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Abstract

This dissertation focuses on the application of fermionic functional Renormalization
Group (fRG) techniques to the study of competing electronic instabilities arising in
two dimensional honeycomb lattice systems at low temperatures.

We start by developing a new computational scheme within the fRG, named
Truncated Unity fRG (TUfRG), which allows to overcome some of the computational
limitations of previous schemes like the Exchange Parametrization fRG, specifically
in terms of parallel scalability. Making an efficient use of modern multi-core CPU
clusters, the TUfRG scheme opens up the possibility for highly resolved calculations
of wavevector dependences in the low-energy effective interactions, which are crucial
for the correct description of undoped Honeycomb Hubbard models with extended
Coulomb interactions.

We continue by applying the TUfRG to the undoped Honeycomb Hubbard model
with extended Coulomb interactions up to the second nearest neighbor. As expected,
the anti-ferromagnetic spin density wave instability appears for a dominant on-site
repulsion between electrons, and charge density waves of different modulations for
dominant pure n-th nearest neighbor repulsive interactions. New instabilities to-
wards incommensurate charge density waves take place when non-local density inter-
actions among several bond distances are simultaneously included. The possibility of
a topological Mott insulator being the favored tendency for dominating second nearest
neighbor interactions is not realized in our results with high momentum resolution.
We also include the effect of a second-nearest neighbor hopping in the dispersion re-
lation, and study its impact on the critical scales and critical coupling strength for
antiferromagnetic ordering.

We finish by considering long-ranged Coulomb interactions on the Honeycomb
Hubbard model. We find that the mutual competition among ordering tendencies
triggered by extended interactions acting at different distances is essential for the
stability of the semimetallic state. We then submit the system to biaxial strain, and
analyze the critical amount of strain necessary to induce a quantum phase transition
towards an ordered ground state. We investigate a range of parameters relevant to the
realistic graphene material which are not accessible by numerically exact methods.
Although a plethora of charge density waves arises under medium-range interactions,
we find the antiferromagnetic spin-density wave to be the prevailing instability for
long-ranged interactions. The critical strain needed to induce the antiferromagnetic
transition turns out to depend mainly on the spatial decay of the bare interactions.
We again explore the impact of including a second-nearest neighbor hopping term.






Zusammenfassung

Diese Dissertation befasst sich mit der Anwendung von Methoden der fermionischen
funktionalen Renormierungsgruppen (fRG) auf konkurrierende elektronische Insta-
bilitdten in zweidimensionalen Honigwabengittersystemen bei tiefen Temperaturen.

Wir beginnen mit der Entwicklung eines neuen Berechnungsschemas innerhalb
der fRG, Truncated Unity fRG (TUfRG) genannt, dass uns erlaubt, rechnerische Ein-
schrankungen von vorherigen Methoden wie der Austauschparametrisierungs fRG zu
iiberwinden. Insbesondere handelt es sich dabei um Einschrankungen beziiglich der
parallelen Skalierbarkeit. Durch eine effiziente Verwendung von modernen Mehrkern-
prozessoren, ertffnet das TUfRG Schema Moglichkeiten fiir hochauflésende Berech-
nungen von Wellenvektorabhéngigkeiten der niedrigenergetischen effektiven Wechsel-
wirkungen. Diese sind kritisch fiir eine richtige Beschreibung von undotierten Hub-
bardmodellen auf dem Honigwabegitter inklusive langreichweitiger Coulomb Wech-
selwirkungen.

Nachfolgend wenden wir die TUfRG auf das undotierte Hubbardmodell auf
dem Honigwabegitter an. Dabei beriicksichtigen wir langreichweitige Coulomb
Wechselwirkungen bis zum zweit-nachsten Nachbarn. Wie erwartet, ergibt
sich fiir dominierendes lokales Abstoflen zwischen Elektronen eine Instabilitét
hin zu antiferromagnetischen Spindichtewellen. Fiir dominierende repulsive
reine n-te Nachbar Welchselwirungen finden wir Instabilitdten hin zu Ladungs-
dichtewellen unterschiedlicher Modulierungen. Wenn dagegen nicht-lokale Dichte-
Dichte-Wechselwirkungen zwischen mehreren unterschiedlichen Gitterabstanden
beriicksichtigt werden, treten neue Instabilitdten hin zu inkommensurabelen Ladungs-
dichtewellen auf. Laut unseren hochaufgelosten Ergebnissen fiir dominierende zweite-
nachste Nachbar Wechselwirkungen liegen keine Instabilitaten hin zu Topologischen
Mott-Isolatoren vor. Desweiteren fiigen wir einen zweiten Nachbar Hiipfenterm in
die Dispersionsrelation ein und analysieren deren Einfluss auf kritische Skalen und
kritische Kopplungsstérken fiir antiferromagnetische Ordnung.

Abschliefflend betrachten wir langreichweitige Columb Wechselwirkungen im Hub-
bardmodell auf dem Honigwabengitter. Wir argumentieren, dass die Konkurrenz
zwischen verschiedenen Ordnungstendenzen, die vom nicht-lokalen Wechselwirkungen
unterschiedlicher Absténde erzeugt werden, essenziell fiir die Stabilitdt des Semimet-
alls ist. Danach wenden wir auf das System biaxiale Dehnung an und analysieren
bei welchen kritischen Spannungswerten ein Quantenphasentibergang hin zu einem
geordneten Grundzustand auftritt. Wir untersuchen einen Parameterbereich, der fiir
realistische Graphenmaterialien relevant ist und der fiir andere numerische Methoden
nicht zugénglich ist. Auch wenn bei Wechselwirkungen, die von mittlerer Reich-
weite sind, eine Vielzahl an Landungsdichtewellen auftritt, ergeben unsere Analysen,
dass die antiferromagnetische Spindichtewelle die vorherrschende Instabilitat fiir lan-
greichweitige Wechselwirkungen ist. Es zeigt sich, dass die kritische Dehnung, die
zum Induzieren des antiferromagnetischen Ubergangs nétig ist, hauptsichlich vom
rdumlichen Abfallverhalten der unrenormierten Wechselwirkung abhéngt. Auch hier
erforschen wir die Auswirkungen des Hiipfterms zwischen zweit-ndchsten Nachbarn.
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1. Introduction

Ever since the advent of quantum mechanics and atomic theory, culminating in the
Standard Model of elementary particle physics, the reductionist philosophy of viewing
systems as a mere sum of their parts has been very successful in revealing the funda-
mental principles that underlie the existence of matter and its properties. However,
as famously conveyed by Anderson in his essay "More is different” [3], qualitative
changes may follow from quantitative ones, in the sense that even if the individual
agents in a system follow simple rules, large collections of such agents often display
complex behavior which is not fully reducible to that of its constituents. Emergence,
as opposed to reductionism, is one of the central aspects in the study of complexity
theory, where systems are more than the sum of their parts. Emergent phenomena are
ubiquitous across scientific disciplines, which may themselves be seen as a hierarchical
structure where each discipline emerges from a more fundamental one as the degree
of complexity in their respective field of study increases.

Emergence is particularly prevalent in the low-energy physics of quantum many-
body systems. Although the behavior of isolated atoms and electrons is relatively
well understood, the study of their aggregates in the form of liquids and solids is still
a very active front of research. More specifically, interactions among electrons in a
solid are paramount for a rich diversity of strongly correlated phases of matter [28}/30]
at low temperatures, including conventional and unconventional superconductivity
[4/59], various forms of magnetism [11,83./92], charge ordering, and matter with exotic
topological properties [19,[111]. This is especially true of two-dimensional crystalline
systems, on which a lot of effort has been devoted in recent years.

Understanding strongly correlated electron systems from a fundamental perspec-
tive is an arduous task. Due to the inherently emergent nature of the spontaneous
onset of order in a system which has undergone a symmetry breaking phase transition,
it is necessary to reformulate the description of the system in terms of the emergent
collective degrees of freedom instead of the fundamental ones. Guided by experi-
ence and intuition, one may resort to building effective models a posteriori, which
directly involve the corresponding collective degrees of freedom of relevance. The
values for parameters involved in model Hamiltonians must then be obtained via ab
initio methods like Density Functional Theory (DFT). Another approach consists on
making educated guesses about the types of order that a system may adopt, and then
studying them via Mean-Field Theory (MFT) to discern which one is the most stable.
Nevertheless, one would still want to comprehend the underlying mechanisms respon-
sible for the existence of the various ordered phases. In some simple cases, identifying
the kind of microscopic interactions required to trigger a particular macroscopically
ordered state is not especially difficult. However, in most realistic scenarios there are
several different interactions at play or different ordering tendencies being driven by
a given interaction, and taking the competition and interplay among these tendencies
into account is crucial for a correct understanding of their outcome. A prominent
example is the manifestation of unconventional superconductivity in the square Hub-
bard model [45L[162], where a microscopic repulsive interaction between electrons due
to their electric charge induces an effective interaction in the spin sector, and spin
fluctuations subsequently mediate a d-wave pairing instability. Various many-body

11



CHAPTER 1. INTRODUCTION

methods have been devised which allow to study the low-energy physics of a strongly
correlated system starting from knowledge about its properties at high-energy. They
still rely on building model Hamiltonians for the microscopic physics, which require
the input from ab initio methods, but provide the missing connection between the
complex orderings arising in the symmetry broken states and the original features of
the symmetric phase. The conceptual framework provided by the functional Renor-
malization Group (fRG) [97] has become a very valuable tool in the exploration of
correlated electron systems at low energies, being specifically suited to bridge the sim-
plicity of the microphysics with the complexity of the macrophysics in a many-body
system. The core idea of the RG is to integrate out modes which have a high-energy
relative to a variable energy scale of reference, and redefine the coupling parameters
of the theory to absorb the effect of having decimated some degrees of freedom. The
coupling parameters then become scale dependent quantities to reflect the successive
averaging over high-energy modes. This leads to an RG flow equation for the couplings
respect to the auxiliary scale, which allows to interpolate between the well understood
microscopic behavior at high energy scales and the complex emergent phenomena at
low energies. So far, the majority of fermionic fRG analyses employed to study cor-
related electron systems start by considering itinerant and weakly coupled electrons,
and face technical challenges when attempting to directly describe transitions to insu-
lating strongly correlated phases. Methodological improvements are still necessary in
order to unlock the full potential of the fRG in this regard. However, it still provides a
very flexible approach to do instability analyses, identifying ordering tendencies in an
unbiased and transparent way. Quantitative predictions about ordered states, like gap
sizes for example, are still difficult to obtain within fRG methods, but nevertheless,
their qualitative predictive power has brought important insights for a broad variety
of physical systems. For the explicit description of strongly correlated phases, other
methods like Quantum Monte-Carlo (QMC), Exact Diagonalization (ED), or Dynam-
ical Mean-Field Theory (DMFT) [96,/148], still provide better alternatives. They are
not devoid of limitations either, with QMC being only applicable to sign-problem-free
models, ED being only feasible for small sized systems, and DMFT being inaccurate
in low dimensions. In general, no definite answer can be obtained by a single method,
and the fRG complements the results of the aforementioned methods by allowing to
go beyond their range of applicability. In comparison with simpler approaches like
MEFT or perturbative single-channel resummations, the fRG requires no ansatz of the
kind of order that should prevail at low energy, and it treats all correlations on equal
footing. Instead of singling out a candidate to be the dominating low-energy scat-
tering process, the fRG includes all possible combinations of the relevant diagrams
to infinite order. This is essential for the description of realistic situations where, as
already mentioned, the interplay among several ordering tendencies plays a crucial
role.

The interplay of competing ordering tendencies is of particular relevance for Dirac
electron systems, which have caught the attention of the condensed matter community
in the last decades. Ever since the experimental realization of graphene [15}34,/103],
a growing number of exotic materials have been studied whose low energy excitations
behave like massless Dirac fermions. The linear dispersion relation of low-energy
quasiparticles in such materials is of great academic interest, providing a condensed
matter analogue of quantum electrodynamics in the ultrarelativistic limit, with the
advantage that some effects which are difficult to observe in elementary particles be-
come more accessible experimentally. It is also very relevant for technological applica-
tions, since it leads to an extremely high charge mobility in materials like monolayer
graphene. Even more promising technological perspectives depend on the possibil-
ity of inducing phase transitions of the Dirac semimetal into gapped ordered states,
which still poses an experimental challenge.

12



The Hubbard model on the Honeycomb lattice at charge neutrality is a standard
prototype for Dirac electron systems, since its band structure features Dirac-cone
structures at the corners of the Brillouin Zone. There are several important implica-
tions arising from the fact that the Fermi level lays at the linear band crossing and
that subsequently there is a vanishing density of states. One of these implications is
that electron interactions do not play a qualitatively relevant role [81] unless exceeding
a critical interaction strength, the semimetallic state staying otherwise unperturbed.
Moreover, the nature of effective interactions at low-energies is not fully dictated by
the scattering of quasi-particles at the Fermi level, as it would be if there were a
finite density of states. Another implication is that the Coulomb interaction between
electrons is not efficiently screened and stays long ranged. Thus, on the one hand,
it is required to consider correlations between energy modes across the whole band
structure, and on the other hand, these are coupled by a myriad of interaction terms
acting at different distances and competing with each other.

In a numerical fRG treatment of the emerging ordering tendencies at low temper-
ature, such peculiarities of Dirac semi-metals require a fine discretization of momen-
tum dependences in the effective interactions [123}/124,[129], posing a challenge for
its successful application to the undoped Hubbard model on the Honeycomb lattice.
Other approaches like Quantum Monte-Carlo (QMC) allow for a correct description
of the semimetallic state and its transition to an antiferromagnetically ordered phase
for both short- and long-ranged interactions [136}/144]. Unfortunately, these studies
are limited in the choice of band model parameters and interaction profiles due to
sign problems. Exact Diagonalization approaches have also provided important in-
sights [141/20], but are limited to small system sizes and generally neglect spin degrees
of freedom for computational feasibility. Predictions of ab inito interaction parame-
ters for graphene have found that electron interactions lie close to the critical values
necessary to induce a phase transition to a gapped ordered state [156]. However,
these critical values for given interaction terms only apply when such interactions
are considered individually, in the absence of competition effects among the differ-
ent terms. Experimental observations have consistently found a robust semimetallic
state for pristine graphene, where interactions do not seem to play a role even at very
low temperatures. Therefore the question arises, wether interactions may actually be
weaker than often predicted, or are the overlooked competition effects responsible for
the semimetallic stability.

In this thesis, we devise a new fRG implementation scheme which allows to per-
form efficient numerical computations with the required momentum resolution to
accurately describe long-ranged interactions and correlations among modes of any
wavevector in the Brillouin zone. Despite it not being an exact method, the flexibility
of the fRG makes possible to go beyond the regimes explored by other methods in
the search for possible deviations of the expected trends. We will analyze the impact
of the different competing ordering tendencies on the semimetal in an unbiased way,
and explore the possibility of achieving a realistic transition to an ordered state in
graphene. For that matter, the application of biaxial strain provides an experimen-
tally feasible way to enhance interaction effects in graphene, a possibility which has
already been studied with Quantum Monte-Carlo [138]. We will contrast and comple-
ment the study by considering a range of parameters which were inaccessible in QMC.
See the coming outline for a more detailed account of the contents of this thesis.

13



CHAPTER 1. INTRODUCTION

Outline of the thesis

This thesis is structured as follows.

After this introductory chapter, we dedicate Chapter 2 to briefly reviewing the
functional Renormalization Group on its one-particle-irreducible formulation applied
to fermionic systems. In particular, we sketch the derivation leading to the flow equa-
tions for U(1)- and SU(2)-invariant two-particle interactions in multiorbital systems,
and explain their use to perform instability analyses in two-dimensional systems.

Chapter 3 focuses on the numerical implementation scheme for the flow equations.
Starting from two recent approaches which allow for an efficient parametrization of
two-particle interactions, namely, the exchange boson parametrization and the Sin-
gular Mode fRG, we relate the two in a new implementation scheme called the Trun-
cated Unity fRG (TUfRG). The two previous approaches are first explained, and their
respective advantages and drawbacks discussed. This will provide the motivational
background to pursue their combination into a more advantageous scheme in the form
of the TUfRG. Next, some useful symmetry relations are presented, and the differ-
ent considerations for the initialization procedure of the TUfRG flow in multiband
systems are enunciated.

The TUfRG is put to use on Chapter 4, where an instability analysis is done for
the extended Hubbard model in the honeycomb lattice at half-filling. Considering up
to the second-nearest neighbor in the bare interactions, a phase diagram from results
with high momentum resolution is obtained. These new results allow us to update
the fRG’s predictions on the controversial possibility of a topological Mott insulating
phase being realized in the honeycomb lattice for dominating second-nearest neighbor
repulsive interactions. Novel instabilities arising due to competition in the charge
sector are presented as well. We also include a second-nearest neighbor hopping term
in the free dispersion and study its impact on antiferromagnetic ordering tendencies.

Chapter 5 continues the analysis done in the fourth chapter by extending the
range of interactions up to several thousand neighbors. The intermediate regime is
studied first, including the additional terms one by one up to the twentieth neighbor
and exposing the semimetallic state as a consequence of a complex balance among
competing ordering tendencies. Next, the stability of the semimetal is perturbed
by the application of isotropic strain. Two sets of ab initio interaction parameters
are used, together with their extrapolation to a long-ranged interaction and their
respective modification under strain. Critical strain values for ordering are computed
using different interaction profiles of various ranges, making a qualitative comparison
to results from QMC. Finally, we analyze the impact of a second-nearest neighbor
hopping on the strained and long-range interacting system.

Conclusions are drawn in Chapter 6, together with a brief outlook on future
studies.

14



2. Method: Fermionic functional
Renormalization Group

This chapter is meant to briefly introduce the exact functional RG-
flow equation on which this thesis is based. See Refs. [80,/97] for a
general review.

Contents
|2.1.  Exact functional flow equations| . . . . . .. .. ... .. 16
2.2. Truncationl . . . . . . . . . . . e 19
[2.3. SU(2) symmetric flow equations| . . . . . ... . ... .. 20
2.4. Flow parameters and regulator choices| . . . . . . . . .. 22
2.5. Multiband modelsf . . . .. ... ... ... 0000 23
[2.6. Instability analyses| . . . . . . . . . ... ... ... .. .. 23

The theoretical framework provided by the Renormalization Group is one of the great-
est conceptual achievements of twentieth century physics. At its root lie the ideas
of scale transformations and scale invariance, which trace back to classical antiquity.
The notion of renormalization first arose from the necessity to cancel out infinities
which appear in perturbative quantum field theoretic calculations of fundamental
interactions. By redefining the parameters of the fundamental theory as scale depen-
dent quantities, finite predictions could be obtained at all perturbative orders. The
first formulation of what is now known as the Renormalization Group came from the
study of continuous phase transitions in statistical physics by Wilson [1591/160], build-
ing on an idea of decimating degrees of freedom by Kadanoff [67]. By means of an
iterative averaging over microscopic degrees of freedom and a subsequent redefinition
of the system parameters, this Wilsonian renormalization technique was able to shed
light on the puzzling universal behavior exhibited by seemingly unrelated systems
when approaching a critical point. The key aspect was the identification of many
microscopic properties of these systems as irrelevant for the macroscopic behavior.

Nowadays, the RG has become the standard theoretical tool to reconcile the dif-
ferent phenomena acting at distant energy and length scales in a physical system. In
particular, it has allowed to understand how the dynamics of a many-body system
at a fundamental microscopic scale may lead to the emergence of complex collective
behavior at macroscopic scales. It is an invaluable tool in the study of condensed mat-
ter systems, which usually support a rich variety of strongly correlated phases in low
dimensions and at low energies. The traditional Wilsonian approach, which ignores ir-
relevant degrees of freedom, provides a quantitatively accurate description of physical
systems at criticality, with their scale invariance being identified from fixed points of
the RG procedure. However, for more general cases away from criticality, the method

15



CHAPTER 2. METHOD: FERMIONIC FUNCTIONAL RENORMALIZATION
GROUP

is only qualitatively correct. Many of the correlated low energy electronic states of
interest to the condensed matter community are generally non-critical, and their ex-
istence depends on non-universal properties like the lattice structure, gap openings
around Fermi-surfaces, and phenomena involved at intermediate energy scales. For
the correct description of these phases of matter, an exact Renormalization Group
technique is required which accounts for all the microscopic features of the system,
including irrelevant ones.

The exact RG approach employed in this thesis has its roots in the work of Weg-
ner [155], who introduced the use of exact flow equations for generating functionals in
statistical field theory. Further developments by Polchinski [109] and Wetterich [158]
have culminated in a unifying perspective of the diverse RG approaches devised across
many different fields of physics, in what is now known as the functional Renormal-
ization Group. Its applications range from high energy physics and cosmology to the
physics of ultracold atoms and Bose-Einstein condensates [22]. It is also a widespread
method in the many active research fronts of condensed matter theory, including un-
conventional superconductivity [45,[53}|78/79}/86,[107,|114L/118}139}[{150L/152}/153},/162],
topological states of matter [112/129], quantum transport in low-dimensional sys-
tems [2/94], systems out of equilibrium [64], and spin systems [115.|116].

2.1. Exact functional flow equations

In a functional integral formalism of quantum field theory [101], we consider an in-
teracting many-fermion system described by the action

S, ¢] = = (¥, Qoy) +V [, 9] (2.1)
with Grassmann fields ¢,1), the inverse free propagator Qy = Gy ! and a generic

many-body interaction V' [¢,]. The round brackets denote a scalar product between
Grassmann fields

6.0) = Ye a©Ov(e),

where the field index £ collects all the quantum numbers in the basis set, and ig

contains all the corresponding sums and integrals, together with normalization con-
stants.

Thermodynamic quantities like the grand-canonical partition function can be
written as functional integrals over the Grassmann fields

where the functional integral measure reads

D (0,9) = [[ db(€)du(©),
3
and normalization is again implicit. One can define the generating functional

Gl [ ErAEY

which provides the connected m-particle Green’s functions by functional differentia-
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2.1. EXACT FUNCTIONAL FLOW EQUATIONS

tion respect to the source fields

GC™) (&1, emi €L, &) = = (B(&1) . W (Em)D(ED) .. (L)),
_ (qym 0*"G [, 7]
07(€1) - - 0T(Em) 0N (&) - (€D |, g

where (...), denotes the connected expectation value. Due to the presence of in-
teraction terms inside the action in Eq. there is no general analytic solution for
the functional integral in Eq.[2:2] If the physical system under consideration has an
ordered ground state, conventional perturbative treatments of Eq. fail. The ob-
stacle lies in the appearance of infrared singularities among perturbative corrections,
as a consequence of spontaneous symmetry breaking and the emergence of collective
degrees of freedom.

A more convenient strategy is to construct a one-parameter family of generating
functionals G* that allows to interpolate between some solvable generating functional
and the one of interest by varying the auxiliary parameter A. For that matter, the
free propagator can be modified by the inclusion of a A-dependent regulator C* Gy —
G = C Gy, which monotonically satisfies

oA _ 0 forA—)oo7 (23)
1 forA — 0

so that

A _ 0 for A — oo Gh — 0 forA%oo.
Gy forA -0 ’ g forA — 0

Differentiating respect to A while keeping the fields constant, one obtains an exact
functional flow equation

OrG™ [,7] = (8,G° (0,71, Q8 650 In,77) + e { Qb dwb G In 7} (2.4)

with dot notation for A-derivatives, and with the trace above being defined as

tr {AB} = yff,g/ A(6,€)B(E. ). (2.5)

Doing a Taylor expansion in both sides of Eq. in powers of the source fields and
comparing same order coefficients leads to an infinite hierarchy of coupled differential
equations for the connected Green’s functions. In practice, the trivial boundary con-
dition G2~ = ( is not convenient since it does not contain any information about
the system. It is more desirable to have a starting point which already contains some
system specific information.

A better alternative is to use the generating functional for the one-particle irre-
ducible (1PI) vertices I', which is the Legendre transform of G

L[, 9] =G In,ml + (@,%) + (¥, 1) (2.6)
with 5G 56
7/1:—%7 Y= %
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CHAPTER 2. METHOD: FERMIONIC FUNCTIONAL RENORMALIZATION
GROUP

As implied, the 1PI vertex functions follow by functional differentiation

§2mr ["/}vm
D(En) - 0 (Em) V(&) - 0V(ED | oy

F(Qm) (51;35771751,;57/—”) = s

Due to the Legendre correspondence between G and I, their second functional deriva-
tives respect to source fields are reciprocal

_n—1
where
62FA 52FA
2A SY(&)SY(E) 5P (€)d(€)
6 F [w7m = s52rh 5214
0P (£)oY (&) Sep(€)d(E)
52gA 629A
_ TmEen©)  mEHmE©)
(Sng [n’ 77] = 52gA 526
on(€Nén(&)  — n(&)m(6)

The inclusion of a regulator in the free propagator brings Eq. to
D [o, 9] = G2 7] + @, ¢) + (0,n")

and by differentiating respect to A while keeping the fields constant we obtain the
flow equation [98158]

ot [,7] = - (Z.@w) -y {ab @t ) ) @)

where the capital trace now includes a summation over the matrix entries together

with Eq. and Qf)\ is defined as

A (% 0
Qo(o —(Qé))

The functional flow equation Eq. satisfies the initial condition T'A~> = S, with
the bare action S from Eq. and the full effective action would be obtained by
flowing down to A = 0. Expanding I'* in a power series of the fields

FA [wvm _ Z A(?m)A [w’m

m=0
with
(=™

(2m)A 0 —
A [y, 7] = I

igl...gm TC™A (61 i €rye D)
&6,

X (1) - V(€)Y (Em) - - Y(&), (2.9)

and comparing same order terms, reveals the following infinite hierarchy of coupled
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2.2. TRUNCATION

differential equations

iA(om o {Q{)\G/\} (2.10)
ddA =g Tr st - (h.at)
dcj\ = T8O 4 e [$h AN G RAN )
diA _— %Tr {sho2a®} 4 1Tr {she2arGraian ]
+ %’I‘r {SA52A<4>AGA62A(4>AGA52A<4)A}

where

SA 0 .
A _ _ _AAACA
S <0 _(SA)T> G*QhG

is the so-called single-scale propagator, and G* = diag (GA, — (GA)T>. The zeroth
order equation in Egs. 2.10]amounts to the flow of the grand-canonical potential, and
rewriting the rest in terms of the field-independent coefficients leads to an infinite
hierarchy of flow equations for the 1PI vertices. The first three equations are depicted
diagrammatically in Fig. and the explicit form of the first two reads

*EA(&,&) ip,p’ SMp, TR (EL P61, 0) (211)
d
TN &:61,60) = —jjp,,,/ SMp, p T OMELL 05 61,62, p) (2.12)
+i575; GME €)M (o) % (TOMEL €€ ITDNE 0361, 62)
psp

= [PONEL 0560, PN s p,60) + (€ 6 € & )]
+ [TON(&, 060, OTDNE 5.8+ (E & .8 o 0)]),

where in Eq. m we made use of (A = (GA)_1 = Q) — XA, following from the
reciprocity relation ([2.7)) for the first order Taylor coefficients, together with the Dyson
equation.

