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Abstract

As the feature lengths of the field−effect transistors (FETs) are scaled down to
the deca−nanometer range, the commonly used macroscopic approaches such
as drift−diffusion and hydrodynamic models lose their validity and a detailed
description of the microscopic behavior of charge carriers becomes essential for
device simulation. In this work, a fully self−consistent and deterministic solver
for the system of Poisson, Schrödinger, and Boltzmann equations tailored to
the specific case of gate−all−around junctionless nanowire FETs is developed.
The simulation framework employs various numerical techniques such as the
H−transformation and an even/odd decomposition of the distribution function
on a staggered grid for stabilization of the Boltzmann equation (BE), and the
equations are solved with the Newton−Raphson approach which demonstrates
quadratic convergence within just a few iterations. Different inter− and intra−val-
ley scattering mechanisms, suitable boundary conditions, and quantization effects
are included, and the solver is shown to be robust and stable even in the deep
subthreshold region.

In addition to the stationary simulations, small signal analysis is carried out
under the sinusoidal steady state condition and important figures of merit such
as the cut−off frequency, maximum oscillation frequency, and Rollet stability
factor are obtained and discussed. Moreover, the Langevin−source approach is
used for self−consistent calculation of noise, resulting in the first deterministic
BE solver for noise analysis of nanowire FETs. Quantities such as the power
spectral densities of terminal currents, the drain and gate excess noise factors,
cross−correlation and the noise suppression factors are presented and compared
for different gate lengths.

In the second part of this work, an alternative approach based on the char-
acteristic curves and matrix exponentials is developed for the discretization of
the BE, which is also applicable to the ballistic transport and does not suffer
from the numerical deficiencies of H−transformation in 1D phase space. The
results of the quasi−ballistic simulations are presented and compared to those of
the moments equations obtained from the projection of the BE onto Hermite
polynomials. It is shown that the predominantly ballistic phenomena cannot be
treated with systems of moments equations and simplified boundary conditions.
The failure of moments model in describing the ballistic modes of transport has
important implications for the existence of Dyakonov−Shur terahertz instabilities
in high mobility 1D devices.



Zusammenfassung

Mit zunehmender Verkleinerung der Strukturgröße von Feldeffekttransistoren
(FETs) in den Deka-Nanometerbereich verlieren die üblicherweise verwendeten
makroskopischen Ansätze wie Drift−Diffusion und hydrodynamische Modelle ihre
Gültigkeit und eine detaillierte Beschreibung des mikroskopischen Verhaltens
der Ladungsträger wird für die Bauelementesimulation unerlässlich. In dieser
Arbeit wird ein vollständig selbstkonsistenter und deterministischer Löser für
das System aus Poisson−, Schrödinger− und Boltzmann−Gleichung entwickelt,
zugeschnitten auf den speziellen Fall des Gate−all−around Nanodraht FET. Im
Simulationsframework werden verschiedene numerische Verfahren verwendet,
wie die H−Transformation und eine Zerlegung der Verteilungsfunktion in ger-
ade und ungerade Anteile auf einem gestaffelten Gitter, und die Gleichungen
werden mit dem Newton−Raphson−Verfahren gelöst, welches eine quadratische
Konvergenz bereits innerhalb einiger weniger Iterationen aufweist. Verschiedene
Inter− und Intra−Valley Streumechanismen, geeignete Randbedingungen und
Quantisierungseffekte werden mit einbezogen, und es wird gezeigt, dass der Löser
sogar im Deep-Subthreshold Bereich robust und stabil ist.

Zusätzlich zu den stationären Simulationen wird eine Kleinsignalanalyse in
einem sinusförmigen stationären Zustand durchgeführt und wichtige Größen wie
die Grenzfrequenz, die maximale Oszillationsfrequenz und der Rollet−Stabilitäts-
faktor erhalten und erörtert. Darüber hinaus wird der Langevin−Quellen−Ansatz
für die selbstkonsistente Berechnung des Rauschverhaltens angewendet, wodurch
der erste deterministische BE−Löser für die Rauschanalyse von Nanodraht−FETs
resultierte. Größen wie die spektrale Leistungsdichte der Kontaktströme, die
Drain und Gate Überschussrauschfaktoren, Kreuzkorrelations− und die Rauschun-
terdrückungsfaktoren werden vorgestellt und für verschiedene Gatelängen ver-
glichen.

Im zweiten Teil dieser Arbeit wird ein alternativer Ansatz für die Diskretisierung
der BE auf der Grundlage von charakteristischen Kurven und des Matrixexponen-
tials entwickelt, welcher auch auf den ballistischen Transport anwendbar ist und
nicht von den numerischen Defiziten der H−Transformation im 1D Phasenraum
betroffen ist. Die Ergebnisse dieser quasi−ballistischen Simulationen werden
vorgestellt und mit solchen aus Momentengleichungen verglichen, die durch die
Projektion der BE auf Hermite−Polynome erhalten werden. Es wird gezeigt, dass
die vorwiegend ballistischen Phänomene nicht mit Systemen von Momentengle-
ichungen unter vereinfachten Randbedingungen behandelt werden können. Das
Versagen des Momentenmodells bei der Beschreibung des ballistischen Transports
hat wichtige Implikationen für die Existenz von Dyakonov−Shur Terahertz−In-
stabilitäten in 1D high-mobility Bauteilen.
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Chapter 1

Introduction

1.1 Evolution of Device Simulation

The aggressive miniaturization of the CMOS transistors in the past 50 years has
enabled higher performance per unit area, lower power requirements, and lower
manufacturing costs [1]. Today, nanoscale field−effect transistors (FETs) with
a channel length of only 10 nm are in production [1, 2], and there is a general
consensus in the semiconductor industry that the traditional planar CMOS
transistors will gradually become obsolete and novel multigate architectures
such as FinFETs and nanowire FETs will replace them for the foreseeable
future [3]. Consequently, device modeling has evolved into sophisticated tools
able to optimize transistor layouts, accurately predict device characteristics,
and troubleshoot the available designs. In the area of device simulation, the
operation regime of ultrashort FET designs has moved towards the quasi−ballistic
transport, and the transport phenomena are better expressed in terms of the
microscopic distribution of carriers rather than their mobility, diffusion constant,
etc. As the feature lengths are scaled down to the deca−nanometer range, the
commonly used macroscopic approaches such as drift−diffusion and hydrodynamic
models are losing their validity even in the linear regime [4–7] and a detailed
description of the microscopic behavior of charge carriers (e.g. with incorporation
of complicated scattering mechanisms, realistic boundary conditions, complex
device geometries, etc.) becomes essential for device simulation.

The Boltzmann transport equation (BE), as the master equation for the
carriers’ distribution function, is considered to be the best classical description
of electrons and provides a proper balance between the computational effort and
the solution accuracy [8–10]. Although the BE incorporates several quantum me-
chanical concepts such as the band structure and includes probabilistic scattering
rates based on the Fermi’s Golden Rule, it basically describes the evolution of
the trajectory of a particle in the phase space using Newtonian mechanics of

7



8 CHAPTER 1. INTRODUCTION

motion. An introduction to the BE can be found in [11].
The integro−differential nature of the BE makes it extremely challenging

to solve the equation for general problems. In the early years, approximate
analytical methods based on the Legendre polynomial expansion were used to
simplify the BE and obtain analytical solutions in simple cases [12]. Iterative
integration techniques were presented for low−field transport [13], while other
approaches such as the matrix method [14] and cellular automata method [15]
have been useful for special problems. However, stochastic approaches based on
the Monte Carlo (MC) method [9,10,16–26] have been the conventional choice for
over 30 years as they can include various effects at a very fundamental physical
level and simulate complicated device geometries with full band structures [22,27].
The results of the MC simulations often demonstrate excellent agreement with
the experimental measurements [28] and are frequently used as a benchmark for
the simpler macroscopic models.

Despite their advantages, there are several major drawbacks associated with
the MC methods. Firstly, they suffer from statistical noise which is inherent to
the method and cannot be completely avoided. Moreover, due to the transient
nature of the MC method, simulation of phenomena on very different time
scales is practically impossible. One example is the investigation of SOI devices
with floating bodies, where the charging time of the body is several orders of
magnitude larger than the time steps required for numerical stability of the
system of equations (see e.g. [29]). Hence, no successful MC simulation of
the hysteresis effects in SOI transistors has been reported yet. Similarly, the
small signal and noise analyses are limited to frequencies larger than the higher
GHz range [30], and the CPU time necessary for simulation of rare events or
subthreshold currents is prohibitive. As the number of samples is increased by
the factor N, only a

√
N−fold reduction in the statistical uncertainty is obtained.

Therefore, while the MC solvers can be straightforward and accessible ways
to solve complicated equations for small-to-moderate uncertainty, they become
computationally intensive as a higher accuracy is required. In addition, although
the MC solvers are able to include the Pauli exclusion principle [31], this does
not come naturally and requires very large particle ensembles [32].

Due to the above mentioned disadvantages of the MC solvers and higher
computational power of the workstation computers, in the last decade interest
in deterministic BE solvers has increased significantly and various techniques
for improving their numerical stability and memory requirements have been
presented. In [33–35] the discrete system of equations is constructed using the
expansion of phase space in spherical harmonics and box integration is employed
to achieve exact current continuity at the algebraic level. Stabilization schemes
such as H−transformation [33], maximum entropy dissipation scheme [36], and
upwind discretization [35] make the simulation of complicated devices possible.
In [37], the full band structure including the valence bands was incorporated in the
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calculations, and the areas of application has been expanded to magnetotransport
simulation [38,39], electrothermal simulations and degradation [40,41], coupled
hot carrier and phonon systems [42], and avalanche breakdown of pn−junctions
and devices [43, 44]. It is expected that deterministic BE solvers will play an
increasingly important role in the semiconductor device simulation.

1.2 Dissertation Outline
In this work, an efficient numerical framework for simulation of gate−all−around
(GAA) nanowire transistors is presented, which is based on the deterministic
solution of the BE. Numerical investigation of GAA nanowires is important
because as the gate lengths of the conventional FETs are further scaled down,
the cross−sectional size of their channels is also shrinking to the sub−10×10 nm2

range for acceptable electrostatic control and it is reasonable to assume that
GAA FETs with nanowire channels will replace FinFETs from approximately
the 10 nm node [45].1 In the recent years, the electron transport in nanowire
transistors has been the subject of many investigations. Atomistic computations
in [46] and numerical solution of the open−boundary Schrödinger equation
in [47–49] provide a description of current transport under ballistic conditions
and steady state operation. However, a realistic description of the scattering
rates is of utmost importance in assessment of the device characteristics even
for ultrashort channels. Moreover, when the carriers are confined by the small
cross−section and their streaming is restricted to the axial direction, quantization
of the energy states manifests and electrons occupy subbands. Although the
pseudo−potential corrections can be used to modify the distribution of carriers
according to the confinement, calculation of the discrete energy eigenstates in
the 2D perpendicular planes is necessary. Therefore, an approach based on the
self−consistent solution of the 3D Poisson equation coupled to a 2D Schrödinger
equation in the transverse planes and the multi−subband BE along the transport
direction is suitable since it offers a compromise between full quantum transport
approaches [50–54] and a classical BE framework [22]. The developed solver in this
PhD project incorporates various inter− and intra−valley scattering mechanisms,
suitable boundary conditions, and quantization effects. It is shown to be robust
and stable even in deep subthreshold simulations, and can be easily generalized

1In June 2017, IBM Research (in collaboration with GlobalFoundries and Samsung) an-
nounced that they had developed a breakthrough process to build transistors for chips at the
5 nm node. In order to achieve this feat, new architectures and improvements in the fabrication
process have been developed, with the primary technique being to use silicon nanosheets with
the GAA configuration effectively covering all four sides of the ultrathin active channel. The
novel technology makes it possible to construct processors with 600 million transistors per mm2,
and is expected to be ready for mass−production in 10−15 years after the research prototype
stage.
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to provide insight in key phenomena occuring in various one−dimensional devices
with confinement in two spatial dimensions. The combined system of equations is
solved using the Newton−Raphson method, which apart from being quadratically
converging, paves the way towards a deterministic small signal analysis covering
the full frequency range. In Chap. 2, the constituent equations are recalled and
their discretization in steady state simulations is explained. Sections 2.2, 2.3,
and 2.4 are dedicated to the stationary Poisson, Schrödinger, and Boltzmann
equation while the discretization of the small signal equations are discussed in
Sect. 2.6.

In addition to the steady state and small signal analysis of the N+NN+

transistors, the presented numerical framework also allows for the deterministic
simulation of RF noise. Despite the fact that the electronic noise sets a funda-
mental limit on the performance and sensitivity of RF circuits, there are very
limited numerical investigations on the subject and to date no numerical analysis
on the noise behavior of junctionless N+NN+ nanowires has been reported. The
high−frequency noise performance of novel devices is usually evaluated using
MC methods, equivalent circuits, or simulations based on the drift−diffusion and
hydrodynamic models [55–60], whereas a detailed microscopic and physics−based
description can provide better understanding of the noise sources and higher
accuracy. In Sect. 2.7 the Langevin−source approach is used to obtain an equation
system which can be directly solved for the fluctuations of random variables. The
idea, suggested by Langevin in his theory of Brownian motion [61] and developed
further by Kogan and Shul’man in [62], offers an elegant way of formulating
noise and unlike the MC methods, allows the investigation of the spatial origin
of the terminal current fluctuations. The Langevin-Boltzmann equation has been
solved in [63–68] for other structures, and our noise analysis uses some of the
ideas developed for a double−gate device in [69,70] .

Investigation of quasi−ballistic phenomena is another interesting area. Moving
towards the ballistic limit, the distribution function gets strongly asymmetric
and discontinuous with respect to the wave number, as discussed in [4, 71–73].
Although the energy−based stabilization schemes of Chapter 2 are useful for
evaluating the performance of conventional devices and mobilities, they fail at
numerical analysis of transport in the quasi−ballistic regime where interesting
phenomena such as plasma oscillations occur. Therefore, a robust BE solver
capable of handling the ballistic limit is desirable. In Chapter 4, the BE is
discretized directly in the phase space, with the particular focus on demonstrating
a stabilization method based on the method of characteristic curves and matrix
exponentials. The results of the phase space discretization are compared to the
results of moments equations, which are obtained in Chapter 3 by projection of
the BE onto Hermite polynomials.

Chapter 5 presents the simulation results. Nanowire transistors with N+NN+

doping and gate lengths of 10−100 nm are compared in terms of their DC, AC, and
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noise behavior in both diffusive and ballistic regimes and the results are discussed.
For shorter gate lengths (LG < 5 nm), quantum transport becomes important
and other approaches such as non−equilibrium Green’s functions [74,75], Wigner
functions [76], or the Pauli master equation [77, 78] are preferred which are
beyond the scope of this work.

The results of this dissertation have been reported in several publications. In
Ref. [79] we have presented our first implementation of the Newton−Raphson
solver for the stationary solution of the system of constituent equations. In
Refs. [80,81] we showed that our in−house simulator is capable of small signal
and noise analysis of the junctionless nanowire FETs, and in Ref. [82] we have
used the developed solver for assessing the effect of downscaling on the RF and
noise performance of these devices.



12 CHAPTER 1. INTRODUCTION



Chapter 2

The Simulation Framework

2.1 Overview

The methods and techniques used in this work are specifically tailored to the
problem of electronic transport in gate-all-around (GAA) N+NN+ FETs with
nanowire channels, as shown schematically in Fig. 2.1. The carriers are confined
in the x−y plane, and transport happens along the z−direction from source to
drain. We assume that the cross-section is quite small, i.e. Lx and Ly are in the
nanometer range.

Since the selected device geometry is not translational invarient along any
direction, a 3D Poisson equation (PE) needs to be solved on the entire domain.
This way, the details of the 3D charge density and the applied bias translate
to the electric potential profile. In order to model the confinement effects, the
dimensional splitting technique employed in [32, 83, 84] is used, where the 2D
Schrödinger equation (SE) is evaluated in the x−y planes, for each position in
z−direction. This leads to a set of eigenstates (also called subbands), each with
a discrete energy and a probability amplitude function. Once the energy states
of the confined carriers are known, their gradient in the z−direction acts as the
driving force that is exerted on the particles from source to drain. The transport
is modeled separately for each subband using the Boltzmann transport equation
(BE) evaluated in z−direction. Different energy subbands are coupled by the
inter-subband scattering rates, which describe the hopping of carriers between
these states and are proportional to the overlap integral over the initial and final
subbands.

The PE, SE, and BE are tightly coupled and need to be solved together
until full self-consistency is obtained. Their interdependency is schematically
described in Fig. 2.2, which can be numerically implemented in a Gummel-type
iteration scheme. Starting with the electric potential, the SE is used to evaluate
the subband energies and wavefunctions which are used as input for the BE in

13
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Figure 2.1: Cross-sections of the Gate-All-Around SiNW transistor.

order to compute the carrier densities. These densities are then fed into the PE
and the electric potential gets updated, hence completing the dependence of the
equations on each other and concluding one iteration step.

This chapter presents a brief discussion of the physical models and constituent
equations which describe the transport phenomena in our simulation framework.
The discretization of these equations is also explained. First, the solution of the
stationary equations is considered, which are obtained if the boundary conditions
are time invariant. Sections 2.2, 2.3, and 2.4 are dedicated to the stationary
PE, SE, and BE, respectively. The Newton-Raphson method, which allows for
simultaneous solution of the linearized system of equations in each iteration step,
is presented in Sect. 2.5. Finally, Sections 2.6 and 2.7 present the numerical
framework for small signal and noise analyses, respectively.

2.2 The Poisson Equation

The Poisson equation (PE), which is one of the basic equations in electrostatics, is
directly derived from the eddy-current-free Maxwell’s equation and the material
relationD= εE, whereD stands for the electric displacement field and E denotes
the electric field. The quasi-stationary approximation holds up to frequencies
where the wavelengths are much larger than the spatial dimensions of the device.
For silicon-based transistors (with a phase velocity of about 108ms−1), this
corresponds to frequencies higher than 100THz for nanoscale devices. In this
section, we will discuss how the PE is set up and discretized for our device.

2.2.1 Main Equation

The PE reads,
FPE := ∇r · (ε(r)∇rϕ(r)) + ρ(r) = 0 , (2.1)



2.2. THE POISSON EQUATION 15

Initial Guess

Poisson Equation (3D)

∇r · (ε(r)∇rϕ(r)) = q(n(r) − ND(r))

Schrödinger Equation (2D)[
−~2

2mν
xx

∂

∂x2
− ~2

2mν
yy

∂

∂y2
− qϕ(r)

]
ψν(r) = ενsub(z)ψ

ν(r)

Boltzmann Equation (1D)
∂fν

∂t
+ vνz (k)

∂fν

∂z
− 1

~
∂ενsub
∂z

∂fν

∂k
− Sν{f} − Γν{f} = 0

n
(r
)
=
∑ ν

∫ fν
(z
,k
)d
k

2
π
|ψ
ν
(r
)|2

Stop

fνinit(z, k)

ϕ(r)

ψν(r), ενsub(z)

fν(z, k)

n(r)

converged

Figure 2.2: Interdependency of the PE, SE, and BE.

where ∇r is the nabla operator, ϕ is the electrostatic potential, ρ is the charge
density, and ε is the dielectric constant which is assumed to be a scalar quantity1.
The vector r=(x, y, z) is three-dimensional in space since the electric field varies
in all dimensions for the nanowire structures under study. The net charge density
ρ is commonly broken apart into the ionized donor concentration ND and the

1In principle, permittivity needs to be expressed as a non-diagonal tensor of rank two.
However, the conventional materials used in the semiconductor technology do not exhibit a
significant anisotropy of the permittivity and inhomogeneity effects [85], e.g. the properties
that can be represented by tensors of second rank are isotropic for the cubic crystal structure
of silicon.
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ionized acceptor concentration NA, as well as the free charges which are electrons
in the conduction band n3D and holes in the valence band p3D. In our N+NN+

device, the acceptor density and hole concentration can be safely set to zero,
which gives:

ρ(r) = q (ND(r)− n3D(r)−NA(r) + p3D(r)) ≈ q (ND(r)− n3D(r)) , (2.2)

where q is the positive elementary charge. A substantial trick for stabilizing the
PE is to use the nonlinear transformation of the carrier density (see e.g. [85])

n3D(r) = ni exp

(
ϕ(r)− φn(r)

VT

)
, (2.3)

where ni is the intrinsic carrier density, φn is the quasi−Fermi potential of
electrons, and VT = kBT/q denotes the thermal voltage with the Boltzmann
constant kB and the absolute temperature T . In the Gummel iterations, the
nonlinear PE is solved for the potential ϕ with fixed quasi−Fermi levels. Note that
(2.3) is used solely as a transformation to quantities with the same dimensions,
and the fact that its form assumes a Maxwell−Boltzmann distribution of electrons
does not invalidate this mathematical procedure for the degenerate case. When
the Fermi−Dirac statistics is considered, the effects of the Pauli exclusion principle
are implicitly included in the quasi−Fermi potential φn.

The PE, being a second order elliptical PDE, is a boundary value problem
and needs to be supplemented with suitable boundary conditions. For the device
shown in Fig. 2.1, the bias VG is directly applied to the gate electrode to modulate
the number of free electrons. Hence, Dirichlet boundary conditions are assumed
on the gate contact

ϕ(r)
∣∣∣
r∈∂DG

= VG + ϕMS , (2.4)

with ϕMS representing the metal-semiconductor work function difference. Ev-
erywhere else on the boundary of the device, Neumann boundary conditions are
imposed. It should be noted, that the source and drain biases are incorporated
through the BE, as will be discussed later on in Sect. 2.4.

2.2.2 Numerical Implementation

Equation (2.1) is discretized using the finite volume method2 [89]. The grid
may consist of 2D unstructured triangular meshes on the transverse x−y planes,

2Although the finite element method can easily discretize complex geometries, it does
not satisfy the relevant conservation principles within individual elements since the equations
of equilibrium and boundary conditions are replaced by their weighted means [86, 87]. In
practice, this drawback is usually addressed by mesh refinement in order to ensure that a
sufficient number of elements is present so that the inequilibrium of individual elements does
not influence the overall solution. The finite volume method, on the other hand, provides a
strong physical representation of the conservation laws [88] and has become the major technique
for discretization of the Poisson and Boltzmann transport equations.
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Figure 2.3: Schematic of the control volume (left) and surface vector (right) in the finite
volume method.

repeated nz times in the transport direction. These triangular meshes are
assumed to be non-obtuse (i.e. they form a Delauney grid) and Voronoi polygons
split the simulation domain into prismatic control volumes by the perpendicular
bi-sectors of neighboring primary element edges [90–92]. In Fig. 2.3, part of the
control volume of node (r2D, zk) with the respective edges of the Delauney grid
are shown in blue. Each control volume l has nl−2 faces with vertical orientation
and two with horizontal orientation, and a finite volume discretization can be
obtained by integration over the control volumes. The electric flux through each
of the nl surfaces is given by the permittivity of the corresponding grid primitive
times the electric field times the surface vector. Defining Arr′′ as the area of the
box side lying between nodes r and r′′, the surface vector is:

Arr′′ =
r − r′′

‖r − r′′‖2
Arr′′ (2.5)

and only the component of the electric field along the edge is required:

Drr′′ ·Arr′′ = −εrr′′∇ϕ r − r′′

‖r − r′′‖2
Arr′′ ≈ −εrr′′Arr′′

ϕ(r)− ϕ(r′′)

‖r − r′′‖2
, (2.6)

where the potential ϕ is defined directly on the grid nodes and assumed to be
constant within the corresponding finite volume. If the two grid nodes r, r′′ are
interchanged, we get the flux from node r′′ to r,

Dr′′r ·Ar′′r = −εrr′′Arr′′
ϕ(r′′)− ϕ(r)

‖r − r′′‖2
= −Drr′′ ·Arr′′ , (2.7)
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Figure 2.4: Cross-section of the finite volume for grid node (r, zk) on the z = zk plane
(blue area). The space charge density ρ and the electric potential ϕ are defined on direct
grid points, indicated by black circles. The permittivities εi are assumed to be constant
within the grid primitives.

which equals the flux from r to r′′ with an inverted sign, because the surface
areas are the same and their vectors antiparallel.

Since the unstructured grids introduce unnecessary computational cost for
no additional physical insight, the special case of a Cartesian tensor product
grid is chosen for this work. This results in cuboid control volumes, as shown in
Fig. 2.4. A composite index is calculated based on the indices i, j, and k:

l = (k − 1)nxny + (j − 1)nx + i , (2.8)

where nx and ny are the number of nodes in the x and y directions, respectively.
Using the notation in Fig. 2.4 and defining ∂D(r, zk) and D(r, zk) as the surface
and volume of the box for the generic grid node (r, zk), the sum over all surface
parts yields∮
∂D(r,zk)

D · dA ≈

yj − yj−1

4(xi+1 − xi)

[
ε1(zk+)(zk+1 − zk) + ε1(zk−)(zk − zk−1)

]
(ϕ(r, zk)− ϕ(rE, zk))

+
yj+1 − yj

4(xi+1 − xi)

[
ε3(zk+)(zk+1 − zk) + ε3(zk−)(zk − zk−1)

]
(ϕ(r, zk)− ϕ(rE, zk))

+
yj − yj−1

4(xi − xi−1)

[
ε2(zk+)(zk+1 − zk) + ε2(zk−)(zk − zk−1)

]
(ϕ(r, zk)− ϕ(rW, zk))

+
yj+1 − yj

4(xi − xi−1)

[
ε4(zk+)(zk+1 − zk) + ε4(zk−)(zk − zk−1)

]
(ϕ(r, zk)− ϕ(rW, zk))

+
xi − xi−1

4(yj+1 − yj)

[
ε4(zk+)(zk+1 − zk) + ε4(zk−)(zk − zk−1)

]
(ϕ(r, zk)− ϕ(rN, zk))
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+
xi+1 − xi

4(yj+1 − yj)

[
ε3(zk+)(zk+1 − zk) + ε3(zk−)(zk − zk−1)

]
(ϕ(r, zk)− ϕ(rN, zk))

+
xi − xi−1

4(yj − yj−1)

[
ε2(zk+)(zk+1 − zk) + ε2(zk−)(zk − zk−1)

]
(ϕ(r, zk)− ϕ(rS, zk))

+
xi+1 − xi

4(yj − yj−1)

[
ε1(zk+)(zk+1 − zk) + ε1(zk−)(zk − zk−1)

]
(ϕ(r, zk)− ϕ(rS, zk))

+
(xi+1 − xi−1)(yj+1 − yj−1)

4(zk − zk−1)
εavg(zk) (ϕ(r, zk)− ϕ(r, zk−1))

+
(xi+1 − xi−1)(yj+1 − yj−1)

4(zk+1 − zk)
εavg(zk) (ϕ(r, zk)− ϕ(r, zk+1))

=
(xi+1 − xi−1)

2

(yj+1 − yj−1)

2

(zk+1 − zk−1)

2
ρ(r, zk) ≈

∫
D(r,zk)

ρ dV , (2.9)

where the charge density acts as the source term in the control volume, and
the right−hand side is simply given by the box volume times the average charge
density in the box. In this case of a 3D tensor-product grid the Laplace operator
involves the potential on seven grid nodes, i.e. the central grid node (r, zk) and
the six nearest neighbors. Interface conditions are automatically included in
(2.9), because the permittivity can change from primitive to primitive. On the
boundary of the solution domain, where Neumann boundary conditions apply,
the integrals over the corresponding surface sections vanish. This corresponds to
the assumption, that the permittivity is zero outside of the solution domain.

Although the differential terms are linear, the space charge density ρ depends
nonlinearly on the potential and the PE cannot be solved in one step. In order
to solve the discretized set of equations, the Newton-Raphson method can be
employed. The derivative of the charge density is calculated as

∂ρ(r, zk)

∂ϕ(r′, zk′)
=

−qni
VT

exp

(
ϕ(r, zk)− φn(r, zk)

VT

)
δrr′δkk′ . (2.10)

It should be noted that the Jacobian is an M−matrix [93] and the Newton-Raphson
method converges for all initial values. The typical convergence behavior is shown
in Fig. 2.5. Faraway from the solution, the potential changes at most by VT.
As the potential gets closer to the solution, the rate of convergence becomes
quadratic and the solution is obtained within a few more iteration steps.

2.3 The Schrödinger Equation
As the cross-sectional area of the nanowires shrink to below 10×10 nm2, confine-
ment of the carriers in the perpendicular directions begins to play an important
role. The quantum effects are manifested in the development of discrete energy
subbands, which in turn leads to variations of the bandgap with the cross-sectional
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Figure 2.5: Maximum change of the potential of the Newton-Raphson method for the
nonlinear Poisson equation.

area and reduction of the conduction channels available for charge transport [94].
Moreover, the carriers get pushed away from the semiconductor/oxide interface,
thereby increasing the effective oxide thickness and reducing the capacitance of
the gate dielectric. In order to capture the quantization of charge carriers, it is
necessary to include the SE into a self−consistent computation with the PE. In
this section, numerical implementation of the 2D time independent SE is briefly
discussed.

