h1

h2

h3

h4

h5
h6


001     815663
005     20251021090144.0
024 7 _ |2 ISSN
|a 1472-6750
024 7 _ |2 SCOPUS
|a SCOPUS:2-s2.0-85102568291
024 7 _ |2 WOS
|a WOS:000629378800001
024 7 _ |2 datacite_doi
|a 10.18154/RWTH-2021-02761
024 7 _ |2 doi
|a 10.1186/s12896-021-00675-w
024 7 _ |2 pmid
|a pmid:33722219
037 _ _ |a RWTH-2021-02761
041 _ _ |a English
082 _ _ |a 610
100 1 _ |0 P:(DE-82)IDM03273
|a Liebal, Ulf Winfried
|b 0
|u rwth
245 _ _ |a Genome-scale model reconstruction of the methylotrophic yeast Ogataea polymorpha
|h online
260 _ _ |a London
|b BioMed Central
|c 2021
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
536 _ _ |0 G:(DE-82)BMBF-031A217F
|a 031A217F - Strategische Allianz ZeroCarbFP - Funktionale Biomasse aus kohlenstoffreichen Abfallströmen, TP 6 (BMBF-031A217F)
|c BMBF-031A217F
|x 0
536 _ _ |0 G:(DE-82)EXS-PF-PFSDS015
|a PFSDS015 - iStrainML: Improving Strain Engineering by Machine Learning (EXS-PF-PFSDS015)
|c EXS-PF-PFSDS015
|x 1
536 _ _ |0 G:(GEPRIS)390919832
|a DFG project 390919832 - EXC 2186: Das Fuel Science Center – Adaptive Umwandlungssysteme für erneuerbare Energie- und Kohlenstoffquellen (390919832)
|c 390919832
|x 2
536 _ _ |0 G:(DE-82)EXS-PF
|a ERS Prep Fund - Exploratory Research Space: Prep Fund als Anschubfinanzierung zur Schließung strategischer Lücken (EXS-PF)
|c EXS-PF
|x 3
536 _ _ |0 G:(DE-82)EXS
|a EXS - Excellence Strategy (EXS)
|c EXS
|x 4
588 _ _ |a Dataset connected to DataCite
591 _ _ |a Australia
591 _ _ |a Germany
591 _ _ |a Singapore
700 1 _ |0 P:(DE-82)753653
|a Fabry, Brigida A.
|b 1
|u rwth
700 1 _ |a Ravikrishnan, Aarthi
|b 2
700 1 _ |0 P:(DE-82)815793
|a Schedel, Constantin V. L.
|b 3
|u rwth
700 1 _ |0 P:(DE-588)1177737035
|a Schmitz, Simone
|b 4
|u rwth
700 1 _ |0 P:(DE-82)IDM00040
|a Blank, Lars M.
|b 5
|e Corresponding author
|u rwth
700 1 _ |0 P:(DE-82)IDM00817
|a Ebert, Birgitta Elisabeth
|b 6
|u rwth
773 _ _ |0 PERI:(DE-600)2052746-9
|a 10.1186/s12896-021-00675-w
|n 23
|p 1-8
|t BMC biotechnology
|v 21
|x 1472-6750
|y 2021
856 4 _ |u https://publications.rwth-aachen.de/record/815663/files/815663.pdf
|y OpenAccess
909 C O |o oai:publications.rwth-aachen.de:815663
|p VDB
|p dnbdelivery
|p driver
|p open_access
|p openaire
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)IDM03273
|a RWTH Aachen
|b 0
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)753653
|a RWTH Aachen
|b 1
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)815793
|a RWTH Aachen
|b 3
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-588)1177737035
|a RWTH Aachen
|b 4
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)IDM00040
|a RWTH Aachen
|b 5
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)IDM00817
|a RWTH Aachen
|b 6
|k RWTH
914 1 _ |y 2021
915 1 _ |0 StatID:(DE-HGF)0031
|2 StatID
|a Peer reviewed article
|x 0
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b DOAJ : Blind peer review
|d 2020-09-03
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b BMC BIOTECHNOL : 2018
|d 2020-09-03
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2020-09-03
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2020-09-03
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2020-09-03
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2020-09-03
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2020-09-03
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2020-09-03
915 _ _ |0 StatID:(DE-HGF)0320
|2 StatID
|a DBCoverage
|b PubMed Central
|d 2020-09-03
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
|d 2020-09-03
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
|d 2020-09-03
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0561
|2 StatID
|a Article Processing Charges
|d 2020-09-03
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
|d 2020-09-03
915 _ _ |0 StatID:(DE-HGF)0700
|2 StatID
|a Fees
|d 2020-09-03
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
|d 2020-09-03
915 _ _ |0 StatID:(DE-HGF)1190
|2 StatID
|a DBCoverage
|b Biological Abstracts
|d 2020-09-03
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
|d 2020-09-03
920 1 _ |0 I:(DE-82)161710_20140620
|k 161710
|l Lehrstuhl für Angewandte Mikrobiologie
|x 0
920 1 _ |0 I:(DE-82)160000_20140620
|k 160000
|l Fachgruppe Biologie
|x 1
920 1 _ |0 I:(DE-82)161820_20140620
|k 161820
|l Lehr- und Forschungsgebiet Mikrobielle Genetik
|x 2
920 1 _ |0 I:(DE-82)080066_20181203
|k 080066
|l The Fuel Science Center
|x 3
980 1 _ |a FullTexts
980 _ _ |a I:(DE-82)080066_20181203
980 _ _ |a I:(DE-82)160000_20140620
980 _ _ |a I:(DE-82)161710_20140620
980 _ _ |a I:(DE-82)161820_20140620
980 _ _ |a UNRESTRICTED
980 _ _ |a VDB
980 _ _ |a journal


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21