2.2. Truncation

The flow equation of every vertex in Egs. contains a self-contraction of a vertex
of next order, and therefore the coupled hierarchy never closes. Thus, it is generally
not possible to solve the exact functional flow equation, since it amounts to solving
an infinite set of coupled differential equations. In order to make calculations feasible,
the hierarchy has to be truncated. For the physical problems of interest in the coming
chapters, the most common and adequate truncation consists on neglecting all ver-
tices T(®™) of order m > 2, the so-called level-2 truncation. Dropping the six-point
vertex T'®) can be justified in light of the argumentation found in Ref. [121]. For
physical systems involving two-particle bare interactions only, and these not being
strong, ') is zero at the start of the flow and it remains small at high energy scales.
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Figure 2.1.: Diagrammatic representation of the first two flow equations in the hier-
archy of Egs. where dotted vertices on the left-hand-side represent
scale differentials. The diagrammatic structure at each order is obtained
from a self-contraction of a vertex of next order, plus all possible one-loop
terms obtainable with vertices of the given order and below. One of the
internal lines in every loop is a single-scale propagator, denoted in the
figure by a barred line.

Even though T'¥) may start to take large values at intermediate or low scales, it can
be shown through phase-space constraints that I'®) still stays comparatively small.
Nevertheless, although higher order vertices are not expected to have a qualitative in-
fluence on the flow, their quantitative impact may still be relevant. Two-loop
and multiloop approaches have been devised, allowing to go beyond the level-2
truncation.

Together with the level-2 truncation, a common further simplification is to neglect
the flow of self-energies. This is done due to technical difficulties and computational
limitations, some of which are summarized in chapter 12 of Ref. @ The hierarchy of
flow equations is thus reduced to a single equation involving the two-particle vertex
only. In two-dimensional systems at zero temperature (which will be the focus of
this study), as long as the density of states at the Fermi level is non-zero, the flow
equation contains singular diagrams. In the absence of self-energy corrections, which
would regularize such singularities by altering the single-particle energy spectrum
(e.g. via a gap opening), one typically encounters flows to strong coupling where
some components of I'® diverge. The RG flow has to be stopped when coupling
strengths exceed the order of magnitude of the single-particle bandwidth, since the
aforementioned approximations break down below that scale. Not only would self-
energy effects become important, but with a divergent two-particle vertex the neglect
of higher order vertices is no longer justified.

2.3. SU(2) symmetric flow equations

So far we have implicitly restricted ourselves to U(1)-invariant theories for charge
conservation, manifest in the fact that only even orders of the m-point functions are
non-zero. In addition, our focus will lie on SU(2)-invariant systems where interactions
respect spin-rotational symmetry. Writing dependences on quantum numbers more
explicitly than in previous sections, the antisymmetric two-particle vertex I'® for
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Matsubara frequencies and momenta k; = (w;, k;), and spins s;, can be expressed in
terms of a spin independent coupling function V' [121] via

TN (b ko ks ka) = VA, ko, ks k) Os, sy 05,60 — V™ (k2 bt i, k) Os,y s, 04

(2.13)
with incoming particles 1 and 2, and outgoing particles 3 and 4. Furthermore, since
the lattice systems studied in this work satisfy discrete translational symmetries, inter-
actions respect frequency-wavevector conservation (modulo reciprocal lattice Vectors).
This allows to reduce the description to a coupling function with three dependences,
VA(ky, kg, k3), and a self-energy with a single dependence. Dependences on other
quantum numbers which do not follow conservation laws, like band indices, must all
be kept explicitly. For notational clarity, we will ignore band indices for now.

The flow equations in the level-2 truncation under these additional symmetries
read

d

AE0) = [ d VA )~ V()] S 0) (214)
d
A VA (K1, ko, k3) = Ty (b, ko, ks) + T e (ky, ko, k3) + Tob a (k1 ko, ks)  (2.15)

with contributions from the particle-particle channel 7y, crossed particle-hole channel
Toh,er and direct particle-hole channel 7o g

T (ky, ko, ks) = f/dva(kl,kz,p) VA(p k1 + ko — p,k3) L (p ey + k2 — p)

7;’}1 Cr(kh k?v k3) /dp VA(klap + k2 - k?np) VA(p7 k27 kB)LA(pvp + k2 - k3) y
(2.16)

TA (k. ko, ks) = /dp OV (ke p+ kg — F, kg) V(s ks p + g — k)

+ VA(k1,p+ ks — k1, p) VA(p, k2, p + ks — k1)
+V A (ky, ptks — k1, ks) V(ka,p,p+ ks — k1)] L (p,p + ks — k1) .

where LA (k, k') = SY(k)GM(K') + GA(k)S™(K') and [ dp is shorthand notation for
f Ad;’Z /13 Zw with Brillouin zone area Apy and inverse temperature 5. The diagram-
matic representation of the three contributions in Eq. (2.16)) is presented in Fig.

In the flows without self-energy corrections, since

$t = -GGt = ¢ GA|MXed (2.17)

one has a more compact expression for the loops, namely L (k, k') = £ G* (k)G (k).
In the general case including self-energies, the latter replacement [72] in L brings
additional contributions of third order in the interaction to the flow of the two-particle
vertex, which would otherwise contribute via the self-contraction of the neglected
three-particle vertex.
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Figure 2.2.: Diagrammatic representation of the three channels in Eq. , with
particle-particle (top left), crossed particle-hole (top right) and direct
particle-hole (bottom) diagrams. One of the internal lines in the loops is
a single scale propagator.

2.4. Flow parameters and regulator choices

Some of the versatility and broad applicability of functional RG methods lies in its
flexibility respect to the choice of regulator, which may describe any possible path
in the coupling parameter space as long as it satisfies Eq. Since in practice the
exact flow equation is generally not exactly solvable, the use of different regulators can
also provide a means of error estimation. As mentioned in Sec. for the physical
systems considered in this work and neglecting self-energies, singularities will lure
in the infrared. In general these are logarithmic singularities for T — 0 of the form
glog (W/T) after Matsubara summation for a frequency independent interaction, with
coupling constant g and bandwidth W. The most widespread choice of regulator is a
low energy cutoff, normally taken in momentum space relative to the free dispersion
e (k) and in the form of a step function © (|e (k)| — A). It is from this momentum-
shell cutoff scheme that the single-scale propagator gets its name, since it only gets
support at energy A. In numerical implementations, it is generally convenient to
choose the regulator to be a smooth step function of finite width. After the inclusion
of this regulator, the singularity can be approached in a controlled and transparent
way by reducing the RG scale A. Unfortunately, it has an important drawback, since
particle-hole processes with w = 0 and q — 0 can only start to contribute when A
drops to the scale of the temperature, which means that they are excluded in studies
at zero temperature. Other alternatives which avoid this problem are to directly
use the temperature as flow parameter in the so-called temperature-flow, or to start
from the non-interacting case and increase the coupling constant g in the so-called
interaction-flow.

Yet another option which also avoids the aforementioned problem is to use a
smooth regulator in frequency space. A convenient form for such a regulator was
introduced by Husemann and Salmhofer [61] in their so-called Q-scheme, reading

UJ2

O%w) = w? + 02

(2.18)

where 2 here takes the role previously held by A. Its convenience lies in the fact
that it still allows the Matsubara sums in the loops to be performed analytically
for frequency independent interactions if the self-energy is neglected. Apart from
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avoiding the artificial suppression of some particle-hole processes, the Q-regulator
also allows to include the real part of self-energies in the flow in a more reliable way
than cutoffs that discriminate energy modes respect to the free dispersion, like the
usual momentum shell cutoff. The Q-regulator will be employed throughout the work
done in this thesis. The resulting expressions for the one-loop integrals can be found

in App.

2.5. Multiband models

The SU(2)-symmetric flow equationsfor the coupling function written in Sec.
can be generalized to the description of multiorbital systems, for a review see
Ref. |108]. Although the physical intepretation of single particle states in a basis
of localized Wannier functions is normally the most natural, it is generally more eco-
nomical to work on a band basis where free Green’s functions are diagonal. The
momentum dependent part of the coupling function in band basis is then obtained by

Vb1 bobsby (kla ko, kB) — Z 1/ 01020304 (kla ko, kg) Tllzi ,01 Tllzz,oz (Tﬁg,m) (Tllzi,m)
0304

(2.19)
where the explicit scale dependence was omitted for notational clarity, and Tﬁqo are
the unitary transformation elements between orbital and band degrees of freedom.
This transformation is not unique, and in practice the specific choice may have rele-
vant implications [90], as it will be the case in our studies on the honeycomb lattice
system. Note that for lattices with a multiatomic basis, like the bipartite honeycomb
lattice, we will also refer to sublattice dependences as orbital dependences. The ad-
ditional momentum structure of the coupling function in band picture due to the
transformation is often referred to as orbital makeup [141,[142].

The flow equations in generalize in the multiband case to

7;b$..4b4 (kh kz’ k3) —— /dp Vblbzbb/(]ﬁ, k‘z,p) Vbb’bgbz; (p7 kl 4 kg —p, k3)Lbb' (p7 kl + k2 _ p) ,

Ebﬁ"(;;«bél (klv k27 k3) = - /dp Vblb,bb4 (klap + k2 - kj?)?p) Vbb2b3b, (p7 k27 k3)Lbb/ (p’p + k2 - k3) 3
(2.20)

7;‘17}}7'&4[)4 (k:l, k23 k3) - /dp |:72Vb1b/b3b(k17p + k3 - kl? k3) Vbb2b1b4 (pv kQap + k.?) - kl)
+ Vblb,bb3<k1,p + k?g _ kfl,p) Vbbzb/b4(p, k27p -+ k’3 — k’l)
+Vb1b/b3b(k1,p + ks — ki, k) Vbzbb'b4(k2,p,p + k3 — /€1)} L (p;p+ ks —k1).

where now [dp = [ %% S, >, and L (k, k') = 4Gk, b)GM K Y).

2.6. Instability analyses

The application of the fRG method presented so far sets the stage for the instability
analyses performed in the following chapters. Due to the simplifications done when
reducing the exact flow equation to a level-2 truncation without self-energies, one is
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not allowed to flow through phase transitions into symmetry broken phases. However,
in our studies of interacting electrons on two-dimensional lattices, if the system has or-
dered low-energy phases, these become manifest as flows to strong coupling where the
two-particle vertex diverges. These divergences reflect the fact that important modi-
fications to the single-particle spectrum would have taken place if the self-energy had
been included, and the need for additional order parameter fields describing the col-
lective excitations associated with the symmetry breaking phase transition. Although
he phase transition cannot be studied directly, the buildup of long-range order and
possible interplay or competition between different tendencies can be reproduced in an
unbiased way. The fRG treats all correlations on the same footing, without singling
out any specific interaction channel as in ladder resummations. Instead of having
to rely on an ansatz or educated guess about the predominant order in low-energy
regimes, as is done in mean field studies, the instability towards an ordered phase
emerges spontaneously in the flow. This unbiasedness is one of the main strengths
of the fRG method, together with its wide applicability, since it is not restricted to
particular band structures or interaction types.

In the usual instability analyses, when encountering a divergence in the coupling
function, the flow is normally stopped when it exceeds the order of magnitude of
the single-particle bandwidth, although the precise choice of a stopping point has
no relevant effect on the stopping scale since the couplings diverge strongly as the
instability is approached. That stopping scale provides an upper estimate for critical
scales. Furthermore, the divergences arise forming sharp structures in frequency and
momentum space, indicating the onset of long-range order, and the type of ordering
instability can be read from such structures. For example, in the SU(2) invariant case,
the possible sharp dependences which the coupling function may develop appear for
specific combinations of external frequencies and momenta which correspond to the
transfer [ involved in the loops L' (k,+(l — k)), which as of Eq. , can take the
values | = k1 + ko, | = ks — ko or I = k1 — k3. Divergences in either of these frequency
and momentum combinations respectively indicate a superconducting, magnetic, or
charge ordering instability. Focusing on the momentum part, the precise value of 1
for which the diverge occurs provides the real space modulation of the ordered phase.
The weaker dependences on the remaining momenta normally take the form of low
level harmonic functions, and reflect the symmetry character of the order parameter
to be induced at the phase transition. Further details about the system’s information
encoded in the behavior of the two-particle coupling function will be discussed in the
next chapter.
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3. Implementation: The Truncated
Unity fRG scheme

In this chapter we derive a mnovel computational scheme for func-
tional Renormalization Group calculations for interacting fermions
on 2D lattices. We start by introducing its predecessors, namely, the
exchange parametrization scheme and the Singular Mode fRG. Our
scheme is obtained from the exchange parametrization by inserting
truncated partitions of unity in the loop integrals. These insertions
decouple the fermionic propagators from the exchange propagators
and lead to a separation of the underlying equations. We show that
this separation is numerically advantageous and may pave the way
for refined, large-scale computational investigations even in the case
of complex multiband systems, with the extended Hubbard model on
the honeycomb lattice as a prototype. This chapter sets up the nu-
merical implementation of the fRG which will be employed for the
studies of graphene in the following chapters.

Parts of this chapter have already been published in Refs. [87,
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Ever since its inception, the fermionic functional RG introduced in the previous chap-
ter has gone through important developments in its application to 2-dimensional
lattice systems at low temperature. Despite the simplifications undergone by the
exact functional flow equation to arrive at an ordinary integro-differential equation
for the two-particle interaction, the latter can only be solved numerically in the vast
majority of cases. The refinement of numerical schemes, together with the progress
and greater availability of computing power, is allowing for the investigation of an
ever wider range of material classes and exotic phenomena using fRG methods.

The main focus of the scheme presented in this chapter, and employed throughout
this thesis, is the accurate description of the functional dependence of two-particle
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interactions on wavevectors in the Brillouin zone (BZ). So far, the most common pro-
cedure has been to discretize momentum dependences only along the Fermi surface,
in the so-called N-patch scheme or Fermi surface patching |53l[71L[162]. This scheme
constituted a significant improvement on previous g-ology models, which simplified
low-energy interactions to a handful of couplings g; representing the scattering among
hot-spots in the Fermi surface. The applicability of g-ology models on 2-dimensional
systems is therefore limited to situations where the low-energy activity is restricted
to a few locations in the Fermi surface. By tracking the tangential momentum de-
pendence along the whole Fermi surface, the N-patch scheme significantly broadened
the application scope of the fRG method.

However, although patching schemes have been successful in providing sound
insights for a variety of physical systems, other systems remain where the wavevector
dependences away from the Fermi surface play a relevant role. The example of interest
is that of Dirac electron systems, which have pointlike Fermi surfaces with a vanishing
density of states. Although in principle a zero dimensional Fermi surface provides the
ideal scenario for the applicability of g-ology models, one should include interactions
between energy modes across the whole band structure and not just from the vicinity
of the Fermi level, especially since at the latter the density of states vanishes. Another
reason for the necessity of a finer Brillouin zone discretization is the inclusion of
extended interactions, which have to be properly resolved in momentum space. In
the same example of Dirac electrons, due to the vanishing density of states at the
Fermi level, interactions are not efficiently screened and stay long-ranged. Finally, in
a general case, more elaborate numerical schemes are needed for quantitatively precise
predictions, since typically the obtainable fRG results are only qualitatively correct.

The most straightforward attempts to extend the N-patch scheme to these sit-
uations lead to the multi-patch scheme, consisting on also patching perpendicularly
to the Fermi surface. However, discretizing a function which depends on three two-
dimensional arguments is numerically expensive and does not scale well, and thus the
total number of patches has to be kept relatively small for computational feasibility.
A more convenient parametrization of the two-particle vertex function is necessary in
order to overcome these limitations. The Truncated Unity functional Renormaliza-
tion Group (TUfRG) scheme [87] presented in this chapter constitutes a further step
to already existing improved parametrizations of the two-particle vertex flow equa-
tion [24H26,[37,/61462,91}/1511|152,|161], based on channel decomposed flows. One of
the central considerations in the development of the TUfRG is the fact that modern
numerical implementations rely heavily on parallel and high performance computing.
Together with the physical considerations, computing efficiency and scalability must
also be taken into account, and it is in this regard that the TUfRG delivers some of
its main advantages.

As already mentioned, the main focus here will be on momentum dependences
of the two-particle interaction. Except for some minor comments, frequency depen-
dences and self-energies will be ignored. The Fermi surface patching scheme has
already been used to explore the inclusion of self-energy effects and frequency depen-
dence [54,73}(1171/143], but channel decomposed flows provide a more promising alter-
native [2425/37,61./62,70], although so far only simplified decompositions of frequency
dependences have been taken into account. The development of cutoff schemes like the
Q-regulator have allowed to include the real part of self-energies in the flow in a more
reliable way than cutoffs that discriminate energy modes respect to the free dispersion,
like the usual momentum shell cutoff. The Fermi surface patching scheme has also
been implemented to describe models without spin-rotational invariance [91,/128,/131]
due to the presence of spin-orbit coupling terms. A great effort has been made in
the continuation of flows into symmetry broken phases [25}27}/35/36},91,/137]. Higher
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loop approaches [26},74,/82] have also made possible to go beyond the standard level-2
truncation of the functional hierarchy. The Fermi surface patching scheme has of-
ten been applied to multiband systems |108] at the expense of momentum resolution
or the possibility to include frequency dependences. In the presence of high-energy
bands away from the Fermi level, it is unclear how to correctly patch them. So far,
the majority of the more refined channel decomposed schemes including frequencies
and self-energies have been focused on single-band systems or multiband models with
important simplifications. Although the TUfRG scheme has not yet been applied
to computations including self-energy effects and frequency dependence, its applica-
bility to multiband models is shown in this thesis for the honeycomb lattice as a
prototype. In its current state, the band dependences of the two-particle coupling
are fully kept. For its extension to systems featuring a high number of bands, a more
efficient reparametrization of band dependences would be additionally required. Re-
cently, the TUfRG has also been extended to the study of multiband models without
SU(2) invariance [132].

3.1. Boson exchange parametrization

An important breakthrough towards a more efficient scheme took place with the so-
called exchange parametrization of Husemann and Salmhofer [61]. Its main insight
builds upon the fact that the singular momentum dependences which a regular ver-
tex function can develop in the RG-flow are dictated by the singular contributions
produced by the one-loop bubbles. These singular contributions take place for par-
ticular values of the transfer momenta involved in the one-loop diagrams of the flow
equation. For instance, in the SU(2) invariant flow equation there are three kinds
of contributions, written in Eq. as particle-particle, crossed particle-hole and
direct particle-hole, each having a momentum transfer of ki +kso, kg —ko and k; —ksg,
respectively. When encountering a flow to strong coupling, the coupling function de-
velops a strong dependence on one of these wavevector combinations, from which the
physical nature of the instability can be read, as explained in Sec. This allows
for a reparametrization of the coupling function in terms of different channels, each
picking up a direct dependence on one of the transfer momenta, which read

Qo, b1...b SC,by...b M, by...b
Vblmb4 k1 k2 k =V 0,01 1 _ pro ot 47 B _’_q) ;01 4 3.1
Uer b ka) =Vig o™ = P el s T g (341)
_ 1®K7b1...b4 n LI)M,I;L..b4
2 ky—kg, SR Katke T 9 T kg, Mgk kot o

where V% is the initial bare interaction which stays constant, and the so called
single-channel coupling functions ® are generated during the flow according to

SC, by...b by...b

Da® " ki = —Top U (ki ko k

Q k1+k2,k12k2’k32k4 PP ( 1, 82, 3);
M, by...b r b1...b

89(1)1“,;2 12114“4 kotky — 7:h P (k17k2ak3) ) (3.2)
2 e

69‘1)51’511(3’%1%1%’% _ _27;31, by...by (ki k27k3) + 7;c}11r,b1...b4 (ki ko, ki + ko — k3) .
The dependence of V and ® functions on the regularization scale ) is assumed.
The first momentum argument in the single-channel coupling functions denotes the
transfer momenta, and the second and third arguments capture the remaining weak
momentum dependences. This channel decomposition is not unique, its original for-
mulation here being cast in terms of the three possible rearrangements of a general
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U(1) and SU(2) two-particle interaction in the form of fermion bilinears. This way,
after the assignments in Eq. the SC, M and K channels can be physically inter-
preted as pairing, magnetic and charge scattering corrections to the bare interaction,
respectively. The single-channel coupling functions stand subsequently as coefficients
or coupling functions for interactions among Cooper pairs, spin operators and den-
sity operators. The convention used here for the weak momentum dependences is
motivated by symmetry arguments and differs from the original one in Ref. [61]. As
explicitly shown in App. [A] the weak momentum dependences are the Fourier duals
of the real space distances between the two operators within each bilinear, and the
transfer momenta are conjugate to the relative distance between midpoints of the
corresponding bilinears.

For the sake of generality and unbiasedness, the initial bare interaction V% is
kept as a separate scale independent term in the channel decomposition. This avoids
possible ambiguities when having to assign a given interaction to either of the three
channels, the simplest example being the case of a momentum independent coupling,
which can be equivalently formulated in all channels. The initial condition for the
single-channel coupling functions at the start of the flow is therefore zero valued.
However, as discussed in Sec. [3.3.4] in some practical cases it is more convenient to
assign the bare interaction as initial condition in the single-channel functions.

A different decomposition is used in the Singular Mode fRG scheme (SM{fRG) of
Ref. [151], directly following the diagrammatic structure of particle-hole channels. It
reads

b...b Qo,b1...b P,by...b C,b1...b
v ! (k17 k27 k&) :Vklc,)k;ks ' - ¢k1+1k2, 4k1 ;kz $k3;k4 + q)k371k2’ li1-§k4 i kz-gka (33)

D,by...ba
ki+ks kotky 7
k17k3, 12 5’ 22 4

+o

with

P,by...b
Oq® "tk _
ki ko, K1k 2k2 JEazke 2k4

_7;;'“[)4 (k17 k21 k&) )

aﬂ@c,bl...lh; ko +ks = 7;:}1;’ br-ba (k17 k21 k3) ) (34)
2

kg 4k
k3 —ko, 151,

D,b1...b _ d,bi.b
aﬂq}klflk&ﬁl%k‘x% - 7;31 o (kl’k27k3) ’

amounting to a mere relabeling for the pairing and magnetic channels, whereas the

charge channel is obtained by

K,bi...b D,b;...b C.by...b
Po01--04 = —_2p 0 4 pCbrba '
kg, K aths R W SE LSS

(3.5)
Although the SMfRG does not strictly follow a channel decomposition as in the ex-
change parametrization, Eq. (3.3) will be the decomposition used in the TUfRG,
which can be said to be a combination of the two former approaches. More specific
details about the SMfRG will be discussed in the following section.

