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ABSTRACT 
Due to their low mass and stiffening components like frames, stringers and panels, aircraft fuselage structures 
are prone to vibration. In order to improve acoustic comfort inside a cabin, specific vibration damping of such 
components would be helpful. Most common damping layouts make use of a viscoelastic material as the 
main source of vibration energy dissipation. Such material is placed at sensitive positions of a structure to 
absorb the energy of operational deflection shapes of concern. However, the material behavior of viscoelastic 
materials varies considerably with frequency and temperature and needs to be considered during the design 
process. In this paper, a finite element approach for local modelling of viscoelastic damping is presented. A 
viscoelastic material with frequency and temperature dependent properties is introduced as a dedicated 
damping material for aeronautic applications. Using the FE method, the consequences of temperature and 
frequency influence on the vibration damping capability of a Constrained Layer Damping treatment with the 
particular damping material are presented. 
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1. INTRODUCTION 
In the construction of aeronautic structures, lightweight design is essential. Lightweight structures  

often feature discrete stiffeners as frames and stringers, typically characterized by having both, high 
stiffness and low mass. As a result of these characteristics, those structures are prone to vibration. In 
particular, an aircraft fuselage consists of such components, as illustrated in Figure 1. 

 
Figure 1 - Fuselage composition of Flight-LAB-demonstrator 

Vibrations introduced into the structure are transmitted as structure -borne noise and lead to an 
increased cabin interior noise due to sound radiation on the fuselage skin. The transmission of 
structure-borne sound at steady-state excitation, e.g. from turbulent boundary layer or engine induced 
vibration, can be reduced by increasing damping of the frames. Procedures for an  increase of the 
damping effectiveness include the deliberate generation of shear strain in viscoelastic materials.  A 
common application for vibration damping which utilizes this effect is the Constrained Layer 
                                                        
1 martin.groehlich@dlr.de 
2 marc.boeswald@dlr.de 
3 rene.winter@dlr.de 

4273



 

 

Damping treatment (CLD), where a viscoelastic layer is constrained between the stiffer base structure 
and a stiffer face layer. Since aircraft vibrations cover a wide range of different frequency and 
temperature ranges during operation, the damping material has to cope with the corresponding 
influences. Due to the dependence on frequency and temperature of viscoelastic material properties, 
the damping performance will also vary during operation. 

The main objective of this paper is to analyze the effect of frequency and temperature on the 
damping performance of a viscoelastic material under operating condition. First, the theoretical 
background of modelling viscoelastic material behavior with respect to frequency and temperature 
dependence is exemplified. Based on the one-dimensional material model, a transformation into a 
material model for solid mechanics is presented, allowing for compilation of hysteretic damping 
matrices for finite element (FE) analysis. Furthermore, a viscoelastic material is introduced and its 
damping capabilities are analyzed within a CLD treatment for different frequency and temperature 
levels. 

2. THEORETICAL BACKGROUND OF VISCOELASTIC MATERIAL MODELLING 
In this section, the basics of idealized viscoelastic material modelling are exemplified. The 

essential properties are presented and a formulation of the material behavior in frequency domain is 
provided. Additionally, the temperature dependence on the material behavior is implemented in the 
material model. By using the finite element method (FEM) it is shown, how viscoelastic material can 
be incorporated to physically model local viscoelastic damping and to establish a global damping 
matrix for the structure. 

2.1 Linear viscoelasticity in frequency domain 
In general, viscoelasticity denotes time dependent material behavior.  Under the assumption of a 

harmonic excitation, a viscoelastic material behavior can be described in terms of a complex modulus, 
which is a function of the excitation frequency . If constant temperature is assumed, the complex 
shear modulus  can be written as (1):  

 (1) 
The real part of the complex notation  is the storage modulus and denotes the elastic behavior of 

the material. In contrast to it, the imaginary part  is the loss modulus and denotes the viscous or 
dissipative properties. Both, the real and imaginary part can be expressed by using the parameters of a 
generalized Maxwell model, often referred to as Prony series. The composition and effects of a 
generalized Maxwell model are examined in (2-4). The storage modulus can be expressed in terms of 
the parameters of the generalized Maxwell element: 

 (2) 

where  is the instantaneous shear modulus at infinitely high frequency,  the relaxation time 
and  the so called relative modulus (5). The equation of the loss modulus is formulated as (5): 

 (3) 

The ratio of the loss modulus and storage modulus defines the loss factor : 

(4) 

Concerning damping layout, the loss factor is the most important parameter as it quantifies the 
energy dissipation capability of a material. It is also known as the  resulting from dynamic 
mechanical analysis (DMA). 

2.2 Temperature dependence on viscoelastic material properties 
The temperature dependence on material properties are taken into account by different shift factors. 

