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Abstract

For over 50 years, Moore’s law functioned as road map for advancements in the
semiconductor industry [1]. Soon, the predicted exponential increase in the number
of devices per microchip will reach physical limitations [2]. In order to overcome
these limitations, redox-based resistive switching random access memory (ReRAM)
is discussed as promising candidate for future memory applications. Recently, also
a potential application of ReRAM in neuro-inspired architectures is gaining a lot of
attention. Among other approaches, valence change based memory (VCM) is studied
intensively.

Regardless of an application as classical memory or as neuronal network component,
the reliability of ReRAM devices is the key attribute for industrial adaption. This
dissertation addresses the three main components of the reliability VCM ReRAM
devices, being variability, retention and endurance. Here, VCM ReRAM cells based
on ZrO; fabricated under laboratory conditions are characterized as well as industrial
devices based on HfO, as switching oxide. Throughout this work, a focus on large
arrays instead of single cells is emphasized. The evaluation and interpretation is
focused on the internal statistics rather than on the behavior of individual devices.
The variability of VCM ReRAM remains one of the largest challenges for their
large scale adaption in industrial applications. Whereas the stochastic nature of
the switching process can be significantly reduced by appropriate programming
algorithms, random fluctuations occur also between read operations. This read to
read (R2R) variability is identified as key challenge in the short term stability of VCM
ReRAM. It determines the intrinsic statistics of large memory arrays and effectively
limits the read window between the low resistive (LRS) and high resistive state
(HRS). The random R2R fluctuations are attributed to random jumps of the conduc-
tion supporting oxygen vacancies. In the HRS, these jumps lead to a log-normal read
current distribution. Via an empirical model as well as kinetic Monte Carlo (KMC)
methods, the most likely origin of these statistics is found to be tunneling across
a normally distributed gap in HRS. Here, the exponential dependence of the read
current on the tunneling gap results in the observed log-normal statistics.
Investigating the long term stability or retention, the R2R variability remains a key
characteristic of the investigated devices. The most critical aspect of the long term
degradation of a programmed state is found to be a broadening of the whole distribu-
tion, i.e. increasing variability. The trend of the degradation is fitted by an empirical
tunneling model which allows for extrapolation of data measured at higher tempera-
tures towards the target retention time at lower operating temperature.
Additionally, a statistical model based on the work of Abbaspour et al. [3-6] is devel-
oped which explains the observed degradation by diffusion of oxygen vacancies
from a confined filament region towards the active electrode.
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Finally, an algorithm is developed which increases the number of possible switching
cycles, also referred to as endurance, of a device. It dynamically adjusts the program-
ming parameters to ensure reliable switching. Since the frequency of applied adjust-
ments determines the speed of the experiment, the algorithm dynamically adjusts
this frequency to the tested cell. It therefore increases the measurement speed if a
cell requires less adjustments. The algorithm is used to determine the maximum
endurance for different material combinations. Thus, it is demonstrated that ohmic
electrode metals with lower oxygen chemical potential ensure higher endurance
which verifies the theoretical findings of Guo et al. [7].

All'in all, this dissertation proposes to evaluate the reliability of VCM ReRAM for its
intrinsic statistics rather than tracing single cells.



Kurzfassung

Das Moore’sche Gesetz dient seit {iber 50 Jahren als Fahrplan fiir die Halbleit-
erindustrie [1]. In naher Zukunft wird der vorhergesagte exponentielle Anstieg
der Anzahl Bauelemente pro Mikrochip an seine physikalischen Grenzen stofsen
[2]. Als moglicher Ausweg wird redox based resistive switching random access memory
(ReRAM) fiir zukiinftige Speicheranwendungen diskutiert. Neben der Anwendung
als klassisches Speichermedium, wird ReRAM mittlerweile auch als mogliche Kom-
ponente in neuro-inspirierten Architekturen gesehen. Neben anderen Ansitzen gilt
valence change based memory (VCM) als eine der vielversprechendsten ReRAM Typen.
Unabhingig davon ob ReRAM als klassischer Speicher oder als Komponente eines
neuronalen Netzes zum Einsatz kommen soll, ist deren Zuverlassigkeit (reliability)
von grofler Bedeutung. Die vorliegende Arbeit befasst sich mit den drei Haup-
taspekten der reliability von VCM ReRAM. Darunter fallen variability, retention und
endurance. Untersucht werden sowohl unter Laborbedingungen hergestellte VCM
ReRAM Zellen auf Basis von ZrO,, als auch industrielle Zellen auf Basis von HfO5.
Der Schwerpunkt der Arbeit liegt dabei auf der Untersuchung von grofleren Arrays
anstelle von Einzelzellen. Dementsprechend sind Auswertung und Interpretation
auf die interne Statistik ausgerichtet.

Die variability von VCM ReRAM ist nach wie vor eine der grofiten Herausforderungen
fiir ihre industrielle Adaption. Wahrend die stochastische Natur des Schaltprozesses
durch geeignete Programmieralgorithmen deutlich reduziert werden kann, treten
zuféllige Schwankungen auch zwischen den Lesevorgangen auf. Diese Read-to-Read
(R2R) Variability kann als eine der grofiten Herausforderungen genannt werden.
Sie bestimmt die intrinsische Statistik von grofsen Speicher-Arrays und begrenzt
mafsgeblich das Lesefenster zwischen dem niederohmigen (LRS) und dem hochohmi-
gen Zustand (HRS). In VCM ReRAM Systemen wird die elektrische Leitfahigkeit
mafigeblich durch Sauerstoffleerstellen bestimmt. Die zufdlligen R2R Fluktuationen
werden in dieser Arbeit auf zuféllige Spriinge der Sauerstoffleerstellen zurtickge-
fithrt. Im HRS fiihren diese Spriinge zu einer log-normalen Lesestromverteilung.
Mit Hilfe eines empirischen Modells sowie von KMC-Methoden wird Tunneln tiber
ein normalverteiltes gap als wahrscheinlichste Ursache der Log-Normal-Statistik im
HRS identifiziert. Hier fiihrt die exponentielle Abhdngigkeit des Lesestroms vom
Tunnel-gap zu der beobachteten Log-Normal-Verteilung.

Bei der Untersuchung der Langzeitstabilitdt (retention) ist die beschriebene R2R-
Variabilitdt ebenfalls von entscheidender Bedeutung. Die Degradation eines pro-
grammierten Zustands dufiert sich vor allem in einer Verbreiterung der gesamten
Verteilung, d.h. einer zunehmenden Variabilitit. Der Trend der Degradation wird in
dieser Arbeit durch ein empirisches Tunnelmodell gefittet. Die bei erhohter Temper-
atur experimentell bestimmte Degradation kann mithilfe dieses Modells extrapoliert
werden, um die retention bei der angestrebten Anwendungstemperatur zu ermitteln.
Zusétzlich enthélt die Arbeit ein statistisches Modell auf der Grundlage der Arbeiten
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von Abbaspour et al. [3-6], das die beobachtete Degradation erkladrt. Hier fiihrt
die Diffusion von Sauerstoffleerstellen aus einem eingegrenzten Filament-Bereich in
Richtung der aktiven Elektrode zu einem Anstieg des mittleren HRS Lesestroms und
zur Verbreiterung der Verteilung.

Zuletzt wird ein Algorithmus vorgestellt, der die Anzahl der moglichen Schaltzyklen
(endurance) einer Zelle erhoht. Dieser passt die SET und RESET Spannungen dyna-
misch an die jeweilige Zelle an, um zuverlédssiges Schalten zu garantieren. Da die
Haufigkeit solcher Anpassungen die Laufzeit eines solchen Experiments vorgibt,
passt der Algorithmus diese Frequenz dynamisch an die getestete Zelle an. Die
Messzeit wird also verkiirzt, wenn eine Zelle stabil schaltet und weniger Spannungs-
Anpassungen erfordert. Der Algorithmus wird aufierdem verwendet, um die maxi-
male endurance fiir verschiedene Materialkombinationen zu bestimmen. Durch Varia-
tion des Metalls der ohmschen Elektrode wird deutlich, dass Metalle mit niedrigerem
chemischen Sauerstoffpotential eine hohere endurance ermoglichen. Dies bestitigt
die theoretischen Ergebnisse von Guo et al. [7].

Insgesamt liegt der Schwerpunkt der vorliegenden Arbeit auf der statistischen Anal-
yse der Zuverldssigkeit (reliability) von VCM ReRAM. Es sollte deutlich werden, dass
die Betrachtung der intrinsischen Statistik wesentlich mehr Potenzial bietet, als die
Analyse einzelner Zellen.
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1 Introduction

Since the first transistor based computer was introduced in 1965 [8], the demand in
memory capacity increased rapidly. Especially the success story of mobile devices
(smartphones) starting in the mid-2000s lead to an exploding demand in cheap and
efficient memory devices [9]. As predicted by Gordon E. Moore already in 1965 [1],
the semiconductor industry managed to increase the number of integrated circuits
per microchip exponentially to this day. However, the geometrical down-scaling of
conventional, transistor based architectures decelerates as Moore ‘s law is reaching
physical limitations [2].

Therefore, alternative memory concepts gained a lot of attention. Besides magnetore-
sistive random access memory (MRAM) and phase change memory (PCM), redox
based resistive switching random access memory (ReRAM) is considered one of
the most promising alternatives for future non-volatile memory applications [10,
11]. Besides their simple two-terminal architecture, ReRAM is preferred due to its
non-volatility, fast operation, low power consumption, high endurance and retention
and good scalability [9, 12-17].

Historically, resistive switching is studied since the early 1960s [11, 18-20]. In the
1980s the research stagnated due to the advantages of transistor based memories like
dynamic random access memory (DRAM) or flash. Limitations in the contemporary
analytic tools are believed to be another reason for the stagnating interest in resistive
switching memories [10]. In the late 1990s the research was revived by the studies
of Asamitsu et al., Kozicki et al., and Beck et al. [10, 12, 13, 21-24]. Starting in the
early 2000s, the research interest of the industry increased steadily [9]. To this day,
several companies like Samsung, IBM, Micron, Adesto and Panasonic presented mem-
ory concepts and technologies based on ReRAM devices [25-31]. Recently, ReRAM
gains increasing attention as potential component in future neuromorphic computing
architectures [32-35].

Despite the excellent characteristics of ReRAM devices, their reliability is still inten-
sively studied as it defines the key challenge towards large scale industrial application
[36, 37]. This dissertation therefore aims for a deeper understanding of the most
important reliability aspects and for possible ways to overcome these obstacles.

Under the term reliability, three major aspects can be defined, being
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* Variability,
¢ Retention, and
e Endurance

which are therefore covered in the three main chapters of this work. Variability
means the stochastic nature of both the switching process as well as the short term
instability of programmed states. Whereas variations between consecutive switching
cycles can be overcome by appropriate programming algorithms, random fluctua-
tions of the programmed states are identified as one of the key challenges for the
application of ReRAM devices, as will be laid down in chapter 4.

Besides this short-term instability, the long term non-volatility or retention is one of
the key features of ReRAM devices. Chapter 5 will tackle the long-term stability of
the programmed states. Here, different model approaches will be presented which
explain the observed degradation effects. Since retention targets like 10 years at
operating temperatures of (e.g.) 85 °C (given by the respective application) cannot be
measured directly, a model approach is developed which allows for extrapolation
of data measured at higher temperatures towards the target retention time at lower
operating temperature. One of the key findings will be the interconnection of vari-
ability and retention.

Finally, the number of possible switching cycles until device failure, called endurance
is investigated in chapter 6. Here, a sophisticated programming algorithm will be
presented which allows for fast endurance assessment in combination with adaptive
programming conditions to maximize the device endurance. Furthermore, appropri-
ate material selections in order to maximize the endurance are discussed.

In industrial application millions and higher orders of magnitudes of devices will be
used. Even if the majority of devices functions within acceptable reliability margins,
the few worst cells will be the limiting factor for the whole memory array. There-
fore the investigation of single or typical cells (a single cell has a high chance to
behave like the median) is inappropriate to determine and improve reliability aspects.
Instead, it is crucial to find the reliability of the full statistics in order to predict the
behavior of all cells. By analyzing the internal statistics of the observed quantity, reli-
ability aspects may be characterized by changes in the statistical parameters. Thus,
this dissertation focuses strongly on the characterization of large sets of ReRAM
devices. Firstly, this enables statistically sound results for the three tackled reliability
aspects variability, retention and endurance. Secondly, and more importantly, this
approach allows to identify challenges like changes in intrinsic statistics which would

be undetectable in single or few cells.



2 Fundamentals

This chapter provides a brief overview of the fundamental aspects building the
foundation of the findings in this work. Firstly, an introduction to redox based
resistive switching memories is given. In particular, resistive switching memories
based on the valence change mechanism are introduced. Secondly, the state of the art

of the reliability aspects investigated in this work is outlined.

2.1 Classification of ReRAM

In 1971, Leon Chua proposed that besides resistor, capacitor and inductor, a fourth
fundamental electrical component should exist which links electric charge and mag-
netic flux [38]. Later, the theory was generalized and it was found that resistive
switching random access memory (RRAM) fills the gap discovered by Chua [39, 40].
In general, RRAM is a class of non-volatile memory which utilizes changes of electri-
cal resistivity to store information [10]. Eminent types of RRAM are magnetoresistive
random access memory (MRAM), phase change memory (PCM) and redox based
resistive switching memory (ReRAM) [11]. Whereas MRAM relies on the orientation
of the polarization in a magnetic tunnel junction (MT]) [41], PCM utilizes the transi-
tion between amorphous and crystalline phases [42]. This dissertation focuses on
ReRAM which resorts to internal redox reactions to reversibly switch the resistivity
of the active material [13].

Different types of ReRAM devices can be distinguished concerning the operating volt-
age polarities as sketched in figure 2.1. In general, ReRAM devices can be switched
between at least two different resistance states. The process of switching the devices
into the low resistive state (LRS) is called SET and the reversed operation resulting in
the high resistive state is called RESET. In unipolar switching devices, as depicted
in figure 2.1 a), both the SET and RESET process can take place in a single voltage
polarity. Here, usually the SET voltage is higher than the RESET voltage [11]. How-
ever, the cell current during the SET process needs to be limited to prevent a thermal
run-away as soon as the resistance decreases. Thus, a current compliance (CC) is
applied during SET, limiting the current to Icc which is typically lower than the
peak current during RESET [43, 44]. A prominent example for unipolar switching
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a Unipolar|[ [b) Bipolar C) Complementary
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FIGURE 2.1: I — V schematics of different ReRAM switching modes. a) Unipolar

switching with SET and RESET being independent of the voltage polarity, b) Bipolar

switching with opposing SET and RESET polarity and c) Complementary switching.
Redrawn from [11].

devices are thermochemical memories (TCM). These devices typically consist of a
symmetrical metal / metal-oxide / metal stack. A resistance change is realized by
applying appropriate voltages which induce local temperature gradients leading to
redox reactions and variations in the local stoichiometry [10]. The TCM mechanism
is explained in more detail in [45—47].

In bipolar switching devices, as shown in figure 2.1 b), SET and RESET voltages
need to be applied in opposing polarities [48]. Here, the RESET current can be lower
than the current compliance in the SET operation. In contrast to unipolar devices, no
current compliance is required in some bipolar systems [10]. The mostly recognized
examples for bipolar switching ReRAM are

¢ electrochemical metallization memory (ECM), and
* valence change memory (VCM) [10, 49].

ECM, also called conductive bridge RAM (CBRAM) or programmable metallization
cells (PMCQ) is based on the electrochemical dissolution of an active electrode metal.
The dissolved metal ions migrate towards in inert counter electrode through an ion
conducting electrolyte layer sandwiched between both electrodes [10]. In the initial
state the conductivity of the cell is limited by the low electronic conductivity of the
electrolyte. During the SET operation, the generation and migration of metal ions
results in the formation of a conductive bridging filament resulting in a low resistive
state. Dissolving this filament by applying a RESET voltage in the opposite polarity
switches the cell back to the high resistive state [10, 50, 51]. The ECM mechanism is
laid down in more detail in [52-55]

VCW, in literature also recognized as oxide based RAM (OxRAM)), is based on a
partial reduction of a switching transition metal oxide and will be explained in detail
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in the next section (see also [10]).

Besides unipolar and bipolar switching, a complementary resistive switching (CS or
CRS) mode is reported [56-59] and displayed in figure 2.1 c). CRS cells can either
be obtained by anti-serial combination of two bipolar switching cells [56] or by
tabrication and operation of single cells with suitable parameters [58]. The cells
appear to be always high resistive when measured at low read voltages since both
switching operations end up in the high resistive state. By reading at higher voltages
a current increase is observed if the cell was programmed with the opposite polarity
before. Otherwise, the cell appears to be high resistive. In contrast to unipolar and
bipolar switching, the read operation in CRS cells is typically destructive, i.e. the
state of the cell has to be reprogrammed after reading [60]. However, CRS switching
devices have been proposed as a possible solution for sneak path or selector problems
in passive ReRAM arrays [56, 58].

211 VCM

VCM type resistive switching devices typically consist of a MIM layer structure.
Here, the insulating layer I typically is a thin film (< 10 nm) of a binary transition
metal oxide like HfO, ZrOy, TiOx or TaOx [13, 14]. Additionally, ternary oxides like
SrTiOy are used [10]. The metal electrodes M are usually comprised by one active
electrode (AE) and one ohmic electrode (OE). For the active electrode a metal with
high work function is used (e.g. Pt, Ir, TiN) which forms a Schottky barrier at the
interface between metal and oxide. The ohmic electrode typically consists of a metal
with lower work function and higher oxygen affinity, forming an ohmic contact at
the interface [10].

The general working principle of VCM type ReRAM is a partial reduction of the
cation sub-lattice by partial oxidation of the OE. For a simpler description, the remain-
ing “holes” created by each excorporated oxygen ion are called oxygen vacancies.
According to the Kroger-Vink denotation [61], one oxygen vacancy has the symbol
V , reading vacancy (V) at an oxygen (O) lattice site. Here, the two dots identify
the oxygen vacancy as two-fold positively charged with respect to the stoichiometric
oxide. However, electrically the oxygen vacancy remains neutral because the local
charge will immediately be neutralized by mobile electrons. Due to these mobile
electrons, each Vg can be considered a donator dopant which is utilized to decrease
the resistance of the switching oxide.



6 Chapter 2. Fundamentals

Electroforming

Prior to resistive switching, the initially very large resistivity of pristine VCM cells
needs to be lowered by an electroforming (or forming) operation [10]. A compar-
atively high negative voltage is applied to the active electrode which leads to the
generation of oxygen vacancies at the interface of oxide and ohmic electrode. Accord-
ing to the Kroger-Vink denotation [61], the generation of one oxygen vacancy V can
be written as

1
08 — V5 +2¢ + 502, (2.1)

where Of is an oxygen ion on an oxygen site [62]. The free oxygen atom (1/20,)
can either be evaporated as oxygen gas [63], or participate in partial oxidation of the
ohmic electrode metal. The generated V; lead to a decrease of the oxide resistance
and therefore increased current [64]. The latter causes a temperature increase in the
oxide due to Joule heating which accelerates the generation of oxygen vacancies. This
leads to a self-reinforcing thermal run-away which may destroy the cell if the current
was not limited by a current compliance, series resistor or transistor [62]. Historically,
this dielectric breakdown was considered a major reliability issue in metal oxide field
effect transistors (MOSFET) since it could affect the gate dielectric [65]. However, a
controlled dielectric breakdown leads to the formation of an n-conducting filament,
lowering the resistance of the switching oxide [62]. Though, it may be noted that
besides filamentary VCM, also interface-type switching is reported. Instead of accu-
mulating oxygen vacancies in a confined filament, they distribute over the whole cell
area [10]. This work will mainly focus on the filamentary type VCM.