With the channel decompositions written so far, the possible singular momentum
dependences developed in the flow have been separated. The next step undertaken in
the exchange parametrization is to expand the weak momentum dependences of the
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single-channel coupling functions onto a suitable orthonormal basis of form factors

ol —me (k) Pty

Pl = me ) [ (k) Ozt (36)
O = Z Fn (k) £ (k') Dl 50 (1)

This way, the interaction between fermion bilinears is in fact rewritten as if mediated
by an auxiliary exchange boson carrying the transfer momentum 1, and hence the
objects P,C, D are consequently named bosonic propagators. Note that the naming
is only due to analogy, and that no explicit bosonic fields are being considered. This
reparametrization is formally exact so far, but in practice the infinite basis of form
factors has to be truncated. A right choice of form factor basis minimizes the trunca-
tion error and allows to capture weak momentum dependences with just a handful of
terms. The choice of form factor basis will be discussed in Sec. After this expan-
sion, the coupling function can then be conveniently described by three objects, each
having just one momentum dependence. Upon discretization of the strong momen-
tum dependences, the numerical effort should scale linearly respect to the number of
sampling points, in contrast with the cubic scaling of Fermi-surface patching schemes.
For that matter, one must first rewrite the RG-flow equation in terms of the
bosonic propagators via

0o Pt (1) = =P [Th"] (1)
BaCliz () = C [T ] (3.7)
da Dl () = DT ()

R
o8

where the projection operators ,lj act as an inverse to the expansions ([3.6) and

read

PIF), )= [dkadl 7,005,000 F (G 41 ] -k 41

‘ 1 1 1
/dkdk’ K) fo(k') F <k+2,k’—2,k’—|—2> . (38)

DIFl (0= [akald 15,00 £,00) F (1 5.0 = e 3]

All momentum integration measures implicitly include a normalization over the Bril-
louin Zone area. A direct numerical computation of the high-dimensional integrals
above would be costly. Moreover, for reasons of memory bounds, if momentum depen-
dences in the bosonic propagators are finely discretized, it might be undesirable having
to reconstruct the coupling function V' appearing in the right-hand-side of Eq.
in its full momentum dependences. Instead, one can decompose every instance of
the coupling function in the flow equations so that they only explicitly involve the
bosonic propagators. However, this generates intricate diagrams which are challenging
to compute, namely, mixed boson-fermion loops. There are three types of diagrams
involved in the flow equation for a given bosonic propagator B € {P,C, D}, as shown
in Fig. The easiest to compute are those which arise from the B parts themselves
in both V’s of the right-hand-side, shown in Fig. since the loops stay in the
purely fermionic L(k, k") type defined in Sec. Diagrams involving a contribution
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B By

(a) Propagator renormalization diagram

-t

(b) Vertex correction diagram

) %

(¢) Box diagram

Figure 3.1.: The three different types of loop diagrams arising in the boson exchange
parametrization for the flow of a bosonic propagator B;. A bosonic prop-
agator from any of the other two channels is denoted by Bsy. Solid lines
represent fermionic propagators.

from channels other than B in either one or both of the V’s lead to vertex correc-
tion and box diagrams, respectively shown in Figs. - The loops in these
diagrams contain bosonic propagators together with the fermionic Green’s functions.
As already mentioned, the fermionic L(k, k') loops drive the singular structure of the
flow, and are already challenging to compute on their own. Adding the bosonic prop-
agators, which eventually develop sharp structures during the flow, further increases
the difficulty of the loop integrals. Moreover, the presence of the bosonic propagators
in the integrands hinders the parallel scalability of a computer code implementation
of these integrals due to interprocess communication.

For the neglected frequency dependences, a similar decomposition was already
developed by Karrasch in Ref. [70]. In that work, the frequency dependent vertex
was split intro functions depending on a single transfer frequency each, i.e. remaining
weak dependences on other frequency combinations are discarded altogether instead
of being expanded in some form factor basis. Similarly, in the original implemen-
tation of Ref. [61] the transfer frequency dependences are also kept in the bosonic
propagators, but the form factors are only momentum dependent. The remaining
dependences, which are fermionic frequencies in their convention, are projected to be
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a half of the bosonic transfer momenta in their version of Eq. . A proposal for
basis functions which could result in a more compact representation than Matsub-
ara frequency harmonics is the Legendre polynomial representation of Ref. [10]. The
limitations on the straight separation of frequency dependences done in Refs. [61}70]
have been exposed in Ref. [147].

3.2. The Singular Mode fRG scheme

The Singular Mode fRG introduced by Wang [151] takes a different approach to that
of the boson exchange parametrization of last section. It is also based on separately
keeping track of the singular momentum dependences in the two-particle coupling
function, but instead of decomposing in single-channel couplings, the two-particle
interaction is itself expanded in three different but complementary approximations,
namely

k k k k
Vhbi (kg ko, k3) = me< 3 2) f”( = 2 4) V”ljfrlzlmm (k1 + ko),

ki +ki\ L. (ko +k
VI (g ko k) = 3 fin ( = 4) I (23> Vo (ks — ko), (3.9)

2
m,n
ki +k ko +k
Vb (ky ko, ky) = me ( 1;r 3) r ( Q;r 4> VTE:T?L..ZM (k; —ks3) .

The choice of momentum combinations for strong and weak dependences matches
that of the previous channel decomposition, in order to relate the two approaches
more easily. Note that the convention for weak momentum dependences expanded in
form factors is different in the original formulation of Ref. [151]. Alternatively, the
expressions above can also be cast using the projections defined in Eq. , yielding

Vbt (kg + ko) = [V]b1 b1k 4+ ko)
Vrg,’fl"'b‘l (ks — ko) = C V]2 (ks — ka) |

m,n

VD biebe (k) — k) = D VI (kg — k)

m,n

The flow of these three approximations of the coupling function, which we will denote
projected V's in the following, reads

DVl bt (1) = P [Top + Tt + T ]2 ),
[Ton + Tois + Tl (1),

bl...b4
[Tow + T + T ),

6QV7S7’7§1"'Z)4 (1) by...by

C
OV b1y = D

which in terms of the bosonic propagators and single-channel coupling functions of
previous section becomes

9aVE(1) = —0qP(1) + P [009°] (1) + P [0,®°] (1),
9aVE(1) = —C [0q@F] (1) + 9o C(1) + C [002] (1), (3.10)
9aVP(1) = —D [0a®"] (1) + D [002°] (1) + 0oD(1),

31



CHAPTER 3. IMPLEMENTATION: THE TRUNCATED UNITY FRG SCHEME

where boldface objects are shorthand tensor notation for the various band and form
factor index dependences.

In this approach, one does not encounter mixed boson-fermion loop integrals. In
the RG-flow of VB, B € {P,C, D}, computing the intra-channel contribution 9o B
involves purely fermionic one-loop integrals. Once these have been determined, they
are inserted in form factor expansions of o ®B’s at the inter-channel feedback contri-
butions, which then amount to integrating a scale-differentiated bosonic propagator
together with four form factors. The resulting expressions are completely analogous
to those used in the TUIRG, and thus we refer the reader to the next section where
they will be derived from an exchange parametrization perspective.

Despite the aforementioned advantage of the SMfRG in calculating loop integrals,
it entails an important drawback compared to other schemes. An ambiguity is intro-
duced with the definition of different approximations of the coupling function, and
the right pick for reconstructing the coupling function becomes a matter of context.
It is unclear which of the three projected Vs we should unproject, for example, to
be plugged into the self-energy flow equation if we had not neglected it. The result
will strongly depend on the ambiguous choice, since the projected coupling functions
only contain one of the three important momentum dependences while the other two
are smoothened out by the projection process and cannot be fully recovered due to a
truncated form factor basis.

3.3. The Truncated Unity fRG scheme

The following scheme was developed in the course of this thesis with the objective of
combining the advantageous traits of the two schemes presented so far. It allows to
keep bosonic lines out of the loop integrals as in the SMfRG, but without introducing
the ambiguities discussed at the end of the previous section. In a sense, the key
attempt of the TUfRG is to arrive at flow equations analogous to those of the SMfRG
but starting from the formulation of the boson exchange parametrization. We continue
where the exchange parametrization was left off in Sec. namely at Eq. (3.7), which
for the P channel reads

Do Pt () = =P [Ty (1) (3.11)
- /dk dk' fr (k) fo(K') 10 (; + ké —k, % + k’)
_ / dk dK’ £ (k) fa(K') / ATy (; Lk, % Kk, k”)
X LV (K1 — K VPP babs <k", 1-X", % + k’)

where again k” = (w,k”) and [dk” = fdk”% > >y with momentum integration
measures dk implicitly including a normalization factor over the Brillouin Zone area.
The fermionic bubble was defined as LY (k, k') = LGk, b)G(K', V). Note that
together with the neglect of Matsubara frequency dependences in the coupling func-
tion, the external frequencies wi ...w4 are set to zero because we are interested in
groundstate properties. Since we will always work at zero temperature, there is no
inconsistency in fermionic frequencies taking zero values. It then follows that bosonic
transfer frequencies are always zero, i.e. [ = (0,1).
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To avoid the difficulty of mixed fermion-boson loops arising when decomposing
the coupling functions as in the exchange parametrization, one can directly expand
them in form factors as done in the SMfRG. Together with a shift of the integration
variable k" — k" 4+ 1/2 for a more symmetric expression, the form factor expansion
yields

o Pyl (1) = / dk dk’ f, (k) fn(K') / di/ Viibett (; +k, % -k, % + k”)

e l / 1 1 1
Lbb o /e N, bb'bzby [ K’ - —Kk" = Kk’
X (2+k,2 k:)V 2+ '3 ,2+

/ dk dk’ f7 (k) f,(K)) / k" 3" For (k) Fr (K")V 02 (1)

m’’ m/’

D (G g ) X ) GOVE ).

TL/ n'!

(3.12)

Since the form factor basis is orthonormal, the above expression can be simplified
using [dk £ (k) frn (K) = O mr and [dK' [, (K') fn(K') = 0, to arrive at

89}321%1,4 Z v b1b2bb' vE bb'b3b4(1) (3.13)

m,m’ n n
m’,n’

/ dk" f* (k//)Lbb <l k// i_ k”) fn’(k”)' (314)

After these modifications, the loops stay purely fermionic but now also contain
form factors. With the right choice of form factor basis, the appearance of sharp
bosonic propagators is replaced by slowly varying functions which make the loop in-
tegrals much more manageable. The complete form factor basis actually contains an
infinite number of functions, but an appropriate truncation neglects strongly oscillat-
ing ones. The price to pay is that we now have several fermionic loops to compute,
since the various form factor combinations must be considered. Nevertheless, they
can all be calculated independently from each other, which is beneficial for a scalable
parallel code implementation. Furthermore, one also needs to calculate the projected
Vs via the inter-channel projections detailed in Sec. [3.3:2] The latter can also be
computed in parallel in an efficient and scalable way. The result of pulling bosonic
propagators out of the loops is illustrated in Fig. for the example of a vertex
correction diagram.

An equivalent way to arrive at Eq. (3.13)) is to directly insert partitions of unity
in the form factor basis

1= /dp'5(p —-p)= /dp’ > £ @) fn(P) (3.15)

at both sides of the fermionic bubble L in Eq. (3.11) to isolate the corresponding
projection of the coupling function into V. In practice, such partitions of unity
must also be truncated for computational feasibility, hence the name of the scheme.

The procedure for the particle-hole channels follows analogously to the one
here illustrated. The obvious difference is that they involve a particle-hole bubble
LY (k" k" — 1) instead of the particle-particle one of Eq. (3.11)). One can then define
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FOtd DO b @

Figure 3.2.: Modification of the vertex correction diagram in Fig. after the in-
sertion of a partition of unity between the fermionic propagators (solid
lines) and the bosonic one (wiggly line) in the loop. Dashed lines are just

contractions including a form factor as in the projection operations, so
that the dashed bubble corresponds to B [<I>B2].

the form factor projected bubbles
l l .
X (1) = / w6 (5+00) 6 (5-00) @ fum), 310
ph bb ! Lo\ e
so that the flow equations can be written in terms of its scale derivatives

o ()= [ a2 (505 -0) Fi0) 1), (317)

/ l l .
doxim? (1) = /dprb <p+ 3P 2) fm () fu(P).
This finally leads to the TUfRG flow equations

'bl...b4 2 : 2 : P, blbgbb pp bb’ P, bb bzby
Pm,n Vm ,m/ m n’ (1) Vn/,n (1) )

m/,n’ b,b
C, b1 b'bb . ph, bb’ C, bbabgb’

0211 nb4 = Z Z Vm ml’ 4 )an’,n’ (1) Vn’,n o (1)7

m’,n’ b,b’
D) = 37 3 (v v (3.18)

m’,n’ b,b’

C, b1 bbb . ph, bb’ D, bbab’b D, bi1b'b3d . ph, bb’ C, babb'b
= Ve B W VR 1) = VR ) X ) i )

with scale derivatives represented in dot notation.

Let us recapitulate before moving on to the calculation of projected Vs. As
shown in this section, it is possible to combine the main advantages of the exchange
parametrization and the SMfRG, namely, to have an efficient reparametrization of
the two-particle coupling function without introducing ambiguities or having to deal
with mixed fermion-boson loop integrals. Starting from the exchange parametrization
scheme, an insertion of truncated partitions of unity allows to pull bosonic lines out
of the loop integrals to arrive at flow equations of the SMfRG form. Thus, the
TUfRG is basically the standard exchange parametrization scheme with an additional
approximation. The main drawback that comes with it, is the need to additionally
compute the projected Vs for inter-channel feedback. On the other front, the SMfRG
and TUfRG are mostly equivalent from a formal and computational perspective. The
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only difference is that the TUfRG keeps track of the bosonic propagators as core
objects in the calculation, whereas in the SMfRG only their scale derivatives are
computed as an auxiliary step to renormalize the projected V's. The TUfRG therefore
allows for an unequivocal reconstruction of the full coupling function without entailing
any drawbacks respect to the SMfRG scheme.

For a demonstration of the scheme’s performance and scalability in a distributed
multi-core CPU implementation, and the feasibility of achieving good convergence
with a low number of form factors, we refer to Ref. [87] where the TUIRG is ap-
plied to the ¢ — ¢/ Hubbard model as test case. For details on our current numerical
implementation, and considerations on parallelization and scalability, see App.

3.3.1. Form factor basis

An interlude to introduce our choice of form factors will ease discussing the calculation
of inter-channel projections. The expansion in form factors will capture the weak
momentum dependences, corresponding to the extension of fermionic bilinears in real
space. These are dominated by short bond distances within bilinears, hence their
weakly oscillating behavior in momentum space. Therefore, a meaningful way to
truncate the form factor basis is by establishing a maximum bond distance covered
by them. Being defined over a Bravais lattice, their general form in real space is a
linear combination of delta functions centered on bond positions Ry

fr(R) =D gnpd(R—Ry), (3.19)
b

with coefficients g, ;. These coefficients are constrained by the requirement that the
basis be orthonormal

> LR fa(R) =R -R),
D[R fa(R) = 6, (3.20)
R

which yields

Z (gn.pr)" gnp = 6(Ry — Ryy),

n

Z (gm,b)* In.b = 5n,m . (3.21)

b

Unless otherwise specified, we will always work with a particular choice of g,
coefficients, namely those given by the character table of the underlying lattice point
group. This ensures that they transform according to irreducible representations of
the lattice point group, facilitating the exploitation of symmetries, summarized in
Sec. Moreover, the use of lattice harmonics as form factors allows for a direct
physical interpretation of the flow of bosonic propagators. When a propagator signals
an instability towards emergent order, the form factor components which diverge
to strong coupling indicate the symmetry of the induced order parameter. Since the
point group operations involve only rotations and reflections, this choice automatically
groups bond combinations in shells of a given radius. In addition, with the appropriate
normalization, form factors can be chosen to satisfy f(R) = f,(—R) which renders
them real valued in momentum space, and either purely real or purely imaginary in
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Figure 3.3.: Shell of nearest-neighbor bonds and the corresponding coefficients (prior
to normalization) for real space form factors in the basis of irreducible
representations for the Cg, group. Double plus and minus signs indicate
a coefficient of +2.

real space. They also have a well defined parity. As a brief example, the zeroth shell
of plain s-wave symmetry just consists of an on-site form factor, corresponding to a
constant in wavevector space, and the first shell for the Cg, group is illustrated in
Fig. with its sign structure in momentum space depicted in Fig. See App.[C]
for a detailed construction of the irreducible form factor basis with Cg, symmetry.

Another choice is to set g, = 0n,p, which yields a basis in terms of individual
bond vectors. In this basis, form factors are real valued in position space. This may be
more convenient for real space sums, as done in the coming inter-channel projections,
where one would rather have form factors representing a single bond vector rather
than combinations of them. Overall, the basis of irreducible representations will be
generally preferred to the individual bond basis. Transformations between the two
bases take the form

n=%" (1
m/’,n’/

where band indices have been omitted, B € {P,D,C}, and (i) and (b) indicate
irreducible representation and individual bond bases, respectively. The form of the
transformation elements T(®) can be traced back to

T(lb)

m,n,m’ n’

BY) (3.22)
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Figure 3.4.: Sign structure of the first shell of form factors in momentum space, with
positive maxima in dark red, negative minima in dark blue, and nodal
lines in black. The second shell contains the lowest harmonic of the
irreducible representation Bj, an f-wave form factor with nodal lines
crossing the corners of the Brillouin zone. The first representative of the
remaining irreducible representation, As, is an i-wave form factor in the
fourth shell, with six nodal lines.

where we made use of the fact that there is a one-to-one correspondence between bond
and form factor indices in the individual bond basis. For the abuse of notation involved
in treating form factor indices as bond indices to make sense, an equal indexation of
bonds in both bases is assumed. The inverse transformation elements read
(bi) (i) @\
T (o)) - (3.25)

mnm’n/_gm ,m

A further possibility, whose advantages and drawbacks lie somewhere inbetween
the two previous form factor bases, is to define form factors as bond pairs of the form
0(R—Rp) I (R+Ryp). This makes it possible to have them real valued in momentum
space, and with a well defined parity, without necessarily including as many bonds
per form factor as in the irreducible representation basis.

The truncation does not need to be done at the same maximal bond distance for
all three channels. Depending on the situation, contributions from higher harmonics
in a given channel may have a much stronger influence than in the other two, where
they could be neglected. However, due to the additional approximation done in the
TUfRG by inserting a truncated partition of unity in mixed boson-fermion loops, the
truncation will directly affect the accuracy of inter-channel feedback, as discussed in
the following Sec. We will thus truncate all channels in the same way, keeping
as many possible terms in all channels.

For multiorbital systems, the form factors must also incorporate additional orbital
indices that dictate how they are affected by point group operations. For instance,
in bipartite lattices like the honeycomb lattice considered in this thesis, some group
operations map sublattices onto each other. In contrast, the form factors need no ad-
ditional indices for descriptions in band picture, since band indices transform trivially
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under point group operations. Thus, it will be more economical to do the form factor
expansions directly in band picture. There is no defined transformation from band
to orbital picture for objects like the bosonic propagators or projected coupling func-
tions, since they do not have the full momentum structure of the original coupling
function. The information about the multiatomic nature of the system is encoded
in the band index dependences of bosonic propagators and projected Vs. Although
we compute the RG flow in band picture, we rely on the orbital picture for the ini-
tialization of the bare coupling function, which poses some difficulties in calculating
the initial condition for the projected Vs, summarized in Sec. Also, results at
the end of the flow are usually easier to visualize in orbital picture, which requires
a reconstruction of the full coupling function. For such interpretation purposes, it
generally suffices to do a partial reconstruction of the coupling function in orbital
picture where only the momentum transfer dependence of the dominating channel is
kept. The two remaining transfer momenta are set to fixed values so that external
momenta lie at the Fermi surface.

3.3.2. Inter-channel projections

The three projected Vs appearing in Eq. (3.18) are obtained via

VWD=PW%MD—HD+PWWU) P[o"] (1),
Ve =C [V 1) -C[eF] 1) +Cc)+C[eP] 1), (3.26)
VP(1) =D [V¥%] 1) - D[®"] (1) + D [@°] (1) + D(1),

where again boldface objects are shorthand tensor notation for the various band and
form factor index dependences. As explained in Sec. [3.2] the single-channel coupling
functions are expanded in their weak momentum dependences so that each projection
above amounts to integrals of bosonic propagators together with four form factors.
Explicitly, they read

P o) (1) - / A f,0) £k 20
— [k 57,09 £,() (3.27)
I+ k4K . (1-k—¥K
3 g (MR g (K b,

P60 ()= [aidk £5,00 1) 0T L Ly
— [ 1,0 £u() (3.28)

1+ k -k 1-k+k
PR <+) & (2) Chit (kK.
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~ by...b *
DIe"] "7 (1) = / dk dk’ £ (k) fn(K') cbif;, 21 e
) I 2 ’ 2
— [awa 17,00 £,0) (3.29)
K-k +1\ ,, (k-k -1
X Z fYrL’ (2) f’n/ <2> P,gll n§4(k+k/)7
D[ /dkdk/ fn(k/) (I’E bli, kbj—k’-#l k+k’ 1
— [ 13,0 1) (3.30)
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<5 g () g (Y e
C[oP (/ﬁkdk’ k) fo(K) ijzﬁﬁgqhku§ﬁ
- / dk ik’ () fu () (3.31)
k—k' +1 k' —k+1
x Z Jr (2+> f;:' (24_) Prl:;’.,"rﬁ4(k+k/)a

C 0P ) = [dical ,0) £ (R Ry

/ dk dk’ £ (k) fn (k') (3.32)
k+k'+1\ ., (k+k' -1 by ba ,
T <2> () e

For the sensible choices of form factor basis already discussed, their real space rep-
resentation takes the form of delta functions centered at given bond positions in the
lattice, or linear combinations thereof. Therefore, it is generally more convenient to
perform the inter-channel projections in real space, which then amounts to just check-
ing whether the delta functions overlap, together with the corresponding calculation
of Fourier transforms. They read

Pl = X X (TR e Ra) f (- )

Ri,R2,R3 m/,n’

X for (Ra) f3 (Ro) DUt (Re) e M(F2) | (3.33)

Pl Sl S LEL N P LEL. A

Ri,R2,Rs m/,n’

X for (R1) £ (Ra) Chitt(R) e V() 1 (3.34)
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Dl = XY (TR g (R R

Ri,R2,R3 m/,n’

—i 1.( R142rR2 )

X frmr (R1) fr (R2) Pttt (Rg) e 720 (3.35)

D= XX (e Ra) £ (- )

Ri,R2,R3 m/,n’

R1+R2)

X fur (R1) [ (Ra) CoLba(Ry) e M(T52) 1 (3.36)

clarlm= Y ¥ (PR £ (R )

Ri,R2,R3 m/,n’

Rl*RQ)

X fur (R1) [ (Ra) PIba(Ry) e M(T2) | (3.37)

Clalnt = X Y (T e Ra) £ (- R
’ Ri,R2,Rg m',n’

— 1‘(R142rR2) .

% fur (Ra) £ (Ra) Dl (Ry) e (3.38)
Provided that the momentum dependence of the bosonic propagators is finely dis-
cretized, as allowed by the TUfRG scheme, their Fourier transforms to real space
should be accurate enough. The main inaccuracy is introduced by truncating the
form factor basis, which leads to truncated sums in Rj,Ro,Rg3. It can be readily
seen that the expressions above will only produce non-zero contributions for R; and
R values which are covered by the truncated basis. This limits the feedback terms
- to a soft dependence in the transfer momentum 1. Similarly, the con-
tributing values of the propagator arguments Rj3 are also bound by the maximal
radius included in the form factor basis. Taking P [®P] as an example, and using the
individual bond basis for simplicity, where f,(R) = 6(R — R,,), the product of four
form factors yields the overlap condition 6(R, + R, + R,, — R;,) after summation.
Having that R3 = 1/2 (R + Ry) + Ry = —1/2(R, + Ry ) + Ry, its maximum
possible values that satisfy the overlap condition result from R, +R,,, = 0 and both
R, R,, taking the same bond vector value with maximal radius.

Note that the R, and Ry vectors are constrained to the real space Bravais lattice,
and since the combination 1/2(R; 4+ Rs) can yield half integer coordinates on the
lattice vector basis, Rg also takes half integer values. This is consistent with the
translational symmetry properties of bosonic propagators and projected Vs, which
are in turn inherited from the properties of the single channel coupling functions.
Remember that the single channel couplings have weak dependences on the extension
of the corresponding fermionic bilinears, which can only take lattice vector values,
and a strong dependence on the relative distance between the bilinears’ midpoints,
which can take half lattice vector values. See Sec. /refsec:symmetries or App. |A| for
more details.

Generally, the real space sums above are most conveniently evaluated in the form
factor basis of individual bonds. In the form factor basis of irreducible representa-
tions, which include up to 12 bond vectors per form factor, each m,n,m’,n’ com-
bination results in an upper estimate of 12* evaluations versus just a single one in
the individual bond basis. Since the rest is calculated in the irreducible representa-
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tion basis for the use of symmetries and an easier physical interpretation, one has
to previously transform the bosonic propagators into the individual bond basis and
afterwards transform the projected Vs back to the irreducible representation basis.
In some cases, the additional cost of these transformations may overturn the benefits
of using the individual bond basis. Both computations, that of feedback terms and
the transformation between bases scale with the fourth power of the total number of
form factors considered. Thus, in the case of a very high number of form factors it
may not be worth transforming into the individual bond basis. The same is true for
a low number of form factors but a very high number of momentum sampling points
in 1 and several bands, since transformations would still be relatively costly, but the
first few shells of form factors in the irreducible representation basis include only up
to 6 bonds each.

Another relevant consideration is the fact that in the right hand side of
Eqgs. - only the bosonic propagators are dependent on the renormal-
ization scale 2. Therefore, the Fourier exponentials and overlap of delta functions
can be computed once and pre-stored instead of having to repeat their calculation at
every RG step. Inter-channel projection operations then take the form

~1b1...bg

5 |2 /dq S AR (@) Bl (@), (3.39)

m,n ,
m’.n

where, for the example case of P [@D}, the object AP corresponds to

Ri+R R, +R
Afn]?z m’ n’(q7 l) = Z f ( ! 2 +R3> fn (_122 +R3>
Ri1,R2,R3

X fmr (R1) £ (Ra) RE1LE e—u.(m;m)

(3.40)

In the irreducible representation basis of form factors, this alternative brings a consid-
erable speedup. Unfortunately, it is only applicable for sparse samplings in momentum
space and truncations with a low number of form factors. Having a fourth power scal-
ing in number of form factors and a quadratic scaling in momentum discretization
points, the A objects above quickly become too big to be efficiently stored. They
satisfy some symmetries which can be used to mitigate the memory consumption,
but the symmetry reduced objects do not allow for a contiguous memory reading in
(3-39), which limits efficiency for vectorized computer implementations. Furthermore,
transforming the problem from compute bound to memory bound has an overall detri-
mental effect on its parallel scalability. In the form factor basis of individual bonds,
this latter approach does not bring much benefit since there is only one non-vanishing
term in the real space sums for a given m, n,m’,n’ combination, as already discussed.
However, due to the one-to-one correspondence between real space vectors and form
factor indices in that basis, the 1 dependent part in A can be stored in a separate
array, since the m’, n’ values unequivocally determine the value of 1/2(R;+Ry). This
splitting leads to much smaller objects. Despite the lower memory consumption, the
computation would still become memory bound for high numbers of form factors and
momentum sampling points.

