Phase-change memory devices are expected to play a key role in future computing systems as both memory and computing elements. A key challenge in this respect is the temporal evolution of the resistance levels commonly referred to as “resistance drift.” In this paper, a comprehensive description of resistance drift as a result of spontaneous structural relaxation of the amorphous phase-change material toward an energetically more favorable ideal glass state is presented. Molecular dynamics simulations provide insights into the microscopic origin of the structural relaxation. Based on those insights, a collective relaxation model is proposed to capture the kinetics of structural relaxation. By linking the physical material parameters governing electrical transport to such a description of structural relaxation, an integrated drift model that is able to predict the current–voltage characteristics at any instance in time even during nontrivial temperature treatments is obtained. Accurate quantitative matching with experimental drift measurements over a wide range of time (10 decades) and temperature (160–420 K) is demonstrated.

1. Introduction

Phase-change memory (PCM) is arguably the most advanced resistive memory technology. A PCM device consists of nanometric volumes of phase-change materials such as Ge$_2$Sb$_2$Te$_5$. The phase-change material can be rapidly and reversibly switched between the amorphous and crystalline states, leading to a significant change in its electrical properties. The resistivity of the two phases differs by orders of magnitude, opening the possibility to use the device to store information. It is also possible to achieve a continuum of resistance levels by varying the ratio of crystalline/amorphous fractions. This enables multibit storage, allowing the increase of the memory capacity of a single PCM device. This near-analog storage capability is also appealing for emerging applications in non-von Neumann computing such as computational memory. It also facilitates applications in brain-inspired neuromorphic computing where PCM devices are used to emulate synaptic and neuronal behavior. A key challenge in all these application domains is the temporal evolution of resistance levels commonly referred to as resistance drift. These resistance variations are caused mostly by the phase-change material in the amorphous phase. At constant ambient temperature, the resistance typically exhibits a temporal dependence characterized by

$$R(t) = R(t_0)(t/t_0)^{\nu},$$

where $R(t_0)$ is the resistance measured at time t_0 and ν is the so-called drift exponent. There is widespread consensus that resistance drift is caused by the spontaneous structural relaxation of the amorphous phase-change material.

In a PCM device, to induce the crystalline-amorphous phase transition, the phase-change material is melted and rapidly quenched. This creates a low-ordered highly-stressed amorphous state. Over time, this amorphous state evolves toward an energetically more favorable “ideal glass” state.

In this article, we present a comprehensive description of resistance drift based on a review and integration of several recent findings that have been published over the last few years. This manuscript aims at integrating all the relevant data and modeling efforts that were previously published in a unified manner, and includes significant additional explanations, discussions, and context to the research that was performed. We start with a peak into the microscopic origins of structural relaxation by reviewing recent insights from first-principles calculations. Next, we present a collective relaxation model that captures the kinetics of this structural relaxation. It is shown that such a model naturally gives rise to the characteristic logarithmic evolution in time. By linking material parameters governing the electrical transport to such relaxation, we can consistently capture the evolution of the current–voltage (I–V) behavior of PCM devices over time and temperature.

2. Microscopic Origin of Structural Relaxation

Recent first-principles calculations by Raty et al. Gabardi et al. and Zipoli et al. on the prototypical phase-change material GeTe provide significant insights into the microscopic
picture of structural relaxation and nature of the “ideal glass.” To identify the structural roots of resistance drift, the structures responsible for localized states in the bandgap for melt-quenched amorphous GeTe were carefully analyzed. It was found that they consist of groups of Ge atoms close to each other in which the coordination of at least one Ge atom differs from a threefold coordination with only Te atoms as nearest neighbors as shown in Figure 1a.\cite{22,27} Resistance drift is associated with a transition of these structural defects into lower-energy structures having a chemically ordered threefold bonding topology and to a removal of stretched bonds in the amorphous network.

The role of stretched and compressed bonds is further analyzed in Figure 1b by plotting the correlation between conductivity and distribution of Ge–Te bond lengths. The histograms of normalized bond polarizations and bond distances show that an increase of resistance is linked to the topology of a-GeTe tending toward less stretched and compressed Ge–Te bonds with a distance of ≈ 2.8 Å and bond polarization of 0.35 (moving from conductivity groups GR.1 to GR.5). Structures with more bonds deviating significantly from this configuration especially with respect to the bond polarization were found to be more conductive.

