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Abstract 

The modeling and hence exploitation of the connection between the micro-

structure and the mechanical response of polycrystals is and continues to be at 

the forefront of the longstanding challenges in the materials science and metal-

lurgical engineering. The macroscopic mechanical response of polycrystalline 

materials is intricately governed by the propensity of the micro-mechanisms of 

crystal plasticity, which are controlled by the instantaneous hierarchical micro-

structure and its evolution. Therefore, the microstructure almost exclusively con-

trols the macroscopically observable mechanical response of polycrystalline ag-

gregates in terms of the stress response and its variation (the stress rate or strain 

hardening). In this thesis, the microstructural effects on the mechanical re-

sponse/properties of polycrystals are classified into four groups: the polarity, 

size, composite, and porosity effects. The historical background as well as the 

research on the modeling of the microstructural effects, which has so far lasted 

almost a century, are concisely reviewed. 

The primary microstructural effects, the size and polarity effects, are modeled 

for different polycrystalline metallic materials at various length scales. First, the 

size effect was modeled at the macro-scale using a nonlocal (physics-based) mi-

crostructural model for polycrystal plasticity to simulate the behavior of a fer-

ritic-pearlitic steel during large deformation in the cold and warm regimes. Then, 

the model was applied to simulate industrial cold and warm forging processes 

of a bevel gear shaft and predict its final microstructure and properties (process-

microstructure-properties linkage). Second, the polarity effect was modeled at 

the meso-scale using a physics-based crystal plasticity model to simulate the 

(macroscopic) anisotropic mechanical response of an additively manufactured 

austenitic high-Mn steel (microstructure-properties linkage). It was, then, 

demonstrated that the meso-scale model can be applied for the optimal compu-

tational design of an additively manufactured lattice structure. 
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Zusammenfassung 

Die Modellierung und die gezielte Ausnutzung des Zusammenhangs 

zwischen Mikrostruktur und mechanischem Verhalten von Polykristallen ist eine 

bestehende Herausforderungen in den Werkstoffwissenschaften und der Metal-

lurgie. Die makroskopische mechanische Reaktion polykristalliner Materialien 

wird auf komplizierte Weise durch die Mikromechanismen der Kristallplastizität 

bestimmt, welche wiederum durch die ausgebildete hierarchische Mikrostruktur 

und deren Entwicklung gesteuert werden. Daher beeinflusst die Mikrostruktur 

fast ausschließlich die makroskopisch beobachtbare mechanische Reaktion von 

Polykristallen in Bezug auf die Spannungsantwort und ihrer Variation (Span-

nungsrate oder Verfestigung) während plastischer Verformung. In dieser Arbeit 

werden die mikrostrukturellen Effekte auf die mechanische Reaktion/Eigen-

schaften von Polykristallen eindeutig in vier Gruppen eingeteilt: Polaritäts-, 

Größen-, Komposit- und Porositätseffekte. Der historische Kontext und die fast 

einhundert Jahre andauerde Forschung und Entwicklung in der Modellierung 

der mikrostrukturellen Effekte werden kurz aufgearbeitet. 

Darüber hinaus werden die grundlegenden Mikrostruktureffekte, die Größen- 

und Polaritätseffekte, für verschiedene polykristalline metallische Werkstoffe auf 

verschiedenen Längenskalen modelliert. Zunächst wurde der Größeneffekt auf 

der Makroskala mithilfe eines nicht lokalen (physikbasierten) Mikrostruktur-

modells für polykristalline Plastizität modelliert, um das Verhalten eines fer-

ritisch-perlitischen Stahls bei großer Verformung in kalten und warmen Temper-

aturbereichen zu simulieren. Das Modell wurde angewandt, um industrielle 

Kalt- und Warmschmiedeprozesse einer Kegelradwelle zu simulieren und ihre 

endgültige Mikrostruktur und mechanische Eigenschaften (Verbindung 

zwischen Prozess, Mikrostruktur und Eigenschaften) vorherzusagen. Zweitens 

wurde der Polaritätseffekt auf der Mesoskala mithilfe eines physikbasierten Kris-

tallplastizitätsmodells modelliert, um die anisotrope mechanische Reaktion/Ei-

genschaften eines additiv hergestellten austenitischen Hochmanganstahls zu 

simulieren (Mikrostruktur-Eigenschaften-Korrelation). Anschließend wurde 

dargestellt, wie das mesoskalige Modell für ein optimales rechnerisches Design 

für die additive Herstellung von Metallen angewendet werden kann. 
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1. Introduction 

The modeling of the microstructural effects plays the central role in the com-

putational design of polycrystalline materials/components with respect to pre-

dicting their in-process and in-service behavior, and thus the quantitative link-

ages of [1]: 

• Process-microstructure: Simulation of the (macroscopic) mechanical response 

and microstructure evolution under complex thermo-mechanical loading 

during the deformation-based material processing, i.e., metal forming and 

metal cutting processes. 

• Microstructure-properties/performance: Prediction of the mechanical prop-

erties and microstructure evolution under complex thermo-mechanical ser-

vice load, and thus the performance of the final component (given its micro-

structure after the last step in the manufacturing process chain). 

The mechanical properties of polycrystals reflect their performance under par-

ticular loading conditions: (initial) yield stress/strength, ultimate tensile stress, 

uniform elongation, maximum elongation, post-uniform elongation, hardness, 

fatigue strength/life, Lankford coefficients/R-values, creep resistance, Charpy 

impact energy, fracture toughness, hole-expansion ratio, and so on. Almost all 

the mechanical properties of polycrystals, including the aforementioned proper-

ties, are not fundamental and are, in fact, indices for reduced-order representa-

tions of certain aspects of polycrystal plasticity under specific deformation pa-

rameters (strain rate and temperature). Moreover, the mechanical response of 

polycrystals during deformation-based material processing is also governed by 

the aspects of polycrystal plasticity. 

It is well established that the polycrystal plasticity is highly sensitive to the 

polycrystalline microstructure. Microstructure (here, the term micro does not sig-

nify a specific length scale) is generally defined as the internal/underlying struc-

ture, and thus depends on the length scale at which the material is probed. A 

polycrystalline microstructure consists of the following microstructural ele-

ments, which span across different length scales: 

• Meso-scale: Meso-structural elements (i.e., grains/crystallites) are 

mesoscopic crystals with (intra-granular) orientation/symmetry/composi-

tion gradient less than a certain threshold. 
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• Submeso-scale(s): Possible submeso-structural/constitutive elements are dis-

location (submeso-) structure, particulate/lamellar dispersoids (nano-precip-

itates and nano-phases), nano-twins, elemental segregation, and/or voids. 

In the above classification, the meso-scale/(intermediate length scale) is se-

lected as the reference length scale due to its enormous importance in polycrystal 

materials science as it represents a bridge between the macro-scale and all the 

fundamental length scales, the submeso-scale(s). Henceforth, the terms meso-

structure [2], and submeso-structure refer to the microstructure, and its associ-

ated elements and features specifically on the meso- and submeso-scales, respec-

tively. Furthermore, the microstructural elements with respect to their heteroge-

neities own the following main distinctive statistical attributes known as the mi-

crostructural features: 

• Fraction: A (polycrystalline) microstructure may consist of multiple constitu-

ents, the primary/matrix/parent constituent, and secondary constituents 

(phases, precipitates, and/or voids). The elements of a microstructural con-

stituent have the same (elemental) composition and crystal symmetry, which 

are different from those of the elements of other microstructural constituents. 

For instance, the composition and/or crystal symmetry of grains of each 

meso-structural constituent are different from those of the other (if existent) 

meso-structural constituents. Moreover, to be consistent in definitions, let the 

void as a microstructural constituent to have the zero/void composition and 

infinite crystal symmetry. Each microstructural constituent occupies a certain 

volumetric fraction of the corresponding polycrystal satisfying ∑ 𝑓𝑖
𝑛
𝑖=1 = 1, 

where 𝑓𝑖 > 0 denotes the volume fraction associated with the i-th microstruc-

tural constituent, and 𝑛 ≥ 1 represents the total number of microstructural 

constituents. 𝑛 = 1 (⇔ 𝑓1 = 1) corresponds to a single-constituent polycrystal. 

• Polarity/texture: There are morphological (shape and shape-axis orientation) 

and crystallographic (crystallographic orientation and interface misorienta-

tion) features associated with the elements of each microstructural constitu-

ent. Generally, the polarity of a microstructural constituent has two distinct 

aspects: crystallographic and morphological. The crystallographic polarity is 

a measure for the deviation of crystallographic orientation and misorientation 

distributions of microstructural elements from a corresponding fully ran-

dom/non-polarized case [3–7]. On the other hand, a polarized morphology 

constitutes high frequency of asymmetric elements whose (ellipsoidal) semi-

axes are dominantly orientated with low angle along specific axes/poles in 

the reference/global/sample/lab Cartesian frame [8–10]. It should be noted 



Introduction 

 

3 
 

that void as a microstructural constituent (owing to its postulated infinite 

crystal symmetry) does not have crystallographic polarity, but it may be mor-

phologically polarized. 

• Size/spacing: Each 3D microstructural element is associated with a volume 

and a corresponding (microstructural) size parameter. Therefore, when re-

ferred to a specific microstructural element type, the (elemental) size is the 

(scalar) effective equivalent sphere diameter of the elements of the same type. 

Therefore, an effective size and a size variance/heterogeneity can be assigned 

to each microstructural element type based on the statistical distribution of its 

elemental size. Moreover, the spacing among the elements of the same type 

and their size are closely related. The elemental spacing is a function of the 

size, shape, and spatial distribution of the elements of the same type. 

The polycrystal mechanical response is governed by the micro-mechanisms 

that accommodate crystal plasticity, including the micro-mechanisms of slip, 

twinning, interface motion, phase transformation, void evolution, and fracture. 

From an irreversible/non-equilibrium thermodynamics point of view [11–23], 

the frequency and amplitude of those competitive micro-mechanisms depend on 

their activation/barrier energy and their dissipation/relaxation efficiency (max-

imizing the specific entropy production rate, and thus minimizing the rate of the 

stored elastic/free energy density). The micro-mechanisms of some processes 

such as recrystallization often require thermal assistance to be activated, but once 

activated they reduce the stored elastic energy, and increase dissipation. Some 

processes such as twinning have a relatively high stress threshold (corresponding 

to a surface energy density barrier, e.g., stacking fault energy), but they are highly 

efficient in dissipation. There are micro-mechanisms such as those of the fracture 

process have a high stress threshold (associated with a surface energy density 

barrier, e.g., Griffith surface energy), and at the same time are highly inefficient 

in dissipation. Given this premise, the prevalence of the fracture micro-mecha-

nisms is the last resort for the polycrystal. 

Under a certain set of deformation parameters and thermo-chemo-mechanical 

boundary conditions, the mechanical response (stress and stress rate) of a poly-

crystal depends on its instantaneous microstructure as well as the microstructure 

evolution, which is a functional of the energetic-dissipative micro-mechanisms. 

Therefore, to study the microstructural effects on the mechanical response of pol-

ycrystals, the interactive effects of the micro-mechanisms of plasticity and poly-

crystalline microstructure on its evolution must be understood as well. Assuming 
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a displacement-controlled load, let the microstructural effects on the instantane-

ous stress response be expressed by an explicit function: 

𝛔 = 𝐟(𝑇, 𝛆̇, 𝒔);    𝒔 ≡ {𝑠1, 𝑠2, 𝑠3, … }; (1) 

where 𝛔 and 𝛆̇ are the macroscopic/homogenized true stress and strain rate ten-

sors, respectively; 𝑇 is the absolute temperature; 𝒔 represents the microstructural 

state (configuration of micro-state variables); and 𝑠𝑖 denotes the i-th statistical 

microstructural state variable or simply the i-th micro-state variable (MSV). The 

stress response (macroscopic stress tensor homogenized over the polycrystalline 

aggregate) is a function (𝐟) of deformation parameters (temperature and strain 

rate) and the microstructural state (a thermo-micro-mechanical function). The 

microstructural evolution can be represented by the explicit function 𝒈, which is 

also a thermo-micro-mechanical function: 

𝒔̇ = 𝒈(𝑇, 𝛆̇, 𝒔). (2) 

With the known stress response (𝐟) and microstructure evolution (𝒈), the stress 

rate response can be formally expressed as follows: 

𝛔̇ =
𝜕𝐟

𝜕𝑇
𝑇̇ +

𝜕𝐟

𝜕𝛆̇
𝛆̈ +

𝜕𝐟

𝜕𝒔
𝒔̇. (3) 

In fact, if the stress response (𝐟), and one of the microstructure evolution (𝒈) or 

the stress rate response are known, the other one can be dependently represented 

using them. Further, in the case of a non-singular strain rate tensor, the stress rate 

response can be normalized by the strain rate, and represented by the notion of 

strain hardening or tangent modulus (𝚯) as well, which is generally a fourth-

order tensor: 

𝚯 ≡
𝜕𝛔

𝜕𝛆
= 𝛔̇𝛆̇−1. (4) 

Generally, there are two approaches for the continuum modelling of the mi-

crostructural effects on the mechanical response of polycrystals, corresponding 

to two different length scales: 

• Meso-scale computational polycrystal homogenization: The polycrystalline 

meso-structure is explicitly modeled, and a crystal plasticity constitutive 
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model is used to calculate the constitutive response (and the submeso-struc-

ture evolution). The meso-scale fields (stress, strain, and MSVs) are then ho-

mogenized incrementally to give the macroscopic response. 

• Macro-scale nonlocal microstructural modeling: The hierarchical polycrystal-

line microstructure and its evolution are nonlocally and constitutively mod-

eled with sufficient detail directly at the macro-scale using a microstructural 

constitutive model, which also renders the macroscopic mechanical response 

of the polycrystal. Such kind of modeling is performed using the notion of 

micro-state variables. 

In this thesis, the origins, modeling of the microstructural effects on the me-

chanical response of polycrystals are comprehensively reviewed. The pri-

mary/basic microstructural effects, the size and polarity effects, are modeled for 

different polycrystalline metallic materials using the macro- and meso-scale 

modeling approaches. Subsequently, it is shown that how the aforementioned 

modeling methods can be used for the simultaneous optimal (computational) de-

sign of polycrystalline metallic materials and manufacturing processes. 

2. Origins and a Century of Research 

The microstructural effects on the mechanical response of polycrystals can be 

classified into the following interdependent aspects: the primary (size and polar-

ity) and secondary (composite and porosity) effects. Secondary effects appear in 

the presence of multiple microstructural constituents. Accordingly, from a novel 

perspective, the crucial historical findings and modeling developments related 

to the microstructural effects are concisely reviewed in this section. 

 Polarity effect 

The anisotropic mechanical response of single-constituent polycrystalline ma-

terials is exclusively due to their meso-structural polarity (i.e., meso-polarity) 

[24]. A sufficiently strong deviatoric mechanical boundary condition on a poly-

crystal results in a macroscopic plasticity entailing the evolution of the meso-po-

larity state, which in turn affects the anisotropic mechanical response of the ma-

terial. The meso-polarity has two distinct aspects: crystallographic and morpho-

logical. The crystallographic polarity is a measure for deviation of crystallo-

graphic orientation and misorientation distributions from a corresponding fully 

random/non-polarized case. A non-polarized meso-structural morphology usu-

ally comprises equiaxed grains, whereas a polarized morphology constitutes 

high frequency of elongated grains whose (ellipsoidal) semi-axes are dominantly 

orientated with low angle along specific axes in the reference frame. Therefore, 
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the morphological meso-polarity effect can be regarded as an anisotropic size ef-

fect (directional grain size or various grain boundary spacing along different di-

rections) [24]. The constitutive mechanical response of an intra-granular meso-

scale material point (i.e., meso-point) is almost always anisotropic. In the absence 

of submeso-structural elements, the polarity state of a meso-point (submeso-

structural polarity, i.e., submeso-polarity) depends only on its crystal sym-

metry/structure. However, the presence of submeso-structural elements under-

lying the meso-point alters its submeso-polarity state and hence its constitutive 

(anisotropic) elastic stiffness tensor. 

Due to the high dimensionality of the polarity space, extraction of the polarity 

effect is much more difficult than the other microstructural effects, and requires 

advanced continuum modeling and numerical methods, i.e., computational pol-

ycrystal homogenization/approximation. It began with the pioneering analytical 

models of Reuss [25], Hill [26], Hershey [27], and Eshelby [28,29], for mean-field 

approximation of macroscopic elastic properties as well as the analytical esti-

mates of Sachs [30], Taylor [31], Bishop and Hill [32,33], Lin [34], Kröner [35], 

Kocks [36], and Bunge [37], for capturing the anisotropic mechanical response of 

polycrystalline aggregates due to their meso-polarity, all based on simplified lin-

earization assumptions. Thereafter, more sophisticated numerical homogeniza-

tion methods were developed to capture the anisotropic polycrystal plasticity as 

an implicit function of the meso-polarity. 

2.1.1. Computational polycrystal homogenization 

The derivation of the macroscopic mechanical response of polycrystalline ag-

gregates from those of their grains is a long-standing (meso-scale) problem in the 

materials science. An accurate derivation requires the knowledge of the crystal 

properties of the grains, the geometrical specifications (shape, size, orientation, 

and arrangement) of the grains, and a physically consistent mathematical/algo-

rithmic method, which can properly account for the grain interactions. Such a 

mathematical scheme belongs to a class of methods known as computational pol-

ycrystal homogenization (CPH). The CPH methods were originally introduced 

in attempts to capture the meso-polarity effect on the anisotropic (macroscopic) 

mechanical response of polycrystalline aggregates [38–41]. However, they have 

been developing during the past six decades to capture the other meso-structural 

effects as well, since they explicitly model the polycrystalline microstructure on 

the reference scale, the meso-scale. CPH currently rules the mainstream of the 

scientific research on the microstructural effects. In CPH, a meso-scale continuum 

model for crystal finite strain [42–53], which is coupled with a crystal plasticity 
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constitutive model is numerically solved and homogenized over the polycrystal-

line aggregate to render the macroscopic mechanical response. The CPH meth-

ods are divided into the mean- and full-field schemes. 

2.1.1.1. Mean-field CPH schemes 

In the mean-field methods for CPH, usually three-dimensional (3D) meso-

structural constituents (grains), which are assigned certain idealized shape fea-

tures, are immersed in a homogenous matrix/medium (self-consistent approach) 

or arranged with respect to one another (cluster approach). Moreover, there exist 

mean-field CPH methods based on model order reduction. In the following, the 

main characteristics of the mean-field CPH approaches are briefly described: 

• Self-consistent approximations are based on the ellipsoid/Eshelby inclusion 

formalism [27–29,54–101]. In the self-consistent (mean-field) approximations, 

the meso-structural constituents are embedded as isolated equivalent ellip-

soidal inclusions in an infinite homogenous equivalent matrix (linear compar-

ison polycrystal). In the first-order self-consistent estimates (secant, tangent, 

affine, and variational), as formally shown by Eshelby [28], the mechanical 

(stress and strain rate) fields are uniform in the ellipsoidal inclusion, and re-

lated to the uniform mechanical far-fields (infinitely far mechanical fields of 

the matrix) by the fourth-order Eshelby tensor. However, more accurate 

higher-order self-consistent estimates, which are based on variational meth-

ods for general nonlinear heterogenous/composite media [73,102–119], also 

account for intra-granular field fluctuations using higher-order statistical mo-

ments. In general, the self-consistent methods account for the morphological 

polarity through the ellipsoid simplification. Nonetheless, since each ellipsoid 

is treated as an isolated inclusion within a homogeneous matrix, among the 

aspects of the crystallographic polarity, self-consistent methods do not con-

sider the direct neighbor interactions or interface effects (i.e., the effect of 

meso-structural crystallographic misorientation). 

• Cluster approximations (also known as grain cluster or relaxed constraint 

methods) approximately account for the crystallographic polarity including 

the neighbor interactions (interface misorientation) by partial fulfillment of 

the meso-structural interface mechanical (stress equilibrium and strain com-

patibility) conditions, but they neglect the morphological polarity [120–134]. 

Weak enforcement of the equilibrium and compatibility conditions between 
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the contiguous grains in the cluster is performed by partial relaxation of Tay-

lor/isostrain (uniform strain field in the entire polycrystal) constraints/as-

sumptions [31]. 

• Order reduction schemes (commonly known as transformation field analysis) 

often use the notions of macroscopic internal state variables and thermody-

namics potentials [135–148]. Such mean-field schemes systematically reduce 

the number of macroscopic internal variables by decomposing the plastic 

strain within each grain to a finite set of plastic modes, which can represent 

large deviations from uniformity. 

Mean-field approximations enable (computationally) efficient transfer of the 

(evolving) meso-polarity effects to the macro-scale material points (i.e., macro-

points) during macro-scale simulations, e.g., finite element (FE) simulation of 

sheet metal forming process. 

2.1.1.2. Full-field CPH schemes 

Numerical full-field methods were developed to overcome the deficiencies of 

the mean-field methods by considering a higher level of meso-structural detail 

with the expense of computational power/time. In the full-filed schemes, exter-

nal/far-field displacement/traction boundary conditions on the polycrystalline 

material translates as a homogenous periodic boundary conditions on a synthetic 

periodic (often cubic) meso-structural ensemble as a statistically representative 

volume element (SRVE). The main criterion for an SRVE is that its (statistical) 

meso-structural descriptors must match (within a tolerance) the meso-structural 

descriptors of the respective polycrystalline material. In the last two decades, 

considerable development has been made in the synthetic generation of SRVEs 

of polycrystals [9,149–160]. The aforementioned boundary value problem can be 

numerically solved to spatially resolve the fields by the finite element method 

(FEM) [38,161–171], or schemes based on the fast Fourier transform (FFT) algo-

rithm [172–197], which take advantage of the periodicity of the boundary condi-

tions imposed on the SRVE. 

 Size effect 

All the mechanical properties of polycrystalline materials are affected by the 

intrinsic microstructural size parameters at various length scales [198–200]. Size 

effect is the most significant microstructural effect. The morphological polarity 

effect can be regarded as an anisotropic size effect. The secondary microstructural 

effects, each impose their own size effect. The size effects are divided into meso-
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scale size (i.e., meso-size) and submeso-scale/constitutive size (i.e., submeso-

size) effects. In this context, the meso-size represents the effective spacing among 

the boundaries of contiguous grains. 

Orowan [201], Taylor [202], Bragg [203], and Zener [204], were the first to pro-

pose (in the 1930s based on rudimentary rationales) that the stress response (or 

strength) has an inverse relationship with a scalar microstructural size. However, 

the meso-size/(grain size)/Hall-Petch effect, which is one of the most investi-

gated microstructural effects, is best known by the empirical studies of Hall 

[205,206], and Petch [207,208] (in the 1950s), shortly after the supportive theoret-

ical calculations of Eshelby et al. [209], and Leibfried [210], on the stress field in 

the vicinity of dislocation pileups. Thereafter, many attempts have been made to 

derive/justify/modify/extend the so-called Hall-Petch relation based on physi-

cally motivated elastic/plastic incompatibilities at grain boundaries and/or dis-

location-grain-boundary interactions (grain boundary dislocation pileups and 

sources), which result in a composite consisting of a hard boundary layer (im-

penetrable or opaque for dislocations) and a soft interior/bulk region [36,211–

252]. This leads to stress concentration at the reinforced boundaries contributing 

to the macroscopic yield stress/strength of the polycrystalline aggregate. 

The classical Hall-Petch and Taylor relations inspired proposals for describing 

the submeso-size effect as a (scaling) function of the effective/characteristic spac-

ing/wavelength of the self-organized dislocation walls/pileups and/or subgrain 

boundaries (a scalar submeso-scale parameter) [221,222,233,239,241,249,253–

286]. More fundamentally, the submeso-size effect on the instantaneous stress 

response of a meso-point is a function of dislocation junction/lock strengths and 

spacings, and thus dislocation density (defined in the meso-scale control volume 

surrounding the meso-point) according to the generalized Taylor relation 

[202,212,286–300]. 

The submeso-size and its evolution are governed by various sources of sub-

meso-scale crystal discontinuities acting as both dislocation sources and obstacles 

for dislocation slip, e.g., dispersoids, nano-twins, and most importantly forest 

dislocations. These discontinuities can be constitutively homogenized using the 

harmonic superposition/mixture/mean law to render the (effective) submeso-

size through the notion of mean free path for dislocation slip [290,301–309]: 

Λ = (∑ 𝑐𝑖  𝜆𝑖
−1

𝑖
)

−1

; (5) 
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where Λ represents the submeso-size at a given meso-point (at all the slip systems 

in average or at a specific slip system); 𝜆𝑖 denotes the effective spacing among the 

elements of the i-th submeso-structural obstacle/source type at the meso-point; 

and 𝑐𝑖 > 0 (absorbable in 𝜆𝑖) is a dimensionless constant controlling the relative 

strength of the i-th obstacle/source type. Notice that the smallest term in the 

right-hand side of Eq. (5) has the strongest impact on Λ𝛼. The spacing of forest 

dislocations (𝜆𝑓) is often the smallest among 𝜆𝑖. The submeso-size (Λ) controls the 

effective length/curvature of dislocation sources and thereby the rate of disloca-

tion generation/multiplication (source), consequent accumulation/storage (ob-

stacle), and ultimately the constitutive strain hardening response. It is worth not-

ing that (obstacle-type) relationships analogous to Eq. (5) can be envisaged for 

the other carriers of crystal plasticity such as twinning and stress-induced phase 

propagation. 

In addition, decreasing the meso-size generally gives rise to the proliferation 

of dislocation multiplication through increasing the number density of grain 

boundary sources (at boundary dislocations and disconnections such as ledges, 

steps, kinks, and trijunctions), which in turn leads to surging the macroscopic 

strain hardening response of undeformed polycrystals [212–214,221–

223,232,233,237,239,240,256,262,269,310–344]. However, the strain hardening re-

sponse will undergo a relatively abrupt drop after exhaustion of the boundary 

sources and formation of dislocation pileups. Therefore, in nonlocal constitutive 

modeling either at macro- or meso-scale, the meso-size should be one of the 𝜆𝑖 in 

Eq. (5), since given a certain grain shape distribution, the grain boundary area 

density is inversely proportional to the effective grain size. 

The submeso-size effects on the constitutive mechanical response of meso-

points lead to the evolution of meso-structure and its associated effects, which 

will collectively reveal themselves on the macroscopic mechanical response. In 

this context, seemingly distinct (on the meso-scale) subgrain boundaries also 

known as geometrically necessary boundaries (GNBs) or dense dislocation walls 

(DDWs) [255,345–360], emerge on the meso-scale due to a detectable low angle 

misorientation stemming from a rich underlying dislocation submeso-struc-

ture/substructure corresponding to a relatively high density of geometrically 

necessary dislocations (GNDs) [221,361–367]. Therefore, as an emergent cross-

scale microstructural feature, the (low-angle) subgrain (diffuse) boundaries and 

their spacing should be considered through their underlying submeso-structural 

features (e.g., submeso-size). Nevertheless, in this setting, the sharp meso-struc-

tural/grain boundaries, as pure rotational defects with relatively low free energy 

density (in the undeformed state under free macroscopic boundary conditions) 
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can be described by a certain underlying disclination (density) field [368–384], as 

opposed to interface-dislocations/Frank-Bilby/Read-Shockley models of grain 

boundaries [385–394]. This suggests that at a sufficiently small submeso-size and 

large meso-size, the meso-size effect will vanish (associated with a zero Hall-

Petch constant/slope). To capture this phenomenologically, modified/general-

ized Hall-Petch relations augmented with a submeso-size parameter were re-

cently proposed, which couple the meso- and submeso-size effects [329–

331,395,396]. 

Even though there is a large body of data in the literature supporting the Hall-

Petch relation in capturing the meso-size effect in a wide variety of polycrystal-

line materials, it is not free of controversy [211,214,397–401]. At a constant rela-

tively low dislocation density (and thus a constant relatively large submeso-size), 

a nonlinearity is often observed in the Hall-Petch plots (initial yield stress versus 

the inverse squareroot of the effective grain size), corresponding to a transition 

from a coarse-grained to a fine-grained regime. This bi-linear regime change is 

relatively sharp, usually observed in the grain sizes in the order of 1-10 µm, and 

typically is associated with the appearance of macroscopic discontinuous (initial) 

yielding [333,402–416]. The pronounced discontinuous yielding, yield point or 

Lüders phenomenon [206,417–423], which is due to the inhomogeneous inter- 

and intra-granular (elasto-plastic) deformation, dominates in the early stage of 

fine-grained polycrystal deformation until the average intra-granular shear re-

sistance reaches the mean threshold for plasticity of grain boundaries (the equiv-

alence of meso- and submeso-size effects). 

The Hall-Petch relation also fails where the effective grain size falls below a 

(submicron) threshold corresponding to the transition from the meso- to sub-

meso-scale. Such transition is usually correlated with an abrupt decrease in the 

Hall-Petch constant (often to negative values). The aforementioned nonlinearities 

in the Hall-Petch constant, which mark different meso-size regimes [424–427], are 

associated with switches in domination of different competitive energetic-dissi-

pative micro-mechanisms of plasticity. The negative Hall-Petch constant (inverse 

Hall-Petch effect or grain size softening), which is often accompanied by super-

plasticity in polynanocrystals (nano-grained/nano-structured/ultrafine-grained 

polycrystals) [236,250,251,424–458], is due to the prevalence of the stress-in-

duced/shear-coupled/athermal grain boundary migration, sliding, and rota-

tion-coalescence [370,371,388,427,454,455,457,459–552]. The anomalous devia-

tions from the Hall-Petch trend associated with relatively small and large meso-

sizes are known as the Hall-Petch break-down/collapse phenomena. 

Anomalous#_CTVL001fe94794eb49b4b9da50a197a08420a1f
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The dynamics of submeso-size is governed by (continuous) dislocation density 

evolution stemming from dislocation multiplication/accumulation/storage as 

well as recovery/annihilation mechanisms, which have been extensively mod-

eled at various length/time scales often by compartmentalizing the dislocation 

population [24,258,276,281,307,316,317,333,340,553–623]. Despite the highly dy-

namic nature of submeso-size, the meso-size usually undergoes negligible 

changes during plastic deformation. On the other hand, the meso-polarity is 

highly dynamic during polycrystal plasticity. Meso-structural size (and polarity) 

and the associated meso-structural effects evolve under the following extreme 

meso-structural processes: 

• Deformation and annealing twinning due to twin formation (nucleation and 

propagation) and thickening/growth [305,624–680]. 

• Stress-induced grain boundary migration, sliding, and rotation-coalescence. 

• Continuous/discontinuous/geometric recrystallization by grain nucleation, 

growth (curvature-driven/capillarity-driven/thermally-activated/diffusion-

induced/spontaneous grain boundary migration), and stagnation [388,681–

797]. 

• Phase transformation (see Section 2.3). 

In the framework of phenomenological (isotropic) strain gradient plasticity 

[798–835], attempts have been made to capture both the meso- and submeso-size 

effects at the macro-scale using constitutive modeling in a semi-physics-based 

fashion (still with the accumulated plastic strain as an internal state variable) 

[799,817,818,836–877]. Nevertheless, the meso- and submeso-size effects can be 

coupled though the (physics-based) microstructural constitutive modeling (non-

locally [878–881]) at the macro-scale [553], which can be implemented in a 

thermo-micro-mechanical formalism [882], to simulate the macroscopic response 

of (macro-scale) polycrystal volumes based on the underlying (meso- and sub-

meso-) structural sizes. In the (nonlocal) microstructural constitutive modeling, 

the key postulate is that a differential meso-structural singularity (infinitesimal 

meso-interface associated with a disorientation) in the polycrystal continuum can 

be replaced by a fictitious equivalent GND density (tensor) as a diffuse interface 

(GNB) [883], that smoothly resolves the effective geometrical features and me-

chanical properties of the meso-interface. Accordingly, the microstructural size 

features at different length scales and their associated (meso- and submeso-size) 

effects can be unified. Nonetheless, there is a need for a generalized microstruc-

tural constitutive model that in addition to the size effects also accounts for the 
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other microstructural effects, most importantly the polarity effect through the po-

larity/tensorial feature of GNDs. 

As mentioned earlier, CPH schemes may simultaneously capture multiple 

meso-structural effects. The unique advantage of the full-field schemes is that 

they allow for gradient-based crystal plasticity constitutive treatments [884–897], 

to account for strong field contrasts in the vicinity of grain boundaries. Plasticity 

(slip/twin) transmission across interfaces as a function of interface opacity/pen-

etrability/transferability/transmissivity/hardness [648,898–929], can be conven-

iently incorporated in the meso-scale (particularly gradient-based) full-field crys-

tal plasticity formulations to simultaneously account for the size and polarity ef-

fects [189,193,329–331,334–336,338,340–344,371,552,570,609,842,865,866,883,930–

969]. It should be noted that besides the mean values of the microstructural sizes, 

their heterogeneities/distributions/variances also affect the mechanical re-

sponse of polycrystals. In particular, the meso-size heterogeneity effect has been 

already investigated/modeled [396,970–983]. 

It is worth noting that the stress-reversal/strain-reversal/(strain-path 

change)/Bauschinger/(kinematic hardening) effect [984–1013], is intrinsically a 

submeso-size effect. This effect is intimately related to the collective curvature 

and the associated short-range back stress state of statistically stored dislocations 

(SSDs) [196,337], and GNDs at meso-points, as well as the long-range/nonlocal 

internal stresses induced due to their associated submeso-structural dislocation 

walls/boundaries [258,260,1011,1014–1025]: incidental dislocation boundaries 

(IDBs) and GNBs [255,345–360][255,345–360], respectively. The stress-reversal ef-

fect caused by the sign change of resolved shear stress and plastic shear strain 

rate (reverse dislocation slip [1000,1023,1026–1029], and/or detwinning/retwin-

ning [1030–1037]) at deformation systems of meso-points arising from the change 

of macroscopic boundary conditions and/or mesoscopic lattice rotation can be 

incorporated in physics-based crystal plasticity constitutive models  

[562,572,577,578,590,600–608,610,611,613,615,618,619,935,1034,1038–1054]. The 

stress-reversal effect is stronger where the submeso-structural dislocation bound-

aries have a higher frequency and amplitude (misorientation of GNBs and thick-

ness of IDBs). Cyclic polycrystal plasticity (with sufficiently low amplitude, high 

frequency, and long duration) in the presence of adequate cross-slip activity often 

leads to the formation of thick submeso-structural IDBs (containing relatively 

high density of edge dislocation dipoles) with particular vein/ladder/labyrinth 

arrangement, and the associated channels or the persistent slip bands 

[258,286,577,587,615,993,999,1018,1019,1021,1055–1082]. 
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 Composite effect 

A composite polycrystalline microstructure comprises a matrix/primary/par-

ent constituent and at least a (non-void) secondary constituent (phase and/or 

precipitate). The inherent geometrical features of crystal structure (crystal sym-

metry and lattice constants) and the elemental composition of each grain/disper-

soid belonging to a single constituent are identical (within a tolerance) but suffi-

ciently different from those of the other constituents. Consequently, the physi-

cal/energetic properties of each constituent are different from those of the other 

constituents. These intrinsic crystal properties, which can be calculated using 

submeso-scale simulations/calculations (ab initio calculations, atomistic simula-

tions, discrete dislocation dynamics simulations, and/or phase-field micro-elas-

ticity simulations), are the elastic constants and moduli, dislocation junction 

strengths, maximum short-range slip resistance (also known as Peierls stress or 

solid solution strength), activation volumes for slip, climb, and cross-slip, self-

diffusion thermal activation energy, self-diffusion coefficient, stacking fault en-

ergy, anti-phase boundary energy, and so on. Moreover, the aforementioned sub-

meso-scale simulations/calculations can be invoked to derive the (constitutive) 

parameters associated with the interactions of the submeso-structural elements 

(e.g., dispersoids, voids, and nano-twins) with the matrix, grain boundaries, dis-

locations, and/or each other. 

The fractions of different secondary constituents are known to have strong im-

pacts on many mechanical properties. Nevertheless, depending on the size, mor-

phological, and crystallographic features of the secondary constituents, they im-

pose their own size and polarity effects on the mechanical response. Therefore, if 

a secondary constituent has an effective/mean meso-scale size, its associated mi-

crostructural effects is classified as meso-scale composite (i.e., meso-composite) 

effects. Likewise, if the dispersoids of a secondary component have an effective 

submeso-scale size, their associated microstructural effects are categorized as 

submeso-scale composite (i.e., submeso-composite) effects. The meso-composite 

effect can be explicitly modeled using the CPH methods so that the constitutive 

response of the meso-points of each meso-structural constituent is calculated us-

ing different constitutive models and/or constitutive parameters 

[152,155,1044,1083–1101]. In contrast, in meso-scale CPH or macro-scale micro-

structural modeling, the submeso-composite effect can only be implicitly ac-

counted for in the corresponding constitutive model. 
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Thermo-chemo-mechanical boundary conditions and the respective evolving 

fields may lead to evolution of the secondary constituents, which thus will com-

positely affect the mechanical response. Diffusional/diffusion-controlled (solid-

state) phase transformation by nucleation, growth, and impingement 

[692,759,1102–1148], the stress-induced/strain-induced/displacive/diffusion-

less/martensitic phase transformation by nucleation, propagation, and termina-

tion [657,680,1102,1107,1122,1149–1282], and diffusional continuous/discontinu-

ous precipitate evolution by nucleation, growth, aggregation/coalescence, coars-

ening/ripening, and dissolution [759,1102,1147,1283–1379], impose combined 

(meso-/submeso-) composite, size, and polarity effects. 

Mott and Nabarro [1380], Orowan [1381], Fisher et al. [1382], Friedel 

[1383,1384], Kocks [301,1385], Ashby [1386–1388], Foreman and Makin 

[1389,1390], Hirsch and Humphreys [1391–1393], and Brwon and Stobbs [1394], 

were the first (1940-1970) followed by other researchers [1395–1420], to model the 

submeso-composite and -size effects associated with (plastically) non-sheara-

ble/non-deformable/shear-resistant/impenetrable/strong/rigid/hard spheri-

cal particles (particulate nano-precipitates/phases) submesoscopically dispersed 

in a deformable/soft matrix. The aforementioned non-shearable particle disper-

soids were assumed to be incoherent and/or sufficiently large and thus looped 

by mobile dislocations through the Orowan/Hirsch bypassing mechanisms 

[1381,1392,1393]. Nevertheless, if the mean size of dispersoids is larger than a 

certain threshold (comparable to average length of dislocation segments), dislo-

cation bypassing/looping can no longer be a viable dislocation-dispersoid inter-

action mechanism. Therefore, in the presence of (eutectic/eutectoid) lamel-

lar/multilayered/nanolayered/nanolaminate dispersoids, the constitutive re-

sponse is governed by the interface-driven/dominated plasticity: the competi-

tion between the confined layer plasticity and the slip transmission across the 

matrix-dispersoid interfaces [929,1421–1445]. The combined submeso-composite, 

-size, and -polarity effects associated with the lamellar dispersoids can be consti-

tutively modeled [1425–1427,1437,1439,1442,1446–1465]. 

In contrast, shearable/deformable/penetrable/weak/soft coherent particles 

with adequately small size may be sheared by the slipping dislocations. Such co-

herent particles give rise to the following submeso-size and -composite (strength-

ening) effects [1378,1379,1466–1472]: 

• Chemical effect [1470,1473,1474], which arises from the energy required to 

create an additional particle-matrix interface when the particle is sheared by 

a mobile dislocation. 
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• Stacking fault effect [1475], occurs when the stacking fault energy of the co-

herent particle is different from that of the matrix. This results in different 

separation width of the passing partial dislocations in the matrix and in the 

particle, which will lead to a short-range stacking fault strengthening effect. 

• Modulus effect [1476–1480], occurs when a dislocation enters a coherent par-

ticle having a shear modulus different from that of the matrix, leading to a 

change in the dislocation line tension and thus the Peierls stress, which typi-

cally leads to a short-range hardening effect. 

• Coherency effect [1481–1483], occurs when the lattice parameter of the coher-

ent particle is different from that of the matrix. A non-zero matrix-particle 

interface energy ensuing the lattice misfit generates a relatively long-range 

stress field in the matrix (through a grid of geometrically necessary misfit dis-

locations) that interacts with nearby dislocations. 

• Order effect [1484–1488], which is due to the additional work required to gen-

erate an antiphase boundary in the case of dislocations passing through par-

ticles which have an ordered lattice. 

The (submeso-structural) dispersoids impose a submeso-size effect on the 

strain hardening (or stress rate) response due to their effective size and spacing 

[307–309,1378,1383,1385,1389,1402,1405,1469,1489–1493], which can be inte-

grated through the harmonic superposition law (Eq. (5)) together with the other 

sources of crystal singularities. They enforce a submeso-size effect on the instan-

taneous stress response as well, which can be constitutively homogenized with 

the submeso-size effect due to dislocation junctions to give the effective constitu-

tive critical shear stress using the general superposition/mixture law 

[1043,1390,1395,1406,1468,1490,1494–1510]: 

𝜏intra sl cr = (∑ 𝜏𝑖
𝑞

𝑖
)

1
𝑞⁄

; (6) 

where 𝜏intra sl cr is the effective intra-granular critical shear stress for dislocation 

slip at a given meso-point (at all the slip systems in average or at a specific slip 

system); 𝜏𝑖 is the contribution of the i-th submeso-size/-composite effect on the 

dislocation slip resistance; 𝜏𝜌 ≡ 𝜏𝑖|𝑖=1 denotes the effective critical shear stress for 

dislocation slip due to dislocation junctions; and 𝑞 represents a constant exponent 

(𝑞 ≥ 1). Typically, it is assumed that 𝑞 = 2, corresponding to the quadratic/geo-

metric/Pythagorean superposition; and sometimes 𝑞 = 1 is taken, corresponding 
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to the linear superposition. Notice that the harmonic and the general superposi-

tion laws for the constitutive strain hardening and stress responses (Eqs. (5) and 

(6), with 𝑐𝑖 = 1 and 𝑞 = −1) share obvious similarities. 

 Porosity effect 

As a submeso-structural constituent, the porosity and its evolution mecha-

nisms have a dominant effect on the strain/stress localization, and hence ulti-

mately govern the damage-induced macroscopic softening/(negative strain 

hardening) response and the ductile failure-related mechanical properties of pol-

ycrystals (e.g., ultimate tensile stress, uniform/post-uniform/maximum elonga-

tion). McClintock et al. [1511], McClintock [1512], Rice and Tracy [1513], Tracey 

[1514], Green [1515], Rudnicki and Rice [1516], McMeeking [1517], Hancock and 

Mackenzie [1518], Shima and Oyane [1519], Gurson [1520], Yamamoto [1521], 

and Needleman and coworkers [1522,1523], were the first (1966-1978) to formally 

model the pressure-dependent porosity effect by postulating certain idealized 

void shapes embedded in isotropic (porous) matrices with rigid plastic proper-

ties. 

Subsequently, the void evolution mechanisms [1524–1572] (nucleation [1573–

1582], growth [1583–1606], and coalescence/collapse/sheet [1607–1644]) during 

plastic deformation and the associated porosity effects have been extensively 

studied and modeled for various void shapes and polarity [1525,1607,1645–1654] 

(spherical [1589,1655–1673], cylindrical [1659,1674–1681], spheroidal 

[1534,1599,1600,1624,1682–1696], and ellipsoidal [1555,1697–1719]) under differ-

ent loading modes (stress triaxiality and lode parameter). Furthermore, the po-

rosity evolution and effects have been investigated/modeled for different effec-

tive void (submeso-) size and distributions [1531,1551,1559,1562,1583,1594–

1596,1604,1605,1614,1633,1634,1649,1654,1660,1687,1694,1695,1720–1734], in vis-

coplastic matrices with effective orthotropic and/or asymmetric properties 

[1607,1614,1643,1650,1652,1653,1669,1688–1690,1692,1702,1713,1735–1743], and 

more recently in single crystals [1553,1556,1557,1572,1583,1588,1593,1594,1596–

1598,1601–1603,1621,1623,1679,1680,1706,1707,1714,1715,1718,1743–1747]. 

Nevertheless, in certain regimes of deformation parameters and microstruc-

ture, polycrystalline materials may undergo (inter/trans -granular cleavage) brit-

tle fracture (crack nucleation and propagation), which operate in lower time 

scales compared to their ductile counterparts [215,247,248,1748–1782]. In such 

cases, localized voids and particles and their associated stress/strain localization 

are usually the precursor of the brittle crack nucleation 

[1764,1766,1775,1776,1783–1786]. 
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3. Papers 

In this section, the primary microstructural effects, the size and polarity effects, 

are modeled for different polycrystalline metallic materials at various length 

scales. In Paper I, the size effect was modeled at the macro-scale using a nonlocal 

microstructural model for polycrystal plasticity to simulate the behavior of a fer-

ritic-pearlitic steel during deformation in the cold and warm regimes. Then, in 

Paper II, the same model was used to simulate industrial cold and warm forging 

processes of a bevel gear shaft and predict its final microstructure and properties 

(process-microstructure-properties linkage). In Paper III, the polarity effect was 

modeled at the meso-scale using a physics-based crystal plasticity model to sim-

ulate the anisotropic mechanical response of a highly (meso-structurally) polar-

ized additively manufactured austenitic high-Mn steel (microstructure-proper-

ties linkage). Subsequently, in Paper IV, it was shown that the meso-scale model 

can be applied for the optimal computational design of an additively manufac-

tured component (lattice structure). 

 Paper I 

S.A.H. Motaman, U. Prahl: Microstructural constitutive model for polycrystal 

viscoplasticity in cold and warm regimes based on continuum dislocation dy-

namics. 
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a b s t r a c t 

Viscoplastic flow of polycrystalline metallic materials is the result of motion and interac- 

tion of dislocations, line defects of the crystalline structure. In the microstructural/physics- 

based constitutive model presented in this paper, the main underlying microstructural pro- 

cesses influencing viscoplastic deformation and mechanical properties of metals in cold 

and warm regimes are statistically described by the introduced sets of postulates/axioms 

for continuum dislocation dynamics (CDD). Three microstructural (internal) state variables 

(MSVs) are used for statistical quantifications of different types/species of dislocations by 

the notion of dislocation density. Considering the mobility property of dislocations, they 

are categorized to mobile and (relatively) immobile dislocations. Mobile dislocations carry 

the plastic strain (rate), while immobile dislocations contribute to plastic hardening. More- 

over, with respect to their arrangement, dislocations are classified to cell and wall disloca- 

tions. Cell dislocations are those that exist inside cells/subgrains, and wall dislocations are 

packed in (and consequently formed) the subgrain walls/boundaries. Therefore, the MSVs 

incorporated in this model are cell mobile, cell immobile and wall immobile dislocation 

densities. The evolution of these internal variables is calculated by means of adequate 

equations that characterize the dislocation processes dominating material behavior during 

cold and warm monotonic viscoplastic deformation. The constitutive equations are then 

numerically integrated; and the constitutive parameters are determined/fitted for a widely 

used ferritic-pearlitic steel (20MnCr5). 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Nowadays, finite element (FE) simulation of manufacturing processes such as metal forming is an important part of 

process and product design and development in the industry. Correct and accurate description of material behavior and 

properties is always the biggest challenge in simulation of industrial manufacturing processes that are based on viscoplastic 

deformation. Dislocation-density-dependent physics-based constitutive models of metal plasticity while are computationally 

efficient and history-dependent, can accurately account for varying process parameters such as strain rate and temperature. 

Since these models are founded on essential phenomena dominating the deformation, they have a wide range of usability 

and validity. Moreover, they are suitable for manufacturing chain simulations as they can efficiently compute the cumulative 

∗ Corresponding author. 
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Nomenclature 

Symbol description 

b Burgers length (magnitude of Burgers vector) [m] 

c Material coefficient associated with probability amplitude (or frequency) of a dislocation process [-] 

d Critical distance for dislocation processes [m] 

e Relative error, residual/objective/fitness function [%] 

f Volume fraction [-] 

G Shear modulus [Pa] 

H Viscoplastic tangent modulus [Pa] 

l Length of a dislocation segment [m] 

m Strain rate sensitivity parameter [-] 

n Number of active slip/glide systems [-] 

M Taylor factor [-] 

p Probability amplitude (or frequency) of a dynamic dislocation process [-] 

q Volumetric heat generation [J ·m 

−3 ] 
r Temperature sensitivity coefficient [-] 

R Dislocation radius [m] 

s Temperature sensitivity exponent [-] 

S Stochastic/nonlocal microstructural state [a set containing all MSVs] 

t Time [s] 

T Temperature [K] 

u Volumetric stored energy [J ·m 

−3 ] 
v Velocity vector [m ·s −1 ] 
w Volumetric work [J ·m 

−3 ] 
α Dislocation interaction strength/coefficient [-] 

β Dissipation factor, efficiency of plastic dissipation, or Taylor–Quinney coefficient [-] 

γ Shear strain in slip system, mean shear strain [-] 

ε Mean/nonlocal true (normal) strain [-] 

θ Plastic/strain hardening [Pa] 

ϕ Viscous/strain-rate hardening [Pa.s] 

κ Material constant associated with dissipation factor [-] 

	 Dislocation spacing [m] 

ρ Dislocation density [m 

−2 ] 
σ Mean/nonlocal true (normal) stress [Pa] 

τ Resolved shear stress [Pa] 

Index description 

ac Accumulation 

an Annihilation 

d Dynamic 

gn Generation 

GN Geometrically necessary 

i Immobile 

loc Local 

m Mobile, melt 

(n) Time step index, previous time increment 

(n + 1) Current time increment 

nc Nucleation 

c Cell 

p Plastic 

pn Pinning 

rm Remobilization 

s Static 

sat Saturated 

SS Statistically stored 

t Total (subscript), time (superscript) 

tr Trapping 

v Viscous 
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w Wall 

x Cell, wall, or total ( x = c, w, t) 

y Mobile, immobile, or total ( y = m, i, t), yield/flow 

z Dislocation process ( z = gn , an , ac , tr , nc , rm , s pn , s rm ) 

0 Reference, initial/undeformed state 

+ Increase/production 

- Decrease/elimination 
∧ Normalized/dimensionless ( ̂ x = 

x 
x 0 
) 

∨ Function 
∼ Statistical mean/average 
− Equivalent 

Abbreviation description 

CB Cell block 

CDD Continuum dislocation dynamics 

CMD Continuum microstructure dynamics 

DDD Discrete dislocation dynamics 

DDW Dense dislocation wall 

DSA Dynamic strain aging 

DTH Dynamic thermal hardening 

DTS Dynamic thermal softening 

EBSD Electron backscatter diffraction 

EVP Elasto-viscoplastic 

FE Finite element 

FEMU Finite element model updating 

GB Grain boundary 

GNB Geometrically necessary boundary 

GND Geometrically necessary dislocation 

IDB Incidental dislocation boundary 

MB Micro-band 

MD Molecular dynamics 

MSV Microstructural (internal) state variable 

RMV Representative material volume 

RVE Representative volume element 

SC Sub-cell 

SMS Stochastic microstructural state 

SFE Stacking fault energy 

TMM Thermo-micro-mechanical/thermal-microstructural-mechanical 

TWIP Twinning-induced plasticity 

effect of the various manufacturing processes by following the microstructure state through the entire manufacturing chain 

including interpass periods and give a realistic prediction of material behavior and final product properties. The constitutive 

models are mainly divided into the following main categories ( Lin and Chen, 2011; Rusinek et al., 2010 ): 

1.1. Empirical constitutive models 

Empirical constitutive models provide description of the yield/flow stress based on empirical observations, and consist of 

some mathematical functions that lack the physical background. In these models, yield stress is usually an explicit function 

of accumulated plastic strain, strain rate and temperature, which makes empirical models not history dependent. More- 

over, the problem with the accumulated plastic strain is that it is a non-measurable virtual variable. Furthermore, empirical 

constitutive models are normally characterized by reduced number of material constants and easy calibration. However, 

due to their empirical characteristics, they are usually covering limited range of applicability and flexibility and offer low 

accuracy. Empirical models are determined by fitting parameters of model equations to experimental data without con- 

sidering the physical processes causing the observed material behavior. Empirical or phenomenological models are also 

named engineering models as they are more common in engineering applications than the physics-based material models. 

A number of common empirical constitutive models of metals viscoplasticity are usually incorporated in commercial FE pro- 

grams ( Follansbee and Kocks, 1988; Hockett and Sherby, 1975; Johnson and Cook, 1983; Khan and Liang, 1999; Rusinek and 

Klepaczko, 2001; Sung et al., 2010 ). 
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1.2. Microstructural constitutive models 

Microstructural or physics-based constitutive models account for microstructural/physical aspects of the material be- 

havior. These are the models where knowledge about the underlying microstructural processes including dislocation pro- 

cesses, is applied to formulate the thermo-micro-mechanical (TMM)/thermal-microstructural-mechanical constitutive equa- 

tions. In addition, since microstructural material models simulate the main microstructural phenomena influencing the over- 

all mechanical response of the material to plastic deformation, they can be used in wide range of deformation parameters 

(strain rate and temperature) and loading/deformation modes (tension, compression, creep, and relaxation). Additionally, 

since in industrial metal forming processes, material usually undergoes variety of loading types and parameters, history- 

dependent microstructural constitutive models are much more suitable and robust for comprehensive simulations of com- 

plex industrial metal forming processes. Physics-based models may follow different approaches to describe microstructure 

evolution/kinetics in polycrystalline materials under plastic deformation: 

• Discrete dislocation dynamics (DDD) in which slip/glide/motion and interaction of individual dislocations are considered; 

and thereby, the stress-strain response of the material is a result of direct simulation of a huge assemble of dislocations 

in a very small representative volume element (RVE). Some good examples can be found in works of van der Giessen 

and Needleman (1995), Zbib et al. (1998), Devincre et al. (2001), Zbib and La Diaz de Rubia (2002), Arsenlis et al. (2007), 

Groh et al. (2009), Zhou et al. (2010), Huang et al. (2012) and Chandra et al. (2018) . The algorithms based on DDD are 

extremely costly in terms of computation time, they do not account for size effect, and cannot be readily implemented in 

standard FE software for industrial application. Nevertheless, DDD simulations are more efficient than those of molecular 

dynamics (MD) because the RVEs in DDD are much bigger in size than those used in MD which run in atomistic level. 

DDD simulations provide insights into larger scale behavior (mesoscale). Therefore, models based on MD and DDD are 

very helpful for studying of dislocation processes and construction of statistical continuum models based on dislocation 

density ( Kubin, 2013; Li et al., 2014; Monavari et al., 2016 ). 

Furthermore, DDD and MD have proven to be very useful tools for stochastic modeling of microplasticity experiments 

such as micro-pillar/column compression, micro-bending and nano-indentation, that together with (in-situ) electron mi- 

croscopy provide a deep understanding into collective behaviors of dislocations such as dislocation sources, arrange- 

ments, configurations and interactions ( Csikor et al., 2007; Cui et al., 2017, 2016a, 2016b; Derlet and Maaß, 2013; El- 

Awady et al., 2009; Greer et al., 2008; Lee et al., 2016; Miller et al., 2004; Motz et al., 2008; Ng and Ngan, 2008; Oh 

et al., 2009; Papanikolaou et al., 2018; Parthasarathy et al., 2007; Po et al., 2014; Shiari et al., 2005; Yamakov et al., 2002; 

Zaiser, 2013; Zhang et al., 2015; Zhu, 2004 ). 
• Continuum dislocation dynamics (CDD) describe the microstructure indirectly, so that the effects of the micro level pro- 

cesses are accounted for, in an average way on the macro level. Such type of approach is the subject of this study using 

the notion of dislocation density which unlike (accumulated) plastic strain, is measurable to some extent by electron mi- 

croscopy and X-ray techniques. Due to their physical nature, besides plastic/strain/work hardening, constitutive models 

based on different types of dislocation densities have the potential of predicting many other important processes such 

as creep, relaxation, dynamic strain aging, static aging, and bake hardening. 

