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Abstract
Curved geometries often make sound propagation complex. Such complexity may cause acoustical problems
including flutter echo and sound focusing. When designing the geometry, acoustic simulation can be helpful
to prevent such problems. Fourier spectral method (FSM) is a simulation method by approximation using the
Fourier basis. Although FSM has many advantages such as its high convergence rate, the application range of
the conventional FSM is limited to a simply-shaped domain with a specific boundary condition. In a realistic
acoustics room setting, there exist a lot of room shapes beyond the scope of FSM. At the same time, the Fourier
extension (FE) has been proposed for approximating a function on a complicated domain by the Fourier basis.
It can be expected that the FE expands the application range of FSM. In this paper, we introduce FE into FSM
for extending it to make a computational domain enclosed by curved boundaries tractable.
Keywords: Fourier spectral method, curved boundary, Fourier extension, function approximation

1 INTRODUCTION
Acoustic wave-based simulation has been widely studied for predicting or understanding acoustical phenomena.
In wave-based method, a solution of the wave equation is approximated by arbitrary polynomial, which explains
the wave properties well. Then, they are studied by finite difference time domain method (FDTD) [1–3] and
finite element method (FEM) [4].
In the wave-based simulation for acoustics field, a complex-shaped domain is often focused because it makes
sound field complex, and its prediction is difficult more than simple one. Sometimes curved boundary, associ-
ated with a complex-shaped domain, causes acoustical problems such as flutter echo or sound focusing. Some
researches and simulations are conducted for preventing such problems [3, 5–7].
Fourier spectral method (FSM) is a simulation method by approximation using the Fourier basis. FSM is often
used for fluid mechanics and earth science, and it has several advantages including its high convergence rate, but
the application range of the conventional FSM is limited to a simply-shaped domain with a specific boundary
condition because of characteristics of the Fourier basis. Since many real objects have a complex-shaped interior
space, the conventional FSM cannot be applied to such space [8–12].
At the same time, the Fourier extension (FE) has been proposed for approximating a function on a complicated
domain by the Fourier basis. It can approximate a nonperiodic function which is treated as a periodic function
in an extended domain. Then, it can be expected that FE expands the application range of FSM [13, 14].
In this paper, we introduce FE into FSM for handling a domain enclosed by curved boundary. Since this is a
first step, the Dirichlet boundary condition is considered in this paper. As a result, FSM becomes possible to
handle a curved boundary defined on non-grid points. Some influence of parameter selection is evaluated and
discussed by numerical simulation on a calabash-shaped domain.
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2 FOURIER SPECTRAL METHOD
Spectral method is a numerical simulation method with high accuracy, because it globally approximates a func-
tion by high order polynomials. In spectral method, an unknown function u(x) is approximated by N basis
functions φ(x),

u(x) ≈ uN (x) =
N−1∑
k=0

akφk(x). (1)

One example of basis functions φ(x) is the Fourier basis used in the inverse discrete Fourier transform (iDFT),

u(x) =
N−1∑
k=0

û(k)eikx 2π
N , (2)

where û(k) is Fourier transform of u(x), i means imaginary unit, and k means wave number. In this case, the
differential operator can be expressed as

∂nu

∂xn
=

N−1∑
k=0

(
2πik
N

)n

û(k)eikx 2π
N . (3)

This derivative is more accurate than the other methods as the finite difference method. In addition, it can be
efficiently computed by the fast Fourier transform (FFT) algorithm. This differentiation via the Fourier bases is
used to approximate the spatial derivative of a partial differential equation. However, owing to the periodicity of
the Fourier bases, the standard spectral method can only be applied to simple domain and boundary condition,
which is the main limitation [8–11].