Various approaches can be found in the literature regarding the shift factor calculation, e.g. in  (6). 
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However, it should be taken into account, that the selection of the approach for the shift factor 
calculation highly depends on the given material and considered temperature region. In the scope of 
this paper, the Williams-Landel-Ferry (WLF) as well as the Arrhenius approach are used and briefly 
presented in the following. For analyzing the material properties' dependence on the temperature, two 
shifts have to be considered (7):  

 
 Horizontal shift along the frequency axis due to thermal activated rearrangements and 

higher reaction rate on a molecular level 
 Vertical shift along the material property axis due to changes in the type and amount of 

molecular processes 
 

The frequency shift is defined by a horizontal shift factor , resulting from the empirical WLF 
equation with experimentally determined constants  and  relating to a reference temperature  
(7): 

(5) 

The determination of the constants C1 and C2 is based on the evaluation of master curves. Master 
curves are curve progressions created by merging the measurement data from frequency dependent 
material characterization at different temperatures.   

For the description of the vertical shift, the Arrhenius approach is used. The relation between the 
experimentally determined activation energy  concerning a temperature shift yields the vertical 
shift factor  (7): 

(6) 

The parameter  is the universal gas constant. Considering a reference state , 
the corresponding shifted state  at an arbitrary temperature  can be determined. 
If the vertical shift factors for storage and loss modulus are unequal, the shift is calculated by 
Equations (7) and (8): 

(7) 

(8) 

A typical temperature shift of the storage modulus, loss modulus (a) and loss factor (b) of a virtual 
viscoelastic material, modelled with a generalized Maxwell model, is presented in Figure 2. Therefore, 
the vertical shift factors for storage and loss modulus are assumed to be equal.  

 
(a) 

 
(b) 

Figure 2 – Complex modulus (a) and loss factor (b) during a temperature shift 
It can be seen in both diagrams that the characteristic evolution of the respective property stays 

almost the same, but it appears shifted in horizontal and in case of Figure 2(a) also in vertical direction 
if the temperature changes. In Figure 2(b) the horizontal shift can be clearly observed, since the 
maximum of the loss factor from the reference state  appears on the same level at higher frequency 
for a different temperature ( ). An additional vertical shift for the loss factor would have appeared, if 
the vertical shift factors of storage and loss modulus had been the same.  
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2.3 Implementation of viscoelasticity into the finite element method 
In order to incorporate viscoelastic material properties into the finite element method, a 

transformation from the one-dimensional material model into a three-dimensional model is mandatory. 
Assuming isotropy as an additional material property, the transformation is carried out by Hooke's law.  
The relationship between stresses  and strains  is determined by an elasticity matrix  (8):  

(9) 

The stress and strain vectors include their corresponding spatial normal parts  and , as well as 
the spatial shear parts  and . Furthermore, the Young's modulus  and the shear modulus  are 
both related to the Poisson's ratio  (8): 

(10) 
At this point it should be noted, that the elasticity matrix consists of complex entries, as far as 

viscoelasticity is concerned. In this case, the elasticity matrix  can be separated into a real and 
imaginary part, representing storage and loss behavior, or respectively elasticity and hysteretic 
damping: 

(11) 
Based on the equivalence of virtual work of external loads with the virtual work of internal stress 

and strain, a complex element stiffness matrix  for a finite element can be defined according to the 
finite element method: 

(12) 

 denotes the differential operator matrix, whereas  conforms to the matrix of element shape 
functions. Considering the complex notation of Equation (11), the real part of Equation (12) yields a 
element stiffness matrix , whereas the imaginary part yields a hysteretic element damping matrix 

: 

(13) 

(14) 

These element matrices can be used to assemble global system matrices. For example, by using the 
Boolean matrices , elements  with viscoelastic material are sorted into global stiffness and 
hysteretic damping matrices of the whole structure: 

(15) 

(16) 

The sum of the global stiffness and global hysteretic damping matrix forms a global complex 
stiffness matrix: 

(17) 
Following this procedure, it is possible to integrate finite elements with frequency and temperature 

dependent viscoelastic material to represent local dampers in arbitrary structures. 

4276



 

 

3. INFLUENCE OF FREQUENCY AND TEMPERATURE ON DAMPING 
In the following, the influence of frequency and temperature on the damping capability of a 

viscoelastically damped beam is examined by means of a numerical example.  

3.1 Simulation setup 
The subject of the analysis is a free-free vibrating, rectangular aluminum beam. According to a 

CLD treatment a viscoelastic core layer and an aluminum face sheet are applied on the beam, in order 
to damp occurring vibrations. The corresponding geometric dimensions are shown in Figure 3. 