Opposite to the DDD approach, constitutive models based on CDD are formulated at the macro level, i.e. the microstruc- 

tural (internal) state variables (MSVs) are calculated for a mesoscale representative material volume (RMV). In macroscale 

simulation of plastic deformation, material/integration points are considered to be RMVs. Additionally, an ideal test sample 

under homogenous uniaxial normal load (tension or compression) which is used for obtaining flow curve is assumed to be 

a RMV. 

With indirect approach of CDD, dislocation density-dependent constitutive models provide a bridge between the micro- 

level phenomena and macro-level continuum quantities, such as stress and strain rate. Furthermore, simulations performed 

using these constitutive models are much less costly (in the same range of common empirical constitutive models) and less 

complicated compared to the algorithms based on discrete dislocation dynamics. Hence, they can be easily implemented in 

standard FE software and are suitable for industrial applications. This study is limited to the isotropic case meaning that 

Bauschinger, asymmetrical and anisotropic effects are not included in the presented TMM constitutive model. However, the 

constitutive relations developed in this context can be applied in the crystal plasticity framework in order to account for 

anisotropic effects caused by nonuniform dislocation density evolution on each slip system which is negligible in steel alloys. 

Viscoplastic deformation of crystalline materials with respect to temperature may occur in one of the following 

regimes/domains: 

• cold regime: the maximum temperature in cold regime is normally characterized by temperatures above which diffusion 

controlled dislocation mechanisms such as dislocation climb and pinning become dominant (approximately T < 0.3 T m 

, 

where T is the absolute temperature; and T m 

is the melting absolute temperature) ( Galindo-Nava and Rae, 2016 ); 
• warm regime: warm viscoplastic deformation of crystalline materials occur above cold but below hot temperature regime 

(approximately 0.3 T m 

< T < 0.5 T m 

) ( Doherty et al., 1997; Sherby and Burke, 1968 ); and 
• hot regime: hot viscoplastic deformations are carried out above warm temperature regime. Hot metal forming processes 

are characterized by at least one of the hot/extreme microstructural processes such as recrystallization, phase transfor- 

mation, notable precipitate processes, etc. (roughly 0.5 T m 

< T < T m 

). 



S. Amir H. Motaman, U. Prahl / Journal of the Mechanics and Physics of Solids 122 (2019) 205–243 209 

Strain rate has different regimes as well, however, relatively independent from the material (Field et al., 2004) : 

• creep or static: ˙ ε < 10 −4 s −1 (where ˙ ε is the strain rate); 
• quasi-static: 10 −4 s −1 ≤ ˙ ε < 10 −2 s −1 ; 
• intermediate-rates: 10 −2 s −1 ≤ ˙ ε ≤ 10 s −1 ; 
• dynamic: 10 s −1 < ˙ ε ≤ 10 3 s −1 ; and 
• shock/highly-dynamic: ˙ ε > 10 3 s −1 . 

In the present paper, the focus is on monotonic viscoplastic deformation of polycrystalline metallic materials in cold and 

warm temperature regimes with quasi-static to intermediate strain rate levels. Nevertheless, further studies must be con- 

ducted for generalization to hot regime probably in the framework of continuum micro-dynamics (CMD) which its scope 

encompasses CDD. Microstructural constitutive models based on CDD and CMD can be coupled with finite element method 

as microstructural solvers (in addition to the regular thermal and mechanical FE solvers) to simulate not only metal forming 

processes but also the entire material processing chain including casting, heat treatment, interpass periods, etc., one after 

the other. However, the microstructural constitutive model based on CMD are characterized with application of extra MSVs 

in addition to different types of dislocation density. These additional statistical MSVs can be phase volume fractions, void 

volume fraction, recrystallized volume fraction, twinned volume fraction, transformed volume fraction, precipitate concen- 

trations, etc. In this paper, postulates of CDD are listed. Based on these postulates, a microstructural constitutive model for 

polycrystal isotropic viscoplasticity in cold and warm regimes is derived. Model’s kinetics differential equations are then 

numerically integrated and subsequently its parameters are determined for a case-hardenable ferritic-pearlitic steel alloy 

20MnCr5 which is widely used in industrial forging of automotive components such as bevel gears. 

2. Background 

The foundation of CDD was formed in 1930 ′ s when the pioneers of the theory, Orowan (1934) and Taylor (1934) intro- 
duced the concept of dislocation density and its relationship with plastic strain rate and yield stress. They considered the 

mean effect rather than individual aspects of dislocations motion and interactions in an attempt to describe macroscopic 

plastic flow. Johnston and Gilman (1959) were the first to propose an evolutionary equation for dislocation density, which 

was simply the superposition of a multiplication term and a recovery term. Webster (1966) applied an analogous method- 

ology to creep by assuming that the time rate of change of dislocation density is due to multiplication, immobilization 

and annihilations processes. Later, widespread adoption of this approach was established by the works of Bergström (1970), 

Kocks (1976), Mecking and Kocks (1981) . 

Subsequently, many physics-based constitutive models were proposed with more than one type of dislocation den- 

sity (multi-MSV models). Ananthakrishna and Sahoo (1981), Bammann and Aifantis (1982), Estrin and Kubin (1986) and 

Hähner and Zaiser (1999) classified dislocations with respect to their mobility feature. They predicted the flow curve by 

constitutive models based on two MSVs, mobile/glissile/glide and immobile/sessile dislocation densities. 2-MSV models of 

mobile and immobile dislocation densities are still being developed and applied in different frameworks ( Austin and Mc- 

Dowell, 2011; Hansen et al., 2013; Li et al., 2014 ). Mughrabi (1983), Nix et al. (1985) and Estrin et al. (1998) differenti- 

ated dislocations with regard to their arrangement in the dislocation network; and introduced models with two MSVs, cell 

and wall dislocation densities. Estrin et al. (1996) and Roters et al. (20 0 0) proposed models with three MSVs, cell mo- 

bile, cell immobile, and wall immobile dislocation densities. These models appreciate different dislocations based on their 

mobility property and their arrangement. Likewise, Blum et al. (2002) approached the creep problem in metals by using 

a 2-MSV constitutive model that decomposed dislocations with respect to their singularity property, namely singular and 

dipolar dislocations. There exist models that account for dislocation character (edge and screw dislocations) ( Cheong and 

Busso, 2004 ) and dislocation polarity (right-hand and left-hand) ( Arsenlis and Parks, 2002; Roters, 2011 ). Ma and Rot- 

ers (2004) classified dislocations further by allocating extra MSVs to their model for parallel and forest dislocation densities. 

Moreover, Estrin and Mecking (1992) incorporated effective grain size to the classical single variable Kocks-Mecking model 

Mecking and Kocks (1981) . 

Sandström and Lagneborg (1975), Busso (1998), Mukherjee et al. (2010) and Babu and Lindgren (2013) all developed 

multi-MSV microstructural constitutive models to characterize metals behavior under hot deformation by introduction of 

an additional statistical MSV, recrystallized fraction, with its corresponding kinetics equation. Fan and Yang (2011) and 

Bok et al. (2014) went further by allocating additional MSVs for each phase fraction to build a microstructural constitu- 

tive model for hot sheet metal forming. 

Many researchers including Fleck et al. (1994), Fleck and Hutchinson (1997), Nix and Gao (1998), Gao et al. (1999), 

Gao (1999), Qiu et al. (2001), Gao and Huang (2001), Bhushan and Nosonovsky (2003), Huang et al. (2004), Abu Al-Rub 

and Voyiadjis (2004), Voyiadjis and Al-Rub (2005), Voyiadjis and Abed (2005), Brinckmann et al. (2006), Bardella (2006), 

Ardeljan et al. (2014), Lyu et al. (2015) and Nguyen et al. (2017b) distinguished between geometrically necessary disloca- 

tions (GNDs) and statistically stored dislocations (SSDs) to formulate strain (rate) gradient plasticity models. Furthermore, 

Busso (20 0 0), Arsenlis and Parks (2002), Arsenlis (2004), Evers et al. (2004), Clayton et al. (2006), Ma et al. (2006), Beyer- 

lein and Tomé (2008), Lim et al. (2011), Askari et al. (2013), Li et al. (2014), Hochrainer et al. (2014), Sandfeld et al. (2015) , 
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and Askari et al. (2015) among many other authors applied the multi-MSV dislocation density-based approach in crystal 

plasticity framework. 

Recently, some microstructural constitutive models have been developed for special purposes. Viatkina et al. (2007), 

Kitayama et al. (2013), Pham et al. (2013), Knezevic et al. (2013) and Zecevic and Knezevic (2015) proposed multi-MSV 

models for strain path dependent evolution of dislocation structures during cyclic plastic deformation to account for 

kinematic hardening and Bauschinger effect. Austin and McDowell (2011), Lloyd et al. (2014), Luscher et al. (2017) and 

Nguyen et al. (2017a) utilized dislocation density-based constitutive modeling for viscoplastic deformation of metals at dy- 

namic and shock regimes. Patra and McDowell (2012) developed a physics–based constitutive model for inelastic deforma- 

tion of irradiated bcc ferritic-martensitic steels by introduction of an extra statistical MSV, namely number of interstitial 

loops that are formed due to irradiation. Bouaziz and Guelton (2001), Allain et al. (2004) and Steinmetz et al. (2013) in- 

corporated twinned volume fraction as an additional MSV to existing dislocation density-based models in order to re- 

flect plastic hardening behavior of twinning-induced plasticity (TWIP) steels. These models were further developed and 

implemented in crystal plasticity framework by Wong et al. (2016) to account also for transformation-induced plasticity 

(TRIP) effect by incorporating one more MSV, namely transformed volume fraction. In addition, Kubin et al. (2002) and 

Ananthakrishna (2007) have published reviews on theoretical approaches for modeling of collective behavior of dislocations 

which are recommended for the readers. 

In the microstructural state variable approach, the mechanical state at a macroscale nonlocal material point in a con- 

tinuum body is characterized in terms of internal/hidden variables that statistically represent the stochastic/nonlocal mi- 

crostructural state (SMS) in addition to the observable statistical external variables such as temperature, strain rate and 

mean yield stress. To date, many statistical physics-based approaches have been applied for constitutive modeling of met- 

als. Even though extensive work has been conducted in this area, there is not a universal agreement on the number and 

kind of MSVs to be used ( Horstemeyer and Bammann, 2010 ) as well as the influencing microstructural processes and their 

associated kinetics equations that determine the values of corresponding MSVs. This study is an attempt for unification and 

completion of the previous works in the field of continuum dislocation dynamics, by gathering and modifying some of the 

most important postulates of the CDD theory. In the following section, it is argued that the statistical state of microstruc- 

ture of polycrystalline materials under monotonic and isotropic viscoplastic deformation in cold and warm regimes is fully 

defined by three MSVs that are cell mobile, cell immobile and wall immobile dislocation densities. For the first time, evo- 

lution of these MSVs with respect to time (or plastic strain) are described considering every statistically notable dislocation 

process/interaction affecting values of the aforementioned dislocation densities. Without comprehensive decomposition of 

dislocation types and processes as suggested in this paper, accurately capturing the mechanical response of complex metal 

alloys such as steels particularly in warm regime is not achievable. 

3. Postulates and the constitutive model 

To construct a constitutive model based on microstructural processes, first a set of postulates/axioms must be established 

as the basis for reasoning and subsequent derivation of constitutive relations. In the framework of CDD, the following pos- 

tulates are introduced, although not all of them are independent. Additionally, for derivation of the constitutive equations, 

the consequences of each postulate in combination with the earlier ones (or the results of earlier postulates) are provided 

as well. 

3.1. Fundamental postulates 

(1) Stochastic/nonlocal microstructural state : the mean/nonlocal yield/flow/critical shear stress resolved at slip systems ( ̃  τy ) 
as the nonlocal mechanical response of material is an implicit function of temperature, shear strain rate, and statistical state 

of microstructure, given by the following equation ( Mecking and Kocks, 1981 ): 

˜ τy ≡
∨ 
˜ τ y 

(
T , S, ˙ ˜ γ p 

)
; (1) 

where 
·
˜ τ y is the TMM constitutive function; 

·
˜ γ p is mean plastic shear strain rate at slip systems; T is temperature, and S is 

a set containing all MSVs and is referred to as stochastic microstructural state (SMS) since it represents the statistical state 

of microstructure: 

S ≡ { S 1 , S 2 , S 3 , . . . } ; (2) 

where S i is the i th nonlocal MSV which can be various types of dislocation density, grain size, phase fractions, recrystallized 

fraction, precipitate concentration and size, etc. The evolution of each MSV which is often expressed as time rate of change 

of MSV, is a function of thermo-mechanical loading and S ( Nadgornyi, 1988 ): 

˙ S k ≡
∨ 
˙ S k 

(
T , S, 

·
˜ γ p 

)
= 

∨ 
˙ S k 

(
T , S 1 , S 2 , S 3 , . . . , 

·
˜ γ p 

)
; (3) 
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Fig. 1. Multiscale framework of CDD: schematic relation among macroscale continuum body under thermo-mechanical loading, mesoscale representative 

material volume, and stochastic microstructural state. 

where 
∨ 
˙ S 
k 
is the function that determines evolution of S k with respect to time. As shown in Fig. 1 , S statistically and nonlocally 

represents the microstructural state of a material point on a macroscale continuum body. As deformation proceeds, the 

microstructure state S evolves towards a saturation/steady state S sat ( Estrin and Mecking, 1984 ). 

Furthermore, it is emphasized that in this description, the SMS set and its components (MSVs) are treated based on 

the nonlocal principle/treatment ( Eringen, 1983; Gao and Huang, 2001 ) as they are averaged over a mesoscale RMV. The 

mesoscale RMV must be a polycrystalline aggregate that represents the bulk material properly at the considered macroscale 

continuum material point. Hence, it must consist of sufficient number of constituent single crystal grains in order to capture 

the size effect Adams and Olson, 1998 ). This implies that inside the mesoscale RMV, locally the values of MSVs are not 

necessarily equal to their integral average over RMV due to their heterogeneous (local) distribution. For instance, some 

MSVs are highly concentrated at small regions while some are statistically distributed inside the grains of RMV (postulate 

( (3) ). 

It should be noted that accumulated plastic strain is not an MSV but a mechanical internal state variable and due to 

its virtual characteristic, it cannot be measured directly. Two identical material samples that are plastically (uniaxially) de- 

formed to an equal amount of accumulated plastic strain but with different histories of temperature and strain rate (e.g. in 

cold or warm regime), if again deformed under an equal temperature and strain rate condition, do not necessarily yield the 

same stress response. 

Furthermore, the mean//nonlocal normal yield/flow stress ( σ y ) (or simply the yield stress) nonlocally applied on a poly- 

crystalline aggregate is related to the mean yield shear stress resolved at its slip systems ( ̃  τy ) by Taylor factor ( Kocks, 1970; 
Taylor, 1938 ): 

M ≡ σy 

˜ τy 
= 

·
˜ γ p 

˙ ε p 
= 

d ̃  γp 

d ε p 
; (4) 

where ˙ ε p is the mean/nonlocal normal plastic strain rate (or simply the plastic strain rate). It is safe to assume constant 
M 

∼= 

3 for a random orientation distribution of texture for bcc and fcc polycrystalline aggregates. Nevertheless, Taylor factor 

evolves as plastic strain accumulate; and it is also dependent on the deformation mode but for sufficiently random-textured 

polycrystals (weak texture or textureless) with random loading during deformation (isotropic case), these dependencies can 

be neglected ( Kocks and Mecking, 2003 ). 

(2) Dislocation mobility : with respect to their mobility property, dislocations are divided into mobile and immobile dis- 

locations. While mobile dislocations carry plastic strain, immobile dislocations contribute to plastic hardening ( Estrin and 

Kubin, 1986; Hunter and Preston, 2015 ). Upon confronting obstacles, mobile dislocation segments may become fully or par- 

tially immobilized. Partial immobilization of a (prior) mobile dislocation segment and consequently its division to mobile 

and immobile dislocation segments is schematically shown in Fig. 2 . As illustrated in Fig. 2 , an individual dislocation which 

is typically curved (mixed character), might be consisted of several mobile and immobile dislocation segments. During move- 

ment, statistically speaking, the mean length and bow-out radius of bowed-out mobile segments which are always bounded 

by adjacent immobile segments are reduced while the lengths of the bounding immobile dislocation segments are increased 

proportionally, as long as the immobile segments are not remobilized by remobilization mechanisms. As pointed out in pos- 

tulate (1) , according to the non-locality principle, mobile and immobile dislocation densities at each macroscale material 

point are defined as follows: 

ρcm 

≡ 1 

V 

∑ 

j 

l ( 
j ) 

cm 

; l ( 
j ) 

cm 

≡
∫ 
l ( 

j ) 
cm 

d l ( 
j ) 

cm 

; (5) 
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Fig. 2. Schematic of a mobile dislocation segment that is partially immobilized by immobile dislocations intersecting its slip plane (adopted from 

Hunter and Preston (2015) ). 

ρxi ≡
1 

V 

∑ 

j 

l ( 
j ) 

xi 
; l ( 

j ) 
xi 

≡
∫ 
l ( 

j ) 
xi 

d l ( 
j ) 

xi 
; x = c, w ; (6) 

where V is the considered volume which in nonlocal case, is the volume of mesoscale RMV; l 
( j) 
cm 

and l 
( j) 
xi 

are respectively 

lengths of j th mobile dislocation segment and immobile dislocation segment of type x ; d l 
( j) 
cm 

and d l 
( j) 
xi 

are infinitesimal 

elements of arc length along the dislocation segments l 
( j) 
cm 

and l 
( j) 
xi 
, respectively; and ρcm 

and ρxi are (nonlocal) mobile 

dislocation density and immobile dislocation densities (of type x ), respectively. x can be c or w that respectively stand for 

cell and wall (see postulate (3) ). 

As shown in Fig. 2 , it is postulated that motion of bowed out mobile dislocation segments moving on slip systems is 

always restricted at their both ends by immobile dislocation segments (either cell or wall immobile dislocations). Moving 

a bowed-out mobile dislocation segment requires a certain amount of shear stress acting on it which is inversely related 

to the mean radius of bowed-out segment Hull and Bacon, 2011 ). In postulate ( (8) , a statistical relation between bow- 

out radius and immobile dislocation density is derived. Hence, only the collection of immobile dislocations determines the 

required mean shear stress acting on bowed-out mobile dislocation segments to move them in order to accommodate plastic 

straining. 

(3) Dislocation arrangement : due to heterogeneous distribution of dislocations in crystal grains, dislocations with regard 

to their arrangement are categorized to cell dislocations that exist inside the cell/subgrain blocks/interiors and wall dislo- 

cations that form the cell walls/boundaries ( Mughrabi, 1983 ). Wall dislocations are immobile and closely clustered (dense 

dislocation walls); and statistically, their Burgers vector is very similar to their surrounding wall dislocations. As such, they 

cause considerable lattice torsion/warp/twist/bending that is manifested by measurable misorientation angle across wall re- 

gions that can be detected and measured by electron backscatter diffraction (EBSD) ( Gardner et al., 2010; Jiang et al., 2013 ) 

and X-ray methods. These dislocations are often referred to as geometrically necessary dislocations (GNDs) ( Ashby, 1970; 

Nye, 1953 ) as they accommodate lattice curvature (incompatibility of plastic deformation) that arises by geometry change 

due to local gradient of plastic strain ( Arsenlis and Parks, 1999; Gao and Huang, 2003 ) through formation of semi-planar 

geometrically necessary boundaries (GNBs) or dense dislocation walls (DDWs) ( Kuhlmann-Wilsdorf and Hansen, 1991 ). Con- 

sequently, GNDs are in fact wall dislocations that contribute the most to plastic hardening due to the long range internal 

stress produced by them ( Kassner et al., 2013; Mughrabi, 2006 ). As plastic straining proceeds, the degree of misorientation 

angle between adjacent cells or cell blocks (CBs) increases. 

Physically, GNBs containing a high local dislocation density with a net Burgers vector are very different than spatially rel- 

atively random distributions of cell dislocations ( Hughes et al., 2003 ). Cell dislocations that can be either mobile or immo- 

bile do not necessarily adopt any considerable particular semi-stable arrangement unless they become part of walls. Thus, 

cell dislocations are assumed to be statistically/homogenously distributed inside the CB structure (subgrain); and hence 

are known as statistically stored dislocations (SSD) ( Ashby, 1970 ). However, stationary cell immobile dislocations form an- 

other type of semi-temporary accumulates/clusters/ pile-ups/bundles/tangles/nets named incidental dislocation boundaries 

(IDBs) ( Kuhlmann-Wilsdorf and Hansen, 1991 ), or forest dislocations with relatively negligible misorientation angle. IDBs 

form secondary dislocation cells or sub-cells (SCs) inside subgrains. Moreover, the cell volumes bounded by GNBs may form 

tiny channel-shaped shear/deformation bands such as micro-bands (MBs) and lamellar bands (LBs) ( Bay et al., 1992,1989; 

Hughes, 1993; Hughes and Hansen, 1993 ). Fig. 3 schematically illustrates cell-wall substructure inside crystal grains. There- 

fore, there are three main independent types of dislocation density, cell mobile dislocation density ( ρcm 

), cell immobile 

dislocation density ( ρci ) and wall immobile dislocation density ( ρwi ): 

S ≡ { ρcm 

, ρci , ρwi } ; (7) 

ρct ≡ ρcm 

+ ρci ≡ ρSS ; ρwt ≡ ρwi ≡ ρGN ; (8) 
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Fig. 3. Schematic of grain subdivision to cell-wall dislocation microstructure ( Clayton et al., 2006; Hughes et al., 1998 ). 

ρti ≡ ρci + ρwi ; ρtm 

≡ ρcm 

; (9) 

ρt ≡ ρtt ≡ ρct + ρwt = ρtm 

+ ρti = ρcm 

+ ρci + ρwi ; (10) 

where ρ denotes dislocation density; subscripts t, i, m, c , and w respectively stand for total, immobile, mobile, cell and wall; 

and SS and GN represent statistically stored and geometrically necessary, respectively. 

To sum up, wall immobile dislocations are locally (inside the RMV) highly concentrated/compacted at GNBs. Thus, local 

density of wall immobile dislocations at GNBs is much higher than density of cell immobile dislocations at IDBs or sub-cell 

interiors. Mobile dislocations are nearly homogeneously distributed in sub-cells. Consequently, local density of (cell) mobile 

dislocations is much lower than immobile dislocations. 

Initial cell immobile dislocation density is determined by density of trapped and accumulated cell dislocations. Wall 

immobile dislocation density of an undeformed polycrystal is determined by the area of grain boundaries, phase and pre- 

cipitate interfaces and other two-dimensional crystal defects. Even though grain boundaries and interfaces do not fit in 

classical definition of dislocations, as they are two-dimensional crystal defects like dislocations and because they interact 

with dislocations (acting as relatively impenetrable obstacles), technically, they can be included in undeformed wall immo- 

bile dislocation density. The equivalent dislocation density of these interfaces is relatively small enough that does not lead 

to a considerable error in the calculated initial yield stress, although they largely influence the initial plastic hardening. On 

the other hand, their equivalent density is not affected by plastic straining in cold and warm regime (constant during defor- 

mation). Since the interfaces are stable and strictly immobile in cold and warm regime, at the earliest stage of deformation 

they quickly transform to walls due to the misorientation (relative to undeformed configuration) they inflict, and hence are 

considered as sources of walls. Therefore, in the undeformed material state, (initial) wall immobile dislocation density de- 

pends on the effective grain size which includes the influence of all the interfaces (size effect). Furthermore, in some dual 

phase metals (e.g. ferritic-martensitic DP steels), due to phase transformation associated expansion during quenching, softer 

phase (ferrite) becomes plastically deformed by the harder phase (martensite) which results in formation of wall immobile 

dislocations (GNDs) in the softer phase. In such cases, initial wall immobile dislocation density has a relatively high value. 

(4) Viscoplastic decomposition : the mean yield shear stress at slip systems ( ̃  τy ) has two major contributions that obeys 
the linear superposition rule ( Kumar et al., 1968; Mecking and Kocks, 1981 ): 

˜ τy = ˜ τv + ˜ τp ; (11) 

where ˜ τp is plastic/athermal/rate-independent/internal/back shear stress; and ˜ τv is referred to as viscous/rate- 

dependent/thermal/effective shear stress/drag, mean Peierls-Nabarro stress, or overstress which is the mean viscous lattice 

resistance to move mobile dislocations in a nearly obstacle/dislocation-free lattice (with relatively very low dislocation den- 

sity) ( Nabarro, 1997,1952; Peierls, 1940 ). Viscous shear stress is affected by point defects such as vacancies, alloying elements 

and solute atoms (interstitial and substitutional). Additionally, plastic shear stress needs to be overcome to move the bowed- 

out mobile dislocations Fig. 2 ). As mentioned in postulate ( (2) , the lower the bow-out radius, the lower the required (extra) 

plastic shear stress to move it. 

The viscoplastic decomposition can be depicted by the rheological model shown in Fig. 4 , similar to Perzyna-type for- 

mulation ( Perzyna, 1966 ), which consists of a parallel set of nonlinear dashpot/damper and nonlinear friction elements that 

are in series linkage with a linear spring element. 

Furthermore, given Eq. (4), Eq. (11) may take the following form: 

σy = σv + σp ; σv ≡ ˜ M ̃  τv ; σp ≡ ˜ M ̃  τp . (12) 

(5) Cell-wall decomposition : as emphasized in postulate (2) , only immobile dislocations contribute to plastic hardening. 

The total surface density (total surface area per unit volume) of cells and walls are equal, as dislocation walls (GNBs) en- 

compass the cell volumes (subgrains). In other words, the cell-wall dislocation substructure can be treated as a cellular 
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Fig. 4. Rheological model of polycrystal elasto-viscoplasticity; plastic flow occurs when the applied shear stress ( ̃ τ ) becomes equal to the yield shear stress 

at slip systems ( ̃ τ = ˜ τy ). 

composite. Hence, it is postulated that the two types of immobile dislocations contribute to plastic hardening in parallel 

(additive decomposition of plastic stress) in order to satisfy the compatibility for isochoric viscoplastic flow of material in 

which both cells and walls need to be deformed simultaneously at an equal rate (isostrain homogenization). Thus, mean 

plastic shear stress is linearly decomposed to its constituent internal stresses corresponding to cell immobile dislocations 

(immobile SSDs) and wall immobile dislocations (immobile GNDs) ( Columbus and Grujicic, 2002; Mughrabi, 1987; Voyiadjis 

and Al-Rub, 2005 ): 

˜ τp = ˜ τpc + ˜ τpw ; (13) 

where ˜ τpc and ˜ τpw are respectively contributions of cell and wall immobile dislocations to plastic shear stresses. ˜ τpc and ˜ τpw 

are axial and torsional plastic stress, respectively. In postulate (8) , the relations of ˜ τpc and ˜ τpw with immobile dislocation 

densities are described. Considering Eq. (4), Eq. (13) is rewritten as follows: 

σp = σpc + σpw ; σpc ≡ ˜ M ̃  τpc ; σpw ≡ ˜ M ̃  τpw . (14) 

(6) Local dislocation density : in saturation state, dislocation substructure and density is steady and statistically remain 

constant in a representative material volume. One can assume that the exact locations of walls (GNBs) inside RMV at sat- 

uration state are known prior to viscoplastic deformation. Hence, V w is assumed to be the summation of immediate (local) 

surrounding volumes of GNBs in the saturation state (including mobile dislocations constrained by GNBs constituent wall 

immobile dislocations). Cell immobile dislocations and the mobile dislocations bounded by them are envisaged to be uni- 

formly distributed in the rest of RMV’s volume ( V c ). Therefore, 

V = V c + V w ; V c ∩ V w = ∅ . (15) 

Notice that V, V c and V w are virtual volumes. Moreover, V (volume of RMV) is constant during deformation. In monotonic 

viscoplastic deformation, it is known that GNBs are relatively sharp boundaries containing locally dense wall immobile 

dislocations (postulate (3) ). This indicates that V w < < V c and V w < < V . However, in materials under long and high-amplitude 

cyclic viscoplastic deformation, V w and V c become closer but still often V w < V c . Thus, in monotonic viscoplastic deformation 

which is the subject of this study, one can assume that cell and wall immobile dislocations during the entire deformation 

are homogenously locally distributed over constant volumes of V c and V w , respectively. Therefore, 

ρ loc 
xi ≡ 1 

V x 

∑ 

j 

l ( 
j ) 

xi 
; x = c, w . (16) 

According to Mughrabi (1983) , constant cell volume fraction ( f c ) and wall volume fraction ( f w ) are defined as follows: 

f x ≡ V x 

V 
; x = c, w . (17) 

Combining Eqs (6) , (16) and (17) results in ( Mughrabi, 1983 ): 

ρ loc 
xi = 

ρxi 

f x 
; x = c, w ; (18) 

f c + f w = 1 . (19) 

From the view point of an observer who observes the macroscale material point shown in Fig. 1 , viscoplastic deformation 

is homogenous. This leads to the assumption of nearly uniform local distribution of mobile dislocations which carry the 

plastic strain. Consequently, local and nonlocal mobile dislocation densities are almost equal ( ρ loc 
cm 

= ρcm 

). Combining this 

with Eq. (18) and the fact that f x is constant gives: 

ρ loc 
xy ∝ ρxy ;

{
x = c, w, t 
y = m, i, t 

. (20) 
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(7) Dislocations characteristic spacing : dislocations intersect each other and form dislocation network with characteristic 

average spacing of ˜ 	. It can be easily shown that the average spacing among dislocations (also known as mean free path 

of dislocations) of type xy ( ̃  	xy ) is inversely proportional to the square root of respective local dislocation density ( Kocks, 

1966; Nes, 1997; Seeger, 1955 ): 

˜ 	xy ∝ 

1 √ 

ρ loc 
xy 

∝ 

1 √ 

ρxy 
;

{
x = c, w, t 
y = m, i, t 

. (21) 

It should be noted that ˜ 	xy has a local character. Additionally, it can be also readily shown that the volumetric number 

of junctions/intersection/nodes of dislocation type xy or dislocation junction density of type xy ( N xy ) is proportional to 

dislocation density ρ loc 
xy or ρxy ( Eq. (20) ) while inversely proportional to the average spacing ˜ 	xy ( Gottstein and Argon, 1987 ): 

N xy ∝ ρxy 
1 

˜ 	xy 

∝ ρ
3 
/ 2 

xy ;
{
x = c, w, t 
y = m, i, t 

. (22) 

(8) Plastic stress : as pointed out in postulate (2) , the average bow-out radius of cell mobile dislocations that are con- 

strained at both ends by immobile dislocations of type x = c, w, t ( ̃  R xi cm 

) ( Fig. 2 ) is proportional to average spacing of immo- 

bile dislocations of type x ( Nes, 1997 ): 

˜ R xi cm 

∝ 

˜ 	xi ; x = c, w, t . (23) 

On the other hand, the mean plastic resolved shear stress at slip systems is directly proportional to Burgers length 

(magnitude of Burgers vector) ( b ) and shear modulus ( G ) and inversely proportional to ˜ R xi cm 

( Gao et al., 1999; Hull and 

Bacon, 2011; Nabarro, 1952 ): 

˜ τpx ∝ 

bG 

˜ R xi cm 

; x = c, w ; (24) 

where ˜ τpx is the mean plastic resolved shear stress associated with immobile dislocations of type x . Given Eqs. (21) and 

(23) , the Taylor relation ( Bailey and Hirsch, 1960; Seeger et al., 1957; Taylor, 1934 ) is derived: 

˜ τpx = bG ̃  αloc 

√ 

ρ loc 
xi 

; x = c, w ; (25) 

where αloc is a material constant known as local dislocation interaction strength/coefficient; and ˜ αloc is statistical average of 

αloc for different configurations of interacting mobile-immobile dislocations in various slip systems at the considered local 

point. Given Eq. (18) : 

˜ τpx = bG ̃  αx 
√ 

ρxi ; ˜ αx = 

˜ αloc √ 

f x 
; x = c, w ; (26) 

where ˜ αx is the nonlocal interaction strength related to local density and geometrical arrangement of immobile disloca- 

tions of cell and wall species ( x = c, w ). Variation of ˜ αx with plastic strain is assumed to be negligible Kocks and Meck- 

ing, 2003 ). Since most of the plastic hardening is due to wall immobile dislocations, essentially ˜ αw > ˜ αc . Further, combining 

Eqs. (19) and ( (26) yields: 

f c = 

˜ α2 
w 

˜ α2 
c + ˜ α2 

w 

; f w = 

˜ α2 
c 

˜ α2 
c + ˜ α2 

w 

; ˜ αloc = 

˜ αc ̃  αw √ 

˜ α2 
c + ˜ α2 

w 

. (27) 

Finally, given Eq. (4), Eq. (26) may be rewritten as: 

σpx = MbG ̃  αx 
√ 

ρxi ; x = c, w . (28) 

(9) Kinetics superposition : dynamic evolution of dislocation density is described as the rate of change of dislocation den- 

sity with respect to time or plastic strain which is linear superposition of increase/production (with positive sign) and 

decrease/elimination (negative sign) terms ( Johnston and Gilman, 1959; Kocks, 1976; Webster, 1966 ): 

˙ ρxy = ˙ ρ+ 
xy − ˙ ρ−

xy ;
{
x = c, w, t 
y = m, i, t 

. (29) 

Therefore, 

∂ ˜ γp 
ρxy = ∂ ˜ γp 

ρ+ 
xy − ∂ ˜ γp 

ρ−
xy ; ∂ ε p ρxy = ∂ ε p ρ

+ 
xy − ∂ ε p ρ

−
xy ;

{
x = c, w, t 
y = m, i, t 

; (30) 

where ∂ ˜ γp 
≡ ∂ 

∂ ̃  γp 
and ∂ ε p ≡ ∂ 

∂ ε p 
are partial derivative operator with respect to mean shear plastic strain at slip systems and 

mean plastic strain, respectively. Static and overall (combination of static and dynamic) evolution of dislocation densities are 

represented by time derivative relations: 

( ˙ ρxy ) s = 

(
˙ ρ+ 
xy 

)
s 
−

(
˙ ρ−
xy 

)
s 

;
{
x = c, w, t 
y = m, i, t 

; (31) 
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Fig. 5. Pinning phenomena and their macroscopic effects. 

(
˙ ρxy 

)
d 

= 

. 

˜ γ p ∂ ˜ γp 
ρxy = ˙ ε p ∂ ε p ρxy ;

{
x = c, w, t 

y = m, i, t 
; (32) 

˙ ρxy = ( ˙ ρxy ) d + ( ˙ ρxy ) s = ˙ ε p ∂ ε p ρxy + ( ˙ ρxy ) s ;
{
x = c, w, t 
y = m, i, t 

; (33) 

where subscripts s and d respectively represent static and dynamic states. 

Furthermore, for convenience in calculations and dimensional balancing of equations, the normalized/dimensionless dis- 

location density of type xy ( ̂  ρxy ) is defined as follows: 

ˆ ρxy ≡ ρxy 

ρ0 

;
{
x = c, w, t 
y = m, i, t 

; (34) 

where the hat-sign ( ∧ ) indicates the normalization; and ρ0 is constant reference dislocation density. Therefore, in all the 

previous relations that are presented so far in this paper (except Eqs. (26) and (28) ) ρxy can be replaced by ˆ ρxy . Thereby, 
∧ ˜ 	xy and ˆ N xy are respectively normalized average spacing among dislocations of type xy and normalized dislocation junction 

density of type xy . 

(10) Dynamic dislocation processes : there are six main classes of dynamic dislocation processes that are statistically con- 

siderable in constitutive modeling of metal viscoplasticity in cold and warm regimes: 

• Generation/multiplication of mobile dislocations: Motion/displacement of mobile dislocations leads to their elongation. 
• Annihilation of dislocations: Dislocations of all three types can be annihilated by mobile dislocations with opposite Burg- 

ers vector slipping on neighboring parallel slip plane. 
• Accumulation of immobile dislocations: Mobile dislocations can be immobilized by immobile dislocations and produce 

accumulates of immobile dislocations. 
• Trapping of mobile dislocations: Mobile dislocations interacting each other can be immobilized by trapping process. 

Trapping process has two underlying mechanisms/reactions that result in immobilization of infected parts of mobile 

dislocations: locking of mobile dislocations; and pinning of mobile dislocations by interstitial solute/impurity atoms. 

Dynamic strain aging (DSA) effect in part is associated with pinning of mobile dislocations. At macroscopic level, pinning 

process reveals itself in the existence of enhanced upper initial yield stress which is followed by yield point elongation 

associated with Lüders bands ( Hahn, 1962; Hall, 1970 ) in stress-strain curves. Pinning phenomena and their macroscopic 

effects are classified in Fig. 5 . 
• Nucleation of wall dislocations: Cell immobile dislocations can become wall dislocations if the accumulates they belong 

to, while are being immobilized sufficiently strong, reach a critical size and local density. 
• Remobilization/mobilization of immobile dislocations: Immobile dislocations can be mobilized and contribute to plastic 

straining. 

(11) Static dislocation processes : there are two major static (at nonlocal 
·
˜ γ
p 

≈0) dislocation processes during viscoplastic 

deformation of metals in cold and warm regimes ( Pham et al., 2015 ): 

• Static pinning ( Fig. 5 ) of cell dislocations by diffusion of interstitial solute atoms such as Carbon and Nitrogen to sur- 

roundings of dislocation cores and junctions (Cottrell cloud) which are statistically distributed (SSDs). This is due to 

higher stored elastic energy density of dislocation surroundings compared to defect-free regions of lattice ( Cottrell and 

Bilby, 1949 ). 
• Static remobilization of immobile dislocations by means of thermal mechanisms such as junction dissociation and dislo- 

cation climb (vacancy diffusion). 
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It should be noted that the aforementioned dynamic and static dislocation processes often consist of multiple individual 

underlying mechanisms. In the following sections, evolution of different types of dislocations by the above-listed dislocation 

processes is quantitatively and statistically described through several postulates. 

3.2. Dynamic dislocation processes 

(12) Dynamic generation : motion of bowing mobile dislocation segments that are held at both ends by immobile dis- 

locations generates more mobile dislocations by different mechanisms ( Stricker et al., 2018 ) such Frank-Read mechanism 

( Frank and Read, 1950 ), multiple cross-slip mechanism ( Koehler, 1952 ), or mobile junctions mechanism ( Stricker and Wey- 

gand, 2015; Weygand, 2014 ). Thus, the rate of dynamic generation rate of mobile dislocations in plastic shear increment 

( ∂ ˜ γp 
ρgn 
cm 

) is proportional to cell mobile dislocation density. The generation rate is higher where average bow-out radius of 

mobile dislocation segments bounded by immobile dislocations ( ̃  R ti cm 

) and the average length of mobile dislocation segments 

( ̃  	ti ∝ 

˜ R ti cm 

) is larger ( Nadgornyi, 1988; Steif and Clifton, 1979 ): 

∂ ˜ γp 
ρgn 
cm 

∝ ρcm 

˜ R ti cm 

. (35) 

Given Eqs. (4) , (21) , (23) and (34) : 

∂ ˜ γp 
ρgn 
cm 

= p gn cm 

ρcm 

; p gn cm 

= c gn cm 

1 √ 

ˆ ρti 

; (36) 

∂ ε p ˆ ρgn 
cm 

= M c gn cm 

ˆ ρcm √ 

ˆ ρti 

; (37) 

where ∂ ε p ˆ ρgn 
cm 

is normalized dynamic generation rate of cell mobile dislocation density with respect to plastic strain; p 
gn 
cm 

is probability amplitude of dynamic generation of cell mobile dislocations; and c 
gn 
cm 

is material coefficient associated with 

probability amplitude of dynamic generation of cell mobile dislocations. Frequency of occurrence of a dynamic dislocation 

process with probability amplitude of p is equal to ν = p 
. 

˜ γ p . In addition, dynamic generation of mobile dislocations is an 

athermal dislocation process meaning that it is not directly dependent on the temperature. 

(13) Dynamic annihilation: the annihilation process takes place between a mobile dislocation and another dislocation that 

can be of any type. Thus, there are three sorts of dislocation annihilation: mutual annihilation of cell mobile dislocations, 

mutual annihilation of cell mobile and cell immobile dislocations, and mutual annihilation of cell mobile and wall immobile 

dislocations. Hence, the magnitude of dynamic annihilation rate of mobile dislocations and dislocations of type xy with re- 

spect to plastic shear strain increment ( ∂ ˜ γp 
ρan 
xy ) is proportional to cell mobile dislocation density and the dislocation density 

of type xy ( Ananthakrishna and Sahoo, 1981 ): 

∂ ˜ γp 
ρan 
xy ∝ ρcm 

ρxy ; xy = cm, ci, wi . (38) 

Given Eqs. (4) and (34) : 

∂ ˜ γp 
ρan 
xy = p an xy ρxy ; p an xy = c an xy ˆ ρcm 

; xy = cm, ci, wi ; (39) 

∂ ε p ˆ ρan 
xy = M c an xy ˆ ρcm 

ˆ ρxy ; xy = cm, ci, wi ; (40) 

where ∂ ε p ˆ ρan 
xy is normalized dynamic annihilation rate of dislocation density of type xy with respect to plastic strain; p 

an 
xy 

is probability amplitude of dynamic annihilation of dislocation density of type xy ; And c an xy are material coefficients related 

to frequency of dynamic annihilation of dislocation density of type xy . Annihilation events take place between a mobile 

dislocation and another dislocation with opposite/antiparallel Burgers vector on parallel planes when two dislocations are 

within a critical distance from each other. Two near-screw dislocations of opposite sign, slipping on two neighboring par- 

allel slip planes can annihilate by cross slip of one of them ( Brown, 2002; Essmann and Mughrabi, 1979; Nix et al., 1985; 

Oren et al., 2017; Pauš et al., 2013; Püschl, 2002; Seeger et al., 1957 ). Two near-edge dislocations may annihilate as well by 

spontaneous formation and disintegration of a very narrow unstable dislocation dipole which can be assisted by dislocation 

climb. ( Eisenlohr and Blum, 2005; Monavari and Zaiser, 2018; Vegge and Jacobsen, 2002 ). Thus, thermally activated disloca- 

tion climb and cross-slip mechanisms facilitate dislocation annihilation. Therefore, dynamic annihilation of dislocations are 

thermal dislocation processes meaning that probability amplitudes associated with dislocation annihilation processes have 

temperature dependence (increase with increasing temperature). On the other hand, since at least dislocation climb as a 

contributing mechanism for dynamic annihilation processes is controlled by time-dependent diffusion of vacancies, annihi- 

lation processes have strain rate dependence with negative strain rate sensitivity. Besides, dislocation cross-slip can be as 

well considered a rate-controlled mechanism ( Nes, 1997 ). 

Thus, one might suggest that when a mobile dislocation and another dislocation (of type xy ) are on the same slip system 

within the critical distance (some authors call it capture radius) for annihilation of dislocations of type xy ( d an xy ), they will 

likely annihilate each other, in case of having opposite Burgers vectors ( Essmann and Mughrabi, 1979 ). In light of this, 

for instance, the dimensionless material parameter associated with frequency of dynamic annihilation among cell mobile 

dislocations ( c an cm 

) can be decomposed as c an cm 

= 

d an cm 
˜ n b 
, where ˜ n is the average number of active slip systems ( ̃  n ≥ 3 ). Statistically, 



218 S. Amir H. Motaman, U. Prahl / Journal of the Mechanics and Physics of Solids 122 (2019) 205–243 

one can assume equal density of dislocations on all active slip systems (in isotropic case) which gives rise to normalization 

factor 1 
˜ n 
( Roters et al., 20 0 0 ). 

(14) Dynamic accumulation: immobilization of mobile dislocations by immobile dislocations produces or increases the 

size of immobile dislocation accumulates. This dislocation process is known as dislocation accumulation; and its magnitude 

with respect to plastic shear strain increment ( ∂ ˜ γp 
ρac 
xi 
) is proportional to cell mobile dislocation density. It is also inversely 

proportional to average spacing among immobile dislocations of type x = c, w ( ̃  	xi ) ( Kocks, 1976 ) as well as the average 

radius of mobile dislocation segments bounded by immobile dislocations of type x = c, w ( ̃  R xi cm 

∝ 

˜ 	xi ): 

∂ ˜ γp 
ρac 
xi ∝ ρcm 

1 

˜ 	xi 

; x = c, w . (41) 

Having Eqs. (4) , (21) and (34) : 

∂ ˜ γp 
ρac 
xi = p ac xi ρcm 

; p ac xi = c ac xi 

√ 

ˆ ρxi ; x = c, w ; (42) 

∂ ε p ˆ ρac 
xi = M c ac xi 

√ 

ˆ ρxi ˆ ρcm 

; x = c, w ; (43) 

where ∂ ε p ˆ ρac 
xi 

is normalized dynamic accumulation rate of immobile dislocations of type x with respect to plastic strain; 

p ac 
xi 
is probability amplitude of dynamic accumulation of immobile dislocations of type x ; and c ac 

xi 
are material parameters 

associated with probability of dynamic accumulation of immobile dislocations of type x . Dynamic accumulation of immobile 

dislocations is an athermal process. 

(15) Dynamic trapping: interaction between mobile dislocations moving in different intersecting slip systems results in 

the formation of dislocation junctions/intersections/nodes. These dislocation junctions can be lock junctions such as Lomer- 

Cottrell lock junctions ( Cottrell, 1953; Lomer, 1951 ), Hirth lock junctions ( Hirth, 1961 ), collinear ( Madec et al., 2003 ) and 

coplanar lock junctions ( Thompson, 1953 ). Lock junctions restrict movement of involved mobile dislocations by immobilizing 

parts of them near the formed lock junction, leading to latent hardening ( Franciosi, 1985 ). In addition, some junctions 

formed due to interaction of mobile dislocation pairs are not lock junctions (depending on the configuration of respective 

slip systems and mobile dislocations). They can as well be mobile/glissile or temporal (temporary) junctions which do not 

lead to immediate immobilization directly. 

Essentially, dislocation junctions due to their relative high energy density are attractive regions for diffusion and accumu- 

lation of interstitial solute atoms. Therefore, some of the mobile and temporal junctions become pinned/arrested/anchored 

due to diffusion and accumulation of interstitial solutes at their vicinity; which leads to subsequent immobilization of re- 

spective mobile dislocations or infected parts of them ( Cottrell and Bilby, 1949; Mulford and Kocks, 1979; van den Beukel 

and Kocks, 1982 ). Density of potential junctions of interacting mobile dislocations, as mentioned in postulate (7) , is propor- 

tional to density of mobile dislocations ( ρcm 

) and inversely proportional to the average spacing among mobile dislocations 

( ̃  	cm 

). Thus, frequency of occurrence of mobile dislocation trapping events comprised of two major underlying mechanisms 

(locking and pinning), must be proportional to junction density of cell mobile dislocations ( N cm 

). Henceforth, 

∂ ˜ γp 
ρtr 
cm 

∝ N cm 

. (44) 

Given Eqs. (4) , (22) and (34) : 

∂ ˜ γp 
ρtr 
cm 

= p tr cm 

ρcm 

; p tr cm 

= c tr cm 

√ 

ˆ ρcm 

; (45) 

∂ ε p ˆ ρtr 
cm 

= M c tr cm 

ˆ ρ3 / 2 
cm 

; (46) 

where superscript tr denotes the trapping process; ∂ ε p ˆ ρtr 
cm 

is normalized dynamic trapping rate of cell mobile dislocations 

with respect to plastic strain; p tr cm 

is probability amplitude of dynamic trapping of cell mobile dislocations; and c tr cm 

is a 

material coefficient associated with probability amplitude of dynamic trapping of cell mobile dislocations. Since the pinning 

mechanism of trapping process is a diffusion controlled reaction, dynamic trapping of cell mobile dislocations is a thermal 

dislocation process that its magnitude increases with increasing temperature. In other words, by increasing temperature, 

particularly in metals with notable interstitial concentration, the rate of immobilization of dislocation junctions (trapping) 

becomes higher. Additionally, since pinning occurs due to diffusion of interstitial solute atoms to dislocation cores and 

junction, c tr cm 

is a function of concentration of interstitial solutes atoms such as Carbon and Nitrogen. 

Moreover, one might argue that c tr cm 

has a negative strain rate sensitivity because the pinning process is associated with 

time-dependent diffusion of interstitial solute atoms. The DSA effect is observed when the interstitial atoms reorientation 

time is shorter than the waiting time of temporal and mobile junctions at the locations nearby interstitial solute complex 

( Kubin et al., 1988; Kubin and Estrin, 1990 ). Hence, there exist a critical strain rate beyond which the intensity of mobile 

dislocation pinning abruptly drops. That strain rate belongs to the dynamic regime. 

(16) Dynamic wall nucleation : accumulates of cell immobile dislocations that are immobile sufficiently strong (meaning 

that their remobilization requires higher stress than mean yield resolved shear stress) will grow and become denser by 

immobilizing more mobile dislocations at their vicinity (cell immobile accumulation process). These cell immobile pile-ups 
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that reach a critical size and local density, subsequently become adequately stable to produce sufficient local stress con- 

centration which results in necessary lattice curvature in their vicinity to make them part of walls. This process is called 

wall nucleation. From this point of view, wall nucleation process converts some cell immobile to wall immobile dislocations. 

As such, its rate is proportional to cell immobile dislocation density. On the other hand, the accumulation of cell immo- 

bile dislocations increases the probability of wall nucleation process. Hence, statistical magnitude of dynamic nucleation 

rate of wall immobile dislocations with respect to plastic shear strain increment ( ∂ ˜ γp 
ρnc 
wi 
) is proportional to cell immobile 

dislocation density ( ρci ) and the rate of cell immobile dislocation accumulation ( ∂ ˜ γp 
ρac 
ci 
): 

∂ ˜ γp 
ρnc 
wi ∝ ρci ∂ ˜ γp 

ρac 
ci . (47) 

Given Eqs. (4) , (21) , (34) and (41) : 

∂ ˜ γp 
ρnc 
wi = p nc wi ρci ; p nc wi = c nc wi 

√ 

ˆ ρci ˆ ρcm 

; (48) 

∂ ε p ˆ ρnc 
wi = M c nc wi ˆ ρ3 / 2 

ci 
ˆ ρcm 

; (49) 

where ∂ ε p ˆ ρnc 
wi 

is normalized dynamic nucleation rate of wall immobile dislocations with respect to plastic strain; p nc 
wi 

is 

probability amplitude of dynamic nucleation of wall immobile dislocations; and c nc 
wi 

is a material coefficient associated with 

probability amplitude of dynamic nucleation of wall immobile dislocations. Pinning of cell immobile dislocations at their 

junctions by solute atoms contributes to stronger immobilization of cell immobile accumulates and consequently enhances 

the stability of the respective IDBs which are about to transform to GNBs. This is also suggested by existence of the factor 

ˆ ρ3 / 2 
ci 

in Eq. (49) which is proportional to junction density of cell immobile dislocations ( N ci ∝ ρ3 / 2 
ci 

), considering that the 

pinning process occurs mainly at dislocation junctions. From another perspective, given Eq. (26) , presence of the factor 
√ 

ˆ ρci 

in Eq. (48) is proportional to the average plastic shear stress concentration at IDBs. 

With this approach, twin formation can be considered as a wall nucleation mechanism, in case of slip-dominated metals. 

Regular dislocation walls are formed by high local stress concentration that causes local elastic bending of crystal in metals 

with relatively high stacking fault energy (SFE). Analogously, twins are also boundaries of lattice misorientation (GNBs) that 

plastically nucleate due to local stress concentration at sufficiently stable dislocation pile-ups (IDBs) ( Christian and Mahajan, 

1995; Kibey et al., 2007; Venables, 1964 ) in metals with adequately low SFE. Each stacking fault that nucleates a twin is 

bounded by partial dislocations such as Shockley and Frank partial dislocations ( Hirth and Lothe, 1982; Hull and Bacon, 

2011 ) that are geometrically necessary ( Mahajan and Chin, 1973 ) and hence are treated as wall dislocations. Therefore, c nc 
wi 

also reflects frequency of twin nucleation which in turn depends on the mean SFE at the nonlocal material point under 

consideration. Twin forming dislocations must overcome the intrinsic SFE barrier to nucleate twin’s associated stacking 

fault. Further, most of the energy required for twinning is spent on creating its associated stacking fault. Thus, especially in 

relatively low SFE metals such as high manganese TWIP steels, c nc 
wi 

has a relatively high value. It is emphasized that pinning 

of cell immobile dislocations facilitates twin nucleation by increasing stress concentration in the cells to reach the critical 

shear stress for dislocation separation/dissociation/splitting mechanism ( Byun, 2003; Koyama et al., 2015 ). In slip dominated 

plastic deformation in which twinning occurs, the share of TWIP effect in total accumulated plastic strain is negligible 

compared to that of slip. However, as already highlighted, twinning has a remarkable influence on plastic hardening by 

facilitating the formation of dislocation walls. 

As mentioned before, pinning is a diffusion-controlled mechanism that its magnitude increases by increasing tempera- 

ture in metals with adequate interstitial solute content. Moreover, the rate of stacking fault formation due to dislocation 

separation mechanism depends on SFE which in turn is generally an increasing function of temperature. In view of this, dy- 

namic nucleation of wall immobile dislocations is a thermal dislocation process that its statistical magnitude by increasing 

temperature might increase or decrease depending on the metal structure and composition. 

Further, since in nucleation of wall immobile dislocations, time-dependent diffusion-controlled pinning mechanism is 

partly involved, one might argue that c nc 
wi 
has negative strain rate sensitivity. On the other hand, wall and twin nucleation can 

be amplified by increasing strain rate provoking positive strain rate sensitivity of c nc 
wi 
. Therefore, overall strain rate sensitivity 

of c nc 
wi 

can be negative, zero or positive ( Yang et al., 2017 ). 

