
uniform distribution with a range of ±5 rad. Phase ramps with slopes in the u and the
v directions were chosen from ranges of ±10 mrad

nm . All of the images are displayed with
the same phase range, as indicated by the colour bar. The two-dimensional projections
of the mask are marked by dashed lines.

136



6.5 Reconstruction in three dimensions with noise and phase ramps

103 104 105

‖Fx− y‖2
S−1
ε

100

101

102

103

104

105

106

107

1 λ
‖x
‖2 S
−

1
a

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

re
gu

la
ri

sa
ti

on
pa

ra
m

et
er
λ

Figure 6.12.: L-curve analysis for the three-dimensional reconstruction of a magnetised
disc that supports a magnetic vortex state in the xy plane under the influence of noise,
phase offsets and phase ramps. Regularisation parameters of λ = 0.1 to λ = 10 at the
corner of the curve provide optimal reconstruction results.
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Figure 6.13.: (a) 3D vector plot of the reconstructed magnetisation distribution of a disc
that supports a magnetic vortex state in the xy plane under the influence of noise. The
colour wheel encodes the magnetisation direction in the xy plane. (b) 3D vector plot
of the difference between the original magnetisation distribution and its reconstruction.
The amplitude of the arrows is colour coded according to the colour bar on the left side.
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reconstruction resolution. The reconstruction resolution for all spatial directions of
the three components is listed in Tab. 6.1. The resolution ranges from 12.1 nm (ca.
2.5 pixels) to 31.9 nm (ca. 6.5 pixels). It is striking that each component exhibits its
worst resolution along its corresponding axis. This phenomenon can be explained
by the shape of the averaging kernel rows, which resemble the magnetic field of a
dipole, as mentioned in Section 5.1.
The mean saturation magnetic induction of the reconstructed magnetisation distri-
bution is calculated to be 0.911± 0.045T, which is close to the value of Bsat = 1T
that was used in the original distribution. A calculation of the reconstruction
noise from the input noise level σε, according to Eq. 4.39 in its simplified form
(cf. Eq. 4.35), yields a value of 0.021T. The reconstruction noise accounts for
approximately half of the standard deviation of the reconstructed saturation mag-
netic induction. The difference may be explained by the missing tilt angles and by
the phase offsets and ramps, which are not taken into account in the calculation of
the reconstruction noise, but increase the standard deviation in the reconstruction.
Just as for the two-dimensional case, the ability of the MBIR algorithm to retrieve
features of a magnetisation distribution depends on the geometry of the object, the
available magnetic phase images and the noise that they contain.

Table 6.1.: Overview of the resolution of the reconstruction at a central point of interest,
summarising the resolution values for all three components in all spatial dimensions.
Each row is calculated from the FWHM values of an averaging kernel row, which cor-
responds to the respective vector component.

Vector-component x resolution y resolution z resolution
x component 20.8 nm 12.1 nm 12.1 nm
y component 12.1 nm 20.8 nm 12.1 nm
z component 17.2 nm 17.2 nm 31.9 nm
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Figure 6.14.: (a) Slice in the xy plane of the averaging kernel row of the x component of
a central point of interest for the reconstruction shown in Fig. 6.13. The colour wheel
encodes the magnetisation direction in the xy plane. White indicates magnetisation
pointing in the positive z direction, while black indicates magnetisation pointing in the
negative z direction. (b) Equivalent slice for the y component for the same point of
interest. (c) Slice in the xz plane of the averaging kernel row for the z component for
the same point of interest. The arrows only show the in-plane magnetisation of the
corresponding slices and not the out-of-plane component.
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6.6. Summary

In this chapter, the reconstruction of three-dimensional magnetisation distributions
was assessed and discussed. Most of the techniques that were previously used to
address artefact sources in two dimensions could be transferred to three dimensions.
However, unique challenges had to be solved for reconstructions from tilt series of
phase images. The influence of the maximum tilt angle and the angular sampling
were analysed with the aid of three test distributions, which incorporated magnet-
isation distributions that were introduced in earlier chapters. The maximum tilt
angle had the greatest influence on the reconstruction results. Magnetic features
in or near the null space of the projections along missing angles were found to be
particularly difficult to reconstruct. Finer angular sampling was shown to improve
reconstruction, but could not be used to recover features that were lost due to miss-
ing angles. Missing angles also influenced the three-dimensional mask, which was
not as easy to determine as in two dimensions. A diffusion of magnetisation into er-
roneously masked regions was observed for masks that were too large. This artefact
is equivalent to the one discussed in Section 5.3. In order to guarantee the best re-
construction results, the use of specialised discrete tomography algorithms should be
explored in the future. The chapter closed with a reconstruction from two simulated
tilt series with a limited tilt angle range and phase images that were affected by noise
and random phase offsets and phase ramps to emulate experimental circumstances.
Despite these artefacts, the MBIR algorithm proved to be able to accurately re-
construct magnetisation distributions, confirming the capabilities of the technique.
The algorithm should now be applied to experimental data sets that are affected by
additional sources of error, such as the misalignment of the original phase images
and an imprecise knowledge of the sample tilt directions. The diagnostic techniques
that have been developed within this thesis are promising tools for addressing these
issues and overcoming the resulting challenges.
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In this thesis, a new model-based iterative reconstruction (MBIR) algorithm was de-
veloped for the retrieval of two-dimensional projected in-plane magnetisation distri-
butions from individual magnetic phase images and three-dimensional magnetisation
distributions from tilt series of magnetic phase images. An optimised forward model
was developed to map a magnetisation distribution onto one or more phase images
at each iteration step. This model satisfies the demands of the MBIR algorithm for
fast computation speed and a precise representation of the underlying physics. By
utilising the linear nature of the underlying equations, the forward model was ex-
pressed as a matrix equation and split into sub-problems for each phase image. The
matrix for each sub-problem was further separated into the projection of the three-
dimensional magnetisation distribution onto a two-dimensional vector field and a
subsequent calculation of the magnetic phase image. The latter calculation was de-
scribed by a phase mapping matrix, which involves convolutions for each of the two
vector field components of the projected magnetisation. An efficient implementation
of the projection was achieved by applying sparse matrix calculations.