2.3.1 Main Equation

In principle, the SE describes the coherent motion of an electron subject to
internal potentials, i.e. the potentials induced by the crystal to whom the
electron belongs (VC), as well as the effect of the external forces (VE),

−~2

2me
∇2ψ(r) + [VC(r) + VE(r)]ψ(r) = Eψ(r) (2.11)

where ~ is the reduced Planck constant, ψ is the wave function and E the energy
of the particle. No time-dependence is assumed in (2.11), i.e. the relaxation
time for the eigenvalues and eigenfunctions of (2.11) is short enough and the
Hamiltonian shifts instantaneously by time variations of the applied bias and
perturbations in the steady state. The effect of the crystal is expressed through
the band structure,

ε(−i∇)ψ(r) + VE(r)ψ(r) = Eψ(r) (2.12)
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where the notation ε(−i∇) is adopted to show that the band structure function
ε(kx, ky, kz) reads ε(−i ∂∂x ,−i ∂∂y ,−i ∂∂z ) [95]. Hence, the effects of the internal
potential VC(r) are taken into account by the differential operator ε(−i∇). The
eigenstates of this so-called envelope function equation do not oscillate at the
atomic scale of the crystal, but rather describe the behavior of electrons subject
to slowly varying external potentials.

The direct application of sophisticated full band structure calculations is time
consuming. Assuming parabolic mass approximation in x− and y−directions, the
electron is represented around the energy minimum of the crystal band structure
by,

−~2

2
∇ ·
(

M̂−1∇ψ(r)
)
+ VE(r)ψ(r) = Eψ(r) , (2.13)

where the mass tensor M̂ parameterizes the inertia resulting from the compound
interaction of the underlying crystal lattice3. Corrections to account for the
non-parabolicity of the bands can extend the validity of the model to higher
energies [9, 99].

Under the assumption of a negligible electric field in the longitudinal direction,
the separation of variables leads to a 2D SE in the x−y plane. The procedure
of breaking the full 3D problem into its confined and non−confined parts is
well known and widely used in the numerical investigation of low−dimensional
structures. For detailed discussions on the rationale of this framework, the reader
is referred to, e.g., Refs. [11, 83,100,101].

2.3.2 Numerical Implementation

The stationary SE for the envelope function is solved on x−y planes perpendicular
to the z−axis, in each mesh point of the z−axis. The eigenvalues are the quantized
subband energies, represented by ενsub(z) throughout this work and ψν is the
wave function corresponding to the eigenvalue ενsub. The composite superscript
ν = (v, s) comprises the valleys of the band structure v and the subbands s
emerging from the carrier confinement. For the Cartesian tensor product grid of
Fig. 2.4, the 2D Hamiltonian gives[

−~2

2mν
xx

∂

∂x2
− ~2

2mν
yy

∂

∂y2
+ VE(r)

]
ψν(r) = ενsub(z)ψ

ν(r) , (2.14)

3Treating the 2D Schrödinger equation within the envelope function and effective mass
framework has proven to be an adequate approximation down a wire diameter of 3 nm [48]. For
example, [48] and [96] have shown that valley splitting is rather insignificant for [001] nanowires
(only 10meV even for 4 nm2 cross-sections). However, it should be noted that the effective
mass approximation has certain limitations compared to the more rigorous band structure
calculations, and effects such as the band coupling, Brillouin zone folding and energy dependence
of the non-parabolicity cannot be considered within the EMA framework [47,48,96–98].
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where mν
xx and mν

yy are the electron effective masses in x and y direction,
respectively. At this point, it is important to note that although the SE is solved
on 2D planes, the eigenfunctions will be functions of r since the electrostatic
potential also depends on the z−coordinate. The natural way to solve (2.14) is
to replace the differential operator with its finite differences equivalent,

−~2

2mν
xx

[
ψνi−1,j − 2ψνi,j + ψνi+1,j

(∆x)2
+O(∆x2)

]
− ~2

2mν
yy

[
ψνi,j−1 − 2ψνi,j + ψνi,j+1

(∆y)2
+O(∆y2)

]
+ VE(r)ψ

ν
i,j = ενsub(z)ψ

ν
i,j (2.15)

where (i, j) are the indices of a generic node in the 2D space grid. The potential
energy is simply given by VE(r)=−qϕ(r) and shifts the main diagonal elements
of the Hamiltonian matrix. The grid nodes are defined as:

xi = x0 + i∆x for i ∈ {0, 1, · · · , nx − 1}
yj = y0 + j∆y for j ∈ {0, 1, · · · , ny − 1} , (2.16)

which is the same grid used for discretization of the PE, and the wave function
is represented by a single column vector. The resulting Hamiltonian is a sparse
square matrix with dimension nx×ny. One can try to choose the optimal grid
constants (∆x,∆y) per dimension, but if all energy levels up to some energy
are needed it is profitable to use mass-weighted coordinates (x′ =

√
mν
xxx, y

′ =√
mν
yyy), since the same grid constant can be used for every dimension. Another

idea is to transform the Hamiltonian matrix into a real symmetric matrix using
a similarity transform. Having the symmetric matrix Ĥ ′ = D̂−1ĤD̂, it follows
that:

Ĥ ′(D̂−1ψ) = (D̂−1ĤD̂)D̂−1ψ = D̂−1(Eψ) = E(D̂−1ψ) . (2.17)

Hence, the required eigenvalues E are also the eigenvalues of the symmetric
matrix Ĥ ′. Once the eigenfunctions ψ′ = D̂−1ψ of the matrix Ĥ ′ have been
found, the eigenfunctions ψ of the physical problem are found simply from the
inversion ψ = D̂ψ′. As for the boundary conditions, the potential barriers
formed by the insulating materials are assumed to be infinitely high. Thus, if we
solve the SE on a domain [0, Lx]×[0, Ly], the boundary condition reads,

ψ(x, 0) = ψ(x, Ly) = 0 ,

ψ(0, y) = ψ(Lx, y) = 0 . (2.18)

The discretized SE is fed into the FEAST eigensolver package [102], and its
solutions are subjected to the normalization condition∫ Ly

0
dy

∫ Lx

0
dx |ψν(r)|2 = 1 . (2.19)
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The elapsed time to solve the SE on all nz slices remains well below 1% of
what the BE needs. The numerical solutions, some of them plotted in Fig. 2.6,
are standing waves which correspond to a set of increasing energy levels. A closer
inspection of these functions verifies the necessity of including the SE in our
simulation framework. As shown in Fig. 2.6, the electrons associated with the
lowest energy (i.e. s = 1) are concentrated mostly in the center (bulk) of the
nanowire, rather than at the surface. In subthreshold operation, most of the
electrons are in the lowest subband and thus located in the center of the nanowire.
By increasing the gate voltage, more subbands become populated and contribute
to the carrier transport. Hence, peaks of electron concentration closer to the
edges and corners of the channel appear for higher VGS. It is, however, important
to notice that a vase majority of electrons are still concentrated near the center
of the nanowire, which leads to a different conduction mechanism compared
to the conventional FETs in which the carriers form a thin inversion layer at
the surface of the semiconductor. This phenomenon, called “volume inversion”,
is a salient feature of the low-dimensional architectures such as thin SOI films
and nanowires [103]. Calculation of the quantum capacitance, a parameter that
encompasses variations in channel depth and shape is important in modeling of
nanowire transistors [104].

The SE, being an eigenvalue problem, cannot be directly included into a
Newton−Raphson solver for the system of constituent equations. However, we can
use the first−order time independent perturbation theory in order to express how
the subband energies and wave functions change by small perturbations of the
potential, and calculate the corresponding derivatives. For the non-degenerate
case, this gives [95]

δενsub(z) = −q
∫∫

dx dy |ψν(r)|2δϕ(r) (2.20)

δψν(r) = −q
∑
s′ 6=s
v′=v

∫∫
dx′ dy′ ψν

′
(r′)δϕ(r′)ψν(r′)δ(z − z′)

ενsub(z)− εν
′

sub(z)
ψν

′
(r) , (2.21)

where the summation is performed over valley indices v and subbands s, included
in the aggregate index ν=(v, s). At this juncture, it is important to note that
although only a few subbands up to a certain energy suffice for the evaluation
of the BE, the numerical computation of the SE cannot be truncated at some
subband index since Eqs. (2.20) and (2.21) require the summation over all
subbands.
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Figure 2.6: Wave functions squared |ψ(x, y)|2 for ν = (1, 1) (upper left), ν = (1, 3)
(upper right), ν = (1, 5) (lower left), and ν = (1, 10) (lower right).

2.4 The Boltzmann Transport Equation
The multi−subband BE plays the pivotal role in our simulation framework and is
the basic statistical description from which the drift−diffusion or hydrodynamic
approximations are derived. Although the validity of the BE already implies
several simplifying assumptions4, it is in general an integro−differential equation
with several independent variables and proves to be more complicated compared
to the PE and SE. Hence, specialized numerical techniques are required to
transform it into a manageable form.

This section covers the discretization of the 1D BE along the transport
axis (see Fig. 2.1). Several deterministic approaches to the BE such as discrete
velocity models [105], particle methods [106], spectral approximations [107] and
power-series discretization [108] have been proposed, and the reader can refer
to [109,110] for more details and references. The numerical schemes in this work

4For example, it is assumed that the external forces are almost constant over a length
comparable to the physical dimensions of the carrier’s wave packet, and the band theory and
the effective mass approximation apply to the semiconductor under consideration.
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are developed in [33, 84, 111,112] and have been tested on general problems and
higher dimensionalities [33,34,42–44,84,111,113–115].

2.4.1 Main Equation

The 1D Boltzmann equation for the distribution function fνk = fν(z, k, t) reads,

FBE :=
∂fνk
∂t

+ vνz (k)
∂fνk
∂z

+
1

~
F ν(z, t)

∂fνk
∂k

− Sν{fk} − Γν{fk} = 0 (2.22)

where Sν{f} is the scattering integral for single electron interactions, and Γν{f}
represents the contacts’ boundary conditions. F ν(z, t) is the force which acts
on the carriers in transport direction, and vνz (k) is the electrons’ group velocity
in transport direction. The subscript k is a reminder that the representations
are in the phase space, and the superscript ν = (v, s) indicates that transport
can happen along different channels which, in this work, comprise six ellipsoidal
parabolic valleys of the band structure of silicon v and a set of subbands s
emerging from the electron confinement. We have

F ν(z, t) = − ∂

∂z
ενsub(z, t) , vνz (k) =

1

~
∂

∂k
ε̃ν(k) . (2.23)

Unlike the free streaming term, the scattering integral S{f} couples different
valleys and subbands, and its explicit description depends on the nature of
the microscopic interactions. Since the spin−flipping scattering events are not
included in this work, the spin index is dropped as a convention, and a twofold
spin degeneracy is assumed in the calculation of macroscopic quantities of
interest. Having calculated the distribution function fν(z, k, t), the quantities
that characterize the macroscopic state of the transport can be easily obtained.
The 1D electron and current densities are given by:

n(z) = 2
∑
ν

∫ ∞

−∞
fνk (z, k)

dk

2π
, (2.24)

j(z) = 2
∑
ν

∫ ∞

−∞
vνz (k)f

ν
k (z, k)

dk

2π
. (2.25)

where the pre factor 2 stands for the spin degeneracy.
Direct discretization of (2.22) with the finite volume method results in spurious

oscillations and numerical instabilities. Hence, the stabilization scheme in [36]
which is based on entropy principles and dual meshes is adopted here. First,
we note that the steady state free streaming term gives a natural even/odd
decomposition of the function space. That is, for an even dispersion relation
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ε̃(k) = ε̃(−k), it maps even functions of k into odd functions and vice versa5.
Assuming that the band structure is parabolic along the z−axis, splitting the
distribution function fν(z, k) into its even and odd parts in wave vector k

fνk (z, k) = fνe
k (z, k) + fνo

k (z, k) (2.26)

and projection of (2.22) onto equi−energy surfaces, i.e.
∫

dk

2π
FBE(k)δ(ε̃(k)− ε),

yields,

Dt :=

∫
dk

2π

(
∂

∂t
fνk (z, k)

)
δ (ε̃(k)− ε)

=
∂

∂t

∫
dk

2π
fνk (z, k)

1

~

√
mν
zz

2ε

[
δ
(
k −

√
2mν

zzε

~

)
+ δ
(
k +

√
2mν

zzε

~

)]
=
∂

∂t

1

2π~

√
mν
zz

2ε

[
fνk

(
z,

√
2mν

zzε

~

)
+ fνk

(
z,−

√
2mν

zzε

~

)]
=
∂

∂t

(
Zν(ε)fνe

ε (z, ε)
)

(2.27)

Dz :=

∫
dk

2π
vνz (k)

(
∂

∂z
fνk (z, k)

)
δ (ε̃(k)− ε)

=
∂

∂z

∫
dk

2π
vνz (k)f

ν
k (z, k)

1

~

√
mν
zz

2ε

[
δ
(
k −

√
2mν

zzε

~

)
+ δ
(
k +

√
2mν

zzε

~

)]
=

∂

∂z

(
Zν(ε)vνz (ε)f

νo
ε (z, ε)

)
(2.28)

Dk :=

∫
dk

2π

1

~
F ν(z, t)

(
∂

∂k
fνk (z, k)

)
δ (ε̃(k)− ε)

=−
∫

dk

2π

1

~
F ν(z, t)fνk (z, k)

(
∂

∂k
δ
( ~2k2

2mν
zz

− ε
))

=−
∫

dk

2π
F ν(z, t)fνk (z, k)

[
vνz (k)

∂

∂ε̃
δ(ε̃(k)− ε)

]
(2.29)

=
∂

∂ε

(
Zν(ε)vνz (ε)F

ν(z, t)fνo
ε (z, ε)

)
. (2.30)

5Note that the gradient of an even function is an odd function and vice versa. Now, let
feven ∈ Ceven. This results in

L{feven} = v(k)︸︷︷︸
odd

.∇rf
even︸ ︷︷ ︸

even

+
1

~
F (r).∇kf

even︸ ︷︷ ︸
odd

∈ Codd

L{fodd} = v(k)︸︷︷︸
odd

.∇rf
odd︸ ︷︷ ︸

odd

+
1

~
F (r).∇kf

odd︸ ︷︷ ︸
even

∈ Ceven

where L{·} denotes the free streaming operator of the BE.
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Similarly, the subscript ε reminds us that the representations are in the energy
space. Equation (2.29) is obtained using the following relation:

∂

∂k
δ(ε̃(k)− εν) = ~vνz (ε)

∂

∂ε̃
δ(ε̃(k)− εν) , (2.31)

and we have derived (2.30) using:∫
dxh(x)

( ∂
∂x
δ(x− x0)

)
= −

∫
dx

∂h(x)

∂x
δ(x− x0) = −

(
∂h

∂x

)
(x0) . (2.32)

In the above equations, Zν(ε) = 1

π~

√
mν
zz

2ε
is the 1D density of states.

Since the free streaming part of the BE contains two distinct partial derivatives
with respect to position and energy, we might have numerical problems in
handling the equation. In order to overcome these difficulties and cancel the term
containing the derivative with respect to energy, we can use the H−transformation
[34,84] and introduce a variable transformation from (z, ε) to (z, ενsub(z) + ε),

Dt =
∂

∂t

(
Zν(ε)fνε (z, ε)

)
=

∂

∂t

(
Zν(z,H)fνH(z,H)

)
(2.33)

Dz =
∂

∂z

(
Zν(ε)vνz (ε)f

ν
ε (z, ε)

)
=
( ∂
∂z

+
∂ενsub
∂z

∂

∂H

)(
Zν(z,H)vνz (z,H)fνH(z,H)

)
(2.34)

Dk =
∂

∂ε

(
Zν(ε)vνz (ε)F

ν(z, t)fνε (z, ε)
)
=F ν(z, t)

∂

∂H

(
Zν(z,H)vνz (z,H)fνH(z,H)

)
(2.35)

and the term containing the energy derivative gets cancelled conveniently. The
free streaming term is then transformed to,

T{fνH(z,H)}+ L{fνH(z,H)} :=

∂

∂t

(
Zν(z,H)fνH(z,H)

)
+

∂

∂z

(
Zν(z,H)vνz (z,H)fνH(z,H)

)
(2.36)

with

Zν(z,H) =
1

π~

√
mν
zz

2
(
H − ενsub(z)

) , vνz (z,H) =

√
2
(
H − ενsub(z)

)
mν
zz

. (2.37)

This simplification, however, comes at the price of a curvilinear simulation
domain, which complicates the solution of the coupled PE−BE system. As for
the scattering term, it can be approximated using a relaxation time τ ,

SνRTA{fk} = −
fνk (z, k)− fνk eq(z, k)

τ
. (2.38)
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where the single−particle equilibrium distribution function fνk eq needs to be
constructed in such a way to conserve the charge:

fνeq(z, k) =
~√

2πmν
zzkBT

exp

(
−~2k2

2mν
zzkBT

)∫ ∞

−∞
fνk (z, k) dk . (2.39)

In this work, we assume a relaxation time constant with energy. The extension
to an energy-dependent relaxation time is, however, streightforward. Projection
of (2.38) onto constant energy surfaces yields∫

dk

2π

[
SνRTA{fk}

]
δ (ε̃(k)− ε) = −

Zν(ε)fνε (z, ε)− Zν(ε)fνε eq(z, ε)

τ
, (2.40)

and the H−transformation results in

SνRTA{fH} = −
Zν(z,H)fνH(z,H)− Zν(z,H)fνHeq(z,H)

τ
. (2.41)

The above relaxation time approximation (RTA) has a rather simple form
and can be used in generic studies where the details of scattering events are not
important. For device simulation, however, a more accurate description of the
scattering mechanisms is required. Phonon scattering can be expressed by the
following integral [9],

SνPH{fk} =Lsys
∑
ν′

∫
dk′

2π

[
fν

′
k (z, k′, t)

(
1− fνk (z, k, t)

)
W νν′(z; k|k′)

− fνk (z, k, t)
(
1− fν

′
k (z, k′, t)

)
W ν′ν(z; k′|k)

]
(2.42)

where Lsys is the 1D system volume and the proportionality factor W νν′(z; k|k′)
is the transition rate from state (k′, ν ′) into (k, ν), calculated by Fermi’s Golden
Rule [8]. The first term in the integrand describes the number of electrons
scattered from volume element (dk′, ν ′) into the state (k, ν) per unit time, and
the second term equals the number of electrons scattered from state (k, ν)
into the volume element (dk′, ν ′) per unit time. The factors (1 − fν(z, k))
and (1− fν

′
(z, k′)) take into account the Pauli principle, which does not allow

transitions into occupied states. The intravalley acoustic phonon scattering in
this work is approximated as to be elastic, with its scattering rate given by [9]:

W νν′
intra(z; k|k′) =

2πkBT |Ξν |2

~ρLsysv2λ
Fνν′(z)δ

(
ενtot(z, k)− εν

′
tot(z, k

′)
)
δv,v′ (2.43)

where the Kronecker delta δv,v′ ensures that the electrons do not scatter to other
valleys. The overlap integral Fνν′(z), defined as [116]

Fνν′(z) =
∫∫

dx dy |ψν(r)|2|ψν′(r)|2 (2.44)



2.4. THE BOLTZMANN TRANSPORT EQUATION 29

quantity value description
kB 8.617330× 10−5 eV K−1 Boltzmann constant
T 300K temperature
Ξ 20 eV effective deformation potential
ρ 2.33× 103 kg m3 mass density of the silicon crystal
vλ 9.05m s−1 sound velocity of acoustic phonons

Table 2.1: Phonon scattering parameters used in this work.

Phonon process η ~ωη [meV] Dη [10
10eVm−1]

g−type, transversal acoustic g1 12.1 0.47
g−type, longitudinal acoustic g2 18.5 0.74
g−type, longitudinal optical g3 62.0 10.23
f−type, transversal acoustic f1 19.0 0.28
f−type, longitudinal acoustic f2 47.4 1.86
f−type, longitudinal optical f3 58.6 1.86

Table 2.2: Phonon energies and deformation potentials for different f -type and g-type
intervalley scattering processes in silicon [117–120].

is determined by the SE, and represents an effective distance over which electrons
in different states ν and ν ′ interact. Other parameters in (2.43) are given in
Table 2.1. As for the intervalley phonon scattering, thorough studies and
approximations are given in [100,117,121]. The transition rate reads,

W νν′
inter,η(z; k|k′) =

πD2
η

ρLsysωη
Fνν′(z)

[
n(~ωη)δ

(
ενtot(z, k)− εν

′
tot(z, k

′) + ~ωη
)

+
(
n(~ωη) + 1

)
δ
(
ενtot(z, k)− εν

′
tot(z, k

′)− ~ωη
)]
(1− δv,v′) ,

(2.45)

where η indicates the type of transition (f− or g−type) and the type of phonon
(acoustic or optical), and n(~ωη) is the phonon number of a phonon with energy
~ωη, which needs to be evaluated without the equipartition approximation since
the phonon energies are non−negligible compared to the thermal energy kBT .
The intervalley transitions obviously have to occur between different valleys,
which is shown by the last term in (2.45).

For further convenience, the factors in front of the δ−distributions in Eqs. (2.43)
and (2.45) are abbreviated to give a general expression,

W νν′
ησ (z; k|k′)

∣∣∣∣η=fi,gi,intra
σ=±1,0

=
1

Lsys
cνν

′
ησ (z)δ

(
ενtot(z, k)− εν

′
tot(z, k

′) + σ~ωη
)
.

(2.46)
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For silicon η runs over six different types of transitions: f1, f2, f3 as well as g1,
g2 and g3. Furthermore, σ has two possible values, i.e. σ = ±1, which alter the
sign of the phonon energy ~ωη. Hence, the value of σ ultimately decides whether
Wησ is an emission or an absorption rate. The phonon scattering integral (2.42)
is then given by

SνPH{fk} =∑
ν′

∑
η,σ

∫
dk′

2π

[
fν

′
k (z, k′)

(
1− fνk (z, k)

)
cνν

′
ησ (z)δ

(
ενtot(z, k)− εν

′
tot(z, k

′) + σ~ωη
)

− fνk (z, k)
(
1− fν

′
k (z, k′)

)
cνν

′
ησ (z)δ

(
ενtot(z, k)− εν

′
tot(z, k

′)− σ~ωη
) ]

, (2.47)

where the time arguments are dropped from now on for the sake of legibility.
Projection of these scattering terms onto the constant-energy space yields,∫

dk

2π

[
SνPH{fk}

]
δ (ε̃(k)− ε)

=
∑
ν′,η,σ

∫∫
dk

2π

dk′

2π

[
fν

′
k (z, k′)

(
1−fνk (z, k)

)
cνν

′
ησ (z)δ

(
ενtot(z, k)−εν

′
tot(z, k

′)+σ~ωη
)

− fνk (z, k)
(
1−fν′k (z, k′)

)
cν

′ν
ησ (z)δ

(
ενtot(z, k)−εν

′
tot(z, k

′)−σ~ωη
) ]
δ (ε̃(k)− ε)

=
∑
ν′,η,σ

∫
dk′

2π
Zν(ε)

[
fν

′
k (z, k′)

(
1−fνε (z, ε)

)
cνν

′
ησ (z)δ

(
ενtot(z, ε)−εν

′
tot(z, k

′)+σ~ωη
)

− fνε (z, ε)
(
1−fν′k (z, k′)

)
cν

′ν
ησ (z)δ

(
ενtot(z, ε)−εν

′
tot(z, k

′)−σ~ωη
) ]

(2.48)

and the integral over dk′ can be simplified by considering the δ−function, and pro-
jection of (2.48) onto constant energy surfaces followed by an H−transformation
gives:

SνPH{fH} =
∑
ν′,η,σ

Zν(z,H)Zν(z,H+σ~ωη)
(
1− fνH(z,H)

)
cνν

′
ησ (z)f

ν′
H (z,H+σ~ωη)

−Zν(z,H)Zν(z,H−σ~ωη)fνH(z,H)cν
′ν
ησ (z)

(
1− fν

′
H (z,H−σ~ωη)

)
.

(2.49)

As for the surface roughness (SR) scattering, many publications have focused
on modeling this term in nanowires with rectangular cross−sections. In [122]
an ideal metallic nanowire with periodic BCs in its transport direction is con-
sidered, and SR scattering is modeled in the absence of transverse potential
profile. Ref. [123] models the SR scattering in rectangular germanuium nanowires
using atomistic simulations, and in [99] the SR scattering for ultrathin−body
SOI MOSFETs was studied. Ref. [124] extends [99] to take into account the
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modifications of Hamiltonian caused by anisotropic and nondiagonal effective
mass tensor for rectangular nanowires with arbitrary orientations. In all of
the above mentioned works, the roughness on different faces of the nanowire
cross−section are assumed to be uncorrelated and the total scattering rate is
calculated as the sum of the scattering rates by each surface. In this work a
simplified model for SR scattering is implemented, in which the infinitely high
potential barrier at the oxide regions reduces the matrix elements of [99] to the
Prange−Nee form [125] and we have∣∣∣Mνν′

SR (z; k|k′)
∣∣∣ = 1

Lsys
〈|∆q|2〉

∣∣∣Γνν′PN(z)
∣∣∣ , (2.50)

where the power spectrum of surface roughness is given by the exponential model6

〈|∆q|2〉 = π∆2L2

(
1 +

|q|2L2

2

)−γ
. (2.51)

Here, ∆ and L are the root mean square height and correlation length of the
roughness, respectively. Moreover, q=k′−k denotes the change in wave number.
The statistical nature of non9idealities depends on the nanowire fabrication
methods, and the parameters ∆ and L of (2.51) are usually adjusted to fit the
low field mobility of measurements. Furthermore, the Prange−Nee term for an
edge perpendicular to the x−direction is given by

Γνν
′

PN(z) =
~2

2mν
xx

∂ψν

∂x

∂ψν
′

∂x

∣∣∣
x=x0

, (2.52)

where x0 denotes the position of the edge. The total transition rate for the SR
scattering on one surface can be expressed with Fermi’s Golden Rule as

W νν′
SR (z; k|k′) = δνν′

2π

~

∣∣∣Mνν′
SR (z; k|k′)

∣∣∣2 δ(ενtot(z, k)− εν
′

tot(z, k
′)
)

(2.53)

= δνν′
π~3

2(mν
xx)

2Lsys
〈|∆q|2〉

∣∣∣∣∣∂ψν∂x

∂ψν
′

∂x

∣∣∣∣∣
2

δ
(
ενtot(z, k)− εν

′
tot(z, k

′)
)

where the scattering is considered to be elastic and intra−valley. The SR scattering
at different interfaces is assumed to be uncorrelated with no edge effects [127],
and the respective scattering rates are additive. Although the SR scattering
is very serious in the conventional planar devices, narrow nanowire FETs have
limited number of conducting modes due to strong quantum confinement and
the surface roughness is not important in these structures [128–131]. Ref. [132]

6According to [126], the exponential power spectrum better captures the underlying physics
compared to the Gaussian one.
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confirms that for the doping concentrations and cross−sectional areas chosen in
this work, the SR scattering is 103 times weaker compared to electron−phonon
interactions. Therefore, the SR scattering is neglected in Chapter 5 for the sake
of computational cost although it is implemented in our solver.

Finally, the boundary conditions for the source and drain contacts need to be
carefully specified. While the thermal equilibrium assumption is reasonable at
the inflow contacts, it leads to boundary layers at the outflow contacts at higher
bias, forcing a heated electron distribution function to thermal equilibrium. This
deficiency is addressed by a generation/recombination process

ΓνGR{fk} = vGR
(
fνk (z, k)− fνk eq(z, k)

) (
δ(z − zS) + δ(z − zD)

)
(2.54)

⇒ ΓνGR{fH} = vGRZ
ν(z,H)

(
fνH(z,H)− fνH eq(z,H)

) (
δ(z − zS) + δ(z − zD)

)
,

(2.55)

where vGR is the recombination velocity, which provides control over the difference
between thermal equilibrium and the computed solution. In the limit vGR → ∞,
the source and drain distribution functions are fixed to the equilibrium value.
An improvement to (2.55) is made by assuming thermal equilibrium only for the
electrons entering the device. These “thermal bath” BCs are given by

ΓνTH{fk} =
[
fνk (z, k)Θ(−k) + fk eq(z, k)Θ(k)

]
vνz (k)δ(z − zS)

−
[
fνk (z, k)Θ(k) + fk eq(z, k)Θ(−k)

]
vνz (k)δ(z − zD) . (2.56)

where Θ(x) is the Heaviside step function. Projection of ΓνTH{fk} for the source
contact onto the equi-energy surfaces gives:∫ ∞

−∞

dk

2π

[
fνk (z, k)Θ(−k) + fνk eq(z, k)Θ(k)

]
vνz (k)δ (ε̃(k)− ε)

=
1

2π~

[
− fνk

(
z,−

√
2mν

zzε

~
)
+ fνk eq

(
z,

√
2mν

zzε

~
)]

=
1

2π~

[
− fνe

k

(
z,

√
2mν

zzε

~
)
+ fνo

k

(
z,

√
2mν

zzε

~
)
+ fνk eq

(
z,

√
2mν

zzε

~
)]

=
1

2π~

[
− fνe

ε (z, ε) + fνo
ε (z, ε) + fνε eq(z, ε)

]
, (2.57)

and H−transformation results in

ΓνTH{f}
∣∣∣
source

=
1

2π~

[
− fνe

H (z,H) + fνo
H (z,H) + fνH eq(z,H)

]
δ(z − zS) . (2.58)

Similarly, thermal BCs for the drain contact yields:

ΓνTH{f}
∣∣∣
drain

=
1

2π~

[
− fνe

H (z,H)− fνo
H (z,H) + fνH eq(z,H)

]
δ(z − zD) . (2.59)
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2.4.2 Numerical Implementation

The discretization scheme is based on the entropy principle and box integration
method, as developed in [36]. First, direct and adjoint spatial grids are defined
in the transport direction, with densities represented on the direct grid nodes
and fluxes assigned to the adjoint grid nodes. The spatial and energy direct
grid nodes form a Cartesian tensor product grid (zi,Hj) with nz grid nodes in z
direction and nH in total energy. The adjoint spatial grid is given by7

zi±1⁄2 =
zi + zi±1

2
for i ∈ {1, · · · , nz} , (2.60)

on which the electrostatic potential and the subband energies are linearly inter-
polated, i.e.