(17) Dynamic remobilization : probability of recurrence of remobilization of cell or wall immobile dislocations depends on 

their density ( Bergström, 1970 ): 

∂ ˜ γp 
ρrm 

xi ∝ ρxi ; x = c, w ; (50) 

where ∂ ˜ γp 
ρrm 

xi 
is the statistical magnitude of remobilization rate of immobile dislocations of type x with respect to plastic 

shear strain increment. Given Eqs. (4) and (34) : 

∂ ˜ γp 
ρrm 

xi = p rm 

xi ρxi ; p rm 

xi = c rm 

xi ; x = c, w ; (51) 

∂ ε p ˆ ρrm 

xi = M c rm 

xi ˆ ρxi ; x = c, w . (52) 

where ∂ ε p ˆ ρrm 

xi 
is normalized dynamic remobilization rate of immobile dislocations of type x with respect to plastic 

strain; p rm 

wi 
is probability amplitude of dynamic remobilization of immobile dislocations of type x ; and c rm 

xi 
are material 



220 S. Amir H. Motaman, U. Prahl / Journal of the Mechanics and Physics of Solids 122 (2019) 205–243 

parameters associated with probability amplitude of dynamic remobilization of immobile dislocations of type x . Disloca- 

tion remobilization process is performed by different underlying mechanisms such as climb, cross-slip, bow-out, junction 

dissociation/unzipping, etc. ( Hunter and Preston, 2015 ). Owing to the involvement of thermal mechanisms in the remo- 

bilization processes, such as dislocation climb and cross-slip, they are treated as thermal dislocation processes. At low and 

medium temperatures, dynamic dislocation remobilization and annihilation processes (together known as dynamic recovery) 

are mainly governed by the cross-slip mechanism while at high temperatures dislocation climb is the dominant mechanism 

of dynamic recovery processes ( Essmann and Mughrabi, 1979; Galindo-Nava et al., 2012; Kubin et al., 1992; Nix et al., 1985; 

Püschl, 2002; Rivera-Díaz-del-Castillo and Huang, 2012 ). Essentially, by definition inherently ∂ ε p ˆ ρrm 

wi 
should be much lower 

than ∂ ε p ˆ ρrm 

ci 
( ∂ ε p ˆ ρrm 

wi 
<< ∂ ε p ˆ ρrm 

ci 
). 

Finally, since dislocation climb as an underlying mechanism for dynamic remobilization processes is controlled by time- 

dependent diffusion of vacancies, remobilization processes might have strain rate dependence with negative strain rate sen- 

sitivity. On the other hand, by increasing strain rates, the viscous stress is also increased which assists the remobilization 

process. This provokes positive strain rate sensitivity of remobilization parameters. Therefore, c rm 

xi 
might have negative, zero 

or positive strain rate sensitivities. 

By approaches analogous to the one adopted in postulate (13) (dynamic annihilation), one may also physically interpret 

the constitutive parameters associated with frequency of other dislocation processes ( c z xy ) by defining various mean critical 

distances, local densities, shear stresses, etc. Nevertheless, the mean critical physical parameters have virtual characters (like 

probability amplitude), as they are extremely difficult and mostly even impossible to be determined accurately enough by 

means of independent experimental measurements. 

Now that every main dynamic dislocation process is statistically and quantitatively characterized, the approach first in- 

troduced by Ananthakrishna and Sahoo (1981) , and Estrin and Kubin (1986) is applied to construct the overall kinetics 

equations for dynamic evolution of each dislocation type. 

(18) Kinetics of wall immobile dislocations : dynamic nucleation and accumulation of wall immobile dislocations, contribute 

to dynamic increase of wall immobile dislocation density while dynamic decrease of wall immobile dislocations occurs as 

the consequence of annihilation and remobilization of wall immobile dislocations: 

∂ ε p ˆ ρ+ 
wi 

= ∂ ε p ˆ ρnc 
wi + ∂ ε p ˆ ρac 

wi ; (53) 

∂ ε p ˆ ρ−
wi 

= ∂ ε p ˆ ρan 
wi + ∂ ε p ˆ ρrm 

wi . (54) 

Combining Eqs. (30) , (53) , and (54) yields: 

∂ ε p ˆ ρwi = ∂ ε p ˆ ρnc 
wi + ∂ ε p ˆ ρac 

wi −
(
∂ ε p ˆ ρan 

wi + ∂ ε p ˆ ρrm 

wi 

)
. (55) 

Eq. (55) is the dynamic evolutionary/kinetics equation of wall immobile dislocation density. 

(19) Kinetics of cell immobile dislocations : dynamic increase of cell immobile dislocation density is the result of dynamic 

trapping of cell mobile dislocations and accumulation of cell immobile dislocations, whereas dynamic decrease of cell immo- 

bile dislocations takes place by means of annihilation and remobilization of cell immobile dislocations and also nucleation 

of wall immobile dislocations: 

∂ ε p ˆ ρ+ 
ci 

= ∂ ε p ˆ ρtr 
cm 

+ ∂ ε p ˆ ρac 
ci ; (56) 

∂ ε p ˆ ρ−
ci 

= ∂ ε p ˆ ρan 
ci + ∂ ε p ˆ ρrm 

ci + ∂ ε p ˆ ρnc 
wi . (57) 

Combining Eqs. (30) , (56) , and (57) reads: 

∂ ε p ˆ ρci = ∂ ε p ˆ ρtr 
cm 

+ ∂ ε p ˆ ρac 
ci −

(
∂ ε p ˆ ρan 

ci + ∂ ε p ˆ ρrm 

ci + ∂ ε p ˆ ρnc 
wi 

)
. (58) 

Eq. (58) is the dynamic evolutionary equation of cell immobile dislocation density. 

(20) Kinetics of cell mobile dislocations : dynamic generation of cell mobile dislocations and remobilization of cell and wall 

immobile dislocations contribute to dynamic increase of cell mobile dislocations, while dynamic decrease of cell mobile 

dislocations occurs through dynamic annihilation of cell mobile, cell immobile, and wall immobile dislocations, accumulation 

of cell and wall immobile dislocations, and pinning of mobile dislocations: 

∂ ε p ˆ ρ+ 
cm 

= ∂ ε p ˆ ρgn 
cm 

+ ∂ ε p ˆ ρrm 

ci + ∂ ε p ˆ ρrm 

wi ; (59) 

∂ ε p ˆ ρ−
cm 

= 2 ∂ ε p ˆ ρan 
cm 

+ ∂ ε p ˆ ρan 
ci + ∂ ε p ˆ ρan 

wi + ∂ ε p ˆ ρac 
ci + ∂ ε p ˆ ρac 

wi + ∂ ε p ˆ ρtr 
cm 

. (60) 

The term ∂ ε p ˆ ρan 
cm 

is considered twice in dynamic decrease of cell mobile dislocations because two mobile dislocations 

annihilate each other in the process of dynamic annihilation of cell mobile dislocations. Combining (30) , (59) , and (60) gives: 

∂ ε p ˆ ρcm 

= ∂ ε p ˆ ρgn 
cm 

+ ∂ ε p ˆ ρrm 

ci + ∂ ε p ˆ ρrm 

wi −
(
2 ∂ ε p ˆ ρan 

cm 

+ ∂ ε p ˆ ρan 
ci + ∂ ε p ˆ ρan 

wi + ∂ ε p ˆ ρac 
ci + ∂ ε p ˆ ρac 

wi + ∂ ε p ˆ ρtr 
cm 

)
. (61) 

Eq. (61) is the dynamic evolutionary equation of cell mobile dislocation density. Considering Eqs. (10) and (30) , dynamic 

evolution of total dislocation density reads: 

∂ ε p ˆ ρ+ 
t = ∂ ε p ˆ ρgn 

cm 

; (62) 
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∂ ε p ˆ ρ−
t = 2 

(
∂ ε p ˆ ρan 

cm 

+ ∂ ε p ˆ ρan 
ci + ∂ ε p ˆ ρan 

wi 

)
; (63) 

∂ ε p ˆ ρt = ∂ ε p ˆ ρgn 
cm 

− 2 
(
∂ ε p ˆ ρan 

cm 

+ ∂ ε p ˆ ρan 
ci + ∂ ε p ˆ ρan 

wi 

)
. (64) 

Eq. (64) is the dynamic evolutionary equation of total dislocation density. 

3.3. Static dislocation processes 

(21) Static pinning : nonlocal static pinning of cell (mobile and immobile) dislocations is very similar to dynamic pinning 

(postulate (15) and (16) ) with the difference that it occurs at very low local strain rates in relatively long durations. Time 

rate of static pinning of cell dislocations ( ˙ ρs pn 
cy ) by diffusion of solute atoms at their junctions is proportional to their junction 

density ( N cy ): 

˙ ρs pn 
cy ∝ N cy ; y = m, i . (65) 

Given Eqs. (22) and (34) : 

˙ ˆ ρ
s pn 

cy = c s pn cy ˆ ρ3 / 2 
cy ; y = m, i ; (66) 

where c 
s pn 
cy is a material coefficient associated with frequency of static pinning of cell dislocations of type y = m, i . Since 

pinning is a diffusion-controlled process, static pinning of cell dislocations is a thermal dislocation process that its magni- 

tude increases with increasing temperature. As mentioned in postulate (15) , since pinning process occurs due to diffusion 

of interstitial solute atoms to dislocation surrounding, c 
s pn 
cy is a function of interstitial solute content. 

(22) Static remobilization : nonlocal static remobilization process consists of the same contributing mechanisms of its 

dynamic counterpart. Time rate of static remobilization of immobile dislocations of type x = c, w ( ˙ ρs rm 

xi 
) is proportional to 

density of them: 

˙ ρs rm 

xi ∝ ρxi ; x = c, w . (67) 

Given Eqs. (22) and (34) : 

˙ ˆ ρ
s rm 

xi = c s rm 

xi ˆ ρxi ; x = c, w ; (68) 

where c s rm 

xi 
is a material parameter associated with frequency of static remobilization of immobile dislocations of type x = 

c, w . Moreover, static remobilization is a thermal dislocation process due to thermal character of its underlying mechanisms 

such as dislocation climb and junction dissociation. 

(23) Static kinetics : static pinning of cell mobile dislocations reduces cell mobile and increases cell immobile dislocation 

density, while static remobilization processes of immobile dislocations increase cell mobile and decrease immobile disloca- 

tion density. Thus, given Eq. (31) , static evolution of dislocation densities reads: (
˙ ˆ ρ
cm 

)
s 
= 

˙ ˆ ρ
s rm 

ci + 

˙ ˆ ρ
s rm 

wi − ˙ ˆ ρ
s pn 

cm 

; (69) (
˙ ˆ ρci 

)
s 
= 

˙ ˆ ρ
s pn 

cm 

− ˙ ˆ ρ
s rm 

ci − ˙ ˆ ρ
s pn 

ci ; (70) (
˙ ˆ ρwi 

)
s 
= 

˙ ˆ ρ
s pn 

ci − ˙ ˆ ρ
s rm 

wi . (71) 

Notice that pinning of already immobilized cell dislocations (cell immobile dislocations), strengthens their immobilization 

(resistance to remobilization). Consequently, upon application of external stress, just prior to local yielding, some of those 

pinned cell immobile dislocations will convert to GND due to elastic bending of their surrounding lattice to a sufficient 

mean misorientation angle. 

3.4. Temperature and strain rate dependencies 

(24) Temperature dependence of dislocation processes : as pointed out earlier, each thermal dislocation process comprised of 

at least one underlying thermally-activated mechanism. Temperature is a statistical variable (representative of mean ampli- 

tude of atomic fluctuations) as well, which directly affects probability amplitude of different thermal dislocation processes. 

It is postulated that the change in probability amplitude of a thermal dislocation process with respect to temperature in 

constant strain rate is proportional to a power of temperature change: 

�p z xy ∝ ( �T ) 
s z xy ; xy = cm, ci, wi . (72) 

Therefore, 

�c z xy 

c z 
xy 0 

= r z xy 

(
�T 

T 0 

)s z xy 

; �T = T − T 0 ; �c z xy = c z xy − c z xy 0 ; xy = cm, ci, wi ; (73) 
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where T is absolute temperature; T 0 is reference absolute temperature; p 
z 
xy is probability amplitude associated with thermal 

dislocation process z that involves dislocations of type xy ; c z xy and c 
z 
xy 0 

are respectively, current (at current temperature) and 

reference (at reference temperature and strain rate) material parameters associated with probability amplitude of dislocation 

process z of dislocations of type xy ; r z xy and s 
z 
xy are respectively temperature sensitivity coefficient and exponent associated 

with dislocation process z of dislocations of type xy . Reference temperature is assumed to be the minimum temperature in 

the temperature regime under consideration. Thus, in case of cold and warm regimes, reference temperature is the room 

temperature. Likewise, the reference strain rate is assumed to be the lowest strain rate in the investigated strain rate regime. 

The reference strain rate must be lower than the maximum/critical strain rate beyond which the viscoplastic deformation 

cannot be considered isothermal anymore because of adiabatic heat generation. 

Referring to the postulates of dynamic and static dislocation processes ( Sections 3.2 and 3.3 ), thermal dislocation pro- 

cesses are dynamic annihilation of dislocations, dynamic trapping of cell mobile dislocation, dynamic nucleation of wall 

immobile dislocations, dynamic remobilization of immobile dislocation, static pinning of cell mobile dislocations, and static 

remobilization of immobile dislocations: 

r z xy 

{ 

> 0 : z = an , tr , rm , s pn , s rm 

> 
< 
0 : z = nc 

= 0 : z = gn , ac 
; s z xy 

{
> 0 : z = an , tr , nc , rm , s pn , s rm 

= 0 : z = gn , ac 
. (74) 

Temperature dependencies of frequency of different thermal dislocation processes characterized via Eq. (73) are the gen- 

eral monotonically increasing or decreasing functions of temperature ( ∂c / ∂T ≥ 0 or ∂c / ∂T ≤ 0 ) with unchanging concavity 

( ∂ 
2 c / ∂ T 2 ≥ 0 or ∂ 

2 c / ∂ T 2 ≤ 0 ) throughout the entire temperature domain (in cold and warm regimes). The temperature de- 

pendence of dislocation mobility (stress dependence of velocity of mobile dislocations) and underlying mechanisms of ther- 

mal dislocation processes, e.g. dislocation climb (speed), are often much more complex than that can be described purely 

by Arhenius relation and the respective activation energy barriers ( Amodeo and Ghoniem, 1990; Argon and Moffatt, 1981; 

Blum et al., 2002; Eisenlohr and Blum, 2005; Gu et al., 2015; Hirth and Lothe, 1982; Yuan et al., 2018 ). In addition, the 

temperature dependence of some of the involved thermal mechanisms has not been properly understood yet. Therefore, it 

is reasonable to assume a phenomenological power-law description for temperature dependence of constitutive parameters 

associated with probability amplitude of different thermal dislocation processes. 

(25) Strain-rate dependence of dislocation processes : the strain rate dependence of probability amplitude of rate-dependent 

dynamic dislocation processes is suggested to be described by power-law relation as: 

p z xy ∝ 

. 

˜ γ
m 

z 
xy 

p ; xy = cm , ci , wi ; (75) 

where m 

z 
xy is strain rate sensitivity associated with dislocation process z of dislocations of type xy . Therefore, at reference 

temperature: 

ˆ c z xy = 

ˆ ˙ ˜ γ
m 

z 
xy 

p ; ˆ ˙ ˜ γ p ≡
˙ ˜ γ p 

˙ γ0 
; ˆ c z xy ≡

c z xy 

c z 
xy 0 

; xy = cm, ci, wi ; (76) 

where ˙ γ0 is reference shear strain rate; and 
ˆ ˙ ˜ γ p is normalized mean plastic shear strain rate. Combination of Eqs. (73) and 

(76) produce: 

ˆ c z xy = 

[ 
1 + r z xy 

(
ˆ T − 1 

)s z xy ] ˆ ˙ ˜ γ m 

z 
xy 

p ; ˆ T ≡ T 

T 0 
; xy = cm, ci, wi ; (77) 

where ˆ T is normalized absolute temperature; ˆ c z xy is normalized material coefficient associated with frequency of dislocation 

process z that involves dislocations of type xy . Moreover, given Eqs. (4) and (76) , and owing to Taylor factor ( M ) being 

constant in the isotropic case: 

ˆ ˙ ε p ≡ ˙ ε p 
˙ ε 0 

= 

·
˜ γ p 

˙ γ0 
≡ ˆ ˙ ˜ γ p ; ˙ ε 0 ≡ ˙ γ0 

M 

; (78) 

where ˙ ε 0 is reference strain rate. Furthermore, as pointed out earlier, material coefficients associated with probability am- 

plitudes of dynamic thermal dislocation processes depend on strain rate, although their rate sensitivity in quasi-static and 

intermediate regimes is often negligible. Therefore, 

m 

z 
xy 

⎧ ⎨ ⎩ 

< 0 : z = an , tr 
> 

< 

0 : z = nc , rm 

= 0 : z = gn , ac , s pn , s rm 

; xy = cm, ci, wi. (79) 

(26) Temperature dependence of plastic stress : strain rate sensitivity of mean dislocation interaction strengths ( ̃  αx ) are 

reportedly negligible compared to strain rate sensitivity of viscous stress Mecking and Kocks, 1981 ). Nonetheless, mean 

interaction strengths decrease with increasing temperature for each material in a characteristic way ( Kassner, 2015; Kocks 

and Mecking, 2003 ). Shear modulus ( G ) has a mild temperature dependence (decreasing with increasing temperature) as 
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well which can be expressed by power-law relation ( Argon, 2012; Galindo-Nava and Rae, 2016; Ghosh and Olson, 2002 ). 

Variation of temperature-dependent factors in Eqs. (26) and ( (28) , ˜ αx and G , with respect to temperature can be described 

simultaneously similar to temperature dependence relation of frequency of thermal dislocation processes: 

∧ 
G ̃

 αx = 1 + r G αx 

(
ˆ T − 1 

)s G αx ;
∧ 

G ̃  αx ≡ G ̃  αx 

G 0 ̃  αx 0 

; r G αx < 0 ; s G αx > 0 ; x = c, w ; (80) 

where G 0 and ˜ αx 0 are respectively reference (at reference temperature) shear modulus and mean dislocation interaction 

strength associated with immobile dislocations of type x ; 
∧ 

G ̃  αx is normalized G ̃  αx ; and r 
G 
αx and s 

G 
αx are temperature sensitivity 

coefficient and exponent associated with G ̃  αx . 

(27) Viscous stress and its temperature dependence : as shown in Fig. 4 , the viscous contribution of yield shear stress at 

slip systems is represented by a nonlinear dashpot in rheological representation of the elasto-viscoplastic (EVP) constitutive 

model. Stress response of the nonlinear dashpot is: 

˜ τv = ˜ τv 0 
ˆ ˙ ˜ γ
m v 

p ; m v > 0 ; (81) 

where ˜ τv 0 is mean viscous shear stress at reference strain rate; and m v is strain rate sensitivity parameter of viscous stress. 

At constant reference strain rate, by the assumption of � ˜ τv ∝ (�T ) s v , temperature dependence of viscous resistance can be 

expressed as: 

˜ τv 0 = ˜ τv 00 

[ 
1 + r v 

(
ˆ T − 1 

)s v ] ; r v < 0 ; 0 < s v ≤ 1 ; (82) 

where ˜ τv 00 is the reference viscous shear stress (at reference temperature and strain rate); and r v and s v are re- 

spectively viscosity’s temperature sensitivity coefficient and exponent. Eq. (82) is similar to the relations proposed by 

Kocks et al. (1975) and Argon (2012) for temperature dependence of viscous stress. Substituting Eq. (82) into Eq. (81) leads 

to: 

̂ ˜ τ v = 

[ 
1 + r v 

(
ˆ T − 1 

)s v ] ˆ ˙ ∼
γ

m v 

p ; ̂ ˜ τ v ≡ ˜ τv 

˜ τv 00 
; (83) 

where ̂ ˜ τ v is normalized mean viscous shear stress. Considering Eqs. (12) and (83) , with constant Taylor factor (in isotropic 

case): 

ˆ σv ≡ σv 

σv 00 
= 

˜ τv 

τv 00 
≡ ̂ ˜ τ v ; σv 00 ≡ M τv 00 ; (84) 

where σ v 00 is the reference viscous stress (at reference temperature and strain rate); and ˆ σv is normalized viscous stress. 

The reason for assuming an ambiguous phenomenological description for temperature dependence of viscous stress is that 

the temperature dependence of mean (mixed/curved) dislocations mobility function is extremely complex and has not been 

yet properly understood ( Argon, 2012; Fleischer, 1962; Gilbert et al., 2011; Gilman, 1965; Kocks et al., 1975; Li, 1967; Tang 

and Marian, 2014 ). 

(28) Rate dependence of strain rate sensitivities : strain rate sensitivity of viscous drag increases with increasing temperature 

( Cereceda et al., 2016; Khan and Liu, 2012; Kocks, 1976; Rusinek and Rodríguez-Martínez, 2009 ) and is assumed to have a 

similar form as aforementioned temperature and strain rate dependence relations: 

ˆ m v = 

[ 
1 + r m 

v 
(
ˆ T − 1 

)s m v 
] ˆ ˙ ∼
γ

m 

m 
v 

p ; ˆ m v ≡ m v 

m v 0 
; r m 

v , s 
m 

v ≥ 0 ; (85) 

where m v 0 is reference strain rate sensitivity (at reference temperature and strain rate); ˆ m v is normalized strain rate sen- 

sitivity of viscous stress; r m 

v and s 
m 

v are respectively temperature sensitivity coefficient and exponent associated with strain 

rate sensitivity of viscous stress; and m 

m 

v is strain rate sensitivity parameter associated with strain rate sensitivity of viscous 

stress. Moreover, strain rate sensitivity coefficients associated with dislocation processes are assumed to have similar form 

of temperature and strain rate dependencies: 

ˆ m 

z 
xy = 

[ 
1 + r m 

z xy 

(
ˆ T − 1 

)s m z xy 

] ˆ ˙ ∼
γ

m 

m 
z xy 

p ; ˆ m 

z 
xy ≡

m 

z 
xy 

m 

z 
xy 0 

; xy = cm, ci, wi ; (86) 

where m 

m 

z xy 
, m 

z 
xy 0 

and ˆ m 

z 
xy are respectively, current, reference (at reference temperature) and normalized strain rate sensitiv- 

ities associated with dislocation process z of dislocations of type xy ; and r m 

z xy 
and s m 

z xy 
are temperature sensitivity coefficient 

and exponent associated with strain sensitivity of dislocation process z of dislocations of type xy , respectively. Further, m 

m 

v 
and m 

m 

z xy 
are very small compared to m v and m 

z 
xy . Thus, only often shock regimes they have considerable impact. 

(29) Plastic dissipation/adiabatic heating : volumetric adiabatic heat generation rate due to plastic work ( ̇ q p ) which is a 

fraction of volumetric plastic power ( ˙ w p ) ( Taylor and Quinney, 1934 ), is obtained as follows: 

˙ q p = β ˙ w p = 

˙ w p − ˙ u ; ˙ w p = 

. 

˜ γ p ̃  τc = σy ˙ ε p ; β ≡ 1 − ˙ u 

˙ w p 
; (87) 
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where ˙ u is volumetric stored elastic power which is a fraction of volumetric plastic power that is stored in material by dis- 

locations; and β is referred to as dissipation/conversion factor, inelastic heat fraction, efficiency of plastic dissipation, or the 

Taylor–Quinney coefficient. In other words, β is the fraction of plastic power that is not stored elastically and consequently 

is converted to heat. Taylor and Quinney (1934) emphasized that the fraction β increases as plastic deformation progresses 

until saturation state where β = 1 . In other words, in saturation state, the entire input volumetric plastic power is converted 

to heat ( 
·
q p = ˙ w p ). Moreover, Rosakis et al. (20 0 0) and Zehnder (1991) proposed models for variation of β as a function of 

plastic strain and plastic hardening ( θ ≡ ∂ ε p σy ) where β approaches one by decreasing θ as plastic strain increases. At the 

beginning of plastic deformation of a nearly undeformed/annealed polycrystalline metallic material, large portion of the in- 

put plastic energy is stored in the crystal structure by generation of dislocations and dislocation structures. However, as the 

deformation progresses the generation rate of dislocations diminishes whereas the annihilation rate increases (annihilation 

releases the previously stored energy of dislocations in form of heat) until the saturation state where these two rates are 

equivalent. Therefore, one can assume: 

β = 

(
∂ ε p ˆ ρ−

t 

∂ ε p ˆ ρ+ 
t 

)κ

; κ > 0 ; (88) 

where κ > 0 is a material constant associated with dissipation factor. 

Furthermore, given Eqs. (12) , (14) , (28) , (34) , (78) , (83) and (84) , plastic/strain hardening ( θ ) can be calculated as follows: 

θ ≡ ∂ ε p σy = ∂ ε p σp = θc + θw ; (89) 

θx ≡ ∂ ε p σpx = 

MbG ̃  αx 

2 
√ 

ρxi 

∂ ε p ρxi = 

∂ ε p ˆ ρxi 

2 ̂  ρxi 

σpx ; x = c, w ; (90) 

where θ x is plastic hardening associated with dislocations of type x . In addition, according to Eqs. (12) , (14) , (28) , (34) , (55) , 

(58) , (78) , (83) , (84) and (85) viscous/strain-rate hardening ( ϕ) is obtained as follows: 

ϕ ≡ ∂ ˙ ε p σy = ϕ v + ϕ p ; (91) 

ϕ v ≡ ∂ ˙ ε p σv = 

m v 

˙ ε p 

[
1 + m 

m 

v 

∨ 
ln 

(
∧ 
˙ ε p 

)]
σv ; (92) 

ϕ p ≡ ∂ ˙ ε p σp = ϕ pc + ϕ pw ; ϕ px ≡ ∂ ˙ ε p σpx = 

∂ ˙ ε p ˆ ρxi 

2 ̂  ρxi 

σpx = 

∂ ε p 
∂ ˙ ε p 

θx ; x = c, w ; (93) 

where ∂ ˙ ε p ≡ ∂ 
∂ ̇ ε p 

is partial derivative operator with respect to plastic strain rate ( ̇ ε p ); ϕv and ϕp are viscous hardenings 

respectively associated with viscous and plastic stress; and ϕpx is viscous hardening associated with plastic stress of type x . 

4. Numerical integration and parameter identification 

4.1. Numerical integration 

Since there is no analytical solution to overall evolution rate of dislocation densities, they must be solved numerically. 

Hence, the differential continuum equations expressed in previous sections must be numerically integrated with respect to 

time. Simulation time is discretized to small increments. Consider a (pseudo) time interval [ t (n ) , t ( n +1 ) ] , such that �t ( n +1 ) ≡
t ( n +1 ) − t (n ) is the time increment at ( n + 1 ) -th time step. Accordingly, 

�( •) ( n +1 ) ≡ ( •) ( n +1 ) − ( •) ( n ) ; ( 
·•) ( n +1 ) ≡ �( •) ( n +1 ) 

�t ( n +1 ) 
; (94) 

where ( •) can be any time-dependent variable; and superscripts ( n ) and ( n + 1 ) respectively, represent the value of cor- 

responding time-dependent variable at the beginning and the end of ( n + 1 ) -th time step. Application of forward/explicit 

Euler method for numerical integration of dislocation densities gives: 

ˆ ρ( n +1 ) 
xy = ˆ ρ( n ) 

xy + � ˆ ρ( n ) 
xy ; � ˆ ρ( n ) 

xy = �ε n +1 p ∂ ε p ˆ ρ( n ) 
xy = �t ( n +1 ) ˙ ˆ ρ

( n ) 

xy ; ˆ ρ( n =0 ) 
xy = ˆ ρxy 0 ;

{
x = c, w, t 
y = m, i, t 

; (95) 

where ∂ ε p ˆ ρ(n ) 
xy is computed by Eqs. (55) , (58) and (61) . Given Eqs. (12) , (14) , (28) , (34) , (77) , (78) , (80) , (83) , (84) , (85) and 

(86) : 

σ ( n +1 ) 
y = σ ( n +1 ) 

v + σ ( n +1 ) 
pc + σ ( n +1 ) 

pw ; (96) 

σ ( n +1 ) 
px = Mb ( G ̃  αx ) 

( n ) 

√ 

ρ0 ˆ ρ( n +1 ) 
xi 

; x = c, w ; (97) 
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( G ̃  αx ) 
( n ) = G 0 ̃  αx 0 

[ 
1 + r G αx 

(
ˆ T ( n ) − 1 

)s G αx 

] 
; ˆ T ( n ) ≡ T ( n ) 

T 0 
; x = c, w ; (98) 

σ ( n +1 ) 
v = σv 00 

[ 
1 + r v 

(
ˆ T ( n ) − 1 

)s v ] ( ˆ ˙ ε ( n +1 ) p 

)m 

( n ) 
v ; ˆ ˙ ε ( n +1 ) p ≡ ˙ ε ( n +1 ) p 

˙ ε 0 
= 

�ε ( n +1 ) p 

�t ( n +1 ) ˙ ε 0 
; (99) 

m 

( n ) 
v = m v 0 

[ 
1 + r m 

v 
(
ˆ T ( n ) − 1 

)s m v 
] (
ˆ ˙ ε ( n +1 ) p 

) m 

m 
v ; (100) 

c 
z ( n ) 
xy = c z xy 0 

[ 
1 + r z xy 

(
ˆ T ( n ) − 1 

)s z xy ] ( ˆ ˙ ε ( n +1 ) p 

)m 

z ( n ) 
xy ; xy = cm, ci, wi ; (101) 

m 

z ( n ) 
xy = m 

z 
xy 0 

[ 
1 + r m 

z xy 

(
ˆ T ( n ) − 1 

)s m z xy 

] (
ˆ ˙ ε ( n +1 ) p 

)m 

m 
z xy ; xy = cm, ci, wi . (102) 

In addition, discretized forms of Eqs. (87) and (88) in combination with Eqs. (62) and (63) read: 

�q ( 
n +1 ) 
p = β( n ) 

σ ( n ) 
y + σ ( n +1 ) 

y 

2 
�ε ( n +1 ) p ; (103) 

β( n ) = 

( 

2 
(
∂ ε̄ p ˆ ρan ( n ) 

cm 

+ ∂ ε̄ p ˆ ρan ( n ) 
ci 

+ ∂ ε̄ p ˆ ρan ( n ) 
wi 

)
∂ ε̄ p ˆ ρgn ( n ) 

cm 

) κ

. (104) 

For FE implementation, in return mapping (using Newton-Raphson scheme) of EVP constitutive models as well as calcu- 

lation of viscoplastic consistent tangent operator (implicit FE framework), the viscoplastic tangent modulus ( H ) is required. 

Given Eqs. (40) , (46) , (49) , (52) , (55) , (58) , (79) , (95) , (96) , (97) , (99) , (100) , (101) and (102) : 

H 

( n +1 ) ≡ d σ ( n +1 ) 
y 

d�ε̄ ( n +1 ) p 

= 

m 

( n ) 
v 

[
1 + m 

m 

v 

∨ 
ln 

(̂ ˙ ε 
( n +1 ) 
p 

)]
�ε ( n +1 ) p 

σ ( n +1 ) 
v 

+ 

∂ ε p ˆ ρ( n ) 
ci 

+ m 

tr ( n ) 
cm 

[
1 + m 

m 

t r cm 

∨ 
ln 

(̂ ˙ ε 
( n +1 ) 
p 

)]
∂ ε p ˆ ρtr ( n ) 

cm 

− ∑ 

z xy = 
a n ci 

r m ci 

n c wi 

m 

z ( n ) 
xy 

[
1 + m 

m 

z xy 

∨ 
ln 

(̂ ˙ ε 
( n +1 ) 
p 

)]
∂ ε p ˆ ρz ( n ) 

xy 

2 ̂  ρ( n +1 ) 
ci 

σ ( n +1 ) 
pc 

+ 

∂ ε p ˆ ρ( n ) 
wi 

+ m 

nc ( n ) 
wi 

[
1 + m 

m 

n c wi 

∨ 
ln 

(̂ ˙ ε 
( n + 1 ) 
p 

)]
∂ ε p ˆ ρnc ( n ) 

wi 
− ∑ 

z xy = 
a n wi 

r m wi 

m 

z ( n ) 
xy 

[
1 + m 

m 

z xy 

∨ 
ln 

(̂ ˙ ε 
( n +1 ) 
p 

)]
∂ ε p ˆ ρz ( n ) 

xy 

2 ̂  ρ( n + 1 ) 
wi 

σ ( n +1 ) 
pw . 

(105) 

Details of FE implementation of the above discretized constitutive equations in the framework of hypo-EVP finite defor- 

mation/strain based on isotropic associative J 2 plasticity is planned to be published soon. 

4.2. Identification of constitutive parameters 

Generally, constitutive/material parameters/constants of constitutive models are directly derived from experimental flow 

curves (yield stress versus plastic strain) through parameter identification techniques. Here, as an important hypothesis, it 

is envisaged that having the flow curves of a material in various temperatures, strain rates, etc. in the considered regimes 

is sufficient for calibration of a properly devised microstructural constitutive model using a robust parameter identification 

procedure. After all, under viscoplastic deformation, the underlying microstructural processes statistically result in a specific 

material response that is macroscopically observable through flow curves. However, although due to their physical nature, 

some of the constitutive parameters can be obtained by independent characterization methods (other than flow curves), it 

is suggested that the most accurate and effective approach for finding them is the simultaneous parameter identification, 

given the flow curves as the reference of fitting. Identification of microstructural parameters is carried out in two steps: 

(1) In the first step, isothermal uniaxial compression/upsetting or tensile tests are conducted in reference strain rate and 

various temperatures. Then, based on the measured experimental flow curves, most of the constitutive parameters are 

determined by means of pointwise parameter optimization using RMV-based analysis (RMVA). 
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(2) In the last step, nonisothermal uniaxial tests are performed with different strain rates (in intermediate strain rate 

regime) and various initial temperatures (in cold and warm regime). Subsequently, the remaining constants which are 

strain rate sensitivity parameters ( m ), temperature sensitivity coefficients ( r ) and exponents ( s ) associated with strain 

rate sensitivities, as well as the material parameter associated with dissipation factor ( κ) are simultaneously calibrated 
by parameter optimization using finite element model updating (FEMU) method also known as finite element-based 

inverse strategy ( Steenackers et al., 2007 ). 

After conducting uniaxial tests, force-displacement data is processed to true stress-strain, and then to flow curves. After- 

wards, noise of flow curve data is reduced (here, “smooth” function in MATLAB library is used for noise filtration) and inter- 

polated for constant plastic strain intervals. For the first step of parameter identification by RMVA, the following mean rel- 

ative error which is also called objective, fitness, or residual function, is constructed as follows to be optimized/minimized: 

˜ e ( C ) ≡ 1 

p 

p ∑ 

i =1 

ω i 

q i 

q i ∑ 

j=0 
� j 

∣∣σ num 

i j 

(
C, T i , �ε p , S j 

)
− σ exp 

i j 

(
T i , ε 

j 
p = j�ε p 

)∣∣
σ exp 
i j 

(
T i , ε 

j 
p = j�ε p 

) ; (106) 

where C is the set containing constitutive constants for fitting; p is total number of experiments at different temperatures 

with constant reference strain rate ˙ ε 0 ; q i is total number of data points of isothermal experimental flow curve at temper- 

ature T i ; �ɛ p is the constant plastic strain interval between data points; σ
num 

i j 
is yield stress calculated numerically by the 

constitutive model at temperature T i which is corresponding to ε 
j 
p = j�ε p ; S j is the set of MSVs of j th step; σ exp 

i j 
is yield 

stress in isothermal experimental flow curve at temperature T i and plastic strain ε 
j 
p = j�ε p ; ω i and ϖj are weighting factors 

respectively for isothermal flow curve at temperature T i , and data point j corresponding to ε 
j 
p = j�ε p . In default, ω i = 1 and 

� j = 1 , unless some individual flow curve or ranges of plastic strain, have higher weight/importance ( ω i , ϖj > 1) or lower 

importance ( ω i , ϖj < 1) than the rest. For the example provided in the next section, �ε p = 0 . 001 and ω i = � j = 1 . 

For many cases, finding the global solution/minimum to this optimization problem is difficult and requires complex and 

robust mathematical optimization methods which follow the steepest descent with the crossover functionality. Many meth- 

ods are available for searching for the global solution such as gradient-free minimization methods and evolutionary algo- 

rithms including genetic algorithm. These methods exist in literature and their corresponding computer codes are developed 

and embedded in many commercial mathematical software. For the example provided in the next section, minimization of 

Eq. (106) for calibration of material parameters is carried out by a script written in MATLAB software. The optimization 

script employs MATLAB’s global search class “GlobalSearch” and genetic algorithm “ga” which are coupled with its local 

minimization solver for constrained nonlinear multivariate functions “fmincon”. The local minimization solver optionally 

utilizes various robust optimization algorithms such as interior point and reflective trust region. 

For the second step of fitting based on FEMU, firstly the constitutive model must be implemented and programmed 

as a material subroutine based on hypo-EVP finite deformation using the constitutive parameters derived in the first step 

of calibration and with an initial guess for the constitutive parameters yet to be determined in the second step. Then, 

depending on the type of conducted experimental uniaxial tests, an FE model of either uniaxial compression or tension test 

must be constructed and linked to the material subroutine. Next, optimization of remaining constitutive parameters is done 

by iterative running of FE simulation of uniaxial tests with consecutives correction and update of remaining parameters. 

Running of FE simulation of uniaxial tests with updated parameters can be done by an optimization script that controls 

the pre-processing and post-processing of FE simulation. However, with a good initial guess for the remaining material 

constants, the second step of optimization can be done manually as well. For the example provided in the next section, the 

presented constitutive model has been implemented as implicit and explicit user-defined material subroutines for hypo-EVP 

finite deformation in ABAQUS FE package based on isotropic associative J 2 plasticity. 

5. Results, discussion and validation 

In order to determine constitutive parameters, and also for validation of the constitutive model, uniaxial compression 

tests at various temperatures and strain rates using a deformation-type dilatometer (DIL-805A/D by TA Instruments) were 

conducted as dilatometer provides better precision than conventional compression test machines. Temperature measurement 

was done by thermocouple welded on the middle point in height direction at the lateral surface of the compression spec- 

imen. Temperature and strain rate were controlled by the dilatometer’s integrated PID controller. Moreover, GND density 

measurements using high resolution EBSD for deformed compression specimens at different plastic strains are carried out. 

The material used in dilatometer compression is case-hardenable ferritic-pearlitic steel alloy 20MnCr5 (1.7147/1.7149) which 

is widely used in industrial forging of automotive components such as bevel gear. The chemical composition of 20MnCr5 

used in experiments is presented in Table 1 . The material constants required by the constitutive model that are indepen- 

dently measurable are also presented in Table 2 . 

As already mentioned, reference temperature and strain rate are selected as the minimum possible temperature and 

strain rate in the considered domain ( Table 2 ). Since for the steel studied here, the minimum temperature for onset of 

dynamic recrystallization of ferrite is slightly above 600 °C, the maximum temperature for constitutive modeling in warm 

regime is selected to be 600 °C. For the first step of parameter identification, experimental dilatometer compression tests 
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Table 1 

Chemical composition of the investigated steel 20MnCr5 [mass%]. 

C Si Mn P S Cr Mo Ni Cu Al N 

0.210 0.191 1.350 0.014 0.025 1.270 0.074 0.076 0.149 0.040 0.010 

Table 2 

Reference parameters and independently measurable required material constants. 

T 0 [ °C] ˙ ε 0 [s −1 ] ρ0 [m 

−2 ] G 0 [GPa] M [-] b [m] 

20 0.01 10 12 82.5 3.0 2 . 55 × 10 −10 

Table 3 

Constitutive parameters determined in the first step of parameter identification by RMVA scheme. 

c gn cm [-] c an cm 0 [-] c an 
ci 0 

[-] c an 
wi 0 

[-] c ac 
ci 
[-] c ac 

wi 
[-] c tr cm 0 [-] c nc 

wi 0 
[-] 

6.2970 ×10 2 0.1492 0.0133 0.0312 0.4989 0.1280 1.4184 1 . 5534 × 10 −3 

c rm 
ci 0 

[-] c rm 
wi 0 

[-] ˜ αc0 [-] ˜ αw 0 [-] ˆ ρcm 0 [-] ˆ ρci 0 [-] ˆ ρwi 0 [-] σ v 00 [MPa] 

0.2261 0.0217 0.1001 0.4725 

2.2573 ×10 1 2.6427 ×10 1 
0.9234 318.84 

Table 4 

Temperature sensitivity coefficients and exponents determined in the first step of parameter identification by 

RMVA scheme. 

r an cm [-] r an 
ci 

[-] r an 
wi 

[-] r tr cm [-] r nc 
wi 

[-] r rm 
ci 

[-] r rm 
wi 

[-] r G αc [-] r G αw [-] r v [-] 

0.0547 2.0581 0.2045 3.9680 6.1587 5.0910 2.0631 - 

0.0835 

- 

0.0288 

- 

0.3376 

s an cm [-] s an 
ci 

[-] s an 
wi 

[-] s tr cm [-] s nc 
wi 
[-] s rm 

ci 
[-] s rm 

wi 
[-] s G αc [-] s G αw [-] s v [-] 

8.6725 0.9988 4.0282 1.5593 4.8075 5.5999 3.4306 2.8735 2.5451 0.5115 

Table 5 

Constitutive parameters identified in the second step of parameter calibration by FEMU method. 

m v 0 [-] r m v [-] s m v [-] m 

m 
v [-] κ [-] 

0.027 0.0785 5.0 0.0 2.0 

at reference strain rate and 13 different temperatures (20, 50, 100, 150, ..., 600 °C) are performed. For each temperature 
at least two compression tests are carried out. Cylindrical dilatometer compression samples with diameter of 3.5 mm and 

height of 5 mm without lubrication pockets are used. However, lubricant is applied on contact surfaces. Subsequently, cor- 

responding flow curves including yield point elongation are derived, smoothed, and interpolated in constant plastic strain 

intervals. Averages of the resultant flow curves that have the same nominal test parameters (temperature and strain rate) 

are calculated. These flow curves are then used for calculation of constitutive parameters using RMVA scheme. The consti- 

tutive constants that are determined in the first calibration step using RMVA method are presented in Table 3 ; and their 

corresponding temperature sensitivity coefficients and exponents are listed in Table 4 . 

Mean relative error of the fitting is ˜ e = 0 . 39% which is in the same range of experimental scatter/precision (around 

0.43%). constitutive parameters identified in the second step of calibration procedure by FEMU technique using nonisother- 

mal uniaxial compression tests at different strain rates and various initial temperatures are presented in Table 5 . 

Temperature dependencies of material coefficients associated with frequencies of various thermal dynamic dislocation 

processes are shown in Fig. 6 . For discussing the temperature dependence of different dynamic dislocation processes demon- 

strated in Fig. 6 , it is useful to consider an intermediate temperature regime as the transition between cold and warm 

regimes which in case of the investigated material ranges from 200 °C to 400 °C . As shown in Fig. 6 , probability amplitudes 
associated with dynamic annihilation of cell mobile and wall immobile dislocations, dynamic nucleation of wall immobile 

dislocations and dynamic remobilization of immobile dislocations are nearly constant or have almost linear temperature de- 

pendencies in cold (0 °C < T < 200 °C ) temperatures. However, they have appreciable nonlinear (exponential Arhenius-type) 
temperature dependencies in the intermediate (200 °C < T < 400 °C ) and warm (400 °C < T < 600 °C ) regimes. This is partly 
ascribed to different tem perature dependencies of various thermal dislocation mechanisms in different temperature regimes 

that contribute unevenly to the aforementioned dynamic dislocation processes. 

As Fig. 6 suggests, frequencies of annihilation of cell mobile and wall immobile dislocations as well as remobilization 

of immobile dislocations are intensified by transition from cold to intermediate and warm regimes. This can be in part 

explained by the well-accepted phenomenon that the principal recovery mechanism changes from cross-slip to climb by 

transition from cold to warm regime because climb is energetically more favorable in warm regime ( Essmann and Mughrabi, 

1979; Galindo-Nava et al., 2012; Kubin et al., 1992; Nix et al., 1985; Püschl, 2002; Rivera-Díaz-del-Castillo and Huang, 2012 ). 
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Fig. 6. Temperature dependencies of material coefficients associated with probability amplitudes of different thermal dynamic dislocation processes. 
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As plotted in Fig. 6 (e), probability amplitude of dynamic remobilization of cell immobile dislocations has the strongest 

temperature dependence compared to the rest of thermal dynamic dislocation processes. At 600 °C , it is roughly 230 times 
higher than room temperature. However, dynamic annihilation of wall immobile dislocations at 600 °C is only about 10 
times higher than that of room temperature. 

As mentioned in postulates (13) and (17) , dynamic annihilation and remobilization (dynamic recovery) processes share 

some of the underlying thermal mechanisms. Moreover, as shown in Fig. 6 (b), probability amplitude of dynamic annihila- 

tion of cell immobile dislocations is almost linear in the entire temperature domain (cold and warm regimes) while the 

probability amplitude of the other dynamic annihilation processes have nonlinear temperature dependencies ( Fig. 6 (a) and 

(b)). The reason is that the thermally-activated and diffusion-controlled dislocation recovery mechanisms such as dislocation 

climb operating on a cell immobile dislocation in warm regime, more likely results in its remobilization than annihilation 

compared to its wall immobile counterpart. However, after being remobilized, this former cell immobile dislocation that is 

now another cell mobile dislocation can become annihilated by another cell mobile dislocation (dynamic annihilation of cell 

mobile dislocations). This also can partly explain why the frequency of cell mobile dislocation annihilation is more sensitive 

to temperature raise. Hence, the climb mechanism has much stronger effect on dynamic annihilation of wall immobile dis- 

locations than dynamic annihilation of cell immobile dislocations. Combining this with the fact that the climb mechanism 

is controlled by vacancy diffusion which has a high nonlinear temperature dependence in warm regime, will explain the 

difference between forms of temperature dependencies of probability amplitudes of dynamic annihilation of different types 

of immobile dislocations. As inferred from Fig. 6 (e), the climb mechanism substantially influences cell immobile dislocations 

because of their immobility and particular loose local arrangement compared to wall immobile dislocations. In cold regime, 

as shown in Fig. 6 (e), the climb mechanism is not strong enough in order to notably impact the remobilization rate of cell 

immobile dislocations. However, as shown in Fig. 6 (b), together with cross-slip, its intensity in cold regime is sufficient to 

linearly affect the annihilation rate of cell immobile dislocations. 

Probability amplitude of remobilization of cell immobile dislocations for the investigated material, as mentioned, grows 

intensively in warm regime by increasing temperature, while it is almost constant in cold regime. Accordingly, cell immobile 

dislocations and their associated dislocation substructures (IDBs) have relatively high stability in cold regime. However, their 

stability diminishes abruptly by transition from cold to warm temperatures. Hence, cell immobile dislocation density must 

be much lower during plastic deformation at warm temperatures than that of cold temperatures. From this it can be inferred 

that the studied metal tends to formation of dislocation sub-cells (bounded by IDBs) in cold regime while in warm regime 

it leans toward formation of dislocation cells (bounded by dislocation walls or GNBs). 

Furthermore, temperature dependencies of shear modulus, interaction strengths, viscous stress, and strain rate sensitivity 

are depicted in Fig. 7 . 

5.1. Isothermal uniaxial tests 

Experimental and computational flow curves (after optimization by RMVA) at different tem peratures (isothermal condi- 

tion) for compressive deformation at reference strain rate ( ̇ ε 0 = 0 . 01 s −1 ) are shown in Fig. 8 . 
For the RMVA fitting, the experimental data are used only up to the accumulated plastic strain of ε p = 0 . 4 , because 

at larger strains the effect of friction between compression tools and specimen becomes dominant. This induces notable 

inhomogeneous distribution of MSVs and strain rate (in compression specimen) that is in contradiction with the assump- 

tions of homogenous RMV and uniaxial deformation. Moreover, since experimental measurements carry notable amount of 

noise, for fitting of constitutive parameters as well as for comparison to corresponding computational curves, they have 

been smoothed. In each temperature regime (cold, intermediate and warm), one of the experimental flow curves plotted 

in Fig. 8 has not been used for parameter identification. Those experimental flow curves (isothermal condition at reference 

strain rate) that are associated with temperatures 150 °C, 350 °C and 550 °C, have been later compared to their computa- 
tional predictions for validation. 

Isothermal flow curves as shown in Fig. 8 , are categorized in the aforementioned three temperature groups: cold, inter- 

mediate and warm regimes. As shown in Fig. 6 and Fig. 7 , in cold temperature regime for the investigated material (20 to 

200 °C), temperature dependent constitutive parameters are either almost constant or have approximately linear temper- 
ature dependence. However, in intermediate and warm regimes (200 to 600 °C), temperature dependence of most of the 
thermal material constants abruptly changes. Temperature dependence of flow curves is the result of two competing effects: 

• Dynamic thermal softening (DTS) due to temperature dependence of viscous stress, shear modulus, interaction strength, 

dynamic annihilation of dislocations, and dynamic remobilization of immobile dislocations. 
• Dynamic thermal hardening (DTH) because of DSA (by pinning mechanism), i.e. temperature dependence of dynamic trap- 

ping of cell mobile dislocations and dynamic nucleation of wall immobile dislocations. 

According to Figs. 6–8 , with respect to relative average difference among flow curves at different temperatures, in cold 

regime, DTS mostly due to temperature dependence of viscous stress, is clearly stronger than DTH. In cold regime by in- 

creasing temperature, DTS gradually decreases while DTH grows. This can be seen from the decreasing trend (by increasing 

temperature) of relative difference of yield stress in flow curves of cold regime. As shown in Fig. 8 (a), in constant plastic 

strains by increasing temperature the yield stress decreases due to DTS. However, the amount of reduction by increasing 

temperature also decreases because the competing DTH becomes stronger as the temperature continues to rise. Thus, the 
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Fig. 7. Temperature dependencies of shear modulus, mean interaction strengths, viscous stress, and strain rate sensitivity. 

transition between cold and intermediate regimes occurs in the temperature at which DTS and DTH almost neutralize each 

other. 

In intermediate regimes, DTH is slightly more dominant than DTS. As shown in Fig. 8 (b), in constant plastic strains by 

increasing temperature the yield stress increases as well due to stronger DTH in intermediate regime compared to DTS. 

Nonetheless, at the upper bound of intermediate regime, the amount of increase in yield stress by increasing temperature 

diminishes because this time the competing DTS is getting stronger as the temperature continues to grow. In warm regime, 

the dominant effect again becomes DTS which enhances more than DTH by increasing temperature, mainly due to dynamic 

annihilation and remobilization processes, mean interaction strengths and shear modulus. As shown in Fig. 8 (c), in constant 

plastic strains by increasing temperature the yield stress decreases with an increasing rate due to very strong DTS in warm 

regime that cannot be competed by DTH effect. This implies that, in warm regime by increasing temperature, even though 

the pinning mechanism is amplified but the DTS impact becomes much greater that macroscopically results in an acceler- 

ated reduction of yield stress by increasing temperature. Experimental and computational plastic hardening curves (plastic 

hardening vs. yield stress or plastic strain) of compression tests in constant reference condition ( T = 20 ◦C and ˙ ε 0 = 0 . 01 s −1 ) 
are demonstrated in Fig. 9 . 

As plotted in Fig. 9 , the plastic hardening increases abruptly at the beginning of deformation of the investigated material 

at reference temperature and strain rate. As shown in experimental flow curves depicted in Fig. 8 , in cold regime and close 

to lower bound of intermediate regime, yield point elongation occurs which corresponds to this increasing domain in plastic 

hardening curves ( Fig. 9 ) at small plastic strains. The proposed constitutive model has captured this effect. After reaching a 

maximum value, plastic hardening begins to decrease with a high rate. The rate of decrease of plastic hardening gradually 

decreases as the plastic strain continues to accumulate. As shown in Fig. 9 (a), the model predict saturation ( θ = 0 ) at yield 

stress of σ sat 
y ≈ 900 MPa which corresponds to (accumulated) plastic strain of ε sat p ≈ 1 . 1 . The lowest plastic strain at which 

saturation occurs ( ε sat p ) usually has a decreasing trend by increasing temperature. As shown in Fig. 8 (c), for the investigated 

material in warm regime, the saturation starts at plastic strains of less than 0.4 ( ε sat p < 0 . 4 ) which can be measured exper- 
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Fig. 8. Comparison between experimental and computational flow curves at different temperatures (isothermal condition) for compressive deformation at 

reference strain rate ( ̇ ε 0 = 0 . 01 s −1 ). 
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Fig. 9. Comparison between experimental and RMV-based computational plastic hardening curves of compression tests at constant reference temperature 

and strain rate ( T = 20 ◦C and ˙ ε 0 = 0 . 01 s −1 ). 

imentally. However, for materials similar to the one investigated in the present paper (nearly all steel grades), in cold and 

intermediate regimes, generally it is not possible to experimentally measure the flow curves until the point of saturation 

with acceptable accuracy (using uniaxial tests). Therefore, in order to perform FE simulation of metal forming processes in 

cold and warm regimes with adequate precision, one has to predict/extrapolate the flow curves generally for relatively very 

large plastic strains (until saturation) for which there are not experimental measurements available. The microstructural 

constitutive model proposed in this paper can be trusted for such predictions because it can reproduce the experimental 

flow curves very accurately in the plastic strain range for which the experimental data is available. On the other hand, it 

has a comprehensive (statistical) physical background that covers all the major dislocation types and processes in cold and 

warm regimes. 

5.2. Evolution of dislocation densities at constant strain rate 

Numerically calculated evolution of dislocation densities based on RMV versus plastic strain in isothermal condition at 

various temperatures and reference strain rate ( ̇ ε 0 = 0 . 01 s −1 ) are plotted in Fig. 10 . 
It is emphasized that by increasing temperature in cold and warm regimes, there is trend of reduction in cell mobile, cell 

immobile and total dislocation densities. However, similar to flow curves of intermediate temperature regime Fig. 8 (b)), by 

increasing temperature wall immobile dislocation density increases, but again in warm regime it decreases. This is reason- 

able because the plastic stress associated with wall (immobile) dislocations ( σ pw ) has the largest contribution to the yield 

stress (postulates ( (5) and (8) ). 

As demonstrated in Fig. 10 (b) and (c), in cold regime (0 °C < T < 200 °C ), generally (nonlocal) cell immobile dislocation 
density is higher than wall immobile dislocation density ( ρci > ρwi ). In other words, as mentioned earlier in this section, 

this material tends to formation of cell immobile dislocation tangles (IDBs) at cold regime (sub-cell forming material). Nev- 

ertheless, by increasing temperature from 200 °C to 300 °C (intermediate regime), there is a sudden drop in cell immo- 
bile dislocation density and a (increasing) jump in wall immobile dislocation density. In this material, in the intermediate 

regime, (nonlocal) wall immobile dislocations have higher density than their cell immobile counterparts ( ρci < ρwi ). This 

implies that, in warm regime, dislocation walls (GNDs) are becoming more frequent in the microstructure (of the inves- 

tigated material) than cell dislocation pile-ups (IDBs). Temperature-dependent dynamic pinning associated with DSA as an 

underlying mechanism facilitating wall nucleation process (transforming cell dislocations to wall dislocations), is responsible 

for this effect. Due to contribution of dynamic pinning, as shown in Fig. 6 (d), at around 200 °C, frequency of wall nucle- 
ation process in the investigated material increases exponentially by increasing temperature. This results in transformation 

of more cell immobile to wall immobile dislocations. As Fig. 10 (d) suggests by increasing temperature, total dislocation 

density always decreases during plastic deformation at constant temperature and strain rate. At 600 °C which is close to the 
upper bound of warm regime for the investigated steel and therefore very close to the temperature of the onset of dynamic 

recrystallization (DRX), total dislocation density during deformation is almost constant. Furthermore, as shown in Fig. 10 (a), 

at the beginning of viscoplastic deformation, the undeformed/annealed material (low initial dislocation density), generates 

(cell) mobile dislocations with a remarkably high rate. High generation rate of mobile dislocations subsequently will lead 

to a maximum cell mobile dislocation density which occurs at relatively low accumulated plastic strains. This maximum is 

followed by a rapid drop in cell mobile dislocation density, very similar to the plastic hardening behavior ( Fig. 9 (b)). As the 

plastic deformation proceeds, the rate of production of cell mobile dislocations becomes gradually lower until the saturation 

state at which the rate of production of cell mobile dislocations becomes equal to the rate of their reduction. 
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Fig. 10. RMV-based computational cell mobile, cell immobile, wall immobile, and total dislocation densities versus plastic strain in isothermal condition at 

various temperatures and reference strain rate ( ̇ ε 0 = 0 . 01 s −1 ). 