In general, electroforming can be performed by either a triangular voltage (or current)
sweep, or by applying a rectangular pulse. In both cases, a certain threshold has to be
reached. Using a triangular sweep, the electroforming will occur at a certain thresh-
old voltage (depending on the sweep rate). In the pulsed operation the probability
to initiate electroforming increases with the pulse length and height. These forming
kinetics depend on several conditions [62]. Besides the internal micro-structure (e.g.
grain size) and material properties of the switching oxide [62], exterior influences
can have a high impact on the forming kinetics. As expected intuitively, the ambient
temperature determines the forming kinetics to a certain degree [62, 66]. Furthermore,
it was demonstrated that the ambient atmosphere plays a major role. On the one
hand, the oxygen partial pressure seems to impact the resistance of the switching
oxide [62, 67]. On the other hand atmospheric moisture has been reported to have a
huge impact on the forming kinetics [63].

Additionally, the material of the OE has a direct impact on the forming kinetics. Guo
et al. calculated the defect formation energy which is required to generate one oxygen
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RESET process

Plug

OFF state

SET process

FIGURE 2.2: Schematic of the (counter eight-wise) VCM switching mechanism for an
exemplary Pt / ZrOy / Zr cell. The conductive filament consists of plug and disc (inset
on the right). (A) HRS or OFF state. The oxygen vacancies in the disc are depleted,
resulting in a high Schottky barrier and thus high resistance. During the SET process
(B) oxygen vacancies are shifted from plug to disc due to a negative voltage at the AE,
resulting in the LRS or ON state (C). The low resistance is explained by a lowered
Schottky barrier induced by the increased concentration of oxygen vacancies in the disc.
A positive voltage at the AE shifts oxygen vacancies back into the plug and RESETs (D)
the cell. Reproduced with permission from [10], © 2012 Wiley-VCH Verlag.

vacancy at the interface between OE and oxide [7]. Therefore, they determined the
formation energy of one oxygen vacancy in the bulk oxide and subtracted the oxide
free energy gained by oxidizing the respective OE metal [7]. As a result, it is reported
that the defect formation energy increases with the oxygen chemical potential of the
metal and thus the forming voltage increases [7].

Resistive Switching

Figure 2.2 illustrates the general switching characteristics of formed VCM cells at the
example of a Pt / ZrOy / Zr cell. The active Pt electrode is shown on the left and the
ohmic Zr electrode frames the switching ZrO from the right.

After electroforming, the cell is typically in the LRS or ON state, shown in figure 2.2,
@. The metal oxide layer is bridged by an n-conducting filament induced by oxygen
vacancies. This filament consists of a plug region attached to the ohmic electrode and
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a disc region in the vicinity of the active electrode. Here, the Schottky barrier height
at the AE/oxide interface is strongly influenced by the oxygen vacancy concentration
of the disc. In the LRS (ON) this concentration is high resulting in a low Schottky
barrier and thus a low resistance of the cell [10].

The application of a positive voltage to the active electrode leads to a retraction of
the oxygen vacancies from the disc into the plug. This RESET process @, locally
re-oxidizes the disc and thus increases Schottky barrier and resistance. As a result,
the cell is in the HRS or OFF state shown in figure 2.2, @ It may be noted that
the resistance in the HRS is usually significantly lower than the initial resistance of
the cell in its pristine state [10]. The SET process is initiated by application of a
negative voltage to the active electrode which shifts oxygen vacancies from the plug
to the disc and restores the LRS or ON state @ [10].

The schematic shows the most common switching mode of VCM cells. Apart from
this so called counter eight-wise switching (c8w, because of the I — V' characteristic
following the reversed drawing direction of the number eight [10]), also eight-wise
(8w) or anomalous switching is reported [68]. Although both switching modes can
occur in several VCM systems [69-72], this dissertation focuses on the more common
c8w switching. Despite the fact that the presented VCM switching model is suited to
explain several experimentally observed VCM characteristics [73], the conduction
mechanism in VCM-type ReRAM is still under debate. Alternative approaches to
model the VCM mechanism are the hour-glass model [74] or the quantum point
contact (QPC) model [75-77]. With respect to the inherent variability of several VCM
systems, especially models with a focus on the trap-assisted tunneling mechanism
come into account [5, 78, 79].

2.2 Reliability Aspects

The preceding section introduced VCM type switching ReRAM and covered the
general characteristics of these systems. With the step towards industrial application
of VCM cells, several challenges occur [37, 80]. The scope of this dissertation is to
gain a better understanding of the reliability aspects of VCM devices. Therefore, the
state of the art of the most relevant reliability aspects is laid down in the following

sections.

2.2.1 Variability

One of the most critical aspects regarding the reliability of VCM cells is its stochastic

nature [37, 81]. To characterize this stochastic nature, first of all different types of
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variability can be distinguished:
* Device to device (D2D) variability,
* Cycle to cycle (C2C) variability, and
* Read to Read (R2R) variability [82].

D2D variability covers stochastic variations between single VCM cells. Here, it may
be further distinguished between variations of cells on the same die, between multiple
dies of the same wafer or even from wafer to wafer. Based on D2D variability, the
forming voltage or time varies between single cells [83-85]. However, once forming
was successful, it has been demonstrated that stochastic variations from one switching
cycle to the next (C2C) are usually larger than the D2D variability [86, 87].

Cycle to Cycle Variability

As explained above, the switching process of VCM ReRAM devices is based on the
migration of oxygen vacancies. This ionic defect migration is reported to exhibit a
rather stochastic nature [88, 89]. On the one hand, this results in a variability of the
programmed states between switching cycles [90]. On the other hand, the switching
kinetics (i.e. SET/RESET voltage and time) varies from cycle to cycle [91, 92].
Figure 2.3 illustrates C2C variability for ZrO, based VCM ReRAM devices. Fig-
ure 2.3, a) shows exemplary [-V-sweeps measured on ZrO, based VCM ReRAM. It
is observed that the HRS resistance evaluated prior to the SET event significantly
varies between subsequent sweeps. Analogously, the LRS exhibits fluctuations
between switching cycles. However, the variability of the HRS is significantly higher
compared to the LRS. This observation is confirmed by the exemplary endurance
measurement shown in figure 2.3, b). While cycling up to 7 M cycles, the state of
the cell is read by a 0.2 V pulse every 500 SET and RESET cycles. The resulting read
current is depicted by the circles in figure 2.3, b) and observed to vary within a certain
band. Again, the HRS resistance varies in a broader range than the LRS.

Thus, within C2C variability it can be distinguished between SET [94, 95] and RESET
[96-98] variability [90]. Despite the usually higher variability of the RESET operation
[85], it has been demonstrated that SET and RESET variability are not independent
and may affect each other [90, 95, 99]. Additionally, the variability of the switching
kinetics is affected by the C2C variability of the resistance. This is also observed
in figure 2.3, a). With increasing HRS read current (decreasing resistance) the SET
voltage decreases.

To ensure a sufficiently large read window over the full life span of a VCM cell
(endurance), a reduction of the C2C variability is highly desirable. Besides tuning
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FIGURE 2.3: C2C variability illustrated by measurements on Pt/ZrO,/Ta/Pt devices.

a) Exemplary I-V-sweeps. Both HRS and LRS resistance vary between subsequent

cycles. With HRS resistance also the SET voltage varies. b) Endurance measurement

with SET voltage Vsgr = 0.9 V, RESET voltage Vresgr =-1.4 V, read voltage Vgp =0.2 V

(all applied to Ta electrode, Pt electrode connected to GND) and pulse length Vsgr/reser

=20 ps. HRS and LRS vary in a certain band which is broader for HRS. Data taken from
[93].

of the device structure and material stack [100], one potential approach to influence
the C2C variability is the forming operation [101]. It was demonstrated that a higher
forming current may result in a larger conductive filament radius which is suggested
to be beneficial for a reduction of the variability [101]. Additionally, program verify
algorithms can be used to reduce the impact of C2C variability and to widen the read
window [89]. Here, the cell resistance is evaluated after each programming operation.

Thus, additional programming pulses can be applied if the cell exceeds a defined
threshold.

Read to Read Variability

Although such programming schemes counter act C2C variability, they are reported
to have a limited impact since the accompanying shaping of the read current (or resis-
tance) distribution has no lasting effect [86, 102]. This is explained by fluctuations of
the programmed states which do not necessarily occur during switching operations
but also without applied bias. Thus, variability is also observed from read to read
(R2R) which limits the impact of program verify (or shaping) algorithms [86, 102,
103].

One frequently used term in the context of R2R variability is random telegraph
noise (RTN) which is characterized by random jumps of the observed quantity (e.g.
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read current) between rather discrete levels [104-106]. The origin of these jumps is
often attributed to the trapping and de-trapping of electrons at defect states in the
oxide [107-110]. Alternative explanations are based on the random reconfiguration
of defects (e.g. oxygen vacancies) in the measured oxide [105, 111], Besides the
observation of RTN in ReRAM, it has been extensively studied as reliability issue
of the gate dielectric in MOSFETs [112-114]. However, the nomenclature regarding
R2R variability and RTN is not entirely explicit. In many cases different modes of
R2R variability are observed in the same programmed state. Often a high frequent
fluctuation with low amplitude between two states is accompanied by lower frequent
jumps with significantly higher amplitude. In some publications both processes are
covered by RTN [105, 109]. Other publications distinguish between RTN and ionic
noise [111], random walk [115] or base line jumps [103].

In general, it is observed that R2R variability strongly depends on the resistance
of the investigated state [82]. Typically, R2R variability is less pronounced in the
LRS compared to the HRS [116], given that the LRS is sufficiently low resistive. In
case of a higher resistive LRS, it may be noted that HRS and LRS variability can
become equal [117]. Within different HRS states, a transition from low noise at high
resistances (M(2) towards high noise at lower resistance (k(2) is reported [96]. Besides
the resistance, the preceding programming operation may affect the observed R2R
variability [118].

Whereas the changes in the noise characteristics at different resistances and under
different programming conditions may provide a deeper understanding of the under-
lying conduction mechanisms [119, 120], R2R variability is one of the key challenges
in the reliability of ReRAM devices [86]. With increasing number of cells in a memory
device, R2R fluctuations result in a broadening of the resistance distribution which
limits the resulting read window [121-124].

For the evaluation of experimentally obtained noise characteristics, two concepts are
commonly used. On the one hand, the power-spectral-density (PSD) of the signal
can be calculated and plotted versus the frequency f of the fluctuations [125, 126].
The resulting plot usually shows a slope following 1/{”. The value of the exponent a
which best fits the data gives rise to the underlying type of noise. Typically observed

are
¢ white noise witha = 0,
* pink noise with a =1, or
¢ brown noise with a = 2 [127].

Another approach to analyze R2R variability or RTN is the use of factorial hidden
Markov models (FHMM) [128] which will be covered in section 2.3.
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TABLE 2.1: Summary of reported retention characteristics. Adapted from [82] and

extended

Source Material | LRS current HRS current
IMEC [36, 129-131] HfO,/Hf | Decreasing | Increasing/Decreasing
Panasonic [132, 133, 142] TaOy Decreasing Increasing

. HfO, .
Macronix [103] Stable Increasing

HfAIOy
Laboratorio MDM [134] WO N/A Increasing
Politecnico di Milano [135] NiO Decreasing N/A
Stanford University [136] HfO, Decreasing N/A
IHP Frankfurt [137] HfO, Decreasing N/A
Hf(AI)Oy )
LETI [138, 139] Decreasing N/A
TaOy

Fudan University [140] CuSiO Decreasing N/A

2.2.2 Retention

The retention of a memory device describes the long-term stability of a programmed
state. Typical requirements for NVM applications of ReRAM are 5-10 years at 85-
125 °C [82]. Within this time at the respective operating (or storage) temperature,
the HRS or LRS has to be stable enough to ensure a sufficiently large read window.
Several groups investigated the retention of VCM ReRAM [30, 103, 129-141]. As
summarized in table 2.1, they typically find that the LRS read current decreases over
time. Usually, this effect is attributed to a loss of oxygen vacancies and degradation
of the conductive filament resulting in a higher resistance of the cell [36, 129-131].
The retention of the HRS is covered less in literature. Here, it is reported that the
read current either decreases or increases over time [36, 103, 130-133]. A current
decrease in the HRS state is explained analogously to the LRS by the loss of oxygen
vacancies [130]. A current increase in the HRS is explained as diffusion of oxygen
vacancies from the filament towards the depleted region (gap or disc) close to the
active electrode [132].

Whereas several studies focus on the development of typical cells or the median of
the distribution [129, 139, 143], other studies demonstrate that the distribution tails
(or weak bits) may show a completely different behavior [36]. However, the most
promising approaches to explain retention characteristics are based on statistics and
cover the development of the whole distribution [144].
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FIGURE 2.4: a) Schematic degradation of a programmed state over time for different

baking temperatures (colors). With increasing temperature, the failure criterion Aly,

is reached earlier. Ideally, the slope of the degrading current is parallel on the double

logarithmic scale, i.e. constant activation energy regardless of the definition of Aly,. b)

The times ty, ; to reach the failure criterion Aly, are transferred to an Arrhenius plot to

extract the activation energy E, and to extrapolate the retention time fRetention for the
required operating temperature Toperation-

Activation Energy

Whereas the endurance (c.f. section 2.2.3) of ReRAM devices can be easily tested
by fast cycling up to the required benchmark, retention requirements of 10 years at
operating temperature cannot be verified directly. Instead, retention experiments are
typically conducted at elevated temperatures (also called accelerated life testing, ALT).
Appropriate models have to be developed to extrapolate the obtained data to longer
storage times at lower temperatures. The most common approach is to determine an
activation energy from the electrical data for the underlying degradation processes
[130, 135, 137-139, 145-147]. Typically, a failure criterion for the read current or
resistance is defined. This may be exceeding a certain threshold current [137] or a
resistance change by a defined factor with respect to the initial resistance [138, 139].
The time t¢,;; to reach the defined failure criterion (often mean time to failure MTTF) is
determined for different temperatures, as schematically shown in figure 2.4, a). If the
observed degradation is based on a temperature activated effect, the time to failure
teai1 should follow an Arrhenius equation, reading

trail = A - exp (_—Ea) , (2.2)

kgT
with a pre-exponential factor A, the activation energy E,, the Boltzmann-constant kg
and the temperature T [148]. By plotting log(t¢.;;) versus 1/T, as shown in figure 2.4,
b), Ea can directly be determined from the slope of the so called Arrhenius plot. At the
same time, this slope can be extrapolated towards the desired retention time fRetention
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(e.g. 10 years) at the required operating temperature Toperation (€-g. 85-125 °C).
However, this approach has some disadvantages: First of all, it is not clear if a change
of the observed quantity (AI) is directly correlated to an underlying, temperature
activated process. Multiple processes with varying activation energies may occur
with the superposition of all processes resulting in the observed electrical change.
Even if only diffusion of oxygen vacancies is taken into account, first principles
simulations suggest varying activation energies within the same material [121, 149].
In this case, the activation energy can only be extracted for the rate limiting process
which may change in the transition from elevated test temperatures towards lower
operating temperatures.

Furthermore, the choice of the failure criterion may have an impact on the determined
activation energy. Ideally, the slopes of the degradation are parallel for different
temperatures on the double-logarithmic scale, as demonstrated in figure 2.4, a). In
this case, E, is independent of the failure criterion. However, the reported degrada-
tion usually deviates from the ideal trend [82, 129, 134, 141] and thus the obtained
activation energy depends on the defined failure criterion. Additionally, the per-
centage of cells to reach the criterion affects the activation energy. The different
degradation characteristics of median and distribution tails, mentioned before, will
result in different values of E,.

In conclusion, the Arrhenius approach is a simple and widely accepted method to
extrapolate high temperature retention experiments towards operating temperatures.
Nevertheless, more sophisticated models are required for a reliable estimation of
the long-term stability of the programmed states. One alternative approach will be

demonstrated in chapter 5.2.

2.2.3 Endurance

In the context of memory devices, endurance is the maximum number of switch-
ing cycles (1/0, SET/RESET) a device can perform until failure. With the typical
endurance of 10* — 10° cycles for flash and up to 10'° cycles for DRAM, a huge
endurance gap emerged which may potentially be filled by ReRAM [82]. Over
the last years, several groups developed VCM ReRAM devices with endurance of
107 — 10'2 cycles as summarized in table 2.2 [16, 26, 129, 139, 150-159]. It may be
noted that the majority of collected publications only demonstrate endurance on sin-
gle or few devices. In contrast to retention, only few publications provide a statistical
endurance evaluation of a higher number of cells [152, 158].

A typical endurance plot is shown in figure 2.3, b). APt / ZrO, / Ta / Pt cell is cycled
by 20 ps pulses with a SET voltage of 0.9 V and a RESET voltage of -1.4 V, applied to
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TABLE 2.2: Summary of reported endurance characteristics. Adapted from [82] and

extended

Source Material SET RESET Cycles
SAIT [16, 26] TaObased | 45V,10ns | 7V,10ns 10'2
ITRI [150, 151] HfO,/Ti | 32V,40ns | 2.7V, 40 ns 10'0
LETI [152] HfO,/Ti | 2V,500ns |25V,500ns | 107
LETI [139] HfO, /Ti 2V,05ps | 1.4V,10 ps 108
IMEC [129, 153] HfO,/Hf Ti| 1.8V,5ns | 1.8V, 10ns 1010
HP [154] TaObased | 19V, 1us | 22V,1pus | 1.5-10
Panasonic [155,156] | TaObased | 1.5V,100ns | 2V, 100 ns 10?
SEMATECH [157] HfO, 1.5V,50ns | 1.5V,10ns | > 10°
Wuhan [158] AlOy 1.05V,28ns | 1.25V,28ns | 1010
Hsinchu [159] WO, /ZrOy | 3.7V,100ns | 5V, 100 ns 108

the Ta/Pt electrode. The read current of HRS and LRS at 0.2 V is evaluated every 500
cycles and plotted as circle. As discussed before, significant R2R fluctuations occur
which have to be taken into account in endurance evaluations. However, the overall
trend of HRS and LRS is comparatively stable within the tested 107 cycles.

Here, the experiment was terminated before the endurance failure occurred. Depend-
ing on material and programming conditions, this failure may be caused by either
drifting of the HRS towards the LRS or vice versa. Eventually, the device becomes
stuck in one of the states. Thus, it was demonstrated to be crucial to balance SET and
RESET pulse width and height to maximize the endurance [36, 153]. A too strong
RESET operation would cause the system to lose oxygen vacancies by recombination
with oxygen from the electrodes until the SET fails. Vice versa, an excessive SET
pulse may cause the generation of too many oxygen vacancies until the RESET fails
[82, 153]. Besides balancing fixed programming conditions, algorithms with adaptive
SET and RESET pulses have been reported to improve the endurance [160].

Even with balanced programming conditions, endurance failure may occur. One
reason could be local material changes in the filament or surrounding oxide [82].
The thermal stress during cycling may induce local modulations like crystallization
which may increase the resistance or SET voltage [131, 161]. It was furthermore
demonstrated that a low power consumption of the switching operations may pro-
long the endurance of a system [162, 163]. Thus, Nail et al. proposed a maximum
energy Emax the dielectric can sustain until failure [164]. Emax is proportional to the
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number of moved oxygen vacancies per cycle Nyoved per cycle, the energy barrier to

move one oxygen vacancy Eparrier and the number of cycles Nycles, reading

Emax % Nmoved per cycle Eparrier - N cycles [164]. (2.3)

With Nioved per cycle being related to the read window, Ep,prier determining retention
and Nyles this leads to a trade-off of read-window, retention and endurance [164]
which is reported by several groups [129, 139, 141].