  

Figure 3 - Geometrical setup of the CLD treatment 
The material properties of aluminum are assumed to be isotropic and constant, with a Young's 

modulus of  Pa and a Poisson's ratio of . Furthermore, the density is 
 kg/m³ and the structural damping coefficient is chosen to be . For the core 

layer, the material properties of a particular viscoelastic material are applied. The material is a 
dedicated mixture of bromobutyl rubber for aeronautic applications as vibration dampers, developed 
in cooperation with the German Institute of Rubber Technology (Deutsches Institut für 
Kautschuktechnologie e.V.). The material properties are significantly frequency and temperature 
dependent and can be characterized by twelve parameter sets of the generalized Maxwell model, as 
well as by WLF and Arrhenius shifts. In Figure 4, the contour curves of the shear storage modulus and 
loss factor of bromobutyl rubber are presented. 

 
(a) 

 
(b) 

Figure 4 – Shear storage modulus (a) and loss factor (b) of bromobutyl rubber 
 
For the storage modulus a considerable decrease can be detected with increasing temperature - the 

material becomes more flexible. In addition, the material behaves stiffer for higher frequencies in 
isothermal consideration. In comparison, the contour curves of the loss factor are completely different. 
The area of maximum values extends slightly diagonally from low temperature ( -40 °C) and low 
frequency (1 Hz) to higher frequencies at higher temperatures (1000 Hz at 0 °C). Outside this range, 
the loss factor drops considerably. 

For the simulation, commercial FEM software Ansys 18 is used. The structure is discretized by 
PLANE182 elements, since this type of elements can map frequency- and temperature-dependent 
behavior. Because modal analysis with frequency- and temperature-dependent material properties 
cannot be carried out in the current software version, the beam is examined by means of a harmonic 
response analysis. Therefore, the beam is excited by a harmonic force with constant amplitude at a free 
end in vertical direction and the resulting frequency response functions (FRF's) are calculated for the 
excitation point. Edge effects due to thermal expansion are not taken into account in the analysis.  
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3.2 Damping performance of CLD treatment 
The system described in the previous chapter is examined at five temperature levels. Using the 

peak-fit method (9), the modal parameters of the first three bending modes are identified from the 
resulting FRF's. The identified damping ratios are shown in Figure 5. For comparison purpose, the 
values given for the eigenfrequencies  correspond to the mean values of the respective mode from 
all temperature levels. However, the influence on the eigenfrequencies is not considered in the 
following. The dashed line in the diagram indicates the damping value of the undamped beam.  

 
Figure 5 - Impact of frequency and temperature on damping capabilities of the CLD treatment 

For the first and second mode, the order of damping ratios is identical. The highest damping ratios 
occur at a temperature of 30 °C. The second highest values appear at 0 °C, while the lowest damping 
ratios are recorded at lowest temperatures of -50 °C and -20 °C. However, the order of damping ratios 
changes for the third mode. In opposite to the first two modes, the damping value for 0 °C is highest at 
this point. In order to get a better understanding of the presented results , the contour curves of Figure 
4 are plotted from top view in Figure 6. The horizontal lines indicate the particular eigenfrequencies, 
the vertical ones are isothermal lines.  

 
(a) 

 
(b) 

Figure 6 – Top view on the contour curves of the shear storage modulus (a) and loss factor (b) 
When considering the loss factor of the first mode in Figure 6(b), it is noticeable that the maximum 

damping ratio does not occur at the same temperature as the maximum loss factor of bromobutyl 
rubber. This also applies to other modes: Although the loss factor values for a temperature of -20 °C 
are above the values for 30 °C for all modes, the resulting damping ratio is always lower. From this fact 
it can be concluded that the loss factor is not the only decisive factor for damping, but also the stiffness 
of the material, represented by the shear storage modulus, is essential. Concerning that assumption, it 
is striking that the storage modulus is also lower for 30 °C than for -20 °C at all modes, as 
demonstrated in Figure 6(a). From that point it could be erroneously concluded, that low stiffness is 
appropriated in order to obtain high damping ratios. 

The reason of the above mentioned behavior is founded in the prevailing damping mechanism. For 
CLD treatments, the damping mechanism is based on energy dissipation due to shear deformation. A 
quantity of the real potential energy  of elastic deformation is given by (10), regarding to a 
displacement vector : 
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(18) 

If viscoelasticity is applied, the stiffness matrix becomes complex, as demonstrated in section 2.3. 
In a harmonic state of oscillation, excited by a force vector , the displacement vector becomes 
complex as well: 

(19) 
Here,  denotes the system mass matrix of the structure. Inserting Equation (19) into Equation 

(18) with a complex stiffness matrix  yields a scalar value of the complex energy : 

(20) 

The real part of the potential energy is required for the calculation of the modal loss factor , an 
indicator of the damping capability of a vibrating system (11): 

(21) 

 is the loss factor and  the modal strain energy of layer  at mode , while  
denotes the total modal strain energy of the whole system at mode . First, an essential perception can 
be derived from Equation (20), in which the complex stiffness matrix occurs in both an inverse and in 
an original form: Low stiffness leads to high energy dissipation due to high displacement. On the other 
hand, low stiffness of the viscoelastic layer causes a reduction of the modal loss factor, since the total 
energy in the denominator of Equation (21) increases. From that fact it can be derived, that an optimal 
composition of the stiffness matrix exists for each excitation frequency and temperature, which 
maximizes the dissipative energy and as a consequence, maximizes the damping ratio.  