5.3. GND density measurements 

In order to examine and validate the model’s prediction of GND density which as mentioned in postulate (3) is equal to 

wall immobile dislocation density ( ρwi ), several compression specimens are deformed to different plastic strain at constant 

reference temperature and strain rate. Along the symmetry axis of a deformed compression specimen, there is a gradient of 

accumulated (equivalent) plastic strain ranging from a near zero value at the contact surface to a maximum of more than 

mean/macroscopic/true accumulated plastic strain of the deformed specimen at its center point. Hence, along the symmetry 

axis there is always a point at which local equivalent plastic strain is equal to the mean plastic strain of the deformed spec- 

imen. For each of those deformed specimens, coordinates of such points are derived through corresponding FE simulations. 

It must be noted that there are other points with this property in the cross section of deformed compression specimens; 

however, the strain state at those points are much more complex (triaxial) compared to the points on the symmetry axis 

which are almost under uniaxial strain state. Moreover, it can be easily shown that those local points with the aforemen- 

tioned property ( ̄ε p = ε p ), have also the same average and instantaneous local equivalent plastic strain rate as the (constant) 

prescribed mean/macroscopic/true plastic strain rate of the deforming specimen ( 
. 

ε p = ˙ ε p ). 
For each specimen, around the vicinity of such points (RMV), an EBSD sample is prepared. Sample preparation for EBSD 

involved standard mechanical polishing to 0.05 μm, followed by electropolishing in a 5% perchloric acid and 95% acetic acid 
solution (by volume) with an applied voltage of 35 V. Measurements are performed using a field emission gun scanning 

electron microscope (FEG-SEM), JOEL JSM 70 0 0F, at 20 KeV beam energy, approximately 30 nA probe current, and 100- 

300 nm step size. A Hikari EBSD camera by Ametek-EDAX, in combination with the OIM software suite (OIM Data Collection 

and OIM Analysis V7.3) by EDAX-TSL, is used for data acquisition and analysis. Subsequently, at each point, GND density 

is calculated from kernel average misorientation (KAM) which is the average angular deviation between a point and its 

neighbors in a distance twice the step size as long as their misorientation does not exceed 5 ° ( Calcagnotto et al., 2010 ). 
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Fig. 11. Comparison between computationally predicted wall immobile dislocation density and measured GND density using high resolution EBSD in differ- 

ent compressive plastic strains at reference condition ( T = 20 ◦C and ˙ ε 0 = 0 . 01 s −1 ) along with corresponding EBSD images with GND density distribution 
(calculated from KAM data) over the representative area. 

After mapping KAM values to GND density, over a representative area with the size of 100 ×100 μm, the average GND 

density is calculated. 

Comparison between computationally predicted wall immobile dislocation density and the measured average GND den- 

sity using high resolution EBSD in different plastic strains at reference condition ( T = 20 ◦C and ˙ ε 0 = 0 . 01 s −1 ) is shown in 
Fig. 11 . 

5.4. Multistep uniaxial tests 

As mentioned in postulate (1) , “Two identical material samples that are plastically deformed to an equal amount of accu- 

mulated plastic strain but with different histories of temperature and strain rate, if again deformed under an equal temperature 

and strain rate condition, do not necessarily yield the same stress response ”. In order to test this statement and further validate 

the history dependence of the presented microstructural constitutive model, the multistep compression tests are devised. 

In these tests, first, previously undeformed compression specimens are plastically deformed to a predefined plastic strain 

in constant temperature T i with low reference strain rate to make sure temperature remains almost constant during com- 

pression (initial compression step). In the next step (final compression step), they are cooled down and again deformed in 

constant room temperature at the reference strain rate to a certain plastic strain. This cycle is illustrated in the schematic 

time-temperature diagram shown in Fig. 12 (a). The initial compression step is performed at three constant temperatures, 

T i = 20 , 30 0 and 40 0 ◦C until the accumulated plastic strain ε p = 0 . 2 . In Fig. 12 (b), flow curves derived from the final com- 

pression steps are compared to their corresponding RMV-based computational flow curves predicted by the constitutive 

model. 

All three flow curves shown in Fig. 12 (b) are material responses (yield stress) under plastic deformation at identical con- 

stant reference temperature and strain rate with the same initial accumulated plastic strain ε p0 = 0 . 2 . However, for each 

of them, the initial plastic strain was accumulated in different tem peratures (different histories of plastic strain accumu- 

lation). As shown in Fig. 12 (b), initial yield stress is slightly higher while plastic hardening is considerably much lower 

for T i = 30 0 and 40 0 ◦C compared to those of T i = 20 ◦C. The flow curves related to T i = 30 0 and 40 0 ◦C in the inves- 

tigated plastic strain domain exhibit yield point elongation (Lüders bands) as they are convex ( 
′ 
θ ≡ ∂ 2 σy / ∂ε 2 p 

≥ 0 ) instead 
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Fig. 12. Schematic time-temperature diagram of multistep compression tests and comparison between corresponding experimental and RMV-based com- 

putationally predicted flow curves of final compression step. 

of typical concave flow curves ( 
′ 
θ ≡ ∂ 2 σy / ∂ε 2 p 

≤ 0 ), and they have relatively large domain of nonpositive plastic hardening 

( θ ≡ ∂ σy / ∂ ε p ≤ 0 ) or low plastic hardening ( Pham et al., 2015 ). 

5.5. Nonisothermal uniaxial tests 

Nonisothermal compression tests and their respective FE simulations at various strain rates (in intermediate-rate regime) 

and different initial temperatures (in cold and warm regimes) are conducted for the second step of parameter identification 

to determine constitutive parameters associated with strain rate sensitivity and dissipation factor. In order to do so, first the 

presented constitutive model is implemented as a user-defined material subroutine UMAT in ABAQUS/Standard with the ma- 

terial constants identified in the RMV-based fitting step with an initial guess for the parameters yet to be determined in the 

second step of parameter identification using FEMU technique. Then, thermo-mechanical FE model of compression test with 

the nominal dimensions of experimental specimens and tools has been created in the implicit ABAQUS/Standard software. 

Mechanical and physical properties of compression material and tools such as elastic modulus, poisson’s ratio, mass density, 

specific heat capacity, thermal conductivity, and thermal expansion are inputted to the FE model as functions of temper- 

ature. Convection and radiation along with thermal contact conductance as a function of pressure of contact interface of 

compression specimen and tools are also considered. In addition, simple coulomb friction model with friction coefficient of 

0.05 corresponding to the experimental condition was used. As mentioned, details of FE implementation of the constitutive 

model and thermo-mechanical FE simulation of an industrial multistep warm forging of a bevel gear for the same material 

investigated here are planned to be published later. 

Fig. 13 shows FE-simulated distribution of statistical TMM variables, equivalent stress ( ̄σ ), temperature ( T ), equivalent 

plastic strain rate ( 

. 
−
ε p ), cell mobile dislocation density ( ρcm 

), cell immobile dislocation density ( ρci ), and wall immobile 
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Fig. 13. FE-simulated distribution of statistical TMM variables including MSVs in a radial section of compression specimen during deformation at mean 

plastic strain of ε p = 0 . 6 and mean strain rate of ˙ ε = 1 s −1 with initial temperature of T 0 = 20 ◦C. 

dislocation density ( ρwi ), in radial cross section of compression specimen during compressive plastic deformation at mean 

plastic strain of ε p = 0 . 6 and strain rate of ˙ ε = 1 s −1 with initial temperature of T 0 = 20 ◦C. Experimental and FE-simulated 
yield stress and temperature change ( �T = T − T 0 ) due to plastic work for compression tests at different strain rates and 

initial room temperature are shown in Fig. 14 . 

In each experimental compression test corresponding to Fig. 14 , temperature is measured via a thermocouple welded 

on the middle point in height direction at the lateral surface of the compression specimen. Likewise, in FE simulation the 

temperature is read from the respective point. The experimental data (force and temperature versus displacement) obtained 

from the nonisothermal compression tests at constant strain rates of 0.1, 1.0 and 10.0 s −1 are supplied to the second step of 
parameter identification by FEMU procedure. As shown in Fig. 14 , for validation of the model’s rate-dependent features, the 

experimental data corresponding to the nonisothermal compression test at constant strain rate of 3.0 s −1 is compared to its 
counterpart predicted by the FE simulation. 

As inferred from Fig. 14 , at relatively high strain rates in the investigated rate regimes, since there is not enough time 

for the generated adiabatic heat to dissipate completely, it remain in the material; and as a result elevates the temperature 

which in turn leads to spontaneous DTS. Nonisothermal FE simulations of metal forming processes highly depend on the 

input thermo-physical properties of billet/blank and tools, their pressure-dependent friction and thermal contact conduc- 

tance, as well as convection and radiation heat transfer with the ambient environment which all of them are temperature- 

dependent. Hence, large portion of the difference in temperature readings from these FE-simulated nonisothermal compres- 

sion (virtual) tests compared to their experimental counterparts is attributed to the complexity of the thermomechanical 

FE simulation of metal forming that is independent from the constitutive model. In addition, the accuracy of experimental 

temperature measurement with welded thermocouples is highly dependent on the weld quality and position, as well as the 

thermocouple delay. However, the discrepancy between FE-simulated and experimental temperature increase is much less 

than expected. 

6. Outlook 

As every continuum plasticity model has limitations, despite its vast scope and outstanding accuracy, the presented con- 

stitutive model in this paper is not an exception: 
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Fig. 14. Comparison between experimental and FE-simulated yield stress and temperature change due to plastic work ( �T = T − T 0 ) for compression tests 

at different strain rates ( ̇ ε = 0 . 1 , 1 , 3 , 10 s −1 ) and initial room temperature ( T 0 = 20 ◦C). 

• In its current state, the model does not account for anisotropy and strain path dependence. In order to generalize it to 

account for such effects, some new postulates need to be added while probably some of the existing ones require slight 

modification. Subsequently, for validation, the model must be implemented in the crystal plasticity framework. 
• It has been tested thus far only for cold and warm regimes. Therefore, application or extension of it to hot temperature 

regime demands further research. 
• It has been validated up to now, merely for the intermediate-rate regime. Its validity for other strain rate regimes as well 

as static state must be verified. Moreover, its overall strain rate dependence needs more tests. 

Furthermore, the proposed microstructural constitutive model requires further validation using different alloys with various 

compositions, microstructures and grain size distributions. 

7. Conclusion 

A fully coupled thermo-micro-mechanical constitutive model for viscoplasticity of polycrystalline metallic materials was 

proposed based on continuum dislocation dynamics. The constitutive model was developed in such a way to statistically 

capture and quantify all statistically-considerable microstructural phenomena influencing dislocations in cold and warm 

regimes and hence accurately describe macroscopic viscoplastic response of material. The following conclusions are drawn 

from the present approach: 

• The mechanical response of a macroscale material point under viscoplastic deformation is an implicit function of its 

stochastic microstructural state, plastic strain rate, and temperature. The presented constitutive model is history depen- 

dent and it does not depend on accumulated plastic strain. Multistep compression tests were conducted for verification 

of the accuracy of model’s history dependence features. 
• Dynamic and static evolutions of different types of dislocations are functions of dynamic and static pinning of disloca- 

tions by interstitial solute atoms. Hence, the proposed constitutive model accounts for the effects associated with pinning 

such as yield point elongation, dynamic strain aging, static aging and bake hardening. However, validation of static evo- 

lution of dislocation densities suggested by four postulates is a subject of another paper. 
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• The constitutive model predicts flow curves at various temperatures and strain rates in cold and warm regimes with an 

exceptionally high accuracy (mean error of less than 0.4% which is in the same range of experimental scatter). Moreover, 

the evolution of measured GND density (by EBSD) is very close to that of predicted by the model. 
• Comparison of FE simulations of nonisothermal compression tests at various strain rates with their corresponding com- 

pression experiments verifies that the postulates suggested for model’s rate sensitivity and varying dissipation factor in 

adiabatic heat generation (due to plastic work) are realistic. 
• Implementation of the presented constitutive model as user-defined material subroutines UMAT and VUMAT respec- 

tively, in ABAQUS/Standard and ABAQUS/Explicit based on associative isotropic J 2 hypoelasto-viscoplasticity, has revealed 

that the constitutive model is computationally efficient (simulation costs are in the same level as empirical models) in 

thermo-mechanical FE simulations of cold and warm metal forming processes. 
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a b s t r a c t 

The newly proposed microstructural constitutive model for polycrystal viscoplasticity in cold and warm 

regimes (Motaman and Prahl, 2019), is implemented as a microstructural solver via user-defined mate- 

rial subroutine in a finite element (FE) software. Addition of the microstructural solver to the built-in 

thermal and mechanical solvers of a standard FE package enabled coupled thermo-micro-mechanical or 

thermal-microstructural-mechanical (TMM) simulation of cold and warm metal forming processes. The 

microstructural solver, which incrementally calculates the evolution of microstructural state variables 

(MSVs) and their correlation to the thermal and mechanical variables, is implemented based on the 

constitutive theory of isotropic hypoelasto-viscoplastic (HEVP) finite (large) strain/deformation. The nu- 

merical integration and self-consistent algorithmic procedure of the FE implementation are explained in 

detail. Then, the viability of this approach is shown for (TMM-) FE simulation of an industrial multistep 

warm forging. 

© 2019 Elsevier Ltd. All rights reserved. 

1. Introduction 

Metal forming processes can be considered as large hypoelasto- 

viscoplastic deformation under complex varying thermo- 

mechanical boundary conditions. Moreover, viscoplastic flow 

of polycrystalline metallic materials is one of the long-standing 

challenges in classical physics due to its tremendous complexity; 

and for its accurate continuum description, complex microstruc- 

tural constitutive modeling is essential. 

Microstructural/physics-based material modeling offers the op- 

portunity to enhance the understanding of complex industrial 

metal forming processes and thus provides the basis for their im- 

provement and optimization. In our previous work ( Motaman and 

Prahl, 2019 ), the significance of microstructural constitutive mod- 

els for polycrystal viscoplasticity was pointed out. Application of 

microstructural state variables (MSVs) including different types of 

dislocation density was suggested rather than non-measurable vir- 

tual internal state variables (ISVs) such as accumulated plastic 

strain, which is not a suitable measure, particularly in complex 

thermo-mechanical loading condition (varying temperature, strain 

rate) where history effects are more pronounced ( Follansbee and 

Kocks, 1988; Horstemeyer and Bammann, 2010 ). However, almost 

every metal forming simulation performed in industry for design 

∗ Corresponding author. 

E-mail address: seyedamirhossein.motaman@iehk.rwth-aachen.de (S.A.H. Mota- 

man). 

and optimization purposes, apply empirical constitutive models 

that are based on the accumulated plastic strain as their main ISV. 

In the last two decades, extensive research in the field of numer- 

ical simulation of industrial bulk metal forming has been aimed 

towards investigation of (thermo-) mechanical aspects of the pro- 

cess such as tools shape and wear, forming force, preform shape, 

material flow pattern and die filling, etc. ( Choi et al., 2012; Guan 

et al., 2015; Hartley and Pillinger, 2006; Kim et al., 20 0 0; Lee et al., 

2013; Ou et al., 2012; Sedighi and Tokmechi, 2008; Vazquez and 

Altan, 20 0 0; Xianghong et al., 20 06; Zhao et al., 20 02 ). 

Microstructure of the deforming material and its mechanical 

properties evolve extensively during metal forming processes. Evo- 

lution of microstructure and mechanical properties of the de- 

forming metal directly affects its deformation behavior and con- 

sequently the forming process itself as well as in-service per- 

formance of the final product. Therefore, in addition to thermo- 

mechanical simulation of forming processes (simulation of evolu- 

tion of continuous thermo-mechanical field variables), computa- 

tion of microstructure and properties evolution of the deforming 

part by means microstructural state variables through a fully cou- 

pled thermo-micro-mechanical (TMM) simulation is of paramount 

importance. Since process, material, microstructure and properties 

are highly entangled, resorting to cost-effective simultaneous inter- 

correlated simulation of process, microstructure and properties fa- 

cilitates and ensures their efficient and robust design. Currently the 

literature lacks TMM simulation of complex industrial metal form- 

ing processes. Nonetheless, a few instances can be found for TMM 

https://doi.org/10.1016/j.ijsolstr.2019.05.028 
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Nomenclature 

Symbol Description 

b Burgers length (magnitude of Burgers vector) [m] 

B Left Cauchy-Green deformation tensor [-] 

B Continuum body [-] 

c Constitutive parameter associated with probability 

amplitude of dislocation processes [-] 

C Right Cauchy-Green deformation tensor [-] 

C Fourth-order stiffness operator/tensor [Pa] 

D Rate of deformation tensor [s −1 ] 
E Elastic/Young’s modulus [Pa] 

F Deformation gradient tensor [-] 

G Shear modulus [Pa] 

H Tangent modulus [Pa] 

I Unit/identity (second-order) tensor [-] 

I Fourth-order unit tensor [-] 

J Jacobian of the deformation map [-] 

K Bulk modulus [Pa] 

L Velocity gradient tensor [s −1 ] 
m Strain rate sensitivity parameter [-] 

M Taylor factor [-] 

N Yield surface normal tensor [-] 

O Zero (second-order) tensor [-] 

q Volumetric heat generation [J.m 

−3 ] 
r Temperature sensitivity coefficient [-] 

R Residual function in Newton-Raphson scheme 

R Polar (rigid-body) rotation tensor [-] 

s Temperature sensitivity exponent [-] 

s Stochastic/nonlocal microstructural state set (a set 

containing all MSVs) 

t Time [s] 

T Temperature [K] 

u Displacement vector [m] 

U Right stretch tensor [-] 

v Velocity vector [m.s −1 ] 
V Left stretch tensor [-] 

w Volumetric work [J.m 

−3 ] 
W Spin tensor [s −1 ] 
x Position vector (spatial coordinate) [m] 

α Dislocation interaction strength/coefficient [-] 

β Dissipation factor, efficiency of plastic dissipation, or 

Taylor-Quinney coefficient [-] 

ε Mean/nonlocal (normal) strain [-] 

ε Logarithmic/true strain tensor [-] 

θ Plastic/strain hardening [Pa] 

φ Viscous/strain-rate hardening [Pa.s] 

ϕ Yield function 

χ Tolerance [-] 

ψ Flow potential [Pa] 

κ Material constant associated with dissipation factor 

[-] 
˙ λ Consistency parameter or plastic multiplier [s −1 ] 
� Rotation tensor [-] 

ν Poisson’s ratio [-] 

ρ Dislocation density [m 

−2 ] 
ϱ Mass density [kg.m 

−3 ] 
σ Mean/nonlocal (normal) stress [Pa] 

σ Cauchy stress tensor [Pa] 

ω Spatial skew-symmetric tensor associated with the 

rotation tensor [s −1 ] 

Index Description 

ac Accumulation 

an Annihilation 

corr Corrected 

d Deviatoric/isochoric 

eff Effective 

gn Generation 

h Hydrostatic 

i Immobile 

{k} Newton-Raphson iteration index, previous Newton- 

Raphson iteration step 

{k + 1} Current Newton-Raphson iteration step 

m Mobile, melt 

min Minimum 

(n) Time increment index, previous time increment, be- 

ginning of the current time increment 

( n + 1) Current time increment/step, end of the current 

time increment 

nc Nucleation 

c Cell 

p Plastic 

rm Remobilization 

tr Trapping (locking and pinning) 

trial Trial step 

v Viscous (subscript), volumetric (superscript) 

w Wall 

x Cell, wall, or total ( x = c , w , t ) 

y Mobile, immobile, or total ( y = m , i , t ), yield/flow 

z Dislocation process ( z = gn, an, ac, tr, nc, rm) 

0 Reference, initial/undeformed state 

∇ Objective/material rate of a tensor ̂ Normalized/dimensionless ( ̂ x = 

x 
x 0 
) 

∨ Function ˜ Statistical mean/average 

Equivalent 

Corotational representation of a tensor (rotated to 

the corotational basis) 

simulation of laboratory scale metal forming processes using semi- 

physical models ( Álvarez Hostos et al., 2018; Bok et al., 2014 ). 

The microstructural constitutive models based on continuum 

microstructure dynamics (CMD), which encompass continuum dis- 

location dynamics (CDD) are formulated at macro level, so that 

the nonlocal MSVs at each macroscale material point in a contin- 

uum body are calculated for a (virtual) representative material vol- 

ume (RMV) around the point based on the evolution/kinetics equa- 

tions that have physical background, as shown in Fig. 1 . The set S 

containing all the MSVs is known as the stochastic/nonlocal mi- 

crostructural state (SMS). 

The main objective of the present paper is to show how the 

microstructural constitutive models based on CDD (as a subset of 

CMD) can be practically invoked in actual industrial metal form- 

ing simulations. The cost of thermo-micro-mechanical (TMM) sim- 

ulations performed using the applied microstructural constitutive 

model is in the same range that is offered by common empirical 

constitutive models. However, since the microstructural models ac- 

count for the main microstructural processes influencing the ma- 

terial response under viscoplastic deformation, they have a wide 

range of usability and validity, and can be used in a broad spec- 

trum of deformation parameters (strain rate and temperature). In 

industrial metal forming processes, polycrystalline materials usu- 

ally undergo a variety of loading types and parameters; thus, 

history-dependent microstructural constitutive models are much 

more suitable and robust for comprehensive simulations of com- 

plex industrial metal forming processes. Hence, implementation of 

the microstructural solver as a user-defined material subroutine in 
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Fig. 1. Schematic relation among macroscale continuum body under thermo-mechanical loading, mesoscale representative material volume, and nonlocal microstructural 

state ( Motaman and Prahl, 2019 ). 

a commercial FE software package and coupling it with the FE soft- 

ware’s built-in mechanical and thermal solvers enables performing 

realistic TMM simulations of the considered metal forming process 

chain in order to optimize the process parameters. 

Industrial metal forming processes with respect to temperature 

are categorized in the following regimes/domains: 

• Cold regime: Cold metal forming processes are conducted 
in the temperature range starting from room temperature 

to slightly above it; the maximum temperature in the cold 

regime is normally characterized by temperatures above 

which diffusion controlled dislocation mechanisms such as 

dislocation climb and pinning become dominant (approxi- 

mately T < 0.3 T m 

, where T is the absolute temperature; and 

T m 

is the melting absolute temperature) ( Galindo-Nava and 

Rae, 2016 ). 

• Warm regime: Warm viscoplastic flow of crystalline mate- 

rials occurs above the cold but below the hot temperature 

regime (approximately 0.3 T m 

< T < 0.5 T m 

) ( Berisha et al., 

2010; Doherty et al., 1997; Sherby and Burke, 1968 ); and 

• Hot regime: Hot metal forming processes are carried out 
above the warm temperature regime. They are characterized 

by at least one of the hot/extreme microstructural processes 

such as recrystallization, phase transformation, notable pre- 

cipitate processes, etc. (roughly 0.5 T m 

< T < T m 

). 

Strain rate has different regimes as well, however, independent 

from the material ( Field et al. (2004) ): 

• creep or static: ˙ ε < 10 −4 s −1 (where ˙ ε is the strain rate); 
• quasi-static: 10 −4 s −1 ≤ ˙ ε < 10 −2 s −1 ; 
• intermediate-rates: 10 −2 s −1 ≤ ˙ ε ≤ 10 s −1 ; 
• dynamic: 10 s −1 < ˙ ε ≤ 10 3 s −1 ; and 
• shock/highly-dynamic: ˙ ε > 10 3 s −1 . 

The microstructural constitutive model proposed by 

Motaman and Prahl (2019) , has been validated for cold and 

warm regimes. Moreover, its validity has been verified for the 

intermediate-rates regime as well, at which most of the industrial 

metal forming processes are being carried out. In this paper, that 

constitutive model has been utilized for FE simulation of an actual 

industrial warm forging process of a bevel gear for automotive 

applications, made of the ferritic-pearlitic case-hardenable steel 

20MnCr5. This particular steel grade, which is currently used 

extensively in industrial bulk metal forming processes in different 

temperature regimes, has been investigated in hot regime by the 

recent works of Puchi-Cabrera et al. (2013 , 2014 ) as well as in 

cold and warm regimes by Brnic et al. (2014) and Motaman and 

Prahl (2019) . 

The dynamic evolution of sophisticated dislocation substructure 

(cells and walls), and their associated densities is responsible for 

complex behavior of engineering metallic alloys such as steels dur- 

ing the viscoplastic deformation under thermo-mechanical load- 

ing in cold and warm regimes. The (immobile) dislocation walls 

(cell/subgrain boundaries) are mostly composed of unipolar dislo- 

cations with a non-zero net Burgers vector (geometrically neces- 

sary dislocations) accommodating lattice curvature that arises due 

to non-uniform plastic deformation in polycrystal constituents. On 

the other hand, the (immobile) cell dislocations that accumulate 

at and consequently form the random metastable subcell bound- 

aries (dislocation boundaries inside subgrains) are particularly tan- 

gles/bundles of dislocations in dipolar configuration (statistically 

stored dislocations) which do not give rise to a substantial lattice 

rotation, i.e., their net Burgers vector is practically zero ( Arsenlis 

and Parks, 1999; Ashby, 1970; Gao and Huang, 2003; Hughes et al., 

2003 ). The immobile cell and wall dislocations, are respectively 

sources of short and long range plastic/back stress ( Kassner et al., 

2013; Mughrabi, 2006 ). Therefore, the plastic/strain hardening be- 

havior of the material is only affected by the evolution of im- 

mobile cell and wall dislocations, that is highly influenced by 

thermal and rate-dependent diffusion-controlled dislocation pro- 

cesses, quite differently in cold, intermediate and warm regimes. 

The nucleation process of wall immobile dislocations is assisted 

by diffusion-controlled dislocation pinning mechanism (responsi- 

ble for dynamic strain aging), while annihilation and remobiliza- 

tion processes of immobile cell dislocations are mainly affected by 

the diffusion-controlled dislocation climb mechanism (responsible 

for creep) ( Motaman and Prahl, 2019 ). Hence, for accurately cap- 

turing the complex material behavior at different strain rates and 

temperatures (in cold and warm regimes), it is imperative to use a 

constitutive model that employs the state variables that their evo- 

lution is a functions of temperature and strain rate (as opposed 

to the empirical variable, accumulated plastic strain), taking the 

aforementioned thermal dislocation processes into account. This 

brings us to application of different dislocation densities as (mi- 

crostructural) state variables, which their overall evolution is de- 

scribed by superposition of the underlying dislocation processes 

such as thermally activated dislocation pinning and climb. 

Generally, bulk forming of textureless (randomly oriented equi- 

axed grains) undeformed/as-built/annealed polycrystalline metallic 

materials such as most of the forging and extrusion steel grades 

can be considered isotropic. Therefore, since deformation of metal- 

lic crystalline materials is categorized under isotropic hypoelasto- 

viscoplastic (HEVP) finite strain/deformation, in this paper first 

the continuum finite strain theory of isotropic HEVP is reformu- 

lated in the format of rate equations (without using accumulated 

strain scalars and tensors). The constitutive equations in corota- 

tional configuration are then numerically integrated using various 

schemes. The described algorithmic procedure is implemented as 

microstructural solver using user-defined material subroutines in 
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ABAQUS, that are naturally coupled to the software’s built-in me- 

chanical and thermal modules. Finally, the developed method is 

applied to TMM-FE simulation a bulk metal forming process: in- 

dustrial multistep warm forging of a bevel gear shaft for automo- 

tive applications. 

2. Continuum finite strain: isotropic hypoelasto-viscoplasticity 

(HEVP) 

2.1. Basic kinematics 

Consider B define the current configuration of a continuum 

body at time t , and B 0 the reference, initial or undeformed con- 

figuration at the initial time t = t 0 , where t is time. Let x 0 ∈ B 0 be 

the initial position of particle P in the reference configuration B 0 , 

and x ∈ B the position of P in the current configuration B. The mo- 
tion and deformation of the body is defined by a smooth time- 

dependent mapping 
� 

x t : B 0 → B, so that x = 

∨ 
x ( x 0 , t ) Accordingly, 

the deformation gradient tensor ( F ) is defined as: 

F ≡ ∇ 0 x = 

∂x 

∂ x 0 
⇒ d x = F d x 0 ; d x 0 ∈ B 0 ; d x ∈ B ; (1) 

where ∇ 0 = 

∂ 
∂ x 0 

is the material gradient operator. Furthermore, the 

velocity gradient tensor ( L ) is the spatial derivative of velocity vec- 

tor, which is given by: 

L ≡ ∇ v = 

∂ v 
∂x 

= 

˙ F F −1 ; v ≡ ∂u 

∂t 
= 

∂x 

∂t 
; u ≡ x − x 0 ; (2) 

where ∇ ≡ ∂ 
∂x 

is the spatial gradient operator; v is the velocity 

vector; and u is the displacement vector. The velocity gradient is 

decomposed to its symmetric and skew-symmetric parts, that are 

respectively known as rate of deformation tensor ( D ) and spin ten- 

sor ( W ): 

L = D + W ; D ≡ ∨ 
sym ( L ) = 

1 

2 

(
L + L T 

)
;

W ≡
∨ 

skw ( L ) = 

1 

2 

(
L − L T 

)
. (3) 

2.2. Polar decomposition 

The polar decomposition theorem states that any non-singular, 

second-order tensor can be decomposed uniquely into the prod- 

uct of an orthogonal (rotation) tensor, and a symmetric (stretch) 

tensor. Since the deformation gradient tensor is a non-singular 

second-order tensor, the application of polar decomposition the- 

orem to F implies: 

F = RU = VR ; R 

−1 = R 

T ; U = U 

T ; V = V 

T ; (4) 

where R is the orthogonal polar (rigid-body) rotation tensor; and 

U and V are the right and left stretch tensors, respectively. Hence, 

U 

2 = C ≡ F T F ; V 

2 = B ≡ F F T ; (5) 

where B and C are left and right Cauchy–Green deformation ten- 

sors, respectively. 

2.3. Elasto-plastic decomposition 

The multiplicative elasto-plastic decomposition/split of defor- 

mation gradient tensor reads ( Kröner, 1959; Lee, 1969; Lee and Liu, 

1967; Reina et al., 2018 ): 

F = F e F p ;
∨ 
det ( F p ) = 1 ; J ≡

∨ 
det ( F ) = 

∨ 
det ( F e ) > 0 ; (6) 

where F e and F p are elastic and plastic deformation gradients, re- 

spectively. Combining Eqs. (2) and (6) leads to: 

L = L e + F e L p F 
−1 
e ; L e ≡ ˙ F e F 

−1 
e ; L p ≡ ˙ F p F 

−1 
p ; (7) 

where L e and L p are elastic and plastic velocity gradients, respec- 

tively, that can be additively decomposed to their symmetric and 

skew-symmetric parts: 

L e = D e + W e ; D e ≡
∨ 

sym ( L e ) ; W e ≡
∨ 

skw ( L e ) ; (8) 

L p = D p + W p ; D p ≡
∨ 

sym ( L p ) ; W p ≡
∨ 

skw ( L p ) ; (9) 

where D e and D p are the rates of elastic and plastic deformation 

gradient tensors, respectively; and W e and W p are elastic and plas- 

tic spin tensors, respectively. Commonly, the deformation of metal- 

lic materials is considered hypoelasto-viscoplastic. Thus, generally, 

it can be assumed that elastic strains (rates) are very small com- 

pared to unity and plastic strains (and rates). This restriction re- 

sults in the following approximation ( Nemat-Nasser, 1979 ): 

F e ≈ V e ≈ U e ≈ I ; (10) 

where I is the second-order unit/identity tensor. From this, 

Eq. (7) turns to ( Green and Naghdi, 1965 ): 

L ≈ L e + L p . (11) 

Therefore, considering Eqs. (3) , (7) , (8) , (9) , (10) and 

(11) ( Dunne, 2011; Khan and Huang, 1995 ): 

D = D e + D p ; W = W e + W p . (12) 

In this context, the strain rate measure is the power (work) con- 

jugate of Cauchy stress tensor, and thus is the rate of deformation 

gradient tensor. Consequently, 

˙ ε = ˙ ε e + ˙ ε p ; ˙ ε ≡ D ; ˙ ε e ≡ D e ; ˙ ε p ≡ D p ; (13) 

where ˙ ε , ˙ ε e , ˙ ε p are respectively total, elastic and plastic (logarith- 
mic/true) strain rate tensors. 

2.4. Corotational formulation 

Physically motivated material objectivity/frame-indifference 

principle demands independence of material properties from 

the respective frame of reference or observer ( Truesdell and 

Noll, 1965 ). Constitutive equations of HEVP are formulated in a 

rotation-neutralized configuration with the aid of local coordinate 

system/basis that rotates with the material. In this framework, the 

rotation of the neighborhood of a material point is characterized by 

orthogonal rotation tensor �, which is subjected to the following 

evolutionary equation and initial condition ( de-Souza Neto et al., 

2008; Simo and Hughes, 1998 ): 

˙ � = ω �; �0 = I ; �−1 = �T ; ω = −ω 

T ; (14) 

where �0 is initial (at time t = 0) �; and ω is a spatial skew- 

symmetric (second-order) tensor associated with the rotation ten- 

sor. Hence, 

ω = 

˙ ��T . (15) 

Therefore, the (symmetric) Cauchy stress tensor ( σ = σT ) is ro- 

tated to the rotation-neutralized configuration by multiplying it 

from the left and right with �T and �, respectively: 

σ = �T σ� ⇒ σ = �σ�T ; (16) 

where _ denotes corotational representation of a tensor (rotated to 

the corotational basis). Moreover, the (symmetric) rate of deforma- 

tion tensor in the corotational configuration reads: 

D = �T D� ⇒ D = �D �T . (17) 

Given Eq. (14) , time differentiation of the rotated Cauchy stress 

tensor ( Eq. (16) ) renders: 

˙ σ = �T 
∇ 

σ�; ∇ 

σ = � ˙ σ�T = ˙ σ + σω − ω σ; (18) 
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where 
∇ 

σ is referred to as objective/frame-invariant/material rate of 

Cauchy stress tensor. In HEVP finite strain, depending on the FE 

formulation, commonly two members of the family of objective 

stress rates are considered ( Doghri, 20 0 0; Johnson and Bammann, 

1984; Mourad et al., 2014 ): 

• Green-Naghdi rate, corresponding to �=R Green and 

Naghdi, 1971 ): the rotation is the same as orthogonal po- 

lar (rigid-body) rotation tensor R , which can be calculated 

by tensor Eqs. (4) , and (5) , using the spectral decomposition 

(eigen-projection) method. 

• Jaumann rate, corresponding to ω = W : in this case, often 

the widely used Hughes–Winget approximation ( Hughes and 

Winget, 1980 ) based on the midpoint rule is applied for cal- 

culation of the rotation tensor. The Hughes–Winget formula 

is valid if the increment of spin tensor ( �t W ) is sufficiently 

small (adequately small incremental rotations). 

For the details of numerical update algorithms of incremen- 

tal finite rotations associated with the Green–Naghdi and Jau- 

mann rates, which are usually based on midpoint method (at 

the midpoint configuration), readers are encouraged to refer to 

Simo and Hughes (1998), de-Souza Neto et al. (2008) , and/or 

Belytschko et al. (2014) . 

2.5. Constitutive relation of isotropic HEVP 

In HEVP with plastic incompressibility, volume change during 

deformation is fully elastic and negligible. Therefore, according to 

the isotropic three-dimensional Hook’s law and the material objec- 

tivity principle: 

σ∇ = C e : ˙ ε e = C e : 
(
˙ ε − ˙ ε p 

)
; (19) 

where C e is the fourth-order (isotropic) elastic stiffness tensor, 

which is calculated according to: 

C e = 2 G I 
d + KI � I = 2 G I + 

(
K − 2 

3 
G 

)
I � I ;

G = 

1 

2 ( 1 + υ) 
E; K = 

1 

3 ( 1 − 2 υ) 
E = 

2 ( 1 + υ) 

3 ( 1 − 2 υ) 
G ;

I 
d ≡ I − I 

v ; I 
v ≡ 1 

3 
I � I ; (20) 

where E , G , K and υ are respectively elastic, shear and bulk mod- 

uli and poisson’s ratio; and I , I 
d and I 

v being the unit and unit 

deviatoric and unit volumetric fourth-order tensors, respectively. 

2.6. Deviatoric-volumetric decomposition 

The strain rate tensor can be additively decomposed to devia- 

toric/isochoric and volumetric parts: 

˙ ε = ˙ ε v + ˙ ε d ; ˙ ε v ≡ I 
v : ˙ ε = 

1 

3 
˙ ε v I ; ˙ ε v = I : ˙ ε ;

˙ ε d = I 
d : ˙ ε ;

(21) 

where superscripts d and v denote deviatoric and volumetric de- 

composition of the corresponding tensor, respectively. Moreover, 

the elastic and plastic strain rate tensors can be decomposed to 

their deviatoric and volumetric parts: 

˙ ε e = ˙ ε v e + ˙ ε d e ; ˙ ε p = ˙ ε v p + ˙ ε d p . (22) 

Hence, considering Eq. (13) : 

˙ ε v = ˙ ε v e + ˙ ε v p ; ˙ ε d = ˙ ε d e + ˙ ε d p . (23) 

In pressure-independent plasticity, the volumetric elastic strain 

rate is responsible for the entire volume change during the elasto- 

plastic deformation ( Aravas, 1987 ); meaning that: 

˙ ε v p = O ⇒ ˙ ε p = ˙ ε d p . (24) 

Thereby, 

˙ ε v = ˙ ε v e = 

1 

3 
˙ ε v e I = I 

v : ˙ ε e ; ˙ ε v e = I : ˙ ε e = ˙ ε v = I : ˙ ε ;

˙ ε d e = I 
d : ˙ ε e . (25) 

Thus, Eqs. (22) and (23) can be rewritten as: 

˙ ε e = ˙ ε v + ˙ ε d e ; ˙ ε d = ˙ ε d e + ˙ ε p . (26) 

Knowing that the hydrostatic/volumetric parts of objec- 

tive/material and spatial time derivatives of stress tensor are equal, 

since they are proportional to the first invariant of stress rate ten- 

sors, the objective stress rate tensor is decomposed to its deviatoric 

and hydrostatic splits as follows: 

∇ 

σ = ˙ σh + 

∇ 

σd ; (27) 

so that, 

˙ σh ≡ ˙ σ h I = I 
v : ˙ σ= I 

v : 
∇ 

σ = 

∇ 

σh ; ˙ σ h = 

1 

3 
I : ˙ σ;

∇ 

σd = I 
d : 

∇ 

σ; (28) 

where superscript h denotes hydrostatic contribution of the cor- 

responding tensor. Taking Eqs. (19) , (20) , (25) , (27) and (28) into 

account results in: 

˙ σh = K ˙ ε v I = K ˙ ε v e I ;
∇ 

σd = 2 G ̇ ε d e ; ⇒ 

∇ 

σ = 2 G ̇ ε d e + K ˙ ε v I = 2 G ̇ ε e + 

(
K − 2 

3 
G 

)
˙ ε v I . (29) 

Therefore, by time integration in a fixed arbitrary spatial coor- 

dinate system: 

σ = σh + σd ; σh = σ h I = I 
v : σ; σ h = 

1 

3 
I : σ;

σd = I 
d : σ. (30) 

2.7. Associative isotropic J 2 plasticity 

The (hydrostatic-) pressure-independent yield criterion for 

isotropic hardening is adopted through definition of the following 

yield function ( ϕ) : 

φ ≡ σ̄ − σy ; σ̄ ≡
� 

σ̄ ( σ) = 

√ 

3 
� 

J 2 ( σ) = 

√ 

3 

2 
‖ σd ‖;

σy ≡
� 

σ y 

(
T , s , ˙ ε̄ p 

)
; (31) 

where σ̄ and σ y are equivalent ( J 2 /von Mises) stress and (scaler) 

yield stress, respectively; T is the temperature; ˙ ε̄ p is the equivalent 
(von Mises) plastic strain rate; ‖ A ‖ ≡ √ 

A : A denotes the Euclidean 

norm of second-order tensor A ; and 
� 

J 2 ( σ) is the second invariant 

of deviatoric part of Cauchy stress tensor σ: 

� 

J 2 ( σ) = 

1 

2 

∥∥σd 
∥∥2 ⇒ 

∂ J 2 
∂ σ

= σd . (32) 

In addition, due to invariance of J 2 , for an arbitrarily rotated 

Cauchy stress tensor σ: 
� 

J 2 ( σ) = 

� 

J 2 ( σ) ⇒ σ̄ ≡
� 

σ̄ ( σ) = 

� 

σ̄ ( σ) . (33) 

In the associative plasticity, the flow potential ( ψ) is taken as 

the yield function ( ψ = ϕ), leading to the following associative flow 

rule ( Rice, 1971, 1970 ): 

˙ ε p = 

˙ λ
∂ψ 

∂ σ
= 

˙ λ
∂φ

∂ σ
= 

˙ λN ; N ≡ ∂φ

∂ σ
; (34) 

where ˙ λ is the non-negative consistency parameter or viscoplastic 

multiplier ( Simo and Hughes, 1998 ); and N is known as flow direc- 

tion tensor, which represents the yield surface normal tensor ( N is 
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not necessarily a unit tenor). Given Eqs. (31) , (32) and (34) : 

N = 

3 

2 

σd 

σ̄
⇒ ˙ ε p = 

3 

2 

˙ λ

σ̄
σd ; (35) 

which sometimes are referred to as the Prandtl–Reuss equations. 

Taking Euclidean norm from both sides of Eq. (35) leads to: 

˙ λ = 

√ 

2 

3 
‖ ̇

 ε p ‖ 

. (36) 

According to the power (work) equivalence principle, (scaler) 

volumetric plastic power ( ˙ w p ) in multiaxial state can be equally 

expressed by the equivalent stress and equivalent plastic strain rate 

( ̇ ε̄ p ) : 

˙ w p = σd : ˙ ε p = σ̄ ˙ ε̄ p ≥ 0 . (37) 

Combining Eqs. (35)–(37) results in: 

˙ λ = 

˙ ε̄ p ≡
� 

˙ ε̄ p 
(
˙ ε p 

)
= 

√ 

2 

3 
‖ ̇

 ε p ‖ 

; ˙ ε p = 

˙ ε̄ p N . (38) 

Substituting Eq. (38) into Eq. (35) yields the Levy–Mises flow 

rule: 

˙ ε p = 

3 

2 

˙ ε̄ p 
σ̄

σd . (39) 

Finally, formulation is completed by introducing Kuhn–Tucker 

loading-unloading complementary conditions: 

˙ λ ≥ 0 ; φ ≤ 0 ; ˙ λφ = 0 ; (40) 

and the consistency condition: 

˙ λ ˙ φ = 0 . (41) 

Therefore, during viscoplastic deformation ( ̇ λ > 0 ) , ˙ λφ = 0 re- 

duces to ϕ = 0, which is identical to σ̄ = σy , given Eq. (31) . Also, 

the consistency condition during viscoplastic deformation with 

isotropic hardening according to yield function defined by Eq. (31) , 

becomes ( de-Borst et al., 2014; Wang et al., 1997 ): 

˙ φ = 

∂φ

∂σ
: ˙ σ − ˙ σy = 

√ 

3 

2 
N : ˙ σ − ˙ σy = 0 ;

˙ σy = 

∂ σy 

∂λ
˙ λ + 

∂ σy 

∂ ̇ λ
λ̈; (42) 

where ˙ σy is the viscoplastic hardening rate. In case of associative 

isotropic J 2 plasticity ( ̇ λ = 

˙ ε̄ p ) : 

˙ σy = θ ˙ ε̄ p + ϕ 

¨̄ε p ; θ ≡ ∂ σy 

∂ ̄ε p 
; ϕ ≡ ∂ σy 

∂ ˙ ε̄ p 
; (43) 

where θ and φ are plastic/strain hardening and viscous/strain-rate 

hardening, respectively. 

2.8. Corotational representation of constitutive equations 

Taking advantage of corotational formulation ( Section 2.4 ), the 

orthogonality of the rotation tensor ( �−1 = �T ), symmetry of 

Cauchy stress tensor ( σ = σT ), and the isotropy of elastic stiffness 

tensor ( C e = C e ) , the tensor equations described in Sections 2.5 , 

2.6 and 2.7 are form-identical in the corotational configuration but 

with the spatial tensor variables replaced with their corotational 

counterparts ( Zaera and Fernández-Sáez, 2006 ). The corotational 

representation of some of those equations are: 

˙ ε = ˙ ε e + ˙ ε p ; (44) 

˙ ε = ˙ ε d + 

1 

3 
˙ ε v I ; ˙ ε v = I : ˙ ε = ˙ ε v e = I : ˙ ε e ; (45) 

˙ ε e = ˙ ε d e + 

1 

3 
˙ ε v I ; (46) 

˙ ε p = ˙ ε d p = ˙ ε d − ˙ ε d e ; (47) 

˙ σ = ˙ σd + ˙ σ h I ; ˙ σd = 2 G ̇ ε d e ; ˙ σh = 

1 

3 
I : ˙ σ = K ˙ ε v ; (48) 

˙ σ = C e : ˙ ε e = 2 G ̇ ε e + 

(
K − 2 

3 
G 

)
˙ ε v I ; (49) 

σ = σd + σ h I ; σ h = 

1 

3 
I : σ; (50) 

σ̄ ≡
� 

σ̄ ( σ) = 

� 

σ̄ ( σ) = 

√ 

3 

2 

∥∥σd 
∥∥; (51) 

˙ ε̄ p ≡
� 

˙ ε̄ p 
(
˙ ε p 

)
= 

� 

˙ ε̄ p 
(
˙ ε p 

)
= 

√ 

2 

3 

∥∥ ˙ ε p 
∥∥; (52) 

N = 

3 

2 

σd 

σ̄
= 

˙ ε p 
˙ ε̄ p 

⇒ ˙ ε p = 

3 

2 

˙ ε̄ p 
σ̄

σd . (53) 

The numerical time integration of the above-mentioned coro- 

tational representation of constitutive equations and the resultant 

algorithmic procedure for finite element implementation is ex- 

plained in Section 4 . 

3. Microstructural constitutive model 

The microstructural constitutive model for metal isotropic vis- 

coplasticity has the form σy = 

� 

σ y ( T , s , ˙ ε̄ p ) . In the case of cold 
and warm regimes, the stochastic/nonlocal microstructural state 

set is s = { ρcm 

, ρci , ρwi }, where ρ is nonlocal dislocation density 

defined as the summation of integral lengths of dislocation seg- 

ments over the (virtual) RMV, which contains a sufficient number 

of crystallites to be a representative of the polycrystalline aggre- 

gate ( Eringen, 1983; Gao and Huang, 2001 ); subscripts c and w de- 

note cell and wall; and subscripts m and i represent mobile and 

immobile, respectively. Thus, ρcm 

, ρci and ρwi are cell mobile, cell 

immobile and wall immobile dislocation densities, respectively. Ac- 

cording to Motaman and Prahl (2019) , the microstructural constitu- 

tive model for polycrystal viscoplasticity in cold and warm regimes 

based on continuum dislocation dynamics consists of the following 

main equations: 

σy = σv + σp ; σp = σpc + σpw ; (54) 

σpx = MbG ̃  αx 
√ 

ρxi ; x = c, w ; (55) 

σv = σv 0 ˙ ˆ ε 
m v 

p ; σv 0 ≡ σv 00 

[ 
1 + r v 

(
ˆ T − 1 

)s v ] ;
ˆ T ≡ T 

T 0 
; ˙ ˆ ε p ≡

˙ ε̄ p 
˙ ε 0 

; r v < 0 ; 0 < s v ≤ 1 ; (56) 

where subscripts v and p , respectively stand for viscous and plas- 

tic; M is the Taylor factor; b is the Burgers length (magnitude of 

Burgers vector); ˜ αx is the nonlocal interaction strength related to 

local density and geometrical arrangement of immobile disloca- 

tions of cell and wall species ( x = c , w ); r and s are temperature 

sensitivity coefficient and exponent; m is the strain rate sensitiv- 

ity parameter; the hat-sign ( ̂  ) indicates normalization; T is abso- 

lute temperature; and here subscript 0 denotes the reference state. 

Moreover, as a rule of thumb, the reference temperature and strain 

rate are assumed to be the lowest temperature and strain rate in 

the corresponding investigated regimes, respectively. 

According to Eq. (54) , the overall yield stress is de- 

composed to viscous/rate-dependent/thermal/effective/over- stress 

and plastic/athermal/rate-independent/internal/back /critical stress 
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Fig. 2. Rheological model of polycrystal elasto-viscoplasticity. The plastic flow occurs once the applied stress ( σ) becomes equal to the yield stress ( σ = σy ). 

contributions ( Kumar et al., 1968; Mecking and Kocks, 1981 ). The 

plastic stress is the average (nonlocal) back stress that should be 

overcome for bowed-out mobile dislocations to initiate slip/glide; 

and hence related to the mean critical resolved shear stress for 

slip by the Taylor factor. Moreover, the viscous stress is the mean 

over-stress (the amount of additional stress exerted in average on 

the curved mobile dislocations) to move mobile dislocations for- 

ward. Therefore, due to temperature-dependent lattice viscosity, 

this mean effective stress applied on mobile dislocations should be 

a function (usually taken as a power law relation) of the average 

speed (norm of velocity vector) of mobile dislocations on slip sys- 

tems which is proportional to plastic strain rate according to the 

Orowan relation. The viscoplastic decomposition can be depicted 

by the rheological illustration shown in Fig. 2 , similar to Perzyna- 

type formulation ( Perzyna, 1966 ), which consists of a parallel set 

of nonlinear dashpot/damper and nonlinear friction elements that 

are in series linkage with a linear spring element. In addition, it is 

postulated that (only) immobile dislocations contribute to plastic 

hardening ( Estrin and Kubin, 1986 ) according to the Taylor rela- 

tion, in parallel (additive decomposition of plastic stress) to sat- 

isfy the compatibility for isochoric viscoplastic flow of material, in 

which both cells and walls need to be deformed simultaneously at 

an equal rate (treated as cellular composite) ( Columbus and Gruji- 

cic, 2002; Mughrabi, 1987; Voyiadjis and Al-Rub, 2005 ). 

Combination of shear modulus and mean interaction strengths 

( G ̃  αx factor in Eq. (55) ) and strain rate sensitivity of viscous stress 

( m v ) depend on temperature and strain rate: ̂ G ̃  αx = 1 + r G αx 

(
ˆ T − 1 

)s G αx ; ̂ G ̃  αx ≡ G ̃  αx 

G 0 ̃  αx 0 

;

r G αx < 0 ; s G αx > 0 ; x = c, w ; (57) 

ˆ m v = 

[ 
1 + r m 

v 
(
ˆ T − 1 

)s m v 
] 
˙ ˆ ε m 

m 
v 

p ; ˆ m v ≡ m v 

m v 0 
; r m 

v , s 
m 

v ≥ 0 ; (58) 

where r G αx and s 
G 
αx are temperature sensitivity coefficient and expo- 

nent associated with G ̃  αx ; m v 0 is the reference (at reference tem- 

perature and strain rate) strain rate sensitivity; r m 

v and s 
m 

v are re- 

spectively temperature sensitivity coefficient and exponent associ- 

ated with strain rate sensitivity of viscous stress; and m 

m 

v is the 

strain rate sensitivity parameter associated with strain rate sensi- 

tivity of viscous stress. The following equations describe evolution 

of different types of dislocation densities: 

˙ ˆ ρwi = 

˙ ˆ ρnc 
wi + 

˙ ˆ ρac 
wi −

(
˙ ˆ ρan 
wi + 

˙ ˆ ρrm 

wi 

)
;

ˆ ρxy ≡ ρxy 

ρ0 

;
{
x = c, w 

y = m, i 
;

ˆ ρci = 

˙ ˆ ρtr 
cm 

+ 

˙ ˆ ρac 
ci −

(
˙ ˆ ρan 
ci + 

˙ ˆ ρrm 

ci + 

˙ ˆ ρnc 
wi 

)
;

ˆ ρcm 

= 

˙ ˆ ρgn 
cm 

+ 

˙ ˆ ρrm 

ci + 

˙ ˆ ρrm 

wi 

−
(
2 ˙ ˆ ρan 

cm 

+ 

˙ ˆ ρan 
ci + 

˙ ˆ ρan 
wi + 

˙ ˆ ρac 
ci + 

˙ ˆ ρac 
wi + 

˙ ˆ ρtr 
cm 

)
; (59) 

so that, 

˙ ˆ ρgn 
cm 

= M c gn cm 

ˆ ρcm √ 

ˆ ρci + ˆ ρwi 

˙ ε̄ p ;

˙ ˆ ρan 
xy = M c an xy ˆ ρcm 

ˆ ρxy 
˙ ε̄ p ; xy = cm, ci, wi ;

˙ ˆ ρac 
xi = M c ac xi 

√ 

ˆ ρxi ˆ ρcm 

˙ ε̄ p ; x = c, w ;
˙ ˆ ρtr 
cm 

= M c tr cm 

ˆ ρ3 / 2 
cm 

˙ ε̄ p ;
˙ ˆ ρnc 
wi = M c nc wi ˆ ρ3 / 2 

ci 
ˆ ρcm 

˙ ε̄ p ;
˙ ˆ ρrm 

xi = M c rm 

xi ˆ ρxi 
˙ ε̄ p ; x = c, w ; (60) 

where superscripts gn, an, ac, tr, nc and rm respectively denote 

dislocation generation, annihilation, accumulation, trapping, nucle- 

ation and remobilization processes; c z xy is the constitutive param- 

eter associated with probability amplitude or frequency of occur- 

rence of dislocation process z ( z = gn, an, ac, tr, nc, rm) correspond- 

ing to dislocations of type xy ( xy = cm , ci , wi ). 

The following equations describe the temperature and strain 

rate dependencies of constitutive parameters associated with dif- 

ferent dislocation processes: 

ˆ c z xy = 

[ 
1 + r z xy 

(
ˆ T − 1 

)s z xy ] ˙ ˆ ε m 

z 
xy 

p ; ˆ c z xy ≡
c z xy 

c z 
xy 0 

;

xy = cm, ci, wi ; (61) 

ˆ m 

z 
xy = 

[ 
1 + r m 

z xy 

(
ˆ T − 1 

)s m z xy 

] 
; ˆ m 

z 
xy ≡

m 

z 
xy 

m 

z 
xy 0 

;

xy = cm, ci, wi ; (62) 

where c z 
xy 0 

is the reference (at reference temperature and strain 

rate) material constant associated with probability amplitude of 

dislocation process z that involves dislocations of type xy ; r z xy and 

s z xy are respectively temperature sensitivity coefficient and expo- 

nent associated with probability amplitude of dislocation process z 

that involves dislocations of type xy ; m 

z 
xy and m 

z 
xy 0 

are current and 

reference (at reference temperature) strain rate sensitivities asso- 

ciated with dislocation process z corresponding to dislocations of 

type xy , respectively; and r m 

z xy 
and s m 

z xy 
are temperature sensitivity 

coefficient and exponent associated with strain sensitivity of dislo- 

cation process z of dislocations of type xy , respectively. 