Figure 1. Structural relaxation in amorphous GeTe. a) Examples of structures with Ge atoms having a bond configuration different from the ideal chemically ordered threefold one are illustrated within the red contour. Such structures are responsible for localized electronic states in the bandgap. Recent studies show that resistance drift is mostly caused by a gradual transition of these structures formed during the melt-quench process toward lower energy structures having more ideal configurations. The green box shows an example of an amorphous region consisting of Ge atoms with threefold bond configurations. Ge and Te atoms are depicted as dark yellow and violet spheres, respectively. Bonds between these atoms, determined using Wannier analysis\cite{22,24} are indicated by cylinders and the surrounding bond network via thin lines. b) The link between distribution of bond configurations and conductivity is shown here. Each histogram shows the distribution of bond configurations of all the Ge–Te bonds characterized by bond polarization and bond distance. Sixty-five structures obtained via classical MD simulations and analyzed via first-principles calculations are grouped into five sets ranging from high conductivity (GR.1) to low conductivity (GR.5), see ref. \cite{22} for more details. The number of bonds in each bin normalized by the number of configurations of the group is indicated by the color scale. Amorphous states with a higher conductivity show a broader distribution. Upon relaxation, i.e., with decreasing conductivity, the distribution of Ge–Te bonds becomes sharper and outliers disappear. c) The energy profile associated with the annealing of a defective Ge–Te structure is shown. The starting condition (Panel A) produces an electronic state in the bandgap. In the final state (Panel B), i.e., after the annealing, the defective configurations causing the localized electronic state are removed. Red arrows indicate the Ge atoms with defective configurations. Green arrows indicate Ge atoms with an ideal threefold bond configuration. The minimum energy pathway at $T = 0$ K (Panel C) shows that the process occurs via a complex sequence of activated processes characterized by a changing collective activation energy. Adapted from ref. \cite{22}.
Figure 1c illustrates the energy profile associated with the reactive pathways to relax a group of three Ge atoms, two of which with coordination differing from the chemically ordered threefold bonding topology. The plot of energy versus reaction coordinate shows that the annihilation of this defect results in a lower energy configuration with all three Ge atoms having the ideal bonding configuration. The electron state localized in the bandgap associated with this defect is not present in the final configuration anymore. Unfortunately, due to the poor statistics, it is not possible to derive a distribution of activation energy barriers from those simulations. The energy profile in Figure 1c illustrates that a variety of activation energy barriers are overcome in the process of structural relaxation of amorphous GeTe.

Although the studies described in refs.[22,25,26] have some differences, they seem to agree that drift in amorphous GeTe manifests in the annihilation of defects comprising groups of Ge atoms in which the coordination of at least one Ge atom differs from that of the ideal threefold bonding configuration. An increase in resistance is correlated with the annihilation of defects accompanied by a slow evolution of the bond network toward more ideal bonding configurations. While the change in electronic band structure due to relaxation is still under debate,[22,25,28] it is commonly accepted that the resistance increase results from an increase of the activation energy for conduction upon relaxation.

Following (2), the structural defects with low activation energies relax first. Thus, over time relaxation becomes gradually more difficult as the number of unrelaxed defects decreases and the average activation energy of the remaining structural defects increases. The mathematical problem therefore comes down to counting the number of structural defects that remain to relax in order to describe the state of relaxation of the system.

Integration over Equation (2) yields

$$\int_{q(E)}^{q(E_0)} \frac{dq}{q} = -\int_{0}^{\infty} \nu_0 \exp\left(-\frac{E}{k_B T}\right) d\tau$$

and can be solved analytically for constant temperature

$$q(E,t) = q_0(E) \exp(-\nu_0 \exp(-E/k_B T))$$

For \(t > 1/\nu_0 \) the term \(\exp(-E/k_B T) \) can be approximated by a step function \(q(E-E_0) \) with \(E_0 = k_B T \log(\nu_0) \).

Finally, the number of remaining unrelaxed structural defects can be derived by integrating over all activation energies that have not undergone relaxation until time \(t \). Assuming that \(q(E) \) is uniformly distributed from 0 to an energy \(E_{\text{max}} \) for \(0 < E_0 < E_{\text{max}} \), a log \((t)\) dependence emerges

$$q(t) = \int q(E,t) dE = \int_{E_0}^{E_{\text{max}}} \frac{1}{E_{\text{max}}} dE = 1 - \frac{k_B T}{E_{\text{max}}} \log(\nu_0 t) \quad (3)$$

Even though this model is quite appealing, it has a few drawbacks. To quantitatively capture the commonly measured \(\log(t) \) drift behavior in phase-change materials, it is necessary to have a flat distribution of activation energies[29] as indicated by Equation (3). Since the \(\log(t) \) kinetics have been observed over a wide range of time (from \(\approx 100 \) ns[31] up to months) and temperature, the energy range over which \(q(E) \) is uniform would need to be quite large (presumably \(> 0.8 \) eV, assuming a drift timescale of \(10^{-7} - 10^{-9} \) s at room temperature). Given the universality of the drift behavior in phase-change materials, this strict requirement on the energetic distribution irrespective of the material used seems unnatural. A further concern is that in this picture, the defects that have undergone relaxation once, no longer participate in subsequent structural relaxation processes. Finally, this picture also does not account for the fact that a local rearrangement inherently influences also the surroundings, which will more or less subtly rearrange as well.