Relating to the above mentioned phenomena, the loss factor of -20 °C is considerably higher than 
for 30 °C, but it does not yield any advantage due to less shear deformation as a consequence of 
increased stiffness. In the case of the third mode, the combination of loss factor and shear storage 
modulus is more effective for 0 °C than for 30 °C. 

3.3 Procedures for stiffness matrix modification 
In order to maximize the damping performance, an optimal combination of stiffness matrix and 

material loss factor has to be found. The evolution of the material characteristics is given for a range of 
operating frequency and temperature. As shown in section 2.3, the stiffness matrix is determined from 
element shape functions and from the elasticity matrix. With given material, these cannot be used as 
design variables. However, the geometry of the finite elements provides another possibility to tailor 
the complex stiffness matrix for maximum damping. A geometry modification of a structure always 
involves a modification of the stiffness matrix. The thickness or the width of the viscoelastic layer is a 
possible design variable for the adjustment of the complex stiffness matrix. Of course, it is possible to 
use the spatial position of a local CLD treatment as a design variable. However, in this example, the 
CLD layer is modelled continuously so that this parameter cannot be used. 

 

 
Figure 7 - Impact of frequency and temperature on damping capabilities of the cut CLD treatment 

With the intention to create higher shear strain in the viscoelastic core layer, Lepoittevin et al. 
inserted small cuts into the core and face layer and examined the effects on damping (11). By this 
procedure, the stiffness matrix of the whole structure is modified. Hence, this approach is adopted here 
and applied on the beam from section 3.1 in the following. According to a rule of thumb (11), cuts at 
positions of maximum bending moment are most noticeable on damping. For this reason, the core and 
face layers are cut at position x=500 mm for the first mode, at positions x=310 mm and x=690 mm for 
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the second mode and at positions x=220 mm, x=500 mm and x=780 mm for the third mode with a g ap 
of 1 mm each. The resulting damping ratios are shown in Figure 7. 

First of all it is noticeable that the eigenfrequencies are lower than in the case of the continuous 
CLD treatment. This fact already indicates an overall stiffness decrement.  However, the change of the 
eigenfrequencies is small compared to the conventional CLD treatment that it has a negligible 
influence on the material parameters of bromobutyl rubber.  Furthermore, the maximum damping ratios 
occur in a different order compared to Figure 5. For all modes, the damping ratios for 0 °C are highest, 
followed by those of -20 °C and 30 °C. For lower temperatures, the cuts seem to have a positive effect, 
since an increase in the damping values can be observed.  This confirms the assumption of inadequate 
stiffness in the case of continuous CLD treatment. In contrast, the effect of cuts is negative at higher 
temperatures. While the damping ratios are still at the same level as for the continuous CLD treatment 
for 30 °C and 60 °C at the first mode, the damping ratios even decrease for higher modes.   

The instance of disadvantageous stiffness modification has to be considered during the design 
process as well. Otherwise, a mass increase due to damping material thickening, could even lead to the 
opposite of the pursued objective - a reduction of damping due to improper stiffness. 

4. CONCLUSIONS 
In this paper, the modelling of viscoelastic material in frequency domain by a generalized Maxwell 

model has been presented. By using Williams-Landel-Ferry and Arrhenius approaches, it was shown 
how the temperature dependence on the essential damping properties, storage modulus and loss factor, 
can be incorporated in the material model. Additionally, by using Hooke's law, the one-dimensional 
material model can be transformed into a multi-dimensional one. Due to the complex elasticity matrix, 
a complex stiffness matrix can be generated for FEM applications in which the imaginary part 
corresponds to a hysteretic damping matrix. As an example, the frequency and temperature dependent 
material behavior of a bromobutyl rubber mixture has been introduced and its effects on the damping 
performance of a CLD treatment have been analyzed for different frequency and temperature levels. 
On the one hand it has been shown that both frequency and temperature have a significant influence on 
the damping performance. On the other hand it has been demonstrated that a high loss factor does not 
necessarily lead to high damping ratios of a vibrating system, but especially the stiffness in terms of 
the storage modulus has to be considered. Only an appropriate combination of a high loss factor and a 
certain stiffness leads to maximum damping ratios.  
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