A better compromise follows from the fact that, in either basis, both R3 and
1/2(R; £ Ry) are bound inside the maximal radius of the truncation, with a total
number of possible values equal to the number of form factor functions. Thus, at
each RG step, the Fourier transforms of bosonic propagators to real space need only
be done once for each possible position vector prior to the R3 sum, where they are
reused. One may still pre-compute and store the 1 dependent part.
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3.3.3. Symmetry relations

Here we summarize some useful symmetry properties of the different objects encoun-
tered so far. These will rely on a choice of form factor basis following the irreducible
representations of the lattice point group, which renders them real valued in momen-
tum space and with a well defined parity under wavevector inversion. For simplicity,
we will first discuss the symmetries satisfied in one-band systems, and extrapolate to
the multiband case afterwards.

The main symmetries of bosonic propagators and projected Vs stem from those
of the coupling function V' (k1, ko, ks, k4), which obeys

V(k1, k2, ks, ka) = V (ka, k1, ka, k3) (3.41)

V(k1, ko, ks, ks) = (V(/%3>7;54,i€1,/2?2)) = V(ks, ka, k1, k2), (3.42)

where k = (—w, k), and we subsequently made use of the fact that the coupling
function is mapped to its complex conjugate under frequency inversion. In practice,
since we will always set external frequencies to zero, the coupling function in a one-
band system will be real. Although discrete translational invariance is assumed, and
thus momentum is conserved, the more general case was written above including k4
to clearly indicate that incoming and outgoing particles are either swapped among
themselves (1 <> 2, 3 <+ 4) or between each other (1 <> 3, 2 <> 4). The first
symmetry, referred to as remnant antisymmetry in |61], follows from the analogous
property of the vertex I'®, since A® in Eq. stays invariant under such a
swap among Grassmann fields. The second symmetry, called particle hole symmetry
in [61] and Osterwalder-Schrader positivity in [91], follows from the hermiticity of the
Hamiltonian, or equivalently from the invariance of the partition function as functional
integral under 1) — 41, ¥ — i1). These symmetries translate into the single channel
coupling functions as

P _ &P _ &P
Prxw =P k- = Prw k>
¢ _ &C _ &C
Prrw =Pk = Pl ks
D _ &b _ a&D
Prkw =Pk =Pk

where the first and second equality in each line corresponds to the symmetries (3.41))

and ([3.42)), respectively.

From these relations it follows that both the bosonic propagators and projected
Vs are symmetric under the exchange of form factor indices

Bmvn(l) - Bn»m (1) )
Vien () = Vi (D)
with B € {P,C, D}. Moreover, it also follows that

Pm,n(l) = TmTn Pm,n(l) ,
Crnn(l) = Crn(-1), (3.43)
Dy (1) = Dy n(—1)

where 7, denotes the parity eigenvalue of the m-th form factor, f,,(—k) = 7, fin (k).
Analogous relations hold for the projected Vs. Since the form factors are chosen
to transform with irreducible representations of the point group, some form factor
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components of propagators and projected Vs vanish at points of high symmetry in the
Brillouin zone due to Schur’s second lemma [90]. The point group symmetries allow
to reduce the description of momentum dependences to the irreducible Brillouin zone.
Whereas the coupling function transforms trivially under point group operations S ,
the form factors are generally mapped onto a linear combination in their basis, whose

coefficients C'°

n.m allow to compose fp, (S* k>’ ie.,

Fm (Sk) =308 fa (k)
With that, point group symmetries can be exploited via
B (1) = 32 €35, .Gl B 1) (3.44)
™,

and analogously for projected Vs.

In the multiorbital case, the symmetries (3.41)) and (3.42)) involve an additional
exchange of orbital or band indices, and interactions are not necessarily real anymore.
In band picture and momentum space they read

Vbibabab () ey kg, ky) = VE201048 (ky Ky kg, Ky)
Viibababa (ke ko kg ka) = (V0040102 (kg kg, Ky, ko))

For the honeycomb lattice considered in this thesis, bare interactions between charge
bilinears will be real in orbital picture and position space, as detailed in Sec. [3.3.4]
However, having a bipartite lattice, they are complex in momentum space, both for
the orbital and band pictures. In the case of an overall real coupling function in
orbital picture, whether it stays real or not in band picture depends on the definition
for the transformation . In multiband systems, the exchange of form factor
indices takes the form

Pz () = (B )",
Cb1b2b3b4(1) — (Cb3b4b1b2 (1))* , (345)

Dyt (1) = (Dpia®* (1))
and the inversion symmetries in Eqgs. (3.43) now read

Phibabsbi (1) = 7 phabibaba (]

Chibababa(1) = (Chabavtr (-1))" (3.46)
Dt (1) = (D™ (=)

with analogous relations being satisfied by the projected Vs. The exploit of point
group symmetries in the 1 dependence can be done as in Eq. for the single
band case, provided that one chooses a suitable Bloch basis in band picture which
also transforms trivially under point group operations [90]. In addition, if the sys-
tem’s dispersion satisfies some given symmetries under the exchange of band indices,
these will in turn become manifest in the bosonic propagators and projected V's. For
instance, the Hubbard model on the honeycomb lattice considered in this work has a
symmetric band structure respect to the Fermi level for zero chemical potential. The
dispersion satisfies €?(k) = —e(k), where if b is the upper band, b denotes the lower
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band and vice versa. This translates to
Bpitebebe (1) = Byrlabet(1)
V713:71171b2bsb4 1) = Vn?’7£1b2b3b4 1)

with B € {P,C,D}. The manifestation of this symmetry can be seen from the
transformation elements (3.51) introduced in Sec. [3.3.4]

Since the form factors are real, form factor projected bubbles are also real, and it
can be directly read from their definition in Eq. (3.16)) that they are symmetric under
form factor index exchange

XEPIPR(L) = XBEIPR (D).

An inversion of the integration variable shows that in the particle-particle case only
elements corresponding to form factors with the same parity may be nonzero

Xfrzn(l) = Tm Tn, Xgrf,n(l) )

which is consistent with the fact that since P and VT satisfy that same property, no
nonzero elements with mixed parity (i.e. 7w, # m,) should be generated in the RG
flow of P. An analogous property holds for the particle-hole bubble if the dispersion
is inversion symmetric, e(k) = e(—k).

The usage of point group symmetries yields

X (S1) = 3 €8 Gl )

i

In a multiband system, the form factor exchange and point group symmetries
apply just as in the single band case. The parity relations only hold for intra-band
components in the general case. For band symmetric situations like the honeycomb
lattice system at half filling, there is also the additional symmetry

h, bb’ h, bb’
NI (1) = p e (),

which leads to the parity relations also holding for inter-band components. The
fulfillment of band symmetries can be explicitly seen in the loop integrand for the
Q-regulated flow in App. [B]

For the aforementioned possibility of calculating the scale independent parts of
the projection operations at the start of the flow and storing them, exploiting sym-
metries can reduce the substantial increase in memory usage. The objects AP'B from

Eq. (3-39) are all real valued, and the 6 possible combinations of B, B are related in
pairs

AP,C _ WnAP’D

AC’P = /AD’P

AD,C _ AC’D

so that only three of them have to be computed and stored. Furthermore, each of
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these has given symmetries with respect to the exchange of form factor indices

q, 1) 71?7,[7)1177, n’ (_qa 1)7
q, 1) = WmWnAfn]?L m’.n’ (_q7 1) P

nmm ,n’

(
mnn m’(

AL (@) = T, A L (—q,]), (3.47)

D,P P
Am n,n’ m’(q 1) - 7Tm7Tn71'm/7Tn/Am ,n,m’ n/( q, l) ’

C,D [ehb)
A"vmvmlyn/(q’ 1) = Am n,m’ n’ (7q7 1) )

c.D e
A"hn77b’7m/(q’ 1) = ﬂ-mﬂ-’ﬂﬂ-m'ﬂ-n’Am n,m’,n’ ( qQ, l) )

and all of them fulfill the following symmetry under momentum inversion

B7B/ , /
Am,mm',n’ (_ _1) - ﬂ-mﬂ-"ﬂ-m/ﬂ-”'Am n,m’,n’ (q7 l) .
The use of point group symmetries reads

ABE(§q,S1) = 3 Cs W CE.CS, - O n,Amnm CRIE

/
m,n,m’,n

The relations in Eqs. (3.47) can be used to draw additional conclusions about

the feedback terms B [CPB} . For example, from the symmetry of bosonic propagators

and projected V's under exchange of form factor indices, having that p [<I>C/ D] should
respect that same symmetry automatically leads to
P [QC/D} 1) = mpm, P [(DC/D] 1,

m,n m,n

which is consistent with the fact that VF has no nonzero elements with mixed parity.
Applying the same reasoning to the feedback among C and D channels leads to a
more interesting consequence

D], ()= mmmn S e / dq ADC (1) o (@),

m/,n’

and equivalently for C [(IDD], which means that there is no cross talk between pure
parity and mixed parity components in the feedback between particle-hole channels.

The symmetries of the ABB objects apply regardless of whether the system is
a single-band or multiband one, since they do not carry band indices. However, the
latter parity properties of feedback terms do not generally transfer to the multiband
case.

Lastly, we also comment on the translational symmetry properties of the objects
encountered so far. For a translationally invariant system, the coupling function
V(ky, ko, k3) is in turn invariant under translations of any of its momentum arguments
by a reciprocal lattice vector G. After the rearrangement of wavevector dependences
involved in the definition of the single channel coupling functions, the translational
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symmetries imply

P _ &P
Pl = Plg g w-g

_ &P
(I)1+G,k—%,k’ G

_ &P
(I)1+G,k S xw+$

for the example of the pairing channel, under the translations k; — k; + G,
ko — ko + G, and ks — ks + G, respectively. From these, it can be seen that
®p'y 1 1s symmetric under reciprocal vector translations in k and k', but only under
translations of 2G in 1. The same conclusion follows for the other two channels. Nev-
ertheless, as it will be shown in the following, the full information about the transfer
momentum dependence is still fully contained in the first Brillouin zone. The transla-
tional symmetry properties of the weak momentum dependences underly our choices
for an appropriate form factor basis. As already mentioned, in a real space formu-
lation of the form ¢E«B;Rk7Rk/’ the weak dependences on Ryx and Ry represent the
extension of the corresponding fermionic bilinears, whose possible values are defined
on the Bravais lattice, and the strong dependence R p represents the relative distance
between the midpoints of the bilinears involved, and is therefore defined on a smaller
lattice with a lattice constant which is a half of the original one. As shown in App.[A]
whether Rp is a lattice vector or half a lattice vector ultimately depends on Ry and
Ry, taking the general form
Ry = R — w \
2

where R is a Bravais lattice vector. Therefore, the single channel couplings in mo-
mentum space will either be symmetric or antisymmetric under translation of 1 by a
reciprocal lattice vector. This is also true for bosonic propagators and projected Vs in
the individual bond basis of form factors, where form factor indices denote a unique
value for Ry and Ry/. In the form factor basis of irreducible representations, they
have a mixed nature, with their symmetric and antisymmetric contributions being
nonetheless picked apart in the real space sums of the interchannel projections. For
the Fourier transforms of bosonic propagators to real space it suffices to integrate
over the first Brillouin zone, because for antisymmetric components the sign change
in further Brillouin zones is cancelled by another sign coming from the Fourier phase
factor. It is straightforward to corroborate that for a half lattice vector Rpg, since
Rp - G = nm with n being odd, then the integrand is indeed symmetric under trans-
lations by G

Bon(Rp) = / dq e 5B, (q) = / dq TR (g 1 G)
- /dq 'R ginm (=Bm.n(q)) = /dq e aRp Bn(q),

where the bosonic propagator was assumed to be in the individual bond basis.

All these translational symmetry properties also apply in multiorbital systems.
3.3.4. Initialization procedure

As explained in Sec. about the functional Renormalization Group, the flow of
the generating functional for one-particle irreducible vertex functions starts at an

46



3.3. THE TRUNCATED UNITY FRG SCHEME

infinite energy scale where the generating functional takes the form of the bare action.
Assuming that there are only pairwise interactions at the bare level, a complete
description of the system is contained in the level-2 truncation of the hierarchy for
vertex functions. The initial condition for the SU(2) symmetric flow equations of
Sec. is then the bare coupling function. In practice, numerical calculations start
at a finite energy scale 2. For the common choice of a momentum-shell cutoff as
regulator, which takes the the form of a step function i.e. © (|e (k)| — ), the initial
energy scale can be set at the value of the bandwidth W because the regulated loop
integrals are zero above W. However, with the frequency regulator of the 2-scheme
introduced in Sec. the loops have support at all finite energies. Therefore, Q) is
chosen to take a high enough value so that the bubbles are sufficiently suppressed.
The results at the end of the flow generally converge respect to {2yp when it is set to
be two to three orders of magnitude larger than the bandwidth.

For the sake of generality and unbiasedness, the initial bare couphng Vk ky kg WAS
kept as a separate term in the channel decompositions of Sec. 3.1l This way, bosonic
propagators are zero at the start of the flow, and the initial conditions for projected
Vs are the corresponding channel projections of the bare coupling function. However,
in practice it may be more convenient to assign the channel projections of V% as
initial condition in the bosonic propagators, especially when dealing with long-ranged
Coulomb interactions, as it will be explained at the end of this section. The explicit
V< term is then absent in the decomposition, and both the bosonic propagators and
projected V's share the same initial condition in each channel.

We will consider the following general form for the interaction part of the Hamilto-
nian Hj,, consisting on an onsite-U term and non-local density-density contributions

Hiyy =U Z Ni0,1Mi0,]

7,0

D

i#4, 0,0’
/
0,0

ol

where n; ., = CIO »Ci,o,c Tepresents the electron density operator, with ng,a anni-

hilating (creatlng) an electron at site i in sublattice o with spin ¢ € {1,4}, and
interaction coefficients read

(3.48)
1 — 6,00 for inter-orbital (¢, j) pairs

7ol U {5070/ for intra-orbital (i, j) pairs
For better clarity when Fourier transforming the interaction, and to connect to previ-
ous notation, we will denote these coefficients via a coupling function in real space and
orbital picture i.e. V°1293%4(R;, Ro, R3, Ry4) with Ry = Rg3, 01 = 03 and Ry = Ry,
02 = 04 since the bare interactions involve just local density bilinears. One then has
Vero (Rl —R2,0,R; — Ry, 0) = VO]MOAL (Rﬂ) = (U(Sn’o(sol,m + Uzoi—fi) 501,03602,04 )
with R,, = R; —R; denoting nt? nearest neighbor bond distances on the agtual lattice
including the different sublattice positions. The coupling strengths for Vo1--°4(R,,)
acting at a given R, will often be just denoted by V,,. Transforming the bare coupling
function to momentum space and band picture via Eq. (2.19)) yields

Vbt (k) ko, ky) = szol o( pilks—ki) Ry, Tb1,01 Tb2,02 (Tbs,m.) (Tﬁim)

0102 R,
0304
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From this last expression for V% the initial condition in each channel is obtained by
applying the projections in Egs. (3.8)

Pyobibd )= Vo / die [}, (k) e R Ty Ty

0102 R
0304

/ n ik ‘R, b3 ,0 * (b ;0. *
. / A fu) M (TR (T15)

C Voot ()= 3 ST (Ry) [k ) e g (1)
2 2

0102 R,
0304

x / dK' fo (K') e B 202 (Tfj) : (3.49)
3

Dyt )= XY e ®e R s 0070 (7003)’

0102 R
ozoy ="

/dk/ fm (k/) b2,oi (Tll()j;f;)

Note that in a more rigorous notation, one may also put explicit orbital dependences
on the real space vectors, since each orbital subspace in the bipartite lattice contains
a different set of bonds. Inter-orbital combinations in the honeycomb lattice do not
form a Bravais lattice, and satisfy R;’L"/ = —R;’L/O. Writing the initial projections in
Egs. as an explicit sum over the real space contributions allows to factorize the
four dimensional momentum integral of the projections as a sum of products
of two dimensional integrals. Furthermore, since the transformation elements for the

~ ~ *
honeycomb lattice, which are be specified below, satisfy Tflf = (Tﬁ"’) , one just
needs to calculate the integral

/ dk fn (k) e R0 (Tﬁ 4 ) (3.50)

for all f,,, 1, b, ¥, o, o’ and corresponding R,,s to construct the result of all three
projections, where the D channel integrands amount to the special case involving just
the on-site bond vector.

The unitary transformation Ty between orbital and band degrees of freedom in

the honeycomb lattice reads
h(k)
. 1 —1
Ty = (Ih(k)l h*(k)> (3.51)
V2T

o
B

where {8} are the three nearest neighbor bond vectors connecting the two sublattices,
as shown in Fig. The distance between nearest neighbors is set to unity, so that
they read §; = (v/3/2,1/2), 82 = (—/3/2,1/2), and d3 = (0, —1). If the kinetic part
of the Hamiltonian follows from a tight binding model with just nearest neighbor
hopping terms of amplitude ¢, the dispersion then reads e*(k) = +t|h(k)|. Thus,
the electronic band structure is invariant under local U(1) transformations of the
form h(k) — e*®<h(k), akin to a gauge freedom. Rigorously speaking, it amounts
to having different choices of Bloch basis in the transformation rather than
fixing a gauge. With a ¢y linear in k, it can be seen as a redefinition of {d}. Our
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(a) (b)

Figure 3.5.: Different choices of the set {8} involved in the transformation T depend-
ing on the Bloch basis chosen: (a) natural basis, and (b) proper basis.
In the proper basis, the third vector d3 is a zero vector and has been
represented by a circle.

choice of Bloch basis will be that of Fig. which we will call the natural basis.
Another possible choice is the so-called proper basis [90], which offsets one of the &
vectors to zero, and is shown in Fig. for ¢ = —k - 83. This gauge has the
advantage that coupling functions respect the periodicity of reciprocal space, since
the Wannier functions corresponding to different sublattices are localized on the same
Bravais lattice. The transformation to band degrees of freedom involves Bravais lattice
vectors only, ensuring that all the various objects in our calculations will be continuous
and smooth across the borders of the Brillouin zone. In the natural basis, since {4}
are half lattice vectors, Tk does not have the periodicity of reciprocal space and one
must deal with discontinuities in the integrands when back-folding them into
the first Brillouin zone. The reason behind choosing the natural basis over the proper
one resides in the fact that the latter obscures the otherwise symmetric momentum
structure of transformation elements and inter-orbital coupling terms. For example,
a first nearest neighbor interaction in the proper basis has the real space structure
depicted in Fig. [3.5b] which relative to the direct lattice, looks like an on-site term
plus two second nearest neighbor terms. When projected onto a form factor basis of
lattice harmonics, it translates mainly into components of mixed p and d character.
In contrast, in the natural basis the symmetry of intra-orbital couplings is preserved,
and they mainly correspond to diagonal components in the form factor basis. The less
trivial symmetry of inter-orbital coupling terms in the proper basis complicates the
physical interpretation and the exploit of point group symmetries. One could switch
Bloch bases at the end of the RG flow, and settle for only having a clear interpretation
about the correlation’s symmetry character at the end of the flow. However, since in
practice the computation is not exact, the leading terms of mixed symmetry in the
flow often lead to spurious behavior.

Note that the basis referred to as natural basis in Ref. [90] leads to coupling
functions with the additional property of transforming trivially under all point group
operations. For that matter, a piecewise definition of Ty is employed, with a different
form for Brillouin zone regions of positive and negative k,. This adds a further
discontinuity along k;, = 0 to our choice of transformation elements, which are already
challenging enough to integrate accurately. Despite transforming non-trivially, the
result of point group operations in the basis of our choice is not complicated. All
elements of Cf, can be constructed by composing reflections respect to two axes,
depicted in Fig. [3 The coupling function is symmetric under the action of I,
inversions around the axis connecting M-points. However, it is mapped to its complex
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Figure 3.6.: The two inversion symmetry operations of Cg, on the Brillouin zone. I
maps sublattices onto themselves, and I maps them onto one another.

conjugate under inversions around the axis connecting K-points. This can be directly
seen from the fact that I h(k) — h(k), Iy h(k) — h*(k). Therefore, anytime we
apply a point group symmetry which is related to fg, it must be accompanied by
complex conjugation. This directly translates to the exploit of symmetries for bosonic
propagators and projected V's.

As mentioned above, the initial projections in the natural Bloch basis yield mainly
diagonal contributions in the form factor basis, which are mostly of plain s-wave type
for the D channel. In a one-band model, B [VQO]m ,, are strictly diagonal, and for

B = D the only non-zero components are for on-site form factors. In a multiband
system, due to the additional momentum structure brought via orbital makeup, the
density-density bare interactions in band picture depend on all three transfer mo-
menta, despite its strongest dependence still being on the transfer momentum of the
charge channel. Without this additional dependence, i.e. in the absence of trans-
formation elements Ty in the integrals , it is possible to calculate the initial
projections analytically. Since form factors are composed of plane waves, which are
orthogonal to the factor e’*B» only the form factors which correspond to a bond
distance R, in real space will contribute in the integral. It is thus trivial to see that,
for the form factor basis of individual bonds, initial projections are diagonal in the
P and C channels and only plain s-wave in the D channel. Using Eq. in the
transformation of a diagonal object, it is also clear that the initial projections
are diagonal in the form factor basis of irreducible representations too. For the multi-
band case, although initial projections are non-zero for all form factor combinations,
the main contribution of a density-density interaction acting at a distance R,, in the
P and C channels is still on the form factor components which correspond to that
same R,,. Having a bipartite lattice, the projection of intra-orbital interactions is ex-
pected to be less accurate than that of intra-orbital ones, since they act at distances
R, which are not directly reflected on the form factor basis, and their weight is then
spread mainly among the two form factor shells which enclose the corresponding R.,,.
As an illustrative test, let us consider the channel projection of a pure on-site bare
interaction, normalized to U/t = 1. Being just on-site, the projection integrals take
an analogous form in all three channels. The result is shown in Fig. where the
maximum component of P [U ]I:,i;;;b“ (1) is plotted for different fixed values of m in the
form factor basis of irreducible representations. As expected, the weight sits mainly at
the on-site form factor component and decays quickly enough for further form factor
shells, so that truncating the basis after the first few nearest neighbors should capture
short-ranged bare interactions rather accurately.
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Figure 3.7.: Maximal component out of all choices for f,,1, {b} of the pairing channel
projection of an on-site bare interaction U = 1t for each f,,. The different
fms which belong to the same shell are grouped together under the same
color, which corresponds to the coloring shown in the inset figure. The
different shells are enumerated along the horizontal axis by increasing
intra-lattice neighbor distance in real space.

Apart from the U(1) gauge freedom discussed above, one is also free to do U(1)
transformations on the individual eigenvectors that constitute Tk, which amount to
a redistribution of the phase weight contributed by each sublattice. Denoting the
k-dependent transformation elements by

h(k) /()| = k) = e/ (3.52)

the second eigenvector (1, e’ “’k) may as well be chosen as (ei =3 et %k> or (e“"k, 1)
for example. The latter choice has some numerical advantages, and will therefore be
preferred over the initial one, leading to

hk)
Tho= - (Zét:i' 1) (359)

The main difference between transformations and is that, in the inte-
grands (3.50), the second favors combinations of the form h(k + 2)h*(k — 1), which
just amount to 1 for 1 = 0. This eases the numerical computation of initial conditions
of the flow, which generally have their more relevant structure at the center of the
Brillouin zone. This can be seen for the simple case of on-site form factor components
in the projections of a purely on-site bare interaction, i.e. V°°4(R,,) is non-zero for
R, = 0 and all orbital indices being the same. In Egs. , using this latter trans-
formation, all the band combinations with two pairs of indices being equal involve
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the aforementioned integrals of h(k + %)ﬁ* (k — 1). In the former choice of transfor-
mation, the combinations [dkh(k+1) [dkh(k— 1) and [dkh(k+ 1) [dkh*(k—1)
also appear, which are harder to integrate accurately and lead to imbalances among
the inter-band components. The difference between these transformation choices ob-
viously impact the computation time too, with the latter variant requiring much less
computational effort.