The molecular dynamics simulations described in Section 2 have shed light onto the relaxation of the complex structures with defective local coordination present in amorphous phase-change materials. As shown in Figure 1c, it is observed that relaxation leading to the annihilation of a particular defective structural complex occurs via a series of collective rearrangements, whereby individual local configurations are changed many times. Hence, an overall lower energy state is achieved through the repeated involvement of many atoms rather than by a very local defect relaxing once and not changing afterward again. In contrast, Gibbs approach assumes that the removal of one defect is associated with a single activation energy, and it is the distribution of activation energies associated to the spectrum of defects that determines the state of relaxation of the material. The collective relaxation model presented in the next
4. Collective Relaxation Model

Most approaches to describe the evolution of a macroscopic property that is logarithmic in time, including the defect relaxation model by Gibbs et al.,[31] argue with the microscopic inhomogeneity in the relaxing material to justify the very specific distribution of activation energies of the relaxation processes that is necessary to yield the log-law. Already in 1948, Kuhlmann argued instead, that the empirical log-law $x = \frac{k_b T}{A} \log(Bt)$ for a property x changing with time t would arise naturally without any further assumptions if structural relaxation occurs via a large number of statistical processes with an activation energy that depends linearly on the relaxing property as described by

$$\frac{dx}{dt} = \frac{k_b T}{A} \exp\left(-\frac{Ax}{k_b T}\right) B$$

This argument is not only mathematically simple but also seems to be naturally built into any glass-system. A glass is formed when it is cooled down from the melt faster than it can sample all possible structural configurations in the energy-landscape. At this point, it forms a nonequilibrium structure that naturally has built-in stresses. As the glass is globally relaxing toward its ideal state, those stresses relax through localized reconfigurations and the local configurations become more stabilized. A group of atoms neighboring a region that previously relaxed needs for their own relaxation to partially involve those stabilized atoms from that already relaxed region. Hence, for this subsequent relaxation a higher activation energy must be overcome.

The collective relaxation model based on this physical picture is motivated by a similar relaxation problem encountered in the study of indents created in a polymer film using a heated atomic force microscopy probe.[35] The essential idea is that the atomic configurations that are frozen in during the glass transition relax collectively toward the more energetically favorable “ideal glass” state. The relaxation proceeds in a sequence of transitions between neighboring unrelaxed amorphous states. The driving force for such a relaxation is the difference between the local energy minima of two neighboring states, denoted Δ_b. The closer to equilibrium the system is, the lower will be the driving force and the higher the energy barrier for subsequent relaxation (see Figure 2). The rates of the relaxation events in the direction toward equilibrium n^- and in the opposite direction n^+ are then given by

$$n^- = v_0 \exp\left(\frac{E_b}{k_b T}\right)$$

$$n^+ = v_0 \exp\left(-\frac{E_b + \Delta_b}{k_b T}\right)$$

where v_0 is an attempt-to-relax frequency and E_b is the energy barrier for subsequent relaxation events. We denote by Σ the distance of the unrelaxed state from the “ideal glass” state. Σ takes values between 0 and 1, with 1 denoting the fully relaxed state and 0 the “ideal glass” state.[21,23] If each relaxation event changes Σ by an amount $\Delta \Sigma$, the evolution of Σ is then given by

$$\frac{d\Sigma}{dt} = \Delta \Sigma (n^+ - n^-)$$

The amorphous state is assumed to be created with an initial distance $\Sigma(0) = \Sigma_0$ from equilibrium. After each relaxation event, the system reaches structures lower in energy as stress is relaxed and the driving force Δ_b reduces. Therefore, the activation energy E_b for relaxation events increases monotonically upon approaching equilibrium until it reaches its highest value E_b when $\Sigma \to 0$. When the system approaches equilibrium and $\Sigma \to 0$, we expect that Δ_b should be proportional to Σ in accordance with a linear response for small deviations from equilibrium.[35] Once equilibrium is reached, the driving force Δ_b equals 0 and $n^+ = n^- = e^{-E_b/k_b T}$. E_b is assumed to depend linearly on Σ, which is the only requirement to get the log-law at constant temperature as shown above

$$E_b(t) = E_b(1 - \Sigma(t))$$

If we assume that the system is far from equilibrium, we have $\exp\left(-\frac{\Delta_b}{k_b T}\right) \ll 1$ and the evolution of Σ as function of time and temperature is then given by

$$\frac{d\Sigma(t)}{dt} = -v_0 \Delta \Sigma \exp\left(-\frac{E_b}{k_b T(t)}\right) \exp\left(\frac{\Sigma(t) E_b}{k_b T(t)}\right)$$

The only requirement on Δ_b is that it decreases monotonically upon approaching equilibrium, and Equation (5) is valid as long as $\Delta_b \gg k_b T$ for all temperatures at which relaxation is described. For example, to describe relaxation up to 420 K, the condition $\Delta_b > 70$ meV needs to be fulfilled (assuming $1/\epsilon^2 \ll 1$).
At constant temperature, this equation can be solved analytically and the resulting evolution of Σ is given by

$$\Sigma(t) = \frac{k_B T}{e_s} \log \left(\frac{t + \tau_0}{\tau_1} \right)$$

where $\tau_1 = (k_B T/\nu_0) e^{(E_c/a_0 T)}$ and $\tau_0 = \tau_e e^{(-E_c/a_0 T)}$. τ_0 can be interpreted as an incubation time at which the transition to the logarithmic decay occurs, and τ_1 is the time at which equilibrium is reached ($\Sigma \to 0$). When $\tau_0 \ll t \ll \tau_1$, $\Sigma(t)$ exhibits a linear dependence on $\log(t)$. The relaxation is thus predicted to follow a logarithmic law as a function of the annealing time.