The dense nature of the phase mapping matrix necessitated a more sophisticated
technique. In this RDFC (“real space discretisation, Fourier space convolution”)
approach, the magnetisation distribution and the convolution kernels are discret-
ised in real space to avoid Fourier related artefacts. Known analytical solutions for
pixel-sized magnetic discs were employed to pre-compute look-up tables for the con-
volution kernels and to define an efficient phase mapping operator. In a comparison
with an approach based on Fourier space discretisation, the clear superiority of the
RDFC approach was demonstrated in terms of both computation time and the ac-
curacy of the resulting phase images. Equivalently optimised implementations were
derived for the derivative and the adjoint of the forward model. These operators are
essential for the development of the MBIR algorithm.

In a first step, the originally ill-posed inverse problem of reconstructing magnetisa-
tion distributions from phase images was substituted by a least square minimisation
problem to guarantee the existence of a solution. In addition, several regularisation
techniques were employed to select the most reasonable reconstruction result from
a pool of possible solutions. A priori knowledge about the position and size of
the magnetised regions was incorporated in the form of a three-dimensional mask,
in order to significantly reduce the number of retrieval targets. Tikhonov regular-
isation of first order was modelled after the macroscopic expression for the mag-
netic exchange energy of the magnetisation distribution, effectively searching for
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a smooth solution. The MBIR algorithm then searches for a magnetic state that
minimises a cost function, which combines least square minimisation with all of the
mentioned regularisation techniques. The strength of the regularisation then bal-
ances the agreement of the reconstructed solution with the measurements against
the a priori constraints. By making use of the linearity of the forward model, the
minimisation of the cost function was facilitated by employing conjugate gradient
methods.

In order to evaluate the quality of the reconstructed magnetisation distributions,
diagnostic tools based on optimal estimation were introduced. One such tool is
the averaging kernel, which describes how a true solution is distorted by the re-
construction and which can be used to quantify the resolution of the reconstructed
magnetisation. Another tool is the gain matrix, which determines the effect of
errors in the recorded magnetic phase images on the reconstructed magnetisation
distribution.

An examination of the null space of the projection matrix revealed that two op-
timally orthogonal tilt series are required to reconstruct all of the features in a
three-dimensional magnetisation distribution. If only one tilt series is available,
then curls around the tilt axis lie in the null space of the system matrix and can-
not be recovered. Singular value decomposition was used to examine the phase
mapping matrix. A non-trivial null space was found, confirming the existence of
non-retrievable projected magnetisation distributions, such as a Halbach disc.

In the course of this thesis, a software package was written in the Python program-
ming language to include implementations of the MBIR algorithm, the optimised
forward model, as well as the diagnostic tools for the assessment of reconstructed
magnetisation distributions.

The MBIR algorithm was applied to simulated phase images for the reconstruction
of two- and three-dimensional magnetisation distributions. Artefacts resulting from
magnetisation sources outside the field of view were assessed for two-dimensional
reconstructions. Phase offsets and ramps in each magnetic phase image were fit-
ted, providing a flexible and computationally cheap way of dealing with sufficiently
distant sources of magnetisation. This approach was shown to work in both, the
two- and the three-dimensional case. It can also account for phase offsets that are
introduced during the reconstruction of a magnetic phase image from off-axis elec-
tron holograms. Furthermore, it deals with phase ramps from specimen charging or
changes to the biprism wire over time. For magnetisation sources in the close vicin-
ity of the field of view, buffer pixels were introduced to provide additional degrees
of freedom to compensate for the magnetic fields which can influence the magnetic
phase in the field of view. If the position of the biprism is known, then the algorithm
can also take into account the influence of the perturbed reference wave. Other arte-
facts in magnetic phase images could be tackled by setting their confidence value to
zero, effectively excluding them from the MBIR algorithm.
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For three-dimensional reconstructions from tilt series of simulated magnetic phase
images, the influence of maximum tilt angle and angular sampling was assessed.
For a test distribution that did not exhibit a variation along the z axis, accurate
reconstruction could be achieved even for low maximum tilt angles and angular
sampling. For two other test distributions in which there was a stronger variation
along the z axis, the reconstruction results were more sensitive to the maximum tilt
angle than to the angular sampling.