ενsub(zi±1⁄2) =
ενsub(zi±1) + ενsub(zi)

2
. (2.61)

For the other quantities such as electrons’ group velocity and density of states, a
constant interpolation scheme is used where the quantities are defined on the
grid points and considered constant in the corresponding boxes.

Fig. 2.7 shows a schematic illustration of the grid, where some subband energy
ενsub(z) is drawn. The H−grid is static, meaning it is constant throughout the
whole simulation and does not change between different iterations. Choosing
suitable Hmin and Hmax values, this grid is defined globally for a given ∆H.
For the box integration, the boxes around the direct and adjoint grid nodes in
transport direction are given by,

∆zi = zi+1⁄2 − zi−1⁄2 , i ∈ {1, · · · , nz}
∆zi+1⁄2 = zi+1 − zi , i ∈ {1, · · · , nz} . (2.62)

As for the boxes of the H−grid, the support of H−space integration is limited
by the subband energy and this must be reflected in the definition of boxes.
Hence, the H−boxes are given by

∆Hν
j (z) =


0 if Hj+1⁄2 ≤ ενsub(z)

Hj+1⁄2 − ενsub(z) if Hj−1⁄2 < ενsub(z) < Hj+1⁄2

Hj+1⁄2 −Hj−1⁄2 if ενsub(z) ≤ Hj−1⁄2

(2.63)

and the intermediary H−grid points are added similar to the adjoint spatial
points. The H−grid is truncated at high energies, where the contribution of the
distribution function to the observables is well below the numerical precision of
the computations.

7Obviously, the notation of (2.60) gives duplicate definitions since for each grid node we
have, for example, zi+1⁄2 = z(i+1)−1⁄2. However, this redundancy does not introduce numerical
issues.
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H

zzi−3 · · · zi zi+1 zi+2

Hj

Hj−1

Hj+1

Hj+2

∆Hν
j+1(zi)

∆Hν
j (zi)

∆Hν
j+1(zi+1)

∆Hν
j+2(zi+1)∆Hν

j+2(zi)

ενsub(z)

Figure 2.7: Schematic representation of the tensor product grid used in the discretization
of the BE. The grid is non-equidistant in transport direction, but equidistant in energy.
Only the energy boxes above the subband energy are included in the simulation domain,
and the lowest box is truncated by the subband energy.

In this section, we only present the discretization of the BE in steady state
conditions, i.e. constant applied bias and time independent generation/recombi-
nation mechanisms. In this case, the time derivative will vanish. The structure
of the free streaming term is chosen based on [36], which gives a numerically
sound representation and reproduces the desirable entropy properties8. For the
direct grid nodes, we have:

L̃{fνH(zi,Hj)} :=

∫
∆Hν

j (z)
dH

∫ zi+1⁄2

zi−1⁄2

dz L{fνe
H (z,H)} (2.64)

=

∫
∆Hν

j (zi)
dH

∫ zi+1⁄2

zi−1⁄2

dz
∂

∂z

(
Zν(z,H)vνz (z,H)fνo

H (z,H)
)

=
[ ∫ Hν

jmax(zi+1⁄2)

Hν
jmin(zi+1⁄2)

dH Zν(zi+1⁄2,H)vνz (zi+1⁄2,H)
]
fνH(zi+1⁄2,Hj)

−
[ ∫ Hν

jmax(zi−1⁄2)

Hν
jmin(zi−1⁄2)

dH Zν(zi−1⁄2,H)vνz (zi−1⁄2,H)
]
fνH(zi−1⁄2,Hj)

where the integrations over energy have to be performed analytically and special
care needs to be taken with the integration boundaries. Since the free streaming
term only describes the movement of carriers along constant total energy lines
and is not necessarily aligned with the spatial changes of subband energy, certain

8A detailed treatment of this subject is beyond the scope of our work and the reader can
refer to [36,37,84,133–135] for more details.
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zi−1 zi−1⁄2 zi zi+1⁄2 zi+1

allowed states
ενsub(z)

z

Figure 2.8: Allowed (blue) and forbidden (red) energies for transitions in the discretized
free streaming term.

energies might be included in the simulation domain at some position zi but be
forbidden states at zi±1 since H <ενsub(zi±1). These forbidden transitions have to
be carefully considered in our integrations, i.e. we need to exclude all transitions
to energies lying below the subband energy profile (see Fig. 2.8). Hence, the
lower and upper integral limits in (2.64) are calculated as,

Hν
jmin(zi±1⁄2) =

{
Hj−1⁄2 if max{ενsub(zi), ε

ν
sub(zi±1)} ≤ Hj−1⁄2

max{ενsub(zi), ε
ν
sub(zi±1)} else

Hν
jmax(zi±1⁄2) =

{
Hj+1⁄2 if max{ενsub(zi), ε

ν
sub(zi±1)} ≤ Hj+1⁄2

max{ενsub(zi), ε
ν
sub(zi±1)} else

(2.65)

Regarding the discretization of free streaming term on the adjoint grid nodes,
it must be noted that the same formulation as in (2.64) does not preserve
the entropy for non−interacting particles, and therefore cannot be used. A
discretization in accordance with the maximum entropy dissipation scheme is
given by [36],

L̃{fνH(zi+1⁄2,Hj)} :=

∫
∆Hν

j (zi+1⁄2)
dH

∫ zi+1

zi

dz L{fνo
H (z,H)} (2.66)

=

∫
∆Hν

j (zi+1⁄2)
dH

∫ zi+1

zi

dz
∂

∂z

(
Zν(z,H)vνz (z,H)fνe

H (z,H)
)

=
[ ∫ Hν

jmax(zi+1⁄2)

Hν
jmin(zi+1⁄2)

dH Zν(zi+1⁄2,H)vνz (zi+1⁄2,H)
]
fνH(zi+1,Hj)

−
[ ∫ Hν

jmax(zi+1⁄2)

Hν
jmin(zi+1⁄2)

dH Zν(zi+1⁄2,H)vνz (zi+1⁄2,H)
]
fνH(zi,Hj) .



36 CHAPTER 2. THE SIMULATION FRAMEWORK

The scattering term is local in the spatial direction and its discretization
is straightforward. Under the RTA, S{f} can be split into the relaxation of
fνe on the direct grid nodes towards the equilibrium distribution function, and
relaxation of fνo on the adjoint grid nodes towards zero. That is,

S̃RTA{fνH(zi,Hj)} =

∫
∆Hν

j (z)
dH

∫ zi+1⁄2

zi−1⁄2

dz SRTA{fνe
H (z,H)} (2.67)

= ∆zi

[ ∫ Hν
jmax(zi)

Hν
jmin(zi)

dH Zν(zi,H)
] (
fνH(zi,Hj)−fνH eq(zi,Hj)

)
,

S̃RTA{fνH(zi+1⁄2,Hj)} =

∫
∆Hν

j (z)
dH

∫ zi+1

zi

dz SRTA{fνo
H (z,H)} (2.68)

= ∆zi+1⁄2

[ ∫ Hν
jmax(zi+1⁄2)

Hν
jmin(zi+1⁄2)

dH Zν(zi+1⁄2,H)
]
fνH(zi+1⁄2,Hj) .

The treatment of the scattering integral (2.42) is more involved. On the direct
grid nodes we have

S̃PH{fνH(zi,Hj)} =
∑
ν′

∑
η,σ

∆zi

[ ∫ Hν
jmax(zi)

Hν
jmin(zi)

dH Zν(zi,Hj)Z
ν′(zi,Hj + σ~ωη)

]
× (1− fνH(zi,Hj)) c

νν′
ησ (zi)f

ν′
H (zi,Hj + σ~ωη)

−
∑
ν′

∑
η,σ

∆zi

[ ∫ Hν
jmax(zi)

Hν
jmin(zi)

dH Zν(zi,Hj)Z
ν′(zi,Hj − σ~ωη)

]
× fνH(zi,Hj)c

ν′ν
ησ (zi)

(
1− fν

′
H (zi,Hj − σ~ωη)

)
(2.69)

and on the adjoint grid nodes the in−scattering term vanishes. It must be
noted that for the detailed balance condition to still hold for the discretized
scattering integral, the phonon energy appearing in n(~ωη) and the phonon
energy appearing in Hj ± ~ωη must exactly cancel. This can only occur for
energies Hj ± ~ωη which lie exactly on the H−grid. Hence, the phonon energies
~ωη need to be multiples of the grid spacing for an equidistant H−grid.

The boundary generation/recombination term of Eq. (2.55) only exists on
the first and last direct grid nodes due to the δ−distributions. Therefore we find

Γ̃GR{fνH(zi,Hj)} (2.70)

= vGR

[∫ Hν
jmax(zi)

Hν
jmin(zi)

dH Zν(zi,H)

](
fνH(zi,Hj)− fνH eq(zi,Hj)

)
(δi,1 + δi,nz) .
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which transforms the singular function of Eq. (2.55) to a volume generation and
recombination rate. For the adjoint grid nodes, we have:

Γ̃GR{fνH(zi+1⁄2,Hj)} = 0 . (2.71)

Finally, discretization of the thermal bath BCs on the source contact yields

Γ̃νTH{f}
∣∣∣
source

=
1

2π~

[
− fνH(zi,Hj) + fνH(zi+1⁄2,Hj) + fνH eq(zi,Hj)

]
δi,1 , (2.72)

and on the drain contact we have

Γ̃νTH{f}
∣∣∣
drain

=
1

2π~

[
− fνH(zi,Hj)− fνH(zi−1⁄2,Hj) + fνH eq(zi,Hj)

]
δi,nz . (2.73)

2.5 System of Equations
The PE/SE/BE system of equations is highly nonlinear and is solved with the
Newton9Raphson approach which is beneficial in several ways. Firstly, the
quadratic convergence of a full Newton-Raphson solver makes it possible to reach
errors as low as the machine precision (e.g. 10−16V in electric potential) with just
a few iterations. In Fig. 2.9, the convergence behavior of the Gummel iteration9

and full Newton-Raphson approches is shown for VGS = 0.7V and VDS = 0.5V.
While the Gummel type iteration converges linearly and takes 35 iterations to get
to the accuracy of 10−9V, the full Newton-Raphson solver demonstrates rapid
convergence with just a few iterations. Moreover, the Newton-Raphson approach
provides the necessary setup for small signal and noise analyses, as explained in
Sections 2.6 and 2.7. In this section, a brief explanation of the Newton-Raphson
method for our system of equations is presented.

We start with the formal description for an N−dimensional multivariate
equation system:

Fsys(x) = 0 , (2.74)

where Fsys defines a vector function of x. The Newton-Raphson iteration scheme
seeks a solution x(k+1) = x(k) + δx(k) at the (k+1)th iteration step, where the
correction term δx(k) is given by the linear approximation

Ĵ (k)δx(k) = −Fsys(x
(k)) (2.75)

and the elements of the Jacobian matrix are calculated as[
Ĵ (k)

]
ij
=
∂Fi(x(k))

∂x
(k)
j

. (2.76)

9In the Gummel iteration approach, the equations are solved successively (as shown in
Fig. 2.2) until the maximum change in the electrostatic potential becomes lower than a given
limit.
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Figure 2.9: Convergence given by the maximum in absolute change of the potential at each
iteration step for VDS = 0.5V (black) and VDS = 0.05V (red) of the Newton-Raphson
approach (solid lines) and the Gummel type iteration (dashed lines) for VGS = 0.7V.
The threshold where the Newton-Raphson approach is turned on is 10−2 V.

In this work, Fsys is a vector function of rank two which itself consists of the
vector functions FPE and FBE, corresponding to the discrete approximations for
the PE and BE, respectively. The vector of unknowns x is also comprised by two
vectors which are formed by the values of electrostatic potential and distribution
function at discrete points of the simulation geometry. That is,(

FPE(ϕ,f)
FBE(ϕ,f)

)
= 0 (2.77)

The solution, which can be interpreted as the intersection of FPE=0 and FBE=0
planes, is then obtained by the following linearization of FPE and FBE in terms
of the primary variables (ϕ, f):∑

b∈D̃PE

∂FPE(a)

∂ϕ(b)
δϕ(b) +

∑
β∈D̃BE

∂FPE(a)

∂f(β)
δf(β) = −FPE(a) , (2.78)

∑
b∈D̃PE

∂FBE(α)

∂ϕ(b)
δϕ(b) +

∑
β∈D̃BE

∂FBE(α)

∂f(β)
δf(β) = −FBE(α) , (2.79)

for every a∈ D̃PE and α∈ D̃BE. In the above expressions and throughout this
work, DPE and DBE stand for aggregate indices covering the domain of definition
for the PE and BE, respectively. For example, by a∈DPE we mean:

a ∈
{
(x, y, z) | 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, 0 ≤ z ≤ Lz

}
(2.80)
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Figure 2.10: Newton-Raphson approach for solving the PE, SE, and BE. After the
Gummel iterations have converged to, say, 10−2 V, we switch to the Newton-Raphson
solver and update the subband energies εsub and wave functions ψ. Thereafter we
solve the combined system of PE and BE and return to the SE, until our solution has
sufficiently converged.

and similarly, in the discretized space a∈ D̃PE represents

a ∈
{
(xi, yj , zk) | i ∈ {1, · · · , nx}, j ∈ {1, · · · , ny}, k ∈ {1, · · · , nz}

}
. (2.81)

Analogously, DBE runs over the spatial, energy and time domains, as well as
different valleys and subbands in the BE.

As mentioned in Section 2.3, the SE is an eigenvalue problem and cannot
be directly cast into the Newton-Raphson matrix equation. Moreover, the BE
does not explicitly depend on the potential but only on the wave functions and
subband energies resulting from the SE. Using the first order time-independent
perturbation theory, changes in subband energies and wave functions can be
expressed in terms of small perturbations in the potential and the first terms in
(2.78) and (2.79) can be reformulated as

∂FPE(a)

∂ϕ(b)
=
∂F(∆)

PE (a)

∂ϕ(b)
+

(∑
k

∂F(ρ)
PE(a)

∂εsub(k)

∂εsub(k)

∂ϕ(b)
+
∑
l

∂F(ρ)
PE(a)

∂ψ(l)

∂ψ(l)

∂ϕ(b)

)
(2.82)
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∂FBE(α)

∂ϕ(b)
=
∑
k

∂FBE(α)

∂εsub(k)

∂εsub(k)

∂ϕ(b)
+
∑
l

∂FBE(α)

∂ψ(l)

∂ψ(l)

∂ϕ(b)
. (2.83)

where the terms F(∆)
PE and F(ρ)

PE represent the Laplacian and the charge density
part of the PE, respectively. The indices k and l run over the corresponding
domain of definition for εsub and ψ. Note that the linearization of the PE and
BE needs to be performed with utmost care, having in mind that the lowest
H−box strongly depends on the electrostatic potential. Such complications would
not arise in the case of kinetic-energy-based schemes.

The iteration process as it stands can be too harsh in the sense that consecutive
values of x(k) can oscillate wildly about the exact solution. In order to avoid this
overshoot, the solution updates can be damped like

x(k+1) = x(k) − α(Ĵ (k))−1F(x(k)) , (2.84)

where 0<α≤ 1 is some pre-assigned value which can be taken small in the fragile
initial stages of the iteration and is increased as the iteration progresses. Another
approach (shown in Fig. 2.10) is to start the simulations with Gummel-type
iterations to provide a better initial guess for the Newton-Raphson iterations
and switch to the Newton-Raphson solver when the error in the potential is less
than, say, 10meV.

The equation system is solved using ILUPACK [136], which is a fast, mem-
ory efficient, and reliable sparse linear system solver based on an incomplete
LU−decomposition [137].
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2.6 Small Signal Analysis
Ascertainment of the small signal behavior of transistors is a vital component
of semiconductor device simulation. Unlike the MC method, exact small signal
analysis can be performed in the presented deterministic framework. Among the
various techniques (e.g. transient excitations followed by Fourier decomposition
[138], incremental charge partitioning [138], equivalent circuits [139,140], etc.)
sinusoidal steady state analysis is generally considered as the superior approach
since it is directly applied in the frequency domain and provides accurate,
rigorously correct results for reasonable computational cost. In this section, the
numerical framework for small signal analysis of the given device under sinusoidal
steady state condition (SSSC) is presented. Starting with the PE and BE,

FPE := ∇r ·
(
ε(r)∇rϕ(r, t)

)
− q
[
n(r, t)−ND(r)

]
= 0 (2.85)

FBE :=
∂fνk
∂t

+ vνz (k)
∂fνk
∂z

+
1

~
F ν(z, t)

∂fνk
∂k

− Sν{fk} − Γν{fk} = 0 (2.86)

all variables of interest can be split into a large signal part, which is time
independent, and a small signal part which depends on time:

ϕ(r, t) = ϕDC(r) + δϕ(r, t) , (2.87)
fν(z, k, t) = fνDC(z, k) + δfν(z, k, t) . (2.88)

The DC subscript shows that the large signal parts are solutions of the steady
state model, for which the small signal quantities are zero. Starting with the PE
and ignoring the BCs for now, substitution of (2.87) into (2.85) gives:

FPE :=∇r ·
[
ε(r)∇r

(
ϕDC(r) + δϕ(r, t)

)]
− q
[(
nDC(r) + δn(r, t)

)
−ND(r)

]
=∇r ·

[
ε(r)∇rϕDC(r)

]
− q
[
nDC(r)−ND(r)

]
+∇r ·

[
ε(r)∇rδϕ(r, t)

]
− qδn(r, t) = 0 , (2.89)

and we get
δFPE := ∇r ·

[
ε(r)∇rδϕ(r, t)

]
− qδn(r, t) = 0 . (2.90)

Since the small signal variables of interest are δϕ and δf , the small signal electron
density δn(r, t) needs to be expressed in terms of these two variables. After
the H−transformation and discretization via the box integration method, the
linear coefficients are obviously the same values which were calculated when
constructing the Jacobian of the Newton-Raphson approach.

Regarding the small signal BCs, Dirichlet boundary conditions are imposed
on the contacts, with the AC potential normalized to the value one. We thus
obtain the following discretized presentation in SSSC:

FPE(a) :=
∑
b∈DPE

∂FPE(a)

∂ϕ(b)
ϕ(b) +

∑
β∈DBE

∂FPE(a)

∂f(β)
f(β) = ΓPE(a) , (2.91)
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where ΓPE(a) specifies the AC bias on the contact while being zero elsewhere.
From now on, x denotes the phasor of the small sinusoidal perturbation

x(t) = xDC +Re{xeiωt} (2.92)

and ω is the angular frequency. Substitution of (2.88) into the time dependent BE
(2.86), followed by projection onto constant energy surfaces and H−transformation
yields:

FBE :=
∂

∂t
(Zν(z,H)δfν(z,H, t)) +

∂

∂z

(
vνz (z,H)Zν(z,H)fνDC(z,H)

)
+
∂

∂z

(
vνz (z,H)Zν(z,H)δfν(z,H, t)

)
− Sν{fDC+δf} − Γν{fDC+δf} = 0 .

(2.93)

After cancelling out the terms which satisfy the stationary Boltzmann equation,
what remains will be:

δFBE :=
∂

∂t
(Zν(z,H)δfν(z,H, t)) +

∂

∂z

(
vνz (z,H)Zν(z,H)δfν(z,H, t)

)
−
(
∂Sν

∂f
δfν(z,H, t) +

∂Sν

∂ϕ
δϕ(r, t)

)
−
(
∂Γν

∂f
δfν(z,H, t) +

∂Γν

∂ϕ
δϕ(r, t)

)
= 0 . (2.94)

It is important to notice that apart from the time derivative, the other terms in
(2.94) are already calculated since we have constructed the Jacobian for our full
Newton-Raphson system earlier. Hence, for α∈ D̃BE the discretized equations in
SSSC are written down as:

F̃BE(α) :=
∑
b∈D̃PE

∂F̃BE(α)

∂ϕ(b)

∣∣∣∣∣
DC

ϕ(b) +
∑

β∈D̃BE

∂F̃BE(α)

∂f(β)

∣∣∣∣∣
DC

f(β) + T̃α{ϕ, f} = Γ̃′
BE(α)

(2.95)
The last term on the left9hand side is the discretized form of time derivative.

T{ϕ, f} =Zν(z,H)
∂

∂t
fν(z,Hν(z, ε, t), t)

=Zν(z,H)
∂

∂t

[
fν(z,Hν(z, ε, t), t) + Re

{
fν(z,Hν(z, ε, t))eiωt} ]

=Re

{
iωZν(z,H)

(
∂fν(z,H)

∂H

∂ενsub(z)

∂ϕ
ϕ(r) + fν(z,H)

)
eiωt
}

+O
(
fν(z,H)ϕ(r)

)
(2.96)

where in the last step, we have used

Hν(z, ε, t) = ενsub(z, t) + εν
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⇒ ∂Hν(z, ε, t)

∂t
= Re{iωενsub(z)eiωt} = Re{iω

∂ενsub(z)

∂ϕ
ϕ(r)eiωt} . (2.97)

and the first order dependency of the subband energies on the electric potential are
calculated using the perturbation theory, as explained in Section 2.3. Moreover,
we have used the fact that the density of states and velocity are functions of
the kinetic energy and their derivatives with respect to time vanishes. The
additional term Γ′

BE in (2.95) represents the linearization of the source/drain
boundary conditions with respect to the small signal phasor of the applied bias
V S/D. Since this term does not depend on the parimary variables, it is located
on the right9hand side of (2.95). In the case of generation/recombination BCs,
we have for α=(z,H; ν):

Γ′
BE(α) =

∂ΓνGR(z,H)

∂VS
V S +

∂ΓνGR(z,H)

∂VD
V D (2.98)

=
vGR
VT

Zν(z,H)fνeq(z,H)
(
fνeq(z,H)− 1

)[
V Sδ(z − zS) + V Dδ(z − zD)

]
.

As mentioned before, the system matrix is closely related to the Jacobian
already exploited in the DC simulation. Since the discretization of the steady
state equations was explained in the previous sections, it will not be repeated
here except for the discretization of time derivative which will be added to the
steady state Jacobian. For the direct grid node α=(zi,Hj ; ν) we have

T̃α =

∫ Hj+1⁄2

Hj−1⁄2

dH

∫ zi+1⁄2

zi−1⁄2

dz iωZν(z,H)

(
∂fν(z,H)

∂H
ενsub(z) + fν(z,H)

)
= iω∆zi

∫ Hj+1⁄2

Hj−1⁄2

dH Zν(zi,H)

(
∂fν(zi,H)

∂H
ενsub(zi) + fν(zi,H)

)
(2.99)

= iω∆zi
[
(fν(zi,Hj+1⁄2)− fν(zi,Hj−1⁄2)) ε

ν
sub(zi) + ∆Hν

j (zi)f
ν(zi,Hj)

]
(2.100)

and similarly for the adjoint grid node α=(zi+1⁄2,Hj ; ν)

T̃α = iω∆zi+1⁄2 (f
ν(zi+1⁄2,Hj+1⁄2)− fν(zi+1⁄2,Hj−1⁄2)) ε

ν
sub(zi+1⁄2)

+ iω∆zi+1⁄2∆H
ν
j (zi+1⁄2)f

ν(zi+1⁄2,Hj) . (2.101)

The distribution function on the intermediate energy points Hj±1⁄2 is defined as

fν(z,Hj−1⁄2) =


1
2 (f

ν(z,Hj) + fν(z,Hj−1)) if ενsub(z) ≤ Hj−1⁄2

fν(z,Hj) if Hj−1⁄2 < ενsub(z) < Hj+1⁄2

0 if Hj+1⁄2 ≤ ενsub(z)

(2.102)
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fν(z,Hj+1⁄2) =

{
1
2 (f

ν(z,Hj) + fν(z,Hj+1)) if ενsub(z) < Hj+1⁄2

0 if Hj+1⁄2 ≤ ενsub(z)
(2.103)

The above discretization for the time derivative runs into problems with fulfilling
the reciprocity conditions mainly because enforcing the boundary condition of
(2.98) with a discretized integral as in (2.100) is inconsistent with the actual
equilibrium solution of the BE, which requires that∫ Hj+1⁄2

Hj−1⁄2

dH Zν(z,H)
∂fνeq(z,H)

∂H
= −

(∫ Hj+1⁄2

Hj−1⁄2

dH Zν(z,H)

)
fνeq(z,Hj) .

(2.104)
In order to restore reciprocity in the discretized system of equations, the approach
described in [141] is used. First, the distribution function in (2.99) is split into
the multiplication of an equilibrium part feq and a non-equilibrium part fne. The
box integration is then reformulated as

T̃α = iω∆zZν(z,Hj) (f
ν
ne(z,Hj+1⁄2)− fνne(z,Hj−1⁄2)) f

ν
eq(z,Hj)ε

ν
sub(zi)

+ iω∆z∆Hν
j (z)Z

ν(z,Hj)

(
∂feq(z,H)

∂H

∣∣∣
H=Hj

)
fνne(z,Hj)ε

ν
sub(zi)

+ iω∆z∆Hν
j (z)Z

ν(z,Hj)f
ν(z,Hj) . (2.105)

This discretization satisfies (2.104) when the derivative of fνeq(z,H) with respect
to energy is calculated analytically and fνne(z,Hj+1⁄2)−fνne(z,Hj−1⁄2) = 0, which is
the case for constant fne = 1 at equilibrium. On the other hand, simply enforcing
(2.105) in the small signal time derivative term of the BE does not solve the
problem since it violates the consistency of the continuity equation obtained
from the BE with the electron density in the PE. If the term of the linearized
density that is proportional to the derivative of the H−box with respect to the
potential is replaced by the modified H−derivative in (2.104), full reciprocity of
the numerical results is achieved. The resulting small signal matrix equation can
be written as: 


∂F̂PE
∂ϕ

∂F̂PE
∂f

∂F̂BE
∂ϕ

∂F̂BE
∂f

+

 0̂ 0̂

∂T̂
∂ϕ

∂T̂
∂f


(ϕf

)
= b (2.106)

where the first matrix on the left9hand side must be evaluated for steady state,
and the second matrix contains the linearization of the time derivative in the
BE. ∂T̂/∂f is diagonal and its computation is very fast. For each bias point, the
stationary solution and its corresponding Jacobian have to be calculated only
once, as they can be stored and reused for different frequencies. In doing so,
the computational burden of evaluating the full Jacobian for each frequency of
interest is considerably alleviated.
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2.6.1 Ramo-Shockley Theorem

Once the values of f and ϕ are obtained by solving the small signal matrix
equation (2.106) for the frequency of interest, the terminal current for each
contact can be calculated using the Ramo9Shockley theorem [142,143], which
states that the current induced in an electrode is due to the instantaneous change
of electrostatic flux lines which end on the electrode, not the amount of charge
received by the electrode per second.