5. Electrical Transport Model

In order to link the structural relaxation described above to electrical observables such as the low-field resistance or more generally the I–V characteristics of a PCM device, a thorough physics-based description of the electrical transport of the amorphous state is needed. For this, we use a previously developed field- and temperature-dependent model of the electrical conductivity.[20] The model is illustrated schematically in Figure 3.

In this multiple-trapping model, the conductivity is calculated based on the transport of charge carriers whose release from their localized states is facilitated by the applied electric field, the Coulombic interactions with neighboring defect centers and temperature.

The activation energy for carrier emission E_a decreases by an amount E_{PF} upon the application of an electric field F (Poole–Frenkel effect).[37–41] The potential Φ is used to model the interactions between two neighboring defect centers

$$\Phi(r, \theta, F) = -\epsilon Fr \cos(\theta) - \frac{\beta^2}{4e} \left(1 + \frac{1}{r} \right) + \frac{\beta^2}{es}$$

Here, β is the Poole–Frenkel constant, e the electronic charge, θ the direction of escape relative to the direction of the electric field, and s is the distance between the two defect centers, which we denote as intertrap distance. The energy barrier lowering E_{PF} due to the Poole–Frenkel effect is calculated for all F and θ by identifying the maximum of this potential over r. Furthermore, the activation energy E_a is assumed to vary with temperature according to

$$E_a = E_{a0} - \xi T^2$$

with $\xi = 0.5 \times 10^{-6}$ eV K$^{-2}$. Such a temperature dependence is inspired by the temperature dependence observed for the optical bandgap of amorphous phase-change materials.[28,42,43] The free carrier density n is then calculated by summing the emission contributions over all directions of escape θ

$$n(F) = \frac{K}{4\pi} \int_0^\pi \exp \left(-\frac{E_a - E_{PF}(F, \theta)}{k_B T} \right) 2\pi \sin(\theta) d\theta$$

Finally, the field-dependent electrical conductivity $\sigma(F)$ is calculated as

$$\sigma(F) = \epsilon \mu n(F)$$

where μ is the free carrier mobility.

This transport model is capable of describing three regimes of electrical transport observed in amorphous phase-change materials, namely, the ohmic behavior at very low fields, the Poole-type behavior at low to moderate fields and the Poole–Frenkel-type transport at moderate fields. The model was shown to capture the electrical transport in many devices of different dimensions and phase-change materials over a wide temperature range (180–300 K).[20,44] Even threshold switching in nanoscale PCM devices could be described reasonably well with a simulation solely based on the combination of this sub-threshold conduction model with thermal feedback from Joule heating,[45] i.e., no additional dependence at high-fields[44] had to be invoked.

6. Link between Electrical Transport and Structural Relaxation

In Sections 4 and 5, we derived individual descriptions for structural relaxation using the order parameter $\Sigma(t)$ and electrical transport $\sigma(E_{a0}, s)$. In order to find a general quantitative description of resistance drift as a function of temperature and time, we therefore have to establish the link between electrical transport and structural relaxation. Assuming that only E_{a0} and s may potentially vary upon drift,[17,20] we therefore need to obtain the functions $E_{a0}(\Sigma(t))$ and $s(\Sigma(t))$. The collective relaxation model leads to a logarithmic law as a function of time at constant temperature. Therefore, we experimentally measured the electrical transport I–V characteristics of PCM cells in the RESET (amorphous) state for different annealing times (1000 s and 15 h) at different constant annealing temperatures (250, 300, 350, 400 K). This way we created a highly constrained set of data to experimentally obtain the two quantities E_{a0} and
s while all other parameters were held constant. The experiments were conducted on mushroom-type PCM cells fabricated in the 90-nm technology node with doped Ge_{2}Sb_{2}Te_{5} phase-change material (see the Experimental Section).

The resulting experimental resistance versus voltage curves corresponding to three such annealing experiments are shown in Figure 4a–c. It can be seen that the low-field resistance increases with both annealing time and annealing temperature, as it is typically observed in resistance drift measurements on PCM devices. \([17,21,42]\) It can also be seen that the voltage dependence of the resistance becomes stronger upon annealing.