Moreover, among dislocation processes, only dislocation gen- 

eration and accumulation are considered a thermal and therefore 

rate-independent dislocation processes, simply because their un- 

derlying mechanisms are not thermal. However, the rest of dislo- 

cation processes are thermal (temperature-dependent) and (strain) 

rate-dependent, as at least one of their underlying mechanisms 

is thermally activated, for example, annihilation and remobiliza- 

tion processes can be assisted by thermally activated cross-slip 

and diffusion-controlled climb mechanisms, while thermal pinning 

mechanism (diffusion of interstitial solute atoms to dislocation 
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cores and junctions) is one of the mechanisms assisting dislocation 

trapping and wall nucleation processes: 

r z xy 

{ 

> 0 : z = an , tr , rm , spn , srm 

> 
< 
0 : z = nc 

= 0 : z = gn , ac 

;

s z xy 

{
> 0 : z = an , tr , nc , rm 

= 0 : z = gn , ac 
;

m 

z 
xy 

{ 

< 0 : z = an , tr 
> 
< 
0 : z = nc , rm 

= 0 : z = gn , ac 

; xy = cm, ci, wi. (63) 

Given Eqs. (31) , (37) and (40) , plastic power and generated heat 

rate due to plastic work are calculated as follows: 

˙ w p = σ̄ ˙ ε̄ p = σy 
˙ ε̄ p ; ˙ q p = β ˙ w p = βσy 

˙ ε̄ p ; (64) 

where ˙ q p is the volumetric heat generation rate due to plastic 

work; and β is known as dissipation/conversion factor, inelas- 

tic heat fraction, efficiency of plastic dissipation, or the Taylor- 

Quinney coefficient. In other words, β is the fraction of plas- 

tic power that is not stored elastically in the material by dislo- 

cations and consequently is converted to heat. Taylor and Quin- 

ney (1934) emphasized that the fraction β increases as plastic de- 

formation progresses until the saturation state where β = 1. In the 

saturation state, the entire input volumetric plastic power is con- 

verted to heat ( ̇ q p = ˙ w p ) . In addition, Rosakis et al. (20 0 0) and 

Zehnder (1991) proposed models for variation of β as a function 

of plastic strain and plastic hardening ( θ ≡ ∂ ε p σy ) where β ap- 

proaches unity by decreasing θ as plastic strain increases. At the 

beginning of plastic deformation of a nearly undeformed/annealed 

polycrystalline metallic material, large portion of the input plastic 

energy is stored in the crystal structure through generation of dis- 

locations and dislocation substructures. Generation is the only dis- 

location process that increases the total population of dislocations, 

whereas the annihilation processes are the only class of disloca- 

tion processes that decrease the total dislocation density. However, 

as the plastic deformation proceeds, the generation rate of dislo- 

cations diminishes, while the annihilation rate increases (annihi- 

lation releases the previously stored energy of dislocations in form 

of heat) until the saturation state, where these two rates are equiv- 

alent. Therefore, one can assume the following physics-based rela- 

tionship for description of the asymptotic behavior of dissipation 

factor: 

β = 

( 

2 
(
˙ ˆ ρan 
cm 

+ 

˙ ˆ ρan 
ci 

+ 

˙ ˆ ρan 
wi 

)
˙ ˆ ρgn 
cm 

) κ

; κ > 0 ; (65) 

where κ is the material constant associated with dissipation factor. 

The factor 2 in Eq. (65) is due to annihilation of two dislocations 

in each annihilation event. The plastic/strain hardening ( θ ) is ob- 
tained by: 

θ ≡ ∂ ε̄ p σy = ∂ ε̄ p σp = θc + θw ;

θx ≡ ∂ ε̄ p σpx = 

MbG ̃  αx 

2 
√ 

ρxi 

∂ ε̄ p ρxi = 

∂ ε̄ p ˆ ρxi 

2 ̂  ρxi 

σpx ; x = c, w ; (66) 

where ∂ ε̄ p ≡ ∂ 
∂ ̄ε p 

is the partial derivative operator with respect to 

equivalent plastic strain ( ̄ε p ) ; θ x is plastic hardening associated 

with dislocations of type x . Further, viscous/strain-rate hardening 

( φ) is calculated as follows: 

ϕ ≡ ∂ ˙ ε̄ p σy = ϕ v + ϕ p ;

ϕ v ≡ ∂ ˙ ε̄ p σv = 

m v 

˙ ε̄ p 

[ 
1 + m 

m 
v l 

� 

n 
(
˙ ˆ ε p 
)] 

σv ;

ϕ p ≡ ∂ ˙ ε̄ p σp = ϕ pc + ϕ pw ; ϕ px ≡ ∂ ˙ ε̄ p σpx = 

∂ ˙ ε̄ p ̂  ρxi 

2 ̂  ρxi 

σpx ; x = c, w ; (67) 

where ∂ ˙ ε̄ p ≡
∂ 

∂ ̇ ε̄ p 
is the partial derivative operator with respect to 

equivalent plastic strain rate ( ̇ ε̄ p ) ; φv and φp are viscous hardening 

associated with viscous and plastic stresses, respectively; and φpx 

is the viscous hardening associated with plastic stress of type x = c , 

w . 

The equations related to the constitutive model are numerically 

integrated in the next section. 

4. Numerical integration and algorithmic procedure 

For finite element implementation, the differential continuum 

equations presented in Sections 2 and 3 must be numerically in- 

tegrated with respect to time. Thus, the simulation time is dis- 

cretized to relatively small increments/steps. Consider a (pseudo) 

time interval [ t ( n ) , t ( n + 1) ], so that �t ( n + 1) ≡ t ( n + 1) − t ( n ) is the time 

increment at ( n + 1)-th time step. Accordingly, 

�( •) ( n +1 ) ≡ ( •) ( n +1 ) − ( •) ( n ) ; ( ̇ •) ( n +1 ) ≡ �( •) ( n +1 ) 
�t ( n +1 ) 

; (68) 

where ( • ) can be any time-dependent scaler, vector or tensor (of 
any order) variable; and superscripts ( n ) and ( n + 1) respectively 

represent the value of corresponding time-dependent variable at 

the beginning and the end of ( n + 1)-th time increment. 

Furthermore, it is emphasized that all the tensor variables and 

equations in this section belong to the corotational/material frame, 

in which the basis system rotates with the material. Hence, calcu- 

lation of rotation increments, and rotation of corresponding ten- 

sors are necessary before the algorithmic procedure provided in 

this section. Generally, the commercial FE software packages avail- 

able today, upon user’s request, handle the incremental finite ro- 

tations and pass the properly rotated stress and strain increment 

tensors to their user-defined material subroutine. For instance, the 

incrementally rotated stress and strain increment tensors passed to 

the user-defined material subroutines of ABAQUS Explicit (VUMAT) 

and ABAQUS Standard/implicit (UMAT) are based on the Green- 

Naghdi and Jaumann rates, respectively ( ABAQUS, 2014 ). Moreover, 

at the end of the time increment computations, FE solver updates 

the spatial stress tensor ( σ( n + 1) ) by rotating the corotational stress 
tensor ( σ( n +1 ) ) back to the spatial configuration. 

4.1. Trial (elastic predictor) step 

In trial step, it is assumed that the deformation in time incre- 

ment [ t ( n ) , t ( n + 1) ] is purely elastic: 

˙ ε ( n +1 ) 
p trial 

= O ⇒ 

˙ λ( n +1 ) 
trial 

= 

˙ ε̄ ( n +1 ) 
p trial 

≡ 0 ; (69) 

where subscript trial denotes the trial step. Considering Eq. (44) : 

˙ ε ( n +1 ) 
e trial 

= ˙ ε ( n +1 ) . (70) 

Given Eq. (45) : 

˙ ε v ( n +1 ) = ˙ ε v ( n +1 ) 
trial 

= I : ˙ ε ( n +1 ) . (71) 

Accordingly, given Eqs. (4 9) , (6 8) and (70) , the trial stress tensor 

is calculated as follows: 

σ( n +1 ) 
trial 

= σ( n ) + �σ( n +1 ) 
trial 

; (72) 

˙ σ( n +1 ) 
trial 

= C e : ˙ ε 
( n +1 ) 
e trial 

= C e : ˙ ε 
( n +1 ) 

= 2 G ̇ ε ( n +1 ) + 

(
K − 2 

3 
G 

)
˙ ε v ( n +1 ) I . (73) 

Taking Eqs. (48) , (50) and (71) into account gives: 

σ h ( n +1 ) = I : σ( n +1 ) = σ h ( n +1 ) 
trial 

= I : σ( n +1 ) 
trial 

; (74) 

σd ( n +1 ) 
trial 

= σ( n +1 ) 
trial 

− σh ( n +1 ) ; σh ( n +1 ) = σ h ( n +1 ) I ; (75) 
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σ( n +1 ) = σd ( n +1 ) + σh ( n +1 ) . (76) 

Finally, considering Eq. (53) , the trial flow direction reads: 

N 

( n +1 ) 
trial 

= 

3 

2 

σd ( n +1 ) 
trial 

σ̄ ( n +1 ) 
trial 

. (77) 

4.2. Return mapping (plastic corrector) 

Considering Eq. (70) , rewriting Eqs. (47) and (48) for time in- 

crement [ t ( n ) , t ( n + 1) ] leads to: { 

˙ σd ( n +1 ) = 2 G ̇ ε d ( n +1 ) e 

˙ σd ( n +1 ) 
trial 

= 2 G ̇ ε d ( n +1 ) 
e trial 

;

˙ ε d ( n +1 ) 
e trial 

= ˙ ε d ( n +1 ) = ˙ ε d ( n +1 ) e + ˙ ε ( n +1 ) p . (78) 

Consequently, 

˙ σd ( n +1 ) 
trial 

= ˙ σd ( n +1 ) + 2 G ̇ ε ( n +1 ) p ⇒ 

�σd ( n +1 ) 
trial 

= �σd ( n +1 ) + 2 G �ε ( n +1 ) p . (79) 

Given Eq. (72) : 

σd ( n +1 ) 
trial 

= σd ( n +1 ) + 2 G �ε ( n +1 ) p . (80) 

The following equations represent the incremental forms of 

Eqs. (51)–(53) : 

σ̄ ( n +1 ) = 

√ 

3 

2 

∥∥σd ( n +1 ) ∥∥ ⇒ σ̄ ( n +1 ) 
trial 

= 

√ 

3 

2 

∥∥∥σd ( n +1 ) 
trial 

∥∥∥; (81) 

˙ ε̄ ( n +1 ) p = 

√ 

2 

3 

∥∥∥ ˙ ε ( n +1 ) p 

∥∥∥ ⇒ �ε̄ ( n +1 ) p = 

√ 

2 

3 

∥∥�ε ( n +1 ) p 

∥∥; (82) 

N 

( n +1 ) = 

3 

2 

σd ( n +1 ) 

σ̄ ( n +1 ) = 

˙ ε ( n +1 ) p 

˙ ε̄ ( n +1 ) p 

= 

�ε ( n +1 ) p 

�ε̄ ( n +1 ) p 

⇒ 

�ε ( n +1 ) p = 

3 

2 

�ε̄ ( n +1 ) p 

σ̄ ( n +1 ) σ
d ( n +1 ) . (83) 

Inserting �ε ( n +1 ) p from Eq. (83) into Eq. (80) results in: 

σd ( n +1 ) 
trial 

σ̄ ( n +1 ) + 3 G �ε̄ ( n +1 ) p 

= 

σd ( n +1 ) 

σ̄ ( n +1 ) . (84) 

Given Eq. (81) , taking the Euclidian norm of both sides of 

Eq. (84) leads to: 

σ̄ ( n +1 ) 
trial 

= σ̄ ( n +1 ) + 3 G �ε̄ ( n +1 ) p ; σd ( n +1 ) 
trial 

σ̄ ( n +1 ) 
trial 

= 

σd ( n +1 ) 

σ̄ ( n +1 ) . (85) 

Combining Eqs. (77) , (83) and (85) yields: 

N 

( n +1 ) = 

3 

2 

σd ( n +1 ) 

σ̄ ( n +1 ) = 

3 

2 

σd ( n +1 ) 

σ ( n +1 ) 
y 

= N 

( n +1 ) 
trial 

= 

3 

2 

σd ( n +1 ) 
trial 

σ̄ ( n +1 ) 
trial 

. (86) 

Since the flow direction and trial flow direction tensors are 

equal ( N 

( n +1 ) = N 

( n +1 ) 
trial 

) , the yield surface normal is the same for 

elastic and plastic steps. Therefore, the return mapping in case of 

associative isotropic J 2 plasticity is also known as radial/classical 

return mapping. Given Eq. (85) , the yield function defined by 

Eq. (31) becomes: 

φ( n +1 ) = σ̄ ( n +1 ) − σ ( n +1 ) 
y = σ̄ ( n +1 ) 

trial 
− σ ( n +1 ) 

y − 3 G �ε̄ ( n +1 ) p . (87) 

Thereby, the trial yield function reads: 

φ( n +1 ) 
trial 

= σ̄ ( n +1 ) 
trial 

− σ ( n +1 ) 
y trial 

. (88) 

According to Kuhn–Tucker complementary conditions 

( Eq. (40) ): 

φ( n +1 ) 
trial 

{
≤ 0 : Elastic step 
> 0 : Plastic step 

. (89) 

In return mapping, stress and plastic strain can be updated by 

linearizing and solving stress and strain residual functions using an 

iterative method such as Newton–Raphson (NR). Therefore, there 

are two general types of return mapping: 

• Stress-based return mapping , in which the nonlinear yield 

function in case of plastic step is being solved; and 

• Strain-based return mapping , in which a nonlinear equation 

for plastic strain increment must be solved. 

4.3. Numerical integration of constitutive model 

Using forward/explicit Euler method for numerical integration 

of normalized dislocation densities gives: 

ˆ ρ( n +1 ) 
xy = ˆ ρ( n ) 

xy + � ˆ ρ( n ) 
xy ;

� ˆ ρ( n ) 
xy = �t ( n +1 ) ˙ ˆ ρ( n ) 

xy = �ε̄ ( n +1 ) p ∂ ε̄ p ˆ ρ( n ) 
xy ;

ˆ ρ( n =0 ) 
xy = ˆ ρxy 0 ;

{
x = c, w 

y = m, i 
. (90) 

Likewise, application of backward/implicit Euler method for nu- 

merical integration of normalized dislocation densities results in: 

ˆ ρ( n +1 ) 
xy = ˆ ρ( n ) 

xy + � ˆ ρ( n +1 ) 
xy ;

� ˆ ρ( n +1 ) 
xy = �t ( n +1 ) ˙ ˆ ρ( n +1 ) 

xy = �ε̄ ( n +1 ) p ∂ ε̄ p ˆ ρ( n +1 ) 
xy ;

ˆ ρ( n =0 ) 
xy = ˆ ρxy 0 ;

{
x = c, w 

y = m, i 
. (91) 

In empirical constitutive models where the equivalent accumu- 

lated plastic strain is the (mechanical) ISV, it is updated readily by 

ε̄ ( n +1 ) p = ε̄ (n ) p + �ε̄ ( n +1 ) p . For fully implicit constitutive integration, 

backward Euler Eq. (91) ) or other implicit integration methods 

need to be applied for updating state variables (dislocation den- 

sities) that result in a system of coupled nonlinear equations that 

must be simultaneously solved along with the NR residual function 

in the return mapping procedure. However, even fully implicit FE 

simulations of HEVP in complex thermo-mechanical metal forming 

processes with high geometrical and material nonlinearities often 

have very low convergence rate. In order to overcome this conver- 

gence issue, time increments must be highly reduced. Therefore, 

in such cases, application of explicit finite element method with 

semi-implicit integration of constitutive equations is the most ef- 

ficient approach. Nonetheless, more sophisticated implicit numer- 

ical time integration schemes such as generalized midpoint can 

improve convergence rate, stability, accuracy and performance of 

the implicit FE analysis ( Ortiz and Popov, 1985 ). Application of im- 

plicit numerical integration schemes such as backward Euler and 

implicit midpoint methods coupled with the consistency approach 

( Eqs. (41)–(43) ) in a fully implicit return mapping scheme will im- 

prove the convergence of implicit FE simulations through increas- 

ing computation cost of each time increment ( de-Borst and Heeres, 

2002; Heeres et al., 2002 ). 

Incremental forms of Eqs. (54)–(58) are: 

σ ( n +1 ) 
y = σ ( n +1 ) 

v + σ ( n +1 ) 
p ; σ ( n +1 ) 

p = σ ( n +1 ) 
pc + σ ( n +1 ) 

pw ; (92) 

σ ( n +1 ) 
px = Mb ( G ̃  αx ) 

( n +1 ) 
√ 

ρ0 ˆ ρ( n +1 ) 
xi 

; x = c, w ;

( G ̃  αx ) 
( n +1 ) = ( G ̃  αx ) 

( n ) = G 0 ̃  αx 0 

[ 
1 + r G αx 

(
ˆ T ( n ) − 1 

)s G αx 

] 
;
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ˆ T ( n ) ≡ T ( n ) 

T 0 
; x = c, w ; (93) 

σ ( n +1 ) 
v = σ ( n +1 ) 

v 0 

(
˙ ˆ ε ( n +1 ) p 

)m 

( n +1 ) 
v ;

σ ( n +1 ) 
v 0 = σ ( n ) 

v 0 = σv 00 

[ 
1 + r v 

(
ˆ T ( n ) − 1 

)s v ] ; ˙ ˆ ε ( n +1 ) p ≡
˙ ε̄ ( n +1 ) p 

˙ ε 0 
;

m 

( n +1 ) 
v = m v 0 

[ 
1 + r m 

v 
(
ˆ T ( n ) − 1 

)s m v 
] (

˙ ˆ ε ( n +1 ) p 

) m 

m 
v 
. (94) 

Given Eqs. (61) and (62) , temperature and strain rate dependen- 

cies of material coefficients associated with probability amplitude 

of various dislocations processes are incrementally calculated ac- 

cording to: 

c 
z ( n +1 ) 
xy = c z xy 0 

[ 
1 + r z xy 

(
ˆ T ( n ) − 1 

)s z xy ] ( ˙ ˆ ε ( n +1 ) p 

)m 

z ( n +1 ) 
xy ;

m 

z ( n +1 ) 
xy = m 

z ( n ) 
xy = m 

z 
xy 0 

[ 
1 + r m 

z xy 

(
ˆ T ( n ) − 1 

)s m z xy 

] 
;

xy = cm, ci, wi. (95) 

4.4. Stress-based return mapping 

In stress-based return mapping, the residual function ( R ( n + 1) ) 
to be solved ( R ( n + 1) = 0) using the NR scheme is usually the same 

as the yield function: 

R ( n +1 ) ≡ φ( n +1 ) = σ̄ ( n +1 ) − σ ( n +1 ) 
y 

= σ̄ ( n +1 ) 
trial 

− σ ( n +1 ) 
y − 3 G �ε̄ ( n +1 ) p . (96) 

According to Eqs. (88) and (89) , in order to check for viscoplas- 

tic yielding, σ ( n +1 ) 
y trial 

must be computed first. In stress-based return 

mapping, considering Eq. (92) : 

σ ( n +1 ) 
y trial 

= σ ( n +1 ) 
v trial + σ ( n +1 ) 

p trial 
; σ ( n +1 ) 

p trial 
= σ ( n +1 ) 

pc trial 
+ σ ( n +1 ) 

pw trial 
. (97) 

Given Eqs. (69) , (90) , (91) and (93) : 

σ ( n +1 ) 
px trial 

= Mb ( G ̃  αx ) 
( n ) 

√ 

ρ0 ˆ ρ( n +1 ) 
xi trial 

;
ˆ ρ( n +1 ) 
xi trial 

= ˆ ρ( n ) 
xi 

; x = c, w. (98) 

Since the viscous response associated with viscous stress is in- 

stantaneous, in order to calculate the trial viscous stress ( σ ( n +1 ) 
v trial ) , 

equivalent plastic strain rate at the beginning of the time incre- 

ment ˙ ε̄ (n ) p is taken into account. However, to avoid a vanishing 

of the trial viscous stress, for instance, at the beginning of load- 

ing (where ˙ ε̄ (n ) p = 0 ), instead of ˙ ε̄ (n ) p , a minimum equivalent plastic 

strain rate ( ̇ ε̄ min p ) determines the trial viscous stress. Accordingly, 

a corrected equivalent plastic strain rate ( ̇ ε̄ (n ) p corr ) at the beginning 

of current time increment is adopted: 

˙ ε̄ ( n ) p corr ≡
{ 

˙ ε̄ ( n ) p : ˙ ε̄ ( n ) p > ˙ ε min p 

˙ ε min p : ˙ ε̄ ( n ) p ≤ ˙ ε min p 

; ˙ ε min p ≡ ξmin ˙ ε 0 ; 0 < ξmin < 1 . (99) 

As suggested by Eq. (99) , the minimum equivalent plastic strain 

rate is assumed to be a fraction ( ξmin ) of the reference strain rate 
( ̇ ε 0 ). In case of having creep or relaxation deformation modes, ξ

min 

must be chosen adequately small. Nevertheless, for most of metal 

forming cases, a value of 10 −3 ≤ ξmin ≤ 10 −2 is generally recom- 
mended. Therefore, given Eq. (94) : 

σ ( n +1 ) 
v trial = σv 00 

[ 
1 + r v 

(
ˆ T ( n ) − 1 

)s v ] ( ˙ ε̄ ( n ) p corr 

˙ ε 0 

)m 

( n +1 ) 
v trial 

;

m 

( n +1 ) 
v trial = m v 0 

[ 
1 + r m 

v 
(
ˆ T ( n ) − 1 

)s m v 
] ( ˙ ε̄ ( n ) p corr 

˙ ε 0 

) m 

m 
v 

. (100) 

Thereby, 

{ 

σ ( n +1 ) 
y ≡ ˙ σ ( n +1 ) 

y 

(
T ( n ) , s ( n ) , �ε̄ ( n +1 ) p , �t ( n +1 ) 

)
σ ( n +1 ) 
y trial 

≡ ˙ σ ( n +1 ) 
y trial 

(
T ( n ) , s ( n ) , ˙ ε̄ ( n ) p corr 

) ;

s ( n ) ≡
{
ρ( n ) 
cm , ρ

( n ) 
ci 

, ρ( n ) 
wi 

}
. (101) 

As mentioned earlier, in stress-based return mapping, in case 

of plastic step ( φ( n +1 ) 
trial 

> 0 ) , the nonlinear implicit yield function is 

taken as the residual function, R ( n + 1) ≡ ϕ( n + 1) = 0 ( Eq. (96) ), which 

must be solved for �ε̄ ( n +1 ) p using a linearization solving scheme 

such as iterative Newton-Raphson method. The NR loop starts with 

an initial guess for �ε̄ ( n +1 ) p . Here, it has been taken from 

˙ ε̄ (n ) p corr : 

�ε̄ ( n +1 ) 
p { k =0 } = 

˙ ε̄ ( n ) p corr �t ( n +1 ) ; (102) 

where subscript { k } is the NR loop index. If the residual function 

R ( n +1 ) { k } is close enough to zero with the specified tolerance χ (e.g., 

χ = 10 −6 ), the calculated �ε̄ ( n +1 ) 
p { k } is taken as �ε̄ ( n +1 ) p : 

�ε̄ ( n +1 ) p = �ε̄ ( n +1 ) 
p { k } ;

∣∣∣ ˆ R ( n +1 ) { k } 
∣∣∣ < χ ; ˆ R ( 

n +1 ) 
{ k } ≡

R ( 
n +1 ) 

{ k } 
R ( 

n +1 ) 
{ y trial } 

; (103) 

where ˆ R ( n +1 ) { k } is the normalized NR residual function at k -th NR 

iteration. Otherwise ( | ̂  R ( n +1 ) { k } | ≥ χ) , �ε̄ ( n +1 ) 
p { k } will be updated itera- 

tively using NR linearization: 

�ε̄ ( n +1 ) 
p { k +1 } = �ε̄ ( n +1 ) 

p { k } −
( 

d R ( 
n +1 ) 

{ k } 
d�ε̄ ( n +1 ) 

p { k } 

) −1 

R ( 
n +1 ) 

{ k } . (104) 

Given Eq. (96) , Eq. (104) becomes: 

�ε̄ ( n +1 ) 
p { k +1 } = �ε̄ ( n +1 ) 

p { k } + 

R ( 
n +1 ) 

{ k } 
3 G + H 

( n +1 ) 
v p { k } 

; H 

( n +1 ) 
v p { k } ≡

d σ ( n +1 ) 
y { k } 

d�ε̄ ( n +1 ) 
p { k } 

; (105) 

where H 

( n +1 ) 
v p is the viscoplastic tangent modulus at the end of the 

current time increment ( n + 1). After updating the equivalent plas- 

tic strain increment (calculation of �ε̄ ( n +1 ) 
p { k +1 } ), again the yield func- 

tion (NR residual) must be calculated ( Eq. (96) ); and then the NR 

loop condition ( Eq. (103) ) needs to be checked with the updated 

residual. Given Eqs. (59) , (60) , (63) , (90) , (91) , (92) , (93) , (94) and 

(95) : 

H 

( n +1 ) 
v p ≡ d σ ( n +1 ) 

y 

d�ε̄ ( n +1 ) p 

= H 

( n +1 ) 
v + H 

( n +1 ) 
p ; (106) 

where H 

( n +1 ) 
v and H 

( n +1 ) 
p are viscous and plastic tangent moduli, 

respectively: 

H 

( n +1 ) 
v ≡ d σ ( n +1 ) 

v 

d�ε̄ ( n +1 ) p 

= 

m 

( n +1 ) 
v 

[ 
1 + m 

m 

v l 
� 

n 
(
˙ ˆ ε ( n +1 ) p 

)] 
�ε̄ ( n +1 ) p 

σ ( n +1 ) 
v ; (107) 
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H 

( n +1 ) 
p ≡ d σ ( n +1 ) 

p 

d�ε̄ ( n +1 ) p 

= 

∂ ε̄ p ˆ ρ( n ) / (n +1 ) 
ci 

+ m 

tr ( n +1 ) 
cm 

∂ ε̄ p ˆ ρtr ( n ) / (n +1 ) 
cm 

− ∑ 

z xy = 
an ci 

r m ci 

n c wi 

m 

z ( n +1 ) 
xy ∂ ε̄ p ˆ ρz ( n ) / (n +1 ) 

xy 

2 ̂  ρ( n +1 ) 
ci 

σ ( n +1 ) 
pc 

+ 

∂ ε̄ p ˆ ρ( n ) / (n +1 ) 
wi 

+ m 

nc ( n +1 ) 
wi 

∂ ε̄ p ˆ ρnc ( n ) / (n +1 ) 
wi 

− ∑ 

z xy = 
a n wi 

r m wi 

m 

z ( n +1 ) 
xy ∂ ε̄ p ˆ ρz ( n ) / (n +1 ) 

xy 

2 ̂  ρ( n +1 ) 
wi 

σ ( n +1 ) 
pw . (108) 

Notice that �ε̄ ( n +1 ) 
p { k =0 } must not be taken zero ( Eq. (107) ); other- 

wise, H 

( n +1 ) 
v p { k =0 } will be undefined. This is the reason behind taking 

�ε̄ ( n +1 ) 
p { k =0 } = 

˙ ε̄ (n ) p corr �t ( n +1 ) > 0 . 

4.5. Strain-based return mapping 

According to Eqs. (87) , (92) , (93) and (94) , in case of plastic step 

( φ( n +1 ) 
trial 

> 0 ): 

˙ ε̄ ( n +1 ) p = ˙ ε 0 

(
σ ( n +1 ) 

v 

σ ( n +1 ) 
v 0 

) 1 

m 
( n +1 ) 
v ; σ ( n +1 ) 

v = σ ( n +1 ) 
y − σ ( n +1 ) 

p > 0 ;

σ ( n +1 ) 
y = σ̄ ( n +1 ) 

trial 
− 3 G �ε̄ ( n +1 ) p ; (109) 

which is an implicit function for �ε̄ ( n +1 ) p . Considering Eq. (68) , and 

Eq. (109) can be rearranged as follows to define the residual func- 

tion in strain-based return mapping: 

R ( n +1 ) ≡ �ε̄ ( n +1 ) p − �t ( n +1 ) ˙ ε̄ ( n +1 ) p 

= �ε̄ ( n +1 ) p − �t ( n +1 ) ˙ ε 0 

(
σ ( n +1 ) 

v 

σ ( n +1 ) 
v 0 

) 1 

m 
( n +1 ) 
v ; (110) 

which ought to be solved ( R ( n + 1) = 0) for �ε̄ ( n +1 ) p using the itera- 

tive NR method. 

Furthermore, in strain-based return mapping, considering 

Eqs. (69) , (90) , (91) , (92) and (93) : 

σ ( n +1 ) 
y trial 

= σ ( n +1 ) 
p trial 

= σ ( n +1 ) 
pc trial 

+ σ ( n +1 ) 
pw trial 

;

σ ( n +1 ) 
px trial 

= Mb ( G ̃  αx ) 
( n ) 

√ 

ρ0 ˆ ρ( n ) 
xi 

; x = c, w. (111) 

In strain-based return mapping, depending on explicit or im- 

plicit finite elements, the following initial guess for �ε̄ ( n +1 ) p is 

adopted to obtain the highest convergence rate and stability: 

�ε̄ ( n +1 ) 
p { k =0 } ≡

{
˙ ε̄ ( n ) p �t ( n +1 ) : Implicit Finite Elements 

0 : Explicit Finite Elements 
. (112) 

If the residual R ( n +1 ) { k } is close enough to zero with the speci- 

fied tolerance χ (e.g., χ = 10 −6 ), the calculated �ε̄ ( n +1 ) 
p { k } is taken as 

�ε̄ ( n +1 ) p : 

�ε̄ ( n +1 ) p = �ε̄ ( n +1 ) 
p { k } ;

∣∣∣ ˆ R ( n +1 ) { k } 
∣∣∣ < χ ;

ˆ R ( 
n +1 ) 

{ k } ≡
R ( 

n +1 ) 
{ k } 

�t ( n +1 ) ξmean ˙ ε 0 
; ξmean > 0 ; (113) 

where ξmean determines the approximate average of equivalent 

plastic strain rate. Otherwise ( | ̂  R ( n +1 ) { k } | ≥ χ) , �ε̄ ( n +1 ) 
p { k } will be up- 

dated iteratively using the NR linearization using Eq. (104) , with: 

d R ( 
n +1 ) 

{ k } 
d�ε̄ ( n +1 ) 

p { k } 
= 1 + 

3 G + H 

( n +1 ) 
p { k } 

m 

( n +1 ) 
v σ ( n +1 ) 

v { k } 
�t ( n +1 ) ˙ ε̄ ( n +1 ) 

p { k } ;

˙ ε̄ ( n +1 ) 
p { k } = ˙ ε 0 

( 

σ ( n +1 ) 
v { k } 

σ ( n +1 ) 
v 0 

) 

1 

m 
( n +1 ) 
v 

. (114) 

4.6. Consistent tangent stiffness operator in implicit finite elements 

In implicit finite element method for global lineariza- 

tion, the HEVP consistent/algorithmic tangent stiffness opera- 

tor/modulus/tensor ( C 

( n +1 ) ) must be computed: 

C 

( n +1 ) ≡ ∂�σ( n +1 ) 

∂�ε ( n +1 ) 
= 2 G 

( n +1 ) 
eff 

I + 

(
K − 2 

3 
G 

( n +1 ) 
eff 

)
I � I 

+ H 

( n +1 ) 
eff 

N 

( n +1 ) 
� N 

( n +1 ) ; (115) 

so that, 

H 

( n +1 ) 
eff 

≡ 4 

3 

( 

G 

1 + 

3 G 

H ( 
n +1 ) 

v p 

− G 

( n +1 ) 
eff 

) 

;

G 

( n +1 ) 
eff 

≡ σ̄ ( n +1 ) 

σ̄ ( n +1 ) 
trial 

G = 

σ ( n +1 ) 
y 

σ̄ ( n +1 ) 
trial 

G ; (116) 

where H 

( n +1 ) 
eff 

and G 

( n +1 ) 
eff 

are effective/elasto-viscoplastic tangent 

and shear moduli. In case of elastic step, in which σ̄ ( n +1 ) = σ̄ ( n +1 ) 
trial 

, 

given Eq. (116) , G 

( n +1 ) 
eff 

= G . Moreover, in elastic domain where the 

equivalent plastic strain increment tends to zero ( �ε̄ ( n +1 ) p = 0 ) , ac- 

cording to Eqs. (106)–(108) the viscoplastic tangent modulus ap- 

proaches infinity ( H 

( n +1 ) 
v p → ∞ ) that leads to H 

( n +1 ) 
eff 

= 0 . Given 

Eqs. (20) and (115) , this is compatible with the fact that for pure 

elastic deformation C 

( n +1 ) = C e . 

4.7. Objective stress update algorithm 

The trial step and radial return mapping (elastic predictor- 

plastic corrector) scheme for objective stress update in associative 

isotropic J 2 plasticity with microstructural constitutive model are 

summarized in Box 1 . 

The presented self-consistent algorithm ( Box 1 ) is programmed 

as various user-defined material subroutines in ABAQUS Ex- 

plicit (VUMAT) and ABAQUS Standard/implicit (UMAT) with semi- 

implicit and fully-implicit constitutive integration schemes using 

both stress-based and strain-based return mapping algorithms, 

which are available as supplementary materials to this paper. The 

overall algorithmic procedure of such implementation is illustrated 

in the flowchart shown in Fig. 3 . The presented consistent algo- 

rithm is sufficient for establishing the microstructural solver as 

well as its linkage to the mechanical and thermal solvers. The in- 

teraction among mechanical, thermal and microstructural solvers 

and their associated fields, together with the initial and boundary 

conditions and thermo-micro-mechanical properties in the pro- 

posed fully coupled TMM-FE simulation approach is shown in 

Fig. 4 . It should be noted that in this framework, temperature- 

dependent thermal expansion coefficients, which are directly pro- 

vided to the thermal solver (along with the other required thermo- 

physical material properties) are used to update the diagonal com- 

ponents of the strain increment tensor passed (from the mechani- 

cal solver) to the microstructural solver (user-defined material sub- 

routine), using the computed values of volumetric thermal (elastic) 

strain increments. 
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Box 1 

Trial step and radial return mapping (elastic predictor – plastic corrector) scheme for objective stress update in associative isotropic J 2 
plasticity with microstructural constitutive model. 

1) Trial step (elastic predictor): 

C e = 2 G I + 

(
K − 2 

3 
G 

)
I � I ; K = 

2( 1 + υ) 

3( 1 − 2 υ) 
G ; (1.1) 

σ( n +1 ) 
trial 

= σ(n ) + C e : �ε ( n +1 ) = σ(n ) + 2 G �ε ( n +1 ) + 

(
K − 2 

3 
G 

)
�ε v ( n +1 ) I ; �ε v ( n +1 ) = I : �ε ( n +1 ) ; (1.2) 

σd ( n +1 ) 
trial 

= σ( n +1 ) 
trial 

− σh ( n +1 ) ; σh ( n +1 ) = σ h ( n +1 ) I ; σ h ( n +1 ) = I : σ( n +1 ) 
trial 

; (1.3) 

φ( n +1 ) 
trial 

= σ̄ ( n +1 ) 
trial 

− σ ( n +1 ) 
y trial 

; σ̄ ( n +1 ) 
trial 

= 

√ 

3 
2 
‖ σd ( n +1 ) 

trial 
‖ . (1.4) 

2) Check viscoplastic yielding: 

IF φ( n +1 ) 
trial 

≤ 0 , THEN it is an elastic step: 

σ( n +1 ) = σ( n +1 ) 
trial 

; C 
( n +1 ) = C e ; s ( n +1 ) = s (n ) ; �ε̄ ( n +1 ) p = 0 . (1.5) 

3) Return mapping ( φ( n +1 ) 
trial 

> 0 ) : solving the stress or strain-based residual function ( R ( n + 1) = 0) for �ε̄ ( n +1 ) p and 

σ ( n +1 ) 
y using the iterative Newton-Raphson method and updating the MSVs. 

4) Update the stress and HEVP consistent tangent stiffness operator: 

σ( n +1 ) = σd ( n +1 ) + σh ( n +1 ) ; σd ( n +1 ) = 

2 

3 
σ ( n +1 ) 
y N ( n +1 ) ; N ( n +1 ) = 

3 

2 

σd ( n +1 ) 
trial 

σ̄ ( n +1 ) 
trial 

= 

�ε ( n +1 ) p 

�ε̄ ( n +1 ) p 

; (1.6) 

H ( n +1 ) 
eff 

≡ 4 

3 

( 

G 

1 + 

3 G 

H ( n +1 ) v p 

− G ( n +1 ) 
eff 

) 

; G ( n +1 ) 
eff 

= 

σ ( n +1 ) 
y 

σ̄ ( n +1 ) 
trial 

G ; (1.7) 

C 
( n +1 ) = 2 G ( n +1 ) 

eff 
I + ( K − 2 

3 
G ( n +1 ) 
eff 

) I � I + H ( n +1 ) 
eff 

N ( n +1 ) � N ( n +1 ) . (1.8) 

5) Calculation of equivalent plastic strain rate, incremental plastic work and generated heat: 

˙ ε̄ ( n +1 ) p = 

�ε̄ ( n +1 ) p 

�t ( n +1 ) 
; �q ( n +1 ) p = β(n ) / ( n +1 ) �w 

( n +1 ) 
p ; �w 

( n +1 ) 
p = σ ( n +1 ) 

y �ε ( n +1 ) p . (1.9) 

Table 1 

Chemical composition of the investigated steel 20MnCr5 [mass%]. 

C Si Mn P S Cr Mo Ni Cu Al N 

0.210 0.191 1.350 0.014 0.025 1.270 0.074 0.076 0.149 0.040 0.010 

Table 2 

Selected reference variables, mean Taylor factor and Burgers length of the investigated material. 

T 0 [ 
◦C ] ˙ ε 0 [ s 

−1 ] ρ0 [ m 

−2 ] M [–] b [m] 

20 0.01 10 12 3.0 2.55 ×10 −10 

Table 3 

Elastic constants and their temperature sensitivity. 

G 0 [GPa] r G [–] s G [–] υ [–] r υ [–] s υ [–] 

82.5 −0.095 1.460 0.2888 0.0385 1.0 

5. Finite element modeling and simulation 

5.1. Material and microstructure 

The material used in this study is a case-hardenable steel, 

20MnCr5 (1.7147, ASI 5120), which is widely used in industrial 

forging of automotive components such as bevel gears. The chem- 

ical composition measured by optical emission spectroscopy (OES) 

is presented in Table 1 . 

Furthermore, the microstructure of the undeformed (as- 

delivered) material consists of equi-axed ferritic-pearlitic grains. 

Electron backscatter diffraction (EBSD) was used to analyze the 

microstructure and the texture of undeformed material. 1 The in- 

verse pole figure (IPF) orientation map of the undeformed material 

1 EBSD measurements were carried out using a a field emission gun scanning 

electron microscope (FEG-SEM), JOEL JSM 70 0 0F equipped with an EDAX-TSL Hikari 

EBSD camera. The measurements are conducted at 20 KeV beam energy, approxi- 

sample showing distribution of grain morphology and orientation 

is demonstrated in Fig. 5 . The orientation and grain size distribu- 

tions are shown in Fig. 6 . Pole figures derived from EBSD mea- 

surements of a relatively large area in the plane normal to the 

symmetry axis of undeformed billet for different crystallographic 

poles/directions are shown in Fig. 6 (a). Furthermore, the grain size 

distribution calculated based on analysis of EBSD data of the afore- 

mentioned large area is shown in Fig. 6 (b). According to Fig. 6 (b), 

the effective grain size, which here is defined as the average of 

mean grain sizes calculated using distribution of grain size number 

fraction and area fraction is 8.23 μm, for the investigated material. 
Furthermore, from the evaluated orientation map ( Fig. 5 ) and pole 

figures ( Fig. 6 (a)), it can be concluded that the undeformed mate- 

rial has a very weak texture (almost random). 

The selected reference variables, Taylor factor and Burgers 

length of the studied material are listed in Table 2 . 

mately 30 nA probe current, and 100 nm step sInt. J. Plast.. OIM software suite (OIM 

Data Collection and OIM Analysis v7.3) was used to analyze the data. 
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Fig. 3. Flowchart illustration of algorithmic procedure for implementation of microstructural material subroutine; the numerically integrated equations of microstructural 

constitutive model are programmed in the (visco)plasticity subroutine (red box); return mapping loop (blue box), which calls the (visco)plasticity subroutine iteratively, is 

implemented within the main material subroutine. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

In TMM simulation of HEVP, temperature dependent elastic 

constants (shear modulus and Poisson’s ratio) are required as in- 

put. The values of elastic constants are calculated using the JMat- 

Pro software for the investigated steel with the composition pre- 

sented in Table 1 . The exported temperature-dependent shear 

modulus and Poisson’s ratio versus temperature were fitted using 

the familiar temperature-dependence relations ( Table 3 ): 

ˆ G = 1 + r G 
(
ˆ T − 1 

)s G ; ˆ G ≡ G 

G 0 

; r G < 0 ; s G > 0 ; (117) 

ˆ υ = 1 + r υ
(
ˆ T − 1 

)s υ ; ˆ υ ≡ υ

υ0 

; r υ > 0 ; s υ > 0 ; (118) 

where r G and s G are temperature sensitivity coefficient and expo- 

nent associated with shear modulus ( G ), respectively; υ is the Pois- 

son’s ratio; υ0 is the Poisson’s ratio at reference temperature; and 
r υ and s υ are temperature sensitivity coefficient and exponent of 

Poisson’s ratio, respectively. 

The micro-mechanical constitutive parameters of the studied 

material are taken from Motaman and Prahl (2019) . Constitutive 

parameters associated with probability amplitude of different dis- 

location processes, interaction strengths, initial dislocation den- 

sities and reference viscous stress for the investigated material 

are presented in Table 4 . The corresponding temperature sensitiv- 

ity coefficients and exponents are listed Table 5 . The constitutive 
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Fig. 4. Block diagram illustrating the interactions among mechanical, thermal and microstructural solvers and fields, initial and boundary conditions, and thermo-micro- 

mechanical properties in fully coupled TMM-FE simulations. 

Table 4 

Reference constitutive parameters associated with probability amplitude of different dislocation processes, reference 

interaction strengths, initial dislocation densities and reference viscous stress for the investigated material. 

c gn cm [–] c an cm 0 [–] c an 
ci 0 

[–] c an 
wi 0 

[–] c ac 
ci 
[–] c ac 

wi 
[–] c tr cm 0 [–] c nc 

wi 0 
[–] 

6.2970 ×10 2 0.1492 0.0133 0.0312 0.4989 0.1280 1.4184 1.5534 ×10 −3 

c rm 
ci 0 

[–] c rm 
wi 0 

[–] ˜ αc0 [–] ˜ αw 0 [–] ˆ ρcm 0 [–] ˆ ρci 0 [–] ˆ ρwi 0 [–] σ v 00 [MPa] 

0.2261 0.0217 0.1001 0.4725 22.573 26.427 0.9234 318.84 

Table 5 

Temperature sensitivity coefficients and exponents associated with probability amplitude of different dislocation pro- 

cesses, interaction strengths and viscous stress for the studied material. 

r an cm [–] r an 
ci 

[–] r an 
wi 

[–] r tr cm [–] r nc 
wi 
[–] r rm 

ci 
[–] r rm 

wi 
[–] r G αc [–] r G αw [–] r v [–] 

0.0547 2.0581 0.2045 3.9680 6.1587 5.0910 2.0631 −0.0835 −0.0288 −0.3376 

s an cm [–] s an 
ci 
[–] s an 

wi 
[–] s tr cm [–] s nc 

wi 
[–] s rm 

ci 
[–] s rm 

wi 
[–] s G αc [–] s G αw [–] s v [–] 

8.6725 0.9988 4.0282 1.5593 4.8075 5.5999 3.4306 2.8735 2.5451 0.5115 

Table 6 

Constitutive parameters associated with strain rate sensitivity of viscous stress and the parameter controlling the dissi- 

pation factor. 

m v 0 [–] r m v [–] s m v [–] m 

m 
v [–] κ [–] 

0.027 0.0785 5.0 0.0 2.0 

parameters associated with strain rate sensitivity of viscous stress 

together with the parameter controlling the dissipation factor ( κ) 
are presented in Table 6 . 

Some thermo-physical material properties of the investigated 

material including specific heat capacity and thermal conductivity 

as functions of temperature are calculated using JMatPro software 

and supplied to the FE model. Moreover, temperature-dependent 

mass density and thermal expansion coefficient (with respect to 

room temperature, 20 °C) in cold and warm regimes is measured 

by dilatometry experiments. Thermo-physical properties of the 

studied 20MnCr5 steel grade as functions of temperature are plot- 

ted in Fig. 7 . 
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Fig. 5. IPF orientation map in the plane ( x - y ) normal to the symmetry axis (z) of undeformed cylindrical billet. Grain boundaries were identified as boundaries where the 

misorientation angle is above 5 °. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. (a) pole figures calculated from EBSD measurements (1 ×1 mm area) in the plane ( x - y ) normal to the symmetry axis ( z ) of undeformed cylindrical billet for different 

crystallographic directions (001, 011 and 111); (b) grain size distribution calculated based on analysis of the same EBSD data (the mean and standard deviation values are 

calculated by fitting to normal/lognormal distribution functions). (For interpretation of the references to color in this figure legend, the reader is referred to the web version 

of this article.) 

5.2. Process 

An industrial warm forging of a bevel gear shaft for automo- 

tive applications has been selected as the warm bulk metal form- 

ing process to be thermo-micro-mechanically simulated. The man- 

ufacturing process chain (MPC) consists of four steps including two 

forging hits: 

(1) Preform forging : the cylindrical forging billet (approximate 

diameter and length of 54 mm and 112 mm, respectively) is 

forged in the first forging tool set (punch and die) during 

2.5 s. The billet is slightly preheated to about 180 °C (cold 
regime) just before starting the preform forging operation; 

(2) Interpass : this step is the short transfer time (2.5 s) between 

the end of preform forging and the next forging operation 
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Fig. 7. Thermo-physical properties of the of the investigated 20MnCr5 steel grade as functions of temperature. 

Fig. 8. Preformed and forged parts in production of bevel gear. Dimensions are approximate and in mm. 

(final forging). The preformed billet, which is heated up by 

preheating as well as adiabatic heating and die-contact fric- 

tion during preform forging, loses some of the absorbed heat 

and consequently temperature to the ambient environment 

mostly due to unforced convection and radiation; 

(3) Final forging : after the interpass stage, the somewhat cooled 

down preformed billet is again forged in the second tool set 

during 2 s to reach its final shape; and 

(4) Air cooling : before performing the subsequent manufactur- 

ing processes such as heat treatment and machining on the 

forged shaft, it is held and consequently reaches the thermal 

equilibrium at room temperature. 

The drawings of radial sections of preformed and (final) forged 

parts and their images are shown in Fig. 8 . 

The following thermo-mechanical boundary conditions are im- 

posed (values of properties are obtained by independent experi- 

mental measurements): 

• Exploiting axisymmetry of all the parts as well as boundary 
conditions, only a (two-dimensional) radial section of their 
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Fig. 9. Distribution of temperature, MSVs (different types of dislocation density), equivalent stress and equivalent accumulated plastic strain at the end of preform forging 

step (before unloading). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

assembly is modeled. Thus, appropriate boundary conditions 

are set to symmetry axes of all parts. 

• Similar to its experimental/industrial counterpart, the forg- 
ing simulation is displacement-controlled. A constant ve- 

locity (vertical) of 40 mm.s −1 is prescribed to the punches 
in both deformation steps. There are periods of acceler- 

ation and deceleration of punch, respectively, at the be- 

ginning and the end of each forging step, which last 

for 0.1 s. 

• Constant coulomb friction coefficient of 0.05, considering the 

operation temperature regime and the solid lubricant MoS 2 
applied on the actual industrial forging ( Altan et al., 2004 ). 

• Total generated heat in contact surfaces due to relative mo- 
tion of contact master and slave surfaces under non-zero 
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Fig. 10. Distribution of temperature, MSVs (different types of dislocation density), equivalent stress and equivalent accumulated plastic strain at the end of final forging step 

(before unloading). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

contact pressure is evenly divided between the engaged 

bodies. 

• Thermal contact conductance between the billet and tools as 
a function of contact pressure and clearance. 

• Thermal convection and radiation from forging billet’s free 

surfaces to the ambient environment. Assuming constant 

convection heat transfer coefficient of 15 Wm 

−2 K −1 and ra- 
diative emissivity coefficient of 0.8 provided an accurate 
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Fig. 11. Comparison between FE-simulated wall immobile dislocation density and the experimentally measured average GND density using high resolution EBSD at different 

points in the final forged part (the billet is not heated prior to preform forging). (For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 

computational prediction of time-temperature loss from a 

homogenized temperature in warm regime during free cool- 

ing in laboratory conditions. 

5.3. Results and validation 

Given the aforementioned material model and properties as 

well as the introduced process details and assumptions, FE model 

of the multistep industrial warm forging of bevel gear is created 

using the ABAQUS CAE software. A fine biased mesh containing 

2960 finite elements (explicit/implicit 4-node linear thermally cou- 

pled axisymmetric, bilinear displacement and temperature) is as- 

signed to the billet. The adaptive Lagrangian–Eulerian remeshing 

(ALE) algorithm is employed in order to prevent severe element 

distortion and mesh degradation due to large deformation. In addi- 

tion, for increasing the computational efficiency of the simulation, 

the mass-scaling factor of 10 3 was applied to the first three steps 

of the modeled warm forging MPC. Subsequently, the modeled 

forging MPC is simulated by the thermo-mechanical/temperature- 

displacement ABAQUS Explicit solver. The simulation was run us- 

ing the domain-based computational parallelization method and 

threads-based multiprocessing mode on a single computer having 

AMD FX TM −6300 6-core processor with the clock rate of 3.50 GHz. 
The duration of simulation of the first three steps of the warm 

forging MPC (without the air cooling step) was approximately 

99 min. Distribution of temperature, MSVs (different types of dislo- 

cation density), equivalent stress and equivalent accumulated plas- 

tic strain at the end of preform and final forging steps (before un- 

loading) are respectively shown in Figs. 9 and 10 . 

All the programmed microstructural solvers coupled with their 

corresponding explicit and implicit thermal and mechanical solvers 

of ABAQUS have shown a good convergence and stability in TMM- 

FE simulation of simple uniaxial compression (upsetting) tests. 

Nonetheless, many trials of explicit and implicit TMM-FE simula- 

tions of forging (of bevel gear) with various microstructural solvers 

revealed that, in case of proper mass scaling, the most efficient and 

robust microstructural solver is the one with semi-implicit con- 

stitutive integration using stress-based return mapping algorithm, 

implemented as user-defined material subroutines in ABAQUS Ex- 

plicit (VUMAT). Nevertheless, quantitative comparison of the per- 

formance of different integration schemes, and comparison of the 

results of conventional thermo-mechanical simulations with those 

of thermo-micro-mechanical simulations are out of scope of the 

present paper; however, they will make interesting topics for fu- 

ture research. 

Although the microstructural constitutive model is validated 

comprehensively through simple uniaxial compression experi- 

ments ( Motaman and Prahl, 2019 ), it still required further valida- 

tion using experimental deformation under much more complex 

loading condition (varying temperature, strain rate and stress state) 

such as the one exists in industrial bulk metal forming processes. 

TMM-FE simulation of bevel gear is validated by measurement of 

geometrically necessary dislocation (GND) density ( ρGN ) using high 

resolution EBSD, as well as experimental punch force. In order to 

examine the simulated GND density, which by definition is equal 

to the wall immobile dislocation density ( ρwi ), several samples are 

cut from different regions of the final forged product. From each 

specimen, an EBSD sample is prepared. Comparison between FE- 

simulated wall immobile dislocation density and the measured av- 

erage GND density using EBSD in the final forged part, 2 which 

2 Sample preparation for EBSD involved standard mechanical polishing to 

0.05 μm, followed by electropolishing in a 5% perchloric acid and 95% acetic acid 

solution (by volume) with an applied voltage of 35 V. Measurements are performed 

using a field emission gun scanning electron microscope (FEG-SEM), JOEL JSM 

70 0 0F, at 20 KeV beam energy, approximately 30 nA probe current, and 10 0-30 0 nm 
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Fig. 12. FE-simulated and experimental punch normal force response versus time in the preform and final forging steps. The unavoidable noise existing in the experimental 

force plots is associated with the relatively high force and the trade-off between accuracy and stiffness of force measuring devices. The lower and upper bounds of the 

green hatched area (confidence interval) that surrounds the smoothed experimental curve are drawn based on the precision of the force measuring device as well as the 

maximum and minimum peaks of the applied various smoothing algorithms. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

is manufactured without preheating of the billet prior to preform 

forging step, is shown in Fig. 11 . 

Comparison of distribution of wall immobile dislocation density 

( ρwi ) in the final forged parts manufactured with preheating (prior 

to preform forging) to 180 °C ( Fig. 10 (d)) and without preheating 
( Fig. 11 (a)) reveals that preheating has a significant influence on 

the distribution of ρwi and its mean value. In the preheated case, 

the final forged product has a more homogenous distribution of 

ρwi ; and the mean ρwi has a larger value. This will result in a more 

homogenous grain size distribution and finer grains after recrys- 

tallization annealing, which is one of the subsequent steps in the 

manufacturing process chain of the bevel gear. The reason is that 

ρwi = ρGN is the principal driving force for recrystallization because 

it is the only source of micro-scale residual stresses due to crystal 

lattice distortions. There is another advantage in the preheating: it 

step size. A Hikari EBSD camera by Ametek-EDAX, in combination with the OIM 

software suite (OIM Data Collection and OIM Analysis v7.3) by EDAX-TSL, is used 

for data acquisition and analysis. Subsequently, at each point, GND density is calcu- 

lated from kernel average misorientation (KAM), which is the average angular devi- 

ation between a point and its neighbors in a distance twice the step size as long as 

their misorientation does not exceed 5 °. After mapping KAM values to GND density, 

over a representative material area with the size of100 ×100 μm, the average GND 

density is calculated. 

lowers the rate of damage accumulation since viscoplastic defor- 

mation of ferritic steels in warm regime is followed by a relatively 

high plastic hardening due to dynamic strain aging (DSA); and gen- 

erally higher plastic hardening means lower rate of damage accu- 

mulation (nucleation and growth of micro-voids). 

The FE-simulated normal force responses of the punches versus 

time in the preform and final forging steps are compared to their 

experimental counterparts in Fig. 12 . 