2.1 Example of Fourier Spectral Method
In acoustic simulation, distribution of sound pressure can be expressed by

P n = P (n∆t), (4)

where ∆t is discrete time steps, n ∈ N is the time index. In this paper, a grid points set constructing the P is
on the Cartesian grid. Let the trapezoidal rule is considered for approximating the time integration. At first, the
wave equation is denoted by

∂2P

∂t2 = c2 4 P, (5)

where c means sound speed, and 4 means the Laplace operator. When v is partial derivative of P with respect
to t (v = ∂P/∂t),

P n+1 − P n

∆t
= 1

2
(
vn+1 + vn

)
(6)

is obtained by discrete integration using the trapezoidal rule. In this paper, initial condition of v (condition of
v at t = 0) is 0. Then, the wave equation can be represented using v:

vn+1 − vn

∆t
= c2

2
(
LP n+1 + LP n

)
, (7)

where L is the second order spatial differential operator approximating the Laplace operator. Then, a scheme is
obtained by Eq. (6) and Eq. (7),{

1 −
(

∆tc

2

)2
L

}
P n+1 =

{
1 +

(
∆tc

2

)2
L

}
P n + ∆tvn. (8)
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Finally, Eq. (8) is calculated in FSM by,

N−1∑
k=0

{
1 −

(
∆tc

2

)2
L̂

}
P̂ n+1(k)eikx 2π

N =
N−1∑
k=0

[{
1 +

(
∆tc

2

)2
L̂

}
P̂ n(k) + ∆tv̂n(k)

]
eikx 2π

N , (9)

where L̂ is the frequency-domain representation of L [14].

3 FOURIER EXTENSION
Because of the Fourier bases’s periodicity, simulations over a complex-shaped domain are difficult for the stan-
dard FSM. FE is a technique to approximate a nonperiodic function f on [0, 1]2 by the Fourier bases, where
the periodicity of the Fourier bases is treated by extending the computational domain to [0, T ]2, and T (> 1) is
an extension parameter. Therefore, FE is expected to widen the application range of the FSM.
In this paper, we consider two-dimensional case. At first, we define some domains shown in Fig. 1. In this
figure, PR and PR̂ are extended spatial domain and frequency domain, respectively, PΩ and PΛ are set of NΩ
grid points and set of NΛ bases, respectively, and a red line means the boundary PδΩ. Then, the main problem
of FE is formulated by a least squares problem,

a = argmin
c∈CNΛ

∑
x∈PΩ

∣∣∣∣∣∣f (x) −
∑

k∈PΛ

ckφk(x)

∣∣∣∣∣∣
2 (

φk(x) = eikTx 2π
T

)
, (10)

where kT is the transpose of k, c is the Fourier coefficients, and a is the solution set of c. The solution a can
be found by collocation, through solving the rectangular system,

Aa = b , A ∈ CNΩ×NΛ , b ∈ CNΩ , (11)

where A is the Fourier extension operator, a subblock of multi-dimensional unitary iDFT matrix. Then, AS

means the Fourier extension operator over spatial domain S. In addition, the boundary of the computational
domain is contained inside of the extended domain. In this technique, over-sampling rate q = NΩ/NΛ is one of
important parameter, q > 1 is necessary for better accuracy [13, 14].

𝑃"
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𝑎 Spatial domain 𝑏 Frequency domain

Figure 1. Relation between the extended domain and original domain. The spatial domain Ω encompassing the
grid points set PΩ, and the frequency domain Λ encompassing the frequency points set PΛ.
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3.1 Fourier spectral method using Fourier extension
We introduce FE into FSM. According to Eq (9), this matrix system is

AΩ

AδΩ2

{
I −

( ∆tc
2

)2
L̂

}−1

...

AδΩk

{
I −

( ∆tc
2

)2
L̂

}−1


[{

I −
(

∆tc

2

)2
L̂

}
P̂n+1

]
=


AΩ

[{
I +

( ∆tc
2

)2
L̂

}
P̂n + ∆tvn

]
wh2

...
whk

 , (12)

where h means a boundary value, and w means a weight for boundary domain δΩ. In this paper, w = 1 for
simplicity.