Materials Selection

Apart from the optimization of the programming conditions, the device stack and
materials can be tuned towards higher endurance [165-167]. Since RESET failures
are often induced by generation of excessive oxygen vacancies during cycling, Guo
et al. proposed to tune the energy barrier for oxygen vacancy generation [7]. They
calculated the electronic structures of typical oxides for VCM ReRAM via the ab-
initio plane wave pseudopotential method using CASTEP code. By this, the defect
formation energy for the generation of one oxygen vacancy in the bulk oxide E¢qrm buik
is determined [7]. This barrier is comparatively high and the generation rather
unlikely. However, in the vicinity of an oxygen scavenging layer (ohmic electrode)
the barrier is reduced by the oxygen chemical potential of the respective electrode
metal yi\e. Thus, the defect formation energy E¢,.py, for the generation of one oxygen
vacancy at the oxide/electrode interface reads

Eform = Eform,bulk + UMe [7] (2-4)

For example, the energy for the formation of an oxygen vacancy in bulk HfO, of
5.9 eV is reduced to 0.1 eV with Hf (ups = —5.8 eV) as oxygen scavenging layer. In
contrast, a Ru electrode with yr, = —1.8 eV would result in a defect formation energy
of E¢orm = 4.1 eV. Following Guo et al. the higher formation energy should lower
the probability of RESET failures [7]. The general trend was already demonstrated
experimentally for Ta,Os based devices by Kim et al. [168]. A statistics based study
of the impact of the defect formation energy on endurance and forming voltage of
ZrO; based devices is given in chapter 6.
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FIGURE 2.5: Schematic of an FHMM. One Markov chain (shown on the left) is character-

ized by two hidden states (L and H) and the probabilities pyn, paL, pLa and pry for the

transitions between L and H. The FHMM contains N individual Markov chains which

generate an output A, at each instant of time m. The outputs Ag_nm can be observed

as e.g. noisy current signal. The underlying (hidden) Markov chains E need to be
estimated by appropriate fitting algorithms. Adapted from [128].

2.3 Factorial Hidden Markov Models

Hidden Markov models [169] and factorial hidden Markov models [170] were pro-
posed by Puglisi et al. as a powerful tool for the evaluation of noise (RTN) character-
istics in ReRAM devices [108, 128, 171]. Both HMM and FHMM are based on Markov
chains. The difference between the two approaches is the utilization of single chains
in HMM and the concatenation of multiple chains in FHMM. Each Markov chain is
an element which can fluctuate between a defined number of discrete levels (hidden
states). The element is defined by its hidden states and a matrix containing the
transition probabilities between those states. A schematic Markov chain is shown on
the left side of figure 2.5. The drawn Markov chain has the two hidden states L and
H which could be considered one low (L) and one high (H) current state of a noisy
read current trace. Besides these current levels, the Markov chain is characterized by
the probabilities pyy, paL, pra and pry for the four possible transitions indicated by
black arrows.

In HMM,, the depicted Markov chain could be used to model a 2-state RTN signal
which fluctuates only between two discrete levels [128]. To model multi-level RTN, a
Markov chain with multiple hidden states could be considered. However, FHMM
was demonstrated to be a superior approach for multi-level RTN signals [128]. Here,
multiple (usually 2-state) Markov chains are considered and the superposition of all
Markov chains results in the modeled noise signal, as sketched in figure 2.5. At each
instant of time (0-M), the output A (observable current) is generated by superposition
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of the hidden states of all considered Markov chains E. Fitting an experimental noise
signal with an appropriate FHMM allows to decompose the signal into single (2-state)
components [171]. Subsequently, the individual components may be attributed to
single traps being the origin of the observed R2R variability.

In general, it is easy to generate artificial RTN by defining an FHMM consisting of N
Markov chains Ey and calculating the most likely output A, at each increment of
time m. However, the more interesting operation is to find the appropriate FHMM to
describe a measured signal. Respective algorithms are used to determine the most
likely set of Markov chains for a given noise signal. Prominent examples are the
Viterbi-algorithm [128, 169, 172] and the Baum-Welch algorithm [173, 174].
Although this approach is accompanied by a comparatively high computational bur-
den, it offers several advantages: It provides comprehensive information about the
single fluctuating components and intrinsically returns the number of components
[171]. Furthermore, the algorithms can be well parallelized, since the convergence to
the right solution strongly depends on initial parameters. Thus, multiple instances of
the algorithm with different initial values may be performed on different computer

cores.

2.4 Kinetic Monte Carlo Model

To understand the stochastic nature of the current transport and switching charac-
teristics in VCM ReRAM, several kinetic Monte Carlo Models have been published
[175-179]. The statistical models presented in this work (c.f. chapter 4.3.1 and 5.3) are
based on the kinetic Monte Carlo model developed by Abbaspour et al. [3-6, 180].
Thus, the general concept and the most important equations of the model will be laid
down in this section.

The model is based on a cubic box of the dimensions 5 nm x 5 nm x 5 nm which
represents an HfO, layer. The box is discretized by a mesh of 21 x 21 x 21 lattice sites,
resulting in a resolution of 0.25 nm. As sketched in figure 2.6, a), each lattice site
can either be considered as oxide matrix or contain an oxygen vacancy. Here, the
oxygen vacancies induce defect states in the band gap of the partially reduced oxide
which serve as electron traps and support the electrical transport in the material [6].
Apart from these traps, no other defects are implemented in this model [6]. In one
dimension (z) the oxide is sandwiched between the active (AE) and the ohmic (OE)
electrode. Throughout this work, the voltage is applied to the ohmic electrode and
the active electrode is connected to ground.

The flow chart in figure 2.6, b) provides an overview of the relevant simulation steps.
In each increment of time, the potential at each lattice site is calculated, followed
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FIGURE 2.6: a) Structure of the KMC model. A cubic oxide mesh is sandwiched

between active (AE) and ohmic (OE) electrode. Each lattice site may contain a defect

which contributes to current transport. Voltage is applied to the OE whereas the AE is

connected to GND. b) General simulation flow. In each increment of time, three steps
are executed to calculate potential, current and a KMC transition.

by the current calculation and a KMC transition. These three steps and the relevant

equations will be covered in the following sections.

2.4.1 Electric Field

To determine the electric field at each lattice site, a discretized version of the three
dimensional Poisson equation is solved, reading

Ao =P (2.5)
€0€r
Here, @ is the electrical potential, p is the charge density, €¢ is the vacuum permittivity
and e€; = 30 is the relative permittivity of (tetragonal/cubic) HfO, [6]. With the
potential, the electric field F can be calculated via

F=-Vo. (2.6)

24.2 Current and Temperature

The central part of the KMC model is the determination of the current through
the defect network. Here, two conduction mechanisms are implemented, i.e. drift-
diffusion (DD) and trap-assisted tunneling (TAT) [6]. Within a resistive switching
cycle, the simulation chooses between both mechanisms in dependence of the number
of oxygen vacancies in the oxide. Above a threshold number, the current is calculated
regarding DD, otherwise using a TAT solver.
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TAT

With the low density of defects in the HRS, it is assumed that no coupling between
neighboring defects occurs [6] and thus, TAT is considered. Here, the current is
composed by

(i) tunneling from electrode to trap,
(ii) hopping from trap to trap, and
(iii) tunneling from trap to electrode [3].

For the transitions (i) and (iii) between trap and electrodes, a hopping rate P is
defined as
P = PyT:f, (2.7)

with a coupling factor P,. f represents the Fermi-factor which describes the distri-
bution of occupied or free states in the metal electrode from or to which electrons
may tunnel. The transition probability T is calculated using the Wentzel-Kramers-
Brillouin (WKB) approximation [4, 181], reading

X
T, = exp (—2/x ) %\/Zm*(e% - Ee)dx) . 2.8)
t

Here, x. and x; are the positions of electrode and trap. m* is the effective tunneling

mass, ®p is the tunneling barrier and E. is the energy of the electron.
The electron hopping from trap to trap is implemented by calculating the electron
occupational probability p; for all defects. This is implemented by solution of a

special form of the continuity equation [4]. This so-called “master equation” reads

N N
(1—pi) Z p]hij Z — Pj hl] + (Pci + Pai)(1 = pi) — (Pic + Pia)pi = O,
j=Li# 121]#1
(2.9)

and is solved by the Newton-Raphson iteration scheme [6]. The final current ItaT is
calculated with respect to one of the electrodes. Due to continuity the current at both
electrodes has to be equal [6]. Exemplarily, the current at the anode is given by

N
Itar = ) _[piPia — (1 — pi) Pail- (2.10)

i=1



2.4. Kinetic Monte Carlo Model 21

DD

In the case of DD, the current density j is calculated self-consistently with the Poisson
equation (2.5) by
V-j=0. (2.11)

From equation (2.11) the electron density n in the oxide is determined with the
boundary condition
Ninter,i = Mo T, (2.12)

which connects the transition probability T, from equation (2.8) to the electron
densities at the oxide-electrode interface njnteri and in the electrode g [6]. Finally,
the drift-diffusion current is given by

j= —epn(nVP —V1Vn), (2.13)

with the electron mobility y, and the thermal voltage V, given by

 kgT
-2

V1 (2.14)

It may be noted here that in this dissertation, the DD mechanism is not used. All

current calculations in the statistic models are performed with the TAT solver.

Temperature

To determine the temperature T at each lattice site, Fourier s heat flow equation is
solved [6], reading
V. (kx,VT) = —g. (2.15)

Here, ky, is the thermal conductivity of the oxide (0.5 % for HfOy [4]) and g is the
rate of heat generation, calculated by Joule heating;:

g=T-j. (2.16)

2.4.3 Transitions

In the last step of the simulation flow (c.f. 2.6, b)), kinetic Monte Carlo transitions are
selected and executed. Here, three possible processes are considered: Generation,
recombination and diffusion. Based on the current state of the system determined in
the previous steps, the rates of the three transitions are determined for all defects. In
contrast to most published ReRAM KMC models [175-178], generation and recombi-
nation of oxygen vacancies is only allowed at the oxide electrode interfaces. This is
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in line with the findings of Guo et al. [7] and Schie et al. [182] that the generation of
anti-Frenkel pairs in the bulk oxide is unlikely.
The transition rates for generation Rg and recombination Ry are calculated by

Eg — F
Rg = vpexp <—GT;{16) (2.17)
and . , r
RR = vpexp (— R (kB;“)ae ) . (2.18)

Here, vy is the attempt frequency, given by the characteristic lattice vibration. Eg and
ER are the respective energy barriers for generation and recombination. « represents
a symmetry factor, a is the lattice constant and F is the locally induced electric field
[6]. Analogous to the Arrhenius equation (2.2), the transition rate for the diffusion of

oxygen vacancies to a neighboring lattice site is given by

E
Rp = vpexp (—kB—]:%) , (2.19)
with the activation energy Ep.

After calculation of Rg, Rr and Rp for all lattice sites, one process is chosen randomly
with probabilities weighted for the respective transition rates [6]. Subsequently, this
single process is executed which represents the Monte Carlo step. Additionally, the

transition rates are used to calculate the time increment At per simulation cycle via

— 11’1(7‘1)

At =
Rtotal

, (2.20)
with a uniformly distributed random number r; drawn from the interval [0, 1] and

the sum of all transition rates Ry, [183].

2.5 Normal and Log-Normal Statistics

The focus of this dissertation lies on the statistical evaluation of VCM ReRAM devices.
This already implies the necessity to plot measured quantities for large sets of indi-
vidual devices. One way to illustrate for example all measured cell resistances or
read currents of a memory array is to plot the statistical distribution of the quantity.
As will be demonstrated later, the data in this work is usually well described by a
normal- or log-normal distribution. Therefore, this section outlines the generation of
the respective plots and how they are to be interpreted.

A schematic of the probability density function (PDF) of a normal distribution is
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FIGURE 2.7: a) Schematic PDF of a normal distribution. b) Schematic CDF of a normal
distribution. ¢) CDF normalized with regard to the standard normal distribution ®.
Here, z represents multiples of the standard deviation ¢.

shown in figure 2.7, a). The typical Gaussian “bell” curve illustrates the probability
f(x) to observe a certain value of the quantity x. The highest probability is observed
for the median y of the distribution. Within + one standard deviation ¢ lies 68.2 %
of the data [184]. The probability density can be written as

flx) = U\/lﬁe—%(’%”f 2.21)

However, throughout this work, the cumulative distribution function (CDF) is pre-

ferred which is given by the integral of the PDF, reading

2

1
(%) qr, (2.22)

Px

vl

By using the Gauss error function (erf), equation (2.22) can be simplified to

F(x) = ;(1+erf(a \/_>> (2.23)

A schematic CDF of a normal distribution is shown in figure 2.7, b). The cumulative

probability F(x), ranging from 0 to 1 (or 100 %), is read as the fraction of data points
below or equal the respective value of x. Accordingly, 0.5 (or 50 %) represents the
median y. Though, with respect to the reliability of a memory device, usually the
focus is not on the median of the distribution, but on the few worst bits in the tails of
the distribution. As can be seen from figure 2.7, b), the value of the observed quantity
x close to the edges of the distribution is difficult to read. This issue can be resolved
by normalizing the CDF with respect to the standard normal distribution ® which is
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defined as

®(z) = % (1 +erf (\/%)) . (2.24)

=X"H (2.25)

Using the substitution

F(x) = ®(z). (2.26)

Finally, z is obtained by calculating the inverse standard normal distribution of the

distribution function F(x), via
& 1(F(x)) = z = V2erf 1(2d(z) — 1). (2.27)

By plotting z instead of F(x), the “S” shaped curve in figure 2.7, b) is converted to a
straight line as shown in figure 2.7, c). Here, the resolution at the critical edges of the
distribution is significantly improved. The probability axis is no longer ranging from
0 to 100 % but scales with multiples of the standard deviation.

Furthermore, this plot allows to identify normally distributed data right from the
linear shape of the normalized CDF. According to the simple equation (2.25), the
characteristic parameters y and ¢ of the distribution can directly be read from the
distribution, since y equals z(0) and ¢ is the reciprocal slope of the distribution.
Additionally, the linearity can be utilized to extrapolate a limited data set easily
towards larger statistics. For the mentioned reasons, the normalized CDF as shown
in figure 2.7, c) is chosen as standard plot for most of the data throughout this work.
It will be demonstrated later in this work that several data is not normally, but
log-normally distributed. However, the log-normal distribution, reading

Fo =1 (1 (R=1Y), -

only differs in the logarithmic dependence In(x) from the normal distribution in
equation (2.23). This means that the data is log-normally distributed if the logarithm
of the observed quantity is normally distributed. Therefore, the same normalization
is conducted, but the data is plotted with respect to In(x). Analogously, a data set can
be identified as log-normally distributed if a straight line appears on the normalized

probability scale and a logarithmic scale for x.
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3 Experimental Details

The experimental results in this work are obtained from two different material
systems. On the one hand, comprehensive data for industrially fabricated VCM
ReRAM devices based on HfO, were provided by Infineon Technologies and interpreted
in this work. On the other hand, read variability, retention and endurance are
analyzed for ZrO; based devices which are completely fabricated and characterized at
RWTH Aachen. Since HfO, and ZrO, are nearly identical with respect to their physico-
chemical properties [185], the experimental results for the two material systems are
expected to be very comparable. This chapter covers the fabrication of these devices.
Furthermore, the experimental setup developed in this work for the statistics based
characterization of these cells is presented. Finally, typical experimental methods
used to obtain the results in chapters 4 to 6 are explained.

3.1 Sample Fabrication

In order to investigate reliability aspects with respect to intrinsic statistics, the exper-
imental characterization of single cells becomes insufficient. For an efficient char-
acterization of many cells, a suitable sample structure (and test setup) is required.
Therefore, array structures come into account, which can be distinguished between
active and passive arrays [186]. Whereas ReRAM can easily be incorporated into
existing CMOS structures to form memory cells consisting of one transistor and one
resistor (1T1R) [187], such active array structures are rather complicated to fabricate
from scratch. Additionally, the characteristics of the processed transistor would
superimpose the investigated reliability aspects of the ReRAM cell. Therefore, only
passive arrays come into account for this dissertation.

However, passive cross-bar structures are reported to suffer from parasitical sneak
paths which scale with the size of the array [188]. Thus, a one-dimensional 32x1
sub-array is designed in this work which provides 32 individual cells connected to
one common bottom electrode. The structure and fabrication is published in [189]
(accepted) and explained in the following.

Figure 3.1, a) depicts a schematic of the fabricated cell stack and figure 3.1, c) shows

a sketch of the array structure. The devices are deposited on a Si wafer covered by an
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a) b) e-Beam sputtering of 30 nm SiO2 onto Pt BE
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FIGURE 3.1: Sample fabrication. a) Schematic of the device stack. A Pt channel is etched

into a SiO; layer and serves as bottom electrode. The cell is located at the cross section

of this channel and the top electrode pad. b) Fabrication process flow diagram. c) Sketch

of the array structure. For each cell size, the sample provides 64 individual sub-arrays
with 32x1 cells each. Partially reproduced from [189].
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Si0; insulation layer. Via RF sputtering, a 5 nm Ti layer is added, followed by 30 nm
Pt. the latter will be the bottom electrode of the device and is shown as base layer in
figure 3.1, a). The Ti layer is required to improve adhesion of Pt on SiO; (not shown).
Subsequently, the Pt covered wafer is cut into 1 in x 1 in substrates.

As summarized by the flow diagram in figure 3.1, b), the Pt bottom electrode is
covered completely by 30 nm e-Beam sputtered SiO;. This layer is used to separate
the single sub-arrays and is chosen sufficiently thick to not participate in resistive
switching. Using UV lithography, the SiO; layer is structured according to the black
vertical lines in figure 3.1, c). Subsequently the SiO; along these lines is etched down
to the underlying Pt. this creates the SiO; free channel which contains the cell stack
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in figure 3.1, a).

After removing the remaining photo-resist, 5 nm ZrO; are deposited via reactive RF
sputter deposition onto the whole sample (5iO, and Pt channels). The ZrO; layer on
top of SiO, has no function. However, within the Pt channels, ZrO; represents the
resistive switching oxide layer.

Another UV lithography step follows in order to structure the top electrodes cor-
responding to the blue outlined pads in figure 3.1, c). Subsequently, 20 nm Ta are
deposited as ohmic electrode via RF sputter deposition. To prevent oxidation of
the Ta layer, it is in-situ covered by 30 nm RF sputtered Pt. It may be noted that Ta
represents the standard ohmic electrode metal in this work, since ZrO, /Ta devices
are reported to have excellent resistive switching characteristics [190]. However, for
the endurance characterization in chapter 6, the metal for this layer will be varied
between Ta, Ti, Hf and Zr. A lift-off process removes the residual photo-resist, Ta and
Pt outside the top electrode pads and finalizes the sample. As indicated in figure 3.1,
a), the sample provides 64 individual sub-arrays with 32x1 cells each. Moreover,
the sample includes four different cell sizes, being (3 pm x 3 pm), (5 pm x 5 pm),
(7 pm x 7 pm) and (10 pm x 10 pm).