We start this section by reminding the reader of a few relations which will
prove useful in the derivations that follow. The small signal 1D continuity
equation per subband, which is obtained by integrating the BE over k, reads:

∂

∂z
jν(z) + iωnν(z)− SνI (z)− ΓνI (z) = 0 (2.107)

The subscript I in SνI (z) and ΓνI (z) indicates integration over k−space, which
might result in nonzero terms since the scattering integral need not be charge
conserving per subband. Moreover, linearization of the small signal 3D current
in the transport direction gives for each subband:

Jνz (r) = jν(z)|ψ(r)|2

⇒ Jνz(r) = jν(z)|ψν(r)|2 + 2jν(z)ψν(r)ψν(r) (2.108)

which gives:

∂

∂z
Jνz(r) =

(
∂

∂z
jν(z)

)
|ψν(r)|2 + jν(z)

(
∂

∂z
|ψν(r)|2

)
+ 2

(
∂

∂z
jν(z)

)
ψν(r)ψν(r) + 2jν(z)

∂

∂z

(
ψν(r)ψν(r)

)
. (2.109)

In addition, the 3D conduction current needs to satisfy the continuity equation10

∇ · Jν(r) + iωnν(z)|ψν(r)|2 + 2iωnν(z)ψν(r)ψν(r)
= (SνI (z) + ΓνI (z)) |ψν(r)|2 + 2 (SνI (z) + ΓνI (z))ψ

ν(r)ψν(r) (2.110)

The small signal terminal current of the k−th contact is defined as:

Ik = −
∫
∂Dk

(∑
ν

Jν(r) + iωε(r)∇rϕ(r)
)
· dA (2.111)

10Several terms contribute to the transverse components of the current density. For example,
the two−dimensional charge density can change with redistribution of electrons in the perpen-
dicular plane due to changes in electrostatic potential or by scattering mechanisms. Moreover,
we can define a transverse current attributed to the interface of adjacent z−boxes since the
wavefunctions change in z−direction. Here, we do not care for the explicit form of Jν(r) since
the 3D continuity equation suffices for the derivation of small signal terminal currents.
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where ∂Dk is defined as the surface domain of the k−th contact. The positive sign
in front of the displacement current is due to Jν(r) being the electron current
and dA is assumed to point inwards to the device. Let us define the fundamental
function for each contact as:

τk(r) := δki , r ∈ ∂Di (2.112)

which also obeys the Laplace equation:

∇r ·
(
ε(r)∇rτk(r)

)
= 0 . (2.113)

The integral in (2.111) can be safely multiplied by τk(r), because τk(r)=1 on
the k−th contact:

Ik = −
∫
∂Dk

τk(r)
(∑

ν

Jν(r) + iωε(r)∇rϕ(r)
)
· dA (2.114)

= −
∮
∂D
τk(r)

(∑
ν

Jν(r) + iωε(r)∇rϕ(r)
)
· dA (2.115)

=

∫
D
∇r ·

[
τk(r)

(∑
ν

Jν(r) + iωε(r)∇rϕ(r)
)]

dV (2.116)

In the above steps, we have extended the integration region to the complete
surface of the solution domain D, because τk(r) = 0 for all the other contacts.
We have then employed the Gauss’ law to convert the surface integral into a
volume integral over the divergence of the integrand and arrive at (2.116). This
gives:

Ik =

∫
D
τk(r)∇r ·

(∑
ν

Jν(r) + iωε(r)∇rϕ(r)
)
dV

+

∫
D

(∑
ν

Jν(r) + iωε(r)∇rϕ(r)
)
∇rτk(r) dV = I(1)

k + I(2)
k (2.117)

For the first term, we use (2.110) and the linearized Poisson equation to get:

I(1)
k =

∫
D
τk(r)∇r ·

(∑
ν

Jν(r) + iωε(r)∇rϕ(r)
)
dV

=

∫
D
τk(r)

∑
ν

(
− iωnν(z)|ψν(r)|2 − 2iωnν(z)ψν(r)ψν(r)

+ (SνI (z) + ΓνI (z)) |ψν(r)|2 + 2 (SνI (z) + ΓνI (z))ψ
ν(r)ψν(r)

+ iωnν(z)|ψν(r)|2 + 2iωnν(z)ψν(r)ψν(r)
)
dV

=

∫
D
dV τk(r)

∑
ν

(
(SνI (z)+ΓνI (z)) |ψν(r)|2 + 2 (SνI (z)+ΓνI (z))ψ

ν(r)ψν(r)
)
.

(2.118)
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The second term is calculated as follows:

I(2)
k =

∫
D

(∑
ν

Jν(r) · ∇rτk(r) + iωε(r)∇rϕ(r) · ∇rτk(r)
)
dV (2.119)

=

∫
D

∑
ν

Jν(r) · ∇rτk(r) dV + iω
∑
i

CikV
C
i = I ′(2)

k + iω
∑
i

CikV i

where we have made use of the capacitance coefficients11

Cik :=

∫
D
ε(r)∇rτi(r) · ∇rτk(r) dV . (2.120)

What remains is to calculate I ′(2)
k in (2.119),

I ′(2)
k =

∑
ν

∫
D
dV ∇ · (Jν(r)τk(r))−

∑
ν

∫
D
dV τk(r)∇ · Jν(r) (2.121)

The first integral in (2.121) is calculated as:∫
D
dV ∇ · (Jν(r)τk(r)) =

∫
∂D

dA · Jν(r)τk(r) =
∫
∂D

dA · Jνz(r)τk(r)

=

∫
∂D

dA · ezτk(r)
[
jν(z)|ψν(r)|2 + 2jν(z)ψν(r)ψν(r)

]
= −

∫
∂D

dA τk(r)
[
ΓνI (z)|ψν(r)|2 + 2ΓνI (z)ψ

ν(r)ψν(r)
]

= −
∫
∂D

dA τk(r)
[
ΓνI (z)|ψν(r)|2

]
= −

∫
D
dV τk(r)

[
ΓνI (z)|ψν(r)|2

]
(2.122)

11Let us discuss a few important requirements that our calculated capacitance matrix must
satisfy. These can be viewed as sanity checks, to make sure that our numerical computation is
producing sensible results.

1. The capacitance coefficients are symmetric Cij = Cji and positive for i = j, because the
permittivity is positive. For i 6= j they are negative due to the maximum principle. For
i 6= j the fundamental solutions τj(r) take the value 0 on the surface of the conductor
i and increase when moving away from the conductor into the solution domain. This
implies ∇τj · dA > 0 and thus Cij < 0.

2. The sum
∑N

j=0 Cij is 0, because

N∑
j=0

Cij =

N∑
j=0

∫
D
ε(r)∇rτi(r) · ∇rτj(r) dV =

∫
D
ε(r)∇rτi(r) · ∇r

( N∑
j=0

τj(r)
)
dV = 0 .
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where the term proportional to ψν(r)ψν(r) vanishes since the source and drain
contacts span the whole cross−section. For the second part, we simply use the
steady state and small signal continuity equations and obtain,

I ′(2)
k =−

∑
ν

∫
D
dV τk(r)Γ

ν
I (z)|ψν(r)|2 +

∑
ν

∫
D
dV τk(r)

(
2iωnν(z)ψν(r)ψν(r)

)
−
∑
ν

∫
D
dV τk(r)

[(
∂

∂z
jν(z)

)
|ψν(r)|2 + 2

(
∂

∂z
jν(z)

)
ψν(r)ψν(r)

]
(2.123)

Inserting the calculated terms into the terminal current yields:

Ik =

∫
D
dV τk(r)

∑
ν

[(
SνI (z)−

∂

∂z
jν(z)

)
|ψν(r)|2

+ 2

(
SνI (z) + ΓνI (z)−

∂

∂z
jν(z) + 2iωnν(z)

)
ψν(r)ψν(r)

]
+ iω

∑
i

CikV i

=

∫
D
dV τk(r)

∑
ν

[(
SνI (z)−

∂

∂z
jν(z)

)
|ψν(r)|2 + 2iωnν(z)ψν(r)ψν(r)

]
+ iω

∑
i

CikV i . (2.124)

The admittance parameter Y ki is then calculated as,

Y ki =
Ik
V i

∣∣∣
V j=0 for j 6=i.

(2.125)
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2.7 Noise Analysis

Characterization and modeling of electronic noise in semiconductor devices
and circuits is considered as an indispensable part of RF electronics and the
microscopic noise sources of thermal origin such as the excessive drain noise
in the saturation regime [144, 145] and the induced gate noise [146, 147] are
becoming the limiting factors for the performance of future FETs [148]. Since the
design, manufacturing technology, and operation regime of FETs can, in principle,
improve their noise behavior, undestanding the physics of stochastic fluctuations
allows for development of highly sensitive devices [149]. On the other hand,
investigation of the irreducible noise sources which are inherent in the kinetics
of charge carriers helps in determining the performance limits of CMOS and
analog amplifiers. Especially for deep submicron devices and nonlinear transport,
microscopic and physics−based noise models are necessary, since they allow us
to investigate various noise sources within the device and gain insight into the
internal stochastic processes which degrade the device’s performance.

Rigorous approaches based on the drift−diffusion and hydrodynamic models
[30,150–156] are shown to give unsatisfactory results considering the experimental
data [153,157,158]. This implies that for ultrashort FETs, higher−order transport
models are required for accurately capturing the non−equilibrium effects and
noise phenomena. In the framework of the BE, noise analysis is usually performed
by the MC method [9, 24, 159], which inherently contains fluctuations and allows
for noise calculations with almost no additional computational cost. However,
the MC simulations are in time domain and the CPU time is at least inversely
proportional to the minimum frequency investigated. Even the investigation of
RF noise at a limited technically relevant frequency range can prove prohibitively
CPU intensive [155, 160]. Thus, a deterministic method which is based in the
frequency domain and can handle arbitrary low frequencies and slow processes is
the most desirable option.

In this section, deterministic noise analysis in the framework of the BE and
under small signal operation is presented. An efficient Green’s function approach
to the Langevin−source method [153], which is a variation of direct impedence
field method [150], is used for the characterization of RF noise. The discussions
are limited to the noise due to scattering events and generation/recombination of
the particles on the source and drain contacts, as they are shown to be the most
important noise sources for RF applications. The avalanche noise observed at
the breakdown of semiconductor junctions [149] and the 1/f−noise [149,161,162]
which becomes dominant only in the low frequency domain, are not included in
this work.
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2.7.1 Theory

Electronic noise12 is generally characterized by the one9sided power spectral
density (PSD) which, according to the Wiener9Khintchine theorem [163, 164],
is the Fourier transform of the corresponding correlation function of the two
microscopic quantities x and y:

Pxy(ω) = P ∗
yx(ω) = 2

∫ ∞

−∞
〈x(t+ τ)y(t)〉e−iωτ dτ , (2.126)

where the cross-correlation function for the time shift τ is defined as

〈x(t+ τ)y(t)〉 = lim
∆t→∞

1

∆t

∫
x(t+ τ)y(t) dt . (2.127)

and is assumed to be absolutely integrable13. Equation (2.127) is meaningful
only if the quantum mechanical effects are insignificant and the random variables
x(t) and y(t) may be considered as classical quantities. For discussions about
the properties of auto− and cross−correlation functions and the power spectrums,
the reader can refer to [149,165].

In the Langevin9source method, the system equations are perturbed by
random excitations, which are assumed to be small enough so that the connection
between these random forces and macroscopic fluctuations is essentially linear
and the noise is investigated in the small signal operation regime14. Generally
speaking, the Langevin source ξ can appear as a generation rate within the
transport equation and depending on the physical meaning of governing equations,
can be interpreted as an injection of charge or current at some vector state s.
As is usual with this approach, Green’s functions are used to solve the system
of equations for arbitrary excitations. The Green’s function Gα,β(s, t; s′, t′)
quantifies the response in variable α to a unit source δ(s− s′)δ(t− t′) injected
as β. We evaluate the fluctuation δα induced by the vector source ξβ as the
convolution integral

δα(s, t) =

∫
Ωsys

∫ t

−∞
Gα,β(s, t; s′, t′)ξβ(s

′, t′) dt′ ds′ , (2.128)

where Ωsys is the system volume. Assuming that the noiseless steady state is at
least wide9sense stationary, (2.128) can be simplified and we have a time9invariant
linear system:

Gα,β(s, t; s′, t′) = Gα,β(s, s′; t− t′) , (2.129)
12The terms “fluctuations” and “noise” are used interchangably throughout this work.
13The stochastic variables x(t) and y(t) need not be absolutely integrable.
14Large signal studies are beyond the scope of this dissertation. An example for large

signal noise simulations with deterministic BE solvers is presented in [166] for bulk structures,
and [165,167,168] offer useful means for noise analysis in cyclostationary or quasiperiodic cases.
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which allows for frequency9domain analysis. In the SSSC, (2.128) simplifies to

α(s, ω) =
∑
β

∫
Ωsys

Gα,β(s, s′;ω)ξ
β
(s′, ω) ds′ (2.130)

and the summation runs over various noise sources. Once the Green’s functions
have been evaluated, the PSD of the miniscule fluctuations δα, δα′ can be
computed as:

Pαα′(s, s′;ω) = (2.131)∑
β,β′

∫
Ωsys

∫
Ωsys

Gα,β(s, s0;ω)Pββ′(s0, s
′
0;ω)

(
Gα

′,β′
(s′, s′0;ω)

)∗
ds0 ds

′
0

where Pββ′(s0, s
′
0;ω) is the correlation spectrum due to the macroscopic exci-

tations ξ
β
(s0, ω) and ξ

β′(s
′
0, ω) within the device, and G∗ denotes the complex

conjugate of G. The main problem, therefore, amounts to solving a system of
(complex) linear equations for the Green’s functions of the primary variables.
We start with the Langevin BE, which provides a framework for dealing with
the stochastic transport problem [153,169,170]:( ∂

∂t
+

1

~
F ν(z)

∂

∂k
+ vνz (k)

∂

∂z

)
δfνk (z, k, t) (2.132)

+
1

~
δF ν(z, t)

∂

∂k
fνk (z, k)− δSν{·} − δΓν{·} = ξBE(z, k, t)

where ξBE is the Langevin source applied to the BE, and δf is the (time dependent)
solution of the Langevin BE. The Green’s functions are defined as the solution
of (2.132) with ξBE = 2πδ(z − z′)δ(k − k′)δ(t− t′), i.e.(

∂

∂t
+

1

~
F ν(z)

∂

∂k
+ vνz (k)

∂

∂z

)
Gf,BE(z, k, t; z′, k′) (2.133)

+
1

~
GF,BE(z; z′, k′)

∂

∂k
fν(z, k)− S{·} = 2πδ(z − z′)δ(k − k′)δ(t− t′) .

where “·” is a placeholder as the scattering term is expressed in terms of the
distribution functions for various initial and final states. The superscript f,BE of
the Green’s function indicates that this is the Green’s function of the distribution
function with a Langevin source in the BE. Note, that the Green’s function
GF,BE can be calculated from the Green’s function of potential in the same way
that the actual fluctuation of the force δF is calculated with the fluctuation of
potential using the first order perturbation theory:(

GF,BE)ν,ν′ (z; z′, k′) = − ∂

∂z

(
Gεsub,BE)ν,ν′ (z; z′, k′) , (2.134)
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(
Gεsub,BE)ν,ν′ (z; z′, k′) = −q

∫∫
dx dy |ψν(r)|2

(
Gϕ,BE)ν′ (r; z′, k′) . (2.135)

In a similar way, the Green’s functions of scattering and contact generation and
recombination terms can be further deconstructed until we have an equation
described solely by the Green’s functions of our primary variables.

All operators in (2.133) operate on the first set of coordinates, i.e. (z, k, t).
Therefore, projection onto equi9energy surfaces and H−transformation followed
by box integration, yields the same equation as in the small signal analysis.
Following the notation in section 2.5, for every α∈ D̃BE we have:∑
b∈D̃PE

∂FBE(α)

∂ϕ(b)
Ḡϕ,BE(b; z′, k′) +

∑
β∈D̃BE

∂FBE(α)

∂f(β)
Ḡf,BE(β; z′, k′) = ĒBE(α; z′, k′)

(2.136)
where ν, ν ′ and ω are dropped from the set of arguments for the sake of better
legibility, but we should remember the transformation to the frequency domain.
The coefficients in (2.136) also include the time derivative terms as derived in
Sect. 2.6. Defining the transformation

TBE
ij =

∫ Hν
jmax(zi)

Hν
jmin(zi)

dH

∫ zi+1⁄2

zi−1⁄2

dz

∫
dε δ

(
ε− (H − ενsub(z))

) ∫ dk

2π
δ
(
ε̃ν(k)− ε

)
(2.137)

consisting of a projection onto the constant energy surfaces, followed by an
H−transformation and a subsequent box integration over H and z, the right9hand
side of (2.136) is given by:

ĒBE
ij = TBE

ij

(
2πδ(k − k′)δ(z − z′)

)
=

∫ Hν
jmax(zi)

Hν
jmin(zi)

dH

∫ zi+1⁄2

zi−1⁄2

dz

∫
dε δ

(
ε− (H−ενsub(z))

)
δ
(
ε− ε̃(k′)

)
δ(z − z′)

=

∫ Hν
jmax(zi)

Hν
jmin(zi)

dH

∫ zi+1⁄2

zi−1⁄2

dz δ
(
H−Hν(z, k′)

)
δ(z − z′) . (2.138)

Nevertheless, it is important to note that we still have a second set of coordinates,
i.e. (z′, k′). In order to obtain meaningful results within our coordinate framework,
we need to transform both sets of coordinates in the same way. Projection and
box integration of the second set of coordinates gives:

EBE
ij = TBE

i′j′

(∫ Hν
jmax(zi)

Hν
jmin(zi)

dH

∫ zi+1⁄2

zi−1⁄2

dz δ
(
H −H(k′)

)
δ(z − z′)

)

=

∫ Hν
j′max(zi)

Hν
j′min(zi)

dH ′
∫ zi′+1⁄2

zi′−1⁄2

dz′
∫

dε′ δ
(
ε′−(H ′−εsub(z

′))
) ∫ dk′

2π
δ
(
ε′−ε̃(k′)

)
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∫ Hν
jmax(zi)

Hν
jmin(zi)

dH

∫ zi+1⁄2

zi−1⁄2

dz δ
(
H −H(z, k′)

)
δ(z − z′)

=

(∫ Hν
jmax(zi)

Hν
jmin(zi)

Zν(zi′ ,H) dH

)
δi,i′δj,j′∆zi . (2.139)

Next, we want to project and box integrate the second set of coordinates of
the Green’s functions. The operators in (2.133) do not depend on the primed
coordinates and thus we can simply evaluate the transformations on the Green’s
functions directly. The Green’s function of the electron distribution function is
transformed to:

Gf,BE
ij = TBE

i′j′

(
Ḡf,BE(·; z′, k′)

)
=

∫ Hν
j′max(zi)

Hν
j′min(zi)

dH ′
∫ zi′+1⁄2

zi′−1⁄2

dz′
∫∫

dε′
dk′

2π
δ
(
ε′−(H ′−εsub(z

′))
)
δ
(
ε′−ε̃(k′)

)
Gf,BE(·; z′, k′)

=

∫ Hν
j′max(zi)

Hν
j′min(zi)

dH ′
∫ zi′+1⁄2

zi′−1⁄2

dz′
∫

dε′ δ
(
ε′−(H ′−εsub(z

′))
)
Z(z′,H ′)Gf,BE(·; z′, ε′)

=

(∫ Hν
jmax(zi)

Hν
jmin(zi)

Z(zi,H) dH

)
Gf,BE(·; zi′ ,Hj′)∆zi . (2.140)

With the same derivation applied to Ḡϕ,BE
ij , the Langevin BE for α, γ ∈ D̃BE is

transformed to:∑
b∈D̃PE

∂FBE(α)

∂ϕ(b)
Gϕ,BE(b; γ) +

∑
β∈D̃BE

∂FBE(α)

∂f(β)
Gf,BE(β; γ) = δα,γ (2.141)

the left9hand side of which is exactly the discretization used in small signal
calculations, and the right9hand side (ignoring the BCs) is an identity matrix.
Since the PE is coupled to the BE through the electron density, eq. (2.141) and
the PE of Green’s functions where there is no Langevin source in the PE form a
complete set of equations which can be solved for Gϕ,BE and Gf,BE. As for the
PE, we can write down the equation with a Langevin source term

∇r ·
(
ε(r)∇rδϕ(r, t)

)
− q

∫
dk

2π
δf(z, k, t)|ψ(r)|2 = ξPE(r, t) (2.142)

with the corresponding equation for the Green’s functions,

∇r ·
(
ε(r)∇rG

ϕ,PE(r, t; r′)
)
−q
∫

dk

2π
Gf,PE(z, k, t; r′)|ψ(r)|2 = δ(r−r′) (2.143)

The transformation applied to the PE consists of a simple box integration over
r = (xi, yj , zk):

TPE
ijk =

∫ xi+1⁄2

xi−1⁄2

dx

∫ yj+1⁄2

yj−1⁄2

dy

∫ zk+1⁄2

zk−1⁄2

dz (2.144)



54 CHAPTER 2. THE SIMULATION FRAMEWORK

Now, considering the small-signal linearization of (2.142):

∑
b∈D̃PE

∂FPE(a)

∂ϕ(b)
Ḡϕ,PE(b; r′) +

∑
β∈D̃BE

∂FPE(a)

∂f(β)
Ḡf,PE(β; r′) = ĒPE(a; r′) (2.145)

we can use the same approach to transform the Green’s functions and the
right9hand side of this equation. Transformation of the Langevin source reads:

ĒPE
ijk = TPE

ijk

(
δ(r − r′)

)
=

∫ xi+1⁄2

xi−1⁄2

dx

∫ yj+1⁄2

yj−1⁄2

dy

∫ zk+1⁄2

zk−1⁄2

dz δ(r − r′) (2.146)

and applying a second transformation on the primed coordinates yields:

EPE
ijk = TPE

i′j′k′

(∫ xi+1⁄2

xi−1⁄2

dx

∫ yj+1⁄2

yj−1⁄2

dy

∫ zk+1⁄2

zk−1⁄2

dz δ(r − r′)

)
= δii′δjj′δkk′∆xi∆yj∆zi (2.147)

Transformation of the Green’s functions follows the same way:

TPE
i′j′k′Ḡ

f/ϕ,PE(a; r′) = Gf/ϕ,PE(a; a′)∆xi∆yj∆zi (2.148)

Therefore, we can divide everything by the box volume and get:

∑
b∈D̃PE

∂FPE(a)

∂ϕ(b)
Gϕ,PE(b; a′) +

∑
β∈D̃BE

∂FPE(a)

∂f(β)
Gf,PE(β; a′) = δaa′ . (2.149)

The left9hand side is, analogous to the Langevin BE, the same discretization
used in small signal calculations, whereas the right9hand side (ignoring the BCs)
is an identity matrix. As for the BCs, we assume that there is no noise source
for coordinates where Dirichlet BCs apply in the stationary case. That is, the
right9hand side in (2.141) and (2.149) vanishes on the contacts.

Following a formal approach, Eqs. (2.141) and (2.149) can be cast into matrix
form. It is important to note that in the case of spin and valley degeneracies,
we cannot simply multiply the equations by the degeneracy factor and proceed
analogous to the stationary case, because the Langevin sources in (2.132) represent
the fluctuations in just one state. For example, we could have a Langevin source
term for the state (z, k, ν, ↑) with ↑ representing the spin up particle, while there
is no Langevin source for (z, k, ν, ↓) where ↓ stands for a spin down particle. In
order to avoid double9counting of the degenerate states, we can start with the
non9degenerate equation system and simplify the equations. The general matrix
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equation for Green’s functions looks like15:
∂F̂PE

∂ϕ

∂F̂PE

∂f↑

∂F̂PE

∂f↓
∂F̂BE↑

∂ϕ

∂F̂BE↑

∂f↑

∂F̂BE↑

∂f↓
∂F̂BE↓

∂ϕ

∂F̂BE↓

∂f↑

∂F̂BE↓

∂f↓


 Ĝϕ,PE Ĝϕ,BE↑ Ĝϕ,BE↓

Ĝf↑,PE Ĝf↑,BE↑ Ĝf↑,BE↓

Ĝf↓,PE Ĝf↓,BE↑ Ĝf↓,BE↓

=

ÊPE 0̂ 0̂

0̂ ÊBE
↑ 0̂

0̂ 0̂ ÊBE
↓


(2.150)

where all quantities are understood to be matrices, and the derivatives are evalu-
ated in the noiseless steady state. Also, FBE↑ and FBE↓ denote the single9particle
BE for spin up and spin down electrons, respectively. Since we want to find out
how this system of equations relates to the spin9degenerate case, we can make a
few simplifications. First of all, there is no transition between spin up and spin
down particles, i.e.

∂F̂BE↑
∂f↓

=
∂F̂BE↓
∂f↑

= 0̂ . (2.151)

Then, there is no difference to the charge density in the PE if we consider a spin
up or a spin down particle, i.e.

∂F̂PE
∂f↑

=
∂F̂PE
∂f↓

=
∂F̂PE
∂f

. (2.152)

Finally, the BE for spin up and spin down particles are the same,

∂F̂BE↑
∂f↑

=
∂F̂BE↓
∂f↓

=
∂F̂BE
∂f

, (2.153)

∂F̂BE↑
∂ϕ

=
∂F̂BE↓
∂ϕ

=
∂F̂BE
∂ϕ

. (2.154)

Then we can write (2.150) as:
∂F̂PE
∂ϕ

∂F̂PE
∂f

∂F̂PE
∂f

∂F̂BE
∂ϕ

∂F̂BE
∂f

0̂

∂F̂BE
∂ϕ

0̂
∂F̂BE
∂f


 Ĝϕ,PE Ĝϕ,BE↑ Ĝϕ,BE↓

Ĝf↑,PE Ĝf↑,BE↑ Ĝf↑,BE↓

Ĝf↓,PE Ĝf↓,BE↑ Ĝf↓,BE↓

=

ÊPE 0̂ 0̂

0̂ ÊBE 0̂

0̂ 0̂ ÊBE


(2.155)

15In order to better understand the meaning behind these matrix elements, note that the
matrix element Ĝ(k, j) has something to do with the change in small signal distribution function
δf(k) when there is some change in j. Similarly, the matrix element [∂F̂BE/∂f ](i, k) describes
how much the Boltzmann operators (e.g. the free streaming term, the scattering term) change
as a result of δf(k).
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What remains is to establish a relation between spin9independent Green’s
functions and the spin9dependent Green’s functions in (2.155). Defining sym-
metric and antisymmetric linear combinations of the first spin arguments as:

Ĝf+,[·] = Ĝf↑,[·] + Ĝf↓,[·] (2.156)
Ĝf−,[·] = Ĝf↑,[·] − Ĝf↓,[·] (2.157)

where [·] is a placeholder for either PE, BE↑ or BE↓, we can obtain a matrix
equation which does not depend on Gf−,[·]:

∂F̂PE
∂ϕ

∂F̂PE
∂f

2
∂F̂BE
∂ϕ

∂F̂BE
∂f

( Ĝϕ,PE Ĝϕ,BE↑

Ĝf+,PE Ĝf+,BE↑

)
=

(
ÊPE 0̂

0̂ ÊBE

)
(2.158)

Now, if the Green’s function for the arbitrary observable x (e.g. the terminal
current) is expressed as

(
Ĝx
)T

=
(
P̂T
ϕ P̂T

f↑ P̂T
f↓

) Ĝϕ,PE Ĝϕ,BE↑ Ĝϕ,BE↓

Ĝf↑,PE Ĝf↑,BE↑ Ĝf↑,BE↓

Ĝf↓,PE Ĝf↓,BE↑ Ĝf↓,BE↓

 , (2.159)

the transformation to symmetric and antisymmetric Green’s functions in (2.157)
yields:

(
Ĝx
)T

=
(
P̂T
ϕ P̂T

f↑ P̂T
f↓

)Î 0̂ 0̂

0̂ 1
2 Î

−1
2 Î

0̂ 1
2 Î

1
2 Î

 Ĝϕ,PE Ĝϕ,BE↑ Ĝϕ,BE↓

Ĝf+,PE Ĝf+,BE↑ Ĝf+,BE↓

Ĝf−,PE Ĝf−,BE↑ Ĝf−,BE↓


=
(
P̂T
ϕ

1
2(P̂

T
f↑ + P̂T

f↓)
1
2(P̂

T
f↑ − P̂T

f↓)
) Ĝϕ,PE Ĝϕ,BE↑ Ĝϕ,BE↓

Ĝf+,PE Ĝf+,BE↑ Ĝf+,BE↓

Ĝf−,PE Ĝf−,BE↑ Ĝf−,BE↓


=
(
P̂T
ϕ P̂T

f↑ 0̂
) Ĝϕ,PE Ĝϕ,BE↑ Ĝϕ,BE↓

Ĝf+,PE Ĝf+,BE↑ Ĝf+,BE↓

Ĝf−,PE Ĝf−,BE↑ Ĝf−,BE↓


=
(
P̂T
ϕ P̂T

f↑

)( Ĝϕ,PE Ĝϕ,BE↑ Ĝϕ,BE↑

Ĝf+,PE Ĝf+,BE↑ Ĝf+,BE↑

)
(2.160)

where we have used the assumption P̂f↑ = P̂f↓. For a detailed treatment of the
degenerate states, see [69,171].
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2.7.2 Ramo-Shockley Theorem

In order to derive the Green’s functions of the terminal current GIk from the
Green’s functions of distribution function and potential, we use the same method
as in 2.6.1. Although in most cases the Green’s functions of arbitrary variables can
be obtained simply by replacing the distribution function and potential by their
corresponding Green’s functions, special care must be taken with the terminal
currents. It must be noted that in 2.6.1 we relied on the continuity equations to
derive an expression for the terminal currents. However, the continuity equation
for the Green’s functions contains an additional term due to the Langevin source
appearing on the right9hand side as a generation rate. Let’s start as we did in
the previous section,

∂

∂z
Gj

ν

γ (z) + iωGnν

γ (z)−G
Sν

I
γ (z)−G

Γν
I
γ (z) = δ(z − z′)δνν′ (2.161)

where the subscript γ abbreviates the second set of coordinates. The Green’s
function of the terminal current for the k−th contact is:

GIkγ = −
∫
∂Dk

(∑
ν

GJ
ν

γ (r) + iωε(r)∇Gϕγ (r)
)
· dA (2.162)

and multiply the integrand with τk(r),

GIkγ =−
∫
∂Dk

(∑
ν

GJ
ν

γ (r) + iωε(r)∇Gϕγ (r)
)
· dA

=−
∮
∂D
τk(r)

(∑
ν

GJ
ν

γ (r) + iωε(r)∇Gϕγ (r)
)
· dA

=

∫
D
∇r ·

[
τk(r)

(∑
ν

GJ
ν

γ (r) + iωε(r)∇Gϕγ (r)
)]

dV

=

∫
D
τk(r)∇r ·

(∑
ν

GJ
ν

γ (r) + iωε(r)∇Gϕγ (r)
)
dV

+

∫
D

(∑
ν

GJ
ν

γ (r) + iωε(r)∇Gϕγ (r)
)
∇rτk(r) dV = GIk,(1)γ +GIk,(2)γ

For calculating GIk,(1)γ , we use the Langevin BE continuity equation:

GIk,(1)γ =

∫
D
τk(r)∇r ·

(∑
ν

GJ
ν

γ (r) + iωε(r)∇Gϕγ (r)
)
dV

=

∫
D
τk(r)

∑
ν

(
− iωGnν

γ (z)|ψ(r)|2 − 2iωnν(z)ψν(r)Gψν

γ (r)

+
(
G
Sν

I
γ (z) +G

Γν
I
γ (z) + ξδα;γ

)
|ψν(r)|2 +

(
SνI (z) + ΓνI (z)

)
ψν(r)Gψ

ν

γ (r)
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+ iωGnν

γ (z)|ψν(r)|2 + 2iωnν(z)ψν(r)Gψν

γ (r)
)
dV

=

∫
D
dV τk(r)

∑
ν

((
G
Sν

I
γ (z) +G

Γν
I
γ (z) + ξδα,γ

)
|ψν(r)|2

+
(
SνI (z) + ΓνI (z)

)
ψν(r)Gψ

ν

γ (r)
)

(2.163)

and for calculating GIk,(2)γ ,

GIk,(2)γ =

∫
D

(∑
ν

GJ
ν

γ (r) + iωε(r)∇Gϕγ (r)
)
· ∇rτk(r) dV

=

∫
D

∑
ν

GJ
ν

γ (r) · ∇rτk(r) dV + iω
∫

D
ε(r)∇Gϕγ (r) · ∇rτk(r) dV (2.164)

We note that in the small signal case, the last term was reformulated by breaking
the potential up into a space charge and a contact bias part. The former vanished,
leaving only capacitance terms proportional to the boundary conditions. However,
since we are evaluating Green’s functions at the coordinates γ, there are no
Langevin sources within the Poisson part and hence the Green’s functions of the
potential Gϕγ (r), vanish on all boundaries. That means that the last term can
be dropped. Therefore, what remains is to calculate the first integral in (2.164).
This term can be rearranged just as in the small signal case. Thus, the Green’s
function of the terminal current reads:

GIkγ =
∑
ν

∫
D
dV τk(r)

[
2iωnν(z)ψν(r)Gψν

γ (r) (2.165)

+
(
G
Sν

I
γ (z)− ∂

∂z
Gj

ν

γ (z) + ξδα,γ
(
1−δ(z′−zS)−δ(z′−zD)

))
|ψν(r)|2

]
.