4 NUMERICAL EXPERIMENT
4.1 Experimental Condition
In this paper, we calculate a sound field enclosed by the curved boundary shown in Fig. 1, which is given by

r(θ) = 30
{

cos(2θ + π

2 ) + 2.5
}

, θ = [0, 2π), (13)

and set the homogeneous Dirichlet boundary condition to it. Other experimental conditions are summarized in
Table 1, and ζb is defined as ratio of points on boundary NδΩ to NΩ,

ζb = NδΩ

NΩ
. (14)

Table 1. Simulation condition.

NR 216

NΩ 214

NΛ 26, 28, 210

ζb 1, 5, 10

Spatial discretization interval [m] 1

Time discretization interval [ms] 2

Sound speed [m/s] 340

4.2 Evaluation Error
In this paper, we evaluated three kinds of errors; Extension error, boundary error and energy error. In FE
process, we solved the matrix equation using iterative method with error tolerance 1.0 × 10−10. we defined the
extension error,

EΩ = ‖b − AΩa‖2

‖b‖2
. (15)

where ‖·‖p is the `p-norm. In calculation without error, boundary value on RδΩ is constant in every time steps.
In this calculation, priority of boundary value in optimization is controlled by boundary weight. We defined the
boundary error,

EδΩ = ‖h − AδΩa‖2. (16)
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This system have no theoretical decay factor, energy Q around RΩ must be conserved. The energy around
spatial domain is defined as

Q = (τ + σ)
Qmax

, (17)

where

τ = 1
2

∥∥∥∥∂P
∂t

∥∥∥∥2

2
, σ = c2

2 ‖∇P‖2
2 , (18)

and Qmax means the max value of Q over all the simulation time steps [15].

4.3 Simulation
The typical results of the wave propagation are shown in Fig. 2 with NΛ = 28 and ζb = 5. Fig. 2(a) illustrates
the initial condition of this simulation, (b)-(f) show the radiation of the wave with time evolution.
At first, we performed simulation, with changing ζb, then, the obtained results are shown in Fig. 3. In this
results, when ζb is 1, EδΩ is higher than other cases, and Q is decreasing with time evolution. The cases of
ζb = 5 and ζb = 10 suggest similar trends, but ζb = 10 is more accurate than ζb = 5.
In addition, the results of changing NΛ with ζb = 5 are in Fig. 4. According to Fig. 4(b), a trends of EδΩ
are almost same over every parameters. NΛ = 26 is best condition about EΩ, but its energy is considerably
decreasing with time evolution. Then, the case of NΛ = 28 has smaller value in EΩ than the case of NΛ = 210,
but about energy Q conservation, the case of NΛ = 210 is better than the case of NΛ = 28. According to Fig. 3
and Fig. 4, ζb has influence of the boundary error EδΩ, and NΩ has influence of the extension error EΩ.

(a)  𝑡 = 0	 (c) 𝑡 = 0.4(b) 𝑡 = 0.2	

(d) 𝑡 = 0.6 (e) 𝑡 = 0.8 (f) 𝑡 = 1.0
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Figure 2. Snapshots of the P at t seconds, and their experimental conditions are NΛ = 28 and ζb = 5.

5 CONCLUSION
In this paper, we introduced FE into the FSM, and implemented simulations over the domain enclosed by the
curved boundary. At first, the scheme of FSM for the wave equation is formulated by trapezoidal rule, and FE
as a least squares problem is defined. In addition, the matrix system should be calculated directly was obtained
by above all. Finally, we evaluated three kinds of error with changing dominant parameters for accuracy, and
we confirmed the existence of parameter combinations having higher accuracy, NΛ = 28, ζ = 5 are one of
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better combination for parameters over this paper. Then, ζb has influence of boundary error EδΩ, and NΩ has
influence of extension error EΩ.
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Figure 3. Experimental results with NΛ = 28 and changing ζb.
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Figure 4. Experimental results with ζb = 5 and changing NΛ.
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