Lastly, we would like to comment on the aforementioned possibilities of either
keeping the bare interaction as a separate term in the channel decomposition or as-
signing it as initial condition in the single channel coupling functions. As it turns
out, the latter is more convenient when considering bare interactions whose range
greatly exceeds the maximal bond length covered by the form factor basis, as it will
be the case for Coulomb interactions. The extended density-density bare interactions
considered in this work are most accurately described in the D channel, whereas for
the constant on-site bare term it is more natural to split the contribution equally
among channels. This can be understood from Egs. if one momentarily ig-
nores the multiorbital case. In a one-band situation, a Coulomb interaction projected
onto the D channel is fully contained in the 1 dependence of the on-site form-factor
components. In contrast, the projection of a Coulomb interaction into the P and
C channels takes the form 3 g ﬁ [dk £ (k) e~ Bn [dk' f,(K') ™ Rn which as
already explained, yields non-zero contributions for all diagonal terms in the form-
factor indices, with no dependence in 1. These values correspond to the interaction
strength at the distance where the form-factors are defined in real space. Thus, a
given interaction would need as many form-factors as lattice positions covered by its
range, in order to be completely captured in each and every channel. This is not fea-
sible for long-ranged interactions, and it suffices to have them properly captured in
one channel, and truncated in the remaining two. We normally include form-factors
covering at least till the 10*" nearest-neighbor, so that channels other than D still
get their fair share of the Coulomb interaction, though truncated. In the two-band
situation considered in this work, the discussion above holds, although non-diagonal
form-factor components take finite but small initial values, as already explained.

Going back to the original point, the main problem that arises when keeping V%
separate in the decomposition is that VP and V© often display spurious behavior.
In this decomposition, D collects big counter-terms to V% when the effective charge
interaction gets screened. In turn, the feedback from D into the other two channels
should also counter the respective projections of V% so that all three projected Vs
describe approximately the same screened interaction. However, due to inaccuracies
in the inter-channel projections, mainly due to the form-factor basis truncation, some
VP and VC components remain unbalanced, vertex symmetries are not satisfied, and
the flow usually ends up signaling unphysical instabilities when interactions get en-
hanced at lower scales, as shown in Fig. Instead of separating bare couplings and
their renormalized corrections, and having to rely on their accurate counterbalanc-
ing in all channels, keeping them together results in more numerically stable flows,
as shown in Fig. [3.90 From the two top panels in Figs. [3.8 one can see that
the maximal initial components for the different form factors within each shell have
closer values in the second variant. Intuitively, one would expect the latter to be less
accurate since these initial values for V¢ come from the feedback of a bare interac-
tion which is fully contained in the D channel, and they are thus also affected by the
limits put by the form factor truncation on the inter-channel feedback. However, the
direct momentum space integration done in € [Vﬂo]m ,, for the first variant also has
a questionable accuracy, since the integrands are not well behaved. In addition to the
discontinuities brought by the transformation elements in the natural basis, there are
further discontinuities which arise when projecting inter-orbital interaction terms in
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Figure 3.8.: Top: Maximal component out of all choices for f,,1, {b} of the spin chan-
nel projection of a Coulomb bare interaction for each f,,. The different
fms which belong to the same shell are grouped together under the same
color, which corresponds to the coloring shown in the inset figure. The
horizontal axis denotes the shell number, with their location on the axis
being scaled according to the corresponding intra-lattice neighbor dis-
tance in real space, for a better appreciation of their Coulombic decay
with distance. As a reference, the coupling strengths at the first few bond
positions are U = 3.5¢, Vi = 2¢, V5 = 1.5¢.

Bottom: Scale evolution of maximal V¢ components for each form factor,
starting at = 103 ¢ from the initial values plotted in the top panel. The
inset shows a zoom of the region around €2 = 10 ¢, where their suppression

due to charge screening inaccurately saturates.
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Figure 3.9.: Top: Maximal component out of all choices for f,,1, {b} of the feedback
into the spin channel from a D channel projection of a Coulomb bare
interaction for each f,,. The different f,,s which belong to the same shell
are grouped together, under the same color, which corresponds to the
coloring shown in the inset figure. The horizontal axis denotes the shell
number, with their location on the axis being scaled according to the
corresponding intra-lattice neighbor distance in real space, for a better
appreciation of their Coulombic decay with distance. As a reference, the
coupling strengths at the first few bond positions are U = 3.5¢, V7 = 21¢,
Vo =1.5¢
Bottom: Scale evolution of maximal VV© components for each form factor,
starting at 0 = 10 ¢ from the initial values plotted in the top panel.
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the P and C' channels, since they involve R, s which are not Bravais lattice vectors
and the complex phases e’ ®» must also be back-folded onto the first Brillouin zone.
The second variant avoids computing such challenging integrals, since extended in-
teractions are all put into the D channel where the complex exponential containing
R, vectors lies outside the integrals. The price to pay is some loss of unbiasedness,
since with finite precision and a truncated form-factor basis, different assignments of
the bare interaction onto the channels may produce different results. In particular,
the Hubbard on-site term U can be equivalently formulated as either density-density,
spin-spin, or pairing interaction. One then introduces a slight bias towards magnetism
when initializing U fully as spin-spin interaction, for instance. Although splitting U
equally among the three channels is the most neutral choice, other possibilities can be
considered for consistency checks. The two bottom panels in Figs. B-813.9] represent
the two extremal cases out of the possible choices, with the first corresponding to both
local and extended bare interactions being treated equally in all three channels, and
in the second all coupling terms being fully initialized in the D channel. This explains
the differing enhancement of the on-site form factor component in the two variants,
which represents a tendency towards an antiferromagnetic spin density wave.

As a side note, we clarify that we will not be considering truly long-ranged
Coulomb interactions. The challenging aspect of including long-ranged interactions in
the model is that a ‘71| potential in two-dimensions leads to a T}I behavior in momen-
tum space, and thus the coupling diverges for |l — 0 in the D channel. In our case,
since we will not be taking the continuum limit, we have a discrete real space sum on
the lattice which will be truncated after a certain distance, and therefore the coupling
in the D channel stays finite albeit sharply peaked at zero momentum. This is also
motivated by the fact that we will not always have an analytic expression for bare
interactions in real space, but specific values at given bond distances instead, which
follow from ab-initio results in the literature. Moreover, it will also be desirable to
be able to modify individual coupling strengths to check their effects on the resulting
instabilities or lack thereof. Keeping the explicit form of the Fourier transform from
real space also allows to separate the k and k’ dependences in the four dimensional
integrals involved in the initial projections for the P and C' channels. Otherwise, one
would have ﬁ instead of e~ “~K)Rn jnside the integrals. This last difficulty is
nonetheless avoided by initializing extended interactions in the D channel. However,
one would still need to introduce some form of artificial screening into the bare in-
teraction in order to have a finite value for |I| — 0 in the D channel. A natural

choice would be a Yukawa potential with screening parameter A, i.e. e

R
VAZHIE

convergence as A is reduced.

, leading

[

to a bound interaction in momentum space. Results can then be checked for

On a more technical level, we would like to comment on the criteria to stop the
flow when including long-ranged interactions. As already mentioned, in the usual
instability analyses, the flow typically begins with a weakly coupled situation and it
must be stopped as soon as coupling function components grow beyond the order of
magnitude of the single-particle bandwidth. This only applies till inclusions of very
few nearest-neighbor interaction terms in the bare coupling. With a high enough
number of neighbors included, the bare coupling function for zero momentum transfer
in the charge channel takes values which are well over the order of magnitude of the
single-particle bandwidth. The alternative is to impose the stopping condition on
the difference between renormalized and bare coupling. That way, even though the
flow starts with a projected bare coupling in the charge channel exhibiting a strong
peak, attention is paid to whether new sharp structures are generated during the
flow. In systems with a finite density of states at the Fermi level, the Coulomb peak
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at the Brillouin zone center will flatten as charge interactions get screened during
the RG flow, posing no real trouble to the identification of an instability signal. In
the honeycomb lattice at half-filling, the screening behavior is more complicated, as
discussed in Sec. To distinguish the Coulomb peak from a charge ordering
instability, one can perform a minimal transformation to orbital picture as mentioned
at the end of Sec. [3:3.1] in case that the peak sharpens during the flow. If no orbital
combinations have become attractive, it means that the system is still in a stable
metallic or semimetallic state.
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4. Application: The extended
honeycomb Hubbard model

In this chapter we investigate the quantum many-body instabilities
for electrons on the honeycomb lattice at half-filling with extended
interactions going up to the second-nearest neighbor, motivated by a
description of graphene and related materials. We employ the re-
cently developed TUfRG scheme which allows for highly resolved cal-
culations of wavevector dependences in the low-energy effective inter-
actions. The high momentum resolution is necessary in order to shed
light on the possibility of a topological Mott insulator being the fa-
vored tendency for dominating second nearest neighbor interactions.
We encounter the expected anti-ferromagnetic spin density wave for a
dominant on-site repulsion between electrons, and charge order with
different modulations for dominant pure n-th nearest neighbor repul-
sive interactions. Novel instabilities towards incommensurate charge
density waves take place when non-local density interactions among
several bond distances are included simultaneously. The topologically
insulating phase is not realized in our results with high momentum
resolution. We also include the effect of a second-nearest neighbor
hopping t' in the dispersion relation, and study its impact on the
critical scales and critical coupling strength for ordering. The high
momentum resolution allows to properly describe the deformation of
the band structure brought by t'.

Parts of this chapter have already been published in Refs. [123,

i2j)
Contents
[M.1. Tntroductionl . . . . . . . ... ... ... 58
4.2. Modell. . . . . . .. 58
4.3. Method and implementation| . . . . . . . .. .. ... .. 60
M4 Results . . . .. ... ... . .. 61
|4.4.1.  Instabilities in the extended honeycomb Hubbard model

| at halt-fillimgl . . . . . .. oo o000 oo oo 61

[4.4.2.  Antiferromagnetism in the ¢ —t" honeycomb Hubbard model| 68
4.5. Conclusion| . . . . . . . . . . .o 69




CHAPTER 4. APPLICATION: THE EXTENDED HONEYCOMB HUBBARD
MODEL

4.1. Introduction

Since the experimental realization of graphene [103], its unique properties have taken
the spotlight due to a wide range of promising applications. It also constitutes a
theoretical playground for unusual many-body phenomena [15,34]. We analyze the
possible groundstates of extended Hubbard models on the two-dimensional honey-
comb lattice at charge neutrality, focusing on implications for single-layer graphene.
Considerable effort has been made through a diversity of methods to address this
matter |[16H18}39,4852.55,/951|135]/136,(138L|140}/144.|145].

In this work, we employ the newly developed Truncated Unity functional Renor-
malization Group scheme (TUfRG) [87], building on prior channel-decomposed fRG
[61] and SM{RG [151] schemes. The cornerstone of fRG methods for interacting
fermions is their unbiasedness in comparison with mean-field treatments or single-
channel calculations like the random phase approzimation. The fRG treats all order-
ing tendencies on equal footing, and directly provides a description of the effective
low-energy degrees of freedom without the need for prior assumptions about the domi-
nating low-energy correlations. Previous results within the widely used Fermi surface
patching fRG scheme [45,53,|162] were computationally limited in their resolution
of wavevector dependences of the arising effective interactions. The TUfRG scheme
has enabled us to increase the wavevector resolution in a highly scalable [87]88]
and numerically efficient way. The main motivation behind a finer momentum res-
olution of effective interactions in graphene is twofold. On the one hand, there is
evidence about the influence of wavevector resolution on qualitative predictions of
fRG results |78}[79/129,/151}|152], particularly for the realization of exotic topologi-
cal groundstates in the honeycomb lattice |[112,/129]. A higher momentum-resolved
calculation could shed light on the inconclusive fate of such topologically non-trivial
phases. On the other hand, a finite second-nearest neighbor hopping ¢’ together with
an appropriate shift of the chemical potential does not affect the Fermi surface, but
alters the band structure. Continuum low energy models and Fermi surface patching
schemes cannot properly capture the dependence of effective interactions across the
whole Brillouin Zone, and are thus limited in reproducing the effect of band deforma-
tions on the interplay among ordering tendencies. Controlled methods like Quantum
Monte-Carlo require ¢ = 0 to avoid sign problems.

4.2. Model

The relevant physics in our system of interest can be captured by extended repul-
sive Hubbard models for interacting spin-1/2 fermions in a honeycomb lattice. The
non-interacting part is described by a tight-binding Hamiltonian H, with nearest
neighbor hoppings of amplitude ¢, second-nearest neighbor hoppings of amplitude #',
and chemical potential p

Hy=—t Z (c;r’Aygcj,B,g + H.c.) -t Z (C;A’GCLA,U + clT’B’ch,Byg + H.c.)

(i,4),0 {9000
> (C;’r,A,aC’LAJ + CzT,B,aCi,B,a> : (4.1)
1,0
where fermionic operators cZ(TU)O annihilate (create) an electron at lattice site ¢ and

orbital o € {4, B} with spin ¢ € {1,{}. By orbital degrees of freedom we are
referring to sublattice indices, not to be confused with the different orbitals within
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4.2. MODEL

Figure 4.1.: Left: Real space lattice structure.
Right: Band energy dispersion for the tight-binding parameters t = 2.7eV
and ' = 0.2t with adjusted chemical potential g = 3t'. Energy units are
given in eV.

a single atom. The hopping amplitude t ~ 2.7eV sets the energy unit relative to
which the interaction strengths and energy scales will be expressed, and the second-
nearest neighbor hopping lies in the range 0.02¢t < ¢/ < 0.2¢, as estimated by ab-initio
calculations [113]. Angled brackets (i,j) denote lattice position pairs which differ
by a nearest neighbor vector § of the honeycomb lattice, depicted in Fig. 4.1 The
inter-atomic distance between nearest neighbors is normalized to unity, i.e. || = 1.

This kinetic part can be diagonalized in momentum space to reveal two energy
bands featuring two inequivalent Dirac cones at the K, K’ points in the Brillouin
zone corners, as shown in Fig. 1.1l The dispersion relation is given by e*(k) =
/3 d(K) — t'd(k) — o with d(K) = 2cos (v/3k,) +4 cos (2, ) cos (3k,). At half-
filling and ¢ = 0, the single-particle density of states vanishes at the Fermi level due to
the presence of linear band crossing points in the low-energy dispersion. For a finite ¢/,
the Dirac points remain at the Fermi level if one sets p = 3t’. The vanishing density
of states translates to a semimetallic behavior which is stable against spontaneous
symmetry breaking tendencies induced by interactions, at least up to some finite
critical interaction strengths. It also implies that interaction processes away from
the Fermi level play a more relevant role in comparison with cases where the density

of states stays finite or even diverges at the Fermi level. Thus a fine Brillouin zone
discretization is required, as evidenced in Ref. [129].

The interacting part of the Hamiltonian up to second nearest neighbor reads

Hiy = UZ”i,T,o Ni 0+ Vi Z Nig,ANj o B+ Vo Z Ni,,0 Nj,o' 0 (4.2)

7,0 <i,j> <<i,j>>
o0’ o,0’ 0
where n; 50 = c;rp)o Ci,o,0 are local density operators, and << ¢,j >> represents

second nearest neighbor pairs.

Since the RG flow will be calculated in the band picture, where the kinetic part
is diagonal, Hi,; also has to be transformed from orbital to band degrees of freedom.
That unitary transformation produces some extra momentum structure for the bare
interactions, the so-called orbital makeup, which also has to be properly sampled in
momentum space, as discussed in Sec. [3:3:4] The results shown in Sec. [£.4.1] have
been produced using the transformation of Eq. , and those of Sec. using
the transformation of Eq. .
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Figure 4.2.: Example discretization for the dependence on transfer momenta 1, denser
where the ordering vectors are expected.
Left: Mesh of N = 3217 points for momentum transfers in the particle-
particle channel.
Right: Mesh of N = 3661 points for momentum transfers in particle-hole
channels, specifically the one used for a pure V5 bare interaction. For pure
onsite and pure V; interactions, the mesh used for momentum transfers
in particle-hole channels is the same as that used in the particle-particle
channel.

4.3. Method and implementation

We employ a functional Renormalization Group method within the one-loop, one-
particle-irreducible (1PI) formalism for fermionic systems introduced in Ch. [2|to per-
form a weak-coupling instability analysis as explained in Sec. The choice of
regulator follows the so-called Q-scheme [61], i.e. infrared divergences are regularized
by a soft frequency cutoff introduced in Sec. External frequency dependences and
self-energies are ignored. For the implementation of the fRG we use the Truncated
Unity scheme presented in Ch. [ which leads to the flow equations in Egs. (3.18).
Briefly put, the scheme splits the two-particle coupling function into a bare part and
three channels P, C, D which absorb the renormalization corrections to the bare inter-
action. These channels are defined so that each of them carries a single dependence
1 on one of the possible singular momentum dependences of the coupling function.
The remaining weaker dependences in each channel are expanded onto a form factor
basis of lattice harmonics (see Sec. and App.[D). The different channels start the
flow taking zero values (see Sec. and may diverge in the case of an instability
towards an ordered phase. The channels P, C, D correspond to pairing, magnetic, and
charge correlations, respectively. The nature of an ordering tendency is read from the
channel where it occurs, with the momentum 1 indicating the ordering vector and the
form factor indices reflecting the symmetry character of the order parameter to be
induced at the instability.

The TUfRG flow equations are solved numerically by a discretization of wavevec-
tor dependences in the Brillouin zone into N, regions, reducing the integro-differential
flow equation to a coupled system of N; x NJ% 7 X Ng non-linear ordinary differential
equations per channel, where NNV}, is the number of bands and N¢f is the number of
form factor functions. The ODE system is then solved using a fifth order Adams-
Bashforth method. The transfer momenta are discretized into meshes of typically
over 3200 points for the particle-particle channel and over 3600 points for particle-
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hole channels, as shown in Fig. [I.2] The form factor basis is normally truncated
after the second shell of nearest intra-lattice neighbors (fifth nearest real neighbor).
In convergence tests we have included form factors up to the fourth shell, and meshes
of up to 5000 points for momentum transfers. This meshes are fixed during the flow,
making sure that the minimum density of points is high enough to detect instabilities
of any ordering vector, and later repeating the calculation with a refined discretization
around the relevant regions of the Brillouin zone. However, the momentum integra-
tion of the one-loop integrals is done adaptively using denser discretizations of at least
a few million points, ensuring that the relative error of these integrals falls below 1%.

4.4. Results

4.4.1. Instabilities in the extended honeycomb Hubbard model at
half-filling

Here we present the results of weak-coupling instability analyses for the honeycomb
lattice at half-filling and zero temperature. We consider the kinetic Hamiltonian
with ¢ = p = 0, and the bare interactions contained in (4.2). The different
tendencies towards symmetry broken ground states are characterized and a tentative
phase diagram is obtained. We also provide estimates for the critical scales at which
such transitions may occur. Possible deviations due to the approximations involved
in our scheme are also discussed.

Emerging ordering tendencies

e Antiferromagnetic spin density wave (SDW) instability

This tendency is driven by an on-site bare interaction exceeding a critical value
U. =~ 3.5t, as shown in Fig. It manifests itself in the flow as a divergence in
the magnetic propagator at zero momentum transfer and plain s-wave form factor
components, as depicted in Fig. [£4] The low-energy effective Hamiltonian obtained

reads 1

HSDW = _N Z Vo,o’eoeo/so -8° (43)

0,0’

with S° = %Zk’g’a, O'Uyg/CLJ oCk,o’,0y Voo > 0 and ¢, = +1 for o € {A}, ¢, = —1
for o € {B}. o is to be understood as a vector of the three Pauli matrices. The
interaction becomes infinitely ranged, and is attractive for intra-sublattice scatterings
and repulsive for inter-sublattice scatterings. The system adopts anti-ferromagnetic
order as opposite net spin moments are induced on the different sublattices. The spin

quantization axis is not fixed. This transition opens a gap in the electronic spectrum.

As a consequence of numerics, the precise choice for the unitary transformation
from orbital to band degrees of freedom affects the resulting value for the critical
coupling strength. The value shown above is fortuitously near the exact numerical
results [136] (of about 3.8¢) although fRG calculations are expected to underestimate
critical coupling strengths by a wider margin, due to the neglect of bosonic collective
fluctuations. The results shown in Fig. [{:3] are obtained using the transformation
from orbital to bands of Eq. . With a different choice of orbital makeup, namely
that of Eq. , a value of U, & 2.7t is obtained, in much better agreement with
the most recent and finely discretized Fermi-surface patching results available [149].
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This matter has only a quantitative effect on results and does not play a role in the
qualitative discussion that follows.
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Figure 4.3.: Critical coupling strength for a pure on-site interaction with different
truncations of the form factor basis. The reduction in U, for truncations
including further neighbors can be understood as an effect of contribu-
tions coming from higher lattice harmonics.
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Figure 4.4.: Two dimensional plot (top) and color surface plot (bottom) for the mo-
mentum structure of the magnetic propagator signaling a SDW insta-
bility. The shown plots correspond to orbital index combinations with
01 = 09 = 03 = 04. For 01 = 03 # 09 = 04, the sign structure is reversed
as explained in the text.
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Figure 4.5.: Two dimensional plot (top) and color surface plot (bottom) for the mo-
mentum structure of the charge propagator signaling a CDW instabil-
ity. The shown plots correspond to orbital index combinations with
01 = 09 = 03 = 04. For o = 03 # 02 = 04, the sign structure is
reversed as explained in the text.

e Charge density wave (CDW,CDW3,iCDWSs) instabilities

We find several types of charge order emerging in the honeycomb lattice model.
A nearest neighbor bare interaction over a critical value drives a conventional charge
density wave (CDW), signaled by diverging couplings in the charge channel with zero
momentum transfer and plain s-wave form factor components, as shown in Fig. 4.5
The low-energy effective Hamiltonian is

1 /
HCDW = _N Z Vo,o’eoeo’NoNo (44)

0,0’

with N° = ZkJ CL ».0Ck,0,0- The orbital sign structure is the same as in the previous
instability, which here translates to an infinitely ranged attraction for sites on the
same sublattice and repulsion between different sublattice sites. Consequently, the
system develops a higher charge occupancy in one of the sublattices. In this phase
the energy spectrum becomes gapped as well.

Another charge ordering is found with an enlarged unit cell, named as three-
sublattice charge density wave (CDW3) due to the splitting of each sublattice intro
three with redistributed charge densities (see Fig. 3 in Ref. or Fig. 4 in Ref. [20]).
It is driven by a supercritical second nearest neighbor bare interaction V5, and shows
up as a divergence in the charge channel with momentum transfer Q = K — K’ and
plain s-wave form factor components, as depicted in Fig. The low-energy effective
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Figure 4.6.: Two dimensional plot (top) and color surface plot (bottom) for the mo-
mentum structure of the charge propagator signaling a CDWj3 insta-
bility. The shown plots correspond to orbital index combinations with
01 = 02 = 03 = 04. For 01 = 03 # 05 = 04, the sign structure is reversed
as explained in the text.

Hamiltonian becomes

1 / ’
HCDW3 = _N Z Vo,o'€o€0’(N(3NzQ + NEQN&) (45)

0,0’

with N = Zk,g CLJFQ’U’Ock,U,O and the same orbital sign structure once again. In
this case there is a modulated charge occupancy of the form ~ cos(Q - R + «) for
lattice site R, and depending on a phase factor a which controls the relative charge
distribution between the three emergent sublattices. A more detailed description of
the mean-field order parameter and energy spectrum of this phase can be found in
Ref. [126,/127].

Finally, when both V; and V5 are supercritical we find incommensurate charge
density waves (iCDWs). The system exhibits geometrical frustration since the charge
ordering patterns minimizing either first or second nearest neighbor repulsions can-
not be realized simultaneously. The ordering vector depends on the ratio V;/Va,
wandering gradually between the two commensurate orderings discussed above as the
ratio is modified, as displayed in Fig. The effective Hamiltonian takes the same
form as Hepw, but with an ordering vector different from Q. Such incommensurate
charge orderings had not yet been observed in previous fRG studies on the honey-
comb lattice due to the limited momentum resolution. In the usual Fermi surface
patching schemes, which discretize momentum dependences just around a small ring
centered on the Dirac points, only momentum transfers in a vicinity of either a zero
or a Q = K — K’ ordering vector are considered. Increasing the radius of such rings
widens the allowed transfer momenta at the expense of resolution around the afore-
mentioned ordering vectors. Since even the multi-patch approaches of Ref. [129)/149]
only detect commensurate cases, it seems a rather dense discretization is necessary to
capture the competition between them that leads to the frustration observed here.
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Figure 4.7.: Color surface plots for the momentum structure of the dominating prop-
agators in the magnetic (left) and charge (right) channels. Note the
difference in scale for the two plots, with the overall leading tendency
being towards a CDW3 instability.

e Quantum Spin Hall (QSH) instability

A more exotic tendency has caught a lot of interest in recent years. The possibility
of a topological Mott insulator , an interaction-induced quantum spin hall state,
being realized in the honeycomb lattice is currently a source of ongoing debate. In
previous results using less refined fRG methods the QSH was triggered by a high
enough second neighbor repulsion term. The characteristic correlations for this phase
take place in the spin channel for zero wavevector transfer, with the distinctive feature
of having an f-wave symmetry. It results in the effective Hamiltonian of the form

1 ,
HQSH = _N Z VO,O’EOEO’S?‘ . S? (46)

0,0’

with S = %Zk’a,a, fkag,glclyg’ock,ago and fi = sin(v/3k,) — ZSin(@) cos(%).
The orbital sign structure is the same as before, but interactions have now an addi-
tional f-wave modulation that alternates sign between the K and K’ points. In a
mean-field decoupling of Hggy an imaginary Kane-Mele order parameter is induced,
indicating the formation of an ordered pattern of spin currents with opposite chiral-
ities for the two spin projections. Note that it is called a topological Mott insulator
since the state is driven purely by electron-electron interactions, without the need
for a prior magnetic flux arrangement as in the original Haldane model or the
presence of an explicit spin-orbit coupling term as in the Kane-Mele model .