Calculating the matrix of all Green’s functions Ĝ is computationally quite
intensive. Fortunately, this is not necessary since we are often interested in
the PSD of a certain observable, and the generalized adjoint approach can be
exploited to greatly reduce the computational burden. For example, if we express
the Green’s functions of terminal current as (GIk)T = aTĜ, with GIk and a
being 1×nG vectors and Ĝ being the nG×nG Green’s functions matrix, we can
just solve for ~GIk as follows,

L̂Ĝ = Ê ⇒ (GIk)T = aTL̂−1Ê (2.166)

Thus, we can calculate GIk by first finding bT = aTL̂−1 and then computing
GIk = Êb. Finding~b amounts to solving L̂b = a using a standard linear-equation
solver and is much faster than the computation of Ĝ.
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2.7.3 PSD of the Noise Sources

Finally, we need to identify various contributions to noise in our device and
calculate their PSD. The first source of stochastic fluctuations is the scattering
term in (2.22). The one9sided PSD of fluctuations for the instantaneous scattering
integral (2.42) can be expressed with the white and local noise of the transition
rate [149]

Pξξ = 2Lsysδ(z − z′)
∑
η

(1− fν(z, k))W νν′(z; k|k′)fν′(z, k′) (2.167)

where the factor of two is due to the scattering noise being a Poisson process [149].
Note, that the above description of the scattering noise sources is consistent with
the transport parameters and no additional model parameter beyond the BE
needs to be introduced. Using the Wiener9Lee theorem [172], the PSD of other
quantities can be obtained with their corresponding transfer functions. In the
case of scattering noise sources in the Langevin BE, the expression for the PSD
of arbitrary variables x(s, t) and y(s′, t′) is derived as

Pxy(s; s
′;ω) =

∑
ν

∑
ν′

∫∫
dz dz′

∫∫
dk

2π

dk′

2π
P νν

′
ξξ (z, k; z′, k′)

×
(
(Gx)ν(s; z, k;ω)− (Gx)ν

′
(s; z′, k′;ω)

)
×
(
(Gy)ν(s′; z, k;ω)− (Gy)ν

′
(s′; z′, k′;ω)

)
, (2.168)

because scattering events can be interpreted as perfectly correlated annihilation
of electrons at the initial states and subsequent creation of electrons at the final
states. Hence, the response of the arbitrary variable x(s, t) to an scattering event
from the initial state (z′, k′, ν ′) to the final state (z, k, ν) is

(Gx)ν(s; z, k;ω)− (Gx)ν
′
(s; z′, k′;ω) (2.169)

where different signs of the Green’s functions correspond to responses to the
annihilation and creation of electrons. Having calculated the Green’s function of
the terminal current GIk in (2.165)

δIk(ω) =
∑
ν′

∫
dz′
∫

dk′

2π
(GIk)ν

′
(z′, k′;ω)ξν

′
BE(z

′, k′;ω) , (2.170)

the PSD of terminal currents Pkk′(ω) is obtained using (2.168). The position
dependent PSD of the terminal currents is

K
(PH)
kk′ (z;ω) =

∑
η

∑
ν,ν′

∫∫
dk

2π

dk′

2π
cνν

′
η (z; k, k′)fν

′
DC(z, k

′)
(
1− fνDC(z, k)

)
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×
(
(GIk)ν(z, k;ω)− (GIk)ν

′
(z, k′;ω)

)
×
(
(GIk′ )ν(z, k;ω)− (GIk′ )ν

′
(z, k′;ω)

)∗
. (2.171)

where cνν′η (z; k, k′) is defined in (2.46).
The second source for fluctuations is the stochastic generation and recombi-

nation of carriers at the source and drain contacts, represented by Γ in (2.22).
This process can be interpreted as a scattering term between the subbands of
the semiconductor and a fictional thermal bath which provides the equilibrium
distribution function. Hence, similar to the scattering integral, the white noise
of the generation/recombination rate is defined as

P νν
′

1 ξξ(z, k; z
′, k′) = 4πδνν′δ(z − z′)δ(k − k′) [δ(z − zS) + δ(z − zD)]

× vGR
(
1− fν(z, k)

)
fν

′
eq(z

′, k′) , (2.172)

P νν
′

2 ξξ(z, k; z
′, k′) = 4πδνν′δ(z − z′)δ(k − k′) [δ(z − zS) + δ(z − zD)]

× vGRf
ν(z, k)

(
1− fν

′
eq(z

′, k′) . (2.173)

which gives:

K
(GR)
kk′ (z;ω) = (2.174)∑

ν,ν′

∫
dz′
∫∫

dk

2π

dk′

2π
(GIk)ν(z, k;ω)P νν

′
1 ξξ(z, k; z

′, k′)
(
(GIk′ )ν(z, k;ω)

)∗
+
∑
ν,ν′

∫
dz′
∫∫

dk

2π

dk′

2π

(
−(GIk)ν′(z′, k′;ω)

)
P νν

′
2 ξξ(z, k; z

′, k′)
(
−(GIk′ )ν′(z′, k′;ω)

)∗
= 2

∑
ν

∫
dk

2π
(GIk)ν(z, k;ω)

(
(GIk′ )ν(z, k;ω)

)∗
× vGR

[
fν(z, k) + fνeq(z, k)− 2fν(z, k)fνeq(z, k)

]
. (2.175)

The total PSD is:

Pkk′(ω) =

∫
dz
[
K

(PH)
kk′ (z;ω) +K

(GR)
kk′ (z;ω)

]
. (2.176)



Chapter 3

Moments Equations

3.1 Introduction
The macroscopic carrier transport equations can be obtained from the moments
of the BE. The idea of projection of the BE onto Hermite polynomial bases for
the case of Cartesian geometries was originally proposed by Grad in 1949 [173],
and developed further by Shan, Chen, and co9workers [174,175]. This expansion
maps the continuous k−space onto the space of expansion coefficients, yielding an
open9ended hierarchy of first order nonlinear PDEs for the corresponding kinetic
moments. The reason Hermite polynomials are best suited as the expansion
basis rather than, say, Chebyshev or Legendre polynomials, is that in the case
of Hermite polynomials, the expansion coefficients correspond exactly to the
macroscopic transport variables up to the chosen degree [175].

The Hermite polynomials1 are a sequence of classical orthogonal polynomials
over the interval (−∞,∞) with the kernel ω(x) = exp

(
−x2

)
. They can be

defined by means of the Rodrigues formula [176]

Hn(x) =
(−1)n

ω(x)

dnω(x)
dxn

n = 0, 1, 2, . . . (3.1)

and their scalar product satisfies the relation∫ +∞

−∞
ω(x)Hn(x)Hm(x) dx = 2nn!

√
πδnm . (3.2)

The generalized relation

f(x) =

∞∑
n=0

anHn(x)

2nn!
√
π
, an =

∫ ∞

−∞
f(x)Hn(x)ω(x) dx (3.3)

1In this work, the so-called physicists’ Hermite polynomials are used.
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projects the function f(x) onto the Hermite bases, resulting in a set of expansion
coefficients an. This is provided that f(x) is piecewise smooth in every finite
interval, and ∫ ∞

−∞
exp
(
−x2

)
|f(x)|2 dx <∞ . (3.4)

Because of the leapfrog properties of the coefficients in the expansion of Hn, the
expansion (3.3) splits into a part which is even in x and a part which is odd.
There are useful relations among the polynomials and their derivatives, which
can be found in handbooks such as [176]. Some of the useful recurrence relations
are as follows:

dHn(x)

dx
= 2nHn−1(x) (3.5)

2xHn(x) = 2nHn−1(x) +Hn+1(x) (3.6)
dHn(x)

dx
= 2xHn(x)−Hn+1(x) (3.7)

In this chapter, projection of the multi−subband BE onto the Hermite polynomials
is presented and an approach based on the matrix exponentials is employed for
the stabilization of discretized equations and improving the accuracy of the
solution. Sections 3.2 and 3.3 treat the stationary and small signal problems,
respectively.

3.2 Steady State Equations

3.2.1 Main Equation (RTA)

Starting from the multi-subband BE under the assumptions of parabolic band
structure and RTA for the scattering term, which reads:

∂fνk
∂t

+
1

~
F ν(z, t)

∂fνk
∂k

+
~k
mν
zz

∂fνk
∂z

= −
fνk − fνk eq

τ
, (3.8)

we use the transformation2

fνk (z, k, t) = gν

(
z,

~k√
2mν

zzkBT
, t

)
exp

(
−~2k2

2mν
zzkBT

)
= gν(z, u, t) exp

(
−u2

)
(3.9)

2Based on this transformation, the Maxwellian will be expressed by only one nonzero
coefficient a0. Moreover, the zeroth and first expansion coefficients provide a natural description
of charge and current density, respectively.
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and after factoring out the weight function ω(u), obtain the following PDE for
the new function gν(z, u, t):

∂gν

∂t
+

F ν(z, t)√
2mν

zzkBT

(
∂gν

∂u
− 2ugν

)
+

√
2kBT

mν
zz

u
∂gν

∂z
= −g

ν − aν0/
√
π

τ
. (3.10)

Projection of (3.10) onto the Hermite polynomial Hn(u) and using the recurrence
relations (3.5)−(3.7) yields:

∂aνn
∂t

+
F ν(z, t)√
2mν

zzkBT
2naνn−1 +

√
2kBT

mν
zz

(
1

2

∂aνn+1

∂z
+ n

∂aνn−1

∂z

)
= −a

ν
n − aν0δn,0

τ
.

(3.11)
The BE, therefore, is rewritten as an infinite set of coupled PDEs for the expansion
coefficients. In order to make this “infinite moment system” numerically solvable,
(3.3) is approximated by

f(x) ≈
nHP∑
n=0

anHn(x)

2nn!
√
π
, (3.12)

for the positive integer nHP ≥ 2. This results in nHP equations each containing
information about the next one and describing the conservation of electron
density, momentum, energy, and higher−order quantities. The coefficients for
n ≥ nHP can be simply set to zero, or truncations based on various closure
relations [173,177–179] or extraction of the nHPth moment from MC simulations
[178] can be employed. The former choice has the advantage that the equations
remain linear and is therefore used in this work, but it can lead to stability
problems for large electric fields.

Defining ~a as the vector of nHP expansion coefficients, (3.11) is cast into the
matrix equation

∂~a

∂t
+ Â

∂~a

∂z
+ B̂(z, t)~a = ~0 . (3.13)

As an example, for nHP=4 the matrices Â and B̂ are given as:

Â =

√
2kBT

mν
zz


0 1

2 0 0
1 0 1

2 0
0 2 0 1

2
0 0 3 0

 , B̂ =
2F (z, t)√
2mν

zzkBT


0 0 0 0
1 0 0 0
0 2 0 0
0 0 3 0

+
1

τ
Î ′4×4 .

(3.14)
where Î ′ is the identity matrix except for Î ′(1, 1) = 0. Under the assumption
of position independent electric field in each box z ∈ [zi, zi+1] and steady state
conditions, (3.13) reduces to a linear system of differential equations of the first
order for which the solution is simply given by

~a(z) = exp
(
−D̂i+1⁄2(z)

)
~a(zi+1⁄2) . (3.15)
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In (3.15) we have used3

D̂i+1⁄2(z) = Â−1B̂(zi+1⁄2)(z − zi+1⁄2) . (3.16)

If we split the vector ~a into its even and odd components with the non9square
projection matrices of size nHP/2×nHP (i.e. ~ae/o= P̂e/o~a), we have:(

~ae(zi)
~ae(zi+1)

)
=

(
P̂e exp

(
−D̂i+1⁄2(zi)

)
P̂e exp

(
−D̂i+1⁄2(zi+1)

))~a(zi+1⁄2) , (3.17)(
~ao(zi)
~ao(zi+1)

)
=

(
P̂o exp

(
−D̂i+1⁄2(zi)

)
P̂o exp

(
−D̂i+1⁄2(zi+1)

))~a(zi+1⁄2) . (3.18)

Substitution of (3.17) into (3.18) gives(
~ao(zi)
~ao(zi+1)

)
=

(
P̂o exp

(
−D̂i+1⁄2(zi)

)
P̂o exp

(
−D̂i+1⁄2(zi+1)

))( P̂e exp
(
−D̂i+1⁄2(zi)

)
P̂e exp

(
−D̂i+1⁄2(zi+1)

))−1(
~ae(zi)
~ae(zi+1)

)
.

(3.19)
Using the continuity of flux on the grid nodes, (3.19) provides an even/odd
coupling for the coefficients which links ~ae(zi−1), ~ae(zi) and ~ae(zi+1). Hence,
we have a well−defined system of equations provided that suitable boundary
conditions are imposed on the first and last grid nodes. That is, if we take on
the notation(

P̂o exp
(
−D̂i+1⁄2(zi)

)
P̂o exp

(
−D̂i+1⁄2(zi+1)

))( P̂e exp
(
−D̂i+1⁄2(zi)

)
P̂e exp

(
−D̂i+1⁄2(zi+1)

))−1

=

(
B̂(11)
i,i+1 B̂(12)

i,i+1

B̂(21)
i,i+1 B̂(22)

i,i+1

)
(3.20)

where submatrices B̂ are of size nHP/2×nHP/2, the left9hand side matrix equation
for ~ae then looks like:

× ×
B̂(21)
1,2 B̂(22)

1,2 −B̂(11)
2,3 −B̂(12)

2,3

0 B̂(21)
2,3 B̂(22)

2,3 −B̂(11)
3,4 −B̂(12)

3,4
. . .
× ×




~ae(z1)
~ae(z2)
~ae(z3)

...
~ae(zN)

 =


×
~0
~0
...
×

 , (3.21)

where × stands for the modifications due to the boundary conditions. After
solving (3.21) for the even coefficients, the odd ones are recovered by using (3.19).
The electron density n(z) and current density j(z) along the transport direction
are then calculated as follows:

n(z) = 2
∑
ν

∫ ∞

−∞
fνk (z, k)

dk

2π
=
∑
ν

√
2mν

zzkBT

π~

∫ ∞

−∞
gν(z, u)ω(u) du

3The matrix Â is always invertible.
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=
∑
ν

√
2mν

zzkBT

π~

∫ ∞

−∞
gν(z, u)ω(u)H0(u) du =

∑
ν

√
2mν

zzkBT

π~
aν0(z)

(3.22)

j(z) = 2
∑
ν

∫ ∞

−∞
vνz (k)f

ν
k (z, k)

dk

2π
=

2kBT

π~
∑
ν

∫ ∞

−∞
u

nHP∑
m=0

aνm(z)Hm(u)

2mm!
√
π

ω(u) du

=
2kBT

π~
∑
ν

∫ ∞

−∞
u

nHP∑
m=0

aνm(z)Hm(u)

2mm!
√
π

ω(u)H0(u) du =
kBT

π~
∑
ν

aν1(z) .

(3.23)

For the calculation of the energy density, the recurrence relations (3.6) is used:

E(z) = 2
∑
ν

∫
~2k2

2mν
zz

fνk (z, k)
dk

2π
=
∑
ν

(2mν
zzkBT )

3
2

2mν
zzπ~

∫
u2

nHP∑
m=0

aνmHm(u)

2mm!
√
π
ω(u) du

=
∑
ν

(2mν
zzkBT )

3
2

2mν
zzπ~

∫ nHP∑
m=0

aνm
[
m(m−1)Hm−2 +

2m+1
2 Hm + 1

4Hm+2

]
2mm!

√
π

ω(u) du

=
∑
ν

(2mν
zzkBT )

3
2

2mν
zzπ~

∫ nHP∑
m=0

aνm
[
m(m−1)Hm−2(u) +

2m+1
2 Hm(u)

]
2mm!

√
π

ω(u)H0(u) du

=
∑
ν

(2mν
zzkBT )

3
2

2mν
zzπ~

[
1

2
aν0(z) +

1

4
aν2(z)

]
. (3.24)

3.2.2 Projection of the Scattering Integral

Neglecting the Pauli exclusion principle, the general form of the scattering integral
is written as

Sν{fk} =
Lsys
2π

∑
ν′

∑
η,σ

∫
dk′
[
fν

′
k (z, k′)W νν′

ησ (z; k|k′)− fνk (z, k)W
ν′ν
ησ (z; k′|k)

]
,

where in the case of electron−phonon scattering, the physical parameters for
various intra− and inter−valley transitions are lumped into a general coefficient
cνν

′
ησ (z), as explained in section 2.4. The in−scattering term is

Sνin{fk} =
1

2π

∑
ν′

∑
η,σ

∫
dk′ fν

′
k (z, k′)cνν

′
ησ (z)δ

(
ενtot(z, k)−εν

′
tot(z, k

′)+σ~ωη
)

=
1

2π

∑
ν′

∑
η,σ

(
2mν′

zz

~2

)
cνν

′
ησ (z)

∫
dk′ fν

′
k (z, k′)δ

(
k′

2−mν′
zz

mν
zz
k2−α

)
=
∑
ν′

∑
η,σ

(
mν′
zz

π~2

)
cνν

′
ησ (z)√

mν′
zz

mν
zz
k2 + α

fν
′

ke

(
z,

√
mν′

zz
mν

zz
k2 + α

)
Θ

(
mν′

zz
mν

zz
k2 + α

)
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with α = 2mν′
zz

(
ενsub(z)−εν

′
sub(z)+σ~ωη

)
/~2. The subscript e of fe denotes the

even part of the distribution function. Similarly, the out−scattering term is
simplified as:

Sνout{fk} =
1

2π

∑
ν′

∑
η,σ

∫
dk′ fνk (z, k)c

ν′ν
ησ (z)δ

(
ενtot(z, k)−εν

′
tot(z, k

′)−σ~ωη
)

=
1

2π

∑
ν′

∑
η,σ

(
2mν′

zz

~2

)
cν

′ν
ησ (z)f

ν
k (z, k)

∫
dk′ δ

(
k′

2−mν′
zz

mν
zz
k2−β

)
=
∑
ν′

∑
η,σ

(
mν′
zz

π~2

)
cν

′ν
ησ (z)√

mν′
zz

mν
zz
k2 + β

fνk (z, k)Θ

(
mν′

zz
mν

zz
k2 + β

)

with β = 2mν′
zz

(
ενsub(z)−εν

′
sub(z)−σ~ωη

)
/~2. Applying the transformation of (3.9)

to the in− and out−scattering terms results in

Sνin{g} =
1

π~
∑
ν′

∑
η,σ

mν′
zz√

2mν
zzkBT

cνν
′

ησ (z)e
−α′√

mν′
zz

mν
zz
u2 + α′

Θ

(
mν′

zz
mν

zz
u2 + α′

)

gν
′

e

(
z,

√
mν′

zz
mν

zz
u2 + α′

)
exp

(
−mν′

zz
mν

zz
u2
)

Sνout{g} =
1

π~
∑
ν′

∑
η,σ

mν′
zz√

2mν
zzkBT

cν
′ν
ησ (z) exp

(
−u2

)√
mν′

zz
mν

zz
u2 + β′

gν(z, u)Θ

(
mν′
zz

mν
zz

u2 + β′

)

where
α′ =

~2α
2mν

zzkBT
, β′ =

~2β
2mν

zzkBT
. (3.25)

For the case ν = ν ′, we have α′ = −β′ = σ~ωη/kBT . Projection of Sνin{g} and
Sνout{g} onto the Hermite polynomials gives:∫

Sνin{g}Hn(u) du =
∑
ν′

∑
η,σ

mν′
zz

π~
√

2mν
zzkBT∫ cνν

′
ησ e

−α′
Θ
(
mν′

zz
mν

zz
u2 + α′

)
√

mν′
zz

mν
zz
u2 + α′

gν
′

e

(
z,

√
mν′

zz
mν

zz
u2 + α′

)
exp

(
−mν′

zz
mν

zz
u2
)
Hn(u) du .

(3.26)

Hence, we have for even m:∫
Sνin{g}Hn(u) du =

∑
ν′

∑
η,σ

mν′
zz

π~
√
2mν

zzkBT
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∫ cνν
′

ησ e
−α′

Θ
(
mν′

zz
mν

zz
u2 + α′

)
√

mν′
zz

mν
zz
u2 + α′

nHP∑
m=0

aν
′
mHm

(√
mν′

zz
mν

zz
u2 + α′

)
2mm!

√
π

exp

(
−mν′

zz
mν

zz
u2
)
Hn(u) du

=

nHP∑
m=0

∑
ν′

∑
η,σ

Γνν
′

m

∫ cνν
′

ησ e
−α′

Θ
(
mν′

zz
mν

zz
u2 + α′

)
√

mν′
zz

mν
zz
u2 + α′

exp

(
−mν′

zz
mν

zz
u2
)
Hm

(√
mν′

zz
mν

zz
u2 + α′

)
Hn(u) du

 aν
′
m

(3.27)

which is calculated by numerical integration for all n and m values. Similarly,
for the out−scattering term we have:∫

Sνout{g}Hn(u) du

=
∑
ν′

∑
η,σ

mν′
zz

π~
√

2mν
zzkBT

∫ cν
′ν
ησ Θ

(
mν′

zz
mν

zz
u2 + β′

)
e−u2√

mν′
zz

mν
zz
u2 + β′

nHP∑
m=0

aνmHm(u)

2mm!
√
π
Hn(u) du

=

nHP∑
m=0

∑
ν′

∑
η,σ

Γνν
′

m

∫ cν
′ν
ησ Θ

(
mν′

zz
mν

zz
u2 + β′

)
e−u2√

mν′
zz

mν
zz
u2 + β′

Hm(u)Hn(u) du

 aνm (3.28)

In Eqs. (3.27) and (3.28), the spatial arguments are omitted for better readability,
and the pre−factor Γm is defined as

Γνν
′

m =

(
mν′
zz

π~
√

2mν
zzkBT

)
1

2mm!
√
π
. (3.29)

As an example, the phonon scattering matrix for nHP=4 looks like,

ŜPH =


0 0 0 0
0 × 0 ×
× 0 × 0
0 × 0 ×

 . (3.30)

It is noteworthy, that all of the elements of the first row of ŜPH are zeros, which
implies that charge conservation is guaranteed for the inter− and intra−valley
transitions. Moreover, Eqs. (3.27) and (3.28) clearly show that for different
parities of n and m, coefficients for both aνm and aν

′
m are zero.

3.2.3 Boundary Conditions

The moments equations need to be supplemented with suitable BCs which
describe the contacts. In this section, various BCs are projected onto the
Hermite polynomial bases and their performance in describing the contacts will
be compared later.
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Fixed Boundary Conditions

Using the fixed BCs, the distribution function is specified on the source and
drain boundaries. Given the equilibrium distribution function,

fνeq(z, k) = exp

(
− ~2k2

2mν
zz

−ενsub(z)+η

)
= γν(z) exp

(
−~2k2

2mν
zz

)
, (3.31)

the fixed boundary condition requires that

fνk (zS/D, k) = fνeq(zS/D, k) . (3.32)

Projection of (3.32) onto Hermite polynomials results in:

aνn(zS/D) = γνS/D
√
πδn,0 . (3.33)

In other words, in the matrix equation (3.21) the left9hand side is an identity
matrix for the source and drain grid nodes and the right9hand side vector is zero
everywhere except for the zeroth coefficient on the contacts.

Generation/Recombination Velocity

Projection of the generation/recombination BCs of (2.55) onto Hermite polyno-
mials is straightforward, and they are added to the first and last blocks of the
matrix equation. In the limit vGR → ∞, fixed BCs are recovered.

Thermal Bath Boundary Conditions

In the case of thermal bath BCs, the source and drain contacts are treated as
reservoirs in thermodynamic equilibrium, and only the fluxes injected into the
active region are specified. These BCs are better suited for handling highly
non−equilibrium distributions. However, their projection onto the Hermite
polynomials is more involved since the Heaviside functions limit the integrations
to only positive or negative wave numbers. Starting with

ΓνS{f} =
[
fνk (zS, k)Θ(−k) + feq(zS, k)Θ(k)

]
v(k) (3.34)

ΓνD{f} = −
[
fνk (zD, k)Θ(k) + feq(zD, k)Θ(−k)

]
v(k) , (3.35)

transformation of the distribution functions and subsequent expansion with the
nth Hermite polynomial gives:∫

ΓνS{g}Hn(u) du

=

√
2kBT

mν
zz

∫ 0

−∞
ugν(zS, u)Hn(u)ω(u) du+

√
2kBT

mν
zz

γνS

∫ ∞

0
uHn(u)ω(u) du
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=

√
2kBT

mν
zz

[
nHP∑
m=0

aνm(zS)

2mm!
√
π

∫ 0

−∞
uHm(u)Hn(u)ω(u) du+ γνS

∫ ∞

0
uHn(u)ω(u) du

]

=

√
2kBT

mν
zz

[
nHP∑
m=0

I−
n,ma

ν
m(zS) + γνS

√
πI+

n,0

]
(3.36)

∫
ΓνD{g}Hn(u) du

= −

√
2kBT

mν
zz

∫ ∞

0
ugν(zD, u)Hn(u)ω(u) du+

√
2kBT

mν
zz

γνD

∫ 0

−∞
uHn(u)ω(u) du

= −

√
2kBT

mν
zz

[
nHP∑
m=0

aνm(zD)

2mm!
√
π

∫ ∞

0
uHm(u)Hn(u)ω(u) du+ γνD

∫ 0

−∞
uHn(u)ω(u) du

]

= −

√
2kBT

mν
zz

[
nHP∑
m=0

I+
n,ma

ν
m(zD) + γνD

√
πI−

n,0

]
. (3.37)

The above definite integrals can be calculated analytically for different expansion
orders. Using the recursive formula

I ′+
n,m =

∫ ∞

0
Hn(u)Hm(u)ω(u) du

=

∫ ∞

0
(2uHn−1(u)− 2(n− 1)Hn−2)Hm(u)ω(u) du

= −2(n− 1)I ′+
n−2,m −Hn−1(0)Hm(0) +

∫ ∞

0

∂

∂u

(
Hn−1(u)Hm(u)

)
ω(u) du

= −2(n− 1)I ′+
n−2,m −Hn−1(0)Hm(0) + 2(n− 1)I ′+

n−2,m + 2mI ′+
n−1,m−1

= 2mI ′+
n−1,m−1 −Hn−1(0)Hm(0) , (3.38)

and the relation 2uHn(u) = 2nHn−1(u) + Hn+1(u), they can be obtained for
arbitrary values of n and m. Some of the results for I ′+

n,m are listed in Table 3.1.
As an example, for nHP = 3 we have:∫

ΓνS{g}H0(u) du =

√
2kBT

mν
zz

[
aν0(zS)

2
√
π

+
aν1(zS)

4
+
aν2(zS)

8
√
π

−
γνS
2

]
∫

ΓνS{g}H1(u) du =

√
2kBT

mν
zz

[
aν0(zS)

2
+
aν1(zS)√

π
+
aν2(zS)

4
+
aν3(zS)

12
√
π

−
γνS

√
π

2

]
∫

ΓνS{g}H2(u) du =

√
2kBT

mν
zz

[
aν0(zS)√

π
+ aν1(zS) +

5aν2(zS)

4
√
π

+
aν3(zS)

4
− γνS

]
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∫
ΓνS{g}H3(u) du =

√
2kBT

mν
zz

[
2aν1(zS)√

π
+

3aν2(zS)

2
+

3aν3(zS)

2
√
π

]
. (3.39)

Using the even/odd coupling in the box z ∈ [z1, z2] (see (3.19)), we can express
the odd coefficients ~ao(z1) in terms of the even ones ~ae(z1), ~ae(z2) and then add
the resulting BCs to the first block equations of (3.21). The coefficient terms for
the drain contact are obtained similarly and added to the last block equations of
(3.21).