Figure 4d,e shows the values of \(E_{0}\) and \(s\) obtained by collectively fitting the resistance versus voltage curves obtained for each annealing experiment to the electrical transport model introduced in Section 5. The activation energy is found to increase linearly with annealing temperature, in agreement with previous experimental measurements. \([46]\) The observed increase of the activation energy upon annealing is consistent with the widening of the optical bandgap seen in amorphous phase-change materials upon annealing. \([43]\) The increase of \(s\) upon annealing can be interpreted as being due to the annealing of defects in the bandgap, which presumably are responsible for the Poole–Frenkel-type transport. \([17,47]\)

According to the collective relaxation model of Section 4, in particular Equation (6), all experimental data for different annealing times \(t_{\text{ann}}\) and temperatures \(T_{\text{ann}}\) should fall on a single curve when plotted as a function of \(k_{B}T_{\text{ann}}\log(\tau_{\text{ann}}/k_{B}T_{\text{ann}})\) for a unique value of \(\Gamma = E_{0}V_{0}A_{\Sigma}\). \([48]\) This quantity with the dimension of an energy can represent both the effect of longer annealing and of annealing at different temperatures. The good alignment of the data observed in Figure 4f for \(\Gamma = 2.3 \times 10^{13} \text{eV s}^{-1}\) convincingly shows that time-temperature superposition holds for both \(E_{0}\) and \(s\) in the experimental range of conditions studied. Time-temperature superposition should be expected if the observed changes in \(E_{0}\) and \(s\) indeed arise from structural relaxation. \([49]\)

With the annealing kinetics of the PCM cells being well established, \(E_{0}\) and \(s\) can now be linked to the order parameter \(\Sigma\). At constant temperature, for \(\tau_{0} \ll \tau \ll \tau_{T}\), \(\Sigma\) is a linear function of \(k_{B}T\log(\Gamma/\tau_{0}T)\) (see Equation (6)). Therefore, the experimental results of Figure 4f suggest a linear dependence of \(E_{0}\) and \(1/s\) with \(\Sigma\), leading to the following relationships

\[
E_{\alpha}(t) = E^{\ast} - \alpha \Sigma(t)
\]

\[
s(t) = s_{0}/\Sigma(t)
\]

Here, \(E^{\ast}\) is the activation energy at equilibrium (\(\Sigma = 0\)), \(\alpha\) is a constant that links a change in \(\Sigma(t)\) to a change in \(E_{\alpha}(t)\) and \(s_{0}\) is a constant that links a change in \(\Sigma(t)\) to a change in \(s(t)\).

The results from the overall drift model are plotted in Figure 5 along with the experimental data of Figure 4.

Figure 4. Link between electrical transport and structural relaxation. a–c) Experimental resistance versus voltage curves of RESET state measured from 300 K down to 180 K after annealing. Three annealing conditions are shown, exhibiting higher low-field resistance and stronger voltage dependence for both increasing annealing time and temperature. Fits of the temperature dependent \(I-V\) characteristics underlying the data in (a)–(c) using the electrical transport model described in Section 5 (black lines) result in activation energy \(E_{0}\) d) and intertrap distance e) for different annealing times and temperatures. f) \(E_{0}\) and \(1/s\) plotted as function of \(k_{B}T_{\text{ann}}\log(\tau_{\text{ann}}/k_{B}T_{\text{ann}})\), where \(T_{\text{ann}}\) is the annealing temperature and \(t_{\text{ann}}\) the annealing time.
using the differential equation (5) to describe the relaxation. Finally, we also investigate how the model can be used to predict the evolution of the resistance distributions of an array of 4k PCM cells.

7. Model Validation

In Section 6, it was shown that collective structural relaxation and field-dependent multiple-trapping electrical transport can be convincingly linked to describe drift of the whole I–V characteristics of our PCM cells in the amorphous state. In this section, we want to verify that the model can describe typical experimental resistance drift data collected over an extended range of temperatures and shorter time scales than those previously used to build the model in Section 6. Moreover, we investigate whether the model can also capture drift resulting from the application of a time-dependent temperature profile $T(t)$,

7.1. Constant Temperature Drift

First, constant-temperature low-field resistance drift experiments were conducted over a wide range of temperatures. The PCM cell is programmed to a constant amorphous size at various ambient temperatures (using a technique described in ref. [51]), and the evolution of the low-field resistance R is monitored. The low-field resistance is measured by applying a constant voltage of 0.2 V to the PCM cell. This experiment is conducted from 160 to 420 K in steps of 20 K. The lower temperature limit is chosen to ensure that the electrical transport does not deviate from the multiple-trapping transport model[28] of Section 5 and the higher limit to prevent unwanted crystallization. As shown in Figure 6a, the experimental data is well captured by the drift model over the whole range of temperatures. The slope of log(R) versus log(t), which can be simply calculated from the model as $v_R = \alpha/E_s$ and amounts to $v_R = 0.12$ with the parameter values of Section 6.

To test the model on shorter time scales, we performed fast measurements of the high-field resistance starting at 1 μs after RESET over 10 decades in time at temperatures of 300, 350, and 400 K. The high-field resistance is defined as the resistance of the PCM cell at a fixed current of 1 μA (see inset of Figure 6b). Defining the high-field resistance in this way allowed us to resolve it accurately with our measurement setup over the entire range of time investigated. The results are shown in Figure 6b, and remarkable agreement between model and experiment is obtained over the entire time and temperature range. Note that such a prediction would not be possible without knowing how the I–V characteristics at high field evolve, because the READ current of 1 μA is beyond the low-field ohmic region of the I–V curve (see inset).