Microscopic pictures of the device structure are provided in figure 3.2. A light
microscopy of the top view is shown in figure 3.2, a). Here, the brown area is the
passive SiO; layer (covered by 5 nm ZrO,). Along the vertical, white lines SiO,
is etched down to Pt which is subsequently covered by the ZrO, switching layer.
Perpendicular to these lines, the top electrode pads form cross-bar cells as highlighted
by the black squares. At the edge of the sample, the common bottom electrode is
accessible by a large pad which was covered during all deposition steps (not shown).
Figure 3.2, b) shows a 7 pym x 7 pm cell captured by scanning electron microscopy
(SEM). The horizontal top electrode covers the vertical bottom electrode in the center
of the picture. The dark gray area is covered by SiO;. The SEM image reveals a width
of the electrode structures of approx. 9 pm which is 2 pm broader than the intended
7 nm. Figure 3.2, ¢) shows a detailed study of a 3 pm x 3 pum cell. Again, the real
width of the electrodes is observed to be increased by 2 pm, resulting effectively
in a5 pm x 5 pm cell. The higher magnifications in the second and third frame
(from left to right) show a rather high roughness of the top-electrode edge of approx.
0.5 um. Both the pronounced roughness and the increased width of the structure
might be explained by the quality of the photo-resist used during the lithography
steps. Presumably, the quality of the structure could be improved by optimization of
the photo-resist composition and exposure. However, minor variations in cell area
should not affect the resistive switching characteristics of filamentary VCM ReRAM,
because the radius of the filament is expected to be significantly smaller than the cell.
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FIGURE 3.2: Microscopy of the fabricated (30 nm Pt / 5 nm ZrO, / 20 nm Ta / 30 nm
Pt) cross-bar devices. a) Top-view light microscopy of the array structure. the vertical
BE lines are etched in the brown SiO; layer. At the cross-sections with the horizontal
TEs the switching cells are located. b) SEM image of a single (7 ym x 7 pm) cell. ¢)
Detailed SEM study of a (3 pm x 3 pm) cell. In both cases, the real width of BE and TE is
observed to be increased by 2 pm. The roughness of the TE edges is approx. 0.5 pm.

The advantage of this structure is the potential to contact 32 top electrodes by a
suitable probe card (with 32 probes) while the common bottom electrode can be
connected to ground, as will be outlined in the following section. However, one
drawback compared to conventional cross-bar structures [191-193] is the capacity
between the large top electrode pads and the common bottom electrode. By using a
rather thick SiO; layer the impact of this capacity should be minimized. Nevertheless,
it may affect the resistive switching characteristics and could cause parasitic current
overshoots when the cell current drops during forming or SET operations.

3.2 Experimental Setup

In order to characterize the fabricated sub-array structure, a dedicated test setup is
developed in this work. The sample is placed in a SemiProbe LA-100 probe station
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FIGURE 3.3: Schematic of the experimental setup developed in this work. The custom
array tester based on the pCModule platform by aixACCT Systems provides a voltage
output Vot with AWG DAC, mapped to 4 parallel voltage channels V3. These channels
are connected via optional series resistors Rs-3 to a 4x32 switch matrix. Here, the
voltage signal can be mapped arbitrarily to 32 output channels which are connected
via ribbon cable to a wedge probe card. By contacting the 32 probes of the card to the
DUT, the desired voltage signal can be applied to the respective cells. The common BE
is connected by an additional probe to the virtual ground V. In order to control the
device and for data collection an interface to Mathworks MATLAB is developed.

which provides a vacuum chuck capable of planar rotation (in x-y-plane, c.f. fig-
ure 3.3). This degree of freedom is crucial to adjust the angle of the sample to the
orientation of the probes.

As depicted by the schematic experimental setup in figure 3.3, the sample or (also
device under test DUT) is contacted by a wedge probe card with 32 probes in one row.
According to the array structure, the probes are spaced with a pitch of 150 pm. The
probe card is mounted to a micro-positioner via a probe-arm which was originally
designed for high frequency (HF) probe heads. This arm not only ensures a stable
mounting of the probe card but also allows for fine tilting around the y-axis (c.f.
figure 3.3) which is desirable to parallelize the array of probes to the sample. 32
probes with 150 pum pitch result in a probe array length of 4.65 mm which results
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in significant differences in height if the probe card and sample are not perfectly
parallel.

The probe card is electrically connected via a ribbon cable to a custom array test
device developed by aixACCT Systems and based on their yCModule platform. It
provides a digital analog converter (DAC) with arbitrary waveform generator (AWG)
and a maximum sampling rate of 1 MHz. The emitted waveform V, can be mapped
to 4 voltage output channels V(3. Here, V) is equal to Vo, whereas V.3 can be
adjusted to fractions of V,,t by 3 independent potentiometers. Additionally, V3
may optionally be inverted. However, in this work neither the potentiometers nor
the inverter are used. V.3 are treated as four parallel sources of V. Instead of
using the potentiometers, 3 different series resistors Rg ;-3 are added in this work to
V3. For a typical switching operation, only one of the four channels will be used as
voltage source. Here, the setup enables to choose between different series resistors
depending of the desired operation. Whereas a RESET operation may be performed
without series resistor, during forming and SET the voltage divider induced by a
series resistor can be beneficial to limit the current during switching.

The most important component of the array tester is a 4x32 switch matrix. Here, the
four voltage output channels (rows) are mapped to 32 output channels (columns).
As indicated by the circles in figure 3.3, the rows and columns can be connected
arbitrarily. In the shown example V is connected to column 1, V1 via Rg; to column
29, V5 via Rg to column 9 and V3 via Rg3 to column 16. The 32 output channels
(columns) are provided by a 32x2 pin ribbon connector with 32 signal lines and 32
shielding lines which are connected to ground. The 64 lines of the attached ribbon
cable carry signal and ground in an alternating order to prevent crosstalk between
signal lines. Via this ribbon cable, the 32 output channels are connected to the wedge
probe card with 32 probes towards the sub-array sample structure.

The common bottom electrode (BE) of the sample is connected via an additional
probe to the virtual ground Vg input of the array tester. This input serves as ground
reference for the sample and provides an analog digital converter (ADC) with a max-
imum sampling rate of 0.8 MHz. Here, the current through the sample is recorded.
Based on the command library (dll) provided by aixACCT Systems, an interface to the
software Mathworks MATLAB is developed in this work. Here, the MATLAB MEX
environment is used to implement MATLAB functions compiled in C++ which access
the device functions provided by the according dll. These MATLAB functions enable
to access the switch matrix in order to set the desired connections between the input
rows (0-3) and the output lines (1-32). Subsequently, a measurement can be started
by sending an arbitrary waveform (and additional parameters) to the measurement

device. For a more efficient and user friendly operation, the basic functions are
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FIGURE 3.4: Basic operations with the array test setup. a) The standard read function
applies a rectangular voltage pulse with height Vrp and width fgp. The function returns
the resulting current as raw data as well as the current median of the second half of
the pulse. b) A basic SET operation reads the state of the cell before and after the
programming pulse with height Vsgr and width fsgr. Both functions can be applied to
multiple cells and return the evaluated current states of the respective cells.

wrapped into higher level MATLAB functions for distinct operations, like SET, RESET
or Read.

The developed MATLAB interface provides a script based environment for control-
ling the array tester as well as data collection. Due to the computing capabilities of
MATLAB, data can be evaluated within the run-time of a measurement. This enables
for example the manipulation of the switching parameters based on the results of
the preceding switching or reading operation. In particular, it allows for switching
voltage optimization during endurance experiments and program-verify algorithms
as explained in the following section.

3.3 Experimental Methods

3.3.1 Basic Operations

As explained above, the aixACCT Systems array tester is controlled via an interface
to the software Mathworks MATLAB. Here, several functions are implemented to
perform certain operations automatically. The most simple operation is to read the
current state of a contacted cell. In order to do this, a “Read” function is provided
which applies a rectangular voltage pulse as sketched in figure 3.4, a), with an
arbitrary pulse length tgp and height Vrp. The resulting current signal measured
by the device is returned as raw data into a MATLAB array. Additionally, the read
current is evaluated directly by calculating the current median of the second half of
the pulse. Since the measurement setup is designed to characterize a 32x1 sub-array
of cells, the function can be called for an arbitrary set of one to 32 cells which will
be read consecutively. Besides the raw data, the function returns an array with the
evaluated read current state of each cell. Thus, the setup enables a fast assessment of
the current state of up to 32 cells.
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Likewise, an arbitrary set of cells within one 32x1 sub-array can be programmed by a
dedicated SET or RESET function. The former is schematically shown in figure 3.4,
b). Typically, a single programming sequence consists of a programming (e.g. SET)
pulse with arbitrary width (tsgr) and height (Vsgr), flanked by two read pulses. This
means that the state of the cell is read before and after programming. The function
returns the raw data as well as the evaluated states before and after the programming
pulse. If multiple cells are programmed, an array of current states is returned. A
RESET is performed analogous to the SET scheme in figure 3.4, b) by reversing
the polarity of the programming pulse. By increasing the pulse height and length,
the SET function can also be used to electroform cells. However, a more reliable
electroforming operation is achieved by applying a triangular instead of a rectangular
pulse.

The four individual voltage input rows (0-3) can here be used to select an appropriate
series resistance for each operation. For the standard devices in this work, usually
Rs = 10 k() is selected for electroforming and Rg = 1 k() for SET operations. The
RESET is performed without external series resistance.

In conclusion, the setup can be used to conveniently read and program the states of
32 contacted cells. Each programming operation directly returns the current state
of each cell before and after programming which allows for a fast assessment of the

programming success.

3.3.2 Program-Verify

Since the success of each programming operation is directly monitored, unsuccessful
operations can be corrected on the fly. In order to do this, program-verify algorithms
come into account [89]. Figure 3.5 shows flow charts of program-verify algorithms
used in this work. A typical forming algorithm performs a triangular voltage pulse
with a slope time of 20 ms to reach the stop voltage Vstop, followed by a read pulse as
introduced above. The resistance of the cells is evaluated after the forming pulse and
compared to the target resistance Riarget- A cell resistance below this target is consid-
ered as successful forming. Each cell with a resistance R > Riarget Will receive another
forming pulse with increased stop voltage. As soon as all cells formed successfully
or the maximum number of iterations is exceeded, the algorithm is terminated and
the resulting states of the cells are returned. Optionally, all unsuccessful cells after
the maximum number of iterations can be discarded for any further operations.
Thus, a single function is executed for a set of 32 virgin cells which returns a set of
successfully formed cells with the according resistances before and after forming.

Subsequently, the successful cells can be cycled using the RESET and SET algorithms
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FIGURE 3.5: Schematic of the program-verify algorithms. a) The forming algorithm
applies a triangular voltage pulse with a rise time of 20 ms towards the stop voltage
Vistop- After each programming pulse, all cells are read and their resistances compared
to the target resistance Riarget. In case of failed programming, the pulse is repeated with
increased stop voltage until all cells passed or the maximum number of iterations is
reached. The RESET and SET algorithms in b) and c) are performed analogously using
rectangular programming pulses with a width of 20 ps and the height VRgsgr or Vegr,
respectively. Adapted from [189].

in figure 3.5, b) and c). Here, typically rectangular voltage pulses with a width of
20 ps are applied. Analogous to the forming algorithm, the resistance after the SET or
RESET pulse is evaluated and compared to a target resistance Riarget- Again, all failed
cells are programmed again with increased pulse height Vsgr or Vrpsgr until all cells
are successfully programmed or the maximum number of iterations is reached.

In conclusion, the implemented program-verify methods provide a highly automated
way to electroform and cycle multiple VCM ReRAM cells. Defect cells are discarded
automatically and functioning cells can be programmed into defined resistance (or
read current) margins with a comparatively low stress, since the programming param-
eters are initiated low and only increased if the initial parameter was insufficient.

The ability to program cells into distinct margins is utilized in [189].

3.3.3 Endurance

The discussed program-verify algorithms are well suited to conveniently program
up to 32 cells into defined margins. However, in order to assess the endurance of the
devices under test, SET/RESET cycle numbers of 10° or higher have to be performed
within reasonable time scales. Here, the presented algorithms are too slow because
every programming operation is performed separately. Each call of the low level
measurement function along with data transfer between measurement device and
computer takes approx. 1 s. Assuming that every programming pulse succeeds, one
cycle (SET + RESET) would cost approx. 2 s. Thus, an endurance measurement over
10° cycles would require 2 - 10° s or more than 23 days.
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Endurance

FIGURE 3.6: Schematic of the endurance pulse sequence. To achieve high numbers of

cycles within reasonable measurement time, 7i¢ycles cycles are performed consecutively

without read pulse in between. Each cycle consists of one SET pulse with tsgt and Vgt

and one RESET pulse with trgsgr and Vggsgr. During the last cycle of each sequence,
one HRS and one LRS is measured and evaluated.

It is therefore desirable to apply as many cycles as possible within one call of the
low level measurement function (one executed waveform and data transfer). Hence,
an endurance function is implemented which performs a high number 7yes of
SET/RESET cycles in a row, as depicted schematically in figure 3.6. The waveform
COMPTiSes flcycles consecutive SET and RESET pulses without reading in between. In
order to determine if the tested cell switches sufficiently, read pulses are added to
the last cycle of the sequence. Thus, every n¢yces cycles, the HRS and LRS of the cell
is evaluated once. Depending on the result, the programming parameters can be
adjusted for the following sequence.

This induces a trade-off between cycling speed and the number of possible adjust-
ments. The more cycles are performed in one sequence, the faster the measurement
can be completed, but the less reads are performed which allow for manipulation
of the cycling parameters. With the available buffer size of the measurement device
(approx. 22000 samples), a maximum of 10° cycles can be performed in one sequence,
if the pulse length is tspT = trpsgr = 10 ps. Thus, 100 cycles can be performed in
approx. 17 min. To find the best balance between speed and number of reads, an
endurance algorithm is developed in this work which adaptively changes the number
of cycles per sequence according to the success rate of the current switching parame-
ters. Starting with a low number of cycles per sequence, this number is increased each
time the switching parameters did not need adjustment. The developed algorithm is

discussed in detail in chapter 6.
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In general, the measurement device enables to apply voltage to multiple cells in
parallel. Since only one current can be measured, reading the exact state of multiple
cells in parallel is not possible. However, multiple cells could be cycled in paral-
lel and read consecutively after r¢ycles. Although this seems like a faster option to
determine the endurance of multiple cells, it actually provides no advantage over
measuring endurance one cell after the other. The reason is that, as mentioned above,
the number of function calls limits the effective speed. As stated above, 10° cycles
on a single cell can be performed by 10% sequences containing 103 cycles each. This
results in 10% s or approx. 17 min. Respectively, 10 cells measured consecutively
would cost 10 - 17 min= 170 min.

If these cells were cycled in parallel, this would cost only 17 min. However, after each
sequence of 10° cycles all cells would need to be read separately. Thus, 11 function
calls (cycle + 10 reads) would be called 10° times, resulting in approx. 183 min. Thus,
it is faster to assess cell by cell and include the read operation into the cycle function.
Nevertheless, the setup allows to automate the endurance measurement of all 32
contacted cells. It therefore enables to generate reasonable statistics within justifiably
measurement times.

3.4 Conclusion

Within the scope of this work, an experimental environment was developed which
enables the efficient characterization of multiple VCM ReRAM cells in order to
generate statistically sound data within reasonable time scales. A sample structure
providing 32x1 sub-arrays of cells was designed and tested successfully. A respective
test setup including a suitable probe card was built around the array tester provided
by aixACCT Systems. The development of an interface between the array tester and
Mathworks MATLAB allowed for implementation of several measurement routines
with focus on automation and statistical evaluation. This includes program-verify
algorithms for the reliable programming into defined resistance (or read current)
margins, as well as comparatively fast and automated endurance routines. The
measurement results obtained with the presented experimental environment will
be presented in the following chapters. For the experimental characterization of
variability (c.f. chapter 4) and retention (c.f. chapter 5), the implemented program-
verify and read operations are of high importance. The fast cycling methods are

utilized for endurance measurements as presented in chapter 6.
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4 Variability

The pronounced stochastic nature of VCM ReRAM is one of the largest challenges
for its industrial adaption. Apart from fabrication induced device to device (D2D)
variations, the programmed states fluctuate significantly from cycle to cycle (C2C)
and even from read to read (R2R). This chapter briefly covers D2D and C2C vari-
ability. Subsequently, R2R fluctuations are identified as key challenge regarding the
variability of VCM ReRAM and studied in detail. Therefore, this chapter provides
experimental observations of read variability and two different model approaches

towards the understanding of its physical origins.

4.1 Device to Device and Cycle to Cycle Variability

As reported in [86, 87], the cycle to cycle fluctuations in typical VCM ReRAM are
expected to exceed the stochastic differences between individual devices. Therefore,
D2D and C2C variability are reported to be indistinguishable [86, 87]. In order to
verify this observation for the standard (30 nm Pt / 5 nm ZrO, / 20 nm Ta / 30 nm Pt)
cross-bar devices investigated in this work (c.f. chapter 3.1), a comparison of D2D and
C2C variability is given in figure 4.1. The lines in this plot represent the distributions
of HRS and LRS resistance drawn from an endurance experiment (c.f. chapter 6). 51
individual cells of the standard stack mentioned above are cycled continuously until
tailure which occurs as soon as the cell becomes irreversibly stuck in either LRS or
HRS. Each programming pulse has a width of 20 ps. By default, the SET voltage is
0.9 V and the RESET voltage -1.7 V which are both applied to the Ta electrode with Pt
connected to ground. However, as will be discussed in chapter 6, the programming
voltages are adaptive between cycles to achieve the highest possible endurance.
The resulting LRS and HRS resistance distributions show significant C2C fluctuations
(blue lines). This also includes few cycles with unsuccessful SET or RESET respec-
tively. For comparison, a distribution for a single cycle over all 51 devices is depicted
by the black dashed line. As expected from [86, 87], the C2C and D2D distributions
are rather similar.

Additionally, the impact of a program verify algorithm on D2D and C2C variability
is studied. The orange symbols represent D2D distributions of > 200 cells drawn
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FIGURE 4.1: Comparison of C2C and D2D variability. The lines are drawn from an
endurance experiment. The distribution of one cycle over 51 individual cells (black
dashed) is comparatively similar to C2C distributions for single cells (blue lines). The
symbols represent C2C (black crosses) and D2D (orange circles) distributions drawn
from another experiment. Here, a program-verify algorithm is used which significantly
reduces the variability. Again C2C and D2D distributions are rather similar.

from another experiment which are programmed by the program-verify algorithm
introduced in chapter 3.3. Using this algorithm, the cells are progressively exposed to
pulses of increasing amplitude until a defined threshold resistance is exceeded. This
leads to much steeper distributions and thus reduces the observed D2D variability
significantly. For comparison, the black cross symbols represent a C2C distribution
measured on a single cell. It can be seen that the C2C variability highly benefits from
the program-verify approach as well. The resulting distribution is again very similar
to the orange D2D distributions.

It is therefore concluded that C2C and D2D variability are indistinguishable in the
investigated ZrO, based devices. It can furthermore be reduced to large extend by
application of a suitable program-verify algorithm.

4.2 Read to Read Variability

As demonstrated above and reported in [89], both D2D and C2C variability become
a secondary issue since it can be tackled by appropriate programming algorithms. In
contrast to this, R2R variability seems to be an intrinsic characteristic of filamentary

VCM ReRAM. Stochastic changes of the programmed state from read to read limit
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the effectiveness of programming algorithms [86, 103] and determine the maximum
read window between HRS and LRS. Therefore, this type of variability is identified as
key challenge and investigated in detail over the following sections. These will cover
experimental results as well as two different approaches to model and understand
R2R variability.

4.2.1 Experimental Results

At first, experimentally obtained results are presented for two different material
systems. The first subsection covers read variability in the ZrO, based devices.
Subsequently, the results are extended by the industrially fabricated devices based
on HfO,.

ZI‘OZ

The read variability is investigated using the standard ZrO, cross-bar devices dis-
cussed in chapter 3.1. Using the test setup presented in chapter 3.2, 20 individual
cells are electroformed and undergo 10 initial switching cycles. Here, all forming and
switching operations are performed using a program-verify algorithm as introduced
in chapter 3.3. The forming voltage is initialized at 1.8 V and is increased up to a
maximum of 4 V if necessary. The set voltage ranges from 0.6 V to 1.4 V and the
reset voltage from 1.3 V to 2 V. After each programming pulse, the cell resistance is
verified by a read pulse of 0.35 V for 20 ps.