Both, two- and three-dimensional magnetisation distributions were successfully re-
constructed from simulated phase images under the influence of Gaussian noise.
Regularisation parameters, which adequately balanced agreement with the meas-
urements and with a priori constraints, were found using L-curve analyses. The
power of the applied regularisation lies in its ability to suppress noise. However,
strong regularisation can lead to over-smoothing of magnetic features of interest. In
order to assess the severity of this effect, diagnostic tools were utilised to estimate
the maximum sizes of resolvable magnetic features.

Incorrect assignment of the mask that defines the size and position of the mag-
netised regions was identified as one of the main sources of error in both two and
three dimensions. Diffusion of magnetisation into erroneously masked regions was
observed for overestimated mask sizes. In contrast, reconstruction with an under-
estimated mask suffers from compression of magnetisation at the borders of the
masked regions, leading to locally overestimated values. In three dimensions, ac-
curate determination of the position and size of magnetised regions is particularly
challenging. In future studies, discrete tomography algorithms, which are dedicated
to the detection of magnetised regions, could be applied in combination with the
MBIR algorithm.

Reconstruction of the projected in-plane magnetisation from an experimental mag-
netic phase image of a two-dimensional lithographically patterned cobalt struc-
ture was successfully conducted. The reconstructed magnetisation strength was
in agreement with the literature. The feasibility of the MBIR algorithm for three-
dimensional experimental studies was demonstrated by reconstructing a three-dimensional
magnetisation distribution from a set of simulated phase images with a limited an-
gular range under the influence of Gaussian noise and random phase offsets and
phase ramps, to emulate experimental limitations.

Future improvements to the MBIR algorithm that has been developed in this thesis
include the use of feedback loops between the algorithm and micromagnetic simu-
lations, in order to further ensure that the reconstruction is consistent with known
physical laws. Whereas this thesis used the Euclidean norm L2, which was mo-
tivated by exchange energy minimisation, other forms of regularisation could be
explored. Examples include the zero norm L0 and the Manhattan norm L1, which
are better at handling sharp boundaries and could reduce the diffusion in the case
of overestimated masks. However, these norms would necessitate more complicated
minimisers for the MBIR algorithm. The next step for three-dimensional recon-
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structions is the application of the MBIR algorithm to experimental phase images.
Additional sources of errors, such as the misalignment of different phase images, er-
rors in the determination of the correct tilt angles, specimen charging or dynamical
diffraction, should be examined and the MBIR algorithm will have to be adapted
accordingly. The algorithm and the accompanying diagnostics presented by this
thesis will provide valuable tools for the examination of magnetisation distributions
with off-axis electron holography in the future.

144



A. Appendix

A.1. Fringe spacing of an electron hologram

+ 

𝛼 

E

Figure A.1.: Schematic illustration for the derivation of the interference fringe spacing
in an electron hologram. The beam paths between the back-focal plane and the image
plane with distance L are displayed as blue cones. The beams are deflected by the
biprism, which results in two virtual electron sources with distance d. The virtual
beam paths for a point with distance x from the optical axis are marked in red. Their
difference yields the path difference ∆s.

In this section, the interference fringe spacing in an electron hologram is derived. In
the off-axis electron holography scheme, the object and reference waves are deflected
by a (usually positively) biased biprism. The deflection results in two virtual electron
sources and causes the waves to interfere in the image plane under the superposition
angle α. The according geometry is schematically illustrated in Fig. A.1. The path
difference ∆s can be determined by following the steps described by Reimer and
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Kohl [137]. For a point with distance x to the optical axis, a distance d between the
virtual sources and a distance L between the back focal plane and the image plane,
∆s is calculated to:

∆s =
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L
≈ αx. (A.5)

A Taylor expansion can be applied in the third step, because x, d� L, to simplify
the two square roots1. In the last step, a small-angle approximation d

L
= sin (α) ≈ α

can be applied. Constructive interference can be observed when the path difference
is ∆s = nλ, with n ∈ N. The interference fringe spacing is therefore given by2:

∆x = λ

sin (α) ≈
λ

α
= 2π
kα
, (A.6)

with k being the wave number of the electron wave.

A.2. Setup of weighting and projection matrices

This section provides instructions on how to implement the projection matrices Pb

and the corresponding weighting matrices Wb that are used in the RDFC approach.
Projections along the major axes of the three-dimensional coordinate system and
projections with tilts about the x or y axis are discussed.

A.2.1. Projections along the major axes

The simplest projections are performed along one of the three major axes x, y or
z. The vector components in three dimensions are then mapped onto the projected
components in two dimensions without intermixing them. The coefficients for the

1√1 + x2 ≈ 1
2
(
1 + x2)

2A small-angle approximation is used, which is valid for small deflections by the biprism.
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weighting matrices in Eq. 3.13 are therefore either one or zero, which leads to the
following expressions for the projection matrices3:

Pb,z =
(

Wb,z 0 0
0 Wb,z 0

)
, (A.7)

Pb,y =
(

Wb,y 0 0
0 0 Wb,y

)
, (A.8)

Pb,x =
(

0 0 Wb,x

0 Wb,x 0

)
. (A.9)