7.2. Variable Temperature Drift

The ultimate test case for the model is a measurement of the full I–V characteristics of a PCM cell during the application of a time-varying temperature profile. In this case, reversible as well as irreversible effects of temperature on electrical transport need to be tracked correctly upon drift, because structural relaxation is accelerated at higher temperatures. The time-temperature profile shown in Figure 7a is applied to the PCM cell after RESET, and the I–V curves are continuously monitored over time. The evolution of the low-field resistance R, which corresponds to the ohmic region of the I–V characteristic, is accurately reproduced by the model (Figure 7b). Moreover, the I–V curves over the entire voltage range used are accurately
predicted by the drift model for the full duration of the experiment (see Figure 7c). Note in particular the clear increase of the log(I) versus V slope after annealing, which is a signature of the increase of s. This increase of s results in a transition from Poole type toward Poole–Frenkel type electrical transport at lower fields, as previously reported on PCM cells that undergo high temperature annealing.[37]

7.3. Array-Level Drift

Drift variability of PCM devices across an array is arguably the most important problem for multilevel information storage with PCM. Drift variability can cause overlap of the resistance levels used to store the information over time across multiple cells. While techniques such as adaptive detection thresholds can be used to compensate for a global drift effect to reliably detect the stored levels,[30] the fact that all cells across an array drift with a different (randomly distributed) exponent ν_C can cause the stored resistance distributions to overlap over time. Therefore, it is of interest to verify if the proposed model can capture the common features observed when monitoring the evolution of the resistance distributions across an array. The evolution of the high-field resistance distributions over time and temperature was measured for an array of 4000 devices in the RESET state. A prototype PCM chip that contains the addressing, readout, and programming circuitry was used for these measurements.[34] The cells were programmed to the RESET state using an iterative procedure[5] to ensure that all cells have approximately the same initial resistance. After programming, the temperature profile shown in Figure 8a was applied to the chip and the high-field resistance of the 4000 cells was continuously monitored over time, using a constant read voltage of 0.62 V.

The drift model was used to simulate the evolution of the high-field resistance on 1000 devices. In the simulation, the amorphous thickness (u_A) and drift parameters (α and s_0) were drawn from normal distributions with standard deviation of 5% of the mean values. This way, variability in the initial programmed state is taken into account while the model is used to capture the subsequent evolution of the I–V characteristics of each device with time and temperature. This variability in the initial programmed state is expected to result from both intra- and intercell variability. Intracell variability is expected because both the thickness of the amorphous region and its internal atomic configuration are never the same after each RESET process.[35] The atoms in the molten state are highly mobile, ensuring that at every RESET a new glass state is formed and this will lead to variability in both u_A and drift. Intercell variability, on the other hand, arises predominantly from variability associated with the fabrication process across the array. The distributions simulated this way match very well the experimental distributions of the 4000 devices for the entire experiment, see Figure 8. The model can accurately capture key features,[56] such as drift acceleration with increasing temperature, shift of the median values due to temperature changes, and broadening of the distributions upon drift (see Figure 8d). The broadening observed after annealing arises because the activation energy and intertrap distance of individual devices relax at slightly different speeds.

8. Discussion

Our theoretical as well as experimental results consistently advocate that structural relaxation in phase-change materials is of collective, repetitive nature. We describe such kinetics using a single characteristic activation energy for relaxation that varies with time (Equation (4)), rather than a distribution of activation energies that gets eroded as in previous works.[30] Our approach naturally gives rise to a logarithmic evolution of the relaxation without the need to assume a wide and flat activation energy spectrum for the relaxation of defects. The collective relaxation model quantifies elegantly the insights from molecular dynamic simulations[27] which indicate that annealing of
defective structures occurs via a sequence of activated processes overcoming a changing activation energy. The activation energy for relaxation in Equation (4) is thus characteristic of a larger ensemble of atoms and not of a single structural defect.

Our experimental data shows that the relaxation in PCM follows the logarithmic law over an extremely wide range of time and temperatures. Hence, describing such kinetics with the Gibbs model based on a distribution of activation energies would require a uniform relaxation energy spectrum spanning more than 15 orders of magnitude in time (see Note I in the Supporting Information), or equivalently several eVs of energy (at least 2 eV [57]). Such a uniformly fine-tuned spectrum over a wide range of time/energy does not appear to be the most physically plausible choice for relaxation in an amorphous material. Such relaxation also cannot be captured by merely using a stretched exponential behavior \(\exp\left[-(t/\tau)^\gamma\right] \) as it is frequently done to describe relaxation in glasses (see Note I in the Supporting Information) [35,49]. Nonetheless, it is certainly possible to construct an activation energy spectrum of the Gibbs model sufficiently wide and flat, for which the deviation from a log-law can be tuned to be small enough such that the difference to the collective relaxation model is not experimentally accessible. Therefore, as of now we can only claim that the collective relaxation model can provide a more coherent and plausible physical picture. We hope that in the future molecular dynamics simulations will be able to provide reasonable estimates for activation energy spectra that will constrain the Gibbs model sufficiently to resolve this question. Other independent relaxation data not related to electrical transport, such as differential scanning calorimetry or shear modulus data as a function of relaxation [58], could also provide additional insights into the relaxation processes.