To determine the read variability, each cell is read by applying the read voltage of
0.35 V constantly for a duration of 200 ms. The resulting current is recorded with
a sampling rate of 80 kHz. This read is repeated 10 times before concatenating the
current traces to a total length of 2 s as shown in figure 4.2. After the read sequence
of 10 reads is completed, the cell is cycled again and subsequently the read sequence
is repeated. By repeatedly alternating switching and reading, 540 HRS states are
recorded. As reported in [86, 87] and demonstrated above, C2C variability is indistin-
guishable from D2D variability. Therefore, the recorded states are considered equal to
540 individual cells. To ensure comparability, only cells with a read current between
6 pA and 12 pA are included.

Within the first 600 ms of the current traces, marked as region I in figure 4.2, the
states are observed to be very unstable and comprise large fluctuations. Here, the
read current seems to drift towards more stable values. Subsequently, in region II,
the traces are characterized rather by fluctuations around a relatively stable current
median.

To demonstrate the impact of read noise on the reliability of VCM ReRAM as memory
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FIGURE 4.2: Read current traces of five exemplary (30 nm Pt / 5 nm ZrO; / 20 nm Ta /

30 nm Pt) cells in HRS. The traces are concatenated from 10 reads at 0.35 V for 200 ms

each. The data is divided into two regions. (I) from 0 ms to 600 ms characterized by large

fluctuations and drifting of the current median. (II) 600 ms to 2 s comprising random

fluctuations around a largely constant current median. Reproduced with permission
from S. Wiefels et al. [194], © 2020 IEEE.

device, the data is plotted as read current distribution in figure 4.3. Here, each line is
a cumulative read current distribution of all cells at one instant of time. As mentioned
above, only cells in the range of 6 nA to 12 pA are included in the data set. This filter
is applied at the time ¢ = 12.5 ms. Thus, the respective distribution in figure 4.3, a) is
constraint to this interval. At later instants of time, the read current exceeds these
limits and the distribution relaxes to a straight line. With the normalized probability
scale (o scale) and the logarithmic current scale, a linear shape identifies the data
as log-normally distributed which is common for the HRS [123, 124]. Additionally;,
within the first 600 ms, the distribution tilts to a shallower slope. This broadening can
be accounted to the significant instability observed in this region (I). After 625 ms,
the distribution, including slope and log-normal shape is observed to be very stable.
With the purpose of ensuring a sufficiently large read window, distribution shaping
is a common approach [195]. The distribution is shaped by either reprogramming
or discarding all cells which exceed a defined threshold current or resistance. This
concept is applied to the stable region II in figure 4.3, b). Here, all cells with a read
current above 12 pA at t = 750 ms are removed from the data set. For t = 800 ms
up to t = 1500 ms only the remaining cells are considered when plotting the read
current distribution. In theory, no cells should exceed the limit of 12 pA as observed
for the shaped distribution at 750 ms. However, within another 750 ms (towards
t = 1500 ms) the removed “tail” recovers and the log-normal shape of the distribution
is restored. This means that the effect of shaping algorithms is volatile and their
potential to widen the read window is limited.

Without (data-)shaping it is remarkable that the read current distribution in region II
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FIGURE 4.3: a) Read current distributions of 540 HRS states for different times cor-
responding to the current traces in figure 4.2. Only states between 6 pA and 12 pA
are included, filtered at 12.5 ms. The distribution relaxes to a log-normal shape and
broadens until 625 ms. Subsequently, the log-normal distribution is stable. b) Data
shaping experiment in the more stable region II. At 750 ms all cells above 12 pA are
discarded. The remaining cells are plotted for 800 ms to 1500 ms and the log-normal
shape recovers without the removed cells. c) Lag plot showing current changes (blue
dots) within 500 ms in region L. The red line represents no current change. d) Analogous
lag plot for region II. Partially reproduced with permission from S. Wiefels et al. [194],
© 2020 IEEE.
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is highly stable. The yellow, orange and red lines in figure 4.3, a) coincide to a
great extend although the individual current traces comprise significant fluctuations
around their median (c.f. figure 4.2). These fluctuations can also be depicted by
lag-plots as shown in figure 4.3, c) and d). For all 540 cells, the read current at one
incident of time is compared to a later one (blue dots). The deviation from the red
diagonal represents the current change between the two reads. figure 4.3, ¢) compares
the read current at 125 ms and 625 ms, in the unstable region I. As expected, large
fluctuations of up to 6 pA within the considered 500 ms are observed. Only few dots
lie on or very close to the red line representing stable read current. Analogously, the
read current at 1 s and 1.5 s (region II) is compared in figure 4.3, d). Despite the same
interval of 500 ms, the cells are more stable compared to figure 4.3, c). The majority
of dots is closer to the red diagonal. However, several cells still comprise current
changes of up to 4 pA. Thus, the read variability decreases from region I to region II
but is still present.

Nevertheless, it can be stated that the read current is characterized by highly stable
log-normal distributions in region II after the initial relaxation in region I. Apparently
contrasting to that, single cells show significant current fluctuations. The fact that the
log-normal distribution heals after shaping suggests that the single cell fluctuations
are not contrary to the stable distribution but in fact the origin of the intrinsic statis-
tics. It seems that the apparently random fluctuations of single cells culminate in a
dynamic balance represented by the log-normal statistics. Thus, removing “fail-bits”
above a certain threshold current has a limited impact on the distribution, provided
that the number of remaining cells is sufficiently large. Program-verify schemes
may be beneficial to limit C2C variations, but the lowest achievable width of the
read distribution is determined by read to read (R2R) variability due to the intrinsic
statistics of the cell fluctuations. The physical origin of this phenomenon will be

discussed in chapter 4.3.

HfO,

Analogously, the read variability is studied for industrial HfO, based VCM devices.
To determine the short term stability of the high resistive and the low resistive state,
10 k cells are programmed into LRS and HRS each. The initial read current after
programming is given as dashed line in figure 4.4, a). It may be noted here that all
experimental data obtained with these devices will be displayed with arbitrary units
(a.u.) due to non-disclosure agreements. The LRS data displayed on the right side
follows a straight line (regarding a linear current scale) and can thus be identified
as a normal distribution. The HRS does not follow normal statistics but seems

to be bended towards the read window. However, the HRS distribution becomes



4.2. Read to Read Variability 43

4 ] 1 1 ]
a
) 3t \ ——=-0min
HRS —— 0 min (shaped)
2F 1 min
6 1F 20 min
~ 1000 min
= Or 4000 min
O -1t :
2k
31 _ RW
_4 1 1 1 -
0 0.02 0.04 0.06 0.08 Linear current scale
Read current / / a.u.
b) ;‘ | .
2 - -
o 1F .
; 0_——--0min |
)] 0 min (shaped)
O-1F 1 min 1
2F 20 min _
1000 min
-3 ['|——— 4000 min o 1
_4 : L 1 . i . . . P P |
1072 10!

Read current 7 / a.u.

FIGURE 4.4: HRS and LRS read current distributions containing 10 k cells each. The

HRS is inverted (complementary CDF) for better perceptibility of the read window

(RW). Original data after programming displayed as dashed line. The same distribution

after data shaping (HRS at 0.04 a.u.) is shown as solid blue line (0 min, shaped). a)

linear current scale, b) logarithmic current scale identifying the volatile effect of shaping
as reversion to the log-normal distribution.

linear if the current scale is set to logarithmic spaces, as depicted in figure 4.4, b).
As mentioned above, this indicates that the high resistive state is log-normally
distributed.

Equivalent to the experiments presented for the ZrO, devices, the effect of data
shaping is investigated. Therefore, at t = 0 all HRS cells with a read current Igeoq >
0.04 a.u. are discarded. As expected, the effect of this is volatile. On the linear scale it
seems that a tail of “bad” cells developed already after 1 min delay which continues
to grow until approx. 1000 min. With the logarithmic scale in figure 4.4, b) it becomes
clear that this tailing is in fact a recovery of the log-normal distribution due to the
intrinsic statistics.

The same data shaping experiment is performed with the LRS data by discarding
all cells with Ire,q below an LRS threshold. Here, a recovery of the intrinsic normal

distribution is observed as well. However, the impact in the LRS is much lower
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compared to the HRS. This is congruent with the common observation of less read
noise in low resistive states compared to high resistive states [106, 116].

To study the origin of the intrinsic statistics, another 10 k cells are programmed into
HRS by a single reset pulse (without shaping algorithm). Subsequently all cells are
read once per second for a total duration of 20 ks. One exemplary device to device
(D2D) distribution is given as dashed line in figure 4.5, a). As observed before, the
HRS state is log-normally distributed. To clarify if the log-normal statistics can also
be attributed to single cells, 20 exemplary read to read (R2R) distributions are added
to figure 4.5, a). Here, the dashed line represents the read current of all 10 k cells at
one distinct instant of time, whereas the other lines each represent the read current of
one cell over all tested 20 k seconds.

It can be observed that the R2R statistics of individual devices are significantly
different from the D2D statistics over all cells. The individual cells are characterized
by a typically very steep slope, combined with few distinct current jumps. This
indicates that two different classes of fluctuations occur in the R2R distributions,
causing the low variability within the steep slopes and the higher variability given
by the partially large current jumps.

Figure 4.5, b) shows the current traces of the six colored R2R distributions in figure 4.5,
a). Equivalently to the R2R distributions, the read current traces comprise two
different types of fluctuations. Firstly, all shown cells show current fluctuations
with a high frequency but low amplitude around a very stable median. A R2R
distribution over a section with only these jumps should be comparatively steep.
But, secondly, few larger jumps seem to occur randomly, shifting the median with its
smaller fluctuations to a different level. This means that the cell fluctuations within a
certain current band account for the steep R2R distribution until the cell randomly
jumps to a different current state.

Since the superposition of the read currents of all cells leads to a stable log-normal
distribution, two different explanations come into account. On the one hand, the
variability of the programming operation (e.g. reset) could cause the log-normal
statistics (LNS), as the cells end up in random states which possibly follow a log-
normal distribution. On the other hand, the random current fluctuations observed
in the single current traces could generate a dynamic equilibrium following log-
normal statistics. As already expected from the discussed shaping experiments, the
tirst option seems unlikely, because it cannot explain the reversion of the shaped
distribution into its log-normal shape.

This reversion is studied in more detail in figure 4.5, c). The black line represents the
D2D distribution shaped at the first read by removing all cells exceeding 0.06 a.u.
As expected, the remaining cells relax to the log-normal shape as shown by the gray
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FIGURE 4.6: a) Lag plot comparing the read current of 10 k cells at the first read to

the last read after 20 ks. The color marks the number of cells at the respective data

point. Most cells lie close to the black diagonal representing no change between the two

reads. However, current changes of up to 0.06 a.u. (> 100 %) are observed. b) Narrow

sub-populations extracted for three current intervals from the first read. After 20 ks
each group relaxed into a significantly broader distribution.

distribution for the last read after 20 ks. Here, several R2R distributions are shown in
blue, each representing a cell which was below 0.06 a.u. at the first read and exceeded
this threshold in the last read. It can be seen that the cells which are responsible for
the reversion of the tail undergo partially very large current jumps.

This leads to several conclusions: It can be stated that the cells in the regrown tail
come from a broad range of the original distribution. Additionally, the observed
random jumps are responsible for the reversion of the distribution. Considering
that these specific cells which jump into the cut-off section cannot “know” that the
distribution was shaped before, it must be assumed that some of the cells with a
read current above 0.06 a.u. at the first read would jump to a lower current (if
not removed), because the over all distribution is observed to be stable. It seems
that in each instant of time, approximately the same amount of cells jumps to a
higher current as vice versa. These jumps seem to result in a dynamic equilibrium
characterized by log-normal statistics.

For a better understanding of the occurring current fluctuations, a lag plot is given in
figure 4.6, a) comparing the read current of all cells at the first read to their current at
the second read. Although the log-normal distribution is observed to be stable, the
individual devices change their state significantly. Current changes of up to 0.06 a.u.
are possible which is more than 100 %.

Figure 4.6, b) shows another data-shaping experiment. Analogously to the study
of Fantini et al. [86], the distribution of the first read (c.f. figure 4.5, c) is divided
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into three narrow sub-populations. Within 20 ks the narrow sub-populations relax
into the significantly broader distributions depicted by blue lines. Here, the shape
is similar regardless of the current median of the extracted sub-populations. Each
group seems to revert back towards the intrinsic log-normal statistics, enabled by the
large current fluctuations shown in figure 4.6, a).

If the log-normal statistics were caused by the programming operation instead of by
the observed current fluctuations, with the latter being an additional effect, it seems
very unlikely that the distribution could be stable. Random current jumps of up to
100 % should disrupt the previously generated statistics. Therefore, it can again be
stated that the random current fluctuations of individual cells are the most likely
origin of the observed log-normal statistics.

It may be noted here that various methods exist to verify if a data set is normally or
log-normally distributed [196]. Throughout this dissertation a graphical method is
used. As explained in chapter 2.5, the normality of the distribution can be tested by
plotting the normal quantiles of the data and comparing the resulting distribution to
a straight line [197, 198]. This method provides a clear and simple to interpret way of
recognizing intrinsic statistics [198]. However, additional methods could be used in
order to verify the normality or log-normality of the data quantitatively. Commonly
used examples are the Pearson Chi-Square test [199], the Shapiro-Wilk test [200] and
the Jarque-Bera test [201]. Although the latter is frequently recommended for tests of
normality, the performance of all statistical tests depends on the respective application
and sample size [202, 203]. It is therefore suggested to try different approaches in the
context of the given data. Moreover, extended or modified versions of the mentioned
approaches might deliver the best performance [204]. As a consequence, it should
be subject of future studies to identify the optimal test strategy as extension of the
graphical approach for VCM ReRAM used in this dissertation.

In conclusion, the experimental investigation of read variability revealed intrinsic
statistics of the programmed states, where the LRS is normally distributed and the
HRS follows log-normal statistics. It is shown that these statistics are not primarily
determined by the programming operations (although it might influence the read
variability), but are an intrinsic phenomenon which can be attributed to random
current jumps resulting in a stable distribution. In the following section, Factorial
Hidden Markov Models are used to describe the read variability quantitatively. An

explanation for the observed behavior will be given in section 4.3.
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4.2.2 Factorial Hidden Markov Model

As proposed by Puglisi et al. [171], Factorial Hidden Markov Models (FHMM) are a
powerful technique for the quantitative analysis of read noise data. FHMM methods
do not deliver a physical understanding of the observed noise, but allow to decom-
pose a noisy signal into multiple two-level noise signals described as individual
Markov chains. Each chain is characterized by a jump amplitude and a set of tran-
sition probabilities. This enables a quantitative analysis of each occurring current

change and gives rise to the distribution of jump heights and probabilities.

7rO,

Using the Baum-Welch algorithm introduced in chapter 2.3, the most likely set of
four Markov chains is determined for all 540 HRS states recorded for the ZrO, based
devices presented in section 4.2.1. Figures 4.7, a) and b) show results of the algorithm
for the traces 2 and 5 from figure 4.2. The gray lines mark the recognized current
levels which can be reached by superposition of the estimated Markov chains. It can
be seen that the resulting current levels are in good agreement with the experimental
data. Here, trace 2 in figure 4.7, a) is characterized by high frequent jumps of low
amplitude whereas trace 5 in figure 4.7, b) comprises few large current jumps. Despite
large differences in the general noise characteristics, the algorithm is observed to
match the individual traces.

The evaluation shows that a maximum of four Markov chains is sufficient to generate
the observed noise characteristics. A higher number of considered chains would
not increase the precision of the evaluation since the additional chains would be
characterized by very low amplitudes and therefore discarded. Furthermore, the
computational burden increases drastically with increasing number of Markov chains.
Although the FHMM evaluation does not provide a physical explanation of the
analyzed noise characteristics, this observation indicates that a total number of 4
individual jump processes is sufficient to account for all observed current jumps in
the investigated states.

Additional to the total number of jump processes, the FHMM analysis provides
information about the occurring current jump amplitudes and their corresponding
jump probabilities. With the respective sampling rate of the current trace, the latter
can be translated into a jump frequency. Since the determined jump probability can be
different for the two jump directions, the jump frequency is given by the rate limiting
direction with lower jump probability. The resulting frequencies for the whole data
set of 540 HRS states are shown as cumulative distributions in figure 4.7, c). Here, the
data is divided into four groups with different jump amplitudes, revealing a trend
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FIGURE 4.7: Exemplary fits obtained by FHMM methods for the current traces a) 2
and b) 5 from figure 4.2. The most likely Markov model is estimated considering
four Markov chains. Gray lines mark the current levels reached by superposition
of the respective Markov chains. c) Distributions of jump frequencies for different
jump heights. Larger jump heights are observed to accompany lower frequencies.
Reproduced with permission from S. Wiefels et al. [194], © 2020 IEEE.
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of decreasing jump frequency with increasing amplitude. Whereas a median of 20
large jumps with AI > 2 pA occurs per second, small jumps with AI < 0.1 pA are
two orders of magnitude more frequent.

The presented evaluation is used in [194] to develop a physics based kinetic Monte
Carlo model explaining the observed current jumps. Here, it is demonstrated that
the four groups of jumps with different amplitude can be assigned to distinct jumps
of oxygen vacancies in the switching oxide. Lateral jumps of oxygen vacancies
(perpendicular to the filament) only have a very small impact on the read current
[194]. These V{, jumps explain the small current jump amplitudes given by the black
line in figure 4.7, c). The higher current jump amplitudes are attributed to vertical
V§ jumps (in filament direction). The KMC model revealed that the location of the
V performing a vertical jump strongly influences the current change. It was found
that jumps of V; across the interface of plug and disc region have the highest impact
on the measured read current [194]. In the same work, these findings are used to
extend the JART VCM v1b compact model [205, 206] by including random jumps of
Vi between plug and disc. It is shown that this jump type alone is sufficient to model
the experimental read current distributions, including the reversion to log-normal
statistics after shaping. This enables to model read noise with low computational
burden for large scale ReRAM arrays which is of high importance for design strategies
and reliability assessment [194].

HfO,

Analogously to the results obtained for ZrO,, the read noise data for the HfO; based
devices given in figure 4.5, are evaluated using FHMM methods. The resulting
distributions of the jump frequency for different jump heights is shown in figure 4.8.
Although the current is given in arbitrary units, the same trend is observed. With
increasing jump amplitude, the probability or frequency decreases. It may be noted
that the sampling rate of this experiment is 1 S/s. Thus, the highest frequency to be
resolved is 1 Hz and the extracted frequencies for different jump heights are on a
significantly higher level than observed for ZrO,. To determine the real frequency of

the occurring current fluctuations, higher sampling rates would be beneficial.

4.3 Interpretation

Regarding the results presented above, it seems likely that the random current
jumps are the origin of the log-normal distribution and responsible for the observed

reversion of the distribution to its intrinsic statistics after shaping. To prove this
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FIGURE 4.8: Results of the FHMM analysis for the HfO, based devices. Plotted are
distributions of jump frequencies for different jump heights, evaluated for the read noise
data from figure 4.5. Larger jump heights are observed to accompany lower frequencies.

assumption a simple model is set up: At first, 5000 virtual cells are initiated with
identical read current of 0.035 a.u. which is approximately equal to the shaped
distribution in figure 4.6, b) (middle). To each cell a random, normally distributed
(c = 0.2, 4 = 0) jump probability is assigned. Here, the absolute value of the ran-
dom parameter is used to avoid negative jump probabilities. Within one standard
deviation, i.e. 68 % of the cells, their jump probability is within the interval [0, 20 %].
Subsequently, 200 test cycles are performed where each cell may change its read
current based on the assigned jump probability by a random factor. The latter is
also drawn from the normal distribution with ¢ = 0.05. This means that 68 % of the
jumps are in the interval [—5 %, +5 %] of the read current before jump. The effect
on the empirically generated read current distribution is demonstrated in figure 4.9.
Starting from a vertical line at the initial read current of 0.035 a.u., the empirical
distribution broadens with each cycle. The relaxed distribution from figure 4.6, b)
is shown as dashed line and matched well by the simple model after approx. 50
cycles. After additional 150 cycles, the distribution approaches the log normal distri-
bution in dotted lines which represents the original experimental distribution over
all cells. Thus, the model proves that random jumps can be the origin of the observed
log-normal statistics. In the following, it will be discussed where these jumps could
originate and which impact the conduction mechanism might have.