6. Concluding remarks 

In the introduced method, addition of the microstructural 

solver, which computes the microstructure/properties evolution, to 

the main thermal and mechanical solvers enabled fully coupled 

thermo-micro-mechanical simulation. Since in the cold and warm 

regimes, (by definition) the microstructure variables are solely the 

dislocation structures and their associated dislocation densities, by 

the assumption of isotropy (which is valid for bulk metal form- 

ing of initially textureless materials), the state of microstructure 

of final product and its flow properties as well as the thermo- 

mechanical aspects of the process were fully determined. The ap- 

proach proposed and executed in this study has proven to be 

a sustainable and perhaps the only (computational) solution for 
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comprehensive and simultaneous design of product and process. 

In summary: 

• The theory of continuum finite strain for isotropic hypoelasto- 

viscoplasticity has been reformulated in the format of rate 

equations (without using accumulated strain scalars and ten- 

sors). This is the only feasible way for correct integration of 

a microstructural constitutive model based on microstructural 

state variables (e.g., dislocation densities). Moreover, integration 

of the microstructural constitutive model using various schemes 

has been explained in detail. 

• The proposed method has shown to be computationally effi- 

cient and applicable in industrial scale for optimization of pro- 

cess parameters and tools with respect to properties and mi- 

crostructure of final products. The cost of TMM implicit FE sim- 

ulations is higher by orders of magnitude compared to their ex- 

plicit counterparts. Moreover, the performance of TMM explicit 

FE simulations with the proposed stress-based return mapping 

for hypoelasto-viscoplasticity is considerably higher than those 

performed using strain-based return mapping. 

• For the first time, an industrial metal forming process has 
been thermo-micro-mechanically simulated, and become val- 

idated not only by experimental force-displacement but also 

using measured microstructural state variables, i.e. dislocation 

density, at different points in the actual final product. 
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a b s t r a c t 

Additively manufactured (AM) metallic parts exhibit substantially different microstructures compared to 

those that are conventionally produced. Characterization studies have revealed that the microstructure of 

as-built AM metallic materials is highly heterogeneous in many respects. The strongly anisotropic me- 

chanical response under plastic deformation observed in AM metals, compared to their conventionally 

manufactured counterparts, lies in the aforementioned inherent microstructural disparities. In this study, 

we have focused on a high-manganese steel (HMnS) processed by laser powder bed fusion (LPBF), which 

exhibits twinning-induced plasticity (TWIP). The as-built microstructure is carefully characterized by elec- 

tron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and X-ray diffraction (XRD) 

techniques. To unfold the potential of metal additive manufacturing, it is essential to understand the 

microstructure of AM products and its connection with the mechanical properties by means of numeri- 

cal modeling and simulation. The mechanical response of AM components under plastic deformation is 

highly complex and its simulation requires advanced modeling and numerical methods. In the present 

study, in order to simulate the anisotropic plasticity of the LPBF-HMnS, we used the full field method 

for computational polycrystal homogenization combined with physics-based crystal plasticity constitutive 

and statistical microstructure modeling. The impact of different process-induced microstructural hetero- 

geneity characteristics on macroscopic strain hardening behavior of the material has been comprehen- 

sively and systematically investigated. Finally, it has been argued why the chosen AM material with the 

selected processing parameters and chemical composition represented an ideal candidate for a generic 

assessment of the anisotropic polycrystal plasticity due to microstructural heterogeneity. 

© 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

Metal additive manufacturing (AM) offers enormous poten- 

tial for rapid production of net-shaped, geometrically complex, 

lightweight and customized metallic parts for aerospace, auto- 

motive, energy and biomedical applications without the need for 

expensive tools required in conventional manufacturing [1–4] . 

The metal AM technologies enable the production of fully dense 

bulk volumes in a layer-wise fashion by melting a powder or 

wire feedstock using a high power density source such as laser, 

electron beam or plasma arc, as opposed to conventional casting, 

subtractive or formative manufacturing processes. Metal AM tech- 

nologies are divided into powder bed fusion (PBF) techniques, e.g. 

∗ Corresponding authors. 

E-mail addresses: seyedamirhossein.motaman@iehk.rwth-aachen.de (S.A.H. Mo- 

taman), christian.haase@iehk.rwth-aachen.de (C. Haase). 

laser powder bed fusion (LPBF) often referred to as selective laser 

melting (SLM), and directed energy deposition (DED) processes, 

e.g. wire or powder laser directed energy deposition (LDED), also 

known as laser metal deposition (LMD) [3] . 

While geometrical aspects during AM are highly controllable, 

so far the biggest challenge is the tailoring of the microstructure 

and mechanical properties of AM products [1,2,5–8] . Therefore, 

establishing a quantitative linkage among process-microstructure- 

properties is imperative for design and optimization [9] and con- 

sequently essential for a widespread adoption of AM structurally 

critical load bearing components [8,10,11] . Given the complexity 

of metal AM processes and as-built/as-deposited/as-fabricated 

microstructures, multi-scale and multi-physics integrated compu- 

tational materials engineering (ICME) seems to be a viable solution 

[1,6,8,10–13] . 

It is well known that the AM process parameters significantly 

influence the microstructure [1,7,14,15] . The localized melt pool 

https://doi.org/10.1016/j.actamat.2019.12.003 
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shape and size, scanning strategy, epitaxial nucleation and growth, 

high thermal gradient, high cooling/heating rate, and thermal cy- 

cles resulting from the repeated deposition of newly molten layers 

result in the evolution of highly heterogeneous microstructure 

(strong texture, inhomogeneous grain morphology, heterogeneous 

dislocation substructure and elemental segregation) [1,5,15] . The 

profound anisotropic mechanical response under plastic deforma- 

tion observed in AM metals, compared to their conventionally 

manufactured counterparts (with the same chemical composi- 

tion but relatively homogenous microstructure), originates from 

these hierarchical microstructural heterogeneities [15–18] . The 

anisotropy in mechanical behavior is detrimental for applications 

involving multiaxial stress states. 

In the last few years, the impact of process parameters on the 

development of microstructural heterogeneities [19–39] as well as 

the effect of process-induced microstructural heterogeneities on 

anisotropic mechanical properties of different metallic materials 

have been experimentally investigated for various AM processes 

[40–58] . However, even though the effect of AM process param- 

eters on microstructural evolution has been explored through 

modeling and simulation [59–72] , so far, literature lacks fine-scale 

in-depth investigations of the relationship between microstruc- 

tural heterogeneities of AM metallic materials and their anisotropic 

mechanical properties. 

High-manganese steels (HMnS) are characterized by outstand- 

ing mechanical properties, but so far their application has been im- 

peded due to inherent limitations in conventional processing. AM 

provides an alternative to exploit the unique properties of HMnS 

due to strongly differing processing conditions [52,73,74] . In this 

work, a fully austenitic HMnS processed by LPBF is used. The out- 

come as-built microstructure is carefully characterized by electron 

backscatter diffraction (EBSD), transmission electron microscopy 

(TEM) and X-ray diffraction (XRD) techniques. In order to construct 

a representative volume element (RVE), the characterization data 

were statistically analyzed to derive a set of parameters, namely 

the microstructure descriptors, which adequately describe the mi- 

crostructural heterogeneity characteristics. Subsequently, the gen- 

erated RVE was used to simulate the anisotropic strain hardening 

behavior of the LPBF-HMnS by full field method for computational 

polycrystal homogenization using a spectral solver and a physics- 

based crystal plasticity constitutive model. Finally, the influence of 

different process-induced microstructural heterogeneity aspects on 

the overall polycrystal plasticity was systematically studied. 

2. Experimental investigation 

2.1. Material 

In the present study, a fully austenitic high-Mn steel produced 

by LPBF process is used. The concept of HMnS is based on stabi- 

lizing the austenitic phase by high Mn content, typically between 

15 and 30 wt%. Due to a low stacking fault energy (SFE) in the 

range of 10–50 mJ m 

−2 , multiple deformation mechanisms can be 
activated in addition to dislocation slip/glide [75–79] . Under uni- 

axial deformation at a quasi-static strain rate and room tempera- 

ture, low SFE values ( ≤18 mJ m 

−2 ) coincide with the activation of 
transformation-induced plasticity (TRIP), while TWIP is triggered 

in the range between 12 and 50 mJ m 

−2 [80–85] . These additional 
deformation mechanisms together with the strong planarity of dis- 

location slip promote a high strain hardening (rate) [80,81,84,86–

89] . Since active deformation mechanisms is a function of SFE and 

hence alloy composition, the mechanical properties can be roughly 

tailored by alloy screening, e.g. modifying Mn, C or Al contents 

[81,87,90] . Table 1 lists the chemical composition of the powder 

and as-built states of the investigated HMnS, which were deter- 

mined by wet chemical analysis. Pre-alloyed steel and Al powder 

Fig. 1. AM specimens for microstructure characterization and uniaxial testing. Thin- 

walled support structures were employed at the bottom of each specimen which 

connects them to the substrate plate (SP). 

were homogenized in a Turbula mixer for 1 h and then sieved to 

guarantee a homogeneous mixture with a powder size between 10 

and 45 μm. Materials with similar chemical compositions which 

were conventionally produced by thermo-mechanical treatment 

have been experimentally and numerically investigated [91–93] . 

Specimens with a relative density of ca. 99.95% were produced 

using the process parameters presented in Table 2 . During the LPBF 

process, the chemical composition was mainly altered due to evap- 

oration of Mn ( Table 1 ). Mn is highly vulnerable to evaporation due 

to its high vapor pressure [94,95] . Evaporation of Mn has led to 

reduction of SFE from 25.2 mJ m 

−2 (associated with 21 wt% Mn 
in the powder) to 20.2 mJ m 

−2 (associated with 18.5 wt% Mn in 
the bulk material) [87] . However, still the reduced SFE is within 

the range of slip and TWIP (without TRIP) under uniaxial deforma- 

tion at a quasi-static strain rate and room temperature, provided 

that the alloying elements (most importantly C and Mn) are dis- 

tributed uniformly [80–85] . Samples for microstructure character- 

ization (10 mm 

3 cubes), as well as for mechanical testing (cylin- 

drical rods with 45 mm length and 6 mm diameter), were fabri- 

cated as shown in Fig. 1 . In order to experimentally investigate the 

anisotropic flow behavior of the AM material, cylindrical specimens 

were 3D-printed with different (symmetry) axis orientation, 0 °, 45 °
and 90 ° with respect to the substrate plane (SP) and build direc- 
tion (BD): the horizontal, diagonal and vertical samples ( Fig. 1 ). 

2.2. Macroscopic plasticity 

From the differently oriented rods shown in Fig. 1 , dogbone- 

shaped cylindrical specimens with a gage length of 30 mm and 

section diameter of 6 mm were machined. The anisotropic plastic 

flow behavior of the material was then characterized by uniaxial 

tensile tests performed on a Z100 Zwick/Roell machine at (con- 

stant) room temperature ( T = 23 ◦C ), a constant quasi-static (true) 
strain rate ( ̇ ε = 10 −3 s −1 ), and different loading axis (0 °, 45 ° and 
90 ° with respect to the BD). The corresponding flow (true stress–

strain) curves and strain hardening (first derivative of stress with 

respect to strain) curves for the uniform elongation domain are 

plotted in Fig. 2 . For each sample orientation three independent 

tensile tests with the same deformation parameters were carried 

out. The experimental scatter is negligible: the mean normalized 

absolute deviation is consistently less than 0.3%. Additionally, in 

order to investigate evolution of micro-state variables (MSVs) with 

strain, three interrupted tensile tests with load direction/axis (LD) 

along the BD (LD ‖ BD) were performed on three vertical specimens 
until engineering/nominal strains ( ɛ eng ) of 12.5%, 25% and 37.5%. 
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Table 1 

Chemical composition of different states of the investigated steel. 

State Fe C [wt%] Mn [wt%] Cr [wt%] Ni [wt%] Al [wt%] Si [wt%] O [ppm] S [ppm] P [ppm] 

Steel powder (X30Mn21) Base 0.33 21.0 0.16 0.08 0.03 0.09 1073 51 < 20 

As-built (X30MnAl19-1) Base 0.33 18.5 0.16 0.09 1.00 0.11 257 41 < 20 

Table 2 

Process parameters/specifications. 

Process Energy source Deposition parameters Scanning strategy 

Type wavelength Power Spot diameter Scanning speed Hatch distance Layer thickness 

[nm] [W] [μm] [mm s −1 ] [μm] [μm] 

LPBF Yb-YAG fiber 

laser 

1064 120 82 700 70 30 Bidirectional with 33 °
rotation in each layer 

Fig. 2. Mechanical response of the investigated material under uniaxial tension at room temperature ( T = 23 ◦C ) , constant quasi-static (true) strain rate ˙ ε = 10 −3 s −1 , and 
different tensile LD: 90 ° (horizontal), 45 ° (diagonal) and 0 ° (vertical) with respect to the BD. 

As shown in Fig. 2 , although the variation in the initial 

yield/flow stress ( σ 0 ) of the horizontal (LD ⊥ BD) and vertical 

(LD ‖ BD) samples is relatively small (weak anisotropy in the ini- 
tial yield), there is a strong anisotropy in their (tensile) strain 

hardening ( θ ≡ ∂σ
∂ε 
), leading to considerably different (yield/flow) 

true stresses ( σ ) at various strains ( ɛ ). Nevertheless, the difference 
between flow and strain hardening curves of the horizontal and 

diagonal ( LD � BD = 45 ◦) samples is relatively small. Furthermore, 
in all the performed tensile tests, nearly no (macroscopic) strain 

localization/necking (post-uniform elongation) is observed ( Fig. 

2 (a)), as the flow curves have barely reached the Considere 

criterion ( θ = σ ) ( Fig. 2 (b)). 

2.3. Microstructure 

AM components having the same shape and size but manu- 

factured by different process parameters have strikingly different 

microstructures. Fundamentally, the solidification microstructure 

depends on the local heat flow directions (as a result of temper- 

ature gradient) and competitive epitaxial grain growth in one of 

the six 〈 100 〉 preferred/easy growth directions in face-centered 
cubic (fcc) alloys [96] . In fact, the grain growth is favored when 

the maximum heat flow direction aligns closely with one of the 

preferred growth directions. This is the main reason behind the 

typical strong microstructural polarity along the BD observed in 

AM metallic products. Since the as-built microstructure consists 

of fully austenitic (fcc) grains (single-phase), the sources of mi- 

crostructural heterogeneity are grain morphology and texture on 

the meso–scale as well as dislocation substructures and elemental 

micro-segregation on the micro-scale. 

The applied scanning strategy involved rotation of the scan 

direction (SD) and the transverse direction (TD) in each AM layer 

by 33 ° around the BD ( Table 2 ). Therefore, for a randomly chosen 

material cross section on a plane parallel or orthogonal to the 

BD, the difference between SD and TD is unclear. For this reason, 

in the following, sometimes instead of SD and/or TD (or any 

direction in the plane containing both), the terms scan/transverse 

direction (S/TD) or transverse/scan direction (T/SD) (so that T/SD 

⊥ S/TD) is used. These terms refer to any direction on the plane 

orthogonal to the BD. The grain morphology (size, shape and 

shape-axes orientation) distribution of the as-built material was 

characterized by EBSD of relatively large areas on two orthogonal 

planes: parallel to the BD (designated by ‖ BD) and orthogonal 
to the BD (designated by ⊥ BD). The alternative approach for a 

more precise 3D characterization of the microstructure would 

be 3D-EBSD using a focused ion beam (FIB) automated serial 

sectioning technique [97–101] . Moreover, dislocation density and 

twin fraction in the as-built/undeformed material as well as their 

evolution with respect to strain using differently strained material 

states were also estimated by means of EBSD orientation maps on 

‖ BD and ⊥ BD sections. 

EBSD measurements of the as-built samples were carried 

out on a JEOL JSM 70 0 0F field emission gun scanning electron 

microscope (FEG-SEM) using an EDAX-TSL Hikari EBSD camera. 

EBSD measurements of the deformed samples were performed 

using an Oxford Instruments NordlysNano EBSD detector on a Carl 

Zeiss GeminiSEM FEG-SEM with a 60 μm aperture. All EBSD mea- 

surements were conducted with an accelerating voltage of 20 kV, 

30 nA probe current and 100 nm step size. XRD macro-texture 

measurements were performed on ‖ BD and ⊥ BD planes for the 

as-built material states. A Bruker D8 Advance X-ray diffractometer 

with a HI-STAR area detector operating at 30 kV and 25 mA with 

Fe-K α radiation (wavelength of 1.93735 nm) was used to acquire 

incomplete (0 °–85 °) {100}, {110} and {111} pole figures. Samples 
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Fig. 3. EBSD IPF orientation maps of the as-built material on ‖ BD and ⊥ BD sections. 

Solid black lines indicate at least 10 ° misorientation across grain boundary. 

for EBSD and XRD measurements were prepared by mechanical 

grinding (up to 1200 SiC grit paper), mechanical polishing (3 

and 1 μm diamond suspension) and etching with a Nital (5%) 

solution. The mechanically polished samples were electropolished 

for 20 s at a voltage of 28 V at room temperature by a Struers 

LectroPol-5 electrolytic polishing machine using a Struers A2 

electrolyte. For the analysis and noise reduction of microstructure 

characterization data acquired by EBSD and XRD, the open source 

MATLAB R ©-based MTEX toolbox [102–106] and DREAM.3D soft- 

ware [101,107–110] were used (see Appendix A ). In addition, TEM 

measurements were conducted on a JEOL JEM-2100 microscope 

operating at 200 kV. TEM foils were electropolished at a voltage 

of 20 V at room temperature by a Struers Tenupol-5 double jet 

unit using an electrolyte composed of 10% perchloric acid and 90% 

acetic acid. TEM bright-field images and selective area diffraction 

pattern (SADP) were recorded with imaging plates (made by 

DITABIS AG) and digitalized using a DITABIS special scanner. 

2.3.1. Grain morphology 

EBSD inverse pole figure (IPF) orientation maps of ‖ BD and 

⊥ BD sections of the as-built material are shown in Fig. 3 . Grains 

are defined in such a way so that there is at least 10 ° misorien- 
tation across the grain boundaries. From the total area of each 

grain ( A ), the grain size or equivalent grain diameter ( d ≡
√ 

4 
π A ) 

is calculated. Grain size distributions (GSD) (number and area 

fractions) on ‖ BD and ⊥ BD sections are plotted in Fig. 4 (a) and 

(b). In addition, the lognormal probability density/distribution 

function (PDF) which is often used to describe GSD in polycrystals 

[108,109,111,112] , has been fitted to the grain size number frac- 

tion distribution, as shown in Fig. 4 (a) and (b). As suggested by 

Figs. 3 and 4 (a) and (b), there is a profound heterogeneity in GSD 

on both ‖ BD and ⊥ BD planes. However, the GSD heterogeneity 

on the ‖ BD section is somewhat higher than that on the ⊥ BD 

section. On the ‖ BD section, 21.53% of the total number of grains 

take up only 0.97% of the total scanned area. Conversely, there is 

one large grain (number fraction of 0.51%) occupying 21.33% of 

the total area. Essentially, this tremendous heterogeneity in GSD 

should have a considerable effect on the mechanical response of 

the material [113–116] . 

The anisotropic shape of an arbitrary grain in the microstruc- 

ture can be characterized by the ellipsoid model. In this context, 

three shape parameters are used, including grain size (equivalent 

diameter d ), minimum aspect ratio ( m min ≡ c / a ) and maximum 

aspect ratio ( m max ≡ b / a ) [117] . Each ellipsoid can be described 

by three (principal) axes with the lengths a, b and c ( a ≥ b ≥ c ), 

aligned with a Cartesian orthonormal basis ( ̂  e a , ̂  e b , ̂  e c ) . In addition, 

the spatial orientation of the ellipsoid axes ( ̂  e a , ̂  e b , ̂  e c ) with respect 

to the reference/global/sample/lab Cartesian coordinate system 

xyz having the orthonormal basis ( ̂  e x , ̂  e y , ̂  e z ) , can be described by 

the three Euler angles ϕ 

′ ≡ { ϕ 

′ 
1 , Φ

′ 
, ϕ 

′ 
2 } (Bunge/ zxz notation) that 

represent three elemental rotations (see Appendix D ). Thus, for a 

full characterization of grain morphology distribution by ellipsoid 

simplification, it is sufficient to determine the distribution of the 

aforementioned six variables using the PDF 

 

F ( d, m min , m max , ϕ 

′ ) . 
Fig. 4 (c) and (d) shows the grain shape (aspect ratio) distri- 

bution (in terms of grain number and area fractions) with (2D) 

ellipse fitting to the spatially resolved grains using the EBSD orien- 

tation maps of the ‖ BD and ⊥ BD sections of the as-built material 

( Fig. 3 ). The best-fit ellipse for a given grain is a section through 

the ellipsoid representation of that grain orthogonal to a semi-axis 

of the ellipsoid. Although semi-axes of the ellipse section have the 

same aspect ratio as the sliced ellipsoid, the dimensions must be 

less than or equal to the axes of the sectioned ellipsoid. Never- 

theless, 2D orientation maps do not provide all the information to 

fully determine 

 

F ( d, m min , m max , ϕ 

′ ) , as they do not give a com- 
plete 3D geometry of the grain ensemble. As shown in Figs. 3 and 

4 (c) and (d), the section of grains on ‖ BD plane are dominantly 

columnar, meaning that they are polarized (having an elongated 

shape with relatively low aspect ratio and low angle of the major 

principal axis) along the BD. In contrast, the sections of grains on 

⊥ BD plane are nearly equi-axed (aspect ratio close to 1). Therefore, 

it is plausible to assume that the mean aspect ratio on the ⊥ BD 

section ( ̄m ⊥ BD ) represents the average aspect ratio c̄ / b̄ of (3D) 
ellipsoids, while the mean aspect ratio on the ‖ BD section ( ̄m ‖ BD ) 
contains both average aspect ratios m̄ min ≡ c̄ / ā and m̄ max ≡ b̄ / ā 
of ellipsoids ( ̄m min < m̄ ‖ BD < m̄ max ). Hence, in this specific case, 

we assume that m̄ min and m̄ max differ from m̄ ‖ BD by half of the 
standard deviation of the fitted PDF: m̄ max / min = m̄ ‖ BD ± σ‖ BD / 2 , 
meaning that m̄ min 

∼= 

0 . 3 and m̄ max 
∼= 

0 . 5 . 

By ellipse fitting to the grains analyzed from the 2D orientation 

maps of two orthogonal sections [118] and calculation of the angle 

between ellipses major or minor axes and a reference direction, 

we can obtain a rough estimate of the shape-axes orientation of 

grains in the 3D space. Grain shape-axes orientation distribution 

on the ‖ BD and ⊥ BD sections of the as-built material are shown 

in Fig. 4 (e) and (f). As shown in Fig. 4 (e) and (f), the (ellipse- 

fitted) axes of grain sections on the ⊥ BD plane is nearly oriented 

randomly, while the major axes of grain sections on the ‖ BD plane 

are almost aligned with the BD. 

2.3.2. Crystallographic texture 

In order to have a better representation of the crystallographic 

texture of the as-built material, XRD macro-texture measure- 

ments were carried out in addition to the EBSD micro-texture 

measurements. Since distributions of (2D) morphological charac- 

teristics on the ‖ BD and ⊥ BD sections are considerably different 

( Fig. 4 ), to ensure a representation of the underlying bulk texture 

(weight-averaged by grain volume) of the as-built material, XRD 
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Fig. 4. Grain morphology (size, shape and shape-axes orientation) distributions of the as-built material, evaluated from the EBSD orientation maps. The 2D pole figures 

plotted in (e) and (f) as their corresponding histogram represent the distributions of the angle of grain major axis ( ω) on the respective section. 
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Fig. 5. Crystallographic orientation distribution in terms of IPFs evaluated from XRD-measured pole figure data of the as-built material on ‖ BD and ⊥ BD sections. 

Fig. 6. Misorientation (angle and axis) distribution of the as-built material on ‖ BD and ⊥ BD sections. 

macro-texture measurements were performed on both ‖ BD and 

⊥ BD sections (the surfaces at which the X-ray incident beam hits 

the specimen). Crystallographic orientation distribution functions 

(ODFs) were calculated from the XRD pole figure measurements. 

The ODF is a PDF ( 

 

G (ϕ) ) representing the statistical distribu- 

tion of the orientation of the crystallographic orthonormal basis 

( ̂  e 100 , ̂  e 010 , ̂  e 001 ) with respect to the reference Cartesian coor- 

dinate system xyz having the basis ( ̂  e x , ̂  e y , ̂  e z ) . This orientation 

relationship can be described in terms of three Bunge-Euler 

angles ϕ ≡ { ϕ1 , Φ , ϕ2 } denoting three elemental rotations (see 

Appendix D ). The corresponding IPFs evaluated from the XRD 

macro-texture measurement data of the as-built material on 

‖ BD and ⊥ BD sections are plotted in Fig. 5 . A relatively strong 

〈 011 〉‖ BD fiber texture was observed. Nevertheless, the intensity 

of 〈 011 〉‖ BD is higher in the XRD measurements on ‖ BD section 

than that on ⊥ BD section. 

Another texture related aspect of microstructural heterogeneity 

which needs to be considered is the misorientation distribution. 

The misorientation distribution function (MDF) represents the 

statistical distribution of grain boundary misorientation, typically 

described in axis-angle notation using the PDF 

 

H ( a , ω ) , where 

a ≡ 〈 h, k, l 〉 denotes the misorientation (crystallographic rotation) 
axis and ω being the misorientation angle. While the MDF of 

a material is certainly connected to its ODF, the presence of 

morphological heterogeneities influencing the orientations of 

contiguous neighboring grains may have a strong effect on the 

MDF [119–126] . In the case of a random distribution of morpho- 

logical characteristics (size, shape and shape-axes orientation), the 

MDF is fully dependent on the ODF. Therefore, with a random 

morphology, the (spatially-) correlated MDF or grain boundary 

misorientation distribution, which can be determined using EBSD 

orientation maps, coincides with the uncorrelated/Mackenzie MDF 

calculated by random sampling of orientations from the ODF 

[119,127] . Correlated and uncorrelated misorientation (angle-axis) 

distributions calculated, respectively using the EBSD orientation 

maps and XRD pole figure data associated with the ‖ BD and ⊥ BD 

sections of the as-built material are shown in Fig. 6 . According to 

Fig. 6 , the morphological heterogeneity has led to an appreciable 

deviation between correlated and uncorrelated misorientation 

angle-axis distributions on both ‖ BD and ⊥ BD sections. In the 

as-built material, grain boundaries with low angle misorienta- 

tions have a higher frequency than in the case with identical 

macro-texture and random grain morphology. 

2.3.3. Evolution of micro-state variables (MSVs) 

It has been reported that as-built AM metallic materials contain 

relatively high dislocation density, which is formed due to ther- 

mally induced stresses during rapid solidification [16,39,128,129] . 

TEM images shown in Fig. 7 reveal heterogeneous cellular dis- 

location fractal pattern (having relatively thick walls with high 
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Fig. 7. Bright-field TEM images showing, (a–c) high-density cellular dislocation fractal pattern and incidental dislocation boundaries on the ‖ BD section of the as-built 
material; and (d–f): twin substructure evolved at 50% strain under uniaxial tension along the BD (LD ‖ BD) at a quasi-static strain rate ( ̇ ε̄ = 10 −3 s −1 ) and room temperature 

( T = 23 ◦C ). 

dislocation density) and twin substructure in the as-built and 

deformed material states. The observed cell block (dislocation) 

substructure resembles those that typically exist in conventionally- 

manufactured plastically-deformed materials [130] . Due to a neg- 

ligible misorientation across neighboring cells, their boundaries 

are considered as incidental dislocation boundaries (IDBs) mostly 

comprised of (unipolar and dipolar) statistically stored dislocations 

(SSDs). In contrast, subgrain or geometrically necessary boundaries 

(GNBs) are made of highly concentrated (unipolar) geometrically 

necessary dislocations (GNDs) with a net Burgers vector accom- 

modating localized lattice curvature, that often arises as a result 

of non-uniform plastic deformation [131–134] . 

As shown in Fig. 3 , the as-built microstructure has a consid- 

erably high intra-granular misorientation, which is attributed to 

a high (initial) GND density [133–136] . We utilized the method 

proposed by Pantleon [137] for spatially resolving GND density on 

(2D) orientation maps at each slip system. This approach is based 

on curvature and dislocation density tensors with reduced number 

of components (implemented in the recent releases of MTEX). Fur- 

thermore, using the EBSD orientation maps of differently strained 

(uniaxial tension) samples on ‖ BD and ⊥ BD sections, twin bound- 

aries were determined. The criterion used for characterization of 

( Ʃ3) twin boundaries is based on the following definition valid 
for fcc crystals: 〈 11 ̄1 〉 mt = 〈 ̄5 ̄1 1 〉 tw 

, 〈 1 ̄1 ̄1 〉 mt = 〈 ̄1 15 〉 tw 

, 〈 111 〉 mt = 

〈 ̄1 ̄5 ̄1 〉 tw 

, where mt and tw denote matrix and twin, respectively. 

This corresponds precisely to a 60 ° misorientation about the 〈 111 〉 
axis within the austenitic matrix [138] . Backscatter Kikuchi pat- 

tern image quality maps were also used to help identifying twin 

boundaries [88,139,140] . The twins in materials with cubic crystal 

structure often appear in bundles/stacks of thin twins [141,142] . 

Hence, the image quality of the EBSD patterns decreases near 

these twin bundles. After the characterization of twin boundaries, 

twinned regions were identified from the matrix. Subsequently, 

the summation of the area of the twinned regions over the total 

scanned area rendered the twin (area) fraction. Fig. 8 shows the 

distributions of estimated GND density, twin boundaries and 

ε-martensite (hcp) on the EBSD orientation maps of ‖ BD and 

⊥ BD sections of the as-built/undeformed and differently strained 

(uniaxial tension along the BD) vertical material samples. The evo- 

lution of the mean GND density and twin and ε-martensite 
(area) fractions with respect to strain calculated based on 

the analysis of EBSD orientation maps of ‖ BD and ⊥ BD sec- 

tions of the as-built and differently strained (uniaxial tension 

along the BD) vertical material samples are shown in Fig. 9 . 

As shown in Figs. 8 and 9 , in the regime of the adopted defor- 

mation parameters (strain, strain rate, temperature and triaxiality), 

the fraction of ε-martensite and hence the amplitude of TRIP effect 
at different strains is negligible (less than 1.5%). Moreover, in all 

the measurements, the area fraction associated with α′ -martensite 
was almost zero (less than 0.05%). The highest ε-martensite area 
fraction was measured at 12.5% strain state on ‖ BD section (1.2%), 

while by increasing strain, its value was reduced. Therefore, we 

assume that slip and twinning are the only (dominant) plastic 

deformation mechanisms that activate in the investigated material 

(at room temperature and quasi-static strain rates). Given the 

average values of ε-martensite fractions on ⊥ BD and ‖ BD sections 

( Fig. 9 (c)), it is conceivable that the formation of ε-martensite 
in this material under the chosen deformation parameters is a 

stochastic event (not a direct function of macroscopic strain). This 

can be explained by considering the effect of elemental micro- 

segregation (distribution of alloying elements on the micro-scale) 

on the SFE. Depending on the process type and processing pa- 

rameters, elemental micro-segregation in AM might be significant 

[52,73] . Moreover, since the SFE is an explicit function of chemical 
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Fig. 8. Spatially resolved GND density, twin boundary and ε-martensite. Calculations are performed using the EBSD orientation maps of ‖ BD and ⊥ BD sections of the as- 

built/undeformed and differently strained (uniaxial tension along BD) vertical material samples. Note that the transformed (due to deformation) ε-martensite content is 

comparatively negligible in the regime of the adopted deformation parameters. 
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Fig. 9. Evolution of the mean GND density, twin (area) fraction and ε-martensite (area) fraction with respect to (engineering) strain (uniaxial tension along the BD) estimated 

by the analysis of EBSD orientation maps of ‖ BD and ⊥ BD sections of the as-built and differently strained vertical material samples. 

composition, local variation of concentration of alloying elements 

results in a distribution of SFE (around the calculated mean value) 

on the micro-scale. Therefore, even in the so-called “TWIP steels”, 

typically there are small local volumes with sufficiently low SFE 

and high dislocation density, in which TRIP occurs. 

The GND density values estimated from the orientation maps 

on ‖ BD and ⊥ BD sections are similar. It seems that they converge 

to their average at relatively large strains. However, the twin 

fraction values estimated from the analysis of orientation maps of 

‖ BD sections are considerably lower than those of corresponding 

⊥ BD sections. This is attributed to the larger grain size and higher 

microstructural heterogeneity and polarity on ‖ BD planes, as well 

as the limited scanned area. As a result, the twin area fraction 

calculated from ⊥ BD sections is a better representative for twin 

volume fraction of the bulk of the material. 

3. Continuum crystal plasticity modeling 

In the present study, we adopted the full field (continuum) 

crystal plasticity modeling framework for computational polycrys- 

tal homogenization. In this context, the meso–scale microstructure 

is modeled as a periodic statistically representative volume el- 

ement (RVE) of the polycrystalline aggregate. The externally 

imposed macroscopic boundary conditions in terms of homoge- 

nous rate of the deformation gradient tensor ( ̇ F̄ ) and the first 

Piola–Kirchhoff stress tensor ( ̄P ) with complementary compo- 

nents (mutually exclusive) translate to pure deformation periodic 

boundary conditions on the RVE. The governing boundary value 

problem is then solved to fulfill the mechanical/stress equilibrium 

using a spectral method based on fast Fourier transform (FFT) 

by calculation of the deformation gradient at discretized space 

(integration pints) and time (time steps/increments) [143,144] . 

The crystal plasticity constitutive model developed in this 

study explicitly accounts for both dislocation slip and twinning as 

plastic deformation mechanisms along with their corresponding 

kinetics and associated deformation systems. A model based on 

the continuum theory of crystal finite strain/deformation is used 

to project the deformation gradient and stress tensors at material 

points on the respective deformation (slip/twin) systems in terms 

of (resolved) plastic shear strain rates and shear stresses. The 

mechanical response at the underlying deformation systems of 

each material point is evaluated by a physics-based constitutive 

model. The resulting sets of nonlinear partial differential equations 

(PDEs) are then integrated (using the general Euler method with 

adaptive damping factor), linearized (using the tangent-based 

iterative Newton–Raphson scheme) and solved by a self-consistent 

(semi-) implicit return mapping (predictor-corrector) algorithm 

implemented in the modular crystal plasticity code DAMASK [145] . 

The incrementally resolved fields (stress, strain, state variables) at 

the material points are then homogenized over the RVE to give 

the average macroscopic response. 

3.1. Crystal finite strain modeling 

The crystal plasticity modeling framework applied in the 

present study is based on the rigorous formalism of crystal 

hypoelasto-viscoplasticity (metallic materials) at finite strains, 

established in the last three decades of 20th century by the works 
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of Rice [146] , Hill and Rice [147] , Asaro and Rice [148] , Peirce et al. 

[149,150] , Asaro [151,152] , Asaro and Needleman [153] , Kalidindi et 

al. [154,155] , and Kalidindi [156] . 

3.1.1. Kinematics 

At single-crystal material points, the (total) deformation gradi- 

ent tensor ( F ) is multiplicatively decomposed into its elastic ( F e ) 

and isochoric plastic ( F p ) components/splits [148,157–160] : 

F ≡ ∂x 

∂ x 0 
= F e F p ; J ≡ det ( F ) = det ( F e ) > 0 ; det ( F p ) = 1 ; (1) 

where x is the spatial coordinate; subscript 0 represents the 

initial/undeformed/reference configuration; subscripts e and p 

denote elastic and plastic, respectively; and J is the Jacobian of the 

deformation map. The main postulate through the aforementioned 

elasto-plastic decomposition is that the crystal plastic deformation 

occurs by flow of material through the crystal lattice without 

distorting the lattice itself, while the material point undergoes 

lattice distortion (giving rise to lattice stresses) due to the elastic 

deformation gradient [147,148,157] . In this picture, the hypothetical 

configuration defined by the transformation F p is referred to as 

the plastic/relaxed/unloaded/undistorted/unrotated/intermediate 

configuration. Accordingly, the (total) velocity gradient tensor ( L ) 

can be expressed as [161] : 

L ≡ ∂ v 
∂x 

= 

˙ F F −1 = L e + L p ; v ≡ ∂x 

∂t 
;

L e ≡ ˙ F e F 
−1 
e ; L p ≡ F e L p F 

−1 
e ; L p ≡ ˙ F p F 

−1 
p ; (2) 

where v is the velocity vector; t is time; and the underline 

indicates the vector/tensor quantity in the plastic configuration. 

Furthermore, through the polar decomposition theorem, the non- 

singular elastic deformation gradient tensor is uniquely decom- 

posed into the product of the orthogonal elastic rigid-body rotation 

tensor ( R e ) and the symmetric right elastic stretch tensor ( U e ): 

F e = R e U e ; R 

−1 
e = R 

T 
e ; U e = U 

T 
e ; ⇒ U 

2 
e = C e ≡ F T e F e ; (3) 

where C e is referred to as the elastic right Cauchy–Green de- 

formation tensor. Therefore, the lattice rotation from the plastic 

configuration can be represented by R 

T 
e : 

Q = R 

T 
e ; Q 

−1 = Q 

T ; Q ≡

 

Q ( ϕ ) ; ⇒ ϕ = 


 

Q 

−1 (R 

T 
e 

)
; (4) 

where Q is the orientation matrix as a function of three Bunge–

Euler angles ϕ ≡ ( ϕ1 , Φ , ϕ2 ) (see Appendix D ) at the arbitrary 

time t ; and the sign denotes a function. Moreover, the initial 

orientation of the crystal lattice basis with respect to the reference 

frame is accommodated by initialization of the plastic deformation 

gradient by a virtual (initial) deformation (pure rotation) step 

[162] : 

F p0 ≡ Q 0 ≡

 

Q ( ϕ 0 ) ; F 0 = F e 0 F p0 = I ;
⇒ F e 0 = R e 0 U e 0 = R e 0 = Q 

−1 
0 = Q 

T 
0 ; U e 0 ≡ I ; (5) 

where the index 0 represents the initial (virtual) step ( t = 0 ); 

ϕ0 ≡ ( ϕ 10 , Φ0 , ϕ 20 ) is the set of three Bunge-Euler angles de- 

scribing the initial/undeformed crystallographic lattice orientation 

of the considered material point with respect to the frame of ref- 

erence; and I is the (second-order) unit/identity tensor. The virtual 

deformation step by F p 0 ≡ Q 0 guarantees that the lattice basis 

in the plastic configuration always coincides with the reference 

coordinate system. 

3.1.2. Crystal plasticity 

Inspired by Rice [146] and Kalidindi [156] , the homogenized 

plastic velocity gradient at the considered “single-crystal” material 

point in the plastic configuration is approximated as follows: 

L p 
∼= 

N sl ∑ 

α=1 
˙ γ α
sl Z 

α
sl + 

N tw ∑ 

β=1 
˙ γ β
tw Z 

β
tw ;

Z αsl = F −1 e Z 
α
sl F e ; Z αsl ≡̂ b 

α

sl ⊗̂ n 

α
sl ; Z αsl ≡ ˆ b αsl ⊗ ˆ n 

α
sl ;

Z 
β
tw = F −1 e Z 

β
tw F e ; Z 

β
tw ≡̂ b 

β

tw ⊗̂ n 

β
tw ; Z 

β
tw ≡ ˆ b 

β
tw ⊗ ˆ n 

β
tw ; (6) 

where subscripts sl and tw indicate that the corresponding quan- 

tities are associated with slip and twin, respectively; N is the 

number of deformation (slip/twin) systems; superscripts α and β
are slip and twin systems indices, respectively; γ is the plastic 

shear strain; Z is the schmid tensor; b is the slip/twin Burgers vec- 

tor; ˆ b is the slip/twin Burgers direction (unit) vector (normalized 

slip/twin Burgers vector); ˆ n is the slip/twin plane normal (unit) 

vector (see Appendix E ); and the sign ̂  indicates normalization 

( ̂ • = 

•
|•| ). Eq. (6) only holds through the following assumptions 

[163] : (i) twins can be sheared by dislocation slip in a compatible 

manner to the parent/surrounding matrix; and (ii) any potentially 

different evolution of slip resistance within them is negligible. 

3.1.3. Crystal elasticity 

The mean elastic stiffness tensor in the plastic configuration 

( ̄C e ) at the considered “single-crystal” material point is homog- 

enized as follows to account for the contributions of twins and 

matrix [156,164] : 

C̄ e = ( 1 − f tw ) C e mt + 

N tw ∑ 

β=1 
f 
β
tw C 

β
e tw ; f tw = 

N tw ∑ 

β=1 
f 
β
tw ;[ 

C 

β
e tw 

] 
i jkl 

= [ C e mt ] pqrs 

[ 
T 

β
mt −tw 

] 
ip 

[ 
T 

β
mt −tw 

] 
jq 

[ 
T 

β
mt −tw 

] 
kr 

[ 
T 

β
mt −tw 

] 
ls 
;

T 
β
tw = 2 ̂  n 

β
tw 0 

⊗̂ n 

β
tw 0 

− I ; (7) 

where the bar ¯ denotes mean/homogenization; f represents vol- 

ume fraction; C is the fourth-order stiffness tensor; subscript mt 

stands for matrix; T 
β
mt −tw 

represents the matrix transforming the 

lattice orientation in the parent matrix to the lattice orientation in 

the twinned region (twin system β) in the plastic configuration; 
and the square brackets [] is used to indicate index/component 

notation (see Appendix B ). See Appendix F for more information 

regarding the entries of C e mt as well as the calculation of the 

average elastic moduli (shear modulus and Poisson’s ratio) in case 

of cubic crystal symmetry. 

According to the general/three-dimensional Hooke’s law, the 

second Piola–Kirchhoff (nominal) stress tensor in the plastic con- 

figuration ( S ) is calculated by (double) contraction (inner product) 

of C e with its work conjugate pair, the elastic Green-Lagrange 

(nominal) strain tensor in the plastic configuration ( E e ): 

S = C̄ e : E e ; E e = 

1 

2 
( C e − I ) . (8) 

Given Eq. (6) and considering the power conjugacy of the 

(asymmetric) Mandel stress ( M ) and velocity gradient ( L ) tensors 

[154,155,161] : 

˙ w p = M : L p = 

N sl ∑ 

α=1 
τα
sl ˙ γ α

sl + 

N tw ∑ 

β=1 
τβ
tw ˙ γ

β
tw ; M ≡ C e S ;

⇒ τα
sl = M : Z αsl 

∼= 

S : Z αsl ; τβ
tw = M : Z 

β
tw 

∼= 

S : Z 
β
tw ; (9) 

where w is the volumetric deformation work at the considered 

material point; and τ is the resolved shear stress (RSS) at the 

corresponding deformation system. Generally, the deformation 

of metallic materials are categorized as crystal hypoelasto- 

viscoplasticity. Therefore, one typically assumes that elastic strains 

are very small compared to unity, so that F e ≈ I , leading to 

C e ≡ F T e F e ≈ I , which entails the useful approximation of M ≈ S . 

3.2. Physics-based crystal plasticity constitutive modeling 

The physics-based continuum constitutive model for single 

crystal plasticity presented in this section accounts for plastic de- 
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formation accommodated by both slip and twinning mechanisms. 

It has three nonlocal (internal) micro-state variables (MSVs): two 

types of dislocation density (unipolar and dipolar) and the twin 

(volume) fraction. The physics-based evolution of the MSVs and 

the respective kinetics are described in the following. 

3.2.1. Kinetics of slip 

In the framework of continuum dislocation dynamics, the no- 

tion of dislocation density as a MSV is used to describe the dislo- 

cation slip and its corresponding phenomena. In this context, how- 

ever, the (total) dislocation density can be decomposed differently 

with respect to various properties of dislocations [165] . Here, fol- 

lowing Blum et al. [166] , the total dislocation density at slip system 

α is decomposed to unipolar and dipolar dislocation densities: 

ρα
t ≡ ρα

u + ρα
d ; ρx ≡

N sl ∑ 

α=1 
ρα
x ; x ∈ { t, u, d } ; (10) 

where ρ denotes dislocation density; subscripts t, u and d stand for 

total, unipolar and dipolar, respectively; and ρ without slip system 

superscript ( α) is the sum of the corresponding dislocation density 

type ( x ) over all the slip systems at the considered material point. 

Dislocations in dipolar configuration are considered immobile 

(zero slip velocity), while unipolar dislocations can be mobile 

and thus contribute to the plastic shear strain rate according to 

Orowan’s equation [167,168] : 

˙ γ α
sl = b sl ρ

α
u v̄ αsl u ; v̄ αsl u = v sl u 0 exp 

(
−�G 

α
sl 

k B T 

)
sign 
(
τα
sl 

)
;

�G 

α
sl = �F sl 

(
1 −
(

τα
sl eff 

τsl 0 

)p sl t 
)p sl b 

; τα
sl eff = 

〈∣∣τα
sl 

∣∣− τα
sl cr 

〉
; (11) 

where b denotes the Burgers length (magnitude of Burgers vector: 

| b |) (see Appendix E ); �G 

α
sl 

is the average Gibbs free energy 

difference (activation enthalpy) for bypassing short-range obstacles 

by mobile dislocations at slip system α; k B is the Boltzmann con- 

stant; T is the absolute temperature; v sl u 0 is the reference mean 

slip speed (magnitude of velocity vector) of unipolar dislocations 

(mean unipolar dislocation speed at high temperatures so that T �
�G 

α
sl / k B 

); �F sl is the mean thermal activation energy (Helmholtz 

free energy) for slip without the aid of external stress ( 0 . 05 ≤
�F sl 
μb 2 

sl 

≤ 2 [168] ); v̄ α
sl u 

is the mean slip velocity of unipolar disloca- 

tions at slip system α; τ sl0 is the maximum short-range slip re- 

sistance (in average), also known as Peierls stress or solid solution 

strength, which can be calculated using ab initio /first-principles 

methods based on density functional theory (DFT) [169–176] ; 

τα
sl eff 

is the effective/viscous/rate-dependent/thermal/friction/over 

shear stress at slip system α; p sl t and p sl b are the constitutive 

exponents that respectively describe the shape of the top and 

bottom of the short-range obstacle force-distance profile and are 

constrained by: 0 < p sl t ≤ 1; 1 ≤ p sl b ≤ 2; τα
sl cr 

is the mean 

critical/plastic/athermal/rate-independent/internal/back (resolved) 

shear stress to activate the slip at system α; and 〈 〉 is the 
Macaulay brackets: 〈•〉 = 

1 
2 ( | • | + •) . 

By assuming p sl t = p sl b = 1 , which corresponds to a so-called 

box-shaped or rectangular/square dislocation-obstacle interaction 

potential [177–180] , Gibbs [181] proposed a simplified parameter- 

free version of Eq. (11) for the calculation of the Gibbs free 

energy difference for bypassing short-range obstacles by slipping 

dislocations: 

p sl t = p sl b = 1 ;

⇒ �G 

α
sl = �F sl − τα

sl eff�V sl ; �V sl ≡ − ∂�G 

α
sl 

∂τα
sl eff

= 

�F sl 
τsl 0 

; (12) 

where �V sl is the activation volume for slip, also known as appar- 

ent/operational activation volume. It contains information about 

the short-range obstacles to dislocation motion [182] . 

At the meso–scale material points, the critical shear stress 

at slip systems is assumed to be the maximum between intra- 

granular and inter-granular resistances. The intra-granular critical 

shear stress at slip system α ( τα
ρ cr ) is the minimum shear stress 

at slip system α (in average) that needs to be overcome for 

bowed-out mobile dislocations to slip. τα
ρ cr is a function of (total) 

dislocation density (stored in grain interiors) and calculated by the 

generalized Taylor equation, which accounts for the anisotropic 

interactions between slip systems (latent hardening) [183,184] . 

The inter-granular critical shear stress ( τ d cr ) is a function of ef- 

fective grain size ( d eff) and calculated according to the Hall–Petch 

equation [185,186] . The scalar d eff is defined to be the average 

of mean equivalent grain diameters, which are calculated using 

distributions based on number and area fractions. Therefore, 

τα
sl cr = max 

{
τα
ρ cr , τd cr 

}
;

τα
ρ cr = μb sl 

√ 

N sl ∑ 

ά=1 
[ A ] 

αάρά
t ; τd cr = 

k HP √ 

d eff 
; (13) 

where μ is the shear modulus (see Appendix F ); [ A ] αά is the slip 

interaction strength matrix entry representing strength of inter- 

action between slip systems α and α′ (see Appendix G ); and k HP 
is the Hall–Petch constant. Eq. (13) implies that with low dislo- 

cation density and low effective grain size (corresponding to high 

grain boundary area density), critical shear stress for the onset of 

plasticity is controlled by the Hall–Petch relationship (size effect). 

The overall evolution (time rate) of unipolar and dipolar dis- 

location densities at slip system α is given by (the derivation is 

given in Appendix H ): 

˙ ρα
u = 

(
1 

�α
sl 

− 2 h αd max ρ
α
u 

)∣∣ ˙ γ α
sl 

∣∣
b sl 

;

˙ ρα
d = 2 

(
h αd max ρ

α
u − h d min ρ

α
t 

) ∣∣ ˙ γ α
sl 

∣∣
b sl 

−
4 
∣∣v̄ α

cl d 

∣∣
h α
d max 

− h d min 
ρα
d ; (14) 

where �α
sl 
is the mean free path (MFP) for dislocation slip at 

system α; h d min is the minimum height (slip plane spacing) of 

stable dislocation dipoles (in average); h α
d max 

is the maximum 

height of stable dipoles at slip system α (in average); and | ̄v α
cl d 

| is 
the average (out-of-plane) climb speed/rate of dipolar dislocations 

located at slip system α. 
The upper bound of the dipole height is calculated as follows 

[166,187–189] : 

h αd max = 

μb sl 

8 π( 1 − ν) 
∣∣τα

sl c 

∣∣ ; h d min ≤ h αd max ≤ �α
sl ; (15) 

where ν is Poisson’s ratio (see Appendix F ). The mean climb 

velocity is a function of the average dipole height and temperature 

[187–189] : ∣∣v̄ αcl d ∣∣ ∼= 

D v V cl ξ
α

b 2 
sl 
k B T 

; D v = D v 0 exp 

(
− Q v 

k B T 

)
;

ξα = 

μb 2 
sl 

2 π( 1 − ν) ̄h α
d 

; h̄ αd = 

h d min + h α
d max 

2 
; (16) 

where V cl is the activation volume for climb, which can be cal- 

culated by atomistic simulations [190] ; ξα is the average normal 

force (parallel to the slip plane normal) exerted over unit length 

of the dislocation line, under which dipole partners attract one 

another; Q v is the mean thermal activation energy for vacancy 

diffusion; D v is self-diffusivity or self/vacancy diffusion coefficient; 

D v 0 is reference/pre-exponential self-diffusivity (vacancy diffusion 
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coefficient at high temperatures so that T � Q v / k B 
); and h̄ α

d 
is 

the average dipole height at slip system α. Q v and D v 0 can be 

calculated via ab initio molecular dynamics (AIMD) [191] . 

The notion of mean free path was first introduced by Kocks and 

co-workers [192,193] . The MFP for slip (or the slip MFP) at system 

α is known as the mean distance for slip of a mobile dislocation 

before its motion is impeded by an obstacle (dislocation accumu- 

lation/storage) [194] . However, more fundamentally, the slip MFP 

determines the mean (mobile) dislocation segment length and 

curvature, and therefore, controls the rate of dislocation multipli- 

cation (see Appendix H ). The slip MFP has confining contributions 

due to various existing sources of obstacles (grain boundaries, for- 

est dislocations and twin boundaries), which can be homogenized 

using the following harmonic mean/mixture law [195–197] : 

1 

�α
sl 

= 

1 

d eff 
+ 

1 

λα
f 

+ 

1 

λα
sl −tw 

; (17) 

where λα
f 
is the effective “forest” dislocations spacing at slip 

system α; and λα
sl −tw 

is the mean spacing among twin boundaries 

interacting with slipping mobile dislocation at slip system α. 
The most significant contribution to the slip MFP arises from 

the interaction of mobile dislocations with forest dislocations, 

which are the dislocations of other systems that pierce their slip 

plane. The well-known relationship for the effective forest spacing 

( λ f ∝ 

1 √ 

ρt 
) [177,193,194] can be generalized to account for the 

contribution of different slip systems ( α′ ) on the forest hardening 
[198] of a specific slip system ( α) [199–201] : 

1 

λα
f 

= 

1 

c f 

√ 

N sl ∑ 

ά=1 

[
B f 

]αά
ρά
t ;

[
B f 

]αά = 

∣∣∣̂  n 

α
sl ·̂ t 

ά
e 

∣∣∣; ̂ t 
ά
e = ̂

 n 

ά
sl ×̂ b 

ά

sl ;

(18) 

where c f is the constitutive coefficient associated with the forest 

interactions; B f is the matrix detailing anisotropic forest inter- 

action coefficients (forest projection matrix); and t e is the edge 

dislocation (tangent) line vector. 

In case of the occurrence of twinning, Fullman’s stereological 

law [202] can be invoked to calculate the mean twin boundary 

spacing. The generalized/modified form of Fullman’s relationship, 

accounting for anisotropic interaction of different twin systems on 

restricting the MFP for slip at system α, proposed by Allain et al. 
[89] , is given by: 

1 

λα
sl −tw 

= 

1 

c sl −tw 

N tw ∑ 

β=1 
[ B sl −tw ] 

αβ f 
β
tw 

s tw ( 1 − f tw ) 
;

[ B sl −tw ] 
αβ = 

{ 

0 : ̂  n 

α
sl = ̂

 n 

β
tw 

1 : ̂  n 

α
sl � = ̂

 n 

β
tw 

; (19) 

where c sl −tw 

is a constitutive coefficient pertaining to the effective 

topology of twins and its impact on the slip resistance; s tw 

is the 

mean twin thickness, which often decreases with decreasing SFE 

[142] ; and B sl −tw 

is the anisotropic slip-twin interaction matrix, 

defined based on the assumption that only a twin system ( β), 
which is non-coplanar/secant with a specific slip system ( α) 
confines its slip MFP. 

3.2.2. Kinetics of twinning 

We adopted the following principal relationships for the kinet- 

ics of twinning and the evolution of twin volume fraction based 

on the continuum formalism established by the works of Olson 

and Cohen [203] , Remy [204] , and Allain at al. [196] : 

˙ γ β
tw = γtw ˙ f 

β
tw ;

˙ f 
β
tw = ( 1 − f tw ) V 

β
tw ̇ n 

β
tw P 

β
tw ; V 

β
tw = 

π

4 

(
�β

tw 

)2 
s tw ; (20) 

where γ tw 

is the characteristic plastic shear strain induced by 

twinning, which in case of cubic crystals is γ cubic 
tw 

= 

√ 

2 / 2 ; V 
β
tw 

is the average volume of twins on twin system β; ˙ n 
β
tw 

is the 

average number density of twin stacking faults nucleated per 

unit time at twin system β; P βtw 

is the probability density for 

propagation/bowing-out of the corresponding twin nucleus to 

form a twin under the application of the homogenized RSS at 

twin system β ( τβ
tw 

); and �
β
tw 

is the MFP for twinning at twin 

system β . The model used for calculation of ˙ n βtw 

in fcc crystals is 

presented in Appendix I . This model is based on a mechanism in 

which two full/perfect dislocations dissociate into fault pairs and 

react on the primary slip plane to produce three Shockley partial 

dislocations on successive parallel planes. 