The weighting matrix Wb is very sparse and has only NxNyNz non-zero entries,
that is exactly one value of 1 for each voxel in the three-dimensional space. When
projecting along the major axes, each voxel is mapped to exactly one pixel of the
projected coordinate system, i.e., the magnetisation of one voxel is not spread over
several pixels. If the number of voxels along the chosen projection direction is
denoted by Nproj, then each row of Wb has exactly Nproj entries with a value of one,
that is one for each slice along the projection direction. Due to the sparsity of Wb,
it can be described in terms of a sparse sorted row matrix, defined by three arrays:

data: An array that contains NxNyNz entries with value 1.

indices: An array with the same length as data that contains indices denoting
the columns where the non-zero-entries of the data array reside. This
array depends on the projection direction (see below).

indptr: An array of pointers, where two consecutive values determine the index
range of data and indices for a given row. The column indices and data
entries of row r are therefore given by indices [indptr [r] : indptr [r + 1]]
and data [indptr [r] : indptr [r + 1]], respectively. Here, it is given as
[0, Nproj, 2Nproj, . . . , NxNyNz].

For the sake of simplicity, it is assumed that the projection dimensions u and v have
the same length as their three-dimensional counterparts x, y, and z. A relaxation of
this assumption, i.e., an increase in the projected FOV, would just lead to a trivial
addition of rows full of zeros that correspond to pixels not hit by the projection of
the magnetisation4.

Below, the indices array will be described for all three major axis projections. The
index r ∈ N0 < NuNv is used to iterate over the rows of Wb, while index i is used
to iterate over the entries in each row (Fig. A.2 shows examples of the resulting
matrices).

3The intuitive notion that the x component will map to the u component and the y component
to the v component of the projected in-plane magnetisation was preserved. The z component
is therefore mapped to the u component for a projection Pb,x along the x axis.

4Two equal consecutive numbers in indptr mean that this row has no non-zero entries.
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• For a projection along the z axis, the projection direction is defined by
Nproj = Nz and the two projected dimensions are given by Nu = Nx and
Nv = Ny. The indices for a specific row r are given by:

[r + i ·NxNy, for i ∈ N0 < Nz] . (A.10)

• For a projection along the y axis, the projection direction is defined by
Nproj = Ny and the two projected dimensions are given by Nu = Nx and
Nv = Nz. The indices for a specific row r are given by5:

[r mod Nx + br/Nxc ·NxNy + i ·Nx, for i ∈ N0 < Ny] (A.11)

• For a projection along the x axis, the projection direction is defined by
Nproj = Nx and the two projected dimensions are given by Nu = Nz and
Nv = Ny. The indices for a specific row r are given by:

[(r mod Nz) ·NxNy + br/Nzc ·Nx + i, for i ∈ N0 < Nx] (A.12)

The sparsity of Wb is critical for the performance of the reconstruction algorithm.
In the case of a major axis projection, a total of NxNyNz non-zero entries, scattered
in a matrix of size NuNv × NxNyNz , leads to a density (defined as the inverse of
the sparsity) of 1/NuNv. If all axes have, e.g., a length of 256 pixels, the density is
just 0.0015%.

A.2.2. Projections with tilts about the x or y axis

For the reconstruction of three-dimensional magnetisation distributions, projections
along the major axes alone are generally not sufficient. In practice, the projection
direction is fixed to the negative z direction by the experimental setup of the electron
microscope. It is the sample which is tilted about the x or y axes, perpendicular
to the projection direction. To facilitate this tomographic approach, projection
matrices Pb,x−tilt and Pb,y−tilt have to be constructed, which can be expressed as

Pb,x−tilt =
(

Wb 0 0
0 cos (φ) Wb sin (φ) Wb

)
, (A.13)

Pb,y−tilt =
(

cos (φ) Wb 0 sin (φ) Wb

0 Wb 0

)
. (A.14)

These two matrices are very similar to Pb,z in Eq. A.7. For Pb,x−tilt, the difference
lies in the fact that the z component in three-dimensional space (which is lost in
Pb,z) is mixed into the resulting v component by cosines and sines of the tilting angle
φ. For Pb,y−tilt, the z component is mixed into the u component of the projection
instead.

5bxc is the “floor” function, which maps a real number to the greatest preceding integer.
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(a)

(b)

(c)

Figure A.2.: Weighting matrices (a)Wb,z, (b)Wb,y and (c)Wb,x for a three dimensional
volume with Nz = 2, Ny = 3 and Nx = 4. Elements with value one are marked in
green, the rest of the matrix contains zeros. Vertical dashed lines indicate a jump in
the y coordinate, the vertical solid line indicates a jump from z = 0 to z = 1. The
horizontal dashed lines indicate a jump in the v coordinate.
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(a)

𝛟

(b) (c)