In our results, the tendency towards a QSH state is not found to be the dominant
instability for any choice of bare interaction parameters. In previous fRG calculations
with a pure second neighbor bare coupling, once the value of V; was chosen to be high
enough, the QSH eventually dominated . In contrast, we only observe the CDW3,
even up to very high values of Vo where the weak-coupling condition is not fulfilled
anymore. In any case, if the ratio U/V; is small enough, the leading correlations
in the spin channel are indeed those responsible for the QSH state. However, their
enhancement remains rather modest in comparison with the leading correlations in
the charge channel, which are two orders of magnitude bigger at the stopping scale,
as shown in Fig.[4.7] This scenario of non-dominance for the QSH versus charge order
has already been addressed for the QAH in the spinless case with different methods

, and more recently for the spinful case using fRG [149]. Exact

Diagonalization methods have difficulties achieving large system sizes in the spinful

65



CHAPTER 4. APPLICATION: THE EXTENDED HONEYCOMB HUBBARD
MODEL

case, and have thus focused mainly on the spinless version. Quantum Monte-Carlo
methods have been so far inconclusive on this matter, since they require extended
interactions to have a strict decay with distance to avoid sign problems. For
example, the study of Ref. was limited to coupling strengths V5 < U/3. The
prevalence of the QSH instability in previous fRG studies on the honeycomb lattice,
including single layer and multilayer systems [122,[126][127], was likely a
numerical artifact caused by the insufficient momentum resolution of the effective
interactions. All these works rely on a Fermi surface patching with a small patch
radius around the Dirac points, which as shown by Ref. artificially favors the
QSH respect to discretizations including a broader region of the Brillouin Zone.

Phase diagrams and critical scales

The phase diagrams obtained are shown in Figs. [I.8][4.9] Apart from the semimetallic
phase prevailing in the absence of an instability, the observed tendencies are either
towards antiferromagnetic order or towards charge order with different modulations.
As discussed in the previous part of this section, the QSH instability is absent from the
phase diagram. We do not observe dominant tendencies towards the Kekulé valence-
bond-solid either, which has been found in other studies including a
Fermi surface patching fRG approach that takes into account the effect of phonons
and also observes nematic bond dimers. In accordance with previous work on the
undoped honeycomb lattice system, we do not find any leading instabilities in the
pairing channel.

In comparison with previous fRG phase diagrams, aside from the differing ordering
tendencies, the present scheme is apparently more sensitive to competition effects, as
evidenced by the stronger critical scale variations across the different phases. Though
less pronounced, the suppression of critical scales around the boundaries between
different tendencies was already captured in previous schemes. Now, even for all
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Figure 4.8.: Dominant instabilities and critical scales for different bare interaction

parameters.
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three bare coupling parameters taking values which are higher than their individual
critical strength, there are regions where the system stays semimetallic, or where
there is at least a very strong suppression of several orders of magnitude for the
critical scale. Despite currently available fRG schemes being certainly not exact, the
physical plausibility of a semimetallic state being stabilized by competition effects
makes these results worth considering, although this interesting proposal has yet to
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be contrasted with other methods. In the following chapter, this idea will be pursued
further, including additional repulsive interaction terms among neighbors at longer
distances than here considered.

The resulting instabilities are robust with respect to the inclusion of further shells
of form factors or the use of denser meshes, so long as the locations for ordering vectors
in the Brillouin zone are finely discretized. Quantitatively speaking, the truncation
of the form factor basis may influence the critical scales in some regions of the phase
diagram. As shown in Ref. [87] for the square lattice, the truncation of the form factor
basis has an effect on regions where there is a strong competition between channels.
For systems with a vanishing density of states at the Fermi level, the truncation also
affects regions around the critical coupling strengths (Fig. 4.3). Thus the truncation
may affect the critical scales at boundaries between magnetic and charge ordered
phases, and at boundaries between the semimetal and ordered phases in general.
Including the third shell of form factors for selected points at such boundaries, some
experience an increase in critical scale whereas others find it further suppressed. For
instance, for U = 4t, V1 = 1.5¢, Vo = 0.5¢ the critical scale comes out an order of
magnitude higher, but for U = 5¢, V3 = 2.5¢, V5 = 1.5¢ it is an order of magnitude
lower than in the 2" shell truncation.

4.4.2. Antiferromagnetism in the ¢t — ¢/ honeycomb Hubbard model

Starting from a well-tested setup for the pure t—U model without further interactions,
we add a second-nearest neighbor hopping amplitude ¢ in order to better model the
full band structure of graphene, cf. Eq. . In particular, we investigate for the
first time the effect of ¢’ on the value for U./t, i.e. the critical Hubbard-interaction
that induces the ordering transition to the AF-SDW, and on the critical scales for
ordering. As the second-nearest neighbor hopping is known only approximately, we
sweep through a range of values for ¢’ that are expected to be relevant for graphene,
explicitly || € [0,0.2¢]. Simultaneously, for ¢’ # 0, we adjust the chemical potential
to u = 3t’ so that the Fermi level lies at the Dirac point.

For ¢’ = 0, employing the TU-fRG approach, we obtain a critical Hubbard inter-
action of U, ~ 2.7t. We note that this value is smaller than the numerical value of
Ues quc ~ 3.8t. With the instability already appearing at smaller U,/t, the TU-fRG
seems to overestimate the effect of fermionic fluctuations, as already commented in
Sec. Another effect that tentatively increases the value of U../t is the logarithmic
renormalization of the Fermi velocity [29]. This effect is not included within our trun-
cation scheme since we do not take into account the flow of the self-energy. Therefore,
we note that we do not expect our results to be quantitatively precise. Nevertheless,
we can give estimates for parameter trends in situations which are inaccessible to
controlled methods like QMC.

We go on to study the impact of ¢’ on the critical scales . of the Hubbard-model
which we interpret as an estimate for the typical gap size of the system, see Fig.
We observe, that a finite ¢’ does not significantly change the value of the critical onsite
interaction. This can be rationalized as close to the critical interaction, the instability
will only appear for small scales and therefore is governed by the dispersion close to
the Dirac points. This dispersion is not changed by the presence of ¢’ except for the
shift in the Fermi level, which we have absorbed by adjusting the chemical potential.
On the other hand, a finite ¢ changes the critical scales above U, considerably, as
can also be appreciated in Fig. [.11] We therefore predict that a finite second-nearest
neighbor hopping ¢’ has a sizable impact on the expected size of the many-body mass
gaps and transition temperatures. For example, for U/t = 2.85, the critical scale
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Q./t is reduced by about 40% upon inclusion of a second-nearest neighbor hopping
t’ = —0.2t, suggesting smaller gaps than the one that would be predicted in a simple
tight-binding model with nearest-neighbor hopping only.

This suppression of the critical scale is an effect beyond mean-field or single-
channel ladder summations. For comparison, switching off the particle-particle chan-
nel, i.e. resorting to an effective single-channel resummation, and setting U = 2.85¢, a
second-nearest neighbor hopping t' = —0.2t leads to only a 4% critical scale reduction
respect to t' = 0. The result is the same for all truncations up to the 4** form-factor
shell, since without particle-particle channel, there is no significant inter-channel feed-
back and there is a fast convergence with respect to the number of form-factor shells.
That smaller suppression of the critical scale is due to the breaking of particle-hole
symmetry. At ¢’ = 0, the whole Brillouin zone is perfectly nested with respect to
interband scatterings with zero momentum transfer in the magnetic channel. A finite
t’ respects the approximate particle-hole nesting around the Fermi level, and therefore
its influence on the critical scale is mild in terms of the particle-hole channel alone.
Note that apart from the energy shift, which is absorbed in the chemical potential,
a finite ¢’ only affects the low energy spectrum through quadratic corrections to the
linear dispersion, and does not affect the Fermi velocity to linear order. On the other
hand, it flattens the lower energy band, leading to higher particle-particle correla-
tions, which are known to inhibit magnetism [68]. We therefore conclude that the
strong suppression of about 40% seen in Fig. is a consequence of the interplay
between different channels.

4.5. Conclusion

In this chapter we have investigated the effect of improved wavevector resolution of ef-
fective interactions on fRG predictions for possible groundstate orderings of electrons
in the honeycomb lattice with extended bare interactions up to the second nearest
neighbor. The effect of a finite second nearest neighbor hopping term on antiferro-
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magnetic instabilities was also studied.

Although the commonly used Fermi-surface patching scheme has brought many
insights over the years in capturing the competition of ordering tendencies in an unbi-
ased way, limitations on its predictive power have led to some qualitative discrepancies
respect to other theoretical methods and experimental measurements. The TUfRG
scheme constitutes a further step to already existing improved parametrizations of
the fRG flow [24H26,[61},91}/151,|161], providing an efficient and highly scalable way
to refine the Brillouin zone discretization of momentum dependences. There is room
for improvement of the scheme, with the most natural extensions being the inclusion
of Matsubara frequency dependences and self-energy flows. Nevertheless, the present
implementation has already brought some new perspectives on the possible interplay
of ordering tendencies in the honeycomb lattice. More specifically, the high wavevec-
tor resolution achieved in this work has allowed us to observe a continuous evolution
of incommensurate charge orderings for the first time, originating in the frustrated
nature of competing interactions in the density channel. This competition also led
to a strong suppression of critical scales for parameter combinations such that ten-
dencies are balanced, opening the door for a robust stability of the semimetallic state
if additional competing density-density terms are included. Furthermore, our results
support the recent findings about the non-dominance of a topological QSH state ver-
sus charge order [14,201/651/99,[129//149]. Using less refined momentum discretizations,
the QSH had been found dominant for strong enough second nearest neighbor interac-
tions. Within the present scheme, however, such an instability is strongly suppressed
in the whole phase diagram for short-ranged interactions. In addition to the study of
different interaction parameter combinations, we also extended the kinetic parameters
to include a second nearest neighbor hopping ¢’. We found a sizable reduction of up
to 40% for the critical scales in the antiferromagnetic transition of the honeycomb
Hubbard model upon inclusion of a ¢’ chosen within the range of suggested ab initio
values. We showed that this effect is beyond single-channel resummations and re-
sults from the complex interplay between different interaction channels. This finding
suggests that a finite ' causes a considerable reduction of expected gap sizes in the
honeycomb Hubbard model.
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5. Application: The strained
honeycomb Hubbard model with
long-ranged Coulomb interactions

In this chapter we study the quantum many-body ground states of
electrons on the honeycomb lattice with long-ranged density-density
interactions as a model for graphene. To this end, we employ the
recently developed truncated-unity functional renormalization group
(TUfRG) approach which allows for a high resolution of the interac-
tion vertex’ wavevector dependence. We connect to previous lattice
quantum Monte Carlo (QMC) results which predict a stabilization
of the semimetallic phase for realistic ab initio interaction param-
eters and confirm that the application of a finite biaxial strain can
induce a quantum phase transition towards an ordered ground state.
In contrast to lattice QMC simulations, the TUfRG is not limited
in the choice of tight-binding and interaction parameters to avoid
the occurrence of a sign problem. Therefore, we also investigate a
range of parameters relevant to the realistic graphene material which
are not accessible by numerically exact methods. Although a plethora
of charge density waves arises under medium-range interactions, we
find the antiferromagnetic spin-density wave to be the prevailing in-
stability for long-range interactions. We further explore the impact of
an extended tight-binding Hamiltonian with second-nearest neighbor
hopping and a finite chemical potential for a more accurate descrip-
tion of the band structure of graphene’s p, electrons.

Parts of this chapter have already been published in Ref. [124)]
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CHAPTER 5. APPLICATION: THE STRAINED HONEYCOMB HUBBARD
MODEL WITH LONG-RANGED COULOMB INTERACTIONS

5.1. Introduction

The experimental realization of graphene in 2004 [34./103] has inspired many ideas for
a wide range of possible technological applications due to its superior physical proper-
ties [15421], such as its excellent electrical conductivity. The semi-metallic behavior of
graphene’s two-dimensional electron gas is protected by the nature of its low-energy
excitations, which come in the form of Dirac fermions featuring a linearly vanishing
density of states (DOS) close to the Fermi level. This has fundamental consequences
for the possible effects of many-body interactions [81]: For weak electron-electron
interactions, the material remains semi-metallic. Instead, it requires intermediate
to strong interactions to turn it into a Mott insulator or any other ordered many-
body ground state [48]77,[135]. Experimental observations for suspended graphene
confirm the stability of the semi-metallic ground state even for very low tempera-
tures [29/93] indicating a subleading role of electronic interactions in graphene. On
the other hand, specific manipulations of the material such as the application of a
uniform and isotropic strain have recently been proposed and theoretically found to
facilitate the opening of an interaction-induced band gap [138]. This could pave the
way towards an even broader range of possible technological applications as, e.g., a
graphene transistor.

The question of whether electronic interactions can induce a metal-insulator tran-
sition in an accessible experimental setup can be approached by theoretical methods
in two steps:

(1) Identification of a suitable model to study interacting electrons in graphene in-
cluding a determination of model parameters from ab initio methods. (2) Application
of appropriate many-body methods to the model to predict the ground state of the
system.

As for (1), the paradigmatic model which is used for the description of the p,
electrons in graphene is composed of a tight-binding Hamiltonian, H,, describing
electrons hopping on a honeycomb lattice and an interaction Hamiltonian, Hj,;, which
parametrizes the two-body interactions including a short-ranged part and a long-
range tail. For the ab initio parameters of the tight-binding Hamiltonian, various
works agree on amplitudes of ¢ ~ 2.7eV and 0.02¢t < ¢’ < 0.2t for the hopping of
an electron to its nearest-neighbor and second-nearest neighbor on the honeycomb
lattice, respectively [113]. For the determination of the interaction parameters from
first principles different methods are available providing different interaction profiles
of graphene’s p, electrons [66133]/138,/146l156]. Despite the differences in the details,
all methods suggest that the interaction parameters are located in the intermediate
coupling regime defining a considerable challenge for many-body methods.

Resulting from considerations of the effects of the different interaction parame-
ters many qualitative studies have revealed a rich ground state manifold depending
on the magnitude and ratio of the different local and non-local electron-electron inter-
action parameters [5}[14L201/23/33}43}|48L501/55, 77,1051 12,123,129} 134L{135L140L/149].
Possible ground states include an antiferromagnetic spin-density wave state, different
commensurate and incommensurate charge density wave states, a Kekulé dimeriza-
tion pattern and more. More recently, numerically exact methods, i.e. quantum
Monte Carlo (QMC) simulations have become available which can explore a range
of realistic parameters for the graphene model [12}[134][144]. These works confirm
the experimentally found semi-metallic behavior of the material. It was further sug-
gested that a biaxial strain of about 15% can turn graphene into an antiferromagnetic
Mott insulator [138] at least when the Thomas-Fermi method for the determination
of the interaction profile [66] is assumed. On the other hand, the ab initio interac-
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tion profile suggested by the constrained random phase approximation (cRPA) [156]
did not indicate a semi-metal-insulator transition up to 18% strain [138]. It may
be noted, however, that QMC methods are limited by the choice of band structure
and interaction parameters [12}[138], i.e. to avoid the occurrence of a sign problem,
the long-range tail of the electronic interaction profile has to decrease fast enough.
Therefore, a third option for the interaction parameters from the Pariser-Parr-Pople
model [146] could not be investigated in Ref. |[138]. Also, band structure parame-
ters other than the nearest-neighbor hopping ¢ have to be neglected within QMC
simulations. This introduces a bias to the range of available results when aiming
at the description of realistic graphene models. More specifically, the limitation of
the interaction profile to a long-range behavior that pronounces the local part of the
interaction leads to a preference of the antiferromagnetic ground state. In fact, the an-
tiferromagnetic ground state is the only ordered state that has been accessed by QMC
simulations with one exception: In Ref. [12] a model with onsite interaction U and
nearest-neighbor interaction V; was studied and indications for a competition between
spin- and charge-density wave order have been found for specific choices of parameters
giving rise to a multicritical point in parameter space, cf. also Refs. [17]/18].

In this chapter, we overcome the limitations in the choice of interaction profiles
by employing the TUfRG [87],/123] which allows for a high resolution of the interac-
tion vertex’ wavevector dependence, as explained in Ch. [3| In particular, this allows
to explore a large set of band structure parameters, e.g., a second-nearest neighbor
hopping term and a chemical potential as well as an extended range of realistic in-
teraction parameters. It also addresses the necessity of explicitly dealing with the
coupling of energy modes across the whole band structure [123}/129}|149|, instead of
directly resorting to an effective low energy description as in a continuum Dirac model
or only considering the scattering among low energy modes as in usual Fermi surface
patching fRG schemes. Aiming at quantitative results, one must include interactions
between modes from the whole Brillouin zone and not just from the vicinity of its
corners, especially since at the latter the density of states vanishes.

Recent TUfRG calculations for an explorative set of short-ranged interaction pa-
rameters already suggest that the semimetallic nature of graphene’s groundstate is
not due to interaction terms that are too weak to induce an ordered state, but rather
because of a complex interplay between different competing instabilities which leads
to an effective frustration [123]. Moreover, it has been found that the leading insta-
bility is not necessarily an antiferromagnetic spin density wave state, but can also be
an incommensurate charge density wave and other charge modulated states [123]. We
note that the fRG is not a method which provides numerically exact results, however,
numerically exact methods have a much narrower scope. In the situations accessible
to exact methods, a systematic comparison with fRG results provides confidence for
the method’s application to other regimes. This provides important insights on the
real material, allowing to go beyond the statements that are possible within a single
theoretical method alone.

In this work, we employ the TUfRG to facilitate an unbiased approach to identify
the leading instability of electrons on the honeycomb lattice with realistic band struc-
ture parameters and a long-range interaction tail provided by ab initio approaches.
As a particular strength of the TUfRG approach in this context, we emphasize that it
does take into account the fermionic fluctuations in an unbiased way. Furthermore, the
TUfRG is not bound to a sufficiently fast decay of the (partially screened) Coulomb
tail and provides a sufficient wavevector resolution to resolve the long-range tail. In
particular, it can explore the effect of arbitrary ratios of short-ranged (non-local) in-
teraction terms which are known to trigger very different types of order. This is a
clear advantage to the numerically exact QMC methods which have a sign problem
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Figure 5.1.: Left: Real space lattice structure.
Right: Band energy dispersion for the tight-binding parameters t = 2.7eV
and ' = 0.2t with adjusted chemical potential g = 3t'. Energy units are
given in eV.

if the Coulomb tail does not decay sufficiently fast and are therefore ’biased’ towards
antiferromagnetic order. So, while our results will not give quantitative estimates
for gaps or transition temperatures, we will be able to resolve the qualitative effects
and competing orders that are induced by an extended range of realistic interaction
profiles.

A broader scope of the insights obtained in this work is given by the more general
set of low-dimensional sp-electron systems of adatoms on semiconductor surfaces such
as Si(111):X with X=C, Si, Sn, Pb which exhibit both strong local and non-local
Coulomb interactions. In these surface systems, e.g., for Si:X, Mott transitions have
been observed, cf. Ref. .

5.2. Model and parameters

To model the interacting p, electrons on graphene’s half-filled honeycomb lattice,
we consider a tight-binding model for spin-1/2 fermions enhanced by density-density
interaction terms representing the long-ranged Coulomb interaction. Therefore, the
Hamiltonian has a single-particle hopping term Hy and an interaction term Hjyt,

H = Hy + Hint ’ (51)

to be specified in the following. Hj is the tight-binding part

HO =—1t Z (CI,A,UCjanU + HC)

<i7j>’o-

—t Z (CZT,A,UCLA,U + cijU%B’U + H.c.)
((3,5)),0

— i Z (CI’A,(,Ci,A,a + CI,B,aCi,B,U) ’ (5:2)

1,0

with nearest-neighbor hopping amplitude ¢, second-nearest neighbor hopping ¢’ and
chemical potential p. The nearest-neighbors are given by the position vectors
81,02, d3 of the hexagonal lattice, depicted in Fig. [5.1] which has a two-atomic basis
with sublattice index o € {4, B}. We will interchangeably denote o as sublattice or
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orbital degrees of freedom, not to be confused with different orbitals within a single

atomic site. The Carbon-Carbon distance is normalized to unity, i.e. |d;] = a = 1.

Moreover, CETO)G annihilates (creates) an electron at site i in sublattice o with spin

oe{t}

This tight-binding model gives graphene’s characteristic valence and conduction
bands which touch linearly at the two inequivalent corner points of the Brillouin zone
(BZ), i.e. the K, K’ or Dirac points as described by the energy dispersion e* (k) =

+ty/3 4+ d(k) — t'd(k) — p with d(k) = 2cos (v/3k,) + 4 cos (@l@) cos (2k,). Close
to the Dirac points the energy dispersion can be approximated by e* (k) ~ 3¢’ + %|k\7
i.e. to put the Fermi-level to the Dirac points we have to adjust the chemical potential

to u = 3t’. For the ab initio parameters of the tight-binding Hamiltonian, suggested
amplitudes are t =~ 2.7e¢V and 0.02t < ¢/ < 0.2¢, cf. Ref [113].

The interaction part Hj, from the Coulomb interaction of the electrons is
parametrized by local and non-local density-density contributions

Hint =U § Ni01Mi0,
2,0

U
0,0
Ui 53
+ 5 Mool gl (5.3)
i#], 0,0’
o,0’

where 70, = el

i.0,0Cir0,0 Tepresents the electron density operator, and interaction
coeflicients read

30,00 for intra-orbital (4, j) pairs

U = U, ; 5.4
J 7 {1 — 0o, for inter-orbital (4, j) pairs (5:4)

Different kinds of ordered states occur when the individual interaction parame-
ters exceed critical values. Sizable onsite interactions U > 0 trigger a phase transi-
tion towards an antiferromagnetic spin-density wave (SDW) state. Each n'" nearest-
neighbor repulsion term U; ;1,, = V;, supports a different ordering transition towards
charge order, with the nearest-neighbor term V; triggering the conventional charge-
density wave (CDW).

5.2.1. Maodification of hopping amplitudes from strain

The hopping amplitudes in the tight-binding Hamiltonian in Eq. are subject
to modifications upon lattice distortions as a result of the change in wave-function
overlap. For the ab initio model parameters from the constrained random phase
approximation of Ref. [156], ¢ has a linear decay vs. strain . To model the effect
of strain on other choices of ab initio model parameters, where direct results are not
available, we assume an exponential decay of the hopping amplitudes following the
empirical relation [100}/106]

tii’ = toe_/}(%_l) s (55)

where a is the unstrained lattice constant which we have set to a = 1 and t; is the

unstrained nearest-neighbor hopping amplitude. The material-dependent factor 3 is
estimated to 8 = 3.37 for graphene and 8;; is the vector connecting sites ¢ and ¢’. For
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the unstrained second-nearest-neighbor hopping, this formula provides an numerical
value of t' =ty exp(—3.37(v/3 — 1)) ~ 0.085¢ which is located in the estimated range.

A finite and uniform strain 7 can be included using a strategy suggested in
Ref. [138] by the replacement |§;;/| = r — (1 4+ n)r with strain parameter n. Then,
the strained hopping amplitudes are given by

t(r,n) = toe 3TN (5.6)

and 7 has to be evaluated at the equilibrium positions of the neighboring sites, i.e.
r = 1 for the nearest neighbor and r = /3 for the second-nearest neighbor. This
gives a strain-dependence of the nearest-neighbor hopping of ¢(n) = tgexp(—3.37n)
and for the second-nearest neighbor hopping #'(n) = to exp(—3.37((1 +7n)v/3 — 1)).

5.2.2. Ab initio interaction parameters

For the determination of the interaction parameters for p, electrons in graphene from
first principles various methods are available. In the context of biaxially strained
graphene and its effect on the quantum many-body ground states, three of these
methods have been explored in Ref. [138] for the case of graphene: The Thomas-Fermi
(TF) method [66], the constrained random phase approximation (cRPA) [156] and
the quantum-chemistry-Pariser-Parr-Pople (QC-PPP) method [146]. In this work,
we disregard the TF method, which shows the strongest decay in the interaction
parameters when going to larger distances. Therefore, this method can be considered
to be well-covered by the QMC simulations. Instead, here we concentrate on the cRPA
and the QC-PPP methods which have stronger non-local short-ranged interactions.
In particular, due to a sign problem, it was not possible to study the interaction
profile suggested by the QC-PPP method and we fill this gap here.

Constrained random phase approximation

In the cRPA the effective interaction profile for graphene’s p, electrons is described
by the formula

V(r)

Vi(r) = TV P(r)’ (5.7)

where V(r) is the bare Coulomb potential and P(r) is a polarization function. Ex-
plicit values for onsite interaction U, nearest-neighbor interaction V' and the nearest
neighbor hopping ¢ for unstrained and strained graphene have been calculated in
Ref. |156], exhibiting a linear dependence of U, V.t on strain. We directly take the
values therein, available till the fourth-nearest neighbor, as the input for our calcu-
lations. The longer-ranged part of the Coulomb-tail is affected by the surrounding
electrons leading to a modified dielectric constant, i.e. 1/r — 1/[r(1 + 7w r,/2)] where
rs = €%/(khvr) is the Wigner-Seitz radius of monolayer graphene which depends on
the fermi velocity vp = @ta, with a = ag(1l + 7). Alternatively, we parametrize
the Coulomb-tail with an artificial dielectric constant ¢, i.e. 1/r — 1/(er), which is

extrapolated from the available short range terms.