(n,m) 0 1 2 3 4 5

0
1

2

1

2
√
π

0
−1

24
√
π

0
1

320
√
π

1 1√
π

1

2

1

4
√
π

0
−1

96
√
π

0

2 0
1√
π

1

2

1

4
√
π

0
−1

96
√
π

3 −2√
π

0
3

2
√
π

1

2

3

16
√
π

0

4 0
−2√
π

0
3

2
√
π

1

2

3

16
√
π

5 12√
π

0
−5√
π

0
15

8
√
π

1

2

Table 3.1: The definite integral I ′+
n,m =

1

2mm!
√
π

∫ ∞

0

Hm(u)Hn(u) exp
(
−u2

)
du.

3.3 Small Signal Analysis
Small signal analysis for the SSSC is straightforward. If we express the vector of
expansion coefficients as ~a(z, t) = ~aDC(z) + Re{~a(z)eiωt}, from (3.13) we get an
expression for the complex phasors

iω~a+ Â
∂~a

∂z
+ B̂DC~a = −∂B̂

∂ϕ
ϕ~aDC , (3.40)

which is an inhomogeneous differential equation due to B̂ depending on the small
signal potential through the electric field Fi+1⁄2 and the overlap integral in the
electron−phonon scattering term. Defining

D̂′
i+1⁄2(z) = Â−1(B̂DC + iωÎ)(z−zi+1⁄2) , (3.41)

the solution to (3.40) is given by

~a(z) = exp
(
−D̂′

i+1⁄2(z)
)
~a(zi+1⁄2) + ~aP(z) . (3.42)
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The second term in (3.42) is the particular solution for the inhomogeneous
equation, obtained by numerically calculating the following expression:

~ap(z) = exp
(
−D̂′

i+1⁄2(z)
)∫ z

zi+1⁄2

exp
(
D̂′
i+1⁄2(z

′)
)∂(−Â−1B̂)

∂ϕ
~aDC(z

′)ϕdz′

=

∫ z

zi+1⁄2

exp
(
Â−1(B̂DC + iωÎ)(z′ − z)

)∂(−Â−1B̂)

∂ϕ
~aDC(z

′)ϕdz′

=

[∫ 1

0
exp
(
D̂′
i+1⁄2(z)(1−α)

)∂D̂
∂ϕ

exp
(
D̂i+1⁄2(z)α

)
dα

]
~aDC(zi+1⁄2)ϕ

=: Ĥ(z)~aDC(zi+1⁄2)ϕ .

Now if we evaluate the solution at the grid points,(
~ae(zi)
~ae(zi+1)

)
=

(
P̂e exp

(
−D̂′

i+1⁄2
(zi)
)

P̂e exp
(
−D̂′

i+1⁄2
(zi+1)

))~a(zi+1⁄2) +

(
P̂eĤ(zi)

P̂eĤ(zi+1)

)
~aDC(zi+1⁄2)ϕ

=: M̂1~a(zi+1⁄2) + M̂2~aDC(zi+1⁄2)ϕ . (3.43)

the small signal quantity ~a(zi+1⁄2) can be expressed in terms of the small signal
even coefficients on the grid nodes, small signal potential and the stationary
solution:

~a(zi+1⁄2) = M̂−1
1

(
~ae(zi)
~ae(zi+1)

)
− M̂−1

1 M̂2~aDC(zi+1⁄2)ϕ , (3.44)

Hence, the final expression for the complete solution in terms of the even compo-
nents on grid nodes zi and zi+1 is derived:

~a(z) = exp
(
−D̂′

i+1⁄2(z)
)
M̂−1

1

(
~ae(zi)
~ae(zi+1)

)
+
[
Ĥ(z)−exp

(
−D̂′

i+1⁄2(z)
)
M̂−1

1 M̂2

]( P̂e exp
(
−D̂i+1⁄2(zi)

)
P̂e exp

(
−D̂i+1⁄2(zi+1)

))−1(
~ae,DC(zi)
~ae,DC(zi+1)

)
ϕ.

(3.45)

Equation (3.45) can be used to build a linear system of equations for the even
components of the small signal solution similar to the DC case.
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Chapter 4

Discretization in Phase Space

Transformation of the BE from wave number to energy causes several numerical
issues, especially in the case of a 1D k−space. Firstly, since the 1D density
of states goes to infinity at zero energy, any quantity plotted against gate or
drain biases will exhibit spurious discontinuities. This is due to the fact that
for a static grid (i.e. an H−grid which remains constant throughout the whole
computation of the stationary and small signal solutions) and any function h
which depends on the kinetic energy, the derivative of the box9integrated function
with respect to the potential vanishes for all boxes expect the lowest one on
which it is proportional to h(Hl), assuming l is the index of the lowest H−box
truncated by the subband energy. With an infinitesimal change in any ενsub(zi)
from one H−box to the next, this derivative exhibits a discontinuity from h(Hl)
to h(Hl+1) or h(Hl−1). This is a direct consequence of the H−transformation
and degrades the numerical quality of the small signal results. The problem
is not pronounced for the 3D k-space where both the density of states and
group velocity are zero at zero kinetic energy. In the case of 2D k−space with
a constant nonzero density of states, the discontinuities become smaller as the
energy space decreases (see e.g. [69, 141]). However, the problem is fatal for
the 1D density of states and will be addressed in Chapter 5. Furthermore, as
we move towards the ballistic limit, the distribution function can get strongly
asymmetric and discontinuous with respect to the wave number. This leads to
further problems with the usual stabilization schemes based on the maximum
entropy dissipation scheme and the H−transformation. Although these schemes
are useful in evaluating the performance of conventional devices and mobilities,
they fail at numerical analysis of quasi9ballistic phenomena such as plasma
resonances and a numerically robust solver for the BE is required for handling
the ballistic limit.

In order to solve the above mentioned problems, in this chapter the BE is
discretized directly in the phase space and the ballistic limit of the presented

73
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constant ∆k constant ∆εconstant ∆ε

k = 0−kmax kmax

Figure 4.1: The non-equidistant phase space grid. The grid nodes are shown by red dots.

Nk−1 Nk Nk+1 Nk+2index:

k = −∆k k = 0 k = ∆kwave number:

Figure 4.2: The phase space grid around k = 0.

N+NN+ nanowire FET is investigated. The particular focus is on demonstrating
a stabilization method, which is based on the method of characteristic curves
and matrix exponentials.

4.1 Discretization

4.1.1 Steady State Equation

The BE is discretized on a grid, which is the Cartesian product of the position
along the channel axis z and the axial wave vector k. An equidistant spatial grid

zi = (i− 1)∆z for i ∈ {1, · · · , nz} (4.1)

is introduced. In the k−space a nonuniform grid with constant ∆k near k=0 and
a ∆k at higher energies corresponding to a constant step in energy are chosen.
The k−grid has 2nk grid nodes, which are symmetrically distributed around zero
and the value zero itself is excluded from the grid. The jth box is given by
k ∈ [kj−1⁄2, kj+1⁄2] with its boundaries defined as

kj+1⁄2 =
kj + kj+1

2
for j ∈ {1, . . . , 2nk−1} ,

kj−1⁄2 =
kj + kj−1

2
for j ∈ {2, . . . , 2nk} . (4.2)

We start our formulation by considering the ballistic limit (W νν′(z; k|k′) = 0),
because this is the most critical case with respect to the stability. Assuming a
linear approximation for the subband energy ενsub(z) between the adjacent grid
nodes zi and zi+1, the force

F ν(zi+1⁄2) = −
ενsub(zi+1)− ενsub(zi)

zi+1 − zi
(4.3)
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zi zi+1

R̂L
kj

√
k22nk+1⁄2

−
(
Kν
i+1⁄2

)2 √
k2j +

(
Kν
i+1⁄2

)2
k2nk+1⁄2

Kν
i+1⁄2

Figure 4.3: Schematic representation of the characteristic curves for constant electric
force in [zi, zi+1] and the case ενsub(zi)>ε

ν
sub(zi+1) and k(zi)>0.

is constant in the box [zi, zi+1] and the characteristic curves for the distribution
function (ballistic electron path in the phase space) can be obtained. The
characteristics curves are defined as the functions z=z(k) in the z−k plane along
which the hyperbolic first order PDE

vνz (k)
∂

∂z
fνk (z, k) +

1

~
F ν(zi+1⁄2)

∂

∂k
fνk (z, k) = 0 (4.4)

becomes an ODE. For f = f(z(k), k), the rate of change of z along z = z(k) is
given by the chain rule,

df

dz
=
∂f

∂z
+

dk

dz

∂f

∂k
. (4.5)

If the characteristic curve satisfies the ODE

dk

dz
=

−mν
zz

~2k
F ν(zi+1⁄2) , (4.6)

then the rate of change of distribution function along the characteristic curve
z=z(k) is zero. Equation (4.6) yields:

z =
~2

2mν
zzF

ν(zi+1⁄2)
k2 + z0 , (4.7)

which is the exact solution to (4.4). Equation (4.7) shows that the particle
trajectories do not intersect, and if we follow the ballistic movement of electrons,
all of the electrons within the volume element dk at position z will end up on
the corresponding volume element dk′ at position z′=z + dz. In the discretized
problem, this suggests simply moving the distribution fν(zi, kj) to the neighboring
grid nodes (zi′ , kj′) and does not require computation but just rearrangement
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of the allocated memory. In other words, zi and kj can be interpreted as the
“initial” position and wave number of an electron. It is noteworthy that (4.7) is
the equation of parabolas due to the force term being constant inside the box.
If F ν(zi+1⁄2) is positive, the electrons are accelerated in the positive z9direction
and for k > 0 they move from zi to zi+1 (see Fig. 4.3). For an electron in state ν
starting at zi with k(zi), the wave number at position zi+1 is calculated as

k(zi+1) =

√
k(zi)2 +

(
Kν
i+1⁄2

)2
, (4.8)

where we have:

Kν
i+1⁄2 =

√
2mν

zz

∣∣ενsub(zi+1)− ενsub(zi)
∣∣

~2
. (4.9)

Thus, k(zi+1) ≥ Kν
i+1⁄2

holds. For electrons starting at zi+1 and moving into the
negative direction we get

k(zi) = −
√
k(zi+1)2 −

(
Kν
i+1⁄2

)2
. (4.10)

The electrons can pass the barrier only, if their kinetic energy is larger than
ενsub(zi)− ενsub(zi+1) and thus k(zi+1) ≤ −Kν

i+1⁄2
(see the lower shaded area in

Fig. 4.4). If this is not the case (i.e. −Kν
i+1⁄2

≤ k(zi+1) ≤ 0) the electron is
reflected and returns to position zi+1 with its wave number reversed sign as
shown by the red line in Fig. 4.4.

The change in the wave number depends only on the difference in the subband
energy and not on the exact force profile between both grid nodes. We can
therefore assume that the subband energy is piecewise constant and changes
abruptly at position zi+1⁄2 = (zi+1+zi)/2, as shown in Fig. 4.5. Due to the
Liouville theorem [180] the electron flux at position zi+1⁄2 on the left9hand side
of the step must equal the one on the right9hand side. Using the subscripts L
and R to indicate quantities on the left9hand side and right9hand side of the
step, respectively, for kL > 0 we have:

vνz (kR)f
ν
R(zi+1⁄2, kR) dkR = vνz (kL)f

ν
L(zi+1⁄2, kL) dkL , (4.11)

where the wave numbers kL and kR are related using (4.8):

kR =

√
k2L +

(
Kν
i+1⁄2

)2
. (4.12)

Thus, the distribution function is no longer continuous and its values on the left
and right of the step have to be distinguished. For kR<−Kν

i+1⁄2
the electrons

can pass the barrier from right to left with

kL = −
√
k2R − (Kν

i+1⁄2
)2 (4.13)
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R̂R
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Kν
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−Kν
i+1⁄2

Figure 4.4: Schematic representation of the characteristic curves for constant electric
force in [zi, zi+1] and the case ενsub(zi)>ε

ν
sub(zi+1). The electrons at zi+1 with k(zi+1) ≤

−Kν
i+1⁄2

cannot pass the barrier and are reflected back to zi+1 with their wave numbers
reversed sign (red curve). Moreover, the electrons that exceed the maximum wave
number in moving from zi to zi+1 are reflected back to zi (blue curves). Although
transition from zi to zi+1 and vice versa changes the phase space volume element for
nonzero electric field (gray shaded areas), reflection does not change the volume element.

and for −Kν
i+1⁄2

<kR<0, the electrons are reflected:

fνR(zi+1⁄2, kR) = fνR(zi+1⁄2,−kR) . (4.14)

In order to obtain a discrete system of equations, the above relations are inte-
grated on the sub−intervals of the phase space. For better legibility, integration
over [kj−1⁄2, kj+1⁄2] is shown by

∫
∆kj

. We also use the selection function Ωj for
the jth box, which is one inside the jth box and zero outside:

Ωj(k) =

{
1 k ∈ [kj−1⁄2, kj+1⁄2]

0 otherwise
(4.15)

The distribution functions are assumed to be piecewise constant with the value
fν,j(z) for the jth box

fν(z, k) ≈
2nk∑
j=1

fν,j(z)Ωj(k) . (4.16)

Moreover, we distinguish the distribution function on the left and right side of
the steps in subband energy using the following notation:

fν,jL,i+1⁄2
= fν,jL (zi+1⁄2) , fν,jR,i+1⁄2

= fν,jR (zi+1⁄2) . (4.17)
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ενsub(z)

Figure 4.5: The subband energy is assumed to be piecewise constant, and changes at
the intermediary z−grid points.

Now, we can map the particle flux conservation onto the discrete k−grid using
box integration. This allows to discretize (4.11) together with (4.14) for j >nk
(i.e. positive wave numbers):

fν,jR,i+1⁄2

∫
∆kj

vνz (kR) dkR =

2nk∑
j′=nk+1

fν,j
′

L,i+1⁄2

∫ Kν,j
max

Kν,j
min

vνz (kL)Ωj′(kL) dkL (4.18)

+ fν,2nk−j+1
R,i+1⁄2

∫
∆kj

vνz (kR)Θ
(
Kν
i+1⁄2−kR

)
dkR .

with

Kν,j
min =

√
max

{
k2j−1⁄2

− (Kν
i+1⁄2

)2, 0
}
, (4.19)

Kν,j
max =

√
max

{
k2j+1⁄2

− (Kν
i+1⁄2

)2, 0
}
. (4.20)

The first term on the right−hand side of (4.18) describes the flux of electrons
from the left to the right and the second term accounts for the electrons reflected
at the step. If we assemble the nk values of the distribution function for positive
wave numbers into a vector on the left side of the step ~fνLp,i+1⁄2

, on the right
side ~fνRp,i+1⁄2

and for negative wave numbers ~fνLn,i+1⁄2
, ~fνRn,i+1⁄2

, we can formulate
(4.18) using matrices

D̂ν
p
~fνRp,i+1⁄2 = R̂L

ν
i+1⁄2

~fνLp,i+1⁄2 + R̂R
ν
i+1⁄2

~fνRn,i+1⁄2 , (4.21)

where the diagonal nk×nk matrix D̂ν
p is invertible and does not depend on the

position in real space[
D̂ν

p

]
jj′

=

∫
∆kj+nk

vνz (k) dk δj,j′ for j, j′ ∈ {1, . . . , nk} . (4.22)

The other two matrices are[
R̂L

ν
i+1⁄2

]
jj′

=

∫ Kν,j+nk
max

Kν,j+nk
min

vνz (k)Ωj′+nk(k) dk , (4.23)
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[
R̂R

ν
i+1⁄2

]
jj′

=

∫
∆kj+nk

vνz (k)Θ
(
Kν
i+1⁄2 − k

)
dk δj′,nk−j+1 . (4.24)

Flux conservation for particles moving from right to left results with (4.11) and
(4.13) in

D̂ν
n
~fνLn,i+1⁄2 = L̂R

ν
i+1⁄2

~fνRn,i+1⁄2 + L̂L
ν
i+1⁄2

~fνLp,i+1⁄2 . (4.25)

The second term on the right−hand side is due to the assumption of a maximal
positive wave number k2nk+1⁄2. All of the particles that exceed this value while
moving from left to right, i.e.√

k2L + (Kν
i+1⁄2

)2 > k2nk+1⁄2 , (4.26)

are instead reflected to ensure flux conservation (see the blue curve in Fig. 4.4).
A similar set of equations can be formulated for a positive step in energy.

Under stationary conditions the ballistic distribution function does not depend
on position for a constant subband energy and within a box of the real space
grid z ∈ [zi−1⁄2, zi+1⁄2] we get

~fνLp(zi+1⁄2) = ~fνRp(zi−1⁄2) =: ~fνp,i (4.27)
~fνLn(zi+1⁄2) = ~fνRn(zi−1⁄2) =: ~fνn,i . (4.28)

Due to the thermal bath BCs the distribution function of the incoming particles
is given by the equilibrium distribution [11]

~fνp,1 =
~fνp,eq ,

~fνn,nz
= ~fνn,eq . (4.29)

This closes the system of equations and a unique solution can be obtained for
~fνp,i and ~fνn,i as long as the subband energy does not have a minimum within
the device. Since the Pauli exclusion principle occurs in the BE only in the
scattering integral, it could be included in the ballistic case by using Fermi−Dirac
distribution functions instead of Boltzmann distributions in the BCs.

The solution becomes unique for arbitrary subband profiles (i.e. with several
minima or maxima) if scattering is taken into account, because scattering couples
all states for a given position. Since scattering couples different subbands and
valleys, the index ν is dropped and the vector of the distribution function contains
from now on the distribution functions for all values of ν. Due to the assumption
of a piecewise constant subband energy the force is zero within a box of the real
space. Integration of the BE over a box in k−space yields(

D̂p 0̂

0̂ D̂n

)
︸ ︷︷ ︸

=D̂v

∂

∂z

(
~fp(z)
~fn(z)

)
︸ ︷︷ ︸

=~f(z)

+

(
Ŝpp Ŝpn
Ŝnp Ŝnn

)
︸ ︷︷ ︸

=Ŝ(z)

(
~fp(z)
~fn(z)

)
= ~0 (4.30)
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with the scattering integral[
Ŝ(z)

]νν′
jj′

=
Lsys
2π

∫
∆kj

∫
∆kj′

W νν′(z; k|k′) dk′ dk

−
Lsys
2π

∑
ν′′

∫
∆kj

∫ ∞

−∞
W ν′′ν(z; k′′|k) dk′′ dk δν,ν′δj,j′ . (4.31)

Due to scattering the solution depends on the z−coordinate within a box of the
real space, even if we assume that the scattering integral itself does not depend
on position within the box. The solution within the ith box of the real space
grid is calculated by a matrix exponential [181]:

~f(z) = exp
(
(zi − z)D̂−1

v Ŝ(zi)
)
~f(zi) . (4.32)

With the abbreviation Ĉi(z) = (zi − z)D̂−1
v Ŝ(zi) the solution at the boundaries

of the ith box in real space is

~fL,i+1⁄2 = exp
(
Ĉi(zi+1⁄2)

)
~f(zi) (4.33)

~fR,i−1⁄2 = exp
(
Ĉi(zi−1⁄2)

)
~f(zi) . (4.34)

These equations replace (4.27), (4.28) of the ballistic case, for which they repro-
duce the previous case. Thus, it is possible to calculate the distribution function
on the left and right9hand side of the steps based on the distribution function on
the ith grid node and a complete set of equations can again be assembled. The
matrix exponential can be calculated with the methods described in Ref. [181],
but for large matrices the numerical accuracy might not be sufficient. In this case
Expokit together with an iterative solver, which requires only multiplications
of the matrix exponential with a vector, yields results with a higher precision
and is more CPU efficient [182]. If the Pauli exclusion principle were included in
the scattering integral, (4.30) would become nonlinear and could in principle be
integrated by a sophisticated ODE−solver.

4.1.2 Small Signal Analysis

Once the DC solution has been evaluated, small signal analysis can be carried out
through linearization of the BE. For small signal analysis we assume the SSSC and
the time dependence of the solution quantities is given by x(t)=xDC+Re{xeiωt},
where xDC is the large signal stationary solution and x the complex phasor of the
small signal solution. The time derivative in the BE can therefore be replaced
by iω and within a box of the spatial grid, the linearized BE has two additional
terms compared to the stationary case (4.30)

iωD̂k
~f(z) + D̂v

∂ ~f(z)

∂z
+ Ŝ ~f(z) = −Ŝ ~fDC(z) . (4.35)
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D̂k is a diagonal matrix, which is due to box integration in k−space and contains
the k−space box volumes[

D̂k

]νν′
jj′

= (kj+1⁄2 − kj−1⁄2)δν,ν′δj,j′ . (4.36)

Since the scattering integral depends on the subband energies and wave functions
(e.g. through the overlap integral), linearization of the scattering integral yields
the term on the right9hand side of (4.35). The corresponding derivatives are
calculated by the chain rule and stationary perturbation theory, as explained
in section 2.3. With the abbreviation Ĉ ′

i(z) = (zi − z)D̂−1
v (Ŝ(zi) + iωD̂k) the

solution of the small signal BE is obtained

~f(z) = exp
(
Ĉ ′
i(z)

)
~f(zi) +

∫ 1

0
exp

(
Ĉ ′
i(z)(1− α)

)
Ĉi(z) exp

(
Ĉi(z)α

)
dα ~f(zi) .

(4.37)
With this result the values of the small signal distribution function at the bound-
aries of the real−space box can be calculated by numerical means. Linearization
of (4.21) and (4.25) yields

D̂ν
p
~f
ν

Rp,i+1⁄2
= R̂L

ν
i+1⁄2

~f
ν

Lp,i+1⁄2
+ R̂L

ν
i+1⁄2

~fνLp,i+1⁄2

+ R̂R
ν
i+1⁄2

~f
ν

Rn,i+1⁄2
+ R̂R

ν
i+1⁄2

~fνRn,i+1⁄2 , (4.38)

D̂ν
n
~f
ν

Ln,i+1⁄2
=L̂R

ν
i+1⁄2

~f
ν

Rn,i+1⁄2
+ L̂R

ν
i+1⁄2

~fνRn,i+1⁄2

+ L̂L
ν
i+1⁄2

~f
ν

Lp,i+1⁄2
+ L̂L

ν
i+1⁄2

~fνLp,i+1⁄2 . (4.39)

These equations together with the small signal PE and the small signal version
of the boundary conditions (4.29)

~f
ν

p,1 =
~0 , ~f

ν

n,nz
= ~0 (4.40)

can be used to assemble a linear system of equations. For the calculation of the
small signal terminal currents and admittance parameters, a formulation of the
Ramo−Shockly theorem is used that is consistent with the presented numerical
framework. For further details the reader is referred to [81,183].
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Chapter 5

Results

In this chapter, the developed deterministic PE/SE/BE solver is applied to
the GAA nanowire nFET of Fig. 2.1, and the simulation results are presented.
Section 5.1 introduces some of the physical and discretization parameters that are
used throughout this chapter. In Sect. 5.2 the stationary solutions are presented
and the DC performance of the device is evaluated in terms of its transfer
characteristics, subthreshold behavior and the well−known output characteristics.
These curves paint an almost complete picture of the device’s static behavior.
Section 5.3 gives the small signal characterization of the transistor at various
operating DC biases. The focus is on the calculation of admittance parameters,
from which many important figures of merit such as the cut−off frequency,
maximum oscillation frequency, and stability factor are obtained and discussed.
The RF noise behavior of the device in terms of the power spectral densities of
terminal currents is investigated in Sect. 5.4. The usual figures of merit consisting
of the drain and gate excess noise factors, the cross−correlation as well as noise
suppression factors are presented. The results of Sects. 5.2 through 5.4 are
obtained using the discretization of the BE in H−space. In Sect. 5.5 the ballistic
limits of the device are investigated using the proposed discretization in k−space,
with comparisons to the results H−space discretization and moments equations.

5.1 Simulation Parameters
The nanowire N+NN+ FET of Fig. 2.1 is simulated with different gate lengths
of LG = 10nm, 22 nm, and 100 nm. The source and drain regions are 10 nm
long each, and a rectangular cross−section of 5 nm×4 nm is assumed1. The gate
oxide thickness is tox=1nm, and the gate contact covers the complete channel

1The cross−section of the nanowire needs to be smaller than 6 nm in each direction so that
the transverse electric field penetrates the entire volume and effectively depletes the channel in
the OFF−state [131,184].

83
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length. Hence, the expressions “gate length” and “channel length” may be used
interchangably. The shades of color in the silicon region of Fig. 2.1 indicate
the donor doping concentration, with N+

D =1×1020 cm−3 for the source/drain
extensions and ND =1×1018 cm−3 for the channel region. The high values of
doping (well above the Mott criteria) in the source and drain regions are necessary
to ensure high values of ION, whilst the GAA architecture aims for a low IOFF.
The channel N+N junctions are abrupt and no gate to source/drain overlap is
considered. A silicon crystal with a 〈100〉 orientation is used in this work.

In order to correctly calculate the first−order perturbations in constructing
the Newton-Raphson system, we need to solve the SE for all of the subbands.
However, for a nanowire cross-section of 5 nm×4 nm, we can safely limit ourselves
to the 5 lowest subbands in the BE. Regarding the H-grid, a grid spacing of
∆H=2.6meV is chosen in order to resolve also the phonons with lower energies..
In order to speed up the simulations, the electrostatic potential obtained from
the solution of the drift−diffusion equation is used as an initial condition for the
BE solver. The Gummel iterations converge to the error of 1×10−3V within
3−8 iterations (depending on the bias), and then the Newton−Raphson approach
converges to 1×10−12V in 4−5 steps.

5.2 Stationary Results

We shall first look at the steady state results, which are obtained for time invariant
boundary conditions. The voltages VGS and VDS, defined relative to the VS=0V
on the source contact, are applied on the gate and drain contacts, respectively.
Figure 5.1 demonstrates the IDS−VGS characteristics for devices with different
gate lengths biased at VDS=0.5V. The voltage at gate terminal is varied from
0 to 0.85V, and the results are plotted on both linear and logarithmic scale.
The threshold voltage VTH is defined by the constant−current method at the
reference current of IDS=1 µA. We have VTH=0.575V, 0.627V, and 0.699V for
LG=10nm, 22 nm, and 100 nm, respectively. The transconductance of the device
can be estimated by taking the ratio of the change in drain current with respect
to the change in VGS. For the 10 nm device, the maximum transconductance of
89.5µS is obtained at VGS=0.81V (see Fig. 5.1).

Another important metric is the subthreshold slope (SS), defined as the
inverse of the slope of log10(IDS) versus VGS below the threshold voltage and
represents the sharpness of the ON−OFF switching of a transistor. While the
typical MOS transistor has a subthreshold slope of about 80mV/dec and the best
trigate SOI devices have SS≈ 63mV/dec, the GAA nanowire structure gets even
closer to the theoretical best value of SS=(kBT/q) ln(10)=60mV/dec at room
temperature. The near−ideal subthreshold slope was also experimentally observed
in e.g. [129,185,186]. Even for the 10 nm device, the GAA structure combined
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Figure 5.1: Variation of the drain current IDS (left) and transconductance (right) as
a function of the gate voltage VGS at VDS = 0.5V. The simulations are performed for
LG =10nm (black), LG =22nm (red), and LG =100 nm (blue).

with the ultrathin cross−section still shows acceptable gate controllability and
SS ≈ 68.3mV/dec is obtained. Defining the OFF−current as the drain current
for VGS =VTH−0.5V and VDS =0.5V, the ON/OFF current ratio changes from
4.05× 107 to 2.08× 107 as the channel length is decreased from 100 nm to
10 nm. It is noteworthy that the IDS−VGS characteristics of Fig. 5.1 span over
10 decades of magnitude and the developed solver is able to accurately simulate
the deep−subthreshold regime. Such simulations are practically impossible with
the stochastic methods because the CPU time of an MC simulation is inversely
proportional to current density, whereas in the presented solver the CPU time is
almost independent of the current.