Figure A.3.: Schematic diagram illustrating a projection for a tilt about the y axis. (a)
shows the three-dimensional problem, which can be reduced to an assortment of two-
dimensional problems, by slicing the 3D volume and its 2D projection perpendicular
to the tilting axis (one such slice is marked in green). (b) shows one slice, viewed
along the tilt axis and perpendicular to the xz plane. The centre point of each pixel
is projected down onto the pixel slice. In the case of a tilt about the y axis, this is
the u axis of the projection (further explained in the main text). (c) A cubic voxel
is approximated by a cylinder (viewed here along its symmetry axis) with the same
volume. This approximation is then used to find the impacted pixels in the projection
slice and to calculate how the three-dimensional magnetisation is distributed among
these impacted pixels, as further described in Fig. A.4.
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The dependence of the weighting matrix Wb on the tilting angle φ is discussed
below. It is assumed that the rotation axis goes through the centre of the three-
dimensional volume (cf. Fig. A.3a). The number of pixels along the tilting axis
in the projected coordinate system is denoted Ntilt, the number of pixels along the
second, perpendicular axis is denoted Nperp. Nperp should be larger than Ny (for a
tilt about x) or Nx (for a tilt about y), so that no magnetisation is possibly projected
outside of bounds. For a rotation around the x axis Ntilt = Nu andNperp = Nv > Ny

and for a rotation around the y axis, the situation is reversed, i.e., Ntilt = Nv

and Nperp = Nu > Nx. The 2D and 3D grids stay aligned along the tilting axis,
even after tilting. Subsequently, each slice of voxels (the “voxel slice”) of the three-
dimensional distribution is projected onto exactly one strip of pixels of the two-
dimensional projection, which is termed the “projection slice” (marked in green
in Fig. A.3a). The weights of the voxels onto the pixels is the same for each slice,
effectively reducing the calculation of the weighting matrix Wb to a two-dimensional
problem.
To calculate the weights, the positions of the projections of the voxel centres along
the projection slice have to be determined first. For this purpose, a set of vectors
ν [i, j] which point from the voxel slice centre (marked in red in Fig. A.3b) to each
voxel centre with indices ij in the slice is introduced. The distance of those voxels to
a central projection line with direction eproj =

(
cos (φ) ,− sin (φ)

)
through the voxel

slice centre is given by ‖eproj × ν [i, j]‖. Because the distance calculation does not
distinguish between voxels left or right from the central projection line, the value of
the out-of-plane component of the cross product [eproj × ν [i, j]]⊥ is taken instead of
the norm, so that the sign is preserved. This way, positions on the left of the central
projection line are negative and positions on the right are positive. To correctly
relate the positions to the origin of the projected coordinate system, the term Nperp

2 a
with grid spacing a has to be added, assuming the three-dimensional distribution
and the projected two-dimensional distribution are symmetrically centred around
the tilt axis. This leads to the following formula for the positions p [i, j] along the
projection slice for each voxel with indices ij:

p [i, j] = [eproj × ν [i, j]]⊥ + Nperp

2 a (A.15)

In contrast to a projection along a major axis, where each voxel only impacts one
pixel of the projected distribution, a voxel of a tilted distribution could impact
several pixels at once. To identify which pixels are hit by the projection of a voxel,
the voxel volume is approximated by a cylinder that is oriented along the tilt axis,
because its projection is mathematically easier to describe than that of a tilted cube
(cf. Fig. A.3c). The magnetisation and therefore the volume of this approximation
have to be preserved. For a radius R of the cylinder, this means:

Vvoxel ≡ a3 != πR2a ⇔ R = a√
π
≈ 0.56a. (A.16)

The leftmost impacted pixel is defined by the left border of the projection of the
cylinder at p−R and has index h =

⌊
p−R
a

⌋
. The rightmost impacted pixel is defined
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by the right border at p + R and has index h =
⌊
p+R
a

⌋
. This means that one voxel

can impact at most three pixels (cf.. Fig. A.4). The density of Wb is therefore at
most 3/NuNv. If the centre of an impacted pixel lies at position uh along the u axis,
then its borders can be found at positions uh ± a

2
6.

In a reference frame centred around the projected position p of a voxel (cf. Eq. A.15)
along the u axis, the borders of the impacted pixel (relative to p) are given by

u± ≡ uh ±
a

2 − p. (A.17)

In this reference frame, the formula for a half circle with radius R and area AI = πR2

2
is given by the expression

f (u) =
√
R2 − u2 u ∈ [−R,R] (A.18)

The weight of a voxel, that is projected onto position p, on an impacted pixel at
position uimp is then given by the normalised integral over f (u) along its diameter:

w (ul, ur) = 1
AI

∫ ur

ul

f (u) du (A.19)

= 2
πR2

∫ ur

ul

√
R2 − u2du (A.20)

= 2
πR2

[
1
2

(
u
√
R2 − u2 +R2 arctan

(
u√

R2 − u2

))]ur
ul

(A.21)

= 1
π

 uR
√

1−
(
u

R

)2
+ arctan

 uR 1√
1−

(
u
R

)2



ur

ul

(A.22)

≡ wr (ur)− wl (ul) . (A.23)

Because f (u) is only defined on the interval [−R,R], special care has to be taken
of the integration borders, which are given by the expressions

ul = max
(
uh −

a

2 − p,−R
)
, ur = min

(
uh + a

2 − p,R
)
. (A.24)

If the left border of an impacted pixel does not intersect the cylinder, the left
integration border ul is set to the leftmost point ul = −R of the cylinder, leading
to a minimal value of wl (−R) = −1

2 . Similarly, if the right border of an impacted
pixel does not intersect the cylinder, the right integration border ur is set to the
rightmost point ur = R, leading to a maximum value of wr (R) = 1

2 . Both situations
can’t occur simultaneously for the same pixel, because the cylinder diameter 2R > a

6The u axis is chosen here as an example for a tilt about y. Similarly, the v axis could have been
chosen for a tilt about x.
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(a) (b) (c)

Figure A.4.: Weight calculation via integration over a circle segment, which is marked
by the orange area. The normalised areas of the marked segments indicate the weights
of a voxel onto the impacted pixels. ul and ur denote the left and right integration
borders, while p denotes the “impact” coordinate of the projected voxel centre onto the
projection slice. uimp denotes the centre of the impacted pixel of width a, whose borders
are indicated by the vertical dashed lines. (a) shows a case where only the left border
of an impacted pixel intersects the circle, in (b), both borders and in (c), only the right
border intersects it.