The kinetics of repeated rearrangements in the amorphous atomic structure ultimately lead to an increase in the activation energy for electrical transport, \(E_{a0} \), and of the distance between the electronic defect centers, \(s \). These two consequences of structural relaxation are expected to arise from annihilation of defects in the bandgap and the resulting shift of the Fermi level accompanied by a widening of the bandgap due to local reordering [22,25,26,43] both driven by the collective drift dynamics. The empirical link between electrical transport and collective structural relaxation (Equations (7) and (8)) derived in Section 6 is intriguingly simple and enables a quantitative description of a remarkably extensive set of experimental data over a wide range of time (10 orders of magnitude) and temperature (160–420 K). Nonetheless, a better theoretical understanding of Equations (7) and (8) would be desirable. One avenue to this understanding could be a statistically sufficient set of MD simulations that would provide a quantitative link between the state of relaxation, density of defects in the bandgap and activation energy for conduction. The other approach would be an analytic description of the defect density and activation energy derived from the disordered structure and its evolution upon drift.

The Arrhenius parameters of structural relaxation in amorphous Ge\(_2\)Sb\(_2\)Te\(_5\) have been previously shown to obey the Meyer–Neldel rule (MNR) [57]. The MNR states that the preexponential prefactor \(X_0 \) of an activated process with activation energy \(\Delta \) follows the empirical law \(X_0 = X_{00}e^{(\Delta/RT)} \).

Figure 7. Variable temperature I–V drift experiment. a) Temperature profile applied to the PCM device and corresponding evolutions of \(E_{a0} \) and \(s \) obtained from the drift model. b) Experimental and simulated evolution of the low-field resistance \(R \). c) Experimental and simulated I–V characteristics at four instances in time.
where T_{MN} is the so-called isokinetic temperature for the process in question, and X_{00} is a constant.\cite{57,59} The MNR is commonly understood to result from the entropy of combining multiple excitations (or fluctuations) in the thermal reservoir available for the kinetic processes.\cite{59} We do not see any direct conflict between the MNR and the collective relaxation model proposed in this paper, and hence MNR could be included in the prefactor ν_0 of the rates of relaxation events (n^+ and n^-) in our model for a more refined picture of the relaxation. We do observe evidence of the MNR in the experimental resistance drift data of Figure 6a, however the resulting isokinetic temperature $T_{MN} = 1639$ K is much higher than the value of 760 K previously reported for amorphous Ge$_2$Sb$_2$Te$_5$\cite{57} (see Note II in the Supporting Information). This discrepancy could be potentially explained by the different material, doped Ge$_2$Sb$_2$Te$_5$, used in our devices.

The high value of $E_s = 2.3$ eV obtained from the fit in Figure 5 is consistent with the fact that no saturation of the temporal evolution of the electrical conductivity of phase-change materials has yet been observed experimentally. According to the model, such saturation would happen at time τ_1, which depends exponentially on E_s and takes values much larger than the typical crystallization time of this material at a given temperature.\cite{51} This shows that in most practical cases, no saturation of structural relaxation is expected to be observable experimentally at least in the material studied here. It is also interesting that E_s, the upper limit of activation energy for structural relaxation in our model, is lower, but relatively close, to the activation energy for crystal growth of 3.01 eV reported for the same material.\cite{51} Indeed, both relaxation toward the ideal glass as well as crystallization lead to the same local rearrangements.\cite{22,25} Crystallization has the additional constraint that the local unit cells are also in order relative to each other. Therefore, it is not surprising that the activation energies are similar but slightly higher in the case of crystallization.

Moreover, the high value of $\Sigma_0 = 0.9$ needed to describe the experimental data can be interpreted as a direct consequence of the high quench rates (on the order of 10^{11} K s$^{-1}$) resulting from the RESET operation, which create a highly stressed amorphous state. The fact that structural relaxation is observed already at microsecond time scales and at temperatures much lower than room temperature clearly confirms that the state initially created by the melt-quench process is far away from equilibrium (Σ_0 must be close to 1).

Finally, it is worth asking whether the findings reported here are applicable to other phase-change materials than the doped Ge$_2$Sb$_2$Te$_5$ used in this study. In a previous work, we showed that our model can also capture the structural relaxation in doped GeTe PCM cells, albeit with different parameters.\cite{22} Moreover, almost all phase-change materials studied to date, even when composed of a single element...
(antimony),[60] show similar resistance drift behavior that can be described using Equation (1), although the drift exponent \(v_R \) can differ from one material to another.[43,61] Those findings suggest that the general drift behavior in phase-change materials is fairly universal. Different materials will have different electrical transport properties and may relax at different speeds, but the overall \(\log(t) \) drift dynamics and their dependence on temperature are expected to hold no matter what material is used.