The twin propagation (from the existing twin stacking fault 

embryos) is a stochastic event, that requires sufficiently high local 

stress concentration (typically at dislocation pile-ups at grain 

boundaries), which can be maintained only if the mean RSS at 

the respective twin system is adequately high. We adopted the 

probabilistic treatment of the twin propagation process (based on 

its underlying physics) as a stochastic Poisson process described 

by the following cumulative PDF [163,205–208] : 

P 
β
tw = exp 

( 

−
( 〈 τβ

tw 〉 
τtw cr 

)−p tw 
) 

; p tw > 0 ; (21) 

where p tw 

is the constitutive exponent controlling the sigmoid 

shape of the associated cumulative PDF ( P 
β
tw 

), which is affected by 

the heterogeneity in elemental micro-segregation (distribution of 

alloying elements and its variance in lower scales); and τ tw cr is 

the critical RSS (at twin systems) for twin propagation (the model 

for calculation of τ tw cr in fcc crystals is given in Appendix I ). 

Finally, it is envisaged that the propagation of twins is mainly 

terminated at either grain boundaries or twin boundaries [209] , 

which are non-coplanar with the propagating twin. As a result, 

the mean free path for twins at twin system β is given by the 

following harmonic mean relationship [89] : 

1 

�β
tw 

= 

1 

c tw −tw 

(
1 

d eff 
+ 

1 

λβ
tw −tw 

)
;

1 

λβ
tw −tw 

= 

N tw ∑ 

β ′ =1 
[ B tw −tw ] 

ββ ′ f 
β ′ 
tw 

s tw ( 1 − f tw ) 
;

[ B tw −tw ] 
ββ ′ = 

{ 

0 : ̂  n 

β
tw = ̂

 n 

β ′ 
tw 

1 : ̂  n 

β
tw � = ̂

 n 

β ′ 
tw 

; (22) 

where c tw −tw 

is a constitutive coefficient associated with the 

effective topology of twins and its impact on the strength of 

twin-twin interaction; and B tw −tw 

is the anisotropic twin-twin 

interaction coefficients matrix, which is defined using the same 

rule as for B sl −tw 

. 

Further, the twin (lateral) growth/thickening phenomenon is 

observed to be the dominant twin (fraction) evolution mechanism 

in some materials (e.g. magnesium), particularly those with a 

low symmetry crystal structure (e.g. hcp lattice), as in those 

materials the threshold for twin nucleation and propagation is 

presumably higher than that for twin growth [205,210–214] . In the 

presented model for twin evolution, the twin growth mechanism 

is not considered through the adoption of a constant (mean) twin 

thickness ( s tw 

), which is reasonable in alloys with cubic crystal 

symmetry [141,142,215] . Nevertheless, by introducing a variable 

twin thickness with its respective kinetics relationship, the twin 

growth mechanism could be incorporated in the twinning model. 
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Table 3 

Designation and features of the generated RVEs. 

RVE character Designation Morphology (M) Texture (T) 

Experimental (E) EM-ET Experimental Experimental 

Half-random EM-RT Experimental Random 

RM-ET Random Experimental 

Random (R) RM-RT Random Random 

3.3. Microstructure modeling (RVE generation) 

As mentioned earlier, a (single-phase) microstructure owns 

two main categories of (fairly distinctive) characteristics on the 

meso–scale: (grain) morphology and (crystallographic) texture. 

The results of the statistical analysis of the as-built microstructure 

( Section 2.3 ) were used to model the initial microstructure by 

means of generating a periodic statistically representative volume 

element in three dimensions. The main reasons for modeling the 

“experimental” RVE are, firstly, to fit the constitutive parameters 

associated with the investigated material, and secondly, to validate 

the applied three levels of continuum physics-based (crystal finite 

strain, constitutive and microstructure) modeling. Subsequently, 

RVEs with at least one random feature (morphology, texture or 

both) were generated for (case-) studying the impact of different 

aspects of microstructural heterogeneity on the overall anisotropic 

polycrystal plasticity. 

The robust microstructure modeling formalism for generating 

3D RVE using an integrated experimental–computational approach, 

established through the works of Saylor et al. [216] , Deka et 

al. [217] , and Groeber et al. [101,218,219] , (implemented in the 

DREAM.3D code [107] ), was used (see Appendices A and J ). The 

applied automated methodology to generate RVEs with periodic 

boundaries is made up of four principal modules: (i) equivalent 

ellipsoidal grain generator (controlling grain size, shape and 

shape-axes orientation), (ii) constrained grain packer (controlling 

the spatial placement of grains), (iii) seed point generator- 

constrained Voronoi tessellation tool, and (iv) crystallographic 

orientation assigner (controlling the bulk texture and boundary 

misorientation). The RVE generation process termed as statistically 

induced realistic instantiations (SIRI) [218] , which assembles the 

sequence of the aforementioned modules, produces a realistic 

model of the corresponding microstructure, based on its mor- 

phological and texture-related characteristics (for more detail see 

Appendix J ). 

As mentioned earlier, case-study “random” and “half-random”

RVEs with at least one random/homogenous feature (morphology, 

texture or both) were constructed. The generated experimental and 

random RVEs with their corresponding features and designations 

are listed in Table 3 . Through the analysis of the EBSD orientation 

maps (the average values of the ‖ BD and ⊥ BD sections taken from 

Fig. 4 ), the experimental morphological descriptors were deter- 

mined. The grain size and shape descriptors used in the generation 

Table 4 

The grain size and shape descriptors used for generating the volume elements with 

experimental and random grain morphologies. 

Morphological descriptor Experimental Random 

Mean grain size ( ̄d ) [μm] 14.15 14.15 

Logarithmic grain size mean ( μln ) [-] 2.335 2.57 

Logarithmic grain size standard deviation ( σln ) [-] 0.772 0.4 

Minimum grain size cut off ( d min ) [μm] 3 3 

Maximum grain size cut off ( d max ) [μm] 70 35 

Grain size bin step size ( �d bin ) [μm] 0.6 0.6 

Average minimum aspect ratio ( ̄m min ) [-] 0.3 1 

Average maximum aspect ratio ( ̄m max ) [-] 0.5 1 

of volume elements with experimental and random grain mor- 

phologies are listed in Table 4 . The grain shape-axes orientation as 

an input for the construction of grain structures with experimental 

and random morphologies, in terms of pole figures with respect 

to the ellipsoidal grain principal axes is shown in Fig. 10 . It should 

be noted that the grain shape-axes orientation distribution used 

for generating the experimental (morphological) volume ele- 

ments are derived from the experimental characterization of grain 

morphology on the orthogonal ‖ BD and ⊥ BD sections ( Fig. 4 (e) 

and (f)). 

To construct the (fully-) experimental (EM-ET) RVE, the texture- 

related descriptors were analyzed from the superposition of the 

measured ODFs and (correlated) MDFs associated with the or- 

thogonal ‖ BD and ⊥ BD sections of the as-built material ( Figs. 5 

and 6 ). They served as an input to the synthetic microstructure 

generator. Subsequently, a cubic RVE with periodic boundaries and 

a minimalistic grid resolution (GR) of 16 × 16 × 16 = 4096 (voxels) 

was generated. Additionally, a volume element having a random 

morphology but with the same number of grains, mean grain 

size and grid resolution as its experimental counterpart was gen- 

erated. Furthermore, in order to demonstrate the distribution of 

simulated field variables with a relatively high resolution, another 

experimental RVE containing 1321 grains with a grid resolution of 

64 3 = 262144 was generated. For this, the same input parameters 

as for the experimental RVE with GR = 16 3 were used. The volume 

elements with different grain morphology and grid resolution are 

shown in Fig. 11 . 

The maximum number of grains embedded in a morphological 

volume element is limited by the extent of morphological hetero- 

geneities as well as the grid resolution (e.g., a GR = 16 3 cannot 

contain more than 16 3 = 4096 grains). Moreover, the lower bound 

for the required number of grains inside an RVE is dependent on 

the overall microstructural heterogeneities (e.g., for modeling a 

single crystal material an RVE with a GR = 1 3 is sufficient). For 

each generated RVE in this study, all the microstructural hetero- 

geneity characteristics of interest, as discussed earlier, have been 

sufficiently captured. Moreover, all the generated cubic volume el- 

ements have periodic boundaries. This means that the grains that 

are cut by a face of the volume element appear from the opposite 

Fig. 10. The grain shape-axes orientation distribution as an input for generating the morphological grain structure, in terms of pole figures with respect to the ellipsoidal 

grain principal axes ( e a , e b , e c ). 
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Fig. 11. The volume elements with different grain morphology and grid resolution (see Appendix A ). Paraview software [220] was used for visualization of the RVEs. 

parallel face, unless the respective face cuts the corresponding 

grain at its (grain) boundary. 

In the construction of the half-random and random RVEs (RVEs 

with at least one random feature: morphology or texture), among 

the texture-related descriptors, the MDF is assumed to be random 

(uncorrelated: fully dependent on the ODF), since the correlated 

MDF is a both texture-related and morphological characteristic. 

Therefore, in case of randomness of one of the dualistic aspects 

of microstructural heterogeneity (grain morphology or texture), 

the MDF should be considered fully dependent on the ODF. As 

such, the experimental ODF (superposed ODFs associated with the 

measured macro-texture on ‖ BD and ⊥ BD planes ( Fig. 5 )) and a 

random ODF were used in an iterative procedure. This procedure 

involved random sampling and subsequent assignment of crystal- 

lographic orientations to the grains of the (random and experimen- 

tal) volume elements, so that the outcome bulk texture (weight- 

averaged by grain volume) of the respective RVE fits to the desired 

ODF (in terms of IPFs within a tolerance). The IPFs associated with 

the bulk texture of the generated RVEs are shown in Fig. 12 . 

4. Crystal plasticity simulation 

Homogenous external boundary conditions corresponding to 

displacement-controlled uniaxial tension at quasi-static strain rate 

of 10 –3 s -1 and room temperature ( T = 23 ◦C ) along different axes 
were imposed on the generated RVEs. First, the experimental 

(EM-ET) and random (RM-RT) RVEs with grid resolution of 16 3 

were used for identification of the constitutive parameters and 

validation of the modeling approach. Then, the experimental RVE 

with GR = 64 3 was utilized for demonstration of distribution of 

simulated resolved field variables. Lastly, the half-random (RM-ET 

and EM-RT) RVEs were used for studying the influence of differ- 

ent aspects of microstructural heterogeneity on the macroscopic 

anisotropic response of the polycrystalline aggregate under plastic 

deformation. 

4.1. Constitutive parameters and validation 

The (fully) experimental (EM-ET) RVE was set under ho- 

mogenous external (displacement-controlled) uniaxial tension at 

quasi-static strain rate of ˙ ε̄ = 10 −3 s −1 and room temperature 

T = 23 ◦C along the X -axis (or any other direction in the X –Y 
plane), with an initial guess for the unknown constitutive param- 

eters. Afterwards, the outcome homogenized flow curve was fitted 

to the experimental (true) stress–strain response associated with 

the horizontal (LD ⊥ BD) sample ( Figs. 1 and 2 ). The (inverse) pa- 

rameter fitting/calibration was carried out by an iterative updating 

of the aforementioned target constitutive parameters followed by 

subsequent simulations in order to minimize the deviation be- 

tween the simulated homogenized response with its corresponding 

experimental counterpart. The fitted constitutive parameters as 

well as the material constants that were adopted from various 

sources are presented in Table 5 . The (meso–scale) simulations 
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Fig. 12. The IPFs associated with the bulk texture of the constructed RVEs (see Appendix A ). 

Table 5 

Constitutive parameters. 

Category Parameter Symbol Value a Unit Source 

General Crystal symmetry - fcc (See Appendices E,F,G and I ) 

Lattice constant a 0 0.361 nm [89,221,222] (see Appendix E ) 

Elastic constants C 11 175 GPa [223] (see Appendix F ) 

C 12 115 GPa 

C 44 135 GPa 

Initial MSVs Initial unipolar dislocation density ρα
u 0 3 × 10 13 m 

-2 Fitting (inspired by Fig. 9 (a)) 

Initial dipolar dislocation density ρα
d0 

10 12 m 

-2 Fitting (inspired by Fig. 7 (a-c)) 

Initial twin volume fraction f 
β
tw 0 

0 - Fig. 9 (b) 

Size effect Effective grain size d eff 30 μm Fig. 4 (a) and (b) 

Hall-Petch constant k HP 145.4 MPa μm 

1 
2 [84] (assuming a Taylor factor of M = 3 . 06 ) 

Slip kinetics Thermal activation (Helmholtz free) energy for slip �F sl 0.9 eV [224] 

Reference slip speed of unipolar dislocations v sl u 0 5 × 10 −7 m s -1 [224] 

Maximum short-range slip resistance τα
sl 0 

44 MPa Fitting (inspired by [224,225] ) 

Top shape parameter for short-range obstacle 

force-distance profile 

p sl t 1 - Eq. (12) 

Bottom shape parameter for short-range obstacle 

force-distance profile 

p sl b 1 - Eq. (12) 

Recovery Minimum stable dipole height h d min 6 b sl [166] 

Thermal activation energy for (climb) vacancy diffusion Q v 2.05 eV Fitting (inspired by [226,227] ) 

Activation volume for climb V cl 1 b 3 
sl 

[166] 

Reference self-diffusion coefficient D v 0 0.4 cm 

2 s -1 [225] 

Twinning kinetics Parameter associated with twin propagation PDF p tw 3.5 - Fitting 

Twin thickness s tw 0.2 μm Fitting (Inspired by Fig. 7 (d-f)) 

Length of twin nucleus l tw 375 b sl Fitting (inspired by [228] ) (see Appendix I ) 

Activation volume for cross-slip V cs 15 b 3 
sl 

[229–231] (see Appendix I ) 

Critical distance for proximity of repulsive partial 

dislocations to form twin’s stacking fault nucleus 

r c 1 nm [231] (see Appendix I ) 

Stacking fault energy �sf 20.2 mJ m 

-2 [86,89] (see Appendix I ) 

Mean free paths Parameter associated with the forest interaction c f ≡ c sl −sl 15 - Fitting 

Parameter associated with the effective topology of twins 

and its impact on the slip resistance 

c sl −tw 10 - Fitting 

Parameter associated with the effective topology of twins 

and its impact on the strength of twin-twin interaction 

c tw −tw 0.1 - Fitting 

a The listed values for most of the constitutive parameters are specific for the chosen austenitic high-manganese steel at room temperature with the chemical composition 

and processing details specified in Tables 1 and 2 , respectively. 
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Fig. 13. Comparison among experimental and simulated homogenized true stress–strain (see Appendix K ), strain hardening and the evolution of MSVs in the investigated 

material under uniaxial tension at ˙ ε̄ = 10 −3 s −1 and T = 23 ◦C along different axes. 

in this study have been exceptionally informed by independent 

experimental measurements and/or lower scale simulations. 

Subsequently, homogenous external boundary conditions for 

displacement-controlled uniaxial tension at ˙ ε̄ = 10 −3 s −1 and 
T = 23 ◦C along the axes corresponding to the vertical (LD ‖ BD) 
and diagonal ( LD � BD = 45 ◦) samples were imposed on the exper- 
imental RVE. The comparison among experimental and simulated 

homogenized true stress–strain (see Appendix K ), strain hardening 

and the MSVs in the investigated material is shown in Fig. 13 . 

As shown in Fig. 13 (a) and (b), the simplifying assump- 

tions made in the crystal plasticity modeling ( Section 3 ) are 

sufficient/valid for accurately capturing the complex anisotropic 

polycrystal plasticity, which is observed experimentally. The ini- 

tial yield in the investigated material does not show notable 

anisotropy, while the anisotropy in strain hardening behavior of 

the polycrystalline aggregate is profound. Moreover, the simu- 

lated twin volume fraction ( Fig. 13 (d)) is consistent with the 

experimentally measured twin area fraction (on ⊥ BD plane), where 

LD ‖ BD. The simulated unipolar dislocation density in the case of 
LD ‖ BD is close to the measured mean GND density ( Fig. 8 and 

9 (a)) except for the relatively large strains. In principle, the unipo- 

lar dislocation density must be higher than the GND density in a 

sufficiently large volume, since GNDs are a subset of unipolar dis- 

locations. There is a large difference between the measured mean 

GND density and the simulated unipolar dislocation density at 

ε̄ = 0 . 32 . This is partly due to the sensitivity of GND density map- 

ping to the frequency of unindexed points in the EBSD orientation 

maps, which is often high at large strains. In order to further val- 

idate the modeling approach, particularly the microstructure mod- 

eling ( Section 3.3 ) method, the generated fully random (RM-RT) 

RVE was exposed to homogenous external uniaxial tension (at ˙ ε̄ = 

10 −3 s −1 and T = 23 ◦C ) along the X and Z axes. The resulting sim- 
ulated homogenized tensile true stress–strain and strain hardening 

curves are plotted against those of the experimental (EM-ET) RVE 

in Fig. 14 . As expected, the plastic flow behavior of the modeled 

fully random microstructure (RM-RT RVE) is almost fully isotropic. 

4.2. Case-study simulations 

In Fig. 15 , the simulated homogenized evolution of the stress, 

strain hardening and MSVs under uniaxial tension (at ˙ ε = 10 −3 s −1 

and T = 23 ◦C ) along different axes associated with the half- 
random RVEs (EM-RT and RM-ET) are compared to those of the 

experimental (EM-ET) RVE. 

As shown in Fig. 15 (a) and (b), any inhomogeneity of the 

discussed microstructural aspects in the polycrystalline aggregate 

contributes to its anisotropic response under plastic deformation. 

Fig. 15 (a) and (b) implies that both morphological and texture 
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Fig. 14. Simulated homogenized true stress–strain and strain hardening curves of the fully random (RM-RT) RVE against those of fully experimental (EM-ET) RVE under 

uniaxial tension at ˙ ε̄ = 10 −3 s −1 and T = 23 ◦C along different axes. 

Fig. 15. Simulated homogenized evolution of the stress–strain, strain hardening and MSVs under uniaxial tension (at ˙ ε̄ = 10 −3 s −1 and T = 23 ◦C ) along different axes 
associated with the half-random RVEs (EM-RT and RM-ET) versus those of the fully experimental (EM-ET) RVE. 
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Fig. 16. Simulated resolved equivalent strain, unipolar dislocation density and twin volume fraction for the (fully) experimental RVE with GR = 64 3 , deformed along dif- 

ferent axes (LD ⊥ BD and LD ‖ BD) under uniaxial tension at ˙ ε̄ = 10 −3 s −1 and T = 23 ◦C until a true tensile strain ε̄ = 0 . 095 , which corresponds to approximately ε eng = 10% 

engineering tensile strain (visualized by Paraview [220] ). 
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heterogeneities almost equally but differently affect the overall 

anisotropic plasticity. However, one might argue that texture has 

a slightly stronger impact on the anisotropic response of the 

material. The flow curves of the experimental RVE associated with 

two different tensile loading axes act as the bounds for those 

of the half-random RVEs, meaning that the strongest anisotropy 

pertains to the case in which both grain morphology and texture 

are polarized. 

In the investigated material, the unique processing conditions 

of AM have led to a specific morphological heterogeneity, which 

corresponds to elongated relatively large grains whose major axis 

are oriented with low angle with respect to the BD (columnar 

grains). However, along the other two orthogonal directions on 

⊥ BD plane, the morphological properties are more homogenous 

( Fig. 4 ). By elimination of the texture-related effects through ap- 

plication of the EM-RT RVE, a parallel shift in the strain hardening 

curve when loaded along the BD (LD ‖ BD) and perpendicular to the 
BD (LD ⊥ BD) was observed ( Fig. 15 (b)). The polycrystal exhibited 

higher strain hardening while plastically deformed perpendicular 

to the BD compared to the case where LD ‖ BD. Therefore, a smaller 
grain size along a specific axis (compared to the other orthogonal 

axes) generally leads to a higher strain hardening (when the poly- 

crystal is uniaxially defromed) along that axis. This phenomenon 

can be regarded as a size/Hall-Petch effect on the strain hardening 

anisotropy. 

Furthermore, the studied material has a relatively strong 

〈 011 〉‖ BD initial fiber texture ( Fig. 5 ), which was formed due 

to the specific processing conditions of AM. By excluding the 

effects of morphological heterogeneities using the RM-ET RVE, two 

disparate strain hardening behaviors along and perpendicular to 

the BD were witnessed ( Fig. 15 (b)), that can only be correlated to 

the inhomogeneous distribution of crystallographic orientation in 

the polycrystalline aggregate. The displacement-controlled tensile 

load along the BD rendered an almost constant strain hardening, 

while loading perpendicular to the BD resulted in a steep continu- 

ously decreasing strain hardening. Moreover, the strain hardening 

associated with loading the RM-ET RVE along the ‖ BD is slightly 

higher than that of its experimental counterpart, again due to 

the aforementioned size effect. Nonetheless, both RM-ET and 

EM-ET RVEs yielded a similar evolution of the strain hardening 

perpendicular to the build direction (LD ⊥ BD). 

The constant strain hardening associated with the RM-ET RVE, 

where LD ‖ BD, seems to be dominantly affected by twinning, as 
its corresponding twin fraction evolution curve serves as an upper 

bound to the rest of such curves plotted in Fig. 15 (d). Conversely, 

the case of EM-RT RVE with LD ‖ BD, acts as the lower bound to 
the plotted twin fraction evolution curves. It highlights that, this 

specific experimental morphology suppresses the twin nucleation 

and propagation to a certain extent. 

4.3. Distribution of field variables 

The simulated spatial distribution of equivalent strain, unipolar 

dislocation density and twin volume fraction are demonstrated in 

Fig. 16 for the (fully) experimental RVE with GR = 64 3 ( Fig. 11 (c) 

and (d)), which are deformed along different axes (LD ⊥ BD and 

LD ‖ BD) until 10% engineering tensile strain. In this deformation 
state, the microstructure in terms of grain morphology and texture 

has not yet undergone considerable deformation-induced changes. 

Therefore, it is comparable to the initial microstructure, while the 

amount of deformation is sufficient for potential patterns (if any) 

to emerge with minimum interference. 

As shown in Fig. 16 (a) and (b), the equivalent strain distribu- 

tion, where LD ⊥ BD is highly entropic (does not form any particular 

pattern). Contrastingly, in the case of LD ‖ BD, pronounced thick and 
long bands of localized strain have been formed and propagated 

across several grains (shear bands) on ‖ BD planes with an angle 

close to 45 ° along the BD. The formation of the shear bands net- 
work is favored when there is a relatively homogenous boundary 

conditions on individual grains within the polycrystal loaded along 

a specific direction. Therefore, grain boundary misorientation and 

the morphological polarity with respect to the direction of the 

external load contribute to the formation of distinct inter-granular 

shear localization patterns. However, the main contributing factor 

to shear bands formation is the distribution of crystallographic 

orientation with respect to the direction of the external load. The 

reason lies within the curvature (second derivative of true stress 

with respect to true strain) of the strain hardening curve, which is 

dominantly controlled by the texture. In fact, a sufficiently strong 

texture combined with an external load direction favorable for ac- 

tivation of non-slip plastic deformation mechanisms (which assist 

dislocation slip) generally promotes a constant macroscopic strain 

hardening as a result of a certain distribution of the underlying 

shear localization. Furthermore, as suggested by Fig. 16 (e) and (f), 

some grains with a favorable orientation have undergone heavy 

twinning, while some other grains are almost without twins. 

5. Concluding remarks 

5.1. Highlights 

The anisotropic polycrystal plasticity due to microstructural 

heterogeneity has been experimentally and numerically inves- 

tigated in an unprecedented detail. This systematic multi-scale 

analysis brought us to the following conclusions: 

• The heterogeneous microstructure of polycrystalline metal- 
lic materials is very rich in details. It is evidenced that the 

modeling assumptions made in the three levels of the applied 

continuum physics-based modeling (crystal finite strain, con- 

stitutive and microstructure modeling) are generally sufficient 

for realization of a complex anisotropic polycrystal plasticity, as 

a result of interplay of numerous underlying phenomena that 

span over various length/time scales. 

• Microstructure has a dual nature: grain morphology and 
crystallographic texture. By isolating the morphological and 

texture-related heterogeneities from one another via the 

generation of half-random RVEs, it was revealed that both 

morphology and texture almost equally affect the overall 

anisotropic strain hardening behavior. 

• Grain morphology has a direct impact on deformation incom- 
patibilities, stress and slip transfer at grain boundaries (grain 

boundary condition). Our key finding is that the morphological 

heterogeneities influence the anisotropic polycrystal plasticity 

through a size effect: a parallel shift of strain hardening (rate) 

curve. 

• The curvature of the strain hardening curve (the second deriva- 
tive of true stress with respect to true strain) is very sensitive 

to the crystallographic texture but almost independent from 

the grain morphology. 

• The anisotropic evolution of twin volume fraction is more 
sensitive to crystallographic texture than grain morphology. 

• Formation of distinct shear bands, combined with the high rate 
of twin nucleation and propagation, which are mainly regulated 

by the texture (crystallographic orientation and misorientation 

distributions), promotes an almost constant strain hardening 

rate. 

• The identified correlation between microstructural heterogene- 
ity and anisotropic plasticity enables process-based microstruc- 

ture (morphology and texture) tailoring to control the mechan- 

ical properties of additively manufactured metallic components. 
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5.2. Suitability of the investigated material 

Due to the following reasons, the selected metallic material 

with its specific chemical composition ( Table 1 ) and additive man- 

ufacturing process parameters ( Table 2 ) turned out to be an ideal 

candidate for the multi-scale experimental-numerical investigation 

of the anisotropic polycrystal plasticity due to microstructural 

heterogeneities: 

• The single crystal constituents of the selected polycrystalline 
material are composed of a single phase with a high crystal 

symmetry (face-centered cubic), while they exhibit both dislo- 

cation slip and considerable amount of deformation twinning 

during plasticity. Therefore, the microstructural heterogeneities 

play a crucial role on the overall anisotropic response of the 

polycrystal under plastic deformation, especially more than for 

cases with lower crystal symmetry, or the instances that only 

show activation of dislocation slip and not twinning. 

• According to the experimental investigation, there exists an 
appreciable heterogeneity in every respect of the as-built 

microstructure in terms of both grain morphology and crystal- 

lographic texture. 

• Due to the additive manufacturing process parameters, partic- 
ularly chosen for producing the studied material, the as-built 

state exhibits strong microstructural polarity and anisotropic 

plasticity only along two orthogonal directions (parallel and 

perpendicular to the build direction). 

• Despite the almost isotropic (weakly anisotropic) initial yield 
in the investigated polycrystalline material, there is a strong 

anisotropy in its plasticity (strain hardening behavior), as the 

existing microstructural heterogeneities are process-induced. 

However, deformation-induced microstructural heterogeneities, 

such as those typically observed in cold-rolled sheets, often 

entail anisotropy in both the initial yield as well as the strain 

hardening response. 

• Lastly, the as-built material, while loaded under displacement- 
controlled uniaxial tension, plastically deforms adequately 

before its fracture. This allows for an unambiguous investi- 

gation of its anisotropic plasticity behavior, including strain 

hardening over a wide range of plastic strain. 
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Appendix A. Supplementary materials 

The Supplementary materials associated with this article, 

including the MTEX MATLAB scripts for analysis of EBSD 

and XRD data and the DREAM.3D pipelines for RVE genera- 

tion, are available in the GitHub repository https://github.com/ 

SAHMotaman/Microstructure-Analysis . Moreover, the characteriza- 

tion data will be made available on request. 

Appendix B. Notation convention 

The adopted notation convention includes the following: 

• Quantities : Scalar quantities are written by italic letters, e.g. 
a, B ; vector (first-order tensor) and first-order (row/column) 

matrix quantities are written by boldface and italic lower-case 

letters e.g. a , b ; second-order tensor/matrix quantities are 

written by boldface upper-case letters e.g. A, B ; and fourth- 

order tensor quantities are written by double-struck upper-case 

letters, e.g. A , B . 

• Index notation : Square brackets [] is used to indicate index 
notation of tensorial and matrix quantities. Since all the coor- 

dinate systems are Cartesian, only covariant indices are used. 

Moreover, for brevity, Einstein’s implicit summation is assumed 

over the repeated indices 

• Inner product : Inner product (contraction) of two vectors is 
denoted by a dot, e.g. a · b = δi j [ a ] i [ b] j = [ a ] i [ b] i = c, where 

δ is the Kronecker delta. Inner product (double contraction) 

of two second-order tensors is denoted by a double-dot, e.g. 

A : B = δik δ jl [ A ] i j [ B ] kl = [ A ] i j [ B ] i j = c. Inner product (double 

contraction) of a fourth-order tensor with a second-order 

tensor is also denoted by a double-dot, e.g. A : B = C , where 

[ C ] i j = δkm 

δln [ A ] i jkl [ B ] mn = [ A ] i jkl [ B ] kl . 

• Cross product : Cross product of two vectors is denoted by a 
cross, e.g. a × b = c , so that [ c ] k = εi jk [ a ] i [ b] j , where ε is the 

Levi-Civita permutation symbol. 

• Outer product : Outer/tensor/dyadic product of two vectors is 
denoted by a circled-cross, e.g. a ⊗ b = C , so that [ C ] i j = [ a ] i [ b] j . 

Therefore, the tensorial quantities of different order can be 

expanded, i.e. a = [ a ] i ̂  e i , A = [ A ] i j ̂  e i ⊗ ˆ e j and A = [ A ] i jkl ̂  e i ⊗ ˆ e j ⊗
ˆ e k ⊗ ˆ e l , where ˆ e i is the basis vector associated with the i –th 

dimension of the given Cartesian coordinate system. 

• Transformation : Operation of a second-order tensor A on a 

vector b , which transforms it to the vector c is represented by 

A b = c , where [ c ] i = [ A ] i j [ b] j . Action of a second-order tensor A 

on a second-order tensor B , which transforms it to the second- 

order tensor C , is expressed by AB = C , where [ C ] ik = [ A ] i j [ B ] jk . 

• Transpose : The transpose of a second-order tensor A is denoted 

by A 

T , so that [ A 

T ] i j = [ A ] ji . 

• Inverse : The inverse of a second-order tensor A is denoted by 

A 

−1 , so that A A 

−1 = I , where I is the second-order unit/identity 

tensor ( [ I ] i j = δi j ). 
• Norm : The Euclidian norm of the vector a is denoted by | a |, 

so that | a | = 

√ 

a · a . The Euclidian norm of the second-order 

tensor A is denoted by || A ||, so that || A || = 

√ 

A : A . 

Appendix C. Nomenclature 

Latin symbol Description 

a Lattice parameter/constant [m] 

A Surface area [m 

2 ] 

a A generic vector, or a crystallographic axis 

A Slip interaction strength matrix [-] 

b Burgers length (magnitude of Burgers vector: | b| ) [m] 

b Burges vector [m] 

B Interaction coefficient/projection matrix [-] 

c Constitutive coefficient [-] 

C Elastic constant (component of elastic stiffness 

tensor) 

[Pa] 

C Right Cauchy-Green deformation tensor [-] 

C Fourth-order stiffness tensor [Pa] 

d Grain size (equivalent diameter) [m] 

D Diffusion coefficient [m 

2 s −1 ] 
D Rate of deformation tensor [s −1 ] 
e Basis vector [-] 

E Green-Lagrange (nominal) strain tensor [-] 
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f Fraction [-] 

F Helmholtz free energy [J] 

F Deformation gradient tensor [-] 

G Gibbs free energy [J] 

h Interplanar height/spacing/distance for two parallel 

slip planes 

[m] 

I Unit/identity (second-order) tensor [-] 

J Jacobian of the deformation map [-] 

k Constant 

l Length [m] 

L Velocity gradient tensor [s −1 ] 
m Aspect ratio [-] 

M Taylor factor [-] 

M Mandel stress tensor [Pa] 

n Number density [m 

−3 ] 
N Number of (deformation systems) [-] 

n Deformation system’s plane normal vector [m] 

p Constitutive exponent [-] 

P Probability [-] 

P First Piola-Kirchhoff stress tensor [Pa] 

Q Thermal (activation) energy [J] 

Q Orientation matrix [-] 

r Distance [m] 

R Polar (rigid-body) rotation tensor [-] 

s Mean twin thickness [m] 

S Second Piola-Kirchhoff (nominal) stress tensor [Pa] 

t Time (temporal coordinate) [s] 

T Temperature [K] 

t Dislocation (tangent) line vector [m] 

T A generic second-order tensor or matrix 

u Displacement vector [m] 

U Right stretch tensor [-] 

v Mean dislocation slip velocity/speed [m s −1 ] 
V Volume [m 

3 ] 

v Velocity vector [m s −1 ] 
V Left stretch tensor [-] 

w Volumetric (deformation) work [J m 

−3 ] 
W Spin tensor [s −1 ] 
x Position vector (spatial coordinate) [m] 

Z Schmid tensor [-] 

Greek 

symbol 

Description 

γ (Resolved) plastic shear strain [-] 

� Interfacial energy [J m 

−2 ] 
ε True/logarithmic (normal) strain [-] 

ε True/logarithmic strain tensor [-] 

θ Strain hardening (rate) [Pa] 

λ Effective/mean spacing [m] 

� Mean free path [m] 

μ Shear modulus, or mean value in a distribution [Pa] 

ν Poisson’s ratio [-] 

ξ Normal force per unit dislocation line length [N m 

−1 ] 
τ Resolved shear stress [Pa] 

ϕ Bunge-Euler angles [rad] 

ϕ Set of Bunge-Euler angles [rad] 

ρ Dislocation density [m 

−2 ] 
� Molar surface density [mol 

m 

−2 ] 
σ True stress, or standard deviation in a distribution [Pa] 

σ Cauchy/true stress tensor [Pa] 

ω Misorientation angle, or a generic angle [rad] 

Subscript Description 

0 Reference/initial/undeformed 

a active 

b Bottom 

B Boltzmann 

c Capture(d) 

cr Critical 

cl Climb 

cs Cross-slip 

d Dipolar 

e Elastic, or edge dislocation 

f Forest dislocations 

eff Effective 

HP Hall-Petch 

max Maximum 

min Minimum 

mt Matrix 

p Plastic, partial, or passive 

sf Stacking fault 

sl Slip 

t Total, or top 

tw Twin 

u Unipolar 

v Vacancy 

Superscript Description 

an Annihilation 

cl Climb 

d Deviatoric/isochoric 

eng Engineering/nominal 

g Global 

gn Generation/multiplication/formation 

h Hydrostatic 

l Local 

sp Spontaneous 

v Volumetric 

α, ́α Slip system index 

β, β ′ Twin system index 

Operator Description 

‖• An axis/plane parallel to •
⊥• An axis/plane perpendicular/orthogonal to •
ˆ • Normalized: ˆ • = 

•
|•| 

•̄ Mean/homogenized (spatial and/or temporal) 

 • Function 

• plastic/relaxed/intermediate configuration 

〈•〉 Macaulay brackets: 〈 •〉 = 

1 
2 
( | • | + •) , or notation for 

crystallographic axis 

Abbreviation Description 

AM Additive manufacturing, or additively manufactured 

bcc Body-centered cubic 

BD Build direction 

DFT Density functional theory 

EBSD Electron backscatter diffraction 

fcc Face-centered cubic 

GND Geometrically necessary dislocation 

GR Grid resolution 

GSD Grain size distribution 

hcp Hexagonal close packed 

HMnS High-manganese steel 

IPF Inverse pole figure 

LD Load direction/axis 

LPBF Laser powder bed fusion 

MDF Misorientation distribution function 

MFP Mean free path 

MSV Micro-state variable 

ODF Orientation distribution function 

PDF Probability density/distribution function 

RSS Resolved shear stress 

RVE Representative volume element 

S/TD Scan/transverse direction 

SD Scan direction 

SEM Scanning electron microscopy/microscope 

SFE Stacking fault energy 

T/SD Transverse/scan direction 

TD Transverse direction 

TEM Transmission electron microscopy/microscope 

TRIP Transformation-induced plasticity 

TWIP Twinning-induced plasticity 

XRD X-ray diffraction 
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Table 6 

Deformation system families for cubic crystal lattice structures in terms of Miller 

indices of slip/twin Burgers and plane normal vectors. 

Cubic lattice 

Deformation 

system 

Burgers family 

( b x ) 
∗

Plane normal 

family ( ̂ n x ) 

fcc Slip ( x = sl ) a 0 
2 
〈 0 1 1̄ 〉 1 √ 

3 
{ 1 1 1 } 

Twin ( x = tw ) a 0 
2 
〈 1 1 2̄ 〉 1 √ 

3 
{ 1 1 1 } 

bcc Slip ( x = sl ) a 0 
2 
〈 1 1̄ 1 〉 1 √ 

2 
{ 0 1 1 } 

a 0 
2 
〈 ̄1 1 1 〉 1 √ 

6 
{ 2 1 1 } 

Twin ( x = tw ) a 0 
2 
〈 ̄1 1 1 〉 1 √ 

6 
{ 2 1 1 } 

∗ a 0 is the cubic lattice constant (equilibrium unit cell edge length) at the refer- 

ence (room) temperature, which can be determined by DFT-based ab initio methods 

as a function of chemical composition [236] . 

Appendix D. Bunge–Euler angles and elemental rotations 

Euler angles are used to describe a (passive) transforma- 

tion/orientation matrix Q from a global/reference Cartesian frame 

(orthonormal basis in the Euclidean 3-space) ( ̂  e g 
1 
, ̂  e 

g 
2 
, ̂  e 

g 
3 
) to a local 

Cartesian basis denoted by ( ̂  e l 
1 
, ̂  e l 

2 
, ̂  e l 

3 
) , so that [ Q ] i j = 

ˆ e l 
i 
· ˆ e g 

j 
. This 

transformation is defined by a non-unique sequence of three 

elemental rotations that relate the reference frame to the local 

frame. In Bunge’s/zxz notation, the coordinate transformation 

using Bunge’s Euler angles ϕ ≡ { ϕ 1 , Φ , ϕ 2 }, includes the following 

passive rotations [154,233–235] : 

(1) Rotation of the global basis ( ̂  e g 
1 
, ̂  e 

g 
2 
, ̂  e 

g 
3 
) about ˆ e g 

3 
by the angle ϕ1 

(0 ≤ ϕ1 ≤ 2 π ) resulting in ( ̂  e (1) 
1 

, ̂  e (1) 
2 

, ̂  e 
g 
3 
) , which is represented 

by: 

Q ϕ 1 ≡
[ 

cos ϕ 1 sin ϕ 1 0 
− sin ϕ 1 cos ϕ 1 0 

0 0 1 

] 

. (23) 

(2) Rotation of ( ̂  e (1) 
1 

, ̂  e (1) 
2 

, ̂  e 
g 
3 
) basis about ˆ e (1) 

1 
by the angle Φ

(0 ≤ Φ ≤ π ) giving ( ̂  e (1) 
1 

, ̂  e (2) 
2 

, ̂  e (1) 
3 

) , which is expressed as: 

Q Φ ≡

⎡ ⎣ 

1 0 0 

0 cos Φ sin Φ

0 − sin Φ cos Φ

⎤ ⎦ . (24) 

(3) Rotation of ( ̂  e (1) 
1 

, ̂  e (2) 
2 

, ̂  e (1) 
3 

) basis about ˆ e (1) 
3 

by the angle ϕ2 

(0 ≤ ϕ2 ≤ 2 π ) yielding ( ̂  e (2) 
1 

, ̂  e (3) 
2 

, ̂  e (1) 
3 

) , which is aligned with 

( ̂  e l 
1 
, ̂  e l 

2 
, ̂  e l 

3 
) and represented by: 

Q ϕ 2 ≡
[ 

cos ϕ 2 sin ϕ 2 0 
− sin ϕ 2 cos ϕ 2 0 

0 0 1 

] 

. (25) 

At this point, we can write: 

a l = Q a g ; T l = Q T g Q 

T ; Q ≡ Q ϕ 2 Q ΦQ ϕ 1 . (26) 

where a g and a l represent the same vector in the global and 

local Cartesian frames, respectively; and T g and T l represent the 

same second-order tensor in the global and local Cartesian frames, 

respectively. 

Appendix E. Slip systems and Burgers vector in cubic crystals 

Deformation system families for cubic crystal symmetries, 

fcc and body-centered cubic (bcc), in terms of Miller indices 

of slip/twin Burgers direction and plane normal vectors (in the 

reference frame) are presented in Table 6 . In cubic crystals, each 

system has 12 members ( N 

cubic 
sl 

= N 

cubic 
tw 

= 12 ). Moreover, the twin 

Burgers vector is the same as the Burgers vector of the respective 

partial dislocations ( b tw 

= b p ). Therefore, as Table 6 suggests, the 

following relationships regarding the Burgers length (magnitude of 

Burgers vector) for slip and twinning in cubic crystal symmetry is 

conceivable: 

b sl 
b tw 

= 

| b sl | 
| b tw | = 

√ 

3 ;

⎧ ⎪ ⎨ ⎪ ⎩ 

b sl = 

√ 

2 

2 
a 0 ; b tw = 

√ 

6 

6 
a 0 : fcc 

b sl = 

√ 

3 

2 
a 0 ; b tw = 

1 

2 
a 0 : bcc 

. (27) 

Appendix F. Elastic stiffness and moduli for cubic crystals 

Due to the symmetry of the elastic stiffness tensor C e mt , it 

only contains three independent components (elastic constants) 

in case of cubic (fcc/bcc) crystal symmetry [237] : C 11 , C 12 and C 44 
(represented in Voigt notation), which can be calculated using 

DFT-based ab initio methods [236] . Moreover, the average moduli, 

shear modulus ( μ) and Poisson’s ratio ( ν), in cubic crystals are 
expressed as functions of the elastic constants based on the Voigt 

homogenization/approximation scheme [237–239] : 

μ = 

1 

5 
( C 11 −C 12 + 3 C 44 ) ; ν = 

C 11 + 4 C 12 − 2 C 44 
4 C 11 + 6 C 12 + 2 C 44 

. (28) 

Appendix G. Interaction strength matrix for cubic crystals 

In cubic crystal symmetry, the interaction matrix A has 

( N 

cubic 
sl 

) 2 = 144 components. The number of distinct entries is 

divided by two due to the diagonal symmetry of the matrix 

( [ A ] 
αά = [ A ] 

άα ) and the occurrence of four 〈 111 〉 (for fcc) or 〈 110 〉 
(for bcc) axes with ternary symmetry further divides it by twelve. 

As such, there are only six independent coefficients, which are 

associated with six distinct types of interactions [240,241] . Three 

of them account for forest interactions between non-coplanar slip 

systems, resulting in the formation of junctions or locks: for fcc, 

the orthogonal/Hirth lock [242] , the sessile/Lomer–Cottrell lock 

[243,244] , and the glissile junction [245,246] ; and for bcc, mixed- 

symmetrical, mixed-asymmetrical and edge junctions [241] . There 

are two coplanar interactions for dislocations slipping on parallel 

slip planes with parallel Burgers vector [240,241] : the dipolar/self- 

interaction; or unparallel coplanar Burgers vectors: the cross- 

coplanar interaction. Finally, the strongest interaction, the collinear 

interaction [247] , occurs between dislocations slipping on two slip 

planes that are cross-slip planes with respect to each other. For the 

description of dislocation reactions in fcc crystals, the Thompson 

tetrahedron is helpful [248] . Table 7 presents the geometrical rela- 

tionships associated with the independent components of the slip–

slip interaction matrix for fcc crystal structures, and their values 

estimated using discrete dislocation dynamics (DDD) simulations. 

Appendix H. Dislocation density evolution 

Following Blum et al. [166,251] and based on the superposition 

rule of dislocation density evolution [177,194] , the overall evolution 

(time rate) of unipolar and dipolar dislocation density at each slip 

system in cold and warm regimes [165] is decomposed to the 

underlying dislocation processes as follows: 

˙ ρα
u = ˙ ρα gn 

u − ˙ ρα sp an 
u − ˙ ρα gn 

d 
;

˙ ρα
d = ˙ ρα gn 

d 
− ˙ ρα sp an 

d 
− ˙ ρα cl an 

d ; (29) 

where superscripts gn, an, sp and cl stand for generation, anni- 

hilation, spontaneous and climb, respectively; ˙ ρα gn 
u and ˙ ρα gn 

d 
represent the generation (time) rates of unipolar and dipolar 

dislocation densities at slip system α, respectively; ˙ ρα sp an 
u and 

˙ ρα sp an 

d 
denote the spontaneous annihilation rates of unipolar and 

dipolar dislocation densities at slip system α, respectively; and 
˙ ρα cl an 
d 

represents the climb-assisted annihilation rate of dipolar 

dislocation density at slip system α. 
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Table 7 

Independent components of the slip–slip interaction matrix for fcc crystals, and their values estimated using discrete dislocation dynamics simulations. 

Junction type Coplanar Non-coplanar 

Plane normal ̂ n αsl = ̂

 n 
ά
sl 

̂ n αsl � = ̂

 n 
ά
sl 

Orientation relationship ̂ b αsl = ̂

 b 
ά

sl 
̂ b αsl � = ̂

 b 
ά

sl 
̂ b αsl = ̂

 b 
ά

sl 
̂ b αsl � = ̂

 b 
ά

sl ̂ b αsl ·̂ b άsl = 0 ̂ b αsl ·̂ b άsl � = 0 

( ̂  b 
α

sl ×̂ b άsl ) · ( ̂  n αsl ×̂ n άsl ) = 0 ( ̂  b 
α

sl ×̂ b άsl ) · ( ̂  n αsl ×̂ n άsl ) � = 0 

Junction/lock Dipolar/self Cross-coplanar Collinear Orthogonal/Hirth Glissile Sessile/Lomer-Cottrell 

[ A ] αά A dip A cop A col A ort A gls A ses 
Value [-] 0.122 0.122 0.625 0.070 0.137 0.122 

Source [249] [240] [250] [240] [250] [250] 

The generation/multiplication rate of unipolar dislocation 

density at slip system α ( ˙ ρα gn 
u ) is proportional to the average 

slip speed of (mobile) unipolar dislocations ( | ̄v α
sl u 

| ) as well as 
the (mean) number density of unipolar dislocations ( n αu ≡ 1 

�α
sl 

ρα
u ) 

as (potential) dislocation sources at slip system α. Therefore, 
considering Orowan’s equation ( Eq. (11) ): 

˙ ρα gn 
u = 

1 

�α
sl 

ρα
u 

∣∣v̄ αsl u ∣∣ = 

1 

b sl �
α
sl 

∣∣ ˙ γ α
sl 

∣∣. (30) 

To derive the rates of generation/formation of dipolar disloca- 

tions and spontaneous annihilation of dislocations, first we need 

to define the (parallel) encounter events. An encounter event takes 

place when an active (dislocation) partner (slipping unipolar dis- 

location) meets its passive oppositely signed pair (either unipolar 

or dipolar with opposite Burgers vector) residing on a parallel slip 

plane within a characteristic capture height h c for that specific 

encounter. Thus, for the occurrence of an admissible encounter, 

the height/distance of the slip plane of the passive partner from its 

active pair ( h ) must fulfill the following constraint: −h c ≤ h ≤ h c . 

In order to describe the rate of an encounter reaction, one needs 

to define a differential capture/sample volume d V αc (in which the 

encounter event occurs) slipped/swept by an active dislocation line 

(with a differential length) within the height of 2 h c = ( h c − ( −h c ) ) . 

Given this premise, we immediately find: 

d 2 V αc ≡ 2 h c d l 
α
a 

∣∣v αsl a ∣∣d t; d l αa = V d ρα
a ; (31) 

where subscripts c and a stand for captured (undergone a specific 

encounter) and active, respectively; d l αa is a differential active 

dislocation line length at slip system α; V is the control volume 

(surrounding the meso–scale material point under consideration) 

in which (meso–scale) dislocation density is defined; and ρα
a rep- 

resents the potential active population (dislocation density) at slip 

system α. Integrating both sides of Eq. (31) over ρα
a leads to: 

d V αc = 2 h c V d tρ
α
a 

∣∣v̄ αsl a ∣∣; ∣∣v̄ αsl a ∣∣ ≡
∫ 
ρα
a 

∣∣v α
sl a 

∣∣d ρα
a 

ρα
a 

. (32) 

Hence, given the fact that in each encounter event two disloca- 

tions (active and passive) with equal line lengths interact: 

˙ ρα
pc ≡

d ρα
pc 

d t 
≡ d l αpc 

V d t 
≡ ρα

p d V 
α
c 

V d t 
= 2 h c ρ

α
p ρ

α
a 

∣∣v̄ αsl a ∣∣; (33) 

where ρα
p denotes the potential passive population at slip system 

α; and ˙ ρα
pc represents the rate of captured passive dislocation 

density. 

The type of the permissible encounters depends on the absolute 

slip plane spacing of the active and passive partners (| h |): ⎧ ⎨ ⎩ 

( unstable dipole ) spontaneous annihilation : 0 ≤ | h | ≤ h d min 

( stable ) dipole formation : h d min < | h | < h d max 

( unstable dipole ) instantaneous dissociation : | h | ≥ h d max 

. 

(34) 

Here, among the permissible encounter events, we only consider 

(stable) dipole generation and spontaneous annihilation. Fur- 

thermore, we assume an equal population of oppositely signed 

dislocations on each slip system. Consequently, given Eqs. (33) and 

( 34 ) and Orowan’s equation ( Eq. (11) ), the generation rate of 

dipolar dislocation density at slip system α ( ˙ ρα gn 

d 
), in which both 

active and passive reacting partners are of unipolar type, can be 

conveniently expressed as: 

˙ ρα gn 

d 
= 2 
(
h αd max − h d min 

)
ρα
u ρ

α
u 

∣∣v αsl u ∣∣
= 

2 
(
h α
d max 

− h d min 
)

b sl 
ρα
u 

∣∣ ˙ γ α
sl 

∣∣; (35) 

It should be noted that since in generation of dipolar dislo- 

cations, unipolar dislocations react and transform, ˙ ρα gn 

d 
must 

appear with a negative sign (sink term) and positive sign (source 

term) in ˙ ρα
u and ˙ ρ

α
d 
( Eq. (29) ), respectively. 

Analogously, the spontaneous annihilation rate of unipolar 

dislocation density at slip system α ( ˙ ρα sp an 

d 
) again with both 

encountering partners being unipolar, is represented by: 

˙ ρα sp an 
u = 2 h d min ρ

α
u ρ

α
u 

∣∣v αsl u ∣∣ = 

2 h d min 
b sl 

ρα
u 

∣∣ ˙ γ α
sl 

∣∣. (36) 

In spontaneous annihilation events, first an unstable nar- 

row dislocation dipole is formed and then spontaneously (and 

instantly) disintegrated. In spontaneous annihilation of dipolar dis- 

locations, the passive partners are stable dipoles. In such events, an 

active unipolar dislocation segment and a dislocation segment in 

dipolar configuration mutually annihilate. This releases the other 

(former) dipole segment from the corresponding dipole bound and 

transforms it to a unipolar dislocation segment supposedly with 

the same length as the incoming active unipolar dislocation. As 

a result, in the processes of spontaneous annihilation of dipolar 

dislocations, unipolar dislocations only act as catalysts and hence 

are not consumed. Therefore, ˙ ρα sp an 
u only appears with a negative 

sign in ˙ ρα
d 
( Eq. (29) ). Consequently, 

˙ ρα sp an 

d 
= 2 h d min ρ

α
d ρα

u 

∣∣v αsl u ∣∣ = 

2 h d min 
b sl 

ρα
d 

∣∣ ˙ γ α
sl 

∣∣. (37) 

In annihilation of dipolar dislocations by thermally-activated 

out-of-plane climb mechanism, two dipole partners mutually anni- 

hilate. Assuming that two attracting dipole partners with an initial 

dipole height h d climb towards one another by the velocities ± v cl d 
2 

(parallel to slip plane normal), annihilation by climb takes place 

when they travel the distance h d − h d min . After elapsing time 
h d −h d min | v cl d | , the climb has reduced their slip plane spacing to h d min , 

at which they spontaneously annihilate one another. Given a con- 

trol volume and at slip system α, there is a spectrum of (stable) 

dipole heights between h d min < h α
d 

< h α
d max 

, which corresponds 

to an average dipole height h̄ α
d 

= 

h d min + h αd max 
2 ( Eq. (16) ). Supposing 

that in each annihilation event by climb two dipolar dislocation 

segments mutually annihilate, the climb-assisted annihilation rate 
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of dipolar dislocation density reads: 

˙ ρα cl an 
d = 2 ρα

d 

∣∣v̄ α
cl d 

∣∣
h̄ α
d 

− h d min 
= 

4 
∣∣v̄ α

cl d 

∣∣
h α
d max 

− h d min 
ρα
d . (38) 

By inserting Eqs. (30) , ( 35 )–( 38 ) into Eq. (29) and with some 

trivial rearrangement, we arrive at the compact expressions given 

by Eq. (14) . 

Appendix I. Twin nucleation model for fcc crystals 

The nucleation of a twin stacking fault is a stochastic process, 

that requires sufficiently high local stress concentration, which can 

be maintained only if the mean RSS at the respective twin system 

is adequately high, while cross-slip (acting as another mechanism 

for relaxing the stress concentration) is an unfavorable competing 

mechanism [252–255] . Therefore, following Steinmetz et al. [256] , 

we postulate the following relationship for calculation of ˙ n 
β
tw 

: 

˙ n 
β
tw = ˙ n tw 0 P 

β
sf 

; (39) 

where P 
β
sf 
is the probability density that cross-slip does not take 

place, which would allow a sufficient (local) dislocation accu- 

mulation rendering the stress concentration (at twin system β) 
necessary for dislocation dissociation/separation and the conse- 

quent stacking fault generation; and ˙ n 
β
tw 0 

is the (reference) average 

number density of potential twin stacking fault nuclei per unit 

time at twin system β , which is given as: 

˙ n 
β
tw 0 

= 

1 

l tw 0 

(∣∣v αsl u ∣∣ρα
u ρ

ά
t + 

∣∣v άsl u ∣∣ρά
u ρ

α
t 

)
= 

1 

l tw 

(∣∣ ˙ γ α
sl 

∣∣ρά
t + 

∣∣ ˙ γ ά
sl 

∣∣ρα
t 

)
; l tw = l tw 0 b sl ;

ˆ n 

β
tw = 

ˆ n 

α
sl = 

ˆ n 

ά
sl ; 3 b 

β
tw = b 

α
sl + b 

ά
sl ; α � = ά; (40) 

where l tw0 is the dimensionless mean length of twin nuclei as a 

multiple of slip Burgers length; and l tw 

is the average length of 

twin nuclei (can be calculated by atomistic simulations). Eq. (40) is 

based on the twin nucleation mechanism in fcc crystals envisaged 

by Mahajan and Chin [232] . In this mechanism, two coplanar full 
a 
2 〈 01 ̄1 〉 dislocations (where a is the lattice constant) of different 
Burgers vectors b αsl � = b άsl split into fault pairs and react on the 

primary slip plane to emanate three a 
6 〈 11 ̄2 〉 Shockley partial dis- 

locations with identical Burgers vector b 
β
tw 

on successive parallel 

{111} planes. This results in an ordered three-layer stacking fault 

arrangement that can produce a twin [215,232,254,256,257] . 