In Fig. 5.2 (left) the electron concentration under the gated region is plotted
along the x−direction (y=3nm). The results are shown for different values of VGS
ranging from pinch−off (e.g. VGS=0.5V) to flatband conditions2 (VGS ≈ 0.7V).
As expected, the electron density increases by increasing VGS and the channel
goes from volume inversion into partial depletion and subsequently into a flatband
condition. It is important to note that the conduction path is located near the
center of the nanowire and not at the silicon/oxide interface. This is due to the
small cross−section, which effectively pushes the carriers away from the boundaries
of the potential well. The depleted part of the semiconductor acts as a capacitance
in silicon connected to the gate oxide capacitance, degrading the gate−channel
coupling. For VGS>VTH, the current flow is distributed throughout the entire

2In junctionless nanowire FETs, the device is said to be in flatband condition when the
electric field in the direction perpendicular to the current flow is zero at the center of the
cross−sectional area [129].
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Figure 5.2: Electron density under the gated area of the 22 nm device along the x−axis
for different VGS values (left). Doping profile and the electron density at VDS = 0.5V
and different VGS values (right).

volume of the active region. Increasing VGS beyond the flatband voltage creates
conduction channels in the close proximity of silicon/oxide interface and the
device is said to be operating in the surface conduction regime. Fig. 5.2 confirms
that our simulation framework is able to capture the underlying conduction
mechanism in junctionless nanowire devices, as discussed in [128,185,187]. The
N+NN+ FETs are normally designed to operate in flatband condition in the
ON−state [129]. This is because in the surface conduction regime, electrons are
susceptible to interactions with the interface nonidealities, traps, etc. Therefore,
throughout this section and Sects. 5.3 and 5.4 we have chosen VGS=0.7V and
VDS=0.5V as the ON−state of the simulated devices3.

Figure 5.2 (right) shows the stationary electron density and the doping profile
integrated on the confinement cross−section along the transport direction. The
results are presented for VDS =0.5V and different VGS values. The numerical
approach is clearly robust and produces very smooth results for arbitrarily
sharp gradients of the potential profile. Although the charge neutrality is
satisfied in the N+ source/drain extension regions, the electron density near
the source and drain contacts deviates from its equilibrium value due to the
finite generation/recombination velocity and nonzero current flowing through
the device. This small change is not discernible in Fig. 5.2.

Figure 5.3 shows the calculated IDS−VDS characteristics for different VGS

3The bulk conduction mechanism also turns out to improve device’s long−term reliability.
It was shown in [188, 189] that N+NN+ trigate transistors with SiO2/HfO2 dielectric stacks
have a lower hot carrier degradation compared to their inversion−mode counterparts.
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Figure 5.3: Stationary drain current IDS vs. drain bias VDS at different VGS values.
Simulations are performed for the 10 nm device (left) and the 100 nm device (right).
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Figure 5.4: Subband energy profile for the energetically lowest subband of the 100 nm
device. The results are for VGS = 0.7V and different VDS values. The height of the
energy barrier does not change by changing the drain bias (right).

values. The characteristic curves of the simulated N+NN+ structure are re-
markably similar to those of a regular MOSFET although the latter uses an
inversion layer and reverse−biased junctions for turning the channel on and off.
Hence, the simulated device can provide full CMOS functionality. While the
output current is larger for shorter devices due to the proportionality of channel
resistance and channel length, the 10 nm device does not saturate at higher drain
bias. The reason is shown in Figs. 5.4 and 5.5, where the subband energy of the
energetically lowest state is plotted for VGS=0.7V and different drain biases. As
the drain bias increases, the subband energy on the drain side decreases which
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Figure 5.5: Subband energy profile for the energetically lowest subband of the 10 nm
device. The results are for VGS =0.7V and different drain biases, VDS =0V (dashed),
VDS = 0.1V (solid black), VDS = 0.3V (red), and VDS = 0.5V (blue). DIBL is more
pronounced compared to the 100 nm device (right).
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Figure 5.6: Drain current IDS vs. gate voltage VGS for the 22 nm device at VDS =0.05V
(red) and VDS =0.5V (black).

can pull down the potential barrier at the source/channel homojunction, leading
to an increase in IDS. The 10 nm device shows to be strongly affected by this
drain−induced barrier lowering (DIBL) effect, whereas the 100 nm device exhibits
much better gate control because the drain side of the channel is too far from
the top of the potential barrier and cannot influence the barrier’s height. DIBL
is usually quantified as the ratio of the variation of VTH to the variation of the
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drain voltage (see Fig. 5.6):

DIBL =
VTH

∣∣
VDS=V1

− VTH
∣∣
VDS=V2

V2 − V1
. (5.1)

For V1=0.05V and V2=0.5V, we get DIBL values of 60mVV−1 and 13.3mVV−1

for the 10 nm and 100 nm device, respectively.
It is also useful to look at the microscopic distribution of charge carriers

inside the device. Fig. 5.7 shows the distribution function for ν = (1, 1) at the
source and drain contacts when the transistor is under high bias VGS = 0.7V
and VDS=0.5V. Near the source contact, the distribution function follows the
expected Fermi−Dirac distribution whereas a second peak at higher energies is
added to the Fermi−Dirac distribution of the drain contact. This peak is due to
the incoming electrons from the source side, which are subject to phonon cascade
due to inelastic scattering mechanisms. The high energy peak highlights the
ballistic component of the transport, and its magnitude decreases by increasing
LG.
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Figure 5.7: Distribution function f (1,1)(z,H) at the source and drain ends of the
simulated devices.
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5.3 Small Signal Results

In order to evaluate the performance of junctionless nanowire FETs in circuits,
investigation of their dynamic response is also necessary. Although several
works [190–194] have developed small signal models for various multigate N+NN+

devices, the proposed models are usually validated by TCAD simulations based
on the drift−diffusion transport mechanism. Small signal analysis based on the
BE can provide higher accuracy for the future models. In this section, the results
of our small signal simulations are presented and several ac figures of merit are
compared for the simulated devices.

Figures 5.8 and 5.9 show the calculated admittance parameters of the 22 nm
device for a common−source configuration biased at VGS=0.7V and VDS=0.5V.
The results are smooth over frequency, and can be verified at f =0 using the
steady state characteristics of Sect. 5.2. For f <1THz, the imaginary parts of
the admittance parameters represent the capacitive effects and change linearly
with the frequency, whereas the real part of the gate self−admittance changes
quadratically with the frequency since the gate current only has a displacement
component and oxide tunneling is not included. The real part of the drain
self−admittance is positive for all frequencies and nearly constant for frequencies
up to 100GHz. At f = 27.5THz, the drain self−admittance peaks due to a
plasma resonance caused by the inductive effect of electrons’ finite mass and the
capacitance of the lowly doped region [159]. Increasing the electron density in
the channel shifts this resonance peak to lower frequencies. The sharp extremum
in Fig. 5.8 is due to Re{Y DG} changing sign at 1.73THz. Note that while the
admittance parameters can be easily computed for the entire frequency range,
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Figure 5.8: Real and imaginary parts of Y GG (left) and Y DG (right) vs. frequency for
the 22 nm device biased at VGS = 0.7V and VDS = 0.5V.
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Figure 5.9: Real and imaginary parts of Y GD (left) and Y DD (right) vs. frequency for
the 22 nm device biased at VGS = 0.7V and VDS = 0.5V.
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Figure 5.10: Absolute value of the admittance parameters of the 22 nm device versus the
gate bias at equilibrium (left), and at VDS = 0.5V (right). Simulations are performed at
f =10THz.

the results are not predictive of the device’s behavior for f >10THz, since the
transistor is then operating in the UV/visible frequency range and the wave
energies are high enough to excite carriers into higher subbands. The physics of
such phenomena is not included in this work.

In Fig. 5.10 the admittance parameters are calculated for different gate
voltages and VDS=0.5V. As mentioned before, the calculated small signal results
suffer from numerical artifacts due to H−transformation and show discontinuities
whenever the subband profile crosses from one energy box to another leading to
severe changes in the derivatives with respect to the potential. This deficiency
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Figure 5.11: Small signal model of the N+NN+ nanowire FET [191].

is more evident in the non−equilibrium results for VGS > VTH (see Fig. 5.10),
but generally shows when plotting any small signal quantity (e.g. capacitances,
cut−off frequency, stability factor) versus the contact biases. In this work, the
effect is reduced by choosing a finer H−grid and slightly changing the density
of states so that it does not diverge at the subband minimum. Discretization
in phase space does not suffer from such discontinuities. At VGS = 0.7V, the
magnitude of Y DD decreases from 66.4µAV−1 to 1.09 µAV−1 when the drain
bias is increases to VDS = 0.5V which shows the saturation of the current. Also,
the magnitude of Y GD decreases from 1.63µAV−1 to 0.49µAV−1 due to the
increased lateral field and velocity overshoot, which reduces the transit time of
electrons in the gated area.

Before continuing further with the small signal and noise analysis of the
devices, we have to make sure that the numerical scheme satisfies reciprocity
under equilibrium conditions for the entire frequency range because our small
signal results cannot be more accurate than the error we find in the reciprocity.
Moreover, since the calculation of noise involves the same transfer functions, the
accuracy of the admittance parameters is expected to set an upper limit for the
accuracy of the noise results. The relative error of reciprocity, defined as

Erec =
|Y GD − Y DG|
|Y GD|+ |Y DG|

(5.2)

is calculated for different frequencies and VGS values under equilibrium condition.
In all the simulated cases, this error is less than 10−3 and the techniques in
Sect. 2.6 reproduce the expected symmetry of small signal admittance parameters
at equilibrium. We also observe that changing the spatial and energy grid spacing
does not affect the reciprocity of the device. In addition, by checking the positive
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Figure 5.12: CGD (dashed) and CGS (solid) capacitances as a function of VGS (left) and
VDS (right) calculated at f = 10GHz. The simulations are performed for LG =10nm
(black), LG =22nm (red), and LG =100 nm (blue).

definiteness of Im{Ŷ } for all frequencies and simulation parameters we can
confirm that the simulated device is passive under equilibrium conditions. Here,
the admittance matrix Ŷ is defined as

Ŷ =

(
Y GG Y GD
Y DG Y DD

)
. (5.3)

A simplified small signal equivalent circuit for the N+NN+ nanowire FETs
is shown in Fig. 5.11, which helps in developing a crude intuition into the
important device parameters and can be used to model the device in a complete
electronic circuit. In this equivalent circuit, RS and RD are the source and drain
resistances, respectively. C(E)

GS and C(E)
GD are extrinsic gate−source and gate−drain

capacitances which are closely linked to the fabrication process, whereas gds
and gm are intrinsic source−drain conductance and transconductance. RGS
and RGD are distributed channel resistances, and CGS and CGD are intrinsic
gate−source and gate−drain capacitances, respectively. Under the assumptions
ω2R2

GSC
2
GS�1, ω2R2

GDC
2
GD�1, and ω2τ2�1, the admittance parameters can

be approximated as

Y GG ≈ ω2(RGSC
2
GS +RGDC

2
GD) + iω(CGS + CGD) (5.4)

Y GD ≈ −ω2RGDC
2
GD − iωCGD (5.5)

Y DG ≈ gm(1 + τ)− ω2RGDC
2
GD − iωCGD (5.6)

Y DD ≈ gds + ω2RGDC
2
GD + iω(CSD + CGD) (5.7)

after the extrinsic capacitances and resistances (parasitics) are de-embedded.
Hence, various elements in the equivalent circuit of Fig. 5.11 can be extracted
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and VDS = 0.5V. The simulations are
performed for LG =10nm (black), LG =
22nm (red), and LG =100 nm (blue).

from the real and imaginary parts of the admittance parameters. As an example,
the calculated gate−source and gate−drain capacitances are extracted as

CGD = − Im{Y GD}
ω

, CGS =
Im{Y GD + Y GG}

ω
(5.8)

and plotted in Fig. 5.12. The results are shown as a function of VGS (for
VDS = 0.5V), and as a function of VDS (for VGS = 0.7V). For VGS < VTH, the
depletion region in the channel extends beyond the edges of the gate to some
distance inside the source and the drain (see Fig. 5.2). The extension of the
depletion region is larger in the drain side of the channel and CGD is strongly
reduced for large VDS > 0 (i.e., when the device is operating in the saturation
regime). This makes CGS the main capacitive component for the determination
of dynamic figures of merit. At VGS>VTH, this capacitance begins to saturate
to the oxide capacitance due to surface potential pinning in the gated area. As
for CGD, the curves tend to constant values for VDS >VDS,sat (about 0.2V for
the simulated device) because the channel is depleted on the drain side and VGD
does not make it conducting. Since our simulator considers the 3D electrostatics
and quantum capacitances due to quantization of energy subbands, it can be
effectively used for predicting various model parameters for devices with different
cross−sectional dimensions, oxide thickness, and doping concentrations.

Considering the target of high frequency electronics, the cut−off frequency
(fT) and the maximum oscillation frequency (fmax) are the most widely used
performance indicators. As the signal frequency applied to the gated N+NN+

structure increases, the charging of gate capacitance by the drain current gets
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Figure 5.15: Cut-off frequency (solid) and maximum oscillation frequency (dashed) at
VGS = 0.7V and VDS = 0.5V. The simulations are performed for LG =10nm (black),
LG =22nm (red), and LG =100 nm (blue).

suppressed and the device loses its current gain due to the corresponding RC
delay. The cut−off frequency is defined as the frequency for which the magnitude
of the small signal current gain (HDG) is reduced to unity, i.e.

|HDG(fT)| =
∣∣∣∣Y DG
Y GG

∣∣∣∣ = 1 . (5.9)

On the other hand, the maximum oscillation frequency is defined as the frequency
for which the magnitude of the maximum unilateral power gain,

MUG =
|Y DG − Y GD|2

4 (Re{Y GG}Re{Y DD} − Re{Y GD}Re{Y DG})
, (5.10)

becomes unity. The values of fT and fmax can be obtained by extrapolating the
small signal current gain and the unilateral power gain to the unity−gain points
(i.e. intersection with the 0 dB line) considering they decrease with −10 dB/dec
and −20 dB/dec, respectively. That is, for the arbitrary frequency f0�fT, we
have4:

fT ≈ |HDG(f0)|f0 , fmax ≈
√
U(f0)f0 . (5.11)

As shown in Figs. 5.13 and 5.14, the curves of HDG and MUG exhibit the theo-
retically expected slope, and (5.11) gives a sufficiently accurate approximation.
In Fig. 5.15, the quantities fT and fmax are plotted versus VGS for devices of
different gate lengths. They initially increase in the subthreshold regime, and

4The frequency f0 needs to be chosen so that the admittance parameters are above the
numerical precision. Here, f0=1MHz is considered for the extrapolations.
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Figure 5.16: Rollet factor K versus frequency for devices of different LG (left), fK versus
VGS for devices of different LG (right).

after VGS reaches the threshold voltage, they start to saturate. The initial in-
crease of fmax is driven by increasing IDS, and then, it slightly decreases due
to larger gate−drain capacitance at higher gate bias which masks the improve-
ment brought by the increased gm. At VGS = 0.7V and VDS = 0.5V, we get
fT = 820GHz, fT = 330GHz, and fT = 24.5GHz for gate lengths of 10 nm,
22 nm, and 100 nm, respectively. It must be noted that these values correspond
to the de-embedded device, and extrinsic elements limit the aforementioned fT
and fmax values significantly, especially when the gate length is very small.

Our simulations show good fmax/fT ratios (higher than 3 for the 10 nm device
and at least one order of magnitude for longer channels) in a large VGS range.
Since fT and fmax are related to the speed and the power gain of a transistor,
respectively, it is important that this ratio is as high as possible in order to
realize high-power operations at high frequencies. Another important aspect
in the overall analysis of a transistor is to identify its potential stability. This
may be achieved by calculating the Rollet stability factor K, which is computed
from the obtained admittance parameters and specifies whether the device is
unconditionally stable or conditionally stable [195]. Assuming Re{Y GG} > 0 and
Re{Y DD} > 0 which is satisfied across the whole frequency range (see Fig. 5.8),
the transistor is unconditionally stable if K > 1 for all frequencies. Otherwise, it
is only conditionally stable and might lead to oscillations for some combination
of generator and load admittances. The Rollet stability factor is given by [195]

K =
2Re{YGG}Re{YDD} − Re{YGDYDG}

|YGDYDG|
, (5.12)

and is plotted in Fig. 5.16 for different gate lengths. The results show that K<1
for frequencies below some fK (shown as a function of VGS in Fig. 5.16), and the
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simulated devices are not unconditionally stable.
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5.4 Noise Results
While a fair amount of the published literature has been dedicated to the static
and dynamic performance of junctionless nanowire structures, little work has
been published related to their RF noise behavior. In the past decades, several
publications reported dramatic enhancement of the thermal noise in submicron
devices compared to the long−channel theory [145,196,197], and the presented
results call for more advanced models of noise in short channels and novel
architectures. This is especially the case for multigate designs, in which the
carrier transport happens through the bulk and approximations based on surface
conduction are inaccurate for modeling the RF noise. In this section, the results
of our noise simulations are presented and the impact of downscaling on the
noise performance of junctionless nanowire FETs is discussed. The results are
expressed mostly in terms of the PSDs of terminal currents, since the fluctuations
of terminal currents are the quantities of interest for circuit level analyses.
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Figure 5.17: Power spectral densities for the 22 nm device vs. frequency, calculated at
VGS = 0.7V and VDS = 0.5V.

First, we show the calculated PSDs for the terminal currents in Fig. 5.17 at
VGS=0.7V and VDS=0.5V. In RF applications, random potential fluctuations
resulting from the channel noise are strongly coupled to the gate terminal through
the gate capacitance, causing an induced gate noise. At low frequencies, this
noise is proportional to ω2 because it is generated through a capacitor coupling
with the noise current ∝ω flowing from the channel into the gate terminal5. The

5As explained in chapter 2, our simulation framework assumes ideal gate dielectrics and the
gate leakage current due to quantum−mechanical tunneling [57,198] is neglected. A leaky gate
dielectric is expected to add a shot noise component PGG =2qIG to the calculated results. It
was shown in [57], that for f >1GHz the shot noise of gate leakage is completely dominated by
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Figure 5.18: Power spectral densities PDD (black) and PGG (red) vs. frequency at
VGS = 0.7V. The results are calculated for VDS = 0V (solid lines) and VDS = 0.5V
(dashed lines).

PSD of the drain current, on the other hand, is given by white noise at lower
frequencies and decreases with ω−2 at frequencies above 500THz. The values of
PDD at lower frequencies decrease as the device is moved away from equilibrium.
Since the cross PSDs are complex conjugate pairs (i.e. PDG=P ∗

GD), only PDG is
shown in Fig. 5.17, which is dominated by its imaginary part at lower frequencies.
For frequencies above 1THz, Re{PDG} becomes larger compared to its imaginary
part.

In Fig. 5.18 the drain and gate PSDs are compared for the 10 nm and 100 nm
device. At lower frequencies and under equilibrium conditions, PDD of the
10 nm device is almost six times larger than that of the 100 nm device, while its
PGG is 2−3 orders of magnitude smaller. As we move to the saturation regime
(VDS=0.5V), the difference of PDD becomes larger, which is explained when we
calculate the drain excess noise for the simulated devices. Figure 5.18 also shows
that the equilibrium and non−equilibrium curves of the 10 nm device are rather
similar for frequencies above 100GHz, whereas in the 100 nm device they differ
significantly.

The validity of our noise calculations is first checked by showing that the
Nyquist theorem6 holds under equilibrium conditions. The relative error of the
PSD of the drain current compared to the Johnson−Nyquist noise, defined as

Enyq =

∣∣∣∣PDD − 4kBT Re{Y DD}
PDD

∣∣∣∣ (5.13)

induced gate noise which has an ω2 dependence.
6which is a special case of the fluctuation−dissipation theorem. The reader can refer to [198]

for more information.
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Figure 5.19: Relative deviation of numerical results from the Nyquist theorem. The
simulations are performed with ∆z = 1nm, ∆H = 5.2 eV (solid) and ∆z = 0.5 nm,
∆H=2.6 eV (dashed).

is plotted versus frequency in Fig. 5.19. For frequencies below 2THz the maximum
deviation is about 0.06%, which shows excellent agreement considering the
very different methods used for calculation of the drain self−admittance and
PDD. For vGR ≈ 1.23× 107 cm s−1 at the source and drain boundaries, it is
very important to include the contact generation/recombination noise (with its
nonlinear terms) in the total PSD of the drain current since its contribution
to the fulfillment of the Nyquist theorem is not negligible. Moreover, the high
accuracy in reproduction of the Nyquist theorem is due to careful treatment of
the reciprocity in [69] and correct expressions for the PSD of scattering integral
and generation/recombination fluctuations. Without such considerations, the
resulting error is at least one order of magnitude larger and the simulations
cannot be trusted to give a quantitative description of the noise. However,
beyond a frequency of 4THz the error in the Nyquist theorem grows and reaches
about 3.5% at a frequency of 100THz, calling into question the reliability of our
simulator at f >10THz. As mentioned before, these frequencies reach beyond the
physical phenomena included in our simulation approach and it is not important
whether or not the Johnson−Nyquist noise is reproduced anyway.

The drain and gate noise in MOSFETs are often characterized by the respec-
tive excess noise factors. The drain excess noise factor γ is defined by

γ =
PDD

4kBTgD0
, (5.14)

where gD0 is the drain output conductance under zero drain bias and zero
frequency. In the long channel limit we have 2/3 ≤ γ ≤ 1, where γ=2/3 holds
in the saturation regime and γ=1 holds at equilibrium [198]. Analogously, the
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gate excess noise factor is defined by [198,199]

β =
5gD0PGG

4kBT (ωCGS)2
(5.15)

where CGS is the gate−source capacitance at the given bias and frequency. The
theoretical long−channel value of β is β=4/3 for planar MOSFETs.

In Fig. 5.20 the drain excess noise is plotted versus VDS for the ON−state.
The results at equilibrium show that our noise simulations conform with the
Nyquist theorem, i.e., PDD is equal to the corresponding Johnson−Nyquist
noise. The drain excess noise increases for decreasing channel length, and in the
long−channel limit, the drain excess noise approaches the theoretical van der Ziel
limit of γ=2/3 for VDS>VDS,sat. For LG=10nm, the PSD of drain current noise
increases steadily with the increase in drain bias when VDS>0.15V, whereas it
is almost constant and weakly dependent on VDS for the 100 nm device. The
increase of γ with VDS for the 10 nm channel length is contrary to most of the
noise models which predict no dependence of noise on VDS at high drain bias,
and can be attributed to DIBL. Other investigations, such as [58,144] have also
found increased values of γ in deep submicron nMOSFETs. Our results show
that the enhancement of γ for short channels is not as large as the values given
in [145,196].

Figure 5.21 shows the gate excess noise factor versus the gate bias for various
channel lengths. The results show that unlike γ, the gate excess noise for shorter
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Figure 5.22: Imaginary part of the correlation factor vs. gate bias VGS for VDS =0.5V.
Simulations are performed at the frequency f =1GHz, and for gate lengths of 10 nm
(black), 22 nm (red), and 100 nm (blue).

devices is not always larger than for the longer devices. Indeed, for VGS<VTH we
can observe that the gate excess noise for the 100 nm device exceeds the 10 nm
device. The drain and gate excess noise factors show the same bias dependence as
in the conventional inversion−mode MOSFETs, and the results are in agreement
with the HD model of [58].

Since PDD and the induced gate noise PGG are generated from the same
source of noise, it is possible to evaluate the correlation between them. This is
expressed in terms of a correlation coefficient defined by

c =
PDG√
PDDPGG

. (5.16)

In the long gate limit and for channel induced noise, the correlation coefficient is
about 0.395i for planar MOSFETs [198]. In Fig. 5.22 this quantity is shown for
different devices. The real part of the correlation factor is negligible (less than
10−5) and not shown in Fig. 5.22. But Im{c} is a strong function of VGS. By
increasing the gate voltage in subthreshold regime, the correlation factor rises
up to approximately 0.57i for devices with longer channels and then it decreases.
While the 100 nm device retains the gate−drain noise correlation for a larger VGS
range, the gate−drain correlation of the 10 nm device drops more rapidly and its
value peaks at c=0.5i for VGS=0.62V. These results are quite different from the
long−channel limit for planar MOSFETs, and can be a subject of further study.

The shot noise suppression factor (Fano factor) is plotted in Fig. 5.23 versus
the gate bias. This quantity is defined as

αFano =
PDD
2qIDC

, (5.17)
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Figure 5.23: Left: PSD of drain current fluctuations (black) vs. VGS for VDS =0.5V and
f =1GHz of the 22 nm device, together with the equivalent shot noise 2qID (red dashed
line). Right: Fano factor F for different devices biased at VGS =0.7V and VDS =0.5V.

with αFano=1 implying that the injection of electrons over the potential barrier is
a Poisson process and the drain current noise is purely shot noise, while αFano<1
represents the suppression of shot noise [198]. The Fano factor is nearly unity in
the subthreshold regime due to the low density of carriers and then decreases
for VGS>VTH when the carriers in the channel become abundant and inevitably
interact with the electrons injected into the channel from the source side7 For the
10 nm device, the limited number of scattering events in the channel results in
reduced suppression of the non−equilibrium noise component, whereas in the case
of the 100 nm device the correlation of electrons in the channel and consequently
the noise suppression becomes more pronounced [200]. The small dependency of
αFano on the drain bias is mainly due to the DIBL.

In Fig. 5.24 the local contribution to the noise is shown for equilibrium
and non−equilibrium conditions. Such insights can only be obtained by solving
the Langevin−BE. The results show that under equilibrium conditions, the
drain current noise originates mostly from the low density region while the high
density N+−regions contribute mostly to the gate current noise. In the strong
non−equilibrium conditions, the noise originates from the left side of the potential
barrier (source/channel region), which is consistent with the shot noise [198].
Subsequent heating of the carriers in the channel/drain region has very little
impact on the drain current noise, mainly because both the electron density and
Green’s function of the drain current noise are very small in the region of hottest
electrons. These results are consistent with the findings for double−gate N+NN+

7This is due to the self−consistent solution of the PE and BE, as well as the Pauli exclusion
principle and should not be confused with the electron−electron scattering mechanism.
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Figure 5.24: Spatial distribution of the terminal current noise at equilibrium (black) and
VDS = 0.5V (red). Simulations are performed for the 22 nm device at VGS = 0.7V and
f = 10GHz.

structures [69] and MOSFETs [201,202].
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5.5 Quasi-Ballistic Simulations
As the semiconductor devices are scaled down to nanometer scales, carrier
transport approaches the ballistic limit [203–206] and investigation of ballistic
transport becomes an important aspect of device simulation8. The distribution
function in the quasi−ballistic limit of a submicron N+NN+ structure was first
evaluated in [211] using the 3D MC simulations. Other works, such as [71]
have investigated the ballistic limits of electron transport over the potential
barriers and present the distinctive features of ballistic distribution function
(e.g. asymmetry at the top of the energy barrier, and the development of a
ballistic peak along the channel) using MC simulations or analytical models
based on the difference of source and drain injection fluxes. Previous studies
are, however, not adequate for accurate characterization and understanding the
details of quasi9ballistic transport in nanoscale FETs because they do not consider
vertical quantum confinement and are limited to the steady state behavior of the
quasi−ballistic devices. In this section, transport in the quasi−ballistic regime
for the junctionless device of Fig. 2.1 is discussed. Since the qualitative results
do not depend on the gate length, most of the simulations are performed for
the 22 nm device. We have used mxx =mzz = 0.19me and myy = 0.98me, and
the doping concentrations for the N+− and N−region are set to 5×1019 cm−3

and 1×1018 cm−3, respectively. For the sake of CPU efficiency, the comparisons

−2 −1 0 1 2
0

2

4

6

8

10

k
[
nm−1

]

di
st

rib
ut

io
n

fu
nc

tio
n

0 20 40 60

−1.2

−1

−0.8

−0.6

−0.4

drain

source

TOB

z [nm]

ε s
ub
(z
)
[e
V
]

Figure 5.25: Distribution functions at the drain contact (black), source contact (red),
and top of the potential barrier (blue) for the ballistic case at VGS = 0.5V, VDS = 0.5V.

8In fact, several structures other than the short−channel N+NN+ FETs have the conditions
which result in ballistic transport. Some examples are the graded bandgap structures and
heterojunction transistors formed of AlxGa1−xAs and GaAs [207–209], as well as planar doped
barrier structures [210].
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Figure 5.26: The electric field profile (left) and average velocity profile (right) of the
22 nm device for VGS = 0.5V and different VDS values using the single band RTA model.
The solid curves correspond to VDS = 0.1V (black), VDS = 0.2V (red), and VDS = 0.5V
(blue). The dashed curve shows the electric field under equilibrium condition.

are made for single subband and single valley transport, with the RTA for the
scattering integral. These assumptions are justified since for high mobilities
the impact of scattering is anyway weak and the error due to the RTA is small.
However, the results of the phase space discretization for the full band structure
of silicon and various electron−phonon scattering modes are verified by comparing
the IDS−VDS characteristics to the results of H9transformation.