We note that in the limit » — oo the Coulomb potential approaches 1/r again,
i.e. € — 1, as the two-dimensional fermion degrees of freedom cannot modify the
three-dimensional Coulomb potential. Here, we do not take into account this latter
effect. For better comparison, the cRPA values of terms other than U, V under strain
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are taken to be the same values as in Ref. [138].

Note the fact that the constrained RPA only includes particle-hole processes which
involve high energy bands away from the Fermi level. Thus, the cRPA interaction
parameters contain the screening effects from bands which are neglected in our tight
binding model, but not those arising purely from the considered m-bands.

Ohno interpolation formula

In the context of biaxially strained graphene it was suggested in Ref. [156], that the
Coulomb interaction can be modeled by the Ohno interpolation formula [104]

V(rig, ) = ——e—— (5.:8)

1+ (e Grig)’

where V(0) = U and e is a variable screening and for large distances r — oo ap-
proaches V(r) — e?/(er). The screening parameter e can generally be tuned in
the interval € € [0,00), where € — oo results in a purely local onsite interaction
V(rij,00) = U §;;. Furthermore, € = 0 is the limit of a constant (non-local) interac-
tion V(r;;,0) = U and € = 1 represents the case of benzene [13]. Ref. [156] argues that
employing the values for the interaction parameters U and V; as given for phenalenyl
(3H — Cy3Hy) molecule from the quantum chemistry Pariser-Parr-Pople (QC-PPP)
method provide an upper bound for the Hubbard U and the interaction potential
V(r), see Ref. [146]. The transformation matrix for the interaction profile as given
by the QC-PPP method is not positive definite, therefore it was not accessible to the
QMC methods promoted in Ref. [146]. We explicitly study this type of interaction
profile and variations of it taking account for the fact that the interaction parameters
are only known approximately.

A finite strain n can be included employing the strategy suggested in Ref. |138]:
Replace r — (1 +n)r in V(r) and use t — toe=33™. The QC-PPP method is de-
signed to describe small system sizes and larger systems are expected to show stronger
screening and therefore a smaller V(r). We therefore interpret these parameters as
providing an upper limit for a realistic choice of the interaction profile and note that
extrapolation to larger systems has to be interpreted cautiously.

5.3. Method and implementation

We employ a functional Renormalization Group method within the one-loop, one-
particle-irreducible (1PI) formalism for fermionic systems introduced in Ch. to per-
form a weak-coupling instability analysis as explained in Sec. The choice of
regulator follows the so-called Q-scheme [61], i.e. infrared divergences are regularized
by a soft frequency cutoff introduced in Sec.[2:4] External frequency dependences and
self-energies are ignored. For the implementation of the fRG we use the Truncated
Unity scheme presented in Ch. |3} which leads to the flow equations in Egs. .
Briefly put, the scheme splits the two-particle coupling function into three channels
P, C, D which correspond to pairing, magnetic, and charge correlations, respectively.
These channels are defined so that each of them carries a single dependence 1 on
one of the possible singular momentum dependences of the coupling function. The
remaining weaker dependences in each channel are expanded onto a form factor basis

of lattice harmonics (see Sec. and App. D).
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Figure 5.2.: Brillouin zone (BZ) of the honeycomb lattice with typical wave-vector
discretization as implemented in the TUfRG approach. We choose a
resolution of the wave-vector discretization with a higher density around
high-symmetry points, i.e. close to the center of the BZ, I', the corners
of the BZ, K and K’, and the three M-points (M;, Mo, M3).

The initial condition for the flow is given by the microscopic bare coupling Vo,
provided that the starting scale () is several orders of magnitude bigger than the
bandwidth. Extended density-density bare interactions are contained in the initial
condition for the D channel, and the onsite bare interaction is split equally among
channels, as explained in Sec. Many-body instabilities towards ordered states
become manifest as divergences of specific coupling components in the flow to lower
energies. The nature of the symmetry-broken ground state is encoded by the diverging
components, and the scale of divergence provides an upper estimate for the critical
scale ., which, in turn, can be used as an order of magnitude estimate for a gap
or an ordering temperature. The transfer momentum 1 and form factor indices m,n
at which divergences occur reveal the ordering vector and the symmetry of the order
parameter, respectively.

The TUfRG flow equations are solved numerically by a discretization of wavevec-
tor dependences in the Brillouin zone into Ny, regions, reducing the integro-differential
flow equation to a coupled system of 3N, x N]%f X N non-linear ordinary differential
equations, where N, is the number of bands and Nys is the number of form fac-
tor functions. The ODE system is then solved using a third order Adams-Bashforth
method, and higher order for convergence tests.. The Brillouin zone mesh we normally
use, representing the discretization of the transfer momentum, is that of Fig. with
6097 points and a very high density around the I' point. They are constructed in a
recursive way, starting from the irreducible I'M K triangle in the BZ and dividing it
up into 4 similar triangles in each recursion. The minimal number of recursions is 5,
the density around the M and K points corresponds to 7 and 8 recursions respectively,
and over 40 recursive steps are done around the I' point. This meshes are fixed during
the flow, making sure that the minimum density of points is high enough to detect
instabilities of any relevant ordering vector. However, the momentum integration of
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the one-loop integrals is done adaptively using denser discretizations of at least a few
million points, ensuring that the relative error of these integrals falls below 1%. The
usual number of form-factor shells considered is 3 and 4, going up to the fifth one for
convergence tests.

5.4. Results

We study the interaction-induced quantum-many-body instabilities of spin-1/2
fermions on graphene’s honeycomb lattice starting from the pure { —U model and sys-
tematically considering extended interactions and their effect on the system stability.
The short-range regime is studied starting from the local model via a stepwise inclu-
sion of interaction terms up to a few neighbors in order to motivate the lower bound
for the study of long-range interactions. We later connect to the lattice QMC results
that have studied the ground-state of the model using different sets of ab-initio inter-
action parameters and an effective long-range tail ~ 1/(er), cf. Ulybishev et al. and
Tang et al.. For that matter, we include the effect of strain to profiles given by cRPA
interaction parameters and the Ohno interpolation formula. Moreover, we study the
effect of a second-nearest neighbor hopping on the strained long-range interacting
system.

5.4.1. cRPA parameters without strain

Starting from the simple ¢ — U model, we add non-local repulsive terms in a stepwise
fashion, using cRPA interaction parameters [156] available till the fourth nearest
neighbor, and extrapolating them up to the twentieth neighbor. A nearest-neighbor
repulsive coupling V; triggers a CDW where occupancy alternates between sublattices,
and a V5 coupling induces a modulated charge density wave with tripled unit cell. The
interplay among these coupling terms caused some controversy regarding possible
exotic ground states, hinting towards spin liquid and topologically non-trivial phases
[112], where most studies focused on the case of spinless fermions. However, in more
recent studies they are falling out of favor for the more mundane charge order, both
in the spinless [129] as well as in the spin-1/2 case [123,[149]. As shown in Ref. [123]
and in the previous chapter, results from our current method do not support exotic
phases either, but the high momentum resolution allowed to see novel incommensurate
charge ordering tendencies instead. These arise due to competition effects, with the
charge ordering patterns triggered by first and second nearest neighbor interactions
being incompatible and the system entering geometrical frustration.

Adding further agents to the competition, i.e. other non-local density-density
interaction terms V; with ¢ > 2, reveals a rich and complex landscape of charge order-
ing instabilities, interspersed by points where the system remains semimetallic due
to the charge ordering tendencies being balanced and suppressing magnetism. Here,
we used cRPA interaction parameters as a reference. The complex picture obtained
is expected to extrapolate to other realistic parameter choices on a qualitative level.
Results are shown in Fig. |5.3] which can be viewed as a path in a 20-dimensional pa-
rameter space, starting from just onsite and first nearest neighbor cRPA parameters,
and each step being taken in a new coupling direction. When considered alone, pure
n*P-nearest-neighbor interactions result in different tendencies depending on whether
the interaction is inter-lattice or intra-lattice. Inter-lattice repulsive terms are all
equivalently minimized by the standard CDW, together with more complex patterns
for interactions other than V7, which are usually sub-leading due to degeneracy. Intra-
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Figure 5.3.: Critical scales vs. the number of considered nearest neighbor interactions.
Inter-lattice terms are marked by triangles, whereas intra-lattice terms
are represented by circles. For inter-lattice terms, a further distinction
is made depending on the location of the leading ordering vector. Blue
triangles correspond to charge ordering tendencies with an ordering vector
close to the I'-point, with the point m = 1 being a standard CDW and
the only commensurate case. Green triangles are ordering tendencies
with ordering vectors anywhere in the BZ other than I'. Grey points
correspond to semimetallic behavior and the absence of an instability.

lattice repulsive terms each support differently modulated charge density waves, with
tripled, 9x, and 12x extended unit cells for pure V5, V5, and Vg terms respectively, to
name some examples. The rich interplay that arises when considered together shows
ordering vectors and critical scales going back and forth, from situations which are
very unstable towards incommensurate charge order with a modulation close to that
of the CDW, down to situations where the semimetal remains stable. The high criti-
cal scales take place when there is a big majority of inter-lattice terms, since they all
have the CDW as common tendency. The ordering vectors may lie very close to the
I point, but due to the presence of other tendencies they stay incommensurate. When
the situation is better balanced and the scales drop, ordering vectors may appear any-
where in the BZ. For instance, as seen in Fig. adding a V3 coupling yields a lower
Q. than for m = 2, and an ordering vector close to the K-point. Even though it
supports the CDW, V3 also triggers stripe ordering patterns, manifest as sub-leading
peaks in the charge propagator which are 3-fold degenerate and not dominant, but
still take part in the competition. To highlight the complexity of the interplay, it must
be mentioned that the CDW triggering tendencies in V; and V3 do actually reinforce
each other, as critical scales are higher if they are considered together rather than
separate, and with all other couplings set to zero. In contrast, if U and V5 are not
set to zero, the additional tendencies brought by V3 to the interplay lead to a lower
critical scale.

This analysis is meant to motivate our choice for the lower bound of the Coulomb
tails considered next. We include at least interactions up to the 50" neighbor, where
charge order effects are sufficiently suppressed to have a robust semimetal. This is
the case for both choices of interaction parameters, either from cRPA or from the
Ohno interpolation formula. On the other hand, although the discussion of this
intermediate-range physics might not be directly relevant to strained graphene, it is
of importance in the context of cold atoms trapped in optical lattices, where this rich
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charge order landscapes may be physically realized.
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Figure 5.4.: Particle-hole bubble at zero momentum transfer vs. €2, all in units of ¢,
with intra-band (blue) and inter-band (red) components.

Here, we add a short technical discussion of the RG flow for a stable semimetal,
before going into the study of strain-induced instabilities. At T =0 and t' = p = 0,
Coulomb interactions stay unscreened due to the vanishing DOS at the Fermi level.
Using the soft frequency Q-regulator of Ref. [61], the intra-band particle-hole bubble
with zero momentum transfer is suppressed by the regulator itself when € is large,
whereas for small € the vanishing DOS brings it down. The inter-band particle-hole
bubble does not play a qualitatively relevant role for charge screening [63], and thus
we focus on the intra-band components in this discussion. The particle-hole bubble’s
behavior in flows with the Q-regulator is shown in App. [B]and plotted again in Fig.
for convenience. In the TUfRG flow equations, cf. Egs. , the bubbles involved
are differentiated respect to €2. These exhibit a sign change at €2 &~ 0.63t, where the
bubble has an extremum. Thus, the Coulomb interaction experiences screening in the
flow for 2 > 0.63t, followed by anti-screening as {2 goes to zero, reconstructing the
unscreened bare interaction one had for 2 — oo. This works out well for single-channel
flows with the charge channel only, which is equivalent to RPA. However, in the full
flow with all three channels, the additional contributions from inter-channel feedback
may prevent the neat reconstruction of the bare interaction, which either saturates to
a screened interaction, or overshoots and becomes fully unscreened for a finite 2. The
overestimation is more problematic in practice, since Coulomb interactions suddenly
grow huge and may even cause numerical overflows. Introducing a small chemical
potential has no effect if it is smaller than the lowest scales we can flow to under
this unscreening problematic. A larger u of the order of such scales (~ 1073 — 1072)
naturally leads to a saturation of unscreening behavior, and as it corresponds to
a system with finite DOS, screening remains. Whether it saturates or overshoots
depends very sensitively on the choice of parameters, and the order of the ODE solver
and step size. Specifically, the unscreening problematic is exacerbated by increasing
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Figure 5.5.: Norm of transfer momentum 1 for which D is maximal vs €2, all in units
of t.

the order of the ODE’s solver, being more prone to overestimation and even displaying
oscillating behavior unless the steps in {2 are taken to be unfeasibly small. Going over
to a predictor-corrector scheme like the Adams-Basforth-Moulton multistep method
cures the oscillations. Therefore, this effect is most likely a numerical artifact, since we
are attempting to obtain a divergent solution using explicit ODE solvers, which lack
A-stability. It is thus unsurprising that inaccuracies in the inter-channel feedback,
mainly due to form-factor basis truncation, may lead to more severe accumulated
inaccuracies in the charge screening behavior. The latter mainly happens near critical
values for a magnetic instability in the presence of long-ranged charge correlations (see
grey areas in the phase diagrams of next section). In such situations we cannot flow
below scales of Q ~ 1073 — 1072t without encountering numerical overflows in the
charge channel, due to the overestimated anti-screening.

Fig. illustrates another subtlety of the charge unscreening in the Q-regulator
scheme. In the reconstruction of the bare Coulomb interaction taking place at low
scales, the maxima of both particle-hole bubble and D propagator do not stay at the
I point, but at small wave-vectors, which nonetheless tend towards I as 2 — 0. The
maxima of yP" start off at the K points for very high ©, wander inwards in the BZ and
outwards again to the M points as one sweeps across the van Hove singularities in the
flow, and inwards again towards the I' point. The D propagator is peaked at I almost
for the whole screening stage. However, as the unscreening stage gets closer, both get
peaked at small but finite momenta. The bubble peak is located at a slightly bigger
wavevector than the propagator, but follows the same trend as depicted in Fig. [5.5)
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Figure 5.6.: cRPA and Ohno interaction profiles for A\ = 1/ryps with 0% and 12%
strain.

5.4.2. Effects of strain

The Brillouin zone meshes used allow to resolve interaction profiles including beyond
the 10%-th nearest neighbor. To parameterize the interaction range, instead of includ-
ing different number of neighbors as done in Sec. all terms up to the 10*-th
nearest neighbor are considered and an artificial screening factor e=" is multiplied
to the potential to smoothly switch off the long-range tail at the indicated number of
nearest-neighbor interactions, i.e. A = 1/r, with r,, being the distance to the furthest
interaction parameter. Further ranged profiles are considered whenever critical strain
values do not converge before A = 1/rjga. Strain is accounted for as described in
Sec. with example profiles shown in Fig. On the last subsection, we study
the effect of including a finite second-nearest-neighbor hopping.

cRPA parameters with strain

Setting ' and u to zero on our model parameters, we employ a cRPA interaction
profile and study the effect of finite strain 1 on the system’s many-body instabilities.
The concrete values used are the same as in Refs. We find that long-ranged
cRPA interaction profiles give rise to an antiferromagnetic SDW instability for a strain
larger than a critical value, see Fig. The critical strain necessary to induce the
instability converges with respect to the inclusion of yet longer ranged Coulomb tails,
staying at 6% for profiles ranging up to the 10°-th neighbor and a corresponding
A = 1/r19s. Importantly, we observe that this type of interaction profiles does not
give rise to other leading instabilities, but the AF-SDW, i.e. no charge ordering
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Figure 5.7.: Effect of strain on the electronic instabilities of the model with cRPA
interaction parameters. The horizontal axis denotes an artificial screen-
ing length set at the n-th neighbor’s bond distance. The black regions
marked with white crosses represent the semimetallic behavior. Filled
white circles indicate an instability towards a SDW-AFM, with corre-
sponding critical scales encoded in the background color. Grey regions
are expected to stay semimetallic, but unfortunately we cannot flow down
to low enough scales for those points. See text for further details.

tendencies dominate the phase diagram. We have checked that our results are robust
with respect to denser wave-vector meshes, the inclusion of a fifth form-factor shell,
or the use of a fifth order ODE solver. The dominance of the AF-SDW ordering
tendency agrees well with findings from the QMC simulations on a qualitative level.
Based on our earlier considerations within the honeycomb-Hubbard model, we expect
that our approach overestimates the effects from fermionic fluctuations and therefore
gives rise to an underestimated critical strain. This expectation agrees with the result
from the QMC calculations where for the cRPA parameters no semi-metal insulator
transition could be observed for strains up to 18%.

We note, that there is some ambiguity in the initialization procedure, relating
to which channel contains the on-site Hubbard contribution: The most neutral or
unbiased choice is to assign 1/3 of it to each of the three channels, resulting in the
phase diagram presented here. However, other formally equivalent ways to initialize
the onsite term are expected to yield similar results, and we consider them as a
consistency check. If the onsite Hubbard U is fully assigned to the magnetic channel,
one introduces some bias towards magnetism and obtains a critical strain of 3% for
the longer ranged profiles. In contrast, if U is fully assigned to the charge channel
instead, a critical strain of 10% is obtained for long ranged profiles. A more detailed
discussion of this issue can be found in Sec. The qualitative picture that the
cRPA interaction profile gives rise to an AF-SDW transition beyond a critical strain
is nevertheless the same, independent of initialization.

Ohno formula and strain

Next, setting again ¢’ and p to zero on our model parameters, we study Ohno interac-
tion profiles with finite strain 1 which remained elusive to the QMC calculations. We
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Figure 5.8.: Effect of strain on the electronic instabilities of the model with Ohno
interaction parameters. The horizontal axis denotes an artificial screen-
ing length set at the n-th neighbor’s bond distance. The black regions
marked with white crosses represent the semimetallic behavior. Filled
white circles indicate an instability towards a SDW-AFM, with corre-
sponding critical scales encoded in the background color. Grey regions
are expected to stay semimetallic, but unfortunately we cannot flow down
to low enough scales for those points. See text for further details.

set the unstrained values in Eq. to U/t = 3.0, and choose € so that V; /t = 2.0,
then proceed analogously to the previous subsection, cf. Fig. [5.8] The choice of a
slightly smaller U than in cRPA is purposely done for contrast, keeping a similarly
strong non-local tail. Also note that under strain, the cRPA parameters tend faster
towards a localized interaction than the Ohno parameters. This leads to a consider-
ably larger critical strain for this interaction profile as compared to the strained cRPA
parameters. In fact, the critical strain necessary to induce an instability converges to
11% when including up to the 10°-th neighbor in the interaction. Also, in this case
no leading instability other than the AF-SDW appears. Our results are as well robust
respect to the use of denser wave-vector meshes, the inclusion of a fifth form-factor
shell, or the use of a fifth order ODE solver. Again, there is some ambiguity in the
initialization procedure. The results presented in Fig. correspond to the most
neutral or unbiased choice, distributing the onsite U contribution equally among the
three channels. With the on-site Hubbard U fully contained in the magnetic channel,
we get a critical strain of 8% for the longer ranged profiles, and if U is fully assigned to
the charge channel instead, the critical strain is 15%. As a general trend, we observe
that a more strongly pronounced long-range tail in the interaction profile tends to
increase the critical strain required to induce a semi-metal-insulator transition or, in
other words, it stabilizes the semi-metallic behavior of the graphene model.

We also consider deviations from the model parameters used so far, with the aim
of testing the qualitative robustness of the SM to AF-SDW transition indicated by
our instability analysis. We find that slight modifications of € in Eq. result
in a shift of the critical strain, but does not change the nature of the instability,
i.e. the tendency towards the AF-SDW instability prevails. In Fig. we exhibit
the effect of increasing € to a value that yields V;/t = 1.75, resulting in a smaller
critical strain. This is in agreement with our earlier observation since the larger
value of € leads to a less-pronounced long-range tail. Setting smaller €’s aggravates
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Figure 5.9.: Critical scales vs. strain for different interaction strengths of the Coulomb
tail in the Ohno formula.

the aforementioned technical difficulties that arise with the unscreening of charge
interactions. For instance, when choosing € such that V; /t = 2.25, we can only say
that the critical strain is shifted to about 15-18%, but cannot give a more definite
answer. Instead of rising the non-local terms to higher values, we can alternatively
lower the on-site interaction strength. If we set U/t = 2.5, keeping the rest unchanged,
we obtain an instability to incommensurate charge order for strains above 10-15%, and
recover the antiferromagnet when strain reaches about 30%. In these comparisons,
one has to push the ratio between on-site and extended terms to unrealistic values in
order to trigger instabilities other than the AF-SDW. This is due to the fact that the
Coulomb tail is modified as a whole, which does not sufficiently disturb the balanced
competition among charge ordering tendencies. However, if we disturb that balance,
charge order is much more likely to appear. In the original set of parameters, with
U/t = 3.0 and € = 1.25, it suffices to increase Vi /t = 2.0 to V3 /t = 2.25 while keeping
the rest unchanged, to make even the unstrained system unstable towards an iCDW.
The quantitative impact of this deviations has not been tested for convergence.

t-t'-Hubbard-Coulomb model with strain

Finally, we study the full model Hamiltonian to explore a close-to-realistic model for
graphene. To that end, we include a second-nearest neighbor hopping as well as the
two interaction profiles from the cRPA and the Ohno method and investigate the
effect of a finite amount of strain. Explicitly, we compare the critical scales for the
appearance of a many-body instability for three different choices of the unstrained
second-nearest neighbor hopping t' € {0, —0.1¢, —0.2t}. We note that the application
of strain quickly reduces the value of the second-nearest neighbor hopping ¢’ follow-
ing the relation in Eq. 7 while increasing the interaction strength relative to t.
Therefore, we expect a smaller impact of ¢’ on the critical scales as compared to the
pure modification of the Hubbard interaction as studied in the previous chapter. The
results of this study are shown in Fig. and confirm this expectation. For both, the
cRPA as well as the Ohno interaction profiles, the critical scales for different values
of strain only weakly depend on the chosen unstrained value of the second-nearest
neighbor hopping ¢'.

Finally, we comment on a suggestion for an effective honeycomb Hubbard model
derived from the honeycomb Hubbard-Coulomb model as put forward by Schiiler
et al in Ref. |133]. Noting that non-local charge interactions stabilize the Dirac
semimetal against magnetic ordering, and provided the absence of other instabilities,
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Figure 5.10.: Critical scales vs. strain for different values of the second-nearest-
neighbor hopping with cRPA (solid) and Ohno (dashed) interaction pa-
rameters.

they proposed a pure on-site Hubbard model with downscaled local interaction U*
as a reasonable approximation. More specifically, one would then have U* = U — V,
where V is a weighted average of non-local terms which they further approximate by
V ~ V;. Concrete values for the interaction profiles considered in this work can be
found in Table where a common trend of U% ~ 1.75t can be inferred, which is
to be compared to the U, =~ 2.7t of the original local Hubbard model. Nonetheless,
quantitative differences aside, our results support the validity of an effective on-site
model. The crucial aspect here is the absence of leading ordering tendencies other
than antiferromagnetism.

Table 5.1.: Effective Hubbard repulsion according to Ref. [133] for the different inter-
action profiles at different values of strain. Ohno 1 and 2 denote the two
different profiles considered in Fig. [5.9) with stronger and weaker Coulomb
tails, respectively. See the text for further discussion.

i.a. profile strain U/t Vi/t U*/t instability
cRPA 0% 3.3 2.0 1.3 X
cRPA 6% 4.05 2.25 1.8 v
cRPA 12% 5.0 2.6 24 v
Ohno 1 0% 3.0 2.0 1.0 X
Ohno 1 12% 4.5 2.75 1.75 v
Ohno 2 0% 3.0 1.75 1.25 X
Ohno 2 8% 3.9 2.15 1.75 v

5.5. Conclusions

In the following, we summarize our main results. First, the consecutive inclusion of
more and more remote non-local interaction terms up to the 20*"-nearest neighbor
following the unstrained cRPA interaction profile provides a sequence of different in-
commensurate charge ordering patterns. The critical scales of these charge orders
discontinuously jump from rather large values to zero and back, indicating a strong
competition between these orders. Magnetic instabilities are suppressed. When in-
cluding enough interaction terms, the competition between the charge ordering pat-
terns drives the system into a frustrated regime where no instability appears and semi-

87



CHAPTER 5. APPLICATION: THE STRAINED HONEYCOMB HUBBARD
MODEL WITH LONG-RANGED COULOMB INTERACTIONS

metallic behavior prevails. We conclude that the semi-metallic behavior of graphene
is not a result of the smallness of interactions but due to a strong competition and
an eventual frustration of different ordering tendencies.

This frustration can be lifted by application of a biaxial strain which we have
studied by employing two different types of long-ranged interaction profiles, i.e. the
cRPA and the Ohno interpolation to take account for the uncertainties in the deter-
mination of interaction parameters. We showed that for both the cRPA as well as the
Ohno profiles, a critical strain exists beyond which the system develops a quantum
many-body instability. The TUfRG values for the critical strain lie between about
5% (cRPA) and 11% (Ohno). Notably, the nature of the leading instability for these
long-ranged interaction profiles is of AF-SDW type, i.e. charge ordering tendencies
are never preferred despite their importance for intermediate-range potentials. This
option could not be explored before, as the QMC calculations typically suffer from a
sign-problem for interaction potentials with a strong tail. The nature of the possible
instabilities turn out to be the same for both pure on-site and long-ranged interacting
models, which also persists under inclusion of a finite second-nearest neighbor hop-
ping term. Thus, this is supporting evidence for the qualitative validity of effective
honeycomb t-U-Hubbard models in place of ¢-t’-Hubbard-Coulomb models.