Inspired by the relationship proposed by Kubin et al. [258] for 

the frequency of cross-slip occurrence, we suggest the following 

equation for calculation of P 
β
sf 
: 

P 
β
sf 

= 1 − P 
β
cs ; P 

β
cs = exp 

(
− V cs 

k B T 
〈 τsf cr − 〈 τβ

tw 〉〉 
)
; (41) 

where P 
β
cs is the probability for cross-slip occurrence at slip 

systems coplanar with the twin system β; V cs is the activation 

volume for cross-slip [259,260] , which can be calculated by atom- 

istic simulations [229–231,261,262] ; and τ sf cr > 0 is the mean 

critical shear stress for dislocation dissociation (increases by in- 

creasing SFE). In fcc crystals, the critical shear stress to nucleate a 

three-layer stacking fault ( τ sf cr ), that can serve as a twin embryo, 
is given as a threshold for bringing the respective repulsive partial 

dislocations within the critical distance r c [226,232,263,264] : 

τsf cr = 

μb tw 

2 π

(
1 

r 0 + r c 
+ 

1 

2 r 0 

)
; r 0 = 

μb 2 tw 
8 π�sf 

2 + ν

1 − ν
; (42) 

where r 0 is the equilibrium dissociation distance for Shockley 

partials in fcc crystals, in which the repulsive force due to the 

partial dislocations is balanced by the attractive force exerted by 

the stacking fault; and �sf is the SFE. 

In addition, the critical resolved shear stress (at twin systems) 

for twin propagation ( τ tw cr ) in fcc crystals based on twin nucle- 

ation model proposed by Mahajan and Chin [232] , is given by the 

following equation [253,256,265] : 

τtw cr = 

�sf 

3 b tw 
+ 

3 μb tw 

l tw 
. (43) 

The SFE ( �sf ) for fcc alloys is calculated as follows [266,267] : 

�sf = 2 ��G 

γ → ε + 2 �γ → ε ; (44) 

where ϱ is the molar surface density along the close-packed 

{111} planes; �γ → ɛ is the interfacial energy between the parent 

γ (-austenite) phase (fcc) and the transformed ɛ (-martensite) 
phase (hcp); and �G 

γ → ɛ is the effective molar Gibbs free energy 

difference for γ → ɛ phase transformation. The composition- 
and temperature-dependent �G 

γ → ɛ for different alloys can be 

calculated using thermodynamics-based models [81,87,90] . Alter- 

natively, for a given alloying system, the SFE ( �sf ) can be calculated 

using DFT-based ab initio methods based on either explicit/direct 

(supercell) approach [268–276] or axial next-nearest-neighbor 

Ising (ANNNI) model [277–284] . 

Appendix J. RVE generation procedure 

The RVE generation procedure based on the statistically in- 

duced realistic instantiations (SIRI) algorithm [218] first generates 

bins of morphological features (grain size, shape, shape-axes orien- 

tation) using the associated PDFs derived from the input statistical 

morphological descriptors. Moreover, the PDF of the number of 

contiguous grains and its associated bins is fully dependently 

correlated to the grain size PDF, inspired from a statistical analysis 

of experimental 3D grain structure in polycrystals [285] . The 

algorithm then assigns the morphological bins to each other in 

a fairly random process; and creates grains, which will be later 

placed in a voxelized RVE (by satisfying the generated statistics 

concerning the contiguous neighboring grains and periodic bound- 

aries) through an iterative process (grain packer) controlled by 

several constraints and preset tolerances. The number of grains in 

the RVE is determined based on its size, the morphological bins 

and the grain placement procedure. From the resultant voxelized 

representation of the grain aggregate, seed points for the Voronoi 

tessellation are generated. The constrained Voronoi tessellation 

tool creates a grain structure with an arbitrary grid/mesh resolu- 

tion. After construction of the grain ensemble, the crystallographic 

orientations (Bunge-Euler triples), binned/sampled from the input 

ODF (by the number of grains), will be assigned to the tessellated 

grains through an iterative scheme, so that the resultant bulk 

(weight-averaged by grain volume) ODF and correlated MDF of the 

RVE match their input counterparts within the specified tolerance. 

Appendix K. True stress and strain measures 

For post-processing purposes, one needs to compute true 

(in current configuration) strain and stress tensors and their 

equivalent scalars. First, we need to consider the following polar 

decomposition of the non-singular (total) deformation gradient 

tensor (at material points and/or homogenized over RVE): 

F = VR ; V = V 

T ; R 

−1 = R 

T ; (45) 

where V is the symmetric left stretch tensor; and R is the orthogo- 

nal polar rotation tensor. The true conjugate pairs: the Cauchy/true 

stress tensor ( σ) and logarithmic/true strain tensor ( ɛ ) (at material 
points and/or homogenized over a volume), are calculated from 
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the known S and V , respectively, as follows: 

S = J F −1 σF −T = F −1 p S F 
−T 
p ; ⇒ σ = 

1 

J 
F e S F 

T 
e = 

1 

J 
FS F T ;

˙ ε ≡ D ≡ sym ( L ) ≡ 1 

2 

(
L + L T 

)
= 

˙ V V 

−1 ; ⇒ ε = ln ( V ) ; (46) 

where D is known as the rate of deformation. Consequently, 

the equivalent true stress and strain (at material points and/or 

homogenized over RVE) according to von Mises are calculated as 

follows [286] : 

σ ≡
√ 

3 

2 
|| σd ||; σd ≡ σ − σh ; σh ≡ σ h I ; σ h = 

1 

3 
I : σ;

ε ≡
√ 

2 

3 
|| ε d ||; ε d ≡ ε − ε v ; ε v ≡ 1 

3 
ε v I ; ε v = I : ε ; (47) 

where σ and ɛ are the equivalent (von Mises) stress and strain 
(scalars), respectively; and superscripts d, h and v , respectively 

represent deviatoric, hydrostatic and volumetric parts of the 

corresponding tensorial quantity. 
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We present our latest results on linking the process–structure–properties–
performance (PSPP) chain for metal additive manufacturing (AM), using a
multi-scale and multi-physics integrated computational materials engineering
(ICME) approach. The abundance of design parameters and the complex
relationship between those and the performance of AM parts have so far im-
peded the widespread adoption of metal AM technologies for structurally
critical load-bearing components. To unfold the full potential of metal AM,
establishing a full quantitative PSPP linkage is essential. It will not only help
in understanding the underlying physics but will also serve as a powerful and
effective tool for optimal computational design. In this work, we illustrate an
example of ICME-based PSPP linkage in metal AM, along with a hybrid
physics-based data-driven strategy for its application in the optimal design of
a component. Finally, we discuss our outlook for the improvement of each part
in the computational linking of the PSPP chain.

INTRODUCTION

Metal additive manufacturing (AM) offers enor-
mous potential for the rapid production of net-
shaped, geometrically complex, lightweight, mini-
mum-waste and customized metallic parts without
the need for the expensive tools required in
conventional casting, subtractive or formative
manufacturing processes.1–4 Typically, metal AM
provides high degrees of freedom in all aspects of
component design, including alloy selection,
(macro-)structural geometry and microstructural
features. Some alloying systems that otherwise
would require expensive conventional processing
can be readily used in AM, such as refractory
alloys,3 high-manganese steels5–9 or titanium alu-
minides.10 One of the central benefits of metal AM
lies within its unrivalled flexibility in building
highly customized and complex geometries of
macroscopic structures.

Recent experimental studies have reported that
unique microstructures are formed during AM,
which are substantially influenced by the process

parameters.6,11–24 AM components having the same
shape and size (macroscopic structure) but made
using different process parameters possess strik-
ingly different microstructures, and hence mechan-
ical properties. Consequently, the AM process
parameters can be controlled to tailor the
microstructures. Therefore, one could simultane-
ously 3D-print the (macroscopic) structure as well
as the desirable microstructure depending on the
expected in-service performance of the specialized
component.

The high dimensionality of design space, multi-
objective design requirements, high sensitivity of
the AM parts performance to the design, and
extremely complex relationships between the design
parameters and performance have so far impeded
the widespread adoption of metal AM technologies
for structurally critical load-bearing components. In
this context, multi-scale and multi-physics inte-
grated computational materials engineering
(ICME)25 for computational (bottom–up) linking of
process–(micro)structure–properties–performance
(PSPP)26 is a viable solution.1,27–34 The role of the
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microstructure is of particular importance, as it
controls the material inherent mechanical proper-
ties but is often neglected in AM component design.

In this paper, we present a systematic ICME-
based approach that can be used for comprehensive
and optimal design for AM. Generally, in metal
manufacturing, the design space consists of alloy
composition, process parameters, and macroscopic
geometry of the structure/component, with the
design objective being the in-service performance
of the final component. The performance depending
on the thermo-chemo-mechanical (TCM) service
load may include multiple functional aspects, such
as specific energy absorption capacity, fatigue
strength/life, high-temperature strength, creep
resistance, erosion/wear resistance, and/or corrosion
resistance. The TCM processing fields, microstruc-
ture, and (macroscopic) TCM material properties
are treated as design internal/hidden variables,
which are directly affected by the design parameters
and determine the performance of the final product.
The design elements and their interaction in metal
additive manufacturing are shown in Fig. 1. It
should be noted that, according to the selected
metal manufacturing method (which can be various
metal AM methods), the chosen alloy family and
design criteria, certain constraints are imposed to
each element in the design space. The pre-imposed
constraints to the design space include the limita-
tion in the chosen alloy family (corresponding to an
allowable concentration of the principal element
and each alloying element), process parameters
which are constrained by the applied AM method
(e.g., laser powder bed fusion; LPBF) and the
utilized AM machine (e.g., power density of the
energy source), and the component geometry which
is limited due to the device it will be a part of (e.g.,
constraints on the component weight, shape and

size). Therefore, a constrained subset of the design
space is always under consideration. Moreover, the
performance space is also constrained by a set of
requirements corresponding to the design criteria
and the expected/acceptable performance (range) of
the final component under the service TCM loads
(e.g., the tolerable minimum energy absorption
capacity, which preserves the in-service functional-
ity of an additively manufactured lattice structure).

A polycrystal internal structure, i.e., microstruc-
ture, with respect to its hierarchal heterogeneity
owns the following main distinctive attributes
known as the microstructural features, which span
across different length scales:

� Meso-scale features Distribution of grain mor-
phology (size, shape and shape-axis orientation),
crystallographic texture (orientation and misori-
entation), phases, twins, and micro-precipitates.

� Submeso-scale/constitutive features Distribution
of alloying elements (elemental micro-segrega-
tion), dislocation density, porosity/micro-voids
(and other defective inclusions), and nano-pre-
cipitates.

In our previous experimental-numerical study on
high-manganese steel processed by LPBF,35 it was
shown that different aspects of microstructural
heterogeneity, in particular grain morphology and
crystallographic texture, influence the overall ani-
sotropic mechanical properties, and can be captured
using crystal plasticity modeling and computational
polycrystal homogenization.

The emerging cross-disciplinary ICME toolset
enables a physics-based and hence reliable linkage
between process and performance. In this work, we
outline an ICME-based strategy, which can be used
to connect the AM processing conditions with struc-
ture–properties–performance of an AM component
and will lead to a better understanding of their
relationship. It is hypothesized that such an
approach will allow exploiting the unique and
flexible local processing conditions of AM for tailor-
ing the local properties of AM components. The
proposed framework is illustrated through a simple
example, in which the crucial information obtained
from the results of each simulation/calculation is
passed on to the next one in the chain. This example
consists of the following steps:

� Alloy selection for AM using CALPHAD and
ab initio/first-principles calculations based on
density functional theory (DFT).

� Finite element (FE) simulation of thermal field
during AM.

� Simulation of microstructure evolution during
AM (using the results of thermal field simula-
tion), by phase field (PF) and kinetic Monte
Carlo (KMC) models.

� Crystal plasticity (CP) simulation of macroscopic
plastic flow properties by a physics-based con-
stitutive model and using the full field method

Fig. 1. The design elements and their interaction in metal additive
manufacturing.
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for computational polycrystal homogenization
through a fast Fourier transform-based (FFT-
based) spectral solver.

� FE simulation of the performance of macroscopic
structure using the CP simulation results.

In the present case study, single-phase austenitic
high-manganese steel was selected as the model
alloy and processed by LPBF to fabricate a lattice
structure which is ultimately subjected to a service
compressive load for an application corresponding
to its specific energy absorption capacity (energy
absorption capacity normalized by the weight of the
structure).

ALLOY SELECTION

The design space is initially constrained by
selecting a limited set of chemical compositions
(within an alloy family) using rapid screening of
alloy compositions based on the presumed (TCM)
properties. The approach adopted for the present
study combined CALPHAD and DFT calculations,
as schematically illustrated in Fig. 2.

First, the compositional subspace is computation-
ally screened by CALPHAD and thermodynamics-
based models. In the present study, the aim was to
design a single-phase face-centered cubic (fcc) high-
manganese steel as the model alloy. Therefore, the
vast compositional space was constrained to a
subspace associated with the high-manganese steel
family. Such an alloy remains single-phase during
AM, which reduced the number of possible design
internal variables in this case study. Further, in the
selected alloy family, the activation of twinning-
induced plasticity,36–38 which is highly dependent
on the microstructural heterogeneities, in particu-
lar crystallographic orientation distribution,35 was
used to promote a high strain hardening (rate) and

hence energy absorption capacity (see ‘‘Mechanical
Properties’’ and ‘‘Performance’’ sections). The Pre-
cHiMn-04 database39 was used for (thermodynam-
ics-based phase stability) CALPHAD calculations
within the Fe-Mn-Al-C chemistry subspace by
Thermo-Calc software. Moreover, thermodynamics-
based stacking fault energy (SFE) calculations were
performed for the selected alloy family.38,40,41 DFT-
based ab initio calculations were subsequently
performed to derive phase stabilities and energetic
material properties, such as the SFE,42–48 lattice
and elastic constants,49,50 and solid solution
strength.51–57 We selected an alloy with an SFE
being sufficiently low to promote deformation twin-
ning and, at the same time, sufficiently high to
avoid martensitic phase transformation during
deformation. Subsequently, alloys processed by dif-
ferent AM methods, with the elemental composition
X30MnAl23-x (x = 0–2 wt.% Al) were experimen-
tally screened.6 The alloy X30MnAl23-1 was iden-
tified as single-phase fcc with high work-hardening
capacity and, therefore, serves as a model alloy for
the present ICME study. In addition, a similar
methodology has also been successfully employed
and validated for high-entropy alloys.58–65

THERMAL FIELD

The output of the alloy selection (‘‘Alloy Selection’’
section) provided the required input for the work
performed in this section, i.e., the thermo-physical
properties of the alloy. The temperature (T) field in
the melt pool and heat-affected zone play the most
significant role in the formation of the as-built
microstructure. The grain morphology, texture,
segregation of solute elements, and the formation
of primary precipitates are known to be affected by
the temperature gradient near the solidification
front and by the growth velocity. The development

Fig. 2. The alloy selection approach. CALPHAD calculations are first performed to narrow the space of promising chemical compositions. More
precise calculation of phase stabilities and energetic material properties are performed using DFT-based models.
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of a stable melt pool depends on the interaction
between the moving heat source (laser beam), the
material in various states (powder, liquid, and
solidified) and the ambient environment. In the
past decade, FE-based transient thermal conduction
models that originate from laser-welding applica-
tions have been employed to simulate the temper-
ature evolution in AM processes.66,67 More recently,
comprehensive multi-physics models have been
developed to simulate the thermal-fluid flow (heat
and mass transfer) in the melt pool (using compu-
tational fluid dynamics) and the particle dynamics
in the powder bed.68–71 However, due to complex
fluid–structural interactions and extremely high
temperature gradients, the computational cost for
such type of simulations is prohibitively high for
large-scale applications. Therefore, in this work, we
used the less demanding FE method (without
consideration of fluid flow in the melt pool).

Our earlier work,72 demonstrated an FE model
for the simulation of melt pool geometry under
different scan speeds during LPBF. The implicit
thermal solver of FE software ABAQUS was used to
numerically simulate the transient thermal field
and melt pool geometry, using a moving semi-
ellipsoidal volumetric heat flux defined by the
(user-defined) subroutine DFLUX with a Gaussian
heat source intensity profile. The temperature-de-
pendent thermal conductivity was adopted from
experimental measurements on a similar alloy.73

Since the laser radiation interacts mostly with the
liquid melt pool during LPBF,74 an absorption
coefficient of 0.41 for liquid iron irradiated by an
Nd-YAG laser was chosen.75 Five scanning tracks
with a bi-directional scan strategy were modeled.
The solution domain was decomposed to the powder
bed and solidified material, which were approxi-
mated as homogenous and continuous fields. The
thermo-physical properties of the material, includ-
ing liquidus temperature (Tl), solidus temperature
(Ts), specific heat capacity, and latent heat were

calculated by Thermo-Calc using the PrecHiMn-04
database. The thermo-physical properties of the
powder were determined based on those of the solid
and the powder bed density, which was assumed to
be a fraction (40%) of that of the bulk material.76

The user-defined field subroutine (USDFLD) was
used to define a state variable (0 � u � 1), which
was initialized with u ¼ 0 representing the powder.
At each material/integration point, once the tem-
perature reached the liquidus temperature (T ¼ Tl),
the state variable changed its value to u ¼ 1
denoting the non-powder (fully liquid or dense solid)
state. For Ts � T � Tl, the powder density and heat
conductivity were linearly interpolated between
those of fully solid and liquid states. An example
of the simulated temperature field and melt pool
geometry during the bi-directional scanning in
LPBF of a (rectangular) block structure is shown
in Fig. 3.

MICROSTRUCTURE EVOLUTION

As mentioned earlier, the microstructure has
distinctive features at the meso- and submeso-
scales. Therefore, in order to sufficiently capture
the (mechanical) material properties at the macro-
scale, microstructure development needs to be sim-
ulated at both the meso- and submeso-scales. Here,
elemental micro-segregation as a decisive submeso-
structural aspect together with the grain structure
at the meso-scale were simulated, respectively using
FP and KMC models, based on the information
delivered by the alloy selection (‘‘Alloy Selection’’
section) and thermal field (‘‘Thermal Field’’ section)
calculations/simulations.

Elemental Segregation

Modeling of elemental micro-segregation during
AM requires not only the thermo-physical proper-
ties (‘‘Alloy Selection’’ section) but also the evolution
of the temperature field over time during

Fig. 3. (a) FE-simulated temperature field, (b) corresponding melt pool geometry, and (c) site-specific temperature evolution during LPBF of a
block structure.
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solidification (‘‘Thermal Field’’ section). The solidi-
fication simulations with a focus on elemental
segregation were carried out using the phase-field
software MICRESS� based on the multi-phase field
approach.77 PF and diffusion equations are derived
from a free energy functional. Numerical minimiza-
tion of the free energy of the multiphase system was
performed using Thermo-Calc to simulate the solute
partitioning and to evaluate the thermodynamics
driving force for phase transformations. This
method has been widely used to simulate the
microstructure evolution during solidification. In
addition to composition and temperature, order
parameters (PF variables) were used, giving an
extra degree of freedom. This parameter can vary
continuously from 0 (absence) to 1 (existence) for
different phases/grains, so that non-equilibrium
processes can be investigated without the necessity
to track the interface.77,78

A two-dimensional (2D) simulation was per-
formed to study the relationship between the pro-
cess parameters, the resulting thermal conditions,
and the microstructure, including micro-segrega-
tion. The FE-simulated thermal field during the
LPBF process was used as input. The vertical
direction in the modeled (2D) domain is parallel to
the build direction of the LPBF sample. The height
of the simulated area was chosen in such a way that
the total melt pool height is displayed. Since the
solidification parameters in the melt pool are dif-
ferent in every position and only a one-dimensional
temperature profile can be handled in MICRESS�,
the melt pool width was not considered, resulting in
a 70 9 10 lm simulation domain with a grid size of
0.0125 lm. Thermodynamics properties were deter-
mined using the Thermo-Calc (TCFE9 and
MOBFE4) databases. An initial structure was
defined by two phases, representing the solidified
layer and the melt. Epitaxial growth was assumed.

The height of the initial structure was set to 40 lm.
This height corresponds to the existing substrate
height in the modeled area, after lowering the
substrate plane by 30 lm before adding a new
powder layer and remelting. The melt was present
in the area above the grains. The melt composition
and starting structure were identical. At the bound-
aries of the simulated domain, insulating boundary
conditions were defined. The time step size was
automatically selected by the PF solver. The PF-
simulated cellular segregation profiles of man-
ganese and carbon (two main alloying elements in
the selected alloying system) are shown in Fig. 4.
Since carbon is a fast diffusive interstitial alloying
element, the carbon profile appears smoother than
that of manganese, which results from back-diffu-
sion of the carbon from the enriched cell boundaries
into the cells during solidification and cooling. On
the other hand, the substitutional alloying element
manganese, with slower diffusivity and lower back-
diffusion, remained richer within the inter-dendritic
regions. The temperature-dependent diffusion coef-
ficients for all the elements are derived from the
coupled Thermo-Calc mobility database MOBFE4.

Grain Structure

The melt pool dimension as derived from the
thermal field simulation along with the process
parameters (laser power, spot size, and scanning
strategy) served as direct input for simulation of the
mesoscopic grain structure formed during LPBF.
The meso-scale microstructure (or simply meso-
structure) evolution was simulated using a KMC
model,79 which is implemented in the open source
SPPARKS Potts-KMC simulator software. After 10
deposited layers, from the center of the simulated
volume, the grain structure shown in Fig. 5 was
extracted as a representative volume element

Fig. 4. PF-simulated micro-segregation pattern of (a) manganese and (b) carbon with the corresponding distribution profiles along an intercept
line (perpendicular to the build direction).
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(RVE). As shown in Fig. 5, grain sections on the
build direction (BD)-transverse direction (TD) plane
and scan direction (SD)–TD plane are dominantly
elongated towards BD and SD, respectively,
whereas grain sections on the BD–SD plane are
almost equiaxed. This is due to the specifically
chosen AM process parameters including the bi-
directional scanning pattern (without rotation or
switching between SD and TD in each AM layer),
and considering the fact that grain growth is
favorable along the maximum local heat flow direc-
tion. This is in line with the typically observed grain
shapes in AM meso-structures, as the grain sections
on BD–TD sections are columnar, meaning that
they are polarized (having an elongated shape with
relatively low aspect ratio and low angle of the
major principal axis) along BD. Here, the aspect

ratio (m � b=a, where 0<m � 1) for a given grain is
defined as the length of minor axes (b) of the best-fit
ellipse divided by its major axis length (a).

MECHANICAL PROPERTIES

The (as-built) AM microstructures have been
shown to be highly polarized (strong crystallo-
graphic texture and strongly polarized grain mor-
phology), heterogeneous and spatially non-uniform
in every possible aspect compared to their tradi-
tionally manufactured counterparts.35 These inher-
ent microstructural disparities result in a highly
anisotropic (macroscopic) plastic flow behavior.
Macroscopic mechanical response/properties of such
materials can be adequately captured by the full
field method for computational polycrystal homog-
enization using RVE coupled with physics-based CP
constitutive modeling.

The RVE extracted using the results of meso-
structure simulation (‘‘Grain Structure’’ section)
was used in CP simulations to derive the macro-
scopic mechanical response of material in terms of
homogenized (monotonic) flow curves. The

polycrystalline aggregate was set under externally
imposed macroscopic boundary conditions corre-
sponding to displacement-controlled uniaxial load
with a quasi-static (true) strain rate (_�e ¼ 10�3 s�1),
which translates to pure deformation periodic
boundary conditions on the RVE (Fig. 5). The
governing boundary value problem is then solved
using the physics-based CP model detailed in Ref.
35 to fulfill the mechanical equilibrium by the FFT-
based spectral solver of the modular CP code
DAMASK.81 The applied CP constitutive model
computes the mechanical response as well as evo-
lution and anisotropic interaction of micro-state
variables (MSVs) at deformation (slip/twin) systems
of meso-scale grid/integration points (or simply
meso-points) of the RVE, using physically motivated
formulations that take submeso-scale/constitutive
effects into account. The constitutive state variables
are unipolar and dipolar dislocation densities, as
well as twin volume fraction. The incrementally
resolved fields (stress, strain and MSVs) at the
meso-points are then homogenized over the meso-
scopic RVE to give the macroscopic response.

Since the applied constitutive model is based on
the underlying physics of crystal plastic deforma-
tion, most of the corresponding constitutive/sub-
meso-structural parameters have a clear physical
meaning and are adopted from various sources of
independent experimental measurements and/or
submeso-scale simulations (ab initio, atomistic and
discrete dislocation dynamics) associated with the
selected alloy composition (X30MnAl23-1). The
effective grain size as a constant was determined
from the grain size (number and volume fraction)
distribution of the KMC-simulated grain ensemble.
As mentioned in ‘‘Alloy Selection’’ section, the SFE,
as another material constant, was calculated from
the chemical composition of the material. The initial
dislocation density was estimated as a function of
the average cooling rate during solidification. Fur-
thermore, the results of micro-segregation

Fig. 5. (a) Grain structure as RVE extracted from the ensemble of grains after 10 additively deposited (LPBF) layers simulated using the KMC
model.79 (b) Mean grain shape (aspect ratio at orthogonal planes) and grain shape-axis orientation distribution in terms of pole figures with
respect to ellipsoidal grain principal axes (ea, eb, ec), which were analyzed and plotted by DREAM.3D software.80
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simulations (‘‘Elemental Segregation’’ section) have
been used to calculate the variance in the submeso-
scale distribution of SFE and, subsequently, the
parameters associated with the probability density
of twin nucleation. The homogenized mechanical
response in terms of (flow) stress and strain hard-
ening (h � @r

@e) along with the evolutions of twin
(volume) fraction and (unipolar) dislocation density
with strain are plotted in Fig. 6.

PERFORMANCE

The design objective of the present case study was
obtaining the deformation behavior and the result-
ing specific energy absorption capacity of the f2cc,z
lattice structure. FE simulations are a useful tool to
assess the performance of structural parts under
different loading conditions, and offer guidance in
the selection of materials and geometrical features
of components to optimize their performance.82 FE
models are constructed from computer-aided design
(CAD) files which describe the geometry of the

structural component. The imported geometry is
then discretized using finite elements, and specific
boundary conditions are applied corresponding to
service loads. It is worth noting that the selection of
FE type influences the accuracy of the predictions as
well as the computation time.83,84

Here, we present a FE model of the f2cc,z lattice
structure fabricated by LPBF of the alloy
X30MnAl23-1 under compressive load (Fig. 7a).
The geometry and boundary conditions were
adapted from Refs. 6 and 24. The compression
specimen consisted of five f2cc,z unit cells in each
direction with 500-lm-diameter struts. The simula-
tions were performed using the commercial FE
package QForm VX and utilized tetrahedron ele-
ments. QForm VX employs an automatic remeshing
algorithm as a function of the varying stress field,
which allows obtaining an accurate prediction of the
structural deformation behavior. The material
behavior under plastic deformation was represented
as flow curves (true stress response as a function of
accumulated plastic strain) with different

Fig. 6. Simulated homogenized (a) flow curves, (b) strain hardening curves, (c) evolution of twin (volume) fraction, and (d) evolution of (unipolar)
dislocation density of/in the high-manganese steel processed by LPBF (using the RVE shown in Fig. 5) under uniaxial tension at _�e ¼ 10�3 s�1

and T = 23�C along different axes.
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deformation parameters (combination of strain rate
and loading axis), which were determined using the
computational polycrystal homogenization approach
described in ‘‘Mechanical Properties’’ section.

Most FE software packages provide the possibility
of integrating advanced material models, and per-
mit the user to trace the evolution of MSVs.
Figure 7c shows an example of the local (equivalent)
strain distribution in the lattice structure during
compressive deformation measured using digital
image correlation (DIC). The major deformation in
the lattice structure is accommodated by the verti-
cal (iZ) struts,24 as their axes are parallel to the
loading direction (iLD). Additional areas of high
strain concentrations are observed at the strut
junctions (Fig. 7c). These zones of (macro-scale)
strain localization lead to failure of the struts in
these regions. Similar observations have also been
reported in Refs. 24 and 84. The comparison of FE-
simulated and experimental force-displacement
responses of the lattice structure (Fig. 7b) implies
a reliable numerical prediction of the lattice struc-
ture performance for the elastic and elasto-plastic
deformation regimes. However, simulation of the
force-displacement response of the lattice structure

in the deformation regimes after the onset of
damage initiation (here, corresponding to the nor-
malized compressive displacement of 6%) requires
coupling the elasto-plastic constitutive model with a
suitable ductile damage model. Incorporation of a
damage model which accounts for the process-
induced defects in the as-built structure, including
internal pores/voids, surface roughness,85 and devi-
ations in the morphology of the struts, would also
enhance the agreement between the simulated local
strain distributions and those obtained from the
corresponding DIC maps (Fig. 7c and d). In partic-
ular, Fig. 7d shows the failure in some (circled) of
the struts at relatively early stages of deformation.
The experimental result also shows variations in
strut diameter and some minor bulging due to
friction in the interfaces of the lattice structure and
tools. Despite these differences, which become more
pronounced with increased accumulation of the
plastic strain and damage, the simulation was able
to predict force-displacement responses (perfor-
mance) of the lattice structure in the early stages
of deformation where damage is not dominant.
Nonetheless, the (simulated) force is slightly over-
estimated (Fig. 7b).

Fig. 7. FE simulation of a compression test of high-manganese steel lattice structure fabricated by LPBF. (a) The FE model of the f2cc,z lattice
structure with a fine mesh using tetrahedron elements. (b) Comparison of the experimental and FE-simulated force-displacement responses of
the lattice structure. (c) FE-simulated distribution of equivalent (von Mises) strain showing strain localization in the vertical (iZ) struts. The
magnified deformed area illustrates the increased density of tetrahedron elements to capture the localized deformation. (d) Experimentally
measured (local) axial (iZ) strain distribution using digital image correlation (DIC) at 10% normalized compressive displacement.
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OPTIMAL DESIGN

Once the ICME-based PSPP linkage is estab-
lished, the search–predict–optimize (SPO) cycle can
be invoked for the optimal selection of design
parameters from the design space, which consists
of alloy composition, process parameters, and
(macroscopic) structural geometry. However, a rig-
orous ICME-based PSPP linkage is quite (computa-
tionally) expensive and complex. Therefore, we
propose an efficient hybrid ICME-based data-driven
modeling as a performance-oriented optimal design
strategy for metal AM, which its workflow is
demonstrated in Fig. 8. It consists of the following
steps:

I. Decomposition of the multi-dimensional de-
sign space into a finite number of domains
according to the specific ranges of interest for
each dimension; and sampling the design
parameters from the aforementioned do-
mains, using a design-of-experiments meth-
od.

II. Predicting the performance for design
parameter combinations via the ICME-based
PSPP linkage, as illustrated in Fig. 9.

III. Establishing experimental PSPP linkages for
a few combinations of design parameters and
evaluating the uncertainty in the ICME-
based PSPP linkages.

IV. Training a data-driven model by the physics-

based performance predictions associated
with the sampled design parameters. Data-
driven Gaussian process regression models,
which are kernel-based and non-parametric,
seem to be suitable candidates to emulate the
ICME-based PSPP linkages. Such surrogate
models, which are already implemented in
MATLAB and Python, can be readily used.

V. Defining a multi-variate objective function
for minimization based on the targeted per-
formance features.

VI. Application of the trained data-driven model
for performance optimization through the
closed-loop SPO iterations using a search-
based gradient-free optimization algorithm
to minimize the multi-variate objective func-
tion.

VII. Validating and fine-tuning the ‘‘optimum’’ set
of design parameters using ICME-based
PSPP linkages followed by experimental
verification of the performance associated
with the outcome design parameters.

REMAINING CHALLENGES

Despite the fact that the demonstrated work
covers all the ICME-based links in the PSPP chain,
there are several remaining challenges. Enhanced

Fig. 8. Workflow of the proposed hybrid ICME-based data-driven method as a performance-oriented optimal design strategy for metal AM.
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accuracy in each link can be achieved by relaxing
some of the initial assumptions and integration of
more sophisticated models:

� Process–structure (PS) link convective melt pool
dynamics and powder bed particle dynamics
modeling can be used to inform/improve the
presented relatively efficient and simple model
for the simulation of thermal field during AM.
The current model can be extended to include the
effects of successive build layers and their asso-
ciated cyclic heating of lower layers on the
evolution of thermal field. Moreover, formation
of macro-scale residual stresses during AMdue to
non-equilibrium cooling, which can be significant
depending on the process parameters and struc-
tural geometry, is not currently considered.
Finally, the applied microstructure evolution
models do not account for the evolution of
texture, phases, precipitates, micro-voids, and
dislocation density. Therefore, there is a critical
need for efficient and comprehensive microstruc-
ture evolution models which are coupled with the
processing fields. The cellular automata models
for microstructure evolution that are coupled
with finite element/volume/difference thermal
models seem to be promising.86–93 These types
of models have recently been applied for simula-
tion of grain morphology and crystallographic
texture during various metal AM processes.

� Structure–properties SP link the utilized model
for the structure–properties linkage is robust
and computationally efficient. However, it does
not account for a number of physical phenomena
that can be significant in some regimes. These
physical phenomena are the deformation-twin
thickening, dynamic/static pinning of disloca-
tions, strain-path change, tension–compression
asymmetry, slip transfer at microstructural
interfaces and, most importantly, damage and
fracture. Computationally expensive but ad-
vanced (continuum) gradient-based crystal plas-
ticity constitutive models with dislocation
fluxes94,95 that are coupled with phase field
models for damage96 and twinning97 can be used
to inform/improve the applied more efficient
model.

� Properties–performance PP link the model used
for performance simulation takes the flow curves
corresponding to different deformation parame-
ters (combination of strain rate, temperature
and loading axis) as input. These flow curves
were provided from the SP simulations. How-
ever, since, generally, the macro-scale material
points in the performance simulations are under
complex multi-axial and cyclic loading conditions
with different and varying deformation param-
eters, the applied modeling approach, which is
not physics-based and history-dependent, may
lead to inaccurate predictions. This inaccuracy

Fig. 9. Overview of the ICME-based PSPP linkage for performance (specific energy absorption capacity) prediction of a lattice structure, made of
high-manganese steel, additively manufactured by LPBF.
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becomes significant when the mechanical re-
sponse of the material is highly sensitive to
deformation parameters, such as those observed
in the highly anisotropic stress response in AM
materials. One solution is the application of
mean-field methods for computational polycrys-
tal homogenization rendering the unique macro-
scale material response as a function of evolving
micro-state variables and multi-axial deforma-
tion parameters, e.g., self-consistent meth-
ods.98–100 Moreover, nonlocal microstructural
constitutive modeling at the macro-scale,101

implemented in a thermo-micro-mechanical
framework,102 is also a viable solution. In this
context, the applied mean-field/nonlocal consti-
tutive model must adequately account for the
microstructural features, such as grain morphol-
ogy and crystallographic texture, which are
known to control the macroscopic anisotropy in
mechanical response of the polycrystalline
aggregates. Such mean-field or nonlocal models
can be informed by the results of full-field SP
simulations. Furthermore, another important
aspect which is currently neglected in the
depicted PP link is damage. For a more precise
and comprehensive performance simulation of
the macroscopic structure, a physics-based con-
tinuum damage model, which accounts for
defects such as surface roughness and
voids,103–108 should be coupled with the applied
elasto-plastic constitutive model.

CONCLUDING REMARKS

A versatile ICME-based approach for optimal
design for metal additive manufacturing has been
introduced. The following concluding remarks can
be made:

� Due to the vastness and multi-dimensionality of
the design space and the highly complex rela-
tionship between the design parameters and
outcome performance, the optimal design is only
achievable computationally, as it will dramati-
cally reduce time and effort in experimentation
and provide accelerated pathways to explore the
design space.

� We proposed a hybrid physics-based data-driven
strategy for optimizing the performance of addi-
tively manufactured products by selecting the
optimum design parameters from the design
space. The physics-based ICME methods allow
for the capturing of the prevalent physical
mechanisms, whereas the combination with
data-driven approaches enables computationally
efficient acquisition of the PSPP linkages.

� The approach outlined in this paper will provide
a roadmap for widespread adoption of load-
bearing additively manufactured metallic com-
ponents.
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5. C. Haase, J. Bültmann, J. Hof, S. Ziegler, S. Bremen, C.
Hinke, A. Schwedt, U. Prahl, and W. Bleck, Materials
(Basel, Switzerland) (2017). https://doi.org/10.3390/ma100
10056.
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4. Discussion 

Given the computational power currently at disposal, the microstructural ef-

fects on the mechanical response of polycrystals can only be modeled and simu-

lated in the continuum framework either at the macro-scale using the nonlocal 

microstructural modeling or at the meso-scale through the computational poly-

crystal homogenization (CPH) methods. In this thesis, both approaches are used 

to model the microstructural effects and demonstrate the applications with re-

spect to the in-process behavior simulation of polycrystalline materials as well as 

the in-service performance prediction of polycrystalline components. 

 Macro-scale modeling and in-process application 

Papers I and II present the microstructural modeling at macro-scale and its 

application in thermo-micro-mechanical/thermal-microstructural-mechanical 

(TMM) simulation of metal forming processes. Typically, in bulk metal forming 

processes, the initial billet contains an almost non-polarized initial microstruc-

ture due to the prior homogenization annealing heat treatment. The microstruc-

ture often remains mostly non-polarized during the closed-die bulk metal form-

ing, owing to their specific class of boundary conditions. Moreover, since the 

loading mode in bulk metal forming is dominantly compressive, the porosity ef-

fect is usually negligible. Thereby, in the bulk metal forming processes where the 

polarity, composite, and porosity effects are assumed negligible/absent, model-

ing the size effect can sufficiently capture the in-process material behavior. 

The meso- and submeso-size effects are coupled though the microstructural 

(continuum) constitutive modeling nonlocally at macro-scale (Paper I). The key 

postulate is that a differential meso-scale singularity (infinitesimal sharp inter-

face associated with a disorientation) in the polycrystal continuum can be re-

placed by a fictitious equivalent geometrically necessary dislocation (GND) den-

sity as a diffuse interface that smoothly resolves the effective geometrical features 

and mechanical properties of the meso-interface. Accordingly, the microstruc-

tural size features at different length scales and their associated (meso- and sub-

meso-size) effects are consistently unified. 

In the microstructural model presented in Paper I, the statistical state of the 

microstructure (polycrystal discontinuities) is described by three micro-state var-

iables (MSVs), which represent mesoscopically nonlocal dislocation densities. 

Thereby, the total dislocation content of the polycrystal is decomposed based on 

the mobility feature of dislocations (mobile/immobile) and their arrangement 
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(cell/wall), as well as the stability of dislocation submeso-structural and (equiv-

alent) meso-structural boundaries. In this context, mobile dislocations have a suf-

ficient instantaneous mobility to carry the crystal plastic strain by slipping inside 

the subcells. The subcell boundaries, which have a highly dynamic character dur-

ing deformation in the cold regime and almost vanish in the warm regime, are 

mostly dipolar statistically stored dislocations (SSDs). It was postulated that the 

subcells (interiors), which collectively constitute almost all the polycrystal vol-

ume, have an instantaneous relatively low (submesoscopically local) dislocation 

density. However, the subcell volumes are under long-range internal stresses due 

to the nonlocal influence of the (relatively) immobile cell walls (geometrically 

necessary boundaries, GNBs). 

Temporarily immobile dislocations in the cell interiors (cell immobile disloca-

tions) mostly form/(accumulate at) unstable subcell boundaries. Due to their un-

stable character, these subcell boundaries are postulated to occupy all the subcell 

volumes in a relatively short time scale (relative to the imposed macroscopic 

strain rate). Therefore, cell mobile/immobile dislocations lack nonlocal effects 

because of their relatively uniform spatiotemporal distributions. However, the 

wall (immobile) dislocations, which are mainly geometrically necessary, existing 

in the relatively localized stable dislocation walls (GNBs) impose nonlocal effects 

by propagating long-range stresses inside the cells. Another important postulate 

made is that the intra-granular dislocation walls are nucleated in the cell interiors 

from the accumulates of cell immobile dislocations (at subcell boundaries) due to 

the nonuniformity of local plastic deformation (transformation of subcell bound-

aries to dislocation walls). The wall dislocations due to their nonlocality, relative 

immobility, and the associated long-range internal stresses are the main micro-

structural elements contributing to the higher stress response of single-constitu-

ent polycrystals compared to their defect-free single-crystal counterparts. In ad-

dition, like the fact that the cell immobile dislocations almost disappear in the 

warm regime, wall dislocations provide the driving force for recrystallization, 

and thus tend to vanish in the hot regime. Notice that the properly chosen wall 

terminology refers to the relative stability of dislocation walls in the cold and 

warm regimes. 

In the presented model (Paper I), it was postulated that only adequately mo-

bile segments of dislocations accommodate the crystal plasticity, and hence con-

tribute to relaxing the internal stresses, whereas immobile segments of disloca-

tions contribute to strain hardening. Through another postulate, the constitutive 

stress response is additively decomposed to the contributions of immobile dislo-
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cations of cell and wall species corresponding to the (mean) short-range criti-

cal/threshold/back and long-range internal stresses, respectively. Both the 

short- and long-range contributions are calculated using the isotropic Taylor re-

lation to render the macroscopic instantaneous plastic/athermal/rate-independ-

ent stress response (𝜎𝑝): 𝜎𝑝 = 𝑀𝑏𝐺𝛼̃𝑐√𝜌𝑐𝑖 + 𝑀𝑏𝐺𝛼̃𝑤√𝜌𝑤𝑖 ; where 𝑀, 𝑏, and 𝐺 are 

the Taylor factor, Burgers length, and shear modulus, respectively; 𝛼̃𝑐 and 𝛼̃𝑤 

denote the mean dislocation interaction strengths associated with the local den-

sity and geometrical arrangement of immobile dislocations of cell and wall types, 

respectively; and 𝜌𝑐𝑖 and 𝜌𝑤𝑖 represent the cell and wall immobile dislocation 

densities (defined in a macroscopic representative material volume), respec-

tively. This equation is unique in the sense that most of the published models do 

not consider such short/long-range decomposition, and simply use a familiar 

form of the following relation instead: 𝜎𝑝 = 𝑀𝑏𝐺𝛼̃√𝜌𝑡; where 𝜌𝑡 denotes the total 

dislocation density, meaning that if all the dislocation types are defined in the 

same control volume, 𝜌𝑡 ≡ ∑ 𝜌𝑖𝑖 ; where 𝜌𝑖 is the i-th nonoverlapping independent 

dislocation type. 

Furthermore, the temperature and strain rate dependence of the instantaneous 

viscous response and evolution of MSVs are incorporated phenomenologically 

using power-law relations. Moreover, for the first time a dislocation density-de-

pendent explicit function for the plastic dissipation efficiency (the Taylor-Quin-

ney coefficient or the fraction of inelastic power converted to heat) is proposed, 

and integrated in the constitutive model. The predictions of the microstructural 

constitutive model are consistent with the results of the displacement-controlled 

uniaxial compression tests at various (constant) temperatures and strain rates, 

the multistep compression experiments, and the measurements of (mean) GND 

density at different strain states. 

It is worth noting that some of the definitions and decompositions in the pre-

sented microstructural model such as mobile/immobile, cell/wall, short-

range/long-range, and local/nonlocal may not sound very rigorous and funda-

mental, meaning that there is a certain ambiguity associated with them. The pres-

ence of such ambiguities along with the numerous postulates made is inevitable, 

particularly in a microstructural model at macro-scale, which is supposed to ad-

equately account for the hierarchical underlying physics of deformation, and ac-

curately capture a large body of experimental measurements. Generally, in mod-

eling of a physical system, larger length/time scale of the adopted theory leads 

to less rigorous postulates/definitions and thus higher ambiguity. The absence 

of the polarity and the porosity effects is another simplifying assumption made 

in the presented microstructural constitutive model. Thereby, mean dislocation 
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interaction strengths (𝛼̃𝑐 and 𝛼̃𝑤) and constant Taylor factor (𝑀 ≅ 3.06) were as-

sumed, which are associated with the non-polarized meso-structure having (face-

centered) cubic crystal symmetry. Moreover, the stress-reversal effect was ne-

glected as the (displacement) boundary conditions associated with the uniaxial 

compression tests were monotonic. 

The microstructural constitutive model was implemented in TMM explicit and 

implicit finite element (FE) frameworks as microstructural solvers via user-de-

fined material subroutines in the standard FE software ABAQUS, which are cou-

pled with the built-in thermal and mechanical solvers of the FE package. The im-

plementation is detailed in Paper II. Subsequently, examples of complex bulk 

metal forming processes (industrial multi-step cold and warm forging of a bevel 

gear shaft) were thermo-micro-mechanically simulated. The approach was vali-

dated by comparing the predictions of the simulations with the experimental 

measurement of the force-displacement response of the warm forging process 

and GND density measurements of the final cold-forged part. It was revealed 

that the preheating of the initial billet has a substantial influence on the macro-

scopic GND density distribution in the final part. The presented approach and 

the corresponding TMM simulations are unprecedented and unique in that the 

sophisticated underlying dislocation structure are represented in the macro-

scopic length scale within a component after/during industrially complex multi-

step metal forming processes. 

 Meso-scale modeling and in-service application 

Papers III and IV deal with modeling of the primary microstructural effects 

(the size and polarity effects) at meso-scale using a physics-based crystal plastic-

ity model, and its application in the optimal computational design of additively 

manufactured polycrystalline metallic materials. In Paper III, a meso-scale poly-

crystal plasticity model based on a full-field CPH scheme was presented, which 

consists of a physics-based crystal plasticity constitutive model, a crystal finite 

strain model, and a meso-structure model. The linearized crystal plasticity con-

stitutive and finite strain models incrementally compute the constitutive me-

chanical response as well as the evolution and the anisotropic interactions of the 

MSVs at the underlying deformation (slip/twin) systems of each integration 

meso-point of the statistically representative volume element (SRVE). The crystal 

plasticity constitutive and finite strain models are based on physically motivated 

formulations that adequately account for the submeso-structural effects. The 

MSVs are (scalar) unipolar and dipolar dislocation densities at slip systems, and 

twin (volume) fraction at twin systems. In addition, statistically realistic models 
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of the polycrystalline meso-structure in terms of SRVEs (with different grid res-

olution) were generated based on the experimentally determined meso-struc-

tural (size, morphological, and crystallographic) descriptors.  

In the framework of full-field CPH, in principle, the meso-structural features 

(including the meso-size) and their effects on the macroscopic mechanical re-

sponse should be fully handled by the mesoscopic SRVE, while the submeso-

structural aspects and their associated effects are reflected by the (physics-based) 

constitutive model. Such rigorous constitutive formulations involve gradient-

based treatment in meso-scale continuum constitutive modeling of polycrystal 

plasticity by decomposing the (total) dislocation density into the underlying 

GND and SSD densities. The gradient-based models can be coupled with an in-

terface model to account for (disorientation-dependent) slip transmission at grain 

boundaries as a function of interface opacity. Those highly nonlinear models lo-

cally (on the meso-scale) resolve the expected relatively high stress concentration 

in the vicinity of grain boundaries in the SRVE at the expense of the convergence 

rate leading to a longer computation time. Furthermore, due to their sensitivity 

to non-smoothness and geometrical contrasts, the gradient-based full-field sim-

ulations generally require higher grid resolution. Moreover, in the gradient-

based full-field framework, in the case of twinning as a potential plastic defor-

mation mechanism, the gradient-based constitutive model for dislocation-medi-

ated plasticity must be coupled with a twinning model that resolves twins explic-

itly on the meso-scale. Coupling of the gradient-based dislocation slip and ex-

plicit twinning (continuum) constitutive models for large-strain full-field (3D) 

simulation of polycrystal plasticity is not currently practical as it becomes highly 

complex, demanding, nonlinear, and computationally expensive. Therefore, the 

approach adopted in the physics-based constitutive modeling detailed in Paper 

III is the rather simpler and more efficient (while effective) nonlocal treatment, in 

which some meso-structural features such as grain size and twins (size, shape, 

and orientation) are nonlocally incorporated in the governing constitutive for-

mulation. In other words, the effect of stress concentration and strain localization 

due to the opacity of meso-structural interfaces is phenomenologically and non-

locally smeared all over the (intra-granular) meso-points of the SRVE. 

The polycrystalline material studied in Paper III is an additively manufactured 

(single-phase) austenitic high-Mn steel exhibiting both slip and twinning in the 

cold regime. In the absence of composite effects and with a negligible porosity 

effect in the considered strain range and deformation parameters, the size and 

polarity effects were the only microstructural effects governing the mechanical 
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response of the investigated polycrystal. As typically observed in (as-built) addi-

tively manufactured metallic materials, the studied polycrystal contained a rela-

tively polarized meso-structures, large meso-size, and small submeso-size. As a 

result, a relatively strong polarity and submeso-size, and weak meso-size effects 

were experimentally observed and numerically simulated. 

The measured strongly anisotropic and nonlinear mechanical response of the 

polycrystal in a wide range of strain (at room temperature and a quasi-static 

strain rate) was consistently captured by the full-filed simulations with an un-

precedented level of accuracy. The presented comparison between the experi-

mental and the simulated (macroscopic) anisotropic mechanical responses is a 

strong irrefutable validation of the meso-scale full-field polycrystal plasticity 

along with the adopted underlying modeling approaches. Nevertheless, a phys-

ics-based crystal plasticity constitutive model can always be improved. For in-

stance, the presented constitutive model can be enriched with formulations that 

account for the stress-reversal effect and the grain boundary plasticity resistance. 

Further, the introduced constitutive model consists of many underlying contin-

uum models, which all are based on simplifying assumptions. Generalization of 

the underlying models by relaxing some of their constraints would lead to an 

enhancement of the accuracy and sophistication of the constitutive model. How-

ever, the presented validations have revealed that at least for the investigated 

polycrystalline material, the physics-based constitutive model along with all the 

underlying assumptions are quite sufficient for realization of the observed com-

plex anisotropic polycrystal plasticity. 

In addition to the proof of concept, systematic case-study simulations corre-

sponding to different meso-structural polarity states were performed. Those 

case-study simulations, in which the morphological and crystallographic polari-

ties were isolated from one another, provided new insights into the polarity ef-

fect. It was evidenced that the morphological and crystallographic polarities al-

most equally affect the anisotropic polycrystal plasticity and the associated me-

chanical response. Another key finding was that the morphological polarity af-

fects the anisotropic strain hardening response of the polycrystal through a meso-

size-like effect: a parallel shift of the strain hardening curve. Moreover, it was 

argued that the chosen specific Fe-Mn-Al-C alloy combined with the processing 

method/parameters selected for the study depicted in Paper III, represented an 

ideal polycrystalline material for a deep probe into the polarity effect on the strain 

hardening response. The fact the studied polycrystal contained a single constitu-

ent with a high crystal symmetry while exhibiting the activation of twinning (in 
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addition to dislocation slip) and large uniform elongation before fracture, al-

lowed for a generic assessment of the the polarity effect. 

Finally, Paper IV demonstrates that meso-scale modeling of polycrystal plas-

ticity and microstructural effects plays the central role in the optimal design of 

specialized polycrystalline metallic materials under known service loads. In par-

ticular, the polycrystalline materials manufactured by unconventional metal pro-

cessing techniques such as metal additive manufacturing processes are suitably 

subjected to the aforementioned paradigm of the optimal design. Owing to the 

proven robustness of the meso-scale full-field modeling of polycrystal plasticity 

in capturing the polarity effect, it can be invoked in the context of optimal design 

to exploit such a mysterious microstructural effect. Conventionally, the meso-

structural polarity and the consequent anisotropy in the mechanical properties 

can be controlled to a certain extent through the deformation-based metal pro-

cessing (i.e., metal forming) or directional solidification. However, given the flex-

ibility of the metal additive manufacturing processes, almost every point in the 

meso-structural polarity space is conveniently accessible. Optimally, the meso-

structure of a specialized additively manufactured metallic component, particu-

larly with respect to polarity, can be designed in such a way to exhibit its highest 

load-bearing capacity in the direction where the service load is expected to be the 

maximum. 

5. Summary and Outlook 

In this thesis, the microstructural effects on the mechanical response of poly-

crystals are divided into four groups: size, polarity, composite, and porosity ef-

fects. The origins and a century of research on the modeling of the microstruc-

tural effects are reviewed. Furthermore, the primary microstructure effects, the 

size and polarity effects, are modeled for different polycrystalline metallic mate-

rials at two different length scales. First, the size effect was modeled using a 

macro-scale nonlocal microstructural model for (isotropic) polycrystal plasticity 

in the cold and warm regimes. Second, the polarity effect was modeled using a 

meso-scale full-field model for polycrystal plasticity to capture the anisotropic 

(macroscopic) mechanical response of a strongly (meso-structurally) polarized 

polycrystal. The macro-scale model was used to simulate industrial cold and 

warm forging processes of a bevel gear shaft made of a ferritic-pearlitic steel and 

predict its final microstructure and properties. The meso-scale model was ap-

plied for the optimal design of an additively manufactured lattice structure made 

of an austenitic high-Mn steel. 
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The concurrent modeling of all the quadruple microstructural effects at the 

macro-scale in a single framework is essential for the optimal (computational) 

design of structurally critical load-bearing components made of high-perfor-

mance specialized polycrystalline metallic materials, particularly those manufac-

tured by unconventional metal processing techniques such as metal additive 

manufacturing processes. 

The integrated modeling approach, in which the parameters of (physics-

based) constitutive models at each scale are estimated by simulations/calcula-

tions at lower scales, is inevitable for the simultaneous optimal design of (poly-

crystalline) materials and manufacturing processes. The good news is that from 

the subatomic scale(s) up to the meso-scale, the modeling approaches (based on 

quantum mechanics, density functional theory, molecular dynamics, discrete dis-

location dynamics, phase-field micro-elasticity, continuum crystal plasticity, and 

polycrystal homogenization) are well developed. However, there is a big gap 

from the meso-scale to the macro-scale, meaning that there is no comprehensive 

physics-based constitutive model at the macro-scale accounting for all the micro-

structural effects. This gap is of paramount importance because without a proper 

and efficient meso-macro bridge, in general, it is not possible to strictly simulate 

the in-process behavior and in-service performance of macroscopic structures. 

Therefore, unless this gap is properly bridged by comprehensive microstructural 

constitutive models, the optimal design of macroscopic structures will not be re-

alized. 

I believe that this thesis will pave the way to pursue a unified general theory 

of (macro-scale) Continuum Microstructure Dynamics, based on which the afore-

mentioned microstructural constitutive models can be developed. This theory is 

expected to comprehensively account for all the discussed interdependent micro-

structural effects, and sufficiently for all the aspects of microstructure evolution. 

The motivation behind this thesis is not to provide the final answer to the unifi-

cation problem, but to offer a new perspective in the journey towards the ultimate 

answer. 
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