Despite comprehensive research, the conduction mechanism of filamentary VCM
ReRAM is still under debate. Considering ionic effects as origin of read noise, e.g.
random jumps of oxygen vacancies in the conductive filament, the electrical conduc-
tion mechanism should play a major role in their effect on the read current. This

also implies that the investigation of read noise might provide another clue of the
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FIGURE 4.9: Empirical simulation of read current jumps. A theoretical distribution

of 5000 cells with identical read current of 0.035 a.u. reverts towards the measured

log-normal distribution via random current jumps. Thus, random jumps are likely to be
the origin of the observed log-normal statistics.

effective conduction mechanism. As discussed in chapter 4.2.1, LRS and HRS are
observed to have different noise characteristics. Firstly, read noise is significantly
more pronounced in the HRS than in the LRS. Secondly, the intrinsic statistics of
the distributions differ. Whereas the LRS follows a normal distribution, the HRS is
characterized by log-normal statistics. As discussed above, these statistics are likely
to result from the occurring random current jumps. If these current jumps originate
from jumps of oxygen vacancies, their different impact on the read current suggests
different conduction mechanisms for LRS and HRS.

Figure 4.10, a) shows exemplary I — V characteristics of the investigated HfO, based
devices. The sweeps are performed on one electroformed cell using a Keithley 2434B
source measure unit with a sweep rate of 0.6 V/s and no applied current compliance.
Instead a series resistance Rg = 3 k(2 is used to limit the cell current during the set
process. Figure 4.10, b) shows the same data plotted versus the actual cell voltage
calculated by subtraction of Rs. According to the universal switching characteristics
reported by Wouters et al. [207], the maximum SET and RESET current should
be approximately equal. The significantly higher SET current in this experiment
contradicts this expectation. A possible explanation might be leakage current along
sneak paths during the SET process.

Nevertheless, from these I — V characteristics the linearity of HRS and LRS can be
determined. Whereas the LRS follows a straight line characterizing it as ohmic con-

ductance, the HRS is observed to be non-linear and bended upwards. In figure 4.10, c)
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FIGURE 4.10: a) 100 I — V sweeps performed on HfO; based cells with a series resistance
of 3 kQ) close to the cell. The black line represents the current median at each voltage.
b) Same data plotted versus the voltage V_,, dropping across the cell by subtracting
the series resistance. c) I — V sweeps with stop voltage below the switching threshold
for different resistance states. The LRS is linear whereas the HRS and an intermediate
state are bended upwards. d) Temperature dependence of the read current at 0.2 V for
different resistance states. The LRS shows a negative slope with increasing T, whereas
the HRS is constant. Intermediate states are too noisy to determine the temperature
impact.
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additional I — V characteristics extracted below the switching threshold are given
for different states. Again, the LRS can be described as linear, ohmic whereas the
HRS is bended upwards. An intermediate state shows the transition between both
characteristics. In conclusion, the different I — V characteristics support the theory

that different conduction mechanisms are present in HRS and LRS.

TABLE 4.1: Characteristics of HRS and LRS and likely conduction mechanism in HfO,
based devices

Characteristic LRS HRS
Statistics Normal distribution | Log-normal distribution
-V Linear Bended upwards
T dependence Negative slope Independent of T
Likely conduction mechanism Metallic Tunneling

Another important aspect to determine the conduction mechanism is the temperature
dependence of the respective state. The sub-threshold sweeps shown in figure 4.10, c)
are therefore repeated at different cell temperatures ranging from room temperature
towards 145 °C. For different states, the read current at 0.2 V is plotted versus the
temperature in figure 4.10, d). The measurement reveals a slightly negative slope
for cells in the LRS which suggests rather metallic behavior. In contrast to this, the
read current in HRS seems to be very stable in this temperature range which could
be attributed to a tunneling mechanism. The read current of intermediate states is
superimposed by significant read noise at elevated temperatures. Therefore, the
temperature dependence cannot be determined in this experiment. As summarized
in table 4.1, the LRS follows normal statistics, shows linear I — V characteristics
and a slightly negative temperature dependence. All in all, this suggests a band
transport of electrons resulting in a rather metallic conduction. Thus, random jumps
of oxygen vacancies only have a low impact on the read current resulting in a narrow
distribution. In contrast to this, the HRS is observed to follow log-normal statistics,
shows non-linear I — V characteristics and no temperature dependence. Although
the investigation of the electrical signals is insufficient to determine the exact con-
duction mechanism (or multiple occuring mechanisms), these observations suggest
some kind of tunneling processes limiting the effective read current. The exponential
dependence of a tunneling process on the respective barrier provides a reasonable
explanation of the log-normal statistics [124]. Considering a normally distributed
tunneling gap induced by the random reconfiguration of oxygen vacancies, the
exponential dependence of the resulting current leads to a log-normal distribution.
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TABLE 4.2: Parameters of the empirical variability model

Parameter ZrO» HfO,
Iy | Fitting parameter 6.00-1072 pA | 6.83-107° a.u.
m* | Electron tunneling mass 9.10938 - 103! kg
@ | Tunneling barrier 075V
V| Read voltage 035V 02V
#q | Gap median 1nm 1nm
oq | Gap standard deviation 30 pm 44.5 pm

4.3.1 Empirical Model

To prove the validity of the assumption that a tunneling current across a randomly
distributed gap is the origin of the log-normal statistics, an empirical model is set up.

Therefore, a tunneling current is defined as

Igmp = Ipexp (—ngaph\/Zm*(ecD - eV)) ’ (4.1)

with the reduced Planck’s constant /i and the elementary charge e. dg.p is the
respective tunneling gap which is drawn from the normal distribution N according
to

dgap ~ N(pa,04)- (4.2)

All parameters used in equations (4.1) and (4.2) are collected in table 4.2. Despite
reasonable values being assigned to the physical parameters, it may be noted that
the model cannot be used to determine an actual tunneling gap length. It just
represents an empirical formalism to emphasize the concept of the read current being
exponentially depending on a normally distributed parameter. Alternatively to a
variation of the gap length, a normal distribution of the tunneling barrier height
could be considered.

Using the presented empirical model, the read current distributions for both the
ZrO; and the HfO; based cells are simulated. Therefore, random gap lengths are
drawn from the normal distribution according to the fit parameters pq and o4 in
table 4.2. The resulting gap distributions are shown in figure 4.11, a) and b) for
ZrO, and HfO;, respectively. The resulting current distributions are calculated using
equation (4.1) and shown in figure 4.11, ¢) and d). Here, the simulated distributions
are compared to experimental data from section 4.2.1. The experimental data in

tigure 4.11, a) corresponds to the relaxed distributions in figure 4.3, a) obtained for
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FIGURE 4.11: Results of the empirical variability model. a) Assumed distribution of the

gap length dg,p according to equation (4.2) for ZrO,. b) Respective distribution for HfO,.

c) Resulting, simulated current distribution for ZrO, in comparison to experimental

read current distributions from figure 4.3. d) Simulated distribution for HfO, compared
to experimental data from figure 4.5.

the ZrO, based cells. It can be seen that the simulated log-normal distribution is in
excellent agreement with the experimental data.

Analogously, the modeled read current distribution in figure 4.11, d) is compared to
the experimental R2R distribution shown in figure 4.5. Again, the empirical model is
in excellent agreement with the experimental data.

In conclusion, the model demonstrates that the observed log-normal statistics can be
explained by the dependency of the read current on a normally distributed parameter.
Considering a normally distributed tunneling gap, the HRS current of both ZrO; and
HfO, based devices are fitted. In chapter 5.2 this model will be extended to predict
the retention characteristics of industrially relevant array scales. In the following
section, statistical simulation methods will be used as an alternative approach to
model the observed statistics.
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4.3.2 Statistical Model

In the previous sections it was demonstrated that random jumps of oxygen vacancies
are likely to cause the random current jumps observed in the read noise character-
istics measured on typical VCM type ReRAM (c.f. figures 4.2, 4.5). To model such
ionic reconfigurations, a spatial resolution of single oxygen vacancies is required
which is not provided by the empirical model presented in the previous section or
the JART VCM compact models [73, 205] mentioned above. In contrast, the KMC
model developed by Abbaspour et al. [3-6], introduced in chapter 2.4 provides
a sophisticated trap assisted tunneling solver for discrete defects within an oxide
volume. This enables to investigate the impact of the reconfiguration of the defects
which contribute to the electrical conductance of the cell.

Using the KMC model, read noise can be simulated by initiating a cell in the desired
resistance state and subsequently simulating a constant voltage stress over a period of
time at a certain temperature. Here, the KMC algorithm will determine and execute
the most likely transition (generation, recombination or diffusion of defects, c.f. chap-
ter 2.4) to occur in each increment of time, resulting in a change of the obtained read
current. According simulations have been reported by Abbaspour in [5]. However,
the KMC simulation induces a high computational burden which strongly limits the
number of cells to simulate in a reasonable time.

To model read current distributions for industrially relevant array sizes compris-
ing read noise, a more time efficient approach is required. Therefore, Kopperberg
adapted the model of Abbaspour et al. [3-6], in order to account for the variability
in large arrays of VCM ReRAM cells. This model discards the implemented KMC
module and only uses the TAT current solver [208]. Furthermore, it is assumed that
the spatial fluctuations of defects occur randomly in a confined volume. A sketch
of the considered model is shown in figure 4.12, a). Within the 5 nm x 5 nm x 5 nm
oxide, a filament volume is defined which is depicted by red edges. Between this
tilament box and the active electrode, a gap region is considered which contains no
defects. As sketched by the simulation flow in figure 4.12, b) each simulated cell
is initiated by placing a defined number of defects on random cites within the red
filament box. Subsequently the Poisson equation (2.5) is solved for the generated
configuration to obtain the respective potential which is then used to calculate the
resulting read current using the TAT solver. After saving current and defect config-
uration, the simulation proceeds to generating the next cell by generating another
random defect configuration [208]. Thus, the random reconfiguration of defects is
modeled by random placement of defects within boundary conditions defined by the
geometries of the filament volume. Since each distribution only has to be evaluated

ones for their read current, a high number of random configurations can be evaluated
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FIGURE 4.12: a) Schematic of the statistical variability model. Defects are placed on

random cites within a defined filament volume with the dimensions xg;, yg and zg.

Between filament and active electrode, a gap region with the length I, is kept without
defects. b) Simulation flow of the static model. Adapted from [208].

within reasonable time [208].

Using this model, read current distributions are calculated for theoretical VCM cells
with different gap lengths lg,p, ranging from 0.75 nm to 3.75 nm. For each value of
lgap, 1000 cells are calculated and the resulting distributions plotted in figure 4.13, a).
It is observed that the data for each gap length follows normal statistics as indicated
by straight lines on a linear current axis. Since each of the simulated cells contains
the exact same number of 20 oxygen vacancies, the different read currents within
the individual distributions derive from different arrangements of the randomly
placed defects. Starting at the largest gap length of /gy = 3.75 nm, a decrease of this
length results in a significant increase of the read current (despite constant number of
defects). This increase can easily be understood by the lowered maximum tunneling
gap between filament region and active electrode. Additionally, a decrease of the gap
length decreases the slope and therefore increases the width of the distribution. This
can be explained by the higher number of possible configurations in the enlarged
filament volume. If the same number of oxygen vacancies is distributed over more
available cites, more different combinations become possible and the difference
between the best and the worst configuration (with respect to high read current)
increases.

In contrast to the experimental data, the simulated distributions do not yet show
log-normal statistics as it was expected for the HRS. The calculated read current
varies with the random configurations of defects, but the model seems to provide
no exponential dependence of the current on the defect configuration. However,
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FIGURE 4.13: Simulated read current distributions using the statistical variability model.

Calculated are read currents for randomly generated defect configurations for different

lengths lg,p, of the gap between filament and active electrode. For each value of lg,p,

1000 cells are simulated, resulting in a normally distributed read current. Log-normal

statistics are observed if the data over all gap lenghts is combined (black line). a) Linear,
b) logarithmic current scale. Adapted from [208].

as discussed before, a variability of the tunneling gap between filament and active
electrode might result in LNS. Thus, the complete data set for varying gap lengths
(0.75 nm - 3.75 nm) is combined to one distribution depicted by the black line in
tigure 4.13, a). By changing the current axis to a logarithmic scale, as shown in
figure 4.13, b), it becomes clear that the combined distribution mostly follows LNS.
At the borders defined by the maximum and minimum of the simulated gap lengths,
the combined distribution deviates from the log-normal shape, due to the confined
boundaries [208].

In conclusion, the statistical model shows that random fluctuations of the locations of
oxygen vacancies may very well explain the read variability observed in read noise
experiments. But, without a variation of the critical gap length, log-normal statistics
can not be reproduced. This again suggests that a variability of the tunneling is the
origin of the observed LNS in the HRS. Due to the exponential dependence of the
read current on this gap length, the statistical model reproduces LNS if the simulation
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takes a variability of this length into account.

The presented statistical model will be extended to model changes of the statistical
parameters during retention experiments in chapter 5.3. Here, also the influence of
the boundary conditions (filament geometry, number of oxygen vacancies) will be

discussed in more detail.

4.4 Conclusion

This chapter demonstrates that read variability is one of the major challenges regard-
ing the reliability of VCM ReRAM, as also reported in [86, 102]. Random current
changes occur on various time scales. Considering large memory arrays, these cur-
rent fluctuations determine the width of the effective read current (or resistance)
distribution. Thus, read variability also limits the achievable read window. Since the
fluctuations occur at any time, shaping algorithms are ineffective. Reprogramming
or discarding cells which exceed a certain threshold, has no lasting effect because the
distribution will relax towards its intrinsic statistics.

Using empirical models, random jumps of individual defects are identified as likely
origin of the observed current fluctuations. Here, a resulting normal distribution of
a read current limiting tunneling gap, seems to be the most probable explanation
for the observed log-normal statistics in the HRS. In contrast, the conductance in
LRS seems to be more metallic and thus the log-normal distribution does not occur.
Statistical simulation methods support the conclusion of ionic movement being the
origin of the read variability. Furthermore, the simulation reproduces LNS only if a

variability of the tunneling gap is taken into account.
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5 Retention

With VCM ReRAM being a promising candidate for future non-volatile memory
applications, the long term stability of the programmed states is one of the key
reliability aspects. Whereas several studies focus on the degradation of typical cells
[36, 103, 130-133], it was already demonstrated that the median of a read distribution
may degrade differently from a distribution tail [36]. This chapter will demonstrate
that the most promising approach to understand and model retention characteristics
is to focus on the whole statistics of the device under test.

The chapter is structured as follows: At first experimental retention results are
presented for ZrO, based devices fabricated at RWTH Aachen and industrial HfO,
based cells. Subsequently, the results are analyzed quantitatively and modeled by
two different approaches: An empirical tunneling model is presented which describes
the retention of the HfO, based cells and allows for extrapolation towards different
temperatures and times. This model is published in [209]. Additionally, a statistical
model is introduced which explains the observed effects and is published in [210].
Finally, the statistical model is extended to a dynamic version which is able to explain
the coexistence of low short term stability (Read Noise) and high long term stability
(Retention) which remains one of greatest open questions regarding VCM ReRAM.

5.1 Experimental Results

In the following, experimental retention results are presented for the two investigated

material systems.

51.1 ZrO,

At first, the long term stability of the standard ZrO, devices is studied. Since typical
retention requirements of 10 years at 85-125 °C [82] cannot be tested directly, retention
experiments are typically performed at elevated temperatures. Therefore, three
groups of cells are programmed to HRS and three groups to LRS. The groups are
programmed on three different dies of the same stack and manufacturing. Here,
each die contains one HRS and one LRS group of at least 200 single cells. All cells
are programmed by initial electroforming, followed by 10 switching cycles. All
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operations are performed by a program-verify approach as explained in chapter 3.3,
with a target read current I ;.4 < 10 pA for RESET and I,e,q > 60 pA for SET. Here,
all programming pulses are triangular with a rise and fall time of 2.5 ms each. The

resulting sweep rate depends on the respective stop voltage which ranges
e from 2.0 V to 4.0 V during forming,
e from 0.6 V to 1.4 V during SET, and
¢ from-1.3 V to-2.0 V during RESET.

All voltages are applied to the Ta top-electrode and the Pt bottom-electrode is con-
nected to ground. It may be noted here, that the typical voltages, where the switching
operation is successful are 3.2 V for forming, 1 V for SET and -1.8 V for RESET.
After programming, all cells are read by a rectangular read pulse with a width of
20 ps at 0.2 V. The resulting read current distributions are depicted in figure 5.1 by
dark blue circles (Omin). As expected from chapter 4, the HRS read current follows
log-normal statistics whereas the LRS read current is normally distributed. Caused
by the program-verify algorithm, the LRS distributions show a bending or limitation
at the SET programming target of 60 nA. Cells with a lower read current received
additional SET pulses which shaped the distribution away from the intrinsic normal
statistics. Regarding the HRS, few cells exceed the RESET target of I,.,q < 10 pA. As
demonstrated in chapter 4, significant random current fluctuations in the HRS lead
to a fast reversion to the intrinsic log-normal statistics.

After the initial read out (Omin), all three dies are baked at 150 °C, 175 °C or 200 °C
and read out after different bake times with largely logarithmic spacing. For each
read the die is removed from the oven and contacted again by the probe card. Here,
the time to cool down from baking temperature to room temperature may distort
the total bake time. Although the effect may be negligible at long bake times, it has
to be considered for short increments (1 min to 10 min). Furthermore, re-contacting
the cells for each read-out may alter the measured state due to mechanical stress
or electrical discharge. In all six groups, some cells were shorted from read to read
which is likely to be caused by contacting issues.

All read distributions are fitted regarding their intrinsic log-normal (HRS) or normal
(LRS) statistics. The fitted distributions are depicted by the solid lines in figure 5.1.
Despite the mentioned issues, a general trend is observed with all dies for both
HRS and LRS. In each case, the median of the distribution shifts towards lower
current with increasing bake time. Whereas this may cause a retention failure of the
LRS, a shift to lower current is beneficial for the HRS. However, additional to the
shifting, all distributions tilt towards higher standard deviation, i.e. broadening of
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FIGURE 5.1: Retention results for Pt / ZrO, / Ta / Pt devices. On three dies one group
of cells is programmed to HRS and one to LRS. Each group contains at least 200 cells.
All cells are read initially (Omin) and after logarithmically increasing time steps at three
different temperatures. a) 150 °C for up to 13 days. b) 175 °C for up to 8 hours. c) 200 °C
for up to 100 minutes. All distributions are fitted for their intrinsic log-normal (HRS)
or normal (LRS) statistics. Data depicted by circles, fits by solid lines. In each case and
for both HRS and LRS the distribution shifts towards lower current and tilts/broadens

towards higher standard deviation.
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FIGURE 5.2: Characteristic parameters of the log-normal (HRS) or normal (LRS) distri-
butions fitted in figure 5.1, normalized regarding the initial read (Omin). a) Degradation
of median y in HRS. Below 1 h of bake time, the trend is disturbed by experimental
artifacts. Later, the degradation is accelerated by increased temperature. b) Degradation
of median in LRS. Negative values of y occur if more than 50 % of cells fall below the
current resolution limit. A negative y cannot be interpreted physically as negative
current median but describes the statistics of the fitted cells at higher percentiles (c.f.
figure 5.1). Significant degradation of the standard deviation ¢ in HRS c) and LRS d) is
identified as main origin of read window closure.

the distribution. Despite decreasing median current in the HRS, the cells at lower
percentiles (often tail-bits) decrease the effective read window between HRS and LRS
due to broadening of the whole distribution. Regarding the LRS, both shift and tilt
are harmful for the read window.