(cf. Eq. A.16), i.e., w (ul, ur) < wr (R)− wl (−R) = 1 (a projected voxel can never
influence only one pixel).

After calculating the weights for all voxels of one slice, all other slices can be filled
with the same values. The corresponding matrix is sparse and can be defined by
three arrays:

data: An array of all non-zero data entries, which contain the calculated weights
that were derived above.

columns: An array of the column indices c, representing all three-dimensional
voxels of the magnetisation distribution.

rows: An array of row indices r, representing all two-dimensional pixels of the
projection.

In summary, the entries of the weighting matrix Wb are calculated following these
instructions:

• Iteration over all voxels of one slice. A slice is determined by an index s ∈
N0 < Ntilt. The voxels contained within are indexed by j along the projection
axis and i along the axis perpendicular to the tilt axis. Each voxel corresponds
to a column in Wb with an index given by the expressions

cx−tilt [i, j, s] = j ·Nx ·Ny + i ·Nx + s, (A.25)
cy−tilt [i, j, s] = j ·Nx ·Ny + s ·Nx + i. (A.26)
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• Determination of the impacted pixels, which are indicated by index h along
the projection slice, for each voxel of the slice. Each pixel corresponds to a
row in Wb with a row index given by the expressions

rx−tilt [h, s] = h ·Nu + s, (A.27)
ry−tilt [h, s] = s ·Nu + h. (A.28)

• Calculate the weight for each impacted pixel like described above and write it
into the sparse matrix at row index rx−tilt/ry−tilt and column index cx−tilt/cy−tilt
for all slices s.

By using the fact that weights for all slices are equal, the number of weight calcula-
tions can be reduced by a factor of Nx for tilts about the x axis and by a factor of
Ny for a tilt about the y axis, which significantly improves the performance of the
algorithm. Examples for the weighting matrix Wb are shown in Fig. A.5.
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(a)

(b)

Figure A.5.: Weighting matrices for (a) a 45° tilt about the y axis and (b) a 45° tilt
about the x axis. Non-zero elements are marked in green, with the saturation indicating
their values. White elements of the matrix contains zeros. Vertical dashed lines indicate
a jump in the y coordinate, the vertical solid line indicates a jump from z = 0 to z = 1.
The horizontal dashed lines indicate a jump in the v coordinate.
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A.3. Optimal estimation and Bayesian interpretation

In this section, the Bayesian interpretation that leads to optimal estimation linear
diagnostics is illuminated. The norm weights S−1

ε and S−1
a are interpreted as in-

verse covariance matrices (see Eq. 4.14). Optimal estimation diagnostics are mainly
used in geosciences, particularly atmospheric sounding and the following derivation
closely follows Rodgers [116] (also see [72] for a comprehensive summary). Under
the assumption that Gaussian statistics are applicable to the measurements y and
the retrieved magnetisation state x, multidimensional Gaussian probability density
functions (PDF) can be defined7:

P (y|x) = 1
(2π)m/2 |Sε|

exp
[
−1

2 (Fx− y)T S−1
ε (Fx− y)

]
(A.29)

P (x) = 1
(2π)n/2 |Sa|

exp
[
−1

2x
TS−1

a x
]

(A.30)

P (x|y) = 1
(2π)n/2 |Sx|

exp
[
−1

2 (x− xrec)T S−1
x (x− xrec)

]
(A.31)

which are multidimensional generalisations of the one-dimensional PDF P (x) =
1

(2π)1/2σ
exp

[
− (x−x̄)2

2σ2

]
with mean value x̄ and variance σ2:

• P (y|x) describes the probability of measuring a set of phase images y, gen-
erated from a magnetisation state x.

• P (x) describes the probability of the existence of a magnetisation state x
with covariance matrix Sa, independent of and before (i.e., a priori) any phase
images y are measured. Sa (more precisely its inverse, which is used in the
regularisation) describes constraints mirroring physical laws, which ensure that
nonsensical magnetisation states have a low probability.

• P (x|y) describes the probability of the magnetic state x being present, under
the prerequisite that the phase images y have been measured (a posteriori).
This is the important quantity for inverse problem solving.

• P (y) describes the probability of a measurement y, independent of the mag-
netic state x. In practice, this is only a constant normalising factor and is
therefore not needed in the following discussion.