First, simulation of the ballistic case (i.e. S{f}=0) is demonstrated, because
this is the case for which the conventional transformations to energy fail9. In
Fig. 5.25, the distribution functions at three different locations of the 22 nm device
(near the source side, near the drain side, and at the top of the potential barrier
as marked on the subband energy profile of Fig. 5.25) are plotted for VGS=0.5V
and VDS =0.5V. The results are for a k−grid spacing of ∆k=2.2×10−3 nm−1

at low energies, and k−boxes corresponding to ∆ε = 2.5meV at higher energies.
The maximum wave number gives εmax=1.01 eV. The distribution function is
positive in the whole phase space and shows no spurious oscillations. The obtained
results depend on the height of the source−channel energy barrier εB, which is
about 43meV in this example. In the source region, electrons injected from the
source contact with ε<εB get reflected back by the barrier, filling their negative
counterpart while electrons with ε>εB get transmitted across the barrier. For
qVDS>4kBT there are almost no carriers injected from the drain contact. Hence,

9In the case of H-transformation, the left-hand side matrix becomes singular in the ballistic
limit.
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Figure 5.27: The distribution function at different positions of the gated N-region for
VGS =0.5V and VDS =0.5V.

the distribution at the source side is effectively zero for k<−0.478 nm−1. At the
top of the potential barrier, the distribution function becomes a hemi−Maxwellian
for k>0 and the semiclassical transmission shows a discontinuous change from
0 to 1. At the drain contact, the thermal equilibrium injection from the drain
side with ε < εB + qVDS (nearly the entire hemi−Maxwellian) gets reflected
by the barrier, and builds up a symmetric thermal distribution. While the
thermal portion remains in equilibrium, the electrons injected from the source
side with ε > εB add a non-symmetric contribution which peaks at approximately
1.65 nm−1 (corresponding to qVDS), thereby providing a ballistic limit to the
current density.

It is important to be able to evaluate the ballistic distributions throughout
the entire channel and not just at the top of the source−channel barrier. In
order to better understand the ballistic transport of electrons from top of the
barrier to the drain end, in Fig. 5.26 the electric field profile of the 22 nm device
for the ballistic case is plotted under different bias conditions. At equilibrium,
the sharp gradients of potential near the NN+ doping steps result in very large
built−in electric fields (≈ 0.3MV cm−1). Applying a nonzero drain bias increases
the electric field in the high−resistivity N−region and at the drain side of the
channel, while the electric field at the source−channel barrier remains nearly
unchanged. This leads to the k>0 electrons at the top of the source−channel
barrier being accelerated by the high field in the N−region, creating a prominent
ballistic peak in the positive half of the distribution function. As the carriers
are accelerated along the channel, the location of this peak moves toward higher
velocities. Moreover, the peak gets narrower as the carrier density decreases
which preserves the current density (see Fig. 5.27). In the highly non−equilibrium
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Figure 5.28: Ballistic peak of the distribution function for the 22 nm device. The
results are for ∆k=2.2 µm−1, ∆z=2nm (black), ∆k=22 µm−1, ∆z=2nm (red), and
∆k=2.2 µm−1, ∆z=0.2 nm (blue).

case, the average velocity of the electrons in the channel region increases and
exceeds the thermal velocity (vth ≈ 2×107 cm s−1) by a substantial amount. For
VDS=0.5V, the velocity peaks at approximately 8×107 cm s−1 at the drain side
of the NN+ interface (see Fig. 5.26).

Although the cutoff at k = 0 by the source−channel barrier is abrupt, the
left flank of the ballistic peak at the drain side is not as abrupt as at the top
of the barrier. This is due to the finite k−space grid which leads to artificial
broadening of the distribution function in the k−space, i.e. for a nonzero step
of the subband energy at zi+1⁄2, any k−space box on zi is connected to multiple
boxes on zi+1 and vice versa (see Sect. 4.1.1). This is a fundamental problem
of tensor−product grids in phase space and occurs regardless of the treatment
of the derivative with respect to the wave number. In principle, a finer k−grid
could reduce the diffusion, but a finer k−space grid requires a finer real space
grid to prevent numerical problems and a certain level of diffusion cannot be
avoided. In Figs. 5.25 and 5.27, the numerical diffusion of the ballistic peak is
not discernible because a very fine k−grid with a very coarse z−grid (∆z=2nm)
are chosen in order to minimize the numerical diffusion and show the ballistic
effects better at the expense of the quantitative accuracy. Refining the real space
grid (which is necessary for accurately resolving the sharp gradients especially in
the deep−subthreshold regime) increases the numerical diffusion. In Fig. 5.28
the ballistic peak of the distribution function at the drain side is calculated for
various ∆z and ∆k values. We observe that both a coarser k−grid (red curve)
and a finer z−grid (blue curve) increase the artificial broadening.

Moreover, the results in Figs. 5.25 and 5.27 show that the height of the
ballistic peak decreases as the electrons move toward the drain contact. This
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Figure 5.29: Distribution function at the top of the barrier (left), and the ballistic peak
of the distribution function at the drain side (right) for VGS = 0.5V and VDS = 0.5V.
The results are for the mobilities µ=106 cm2/Vs (black), µ=1000 cm2/Vs (red), and
µ=100 cm2/Vs (blue).

effect, which is another consequence of the numerical diffusion, suggests that
our discretization in phase space does not conserve the total electron energy.
However, the impact of the artificial diffusion is weak, and the phase space solver
based on the tensor−product grid does not show spurious oscillations or negative
values of distribution function in the ballistic case.

The observed features of the carrier distribution function in the ballistic
regime, such as the discontinuous asymmtery and development of the sharp
ballistic peak leading to velocity overshoot, cannot be captured by any lower
order polynomial approximation as employed in conventional macroscopic models
and needs to be treated in the k−space. In addition, thermal injection of the
electrons from the source side is a current limiting constraint that needs to be
incorporated in the BCs of any quasi−ballistic description of the device. While
the thermal bath BCs are inherent in the first principles such as NEGF formalism
and MC simulations, they are usually neglected when macroscopic models are
used for investigation of quasi9ballistic phenomena.

Figure 5.29 shows the effect of scattering on the non−equilibrium distribution
function. Here, the focus is on the distinctive features of the shape of distribution
function in ballistic limit. Therefore, the discontinuity of f(z, k) at the top of
the barrier and the ballistic peak at the drain side are plotted for VGS =0.5V
and VDS = 0.5V and various mobilities. It is evident that an increase in the
mobility sharpens the distribution at the top of the barrier, bringing it closer
to the thermoionic emission limit (a hemi−Maxwellian at k=0). Moving to the
drain side, the ballistic peak spreads for lower mobilities. At µ= 100 cm2/Vs
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Figure 5.31: IDS−VDS curves of the 22 nm
silicon junctionless transistor for VGS =
0.6V. The results are obtained from simu-
lation of the BE under H9transformation,
simulation of the BE in phase space, and
the moments model with nHP =10.

this ballistic peak has nearly vanished and the distribution function can be
safely approximated with a drifted Maxwellian, which fits into the macroscopic
description based on moments equations.

Having calculated the distribution function for several sets of grid parameters,
we can now discuss other quantities of interest, such as the steady state current
for various bias conditions. In equilibrium, the distribution function is completely
symmetric and IDS = 0. The symmetry of the distribution function is due to
the balanced injections from the source and drain contacts instead of detailed
balance properties of the scattering terms in the diffusive regime which relax the
distribution function to the symmetrical Fermi−Dirac or Maxwell−Boltzmann
functions. As VDS increases, the negative half of the distribution function becomes
suppressed leaving the positive half (source injection) unbalanced. The device
operates in linear regime for VDS < 0.15V, and at the total suppression of the
drain injection (at VDS = 0.15V) IDS saturates to its ballistic limit. The output
characteristics in Fig. 5.30 show that for the 22 nm and 100 nm devices, the
saturation current is nearly independent of the channel length. However, the
10 nm device gives a considerably larger current (nearly twice the long channel
values at VGS=0.5V and VDS=0.5V) due to DIBL.

The artificial diffusion observed in k−space simulations is especially important
in the subthreshold region, as it translates to artificial heating of the electrons
and increases the subthreshold slope of the device. This is shown in Fig. 5.32 for
∆k=0.055 nm−1 and the spatial grid spacings of ∆z=2nm and ∆z=0.2 nm. The
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Figure 5.32: Calculated IDS − VGS curves of the silicon N+NN+ transistor, obtained
from simulation of the BE under H-transformation (left) and simulation of the BE in
phase space (right).

effect is not significant and even for this rather coarse k−grid, the subthreshold
slope changes from SS = 60.5mV/dec to SS = 66.5mV/dec as we move from
∆z=2nm to ∆z=0.2 nm. As expected, refining the phase space grid alleviates
this problem and we have SS = 62.5mV/dec for ∆k=0.0225 nm−1 (see Fig. 5.33).
Simulations with the H−transformation do not show this problem, as shown in
Fig. 5.32.

Before moving on to investigation of the ballistic limits of small signal
parameters, we need to verify that the numerical methods developed in Chapter 4
also work in the diffusive regime. Hence, the 22 nm device is simulated using
the conventional model for the band structure of silicon (six ellipsoidal and
parabolic valleys) with five subbands per valley. The calculated IDS−VDS curves
are presented in Fig. 5.31 (red curves), and compared to consistent simulations
by other means. We observe that the different methods produce nearly identical
steady state results. At VDS = 0.2V, the calculations by the H−transformed
BE and moments equations differ by ≈ 1.5% for VGS = 0.6V and ≈ 0.8% for
VGS = 0.5V. Our results confirm the validity of all three approaches for the
simulation of conventional devices with relatively low mobilities.

Next, the accuracy of the phase space BE solver for small signal analysis is
checked by refining the simulation grid and calculating the ballistic small signal
drain self−admittance Y DD at f = 10GHz. In Fig. 5.34 the relative error (i.e.
error with respect to the finest grid) is plotted versus the grid refinement factor.
Our simulations show that the refinements of the z− and k−grids have contrary
impacts on the numerical stability of the discretized equations and we have a
Courant−Friedrich−Lewy−like condition for ∆z and ∆k. While we choose a fine
k−grid for capturing the ballistic discontinuities of the distribution function, the
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Figure 5.34: Convergence of Re{Y DD}
at f = 10GHz. The relative error is
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0.0045 nm−1, and ballistic simulations are
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Figure 5.35: Re{Y DD} versus frequency
for the 22 nm device at VGS = 0.5V and
VDS = 0V. Simulations are performed
for the mobility of µ= 100 cm2/Vs, and
different grid spacings.

z−grid must be refined accordingly in order to prevent numerical instabilities. It
is also observed that decreasing ∆z and ∆k changes the simulation results in
opposite directions (see Fig. 5.35). Hence, in Fig. 5.34 we have calculated the
relative error with simultaneous refinement of both z− and k−grids. The error
decreases to less than 0.01% for finer grids and the method seems to converge.

Regarding the small signal analysis, the drain self−admittance is chosen for
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Figure 5.36: Real and imaginary parts of the drain self-admittance versus frequency
at VGS = 0.5V and VDS = 0V. Simulations are performed for the mobility of µ =
100 cm2/Vs using the BE (black), DD model with fixed BCs (red), DD model with
thermal bath BCs (solid blue), and TM with thermal bath BCs (dashed blue).

comparing the results of the BE solver to those of the macroscopic models. The
drain self−admittance is an important quantity for determining the impact of
plasma waves on the device’s behavior. For example, a negative real part of
the drain self−admittance corresponds to an instability and could enable the
generation of THz waves [199,212]. In order to obtain a plasma instability specific
bias conditions have to be applied to the contacts of the device. The gate/source
port should be short−circuited and the drain/source port open (i.e. the drain
self−admittance should be zero)10. In the following discussions, models based on
projection of the BE onto the Hermite polynomials with nHP=2 and nHP=10
are abbreviated as the drift−diffusion (DD) and the 10th−moment (TM) model,
respectively11.

In Fig. 5.36 the real and imaginary parts of the drain self−admittance are
shown for µ= 100 cm2/Vs (i.e. strong damping of the plasma waves)12. The
results of the phase space BE solver are compared to the values obtained from
the moments equations with thermal bath and Dirichlet BCs. In the diffusive
transport, good agreement is observed over the entire frequency range and even
the DD model with Dirichlet BCs gives reasonably accurate predictions for

10These bias conditions should not be confused with the boundary conditions of the transport
models at the contacts inside the device, which are determined by the contact model.

11In this work, we use the term “drift−diffusion” model in the sense of the TCAD community,
although the nHP =2 model contains the time derivative of the current density. These terms
are usually neglected in TCAD.

12Since the electron mobility is a more familiar parameter compared to the microscopic
relaxation time, in our simulations µ=qτRTA/m

ν
zz is used as an adjustable parameter.
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Figure 5.37: Re{Y DD} (left) and Re{Y GD} (right) of the 22 nm device evaluated using
the phase space BE solver (dashed) and the moments equations with nHP = 2 (red),
nHP =10 (solid black). Simulations are performed for µ=103 cm2/Vs and Dirichlet BCs
are imposed.
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Figure 5.38: Re{Y DD} (left) and Re{Y GD} (right) of the 22 nm device evaluated using
the phase space BE solver (dashed) and the moments equations with nHP = 2 (red),
nHP =10 (solid black). Simulations are performed for µ=103 cm2/Vs and thermal bath
BCs are imposed.

f <3THz. Although the DD model deviates from the results of the BE solver
at higher frequencies (e.g. Re{Y DD} has an error of ≈ 8.2% at f =8THz), it
performs well in predicting the overall behavior of the admittance parameters.
Truncation of the Hermite polynomial expansion at higher orders improves the
accuracy of the results, but the results are almost the same for Dirichlet and
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Figure 5.39: Real part of the drain self-admittance for VGS =0.5V and VDS =0V at zero
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thermal bath BCs.
As the mobility is increased, the moments equations begin to lose their

validity in describing the transport. In order to get a quantitative measure of this
discrepancy, Fig. 5.37 compares the real parts of Y DD and Y GD obtained from
the BE solver (dashed lines) to the results of moments equations with Dirichlet
BCs. Simulations are performed for µ=103 cm2/Vs. The zero frequency drain
self−admittance of the DD model is twice the value obtained from the BE.
Moreover, the results of the DD model show several distinct additional peaks
for Re{Y DD} (e.g. at 4.3THz and 7.4THz) and are qualitatively different from
those of the BE solver. Although truncation of the moments equations at higher
orders dampens the additional peaks and reduces the steady state conductance,
even the TM model overestimates the zero frequency drain self−admittance by
30% and predicts a much larger peak at f =7.9THz. In Fig. 5.38 the BCs of
the moments equations are changed to thermal bath BCs. Although the results
of the DD model do not change at zero frequency, the relative error of the zero
frequency drain self−admittance for the TM model decreases to below 10%.
Moreover, thermal bath BCs dampen the additional peaks of the DD model and
improve the accuracy of the TM model at higher frequencies considerably. The
impact of BCs on the small signal results is evident even for the mobility of
µ=103 cm2/Vs.

This is better demonstrated in Fig. 5.39, where Y DD of the 22 nm device
at f =0 is plotted as the mobility is varied in the range 20−106 cm2/Vs. The
result depends strongly on the choice of the transport model and the details of
BCs. Although the results of the BE saturate at 1.23µAV−1, Dirichlet BCs offer
no current limiting mechanism and lead to arbitrarily large values of Y DD at
f =0, VDS=0. Thermal bath BCs improve the results of the moments equations
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Figure 5.40: Re{Y DD} versus frequency for the 22 nm device at VGS = 0.5V and
VDS = 0V. Simulations are performed for a mobility of µ = 106 cm2/Vs and thermal
bath BCs are applied.

considerably and limit the zero frequency Y DD in the quasi−ballistic regime even
for the DD model.

When the mobility is increased to µ=106 cm2/Vs, moments of the BE fail
to even provide a qualitative description of the device’s small signal behavior
(Fig. 5.41). Although the TM model does a better job than the DD model, the
overall error below 5THz is rather large. The DD model not only shows an
artificial peak at about 5THz, it also yields a far too large admittance at zero
frequency [4,7]. Moreover, the results of the moments equations indicate that the
higher order equations up to nHP=10 do not converge to a solution. For nHP=12,
the calculated drain self−admittance becomes negative for 0.68THz<f <0.9THz
which is indicative of instability. The situation becomes worse, if we change the
BCs of the moments−based models from thermal bath to Dirichlet, as were used
by Dyakonov and Shur (Fig. 5.42). The unrealistically large values of Re{Y DD}
at zero frequency increase by another 2−3 orders of magnitude. In addition, the
peaks of the real part of the admittance become much sharper and higher and
the minima smaller. The latter result is important, because the Dyakonov−Shur
instability corresponds to a zero of the drain self−admittance (pole of the drain
self−impedance for a short circuited input). In Fig. 5.44 the absolute value of
the drain self-admittance is shown for the DD model with different BCs, where
the maxima and minima correspond to the poles and zeros, respectively. For
Dirichlet BCs the poles and zeros are lined up at σ=−1/2τRTA [213], which is
very small for µ=106 cm2/Vs and results in sharp peaks on the imaginary axis.
On the other hand, thermal bath BCs shift these poles (and zeros) to the left and
the plasma resonances are strongly damped. This reduces their impact on the
self-admittance at σ=0 which is why the results in Fig. 5.41 are much smoother
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Figure 5.41: Re{Y DD} of the 22 nm de-
vice evaluated using the phase space BE
solver (dashed) and the moments equa-
tions with nHP =2 (red), nHP =10 (solid
black). Simulations are performed for
µ = 106 cm2/Vs and thermal bath BCs
are imposed.
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Figure 5.42: Re{Y DD} of the 22 nm de-
vice evaluated using the phase space BE
solver (dashed) and the moments equa-
tions with nHP =2 (red), nHP =10 (solid
black). Simulations are performed for
µ = 106 cm2/Vs and Dirichlet BCs are
imposed.

than in Fig. 5.42. For a plasma instability poles or zeros with σ>0 are required.
Unfortunately, the more realistic thermal bath BCs move the poles and zeros
far to the left making plasma instabilities even more improbable. Figure 5.45
shows the absolute values of the drain self−admittance calculated by the BE. The
poles and zeros of the BE also occur at large negative real parts of the complex
frequency and even a nonzero VDS does not result in a significant shift to the
right.

In Fig. 5.43 the non−equilibrium behavior of Re{Y DD} is shown for various
VDS values as a function of frequency. The BE results are compared to the
TM model. As it is evident at zero frequency, the transistor operates in the
saturation regime for VDS>0.2V. Increasing the drain bias shifts the peak at
f = 8.2THz to higher frequencies (see Fig. 5.45). The moments-based model
follows this behavior up to VDS = 0.1V, whereas for higher biases it becomes
instable and cannot produce meaningful results. The BE, on the other hand,
can be solved without problems for larger voltages and its results do not show
any active behavior (i.e. Re{Y DD}<0) for drain voltages larger than zero. The
above results clearly show that the internal contact BCs of the transport model
play an important role and that the more realistic thermal bath BCs strongly
damp plasma resonances.

Since the damping of the plasma resonances depends on the type of the BCs,
it would be interesting to investigate the impact of the Dirichlet BCs onto the
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Figure 5.43: Re{Y DD} versus frequency for the 22 nm device at VGS = 0.5V using the
BE and tenth-order moments-based model. Simulations are performed for a mobility of
µ = 106 cm2/Vs and thermal bath BCs are applied.

BE results. The Dirichlet BCs are applied in the case of the moments−based
models to the even moments (density, energy density (temperature) etc.). In the
case of the BE this would correspond to the application of Dirichlet BCs to the
even parts of the distribution functions. Without scattering such a BC violates
the Liouville theorem, because the ratio of the even part of the distribution
function at the source and drain at energies above the top of the barrier is fixed
by transport for an inversion symmetric bandstructure and can not be imposed
by the BCs. Thus, Dirichlet BCs for the even part of the distribution function
and the ballistic BE are fundamentally incompatible.
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Figure 5.44: Logarithm of the absolute value of the drain self-admittance for VGS =0.5V,
VDS = 0V, and µ = 106 cm2/Vs. The results are calculated by the DD model with
Dirichlet BCs (left) and thermal bath BCs (right).
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Figure 5.45: Logarithm of the absolute value of the drain self-admittance for VGS =0.5V
and the ballistic case. The results are calculated by the BE for VDS = 0V (left) and
VDS =0.1V (right).
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Chapter 6

Concluding Remarks

6.1 Summary

The main objective of this dissertation was to develop a fully self−consistent
and deterministic solver for the system of Poisson, Schrödinger, and Boltzmann
equations in a gate−all−around junctionless nanowire FET. The simulation frame-
work was built upon the existing works on deterministic BE solvers [69,84] and
employed various numerical techniques such as H−transformation and even/odd
decomposition of the distribution function on a staggered spatial grid for stabi-
lization of the BE. We solved the system of equations using the Newton−Raphson
approach, with careful implementation of the necessary derivatives and the SE
being included through the first order perturbation theory.

The small signal system of equations was set up in Sect. 2.6, and ideas
developed in [69] were employed to properly discretize the time derivative term
and conserve the necessary symmetries under equilibrium condition. In order
to calculate the small signal terminal currents, we used a formulation of the
Ramo−Shockley theorem consistent with the dimensionality of the problem, i.e.
1D BE along the transport direction and 2D SE on the transverse planes. It was
shown that the in−house simulator is robust and allows for computations with
unprecedented precision in the complete frequency range and for a wide range of
bias conditions.

In Sect. 2.7 the Langevin−source approach was exploited for self−consistent
calculation of the noise, resulting in the first deterministic solver for noise analysis
of nanowire FETs. The Langevin−BE makes it possible to calculate the spatial
distribution of noise in the simulated device, which is an absolute advantage over
the Monte Carlo method.

In Chapter 5 the simulation results were put forward. Section 5.2 showcased
the capabilities of the developed simulator for DC characterization of the device
and providing a microscopic description of its inner working mechanisms. In
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Sect. 5.3 the small signal results and high frequency figures of merit were calcu-
lated, which were perfectly smooth when plotted against frequency and fulfilled
vital requirements such as reciprocity and passivity at equilibrium. Finally, the
RF noise behavior of the junctionless nanowire FET was studied in Sect. 5.4 and
important quantities such as the drain and gate excess noise factors, correlation
coefficient, and noise suppression factor were calculated. For the sake of compar-
ison, devices with different gate lengths were simulated and the effect of gate
length downscaling on the DC, AC, and noise performance of nanowire nFET
was investigated.

The second part of this work was dedicated to development of an alternative
approach to discretization of the BE, which was motivated by the failure of
energy−based solvers in quasi−ballistic regime and several numerical deficiencies
of H−transformation for 1D phase space. In Chapter 4 the BE was discretized
in k−space, and a stabilization method based on the characteristic curves and
matrix exponentials was presented. The developed phase space solver is able to
capture the complicated nature of ballistic distribution function and show its
discontinuous behavior.

In Chapter 3 the BE was projected onto Hermite polynomials, so that the
solutions of the phase space solver could be compared to the results of the
moments equations. The comparisons, presented in Sect. 5.5, showed that the
limitations of moments equations in describing the quasi−ballistic transport
cannot be addressed through models obtained by higher moments as the ballistic
transport is fundamentally different from diffusion or drift of high energy carriers.
It was also observed that the boundary conditions of the transport model have a
significant impact on the stationary and small signal results. These observations
have important implications about the possibility of terahertz wave generation in
high mobility 1D devices and suggest that the predictions of the Dyakonov−Shur
model are too optimistic.

This thesis summarizes many years of research into various numerical ap-
proaches, and its results have been reported in several publications. In Ref. [79]
we presented our first implementation of the Newton−Raphson solver for the
stationary solution of the system of constituent equations. Refs. [80,81] presented
our in−house simulator capable of small signal and noise analysis of the junction-
less nanowire FETs, and in Ref. [82] we used the developed solver for assessing
the effect of downscaling on the RF and noise performance of these devices. It
was reported that due to the improved electrostatic control and better immunity
to short−channel effects, the drain and gate excess noise factors and correlation
coefficient demonstrate classical long−channel behavior for gate lengths as small
as 16 nm.
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6.2 Outlook
Moving forward, the developed simulator can be used for investigation of the
device’s behavior with respect to various design parameters. For example,
the impact of high−κ spacers, graded doping profiles, asymmetric designs and
additional gates on the RF and noise characteristics could be studied in detail.
Another interesting area would be the variability of ultrashort transistors. While
the sensitivity of longer devices to random variations in the gate length, oxide
thickness, or the doping concentration was negligible, the impact of such changes
on the characteristics of a 10 nm device is significant and can be predicted by
numerical means. Regarding the numbers of published papers on variability, it is
obvious that dealing with fluctuations of characteristics in ultrashort devices has
become a major critical point for the next technology nodes.

Regarding the numerical aspects, there are many areas where more detailed
models can be added. The methods in this work can be extended to III−V
materials and more complex band structures. Inclusion of additional scattering
mechanisms, e.g. impurity scattering and electron−electron interactions and the
penetration of wave functions into the dielectric material will improve the accuracy
of the simulation results. Moreover, there is enormous potential to speed up the
computations and reduce memory requirements by using unstructured grids or
applying suitable parallel algorithms. For example, the methods in [214, 215]
have resulted in performance gains of up to one order of magnitude compared to
single−threaded executions and lower memory requirements.

Finally, we need to mention that the transient simulation, which is a funda-
mental capability, is still lacking for the case of H−transformation [216]. This
is because the H−transformation requires interpolation of the previous solution
variables under the present band profile, which inevitably results in interpolation
errors. The situation is in contrast to the MC method, which is inherently tran-
sient and allows for simulations in time domain [217,218]. Although some reports
on transient simulation results can be found in [219] and [220], those works adopt
the explicit time marching scheme and the maximum time steps are restricted
due to the stability issues. Developing a new stabilization scheme, which allows
the transient simulation while taking advantages of the H−transformation, would
be a formidable task.
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Nomenclature

This section presents an alphabetic list of acronyms and symbols used in the
manuscript.

Acronym Expansion

BC boundary condition
BE Boltzmann equation
CMOS complementary metal−oxide−semiconductor
D drain
DD drift−diffusion
DIBL drain-induced barrier lowering
EMA effective mass approximation
FET field−effect transistor
G gate
GAA gate−all−around
GR generation and recombination
HP Hermite polynomials
HD hydrodynamic
MC Monte Carlo
MOSFET metal-oxide-semiconductor field-effect transistor
ODE ordinary differential equation
PDE partial differential equation
PE Poisson equation
PSD power spectral density
RF radio frequency
RTA relaxation−time approximation
S source
SE Schrödinger equation
SOI silicon−on−insulator
SR surface roughness
SS subthreshold slope
SSSC sinusoidal steady state condition
TCAD technology computer-aided design
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Symbol Description

a aggregate index for the Poisson equation.
α aggregate index for the Boltzmann equation
b aggregate index for the Poisson equation
β aggregate index for the Boltzmann equation
D electric displacement current
DPE domain of definition for the PE
DBE domain of definition for the BE
∆x box in x−direction surrounding the grid node
∆y box in y−direction surrounding the grid node
∆z box in z−direction surrounding the grid node
ε(r) dielectric constant
E electric field
ενsub subband energy in the valley and subband ν
f frequency
F force acting on the electrons
Fνν′ overlap integral for the states ν and ν ′

FPE stationary PE
FPE small signal phasor of the PE
FBE stationary BE
FBE small signal phasor of the BE
fνk (z, k) distribution function of the stationary BE in k−space
fνε (z, ε) distribution function of the stationary BE in ε−space
fνH(z,H) distribution function of the stationary BE in H−space
fνk (z, k, t) distribution function of the time−dependent BE in k−space
fνε (z, ε, t) distribution function of the time−dependent BE in ε−space
fνH(z,H, t) distribution function of the time−dependent BE in H−space
feq equilibrium part of the distribution function
fne non−equilibrium part of the distribution function
ϕ(r) quasistatic electric potential
ϕ(r) small signal phasor of electric potential
ϕMS metal−semiconductor work function difference
φn quasi Fermi potential of electrons
ΓGR{f} generation/recombination boundary condition in the BE
ΓTH{f} thermal bath boundary conditions in the BE
~ reduced Planck constant
kB Boltzmann constant
Lx length of the semiconductor region in x−direction
Ly length of the semiconductor region in y−direction
Lz length of the semiconductor region in z−direction
M̂ (diagonal) mass tensor
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me electron rest mass
mν
xx effective mass in x−direction in the valley and subband ν

mν
yy effective mass in y−direction in the valley and subband ν

mν
zz effective mass in z−direction in the valley and subband ν

NA acceptor doping concentration
ND donor doping concentration
nBE dimension of the discretized Boltzmann equation system
nPE dimension of the discretized Poisson equation system
nx highest index of grid in x−direction
ny highest index of grid in y−direction
nz highest index of grid in z−direction
∇r nabla operator in real space
ν combined valley and subband index ν = (v, s)
ni intrinsic carrier density
n3D 3D electron density
ω angular frequency
p3D 3D hole density
q positive elementary charge
r 2D spatial vector r=(x, y, z)
ρ mass density of the silicon crystal
ρ(r) space charge density
s subband index
SRTA{f} scattering term in the BE under RTA
SPH{f} electron−phonon scattering integral in the BE
ψν(r) wavefunction of the Schrödinger equation
ψν(r, t) time dependent wavefunction of the Schrödinger equation
T temperature
τ relaxation time for scattering under RTA
Θ(·) Heaviside step function
v valley index of silicon band structure
vλ sound velocity of acoustic phonons
vνz (k) electron group velocity in z−direction
vGR generation/recombination velocity
VDS drain−source voltage
VGS gate−source voltage
VT thermal voltage VT=kBT/q

W νν′
η (z; k|k′) transition rate of the scattering integral

z transport equation
Zν density of states function
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