9. Conclusion

The root cause of resistance drift in PCM devices is the spontaneous structural relaxation of the amorphous state created via the melt-quench process. This amorphous state over time evolves toward an energetically more favorable ideal glass state. First-principles calculations on amorphous GeTe indicate a logarithmic evolution of the relaxation is obtained over a wide range of time and temperature without the need to assume a rather wide and flat activation energy spectrum for the relaxation of defects. An intriguingly simple link between electrical transport and structural relaxation is introduced and validated over an extensive range of experimental conditions. For the first time, a model can consistently predict the changes observed in the I–V characteristics of PCM cells over time and temperature. Constant and variable temperature drift measurements performed on PCM cells over a wide range of time (10 decades) and temperatures (160–420 K) are well captured by the model. Moreover, the model can capture the evolution of the resistance distributions in an array of PCM cells by introducing variability in the size of the initially programmed amorphous region as well as in the parameters governing drift. This work presents a quantitatively accurate and comprehensive description of resistance drift in PCM devices, and is expected to be relevant for emerging application areas such as storage-class memory, neuromorphic computing and computational memory.

10. Experimental Section

Experimental Details: Experiments were conducted using mushroom-type PCM cells fabricated in the 90 nm technology node, with the bottom electrode created via sub-lithographic key-hole process.[82] The phase-change material was doped Ge\(_2\)Sb\(_2\)Te\(_5\). The bottom electrode had a radius of \(\approx 20 \) nm and a length of \(\approx 65 \) nm. The phase-change material was \(\approx 100 \) nm thick and extended to the top electrode, whose radius was \(\approx 100 \) nm. The device was operated with an on-chip series resistor of \(\approx 5 \) kΩ. For the experiments of Section 6 and the low-field resistance measurements of Section 7.1, a JANIS ST-500-2-UHT cryogenic probing station that operates from 77 to 400 K and offers a temperature stability of less than 50 mK was used to perform the measurements. A high-precision Keithley 2636B SMU was used for DC voltage outputs and for measuring the corresponding current at the sample, with a resolution of \(\approx 0.1 \) pA.

For the high-field resistance measurements of Section 7.1 and the experiments of Section 7.2, the ambient temperature was varied using a custom-made heating stage made of invar. The temperature was measured using a thermocouple inserted into the invar block and controlled via a Eurotherm temperature controller. The temperature on top of the PCM chip was further calibrated using an Omega silicon diode sensor. A Keithley 2400 SMU was used for DC voltage outputs and for measuring the corresponding current at the sample. For the high-field resistance measurements, AC voltage outputs were given by a Agilent 81150A Pulse Function Arbitrary Generator and the corresponding cell voltage and current were measured with a Tektronix DPO5104B digital oscilloscope. The current was amplified by an operational amplifier circuit with a total gain of \(\approx 9.2 \) prior to measurement.

Annealing Experiments of Section 6: First, an amorphous region was created with a RESET current of 800 μA. Thereafter, the PCM cell was annealed at a certain temperature for a certain time duration. After annealing, the I–V characteristics were measured at different temperatures down to 180 K. This set of experiments was repeated eight times over annealing temperatures varying from 250 to 400 K in steps of 50 K and annealing times of 1000 s and 15 h. The resistance was calculated as the applied voltage divided by the measured current. The resistance versus voltage curves obtained after each annealing experiment were then collectively fitted to the electrical transport model introduced in Section 5. We assume that the applied electric field is \(F = V / \mu_s \), where \(V \) is the applied voltage on the cell and \(\mu_s \) an effective amorphous thickness roughly equal to the smallest pathway of conduction through the amorphous region. Moreover, the device area used for the calculation of the current is assumed to be \(r_{BE} \), where \(r_{BE} \) is an effective bottom-electrode radius. It has been shown that introducing these two effective parameters allows the mushroom cell geometry to be well approximated by a cylindrical geometry of radius \(r_{BE} \) with a uniform field applied over \(\mu_s \).[63] It is found that only the activation energy \(E_{\alpha} \) and the intertrap distance \(s \) must be modified at different degrees of relaxation to achieve good fits. The parameters related to the cell geometry are fixed to \(\mu_s = 12.5 \) nm and \(r_{BE} = 20 \) nm. The remaining parameters were fixed to the values found in ref. [20].

Supporting Information

Supporting information is available from the Wiley Online Library or from the author.

Acknowledgements

The authors are grateful to U. Egger and W. Häberle for technical assistance. The authors would also like to thank the colleagues at IBM T. J. Watson Research Center in particular M. Brightsky for providing the PCM cells used in this work. A.S., D.K., and M.S. acknowledge funding from the DIASPORA project (Ref. 610781) of the FP7-IAFP Marie Curie Action by the European Commission. A.S. and M.S. acknowledge funding from the European Research Council grants PROJECTOR (Ref. 682675) and NEUROMORPH (Ref. 640003), respectively. M.S. also acknowledges funding from the German Science Foundation (DFG) through the Collaborative Research Center NANOSWITCHES (SFB 917). Finally, the authors would like to acknowledge fruitful discussions with M. Stanislavjevic, N. Papandreou, M. Kaes, M. Ruetten, and W. Koelmans. The authors would also like to thank H. Pozidis, E. Eleftheriou, and A. Curioni for managerial support.

Conflict of Interest

The authors declare no conflict of interest.
Keywords
nonvolatile memory, phase-change materials, resistance drift, structural relaxation

Received: December 11, 2017
Revised: May 23, 2018
Published online: July 16, 2018