Bayes’s theorem states that

P (x|y) = P (y|x)P (x)
P (y) (A.32)

7In the general case, the exponent of Eq. A.30 should be − 1
2 (x− xa)T S−1

a (x− xa), contain-
ing an a priory distribution xa, which is implicitly set to the zero vector in this case. This
assumption has to be kept in mind for all further discussion.
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and describes the relation between the different PDFs. It provides an approach for
calculating the important quantity P (x|y) for inverse problem solving. Inserting
equations A.29, A.30 and A.31 into Eq. A.32 and taking the natural logarithm results
in the expression

ln (P (x|y)) = ln (P (y|x)) + ln (P (x))− ln (P (y)) (A.33)
⇔ (x− xrec)T S−1

x (x− xrec) = (Fx− y)T S−1
ε (Fx− y) + xTS−1

a x− c,
(A.34)

with c containing all terms that are independent of x. Calculating the first derivative
of both sides with respect to x yields the expression

S−1
x (x− xrec) = FTS−1

ε (Fx− y) + S−1
a x (A.35)

and taking the second derivate results in

S−1
x = FTS−1

ε F + S−1
a . (A.36)

Finally, substituting S−1
x in Eq. A.35 by using Eq. A.36 yields(

FTS−1
ε F + S−1

a

)
(x− xrec) = FTS−1

ε (Fx− y) + S−1
a x (A.37)

Due to the fact that this equation has to be valid for all magnetic states x, we
evaluate it for an arbitrary state x = x0, solve for the mean xrec of the PDF. The
result is a formula equivalent to Eq. 4.20:

xrec = x0 −
(
FTS−1

ε F + S−1
a

)−1
· FTS−1

ε (Fx0 − y) + S−1
a x0 (A.38)

≡ x0 − 2 (C′′)−1 · 1
2C

′ (x0) , (A.39)

where the covariance matrix of the magnetisation state can be expressed by the
inverse of the Hessian matrix of the costfunction as

Sx = 2 (C′′)−1
. (A.40)

A.4. Null space of a single projection matrix

This section provides a mathematical description for the (purely theoretical) split of
a projection matrix Pb to illustrate the different contributions to its null space and to
complement the discussion in Section 4.5.1. The matrix Pb describing the projection
process for one image can be expressed as a combination of a projection matrix Pb,LA

in a linear algebraic sense and a matrix Pb,CS, which conducts a coordinate system
transformation8:

Pb = Pb,CSPb,LA. (A.41)
8Note that these matrices are never constructed explicitly, they are just used as a theoretical
construct to explain the null space of Pb.
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The null space of the linear algebraic projection matrix Pb,LA is comprehensible in
a very intuitive way. Following Werner [138], a vector-space endomorphism9 P is
called a projection if it is idempotent, i.e., P2 = P. The only two eigenspaces of
a projection are the range (or “image”) range (P), assigned to eigenvalue 1, and
the null space null (P), assigned to eigenvalue 0. The range and the null space
are complementary, which means the domain of P can be expressed as the direct
sum range (P)⊕ null (P) and every vector x from the domain can be decomposed
uniquely into a linear combination of xr+xn with xr ∈ range (P) and xn ∈ null (P).

Figuratively speaking, P is a parallel projection onto the image range (P) along the
null space null (P), i.e., that all information parallel to the projection direction is
annihilated (Pxn = 0), while leaving components parallel to the projection plane
invariant (Pxr = xr). In the special case of an orthogonal projection, range and null
space are perpendicular (and with them xr ⊥ xn). For two orthogonal projections
with perpendicular projection directions, this has the implication that the null space
of one lies in the image of the other and vice versa.

In this case, Pb,LA is an endomorphism of the vectorised three-component, three-
dimensional vector space R3NxNyNz , i.e., Pb,LA ∈ R3NxNyNz×3NxNyNz , but the range
only lies in a subspace of lower dimensionality (the three-component, two-dimensional
space R3NuNv). A lot of the space is therefore empty after the projection. As a simple
example for a projection along the z direction for a small three-dimensional volume
of 2× 2× 2 voxels, the projection matrix would be given by the expression

Pz,LA =

Wz,LA 0 0
0 Wz,LA 0
0 0 Wz,LA

 , (A.42)

with

Wz,LA =



1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, (A.43)

where Wz,LA is the linear algebraic form of the weighting matrix defined in Eq. 3.13.
In this example, the magnetised volume was projected onto the first z slice. The
idempotence of the weighting matrix W2

z,LA = Wz,LA, and therefore the idem-
potence of the projection matrix P2

z,LA = Pz,LA can be easily shown.

9A linear transformation of a vector space onto itself.
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To optimise the computational efficiency, another matrix Pb,CS is applied after-
wards to discard all dimensions along which the projection took place. This matrix
effectively changes the coordinate system to the subspace defined by the image
range (Pb,LA) ∈ R3NuNv . In addition, the perpendicular component of the projec-
ted distribution is also discarded, which reduces the target subspace even further
to R2NuNv . Keeping the perpendicular component would waste computational effort,
because it does not contribute to the phase mapping (see section 3.1.4) and therefore
would always lie in the null space of the corresponding matrix Qb. The information
loss of the third vector component is shifted from the phase mapping matrix Qb to
the projection matrix Pb, because it makes the computation more efficient.
For the example of a simple z-projection above, the coordinate system conversion
can be described by

Pz,CS =
(

Wz,CS 0 0
0 Wz,CS 0

)
, (A.44)

with

Wz,CS =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

 . (A.45)

In this simple case, Wz,CS simply picks the first z slice (the target subspace of the
projection) as the new coordinate system by containing suitable standard basis vec-
tors in the first four columns. All other z slices, that do not contain any information
after the projection anyway, are discarded. Pz,CS additionally discards the z com-
ponent of the vector field, as motivated above. For projections that are not parallel
to the main axes, the according matrices are more complicated.
After examining the theoretical split of a projection matrix Pb, the two contributions
to its null space can be listed as:

• The loss of information along the projection direction, described by the linear
algebraic projection Pb,LA.