Generally, the results of the TUfRG approach presented here overestimate the
effect of fermionic fluctuations which leads to an earlier onset of ordering tendencies.
We conjecture that this is in part caused by the neglect of self-energy effects which
would, for example, lead to finite lifetime effects [41,/57,58] and the renormalization
of the Fermi velocity [29]. Therefore, for more quantitative estimates, an inclusion of
self-energy effects within the fRG approach would be desirable. We expect this task
to be numerically demanding but feasible in the future.
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6. Conclusion

In this thesis we have developed a new functional Renormalization Group scheme
for interacting fermions on two-dimensional lattices, which offers important compu-
tational advantages in terms of numerical efficiency and scalability, and applied it to
the Hubbard model on the honeycomb lattice including the challenging description of
long-ranged Coulomb interactions.

Our methodological developments build on previous work which introduced
parametrizations of the two-particle vertex function that are more efficient than a
straight discretization of its dependences. We followed mainly on the work by Huse-
mann et al. [61] and Wang et al. [151], combining their approaches into a scheme which
retains the advantages of both of its predecessors. These two earlier approaches both
rely on reducing the three-momentum dependent two-particle interaction to several
simpler objects, each of which contains only one of the singular momentum depen-
dences of the original interaction. In the exchange boson parametrization by Huse-
mann et al. [61], the two-particle coupling is split into three channels, whereas the
Singular Mode fRG of Wang et al. [151] introduces three different approximations of
the coupling itself. In the former scheme, performing the decomposition for every
instance of the coupling in the flow equations leads to a complicated diagrammatic
structure which compromises the numerical performance. The latter scheme has the
disadvantage of introducing some ambiguity by having several different versions of
the coupling.

In this work, we showed how the two aforementioned approaches can be related
via an insertion of truncated partitions of unity, in the Truncated Unity fRG [87]. This
new approach has allowed us to separate fermionic propagators in loop integrals from
the exchange propagators which describe the channel decomposed interaction. This
way, the loop integrals not only become much simpler, but its different components
also stay independent of each other, providing a highly scalable numerical implemen-
tation. Moreover, the scheme keeps an unequivocal prescription to reconstruct the
original coupling function in its full dependences, avoiding ambiguities.

The implementation of the TUfRG has been focused on achieving a high resolution
of wavevector dependences of the effective interactions, leaving out frequency depen-
dences and self-energy corrections for now. We first applied the TUfRG to the study
of the extended Hubbard model on the honeycomb lattice at half-filling, including
up to the second-nearest neighbor for bare interactions and hopping terms. Despite
only including momentum and band degrees of freedom, the present implementation
has provided us with a new scenario of ordering tendencies in the honeycomb lat-
tice, compared with earlier fRG results using the Fermi surface patching scheme. In
particular, it has allowed us to find agreement with recent studies which support a
dominance of charge order over a topological Mott insulating state for strong second-
nearest neighbor bare interactions [14,20}|65,/99,/129,|149]. In contrast to previous
fRG results, where the topological Mott insulator eventually dominates when second-
nearest neighbor repulsion is strong enough, no such instability is seen by the TUfRG
even for second-nearest neighbor coupling strengths exceeding the bandwidth. The
high wavevector resolution achieved with the TUfRG has allowed us to detect novel
charge ordering instabilities of incommensurate ordering wavevectors [123]. These
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incommensurate charge density waves arise due to the geometrically frustrated situa-
tion which results from having several competing interactions in the density channel,
each favoring different charge ordering patters which are mutually incompatible in
terms of energy minimization. The competition among ordering tendencies has also
led to a strong suppression of critical scales in boundary regions separating different
dominating instabilities, in particular for parameter combinations which are close to
the realistic values coming from ab initio calculations, where tendencies may find
balance. In addition to the study of different interaction parameter combinations,
we also extended the kinetic parameters to include a second nearest neighbor hop-
ping ¢', which is taken together with a chemical potential shift in order to retain the
Dirac cones at the Fermi level. Within the range of suggested ab initio values for
t’, we found no effect on the critical onsite coupling strength necessary to induce an
antiferromagnetic instability, since a finite ¢’ does not affect the low energy spectrum
in the vicinity of the Dirac points. However, we did find a considerable suppression
of critical scales in the antiferromagnetic transition, suggesting a reduction of up to
40% for the expected gap sizes and critical temperatures. We were able to confirm
that this effect is not just a consequence of the breaking of particle-hole symmetry of
the band structure and the subsequent deviation from perfect nesting in the particle-
hole channel, but results from an enhanced particle-particle channel and the complex
interplay between different interaction channels [124].

We continued by considerably extending the range of bare interaction terms in-
cluded, refining the discretization of momentum dependences enough to resolve up
to the 10°-th nearest neighbor. We proceeded by first including repulsive bare inter-
actions in a stepwise fashion up to the 20*P-nearest neighbor, using ab initio values
from cRPA calculations in the literature [156]. Similarly to the analysis including
only first and second-nearest neighbor interactions, incommensurate charge ordering
patterns are observed, since such additional coupling terms induce yet further dif-
ferent charge ordering patters which compete with those driven by either V; or V5.
Intra-lattice repulsive terms each support differently modulated charge density waves,
and though inter-lattice repulsive terms are all equivalently minimized by the stan-
dard CDW, they also drive more complex patterns for interactions other than Vi,
which are usually sub-leading due to degeneracy but may impact the critical scales.
All these charge ordering tendencies compete with each other and with magnetism,
so that when enough competing terms are included and their relative strengths are
balanced, the system stays semimetallic in spite of these coupling terms all being
well above their respective individual critical values for inducing an instability. As a
result, in this intermediate range connecting short and longer ranged interactions, a
rich and complex landscape of charge ordering instabilities is revealed, interspersed by
points where the system remains semimetallic. We found that including interactions
up to the 50*P-nearest neighbor is enough to have a robust semimetal, using either
cRPA values or other ab initio interaction parameters like those obtained from the
Ohno formula. Thus, there we concluded that the semimetallic behavior of graphene
is not necessarily a consequence of interactions being too weak to induce a symmetry
breaking transition, but due to a strong competition and an eventual frustration of
different ordering tendencies.

Finally, we considered the effects of isotropic strain on the destabilization of the
semimetal by breaking the aforementioned balanced ordering tendencies. Strain pro-
vides a viable way to modify interaction parameters experimentally, strengthening
interactions respect to kinetic terms, and altering the spatial profile of the interaction
by changing the relative strength of the different interaction terms acting at different
lattice distances. The higher the strain, the stronger and more localized interactions
become, bringing the system closer to a purely local onsite interaction. Therefore,
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there is a critical strain value above which the system becomes unstable towards en-
tering a symmetry broken phase. We considered the two sets of ab initio interaction
parameters for graphene mentioned above and their extension for a strained system,
namely, cRPA parameters from the literature and parameters resulting from the appli-
cation of the Ohno formula. We also studied the impact of including a second-nearest
neighbor hopping term in the free kinetic dispersion. Earlier Quantum Monte-Carlo
studies were limited in their choice of interaction parameters, which had to decay
fast enough with distance to avoid a sign problem. They could not consider a finite
second-nearest neighbor hopping either for the same reason. The TUfRG scheme is
not bound by such limitations, but is not quantitatively accurate. Thus, although
we refrain from giving a definite answer to the critical strain necessary to induce an
instability, we could qualitatively confirm that the only arising instability is of an-
tiferromagnetic nature. Moreover, we could also analyze the trends for the critical
strain. Although formally both interaction profiles used have a Coulombic decay at
long distances, they differ in the short-range regime, with the cRPA parameters taking
a more localized shape. We saw that quicker spatial decays of the interaction profile
lead to lower critical strains for antiferromagnetic order. This led to relatively lower
critical strains for the cRPA parameters compared to the Ohno ones. Conversely,
we also found that increasing the interaction strength of the long-range tail stabi-
lizes the semi-metallic behavior, requiring higher critical strains. If one lowers the
onsite interaction instead, keeping the rest unchanged, we observed that one eventu-
ally obtains an intermediate incommensurate charge density wave regime, in between
semimetallic and antiferromagnetic regions. However, for that to happen, we had to
lower the ratio between on-site and extended terms to unrealistic values in order to
trigger instabilities other than the antiferromagnet.

Regarding the impact of including a second-nearest neighbor hopping in the
strained long-range interacting system, we observed a much milder effect on criti-
cal scales than for the pure onsite model studied before. This was expected, since
the application of strain reduces the value of the second-nearest neighbor hopping ¢’
exponentially, while simultaneously increasing the onsite interaction strength relative
to t. Since neither the long-range Coulomb tail in the interaction, nor further hopping
terms in the kinetic part seem to disturb the qualitative nature of the semi-metal to
antiferromagnet transition, we could also corroborate that the simpler pure onsite
Hubbard model usually employed within other approaches does capture the relevant
physics. The extensions considered in our work would definitely impact the quanti-
tative predictions, but they would not deviate the system from its known qualitative
behavior.

As for future prospects on fRG studies of graphene based systems, a more complete
description including frequency dependences, self-energy corrections, and collective
bosonic degrees of freedom emerging at the transition would be necessary for quan-
titatively reliable predictions. So far, the inclusion of long-ranged interactions has
already allowed to reconcile the accepted semimetallic nature of single layer graphene
with the fRG results, which within older implementation schemes had predicted or-
dered phases for realistic choices of interaction parameters. This discrepancy problem
is not exclusive to the single-layer system, but affects predictions for many-layer sys-
tems as well. The current Fermi surface patching fRG results for critical scales in
graphene bilayers are still a few orders of magnitude larger than those observed in
experiments. Adding further competing tendencies in the form of longer ranged in-
teractions could well cure this problem as it did for single-layer graphene. Moreover,
despite bilayer honeycomb models being generally regarded as having a finite density
of states at the Fermi level due to a parabolic dispersion, the inclusion of diagonal
inter-layer hopping terms causing trigonal warping results in a linear low-energy dis-
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persion. Recently, it has been argued that this effect may as well arise dynamically
due to interactions |110]. In either case, and equivalently for other non-graphene
based Dirac systems, the momentum resolution achievable in the TUfRG and the re-
lated inclusion of long-range couplings may well provide new qualitative perspectives
or help to reach a better quantitative agreement. Aside from Dirac systems, where the
long-ranged nature of interactions should persist, our approach can also be employed
to study how screening develops in more general systems with a finite DOS at the
Fermi level. This provides a more reliable account of charge screening than RPA and
related methods. Moreover, even if we know that the relevant interaction terms for
such systems are typically short-ranged, because they are the only terms that remain
active at low energies, it is more appropriate to consider the actual Coulomb bare
interaction at high energies than to directly start the flow with an effective screened
interaction. Instead of relying on some guess about the strength and relevant range of
non-local interaction terms near the Fermi level, one can just let the RG flow do the
job. Furthermore, the presence of sizable non-local couplings at intermediate scales
during the flow may well influence the outcome qualitatively, or at least quantitatively.
For some short term technical prospects on our current numerical implementation,

see App.
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A. Channel decomposition in real
space

The convention for momenta used in the channel decomposition is here recast in real
space. Although the derivation is straightforward, it will shed light on our convention
for the expanded momentum dependences and truncation procedure. The real space
expressions will also be useful for later symmetry considerations.

A general coupling function V' in momentum space is related to its real space
version via

V(ky ko kg) = » e (RulatRekeRoks—Rala) /(R) Ry, Rg, Ra)
Rl.‘.R4

where the sums include normalization factors and band indices are ignored. The
translation invariance of V' in real space is implicitly assumed, and it reduces the
R sums and V' dependences to three relative differences among position vectors, also
resulting in a delta function for momentum conservation. Let us rewrite the expression
above in terms of the transfer momenta lp, 1o, 1p via
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V(kl,kg,kg) _ Z ef’i(RPIPJFRClCJFRDlD)V(RP’RC’RD)(S(k1+k27k37k4) ,
Rp,Rc,Rp
with
R +R;—R;—Ry
= 5 ,
Ri—Rs—R3+R
Ry — 1 2 > 3+ Ry 7

RD:R1—R2~2¥-R3—R47

Rp

95



APPENDIX A. CHANNEL DECOMPOSITION IN REAL SPACE

and where we defined V respect to the original coupling function as

V(Rp,Rc,Rp) =V(Rp+Rp, Rp —R¢, Rp —Rg, 0)
=V(R1 — R4, R2 — R4, R3 — R4, 0).

Now, rearranging the dependences in transfer momenta into the form of the projected
V’s and single-channel coupling functions for each channel, namely as

P ¢
1P7‘p¥7@ lc7w,@

o

1, letle lp—lio
D 2 ) 2

leads to the following combinations of position variables for the weak dependences in
real space

Rc+Rp=Ri - Ry Rp+Rp=R;i —Ry Rp+Rc=R; —Rs
Re-Rp =R, — Ry Ry —Rp =R, — Ry Ry -Re =Ry, - Ry

which will always be Bravais lattice vectors. Respectively denoting them as Ry and
Ry in each corresponding channel, one has

Rk + Ry
RP:Rl_RS_%7
Rk + Ry
RC:Rl_R?,_%y
Rk — Ry
RD:RI_R2_%7

so that whether the real space variable for the strong dependence is a lattice vec-
tor or half a lattice vector, ultimately depends on the particular values of the weak
dependences.
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B. Loop integrals in the
(2-regularization scheme

Here we give the result after Matsubara summation for the form factor projected
bubbles of Eqgs. with an Q-regulator. The external frequency is set to zero and
self-energies are neglected, so that the regulated Green’s functions in Eqgs. are
free fermionic propagators. The Matsubara sum can then be performed analytically,
and the remaining momentum integral has the form

AP = [dp (£1(6) F1(p) £u(p)

with a positive and negative sign for particle-particle and particle-hole bubbles, re-
spectively. Defining €% (p) = eb(% + p) for the particle-particle case and €% (p) =
+eb(p+ %) for the particle-hole case, and after dealing with some removable singu-
larities, the integrand I**'(p) takes the following form if € (p)e” (p) < 0

| DI @)+ (I @) + 12 (p)]) 22 + 02
pP)= )
(1 @)+ ) (I (p)] +9)°

and for €b. (p)e” (p) > 0, if et (p) = ¢ (p)

]bbl

bb' B 2|€Z(P)‘ +Q
1 (p) = — < PIT
£(, ()] + )

and otherwise

4let (p)P? |e (P)I2 + 51¢% ()| (p >|(\ei<p>|+\elﬁ<p>|)a
4 (I8 (p)| + [ (®)]) (I ()] +Q)° (1e¥ (p)] + Q)

Ibb’
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In the peculiar case of a system with a vanishing density of states at the Fermi
level, as in the undoped Hubbard model on the honeycomb lattice studied in this
work, some bubble components will be suppressed to zero when approaching €2 = 0.
This is shown in Fig. for the particle-hole bubble at zero momentum transfer,
which is small at high scales due to the presence of a regulator, and whose inter-band
components are also suppressed at lower scales due to the vanishing density of states.
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Figure B.1.: Particle-hole bubble at zero momentum transfer vs. €2, all in units of ¢,
with intra-band (blue) and inter-band (red) components.
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C. Form factor basis for irreducible
representations of Cg,
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Figure C.1.: Irreducible triangular sector for the hexagonal lattice, from which the rest
can be constructed using symmetries. Lattice basis vectors are indicated
by e; and es.

The construction of a form factor basis of lattice harmonics was discussed in
Sec. and some examples for the first form factor shells in the hexagonal lattice
were given. The general form of a form factor basis in real space was introduced as a
linear combination of delta functions centered at lattice positions Ry

Fa(R) =D gnp6(R—Ry),

b
where the coefficients g, ;, were only specified for the zeroth and first shell.

Here we present a more thorough prescription to build a basis up to any shell,
ensuring that form factors transform according to irreducible representations of Cg,
and that they all stay orthogonal to each other. For that matter, we will index the
different shells by a single bond vector each, since it suffices to consider bond vectors
in the irreducible triangular sector shown in Fig. The rest of the bonds consti-
tuting the shell can be obtained via symmetry transformations of the group, and their
corresponding coefficients are shown in Fig. [C:2] We will denote the representative
bond vectors in Fig. @ by R = a; e; + as ez, where e; and ey are the lattice basis
vectors, and aq,as € N with a; > as. Note that since we set the nearest neighbor
distance of the underlying honeycomb lattice to 1, the basis vectors e; and e, for the
hexagonal Bravais lattice have norm /3.

The form factor shells may contain up to 12 bond vectors each, and thus up to
12 different form factors, with the exceptions of shells of a representative bond vector
R lying in a symmetry axis, which only contain 6 form factors, and the zeroth form
factor shell containing only one. The general case for the coeflicients of bond vectors
in each representation is illustrated in Fig. Shells with a bond vector lying in a
symmetry axis lack form factors of the representation Ao, and in their two dimensional
E; and F representations depicted in Fig. [C-2] the first combination of bonds shown
becomes equivalent to the second one, and the third becomes equivalent to the fourth.
Also, if the bond vector lies at the symmetry axis defined by ay = 0, the form factor
shell lacks the B; representation, and if it lies at the axis defined by a; = as, it lacks
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the Bj representation. This reduces the number of form factors in either of this cases
to only 6.

Figure C.2.: Coeflicients of bond vectors for real space form factors in the basis of
irreducible representations of Cg,. Double plus and minus signs indicate a
coefficient of +2. These coefficients do not contain normalization factors.

In momentum space, the form factors for each representation read
as 3 ai 3
Ay f(k) = cos V3 (al + ?> ky + iagky +cos [ V3 (a2 + ?) ke + §a1ky

3 3 3 3
—+ cos (\/7— (a1 — (12) k’x + 5 (a1 + CLQ) k'y> -+ cos (%_ ((ZQ — al) kw + 5 ((11 + a2) ky>

3 3
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where in the two-dimensional representations, the expression corresponds to the
Fourier transform of the first bond combination shown in Fig. and we denoted
those corresponding to the third combination by a prime, e.g. Ei,E}. The second
and fourth bond combinations in these representations are respectively obtained from
the expressions of the first and third by swapping a; <> as. These form factors in
momentum space are not normalized, except for those in E| and Ej. The rest all
require a prefactor % to be normalized if their representative bond vector does not
lie at a symmetry axis. Otherwise, the surviving one-dimensional representations get
a prefactor %, since some pairs of sines and cosines above take the same argument
when a; = as or az = 0 and add up together. In such cases, the absence of some
representations becomes evident as they lead to a f(k) = 0 form factor due to the
mutual cancellation of those sine and cosine pairs.
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D. Numerical implementation

Here we briefly review some numerical and computational aspects of our current
implementation, and comment on possible future improvements. We acknowledge the
use of the DCUHRE quadrature routine [§] for the numerical integration of fermionic
bubbles, the ODEint library [1] for solving the TUfRG differential equations respect
to the scale €2, and the JUBE workflow environment [89] to manage our computations
in the JURECA cluster.

As mentioned in Sec. and Sec. wavevector dependences of fermionic bub-
bles, bosonic propagators, and projected Vs are discretized into Ny regions in the
Brillouin zone following a static grid. In its current form, one may choose different BZ
meshes for particle-particle and particle-hole channels without a need for additional
considerations. The channels couple via the inter-channel projections, but since they
are computed in real space, the momentum space discretization of each propagator is
only involved independently at their respective Fourier transforms to position space.
If one were to use a different BZ mesh for the C' than for the D channel, as it may
be desirable when considering long-ranged Coulomb interactions, some interpolation
procedure would be necessary since these two channels couple explicitly in the flow
equation for the D propagator. The same is true if meshes for fermionic bubbles were
to differ from those used for bosonic propagators and projected V's, which may also
be convenient since in the general case the location of their peaked structures does
not necessarily coincide. Actually, the location of the relevant structures in each of
these objects does evolve considerably during the flow. We made sure that our static
meshes are fine enough to capture all these structures correctly, and since peaks for-
tunately stay at a relatively fixed position when they are at their sharpest, i.e. when
approaching an instability at low energies, they can be reliably described by denser
discretizations at fixed regions. However, this often requires doing some preliminary
calculations to identify the location of such peaks, to be later checked for convergence
with an appropriately refined mesh. Instead, the use of a dynamically adaptive mesh
would avoid these issues altogether. Our current meshes are defined using a recursive
procedure, starting from the irreducible triangle in the BZ and splitting it into 4 sim-
ilar triangles, each of which is further split up to a given depth level depending on
the region. This sort of structure is ideally suited to be stored as a quaternary tree,
together with some rules determining when and where to perform additional splits
to the next depth level, or to recollapse children nodes back into the previous depth
level. It would not only allow to adapt the meshes dynamically along the flow, but
also provide an efficient search structure in order to do interpolation, which would
also be required if the grid for each object evolves separately during the flow.

The momentum space grids used for the numeric integration of fermionic bub-
bles are not static, but follow an adaptive procedure internally defined by DCUHRE.
These are determined anew at each scale during the flow, and for each bubble com-
ponent independently. Runs differing in the interaction parameters but not in the
kinetic model parameters result in having to compute the same bubbles again each
run. Depending on the size of the computation, and on the structure of the RG scale
steps taken along the flow, it would be more convenient to pre-store the integrated
fermionic bubbles. In our case, benchmarking runs aside, the dense grids used would
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soon turn the problem from compute bound to memory bound, with the drawbacks
that it would bring for parallel scalability. Moreover, the step size in Q at differ-
ent scales and for runs with different interaction parameters also differ substantially.
Some interpolation procedure would then be required to obtain the bubble values at
the desired scales. This would bring some additional inaccuracies which we would
rather avoid, since the bubbles are the major agents driving the singular structure of
the RG flow. Being integrated in a numerically adaptive way, the fermionic bubbles
are the only objects for which we have a direct error estimation. A nice alterna-
tive to the current implementation, which has already been tested in Ref. [88], is to
propagate the local error estimates for the individual bubble components to a global
error estimate on the scale derivatives of bosonic propagators, following directly from
the TUfRG flow equations. The adaptive integration procedure is then controlled by
the global error estimate, which results in approximately ten times fewer integrand
evaluations to achieve the same level of confidence as compared to using local errors,
since not all bubble components have the same impact on the renormalization of
bosonic propagators, and thus not every single one requires to be integrated to the
same accuracy. The current implementation of this integration routine, named Paral-
lel Adaptive Integration in two Dimensions (PAID), does not include the contribution
from the projected Vs to the global error, since they have no error estimate yet. The
use of an adaptive mesh would also provide such estimates.

The last aspect to discuss is the numerical solution to the 2 scale dependence
of bosonic propagators, consisting on a set of coupled ordinary differential equations.
This is done in a semi-adaptive fashion by means of ODEint, using a so-called explicit
stepper within a multistep method. Such explicit steppers require a step size in €2 as
input, and return the values for propagators at the new scale without error estimation.
ODEint also provides fully adaptive methods which allow to solve 2 dependences
efficiently with a minimal number of steps, but they all require the desired final value
of €2 to be known a priori, since they use it as target value for error estimation. This
is not well suited for approaching divergences taking place at unknown 2 values, as is
done in our RG flows. Moreover, there are no adaptive multistep methods available
in ODEint yet. The advantage of multistep methods like the Adams-Basforth routine
used in this thesis is that they only require one evaluation of the ODE’s right hand side
per step, while providing a higher than first order solution. ODEint internally stores
the values obtained during a number of previous steps in order to apply a Runge-Kutta
solution of the desired order. Since the evaluation of the ODE’s right hand side is the
most time consuming part of our computation, multistep methods are very convenient.
The semi-adaptive procedure employed here consists on initially using a fixed step size,
usually in a range d2 ~ 0.01 — 0.12, and dynamically reducing it once approaching
a divergence so that the maximal increments of bosonic propagators fall in a range
dBax ~ 0.1 — 1t. The expected increment is just extrapolated linearly. This semi-
adaptive strategy works rather well in the absence of long-ranged interactions, since
the absolute values of bosonic propagators do not exceed the bandwidth until signaling
an instability via divergences. Otherwise, it is preferable to adopt step sizes based on a
relative increment of propagators instead of absolute ones. This can also be applied to
the fixed step size used in the initial stages via the modification d$2 — |log dByax|d2
to add some adaptivity, together with some sensible bounds so that the step does not
become too big if propagator increments are very small, and ensuring that dBpax <
0.1 — 1t. Overall, in the current implementation, each run has to be done several
times using different size steps to check for convergence.

Ultimately, it would be desirable to achieve an implementation of the TUfRG
scheme which only requires to check convergence respect to the number of form-factors
considered. The discussion above is meant to motivate attempts in this direction,
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hopefully arriving to a procedure unifying the already available error estimates from
fermionic bubbles with error estimates for bosonic propagators and projected Vs, in
order to have a controlled adaptive mesh and adaptive step size in the RG scale.

On a separate note, there are two other aspects that might need improvement if
the implementation is to remain scalable at even bigger problem sizes. On the one
hand, the matrix multiplication in the contraction of form-factor and band indices
at the ODE’s right hand side has so far been straightforwardly implemented. Being
done in parallel, it accounts for a small part of the total computation time. How-
ever, a possible future bottleneck would require using more elaborate routines from
algebraic libraries. On the other hand, ODEint has recently included the possibility
of exploiting parallelism in its internal computations, which also remain negligible
for the problem sizes analyzed in this work, but could eventually become another
bottleneck.
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