Simulation Method for the Characterisation of Torque Transducers

IMEKO XXII World Congress
Stefan Kock, Georg Jacobs, Dennis Bosse, Florian Strangfeld
Belfast, 04.09.2018
Structure

1. Motivation and Objective
2. Approach
3. Results
4. Summary
Motivation and Objective

Achieved measurement uncertainty

- Strain gauges transducers 2% - 5%

Required measurement uncertainty

- Efficiency measurement < 0.5%

MNm torque measurement in wind turbine test benches

- No state of the art – custom made transducers
- No calibration methods above 1.1 MN·m

Influence of system-dependent influences not known

- high multi-axial operation loads, rotation speed,
- assembly process, temperature fluctuation

High measurement uncertainty

Knowledge of system-dependent influences will improve torque measurement

Objective

Creating a simulation method for the characterisation of the torque transducers to quantify the influence of system-dependent parameters on torque measurement
Approach

<table>
<thead>
<tr>
<th>Definition of FEM Model Parameters</th>
<th>Simulation of Strain Gauges & Circuit</th>
<th>Application of the Method</th>
<th>Validation of the Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesh Density</td>
<td>Strain Gauges</td>
<td>4 kN·m Transducer (custom made)</td>
<td>RWTH Tests & PTB Calibration</td>
</tr>
<tr>
<td>Element Type</td>
<td>Electrical Circuit</td>
<td>Modeling of</td>
<td>Variation of</td>
</tr>
<tr>
<td>Meshing Strategy</td>
<td></td>
<td>transducer</td>
<td>Temperature</td>
</tr>
<tr>
<td>Geometry Simplifications</td>
<td></td>
<td>test rig</td>
<td>Strain gauge (SG)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>adhesive</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SG application pressure</td>
</tr>
</tbody>
</table>

Simulation method for the characterisation of torque transducers, IMEKO XXII World Congress, Belfast, 04.09.2018
Stefan Kock, Georg Jacobs, Dennis Bosse, Florian Strangfeld
Results

Strain Gauge Simulation in Finite Element Method

<table>
<thead>
<tr>
<th>Modeling Effort</th>
<th>Point</th>
<th>Spring</th>
<th>Multi-Spring</th>
<th>Shell</th>
<th>3D-Detailed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Low</td>
<td>Average</td>
<td>Average</td>
<td>Low</td>
<td>Very High</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Computational Time</th>
<th>Very Low</th>
<th>Very Low</th>
<th>Very Low</th>
<th>Very Low</th>
<th>Very High</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Post-processing Effort</th>
<th>High</th>
<th>Very Low</th>
<th>Very Low</th>
<th>Average</th>
<th>Very High</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Applicability on Non-homogeneous Strain Fields (SF)</th>
<th>X</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicability on Independence of Mesh</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applicability on Applicable for</td>
<td>All geometries (homogeneous strain field (SF))</td>
<td>All geometries (conditionally homogeneous SF)</td>
<td>All geometries (conditionally homogeneous SF)</td>
<td>All geometries (inclusive non-homogeneous SF)</td>
<td>Optimization of strain gauges grid</td>
</tr>
</tbody>
</table>

- **Not Suitable**
- **Conditionally Suitable**
- **Suitable**
Results
Custom-made 4 kN∙m Torque Transducer

Transducer Body
- Adaptation Flange
- 51CrV4+A
- Transducer Body
- Stamp Pad (2cm x 2.5cm)
- 200 mm
- 90 mm

Application of Strain Gauges
- Guidance
- Guided Stamp
- Foundation
- Transducer Support

Strain Gauge Circuit
- Adhesive
- Application Pressure
- Methacrylat
- 0.638 bar
- Methacrylat
- 1.275 bar
- Cyanoacrylat
- 0.638 bar
- Cyanoacrylat
- 1.275 bar
- Epoxy Resin (thermosetting)
- 1.275 bar

Foundation
- Solder Terminal
- Strain Gauge
- Guided Stamp

Application of Strain Gauges

Transducer Body

Guidance

Guided Stamp

Stamp Pad

(2cm x 2.5cm)

Transducer Support

Strain Gauge

Solder Terminal

Mt

β

270° 0° 90°
Results

Custom-made 4 kN·m Torque Transducer
Results
Determination of material parameters

Determination of Young Modulus

Up to 10.5% fluctuation of the Young Modulus

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Relative Uncertainty per Specimen [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal 1</td>
<td>Up to 10.5%</td>
</tr>
<tr>
<td>Longitudinal 2</td>
<td>Up to 10.5%</td>
</tr>
<tr>
<td>Longitudinal 3</td>
<td>Up to 10.5%</td>
</tr>
<tr>
<td>Lateral 1</td>
<td>Up to 10.5%</td>
</tr>
<tr>
<td>Lateral 2</td>
<td>Up to 10.5%</td>
</tr>
</tbody>
</table>

Young Modulus [GPa]

<table>
<thead>
<tr>
<th>Specimen Type</th>
<th>Young Modulus [GPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal 1</td>
<td></td>
</tr>
<tr>
<td>Longitudinal 2</td>
<td></td>
</tr>
<tr>
<td>Longitudinal 3</td>
<td></td>
</tr>
<tr>
<td>Lateral 1</td>
<td></td>
</tr>
<tr>
<td>Lateral 2</td>
<td></td>
</tr>
</tbody>
</table>

Relative uncertainty per specimen [%]

Longitudinal specimens

Lateral specimens
Results

Validation

<table>
<thead>
<tr>
<th>Deviation (Mean)</th>
<th>6.9%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deviation (Min)</td>
<td>1.3%</td>
</tr>
</tbody>
</table>

Simulation Uncertainty

- k - strain gauge factor
- Strain gauge position
- ≈1%

Simulation method for the characterisation of torque transducers, IMEKO XXII World Congress, Belfast, 04.09.2018

Stefan Kock, Georg Jacobs, Dennis Bosse, Florian Strangfeld
Summary

- Custom-made transducer – Classification acc. to DIN 51309 is 0.2
- Deviation of simulation to measurement results
 - mean 6.9 % and minimal 1.3 %
- Validated simulation method can be used to estimate crosstalk-effects on torque measurement
- Material properties have large influence on simulation results
- Young modulus can variate over the circumference up to 10.5 %
- Adhesive and strain gauge application pressure have low influence on torque signal (in case of introduced investigations)
Thank you for your attention.

Dipl.-Ing. Stefan Kock
Campus-Boulevard 61
52074 Aachen
+49 241 80-95654
stefan.kock@cwd.rwth-aachen.de