• The loss of information about the vector component perpendicular to the pro-
jection direction, facilitated by the matrix Pb,CS that changes the coordinate
system.
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A.5. Visualisation of directional properties

In this section, a colour scheme for the visualisation of vector fields and directional
properties in general is presented, which is used for vector plots in two and three
dimensions, as well as for magnetic induction maps throughout this thesis. Two
dimensional vector fields are often visualised with polar coordinates by using a col-
our wheel. The azimuth angle is encoded by hue and the amplitude is encoded by
the radial component, which usually varies in saturation from the grey centre (i.e.,
zero saturation) to the fully coloured borders of the wheel (i.e., full saturation).
Figure A.6a shows a colour wheel with four primary colours at angles of 90°, that is
often found in publications concerning electron holography, where it encodes mag-
netic induction maps. Another type of colour wheel, which is based on the HSL
colour space (i.e., hue, saturation, lightness), is also quite common and is shown in
Fig. A.6b.

(a) (b) (c)

Figure A.6.: (a) Colour wheel with four primary colours at angles of 90°, that is often
used for magnetic induction maps. (b) Colour wheel, which is based on the HSL (hue,
saturation, lightness) colour space. (c) The optimised isoluminant colour wheel based
on the cubehelix colour map. A corresponding greyscale image is shown below each
colour wheel.

The extension of these colour schemes to the visualisation of three-dimensional vec-
tor fields can be achieved by extending the polar coordinates to cylindrical coordin-
ates, with the z axis being used to encode the out-of-plane component of the vector
field. The colour property that is associated with this out-of-plane component is
the brightness. Brightness is defined as an attribute of visual sensation according to
which an area appears to emit more or less light [139]. It is a perceptual quantity
and as such has no firm measure. Many colour spaces vary in brightness along their
third dimension and nearly every one of them uses a different name and definition of
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brightness. The mentioned HSL colour space, e.g., defines the “lightness” as the av-
erage of the highest and lowest component of an RGB (red, green, blue) tuple, while
the related HSV (hue, saturation, value) space defines it as the RGB-component
average, both of which do not correspond very well to the human perception of
brightness. This poses a problem for the use in the encoding of three-dimensional
vector fields, as is revealed, when converting the colour wheels in Figs. A.6a and
A.6b to greyscale. The perceived brightness of the colour wheel is not homogeneous
for the whole colour wheel, which is especially noticeable for the HSL colour wheel,
which appears brighter for the secondary colours yellow, cyan and magenta. In an
images that is encoded with the HSL colour wheel, these differences in brightness
may be mistaken for features by an unaware observer. For three-dimensional visu-
alisation, the brightness difference in the colour wheel leads to a visual intermixture
of vector components in- and out-of-plane.
In order to address this problem, the “cubehelix” colour map which was developed
by Dave Green [140] is adapted to be used as an optimised, isoluminant colour
wheel. The original cubehelix colour map is shown in Fig. A.7a and exhibits a
linear increase in brightness, as indicated by the black straight line through the
origin. This behaviour is achieved by letting the three RGB colour components
rotate along helical paths around the desired path for the brightness in the RGB
cube. In the original cubehelix, each colour rotates 1.5 times around the brightness
path. The different amplitudes of the three helices compensate for the difference in
human brightness perception for different colours10. For the adaptation as a colour
wheel, three modifications have to be made: The brightness path is changed to a
flat line at exactly 50% brightness, the number of rotations is set to one and the
helix amplitudes are increased to optimally use the available brightness range. The
resulting colour map is shown in Fig. A.7b.
Because it starts and ends with the same colour, the colour map can be turned
into the colour wheel shown in Fig. A.6c. The greyscale image confirms a flat,
isoluminant brightness level. The optimised colour wheel is used throughout this
thesis for encoding the in-plane components of a three-dimensional vector field.
As described above, the out-of-plane component is encoded by brightness, so that
vectors that point in positive z direction are coloured white, while vectors that point
in negative z direction are coloured black. An example for a simple vector field is
shown in Fig. A.8.
For more information about colour theory, especially the different definitions of
brightness, the two online PDFs of Charles Poynton are highly recommended (see
[139, 141] at www.poynton.com).

10The receptor cells with a sensitivity peak at green wavelengths in the human eye are much
more sensitive to light than the other two types. Therefore, the according helix has a smaller
amplitude to attenuate the green contribution to the resulting colour.
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Figure A.7.: (a) Original cubehelix colour map, developed by Dave Green. Above the
map, the brightness and the three RGB colour components are shown as functions of
a colour index, which iterates from 0 to 255. (b) Modified cubehelix colour map that
produces isoluminant colours of constant brightness. In order to generate a colour wheel,
the colour map starts and ends with the same shade of red.
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Figure A.8.: Vector field plot with in-plane components encoded with the optimised
colour wheel. White arrows point in the positive z direction, black arrows point in the
negative z direction.
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