To evaluate these trends quantitatively, the characteristic parameters of the log-
normal (HRS) or normal (LRS) distribution fits are extracted and plotted in figure 5.2.
Here, all parameters are normalized for the initial read (Omin). As stated above, a
general trend of decreasing current median y and increasing standard deviation ¢ is
observed for both HRS and LRS at all tested temperatures. With increasing temper-
ature the degradation of both y and ¢ is accelerated as expected for a temperature
activated process. Only within the first hour of bake time, the trend of the HRS
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current median (figure 5.2, a)) is disturbed. The reason for this might either be the
mentioned contacting issues or the inaccuracy anticipated for shorter bake times.
With degradation of the LRS, the shift and tilt of the distributions leads to an increas-
ing number of cells with very high resistance and thus read currents below the
resolution limit of the read operation. Since these cells cannot continue the normal
statistics of the main distribution but seem to accumulate close to 0 pA, the current
median of the fitted distributions eventually becomes negative, as soon as more than
50 % of cells are accumulated close to 0 pA. This is observed in figure 5.2, b) for 175 °C
and 200 °C. Although negative values of u cannot be physically interpreted as median
of the read current, the parameter still describes the statistics of the sub-population of
cells above the resolution limit. Thus, the percentage of cells which failed a defined
retention criterion may very well be drawn from this fit. Furthermore, the fit of the
higher percentiles still allows to quantify the degradation of the initial read current
distribution. Despite the physically nonsensical median y, the standard deviation o
extracted from this fit provides a measure of the width of the distribution.

In conclusion, the evaluation of the retention by the trend of single cells is ineffective.
The results demonstrate that the degradation of the programmed states directly
affects the intrinsic statistics, i.e. shift of the current median y and tilting / broaden-
ing with increasing standard deviation . In order to develop an extrapolation model
for the retention at operating temperatures, the presented data suggests to focus on
statistics instead of individual cells. This will be utilized in section 5.2. Furthermore,
the broadening of the read current distribution is identified as major problem for a

stable read window.

5.1.2 HfO,

Additional to the presented data for ZrO,, experimental retention data is provided by
Infineon Technologies. The measurements are conducted on industrial ReRAM devices
based on HfO, as switching oxide.

Measurement Procedure

Using a dedicated test setup, the devices are (after initial electroforming) cycled
1000 times. Subsequently, one half of the devices is programmed into LRS, the other
half into HRS. All programming steps are performed at room temperature and a
program-verify algorithm is used, i.e. after each pulse (forming, set or reset) the
device is read and receives additional pulses if necessary. With each step, the pulse
width and height are adjusted to ensure reliable switching with minimal stress to

the device. Each group (LRS and HRS) contains 2.5 M cells. After programming
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the devices are read out initially. To determine the stability of the hereby obtained
read current distribution regarding time and temperature, the sample is exposed
to an elevated temperature (bake) and read out again. This process is repeated at
the same temperature for increasing periods of time. All reads are performed at
room temperature. To extract the impact of time and temperature on the read current
distributions, this procedure is repeated for four different bake temperatures, 150 °C,
175 °C, 215 °C and 260 °C, with an explicit set of 2.5 M devices each. Although the
highest temperature (260 °C) is especially relevant regarding soldering robustness,
the aim is to extract a trend at elevated temperatures and estimate the long term

stability of the devices at the respective maximum operating temperature.

General Observations

Figure 5.3 exemplarily shows read current distributions for a retention experiment at
175 °C. As can be seen from figure 5.3, a), the resulting LRS distributions are observed
to be very stable (not shown), whereas the HRS changes over time at elevated tem-
perature. Therefore, this dissertation focuses on the latter and all further figures in
this chapter will exclude LRS distributions.

The black line in figure 5.3, a) represents the initial HRS read current distribution.
After the sample is exposed to 175 °C for 145 h, the distribution changes in its shape
and seems to develop two sub-distributions. One sub-population shifts to lower and
the other shifts to higher read current. In figure 5.3, b) the same data is plotted on a
logarithmic current scale. Here, the initial distribution as well as the one after bake
are composed of two parts: The linear part follows log-normal statistics as described
in chapter 4. At higher read current the distribution deviates from this behavior and
exhibits a current limiting effect. Although this bending is beneficial for the read
window, it contradicts the observation that the HRS of HfO; (or ZrO,) based ReRAM
intrinsically follows log-normal statistics. An explanation for this phenomenon is
given by the statistical model in chapter 5.3.

With the logarithmic current scale (figure 5.3, b)), the general shape of the distribu-
tion is not altered by baking. Instead of developing sub-populations, the log-normal
distribution after bake is tilted with respect to the initial distribution. Since the
slope of the log-normal distributions is one of its two characteristic parameters (cf.
equation (2.28)), it seems reasonable to interpret the impact of the bake as a change
of the statistical parameters instead of a shift of the current of individual devices or
sub-populations.

To further emphasize this, the devices are read out twice after bake (145 h at 175 °C)
within 6 h at room temperature. As can be seen from figure 5.3, a) and b), the distri-
bution is stable between the first and second read and the lines coincide. Figure 5.3, c)
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log-normal statistics with current limiting effect before and after bake. c) Time lag plot
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I i: Cells exceeding the threshold in read 1 are removed from the data set. The tail
re-evolves in read 2. Partially reproduced with permission from S. Wiefels et al. [209]
and [210], © 2020 IEEE.

shows a lag plot comparing the current of the first and second read. Seemingly in
contrast to the stable distribution, it can be seen that the individual cells change their
state significantly within the two reads without bake in between. As discussed in
chapter 4, it is assumed that the inherent current fluctuations of all individual cells
induce the observed log-normal statistics. Additionally, a data shaping experiment is
conducted by removing all cells from the data set which exceed a certain threshold
current in the first read. The identical cells are then also removed from the data set
of the second read. If all individual cells were stable, the shaped distributions of
the first and second read should still coincide. Figure 5.3, d) shows the result of
this experiment for different threshold currents Iy, ;. As expected from the results
in chapter 4, individual cells are not stable and the removed tail of the distribution

re-evolves until the second read. Again it has to be stated that shaping algorithms
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have a limited effect and the intrinsic statistics have to be considered.

In conclusion, it can be stated that the evaluation of the retention experiment has to be
based on the parameters of the distribution with its underlying log-normal statistics
instead of individual cells. Therefore, the following evaluation of the experimental
retention data will focus on the characteristic parameters y and ¢ of the log-normal
distribution (cf. equation (2.28)).

Quantitative Analysis

In order to perform a quantitative analysis of the degradation, retention experiments
are performed at four different temperatures, ranging from 150 °C to 260 °C. In
each experiment 2.5 M cells are programmed into the HRS. The read current is read
initially and after several periods of baking time. Figure 5.4 shows the resulting read
current distributions. Up to a certain threshold of approx. 0.1 (a.u.) all distributions
are linear on the logarithmic current scale and therefore log-normally distributed.
This part is fitted and evaluated quantitatively in the following. Since the general

shape of the log-normal distribution stays intact, two effects are possible:
(i) Shifting of the median y towards higher or lower current, or
(ii) tilting of the distribution, resulting in a change of the standard deviation c.

The experiments at all four baking temperatures show qualitatively the same trend.
The dominating effect of the bake at each temperature is a tilting (ii) of the distribution
towards higher o. This means that the width of the distribution increases over
time. In each case, the tilt is most pronounced during the first increment of time
ranging from 15 minutes at 260 °C to 1 hour at 175 °C. The tilt is superimposed by a
shift of the median y (i). Here, a shift to lower current is observed within the first
bake. Subsequently the direction of the shift changes resulting in a monotonous
increase of the read current. To gain a quantitative understanding of these trends,
the characteristic parameters y and ¢ are extracted from the linear fit in figure 5.4
and depicted in figure 5.5. As shown in figure 5.5, a) the standard deviation ¢ which
represents the reciprocal slope of the distribution increases strongly in the beginning,
followed by a monotonous increase with decaying derivative. figure 5.5, b) depicts
the course of the median y. As mentioned above, the current initially decreases.
Subsequently p increases monotonously. In order to resolve the trend during the first
hours of bake, figure 5.5, a) and b) only show the first 15 hours.

For both parameters, the choice of an appropriate time scale reveals a clear trend
which may give rise to the underlying physics of the respective process. As can be
seen from figure 5.5, c) the standard deviation ¢ perfectly follows a logarithmic time
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Wiefels et al. [210], © 2020 IEEE.

dependence. As shown in figure 5.5, d) the median y increases linearly with t!/4 if
the initial decrease is excluded. This decrease can not be resolved in the given data
set due to the limited temporal resolution. Though, the linear slopes (versus t!/4)
of u for 175 °C to 260 °C can be extrapolated to a common origin at 0.048 (a.u.), as
depicted by the dashed lines in 5.5, d). This could represent the terminal point of the
initial decrease. However, at 150 °C this extrapolation does not fit, the initial decrease
of the read current is terminated earlier. This indicates that the underlying process is
temperature activated. In combination, it seems that y is affected by two competing
processes. The process dominating initially (1) results in a current decrease, the other
(2)in a current increase (linearly with t!/4). At 150°C the transition point is resolved
at approx. 3 hours. At higher temperatures the transition point is shifted into the
region between the initial read and the read after the first bake. The fact that later
only the second process is observed suggests that the first process is self limiting
at a certain point. This interpretation is supported by the common origin of the

extrapolation lines mentioned above. Due to the limited resolution in the region of
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process (1) the quantitative analysis in this work focuses on process (2).

With respect to the application, the aim in optimizing the retention of a device is
to ensure a sufficiently large read window between the lowest percentiles of the
HRS and LRS distributions. Therefore, the trace of the current close to the read
window during a retention experiment is of particular interest. Thus, the current at
-40 is extracted and depicted in figure 5.6 on two different time scales. Figure 5.6,
a) shows the course of the first four hours of bake time on a linear time scale. The
initial decrease of the current, as it is observed for the median y, is not observed
at this end of the distribution. Instead the HRS current close to the read window
increases monotonously. Here, the steep increase suggests that the current at -4¢
is predominantly affected by the tilt of the distribution during the first hours of
bake time. Later, the superposition of tilt and shift of the distribution determines
the current at -40 as depicted in figure 5.6, b). This indicates that a quantitative

evaluation of the current at -4¢ is challenging. Instead, understanding the trend
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of the characteristic parameters y and ¢ of the log-normal distribution could be
the key in predicting the course of the current close to the read window. Though,
this evaluation of the current at -4 reveals that the tilting (or broadening) of the
log-normal HRS distribution might be the major challenge in ensuring a stable read

window.

Activation Energy

Another widely accepted approach to estimate the retention time at operating tem-
peratures is to extract the activation energy of the thermally activated process which
causes the degradation [82, 145-147]. Assuming that this activation energy is constant
over the temperature range between operating and testing temperatures, the high
temperature degradation can be extrapolated to the lower operating temperatures.
The first challenge of this approach is to reliably determine an activation energy
from the measured quantity. It is questionable whether the activation energy of
a degradation mechanism like (e.g.) diffusion of defects is directly reflected by a
read current or resistance. Furthermore, it is conceivable that multiple processes are
involved in the degradation which cannot be distinguished in the electrical signal.
Figure 5.7 shows different approaches to extract the activation energy from read
current distributions. Here, another data set is used which is obtained analogously
to the data discussed before, but covers five bake temperatures, ranging from 125 °C
to 250 °C. The read current distributions (not shown) are qualitatively identical to
the preceding.

As outlined before, the critical region of the distribution is the current close to the read

window. Thus, figure 5.7, a) depicts the degradation of the current at -4¢ in percent.
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is determined for the standard deviation ¢ in e) and f), which shows the correlation of
tilting and degradation at low percentiles.
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Regarding Arrhenius’ law, lines corresponding to the same activation energy should
be parallel on a logarithmic time scale. Therefore, figure 5.7, a) already suggests
that the degradation follows different activation energies at higher temperatures
compared to 125 °C and 150 °C. To determine the activation energy, the time when
the current at -40 degraded by 10 % or 20 % respectively is read from figure 5.7, a) and
drawn into the Arrhenius plot in b). Here, the data is fitted linearly and the activation
energy is read from the slope of these fits. As mentioned before, different activation
energies can be determined for higher and lower temperature. Thus, two different
fits are applied for 10 % or 20 % degradation each and the activation energies differ
significantly. At higher temperatures the activation energy read at 10 % and 20 %
degradation is comparable, whereas at lower temperatures a difference of more than
1 eV is observed. This shows that the activation energy not only depends on the bake
temperature but may also change over time (from 10 % to 20 % degradation).
Another important factor is the percentile of the distribution for which the activation
energy is extracted. In figure 5.7, c) and d) E, is determined analogously for the
degradation at —2¢. For higher temperatures the activation energy is again compara-
ble to the preceding results but at lower temperatures unrealistic values of E > 4 eV
are determined. This can be explained by the initial decrease of the read current
which is more pronounced at shorter bake times and lower temperatures. The current
decrease is revealed by negative values for the degradation in figure 5.7, c). Thus, it
can be stated that the determination of activation energies via degradation of read
current is affected by

* percentage of degradation (i.e. time)
* percentile of the distribution for which it is extracted.

Additionally, the underlying process may differ between temperature ranges, result-
ing in different activation energies at different bake temperatures. This is a major
drawback if the activation energy is to be used to extrapolate high temperature
retention towards lower operating temperatures.

This dissertation proposes to evaluate retention characteristics regarding the param-
eters of the intrinsic (log-normal) statistics observed in HfO, based ReRAM. As
discussed before, the degradation of the programmed states can be described as tilt
(0) and shift () of the read current distributions. Therefore, activation energies are
determined for the change of the standard deviation ¢ in figure 5.7, e) and f). It can be
seen that the difference between high and low temperature degradation is lower than
observed before. Furthermore, the activation energies evaluated at 60 % and 80 %
degradation are consistent with the high temperature E5 evaluated at —4c and —2c.

This indicates that the tilting of the distribution is the major origin of the current
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bution. (2) is considered to be the diffusion of V; from the filament toward the gap at
the AE. Reproduced with permission from S. Wiefels et al. [210], © 2020 IEEE.

degradation at these percentiles if T > 175 °C. The effect of the distribution shift (y)
is superimposed and is more apparent at lower temperatures. In conclusion, it can be
stated that a reliable assessment of the activation energy for the processes involved
in the HRS degradation is challenging. After all, the evaluation of the characteristic
parameters of the distribution is the more promising approach to determine the
retention at operating temperatures. The extracted activation energies in figure 5.7
are summarized in table 5.1.

TABLE 5.1: Activation energies for different criteria

—40 —20 StDev o
10% | 20% | 10 % | 20 % | 60 % | 80 %
T>175°C | 145 | 257 | 479 | 7.74 | 1.25 | 1.76
T<175°C | 1.79 | 1.71 | 147 | 1.69 | 1.62 | 1.64

EA/eV

Interpretation

To explain the presented effects, the model illustrated by figure 5.8, b) is proposed. It
assumes a cell with a conducting filament (blue) reaching from the ohmic electrode
(OE) to a tunneling gap close to the active electrode (AE). The initial decrease of the
median y (figure 5.5, b)) can be explained by recombination of few remaining V in

the gap close to the AE with oxygen from the active electrode. A lower concentration
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of V; should increase the resistance and thus shift the distribution towards lower
read current. The depletion of V{; close enough to recombine or the depletion of
available oxygen in the active electrode terminates this process labeled as (1) in
figure 5.8. In this model, a second process (2) causes both the tilt of the distribution
and the shift towards higher current, i.e. diffusion of V from the filament region
towards the gap at the active electrode. A further discussion of this model is given in
chapter 5.3.

With the extracted trends of the characteristic parameters of the distributions, it is
possible to estimate log-normal distributions at different times and temperatures
than covered in this study. This means that the derived understanding of the temper-
ature impact on these parameters can be used to extrapolate the measured data to
application temperatures and relevant retention time requirements. Since especially
the current close to the read window is of importance and the observed distributions
deviate from the ideal log-normal statistics at this end, the extrapolation is more
challenging. Therefore, an empirical model which covers both the log-normal part
of the distribution and the bending at higher currents, is developed and will be
presented in the following section. Subsequently, chapter 5.3 will discuss the origin

of the current limiting effect and deliver an explanation.

5.2 Empirical Model

As demonstrated in the previous section, the extraction of activation energies is not
sufficient to estimate reliably if the device under test meets the retention requirements
at operating temperature. Therefore, an alternative approach is presented in the
following. Based on the model depicted by figure 5.8, an empirical tunneling model
is developed and fitted to the experimental read current distributions. The extracted
trend of the characteristic parameters y and ¢ of the log-normal distribution is
subsequently used to simulate read current distributions for different temperatures
and bake times.

To isolate y and ¢ as function of bake time and temperature, and to be able to
extrapolate these parameters to values which are not covered by the experiments,
two steps are required: At first, both parameters are fitted linearly regarding their
respective time scale, i.e. y o t! /4 and o o« In(t), as depicted in figure 5.9, a) and b).
Due to the limited temporal resolution, the initial decrease of y can not be resolved
and has to be excluded from the empirical model. The fit in figure 5.9, a) thus only
considers data points after this shift. These fits give y and ¢ as function of the
bake time, but only for the four distinct temperatures covered in the experiment.
To determine the general trend regarding the bake temperature, the slopes of the
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fits in figure 5.9, a) and b) are extracted and plotted versus the respective bake
temperature in figure 5.9, c). This plot depicts the rate of change of y and ¢ as
function of the temperature. Another linear fit is added and results in the required
correlation of y and ¢ with time and temperature. This enables the estimation of the
characteristic parameters for bake times and temperatures which are not covered by
the experimentally obtained data. The limits of the potential to extrapolate will be

discussed later.

5.2.1 Model V1

With the obtained correlation of 1 and ¢ with ¢t and T, the next step is to establish a
procedure which translates these parameters into a read current distribution. Here, it
is particularly challenging to match the bending or current limited regime. Based on

the model in figure 5.8, a tunneling current across a gap is considered. Analogously
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TABLE 5.2: Parameters of the empirical tunneling current

Iy | Fitting parameter 6.7751-107° a.u.
m* | Electron tunneling mass | 9.10938 - 10~3! kg
@ | Tunneling barrier 0.75V
V| Read voltage 02V
A | Fitting parameter 1.1757 - 107 m
B | Fitting parameter 6.2945 - 10~ m

to chapter 4.3.1, this current Igy,, can be expressed by

Igmp = loexp (—Zdh\/Zm*(eCD — eV)) , (5.1)

with the reduced Planck ‘s constant /7 and the elementary charge e. The other param-
eters used in the equation are collected in table 5.2. The key variable in equation (5.1)
is the length of the tunneling gap d. With the exponential dependence of Igmp on d, a
log-normal distribution is generated by a normally distributed tunneling gap d. This

can be written as
d =dy+ Ad - ngnp, (5.2)

with the median gap length dy and a standard normally distributed random variable
nsnp multiplied by the standard deviation Ad. By resolving equation (5.1) for d = dy,
the median gap can be directly calculated from the median current Igyp = p:

__In(lo) —In(p)
"7 2 2m (e® —eV) 53)

The parameter Ad is fitted to the standard deviation of the current, via
Ad =A-o+B. (5.4)

The fitting parameters A and B are given in table 5.2.

With this formulation and dy and Ad fitted to the experimentally determined y and o,
the log-normal part of the read current distributions can be modeled. To generate a
distribution of 2.5 M devices, the same amount of random numbers are drawn from
the standard normal distribution and transferred into 2.5 M normally distributed
tunneling gap values, using equation (5.2). With equation (5.1) this results in 2.5 M
log-normally distributed read current values.

To introduce the observed current limiting effect, a minimum value of the gap length d
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figure 5.9). Reproduced with permission from S. Wiefels et al. [209], © 2020 IEEE.

is introduced as dmin, extending equation (5.2) to

d= dO +Ad - NSND = Amin.

(5.5)

Thus, during the generation of the gap distribution, all values of d < dpn are dis-

carded and generated again. If this minimal gap dmin is set to a fixed value the

resulting current distribution would follow log-normal statistics until the respective

current value for dpyin, and then be cut off sharply instead of the observed bend-

ing when approaching the current limit. Therefore, dp, is chosen to be normally

distributed as well, reading

dmin =

(dmin,O + Ad) + Admin - NSND/

(5.6)
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with its median (dmino + Ad) and standard deviation Adpyn. It is found that dmin o
and Adpnin can be interpreted as fitting parameters and kept constant. This means
that the minimum gap dpin only depends on Ad which is directly correlated to ¢ after
equation (5.4). Thus, the empirical distribution only has the two parameters y and o
to fit the experimental distribution, including the limitation effect. With the extracted
trend of these parameters shown above, empirical distributions can be generated as
shown in figure 5.10. Plotted is the experimental data in circles and the simulated
distributions as solid lines in the colors of the corresponding experimental bake times.
Since the initial shift is not covered by the model, the read distribution after the
first bake (blue) is evaluated regarding p and . Based on their determined trend
regarding time and temperature, y and ¢ are calculated for the following bake times
at the respective temperature and fed into the empirical tunneling model resulting in
the presented distributions. It can be seen that the simulated distributions are in very
good agreement with the experimental data. Additionally,  and ¢ are calculated
for significantly longer bake times and translated into read current distributions
for theoretical 1 year, 5 years and 10 years at the respective temperature. These
extrapolated distributions are represented by dashed lines in figure 5.10. This allows
for an estimation of the complete distribution, and in particular the read window at
the end of the required retention time.

In figure 5.10, simulated read current distributions are only given for bake temper-
atures which are covered by the set of experimental data. Though, the aim of the
empirical model is to estimate the retention characteristics of the device under test
for operating temperatures. In order to do this, the rate of change of ;1 and ¢ can be
calculated for the desired temperature using the fits in figure 5.9, c). The same data is
plotted again in figure 5.11 to emphasize a challenge deriving from the extrapolation
of these fits. If the desired temperature lies within the tested temperature range
(solid lines, 150 °C to 260 °C), the calculated rate of change has a high probability
to be correct. Considering the desired lower bake temperatures, it is not proven
that the estimated trend will continue. Regarding the rate of change of the standard
deviation (blue), the extrapolation towards room temperature (25 °C) is plausible.
But for the median y, the rate of change becomes negative below 100 °C. This is
generally possible and could be connected to the initial current decrease observed
after programming. Though, at some point this trend has to become implausible:
Considering very low temperatures, the current distribution would be supposed to
accelerate towards lower current, although temperature activated processes as diffu-
sion of defects should be inhibited. Therefore, and due to the limited experimental
data, an alternative extrapolation is suggested. Below 150 °C the rate of change is

considered to follow a straight line towards the absolute lower limit of 0 K. Thus, the
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FIGURE 5.11: Rate of change of y and ¢, extracted from experimental data. Linear

extrapolations towards room temperature are added in dashed lines. The extrapolated

rate for y becomes negative at approx. 100 °C. An alternative extrapolation towards 0 K
is given by dotted line.

resulting values for operating temperatures between room temperature and 150 °C
are supposedly estimated higher than in reality. But, to ensure a certain read window
after the required retention time, this gives a more reliable estimation. Resulting
extrapolations for the retention at room temperature are calculated using an updated
version (V2) of the empirical model which will be presented in the following section.

5.2.2 Model V2

It was demonstrated above that the empirical model is well suited to describe the
retention of the industrial HfO, VCM devices. However, it relies on the calculation of
normally distributed random variables which becomes a huge computational burden
if large sets of devices are to be simulated. To extrapolate the critical current at very
low percentiles (e.g. —60 &= 1 GBit) an analytical formalism of the model is required.
The measured HRS distributions for the retention experiment at 175 °C are plotted
again in figure 5.12 (circles). It can be clearly seen that the distributions are comprised
by two linear slopes connected by a bending at approx. 0.12 (a.u.). The decreasing
line y; describes the discussed log-normal part of the distribution and is therefore

determined by

1 .
N=xg" (d2 — do), with (5.7)

dy € [7,11] - 10~ Pm. (5.8)

Equal to model V1, the parameters Ad and d are extracted from the experimental
distributions via equations (5.3) and (5.4). The second line y; is found to follow the
equation

Y2 = C- (d2 - dmin,z + Ad), (5.9)
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FIGURE 5.12: Experimental retention data for 175 °C (circles). The log-normal part of

the distribution is modeled by y;. The current limiting regime is modeled by y». The

combination of y; and y» yields the simulated distributions y3;. Exemplary extrapola-
tions towards 1 yr, 5 yrs and 10 yrs are depicted by dashed lines.

TABLE 5.3: Additional parameters of the model V2

C Fitting parameter | 9.0909 - 1019 m~!

dminp | Fitting parameter | 9.13- 10719 m

with the fitting parameters C and dpin 2, given in table 5.3. Consistently with model
V1, the shape of the distribution in the current limiting regime only depends on Ad,
representing the reciprocal slope of the main, log-normal part.

The actual distribution y3 is constructed by the combination of y; and y; via

y3 = —In(exp(—y1) +exp(—y2)). (5.10)

As shown in figure 5.12, the simulated line y3 matches the experimental data very
well. The computational burden is reduced by several orders of magnitude by using
equations (5.7)-(5.10) instead of the massive generation of random numbers.

Finally, the empirical model (V2) is used to calculate read current distributions for
the degradation at lower temperatures to estimate the retention characteristics at
operating temperatures. Since the empirical model does not cover the initial current
decrease, the starting point of this extrapolations must be a distribution measured
after the initial decrease. As depicted by blue circles in figure 5.13, the experimental
distribution after 1 hour at 175 °C is evaluated regarding the characteristic param-
eters of the log-normal distribution # and . Subsequently, these parameters are
extrapolated using the rates of change obtained by figure 5.11. Here, the extrapolation
towards -273.15 °C (0 K, dotted line) is chosen for the rate of change of y as discussed
in the previous section. The extrapolated distributions are calculated for 0 °C, 25 °C,
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FIGURE 5.13: Simulated read current distributions for the extrapolated retention char-
acteristics at a) 0 °C, b) 25 °C, ¢) 50 °C, d) 85 °C. In each case, the experimental data
for 1 hour at 175 °C (after initial decrease) is shown in circles, evaluated regarding u
and o, and used as starting point of the extrapolation. The straight lines depict the the
components y; and y; of the modeled distribution (c.f. fig. 5.12, eq. (5.7), (5.9)).

50 °C and 85 °C to cover a wide range of possible operating temperatures and shown
in figure 5.13. At the lowest temperature calculated (fig. 5.13, a)), the distribution is
extremely stable. Although the rate of change of y is estimated higher than expected
(extrapolation towards 0 K), the shift in y is close to zero, even after 10 years, as can
be seen from the current at Oc. For lower percentiles, close to the read window, a
slight increase of the read current is observed which can be attributed to tilting of
the distribution, i.e. the increase in ¢. For 25 °C and 50 °C in figure 5.13, b) and c)
the shift of the current median is still negligible. It can be seen that the increase in ¢
rises with temperature, directly impacting the critical current region close to the read
window. This trend continues with the simulation for 85 °C in figure 5.13, d). Here,
a slight impact on the current median is observed which superimposes the current
change at low percentiles. Though, the tilting of the distribution still seems to be the
predominant factor regarding the degradation of the read window. On the one hand,
this is beneficial for the empirical model. With the discussed doubts regarding the
extrapolation of the rate of change in y, the fact that y hardly impacts the retention
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characteristics significantly increases the trustworthiness of the model. On the other
hand, it shows that the major challenge in optimizing the retention of a material
under test is to reduce the width of the distribution and to suppress its broadening
(increase in ¢) as far as possible.

All in all, it can be stated that the empirical model is very well suited to fit the experi-
mental read current distributions, as well as the observed retention characteristics.
With the presented extrapolations of the characteristic parameters u and o, the model
allows to estimate the degradation of a distribution (excluding the initial current
decrease), for the required retention time at the given operating temperature.

The advantage of the second version of the empirical model is the massive reduction
of the computational burden. This enables to estimate the most critical current at
very low percentiles (close to the read window) for various times and temperatures.
In figure 5.14, a) the simulated trend of the current at -5¢ is shown for the measured
temperatures 150 °C, 175 °C, 215 °C and 260 °C. In each case, the starting point is
the read after the first bake, i.e. after the initial decrease of the read current. The
model gives a clear trend of the critical current, increasing linearly on a logarithmic
time scale. With the corresponding current at the lower end of the LRS distribution
(not shown), the read window can be directly estimated for any retention time. fig-
ure 5.14, b) shows the trend of the standard deviation ¢ for the simulated distribution
underlying the values in a). The comparison underlines again that the change in ¢ is
the primary origin of the current change at low percentiles.

Using the empirical model, the extrapolation of the critical current is extended to
various temperatures ranging from 0 °C to 250 °C in figure 5.14, c). Here, the initial
value for all calculations is drawn from the retention experiment at 175 °C. Again,
the current of the first read after the initial current decrease is chosen (i.e. the initial
current of the yellow line in figure 5.14, a)). Using the analytical version (V2) of the
empirical model, numerous distributions are simulated in the presented temperature
range and for retention times up to 20 years. Analogously, the current at even lower
percentiles can be calculated to account for even larger memory arrays. figure 5.14,
d) shows the simulated trend of the current at -60 which would represent the worst
bit in approx. 1 GBit. Thus, the empirical model provides a simple and (computa-
tionally) cost-effective way to estimate the retention of very large ReRAM arrays.
As discussed above (c.f. section 5.1.2), the determination of an activation energy for
the occurring degradation processes is challenging. Multiple underlying processes
and also intrinsic statistics of ReRAM devices impede reliable extrapolations with
this method. The presented empirical tunneling model represents an alternative
approach, accounting for the whole current distribution with its underlying statistics.

By extrapolating the trends of the characteristic parameters of the intrinsic log-normal
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calculated for various temperatures from 0 °C to 250 °C. d) Trend of the current at -6
analogously. e) Colorbar for the temperatures in ¢) and d).

statistics, reasonable estimations even for the weakest cell in a large array can be
made.

It may be noted that despite physically reasonable parameters are chosen, the pre-
sented model only gives an empirical description of the read current. To approach a
physical understanding of the underlying processes a statistical retention model is
presented in the following section.

5.3 Statistical Model

As demonstrated in the previous chapters, the internal statistics of VCM ReRAM
devices are one of their most important characteristics and a key challenge for the
reliability of large sets of cells. Therefore, a statistics based simulation model is
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developed which is presented and discussed in chapter 4.3.2. In the following, this
model is extended to a retention model using two different approaches. On the
one hand, the static model, presented in chapter 4.3.2, is exploited by changing the
boundary conditions of the filament to simulate degradation effects. On the other
hand, a dynamic model is derived which also includes the KMC algorithm. Here,
the division of the cell into regions exhibiting different activation energies for the
ion migration (diffusion) will explain the parallel occurrence of variability and high

temperature (or long time) degradation [208].

5.3.1 Static Model

In chapter 5.1.1 and 5.1.2 the degradation effects on a log-normal read current distri-

bution are identified as
(i) shifting of the current median y, and
(i) tilting (i.e. broadening) characterized by a change of the standard deviation c.

As a first approach to explain the observed retention characteristics, the static vari-
ability model (c.f. chapter 4.3.2) is exploited as a retention model. As discussed
before, the general concept of the variability model is a random configuration of
defects within a filamentary region (“box”). It is demonstrated in chapter 4.3.2 that
experimentally observed normal and log-normal read current distributions can be
modeled by assembling the read current of a respective number of configurations,
generated by random placement of defects within the right boundary conditions.
These boundary conditions can be summarized as

¢ geometric measures of the filament, and
* the number of vacancies per filament.

Because the general statistics (i.e. the shape) of the read current distributions stay
intact during retention experiments, the static variability model is able to describe the
initial state as well as the degraded state after any of the presented bake experiments.
If the general concept of random defect configurations still applies, it is standing to
reason that the boundary conditions must have changed during bake. Therefore,
variations of the boundary conditions are considered as degradation mechanisms
and characterized for their impact on the read current distribution.

The investigated variations, summarized in figure 5.15, are
(a) increasing width of the filament, i.e. increasing filament area,

(b) increasing length of the filament, i.e. decreasing gap at the active electrode, and



86 Chapter 5. Retention

(c) decreasing number of defects via exchange with the electrodes.

Process (a) and (b) cover the change of the filament geometry. It is generally con-
sidered that the filament contains a higher number of defects than its surrounding.
The resulting concentration gradient determines the expected change of the filament
box. Therefore, in both cases, the assumed direction of change is the one towards
increasing filament volume.

Process (c) represents the change of the defect concentration. Here, the number
of defects can either decrease by recombination of oxygen vacancies with oxygen
from one of the electrodes or increase by generation of vacancies at the electrodes.
A generation of oxygen vacancies as anti-Frenkel pairs in the bulk is reported to
be extremely unlikely [182]. The expected direction of process (c) depends on the
chemical properties of the respective oxide and electrode metal. As introduced in
chapter 2.2.3 and discussed in chapter 6, the ZrO, /Ta stack should exhibit a high
defect formation energy. Therefore, it is assumed that the industrial HfO, cells as
well comprise a defect formation energy sufficiently high to prevent a spontaneous
generation of oxygen vacancies. Thus, a decrease of the number of defects is consid-
ered more likely as degradation mechanism than the opposite [208].

At first, the influence of an increasing filament area (process (a)) is investigated. Fol-
lowing the simulation flow in figure 4.12 b), read current distributions are generated
with 30 defects, placed randomly into the filament volume. As explained before,
each defect configuration is represented by one current value in the distribution.
To simulate a large set of VCM cells, 1000 random configurations are generated for
each current distribution. To achieve log-normal distributions, the gap length is
set randomly within 0.75 nm and 2.75 nm. It may be noted that the impact of the

AE AE AE

OE OE OE
(a) (b) (c)

FIGURE 5.15: Schematic of the degradation effects applied to the boundary conditions
of the static variability model. (a) Broadening of the filament, i.e. increase of the filament
area Ag. (b) Increase of the filament length, i.e. decrease of the gap Iy, between gap
and active electrode (AE). (c) Decrease of the number of defects via recombination of
oxygen vacancies with AE or ohmic electrode (OE). Adapted from [208].
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individual gap length is not resolved in this simulation, but will be investigated later.
Here, a certain distribution of gap lengths over all simulated cells is achieved which
helps to accomplish log-normal statistics. Within the simulated distributions, the
base Ag of the filament is varied. Figure 5.16, a) shows exemplary configurations
drawn from the simulation model with filament areas of (2.5 - 2.5) nm?, (3 - 3) nm?
and (4 - 4) nm?. The resulting read current distributions are shown in figure 5.16, b)
with a linear current scale. Similar to the experimental results shown in figure 5.3, a)
the simulated data seems to develop two sub distributions. This effect is especially
pronounced with smaller filament areas. Analogously to the experimental data, the
simulated distributions are plotted on a logarithmic current scale in figure 5.16, c).
This reveals on the one hand the expected log-normal statistics. On the other hand,
the simulated distributions show the same current limiting effect as observed with
the experimental results. Figure 5.16, e) reprints the experimental retention data for
a 175 °C bake from figure 5.4, b). Regardless of the variation of the filament area, it
can be seen that the simulated distributions are qualitatively in very good agreement
with the experimental data.

Furthermore, the statistical simulation gives a possible explanation for the observed
current limiting effect: As explained, the log-normal statistics are achieved by ran-
dom defect configurations (and additional variation of the gap length) within given
boundaries. At the same time, these boundaries limit the number of possible defect
configurations. Thus, at some point, the “optimal” configuration (w.r.t. high read
current) must be reached and therefore, the log-normal trend cannot continue end-
lessly. Depending on the total number of possible configurations, determined by
the boundary conditions, the bending of the distributions occurs at higher or lower
percentiles. This is observed in figure 5.16, c). With decreasing filament volume, a
higher number of cells is affected by the current limit. It may be noted that the current
value of this limiting effect might suggest the opposite trend: The cells with greater
volume seem to exhibit a lower current limit. But, with trap assisted tunneling as
conduction mechanism, a lower current is generally expected for broader filaments.
This is explained by the higher mean distance between individual defects resulting
in lower transition probabilities. The absolute limit of the read current should be
independent of the outer boundaries of the filament area because the configuration
with the highest conduction is expected to be a very densely packed chain of defects.
However, the larger filament volume provides more possible configurations so that a
lower percentage of cells will be close to the absolute current limit.

Equivalent to the analysis of the experimental retention data in chapter 5.1.2, the
characteristic parameters y and ¢ are extracted from the log-normal part of the sim-

ulated distributions and depicted in figure 5.16, d) and f). It can be seen that u as



88 Chapter 5. Retention

a)
5,
4
£ 34
N2
14
0!
0
c)
J 3.
2.
o 1f
= of
A 25x25
Cp |——30x30
35x3.0
21 40x4.0
i \ | 3k ——45x45
0.02 0.04 0.06 0.08 0.10 0.12 0.01 0.02 0.05
Current I/ pA Current 7/ pA
2
1
[ o
0.04 : : :
f) 5 10 15 20 —-1f
Filament area 4, / nm? 5-2 N
0.70 : : " O initial 145h S
< -3§j—— 1 ——305h
3 0.60t ] 15h20m —— 538h T
S -4 60h
0.50 : ; & Sk : : e
5 10 15 20 0.04 0.06 0.08 0.1 0.12 0.16
Filament area 4 / nm? Current 7/ pA

FIGURE 5.16: Statistical simulation with variation of the filament are Ag;. To achieve
log-normal statistics, the gap length Ig,, is set randomly between 0.75 nm and 2.75 nm.
Ayg is varied between distributions but constant for all cells within one distribution. a)
Exemplary defect configurations for filament areas of (2.5 - 2.5) nm?, (3 - 3) nm? and
(4-4) nm?. b) Resulting read current distributions for different Ag; on linear current
scale. c) The logarithmic current scale reveals log-normal statistics as highlighted
by dashed lines, as well as the experimentally observed current limiting effect at the
right hand side. d) Characteristic parameters y and ¢ from the log-normal fit in c).
Both parameters decrease with increasing Ag;. e) Measured distributions for a bake
experiment at 175 °C for comparison. Partially reproduced with permission from S.
Wiefels et al. [210], © 2020 IEEE.
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well as o decrease significantly with increasing filament area. As mentioned above,
a decrease of the current median is expected because of the higher mean distance
between the defects, resulting in a lower TAT current. Compared to the measured
trend of y during bake experiments, a significant decrease only fits to the trend
during the first hour of bake. Here, an initial current decrease was observed followed
by monotonously increasing current median. Therefore a broadening of the filament
comes into account as explanation of the initial current decrease. But, considering
that this process seems to be self limiting and is followed by the opposite trend, a
broadening of the filament becomes unlikely. If the width of the filament increases
due to lateral diffusion of defects, there should be no reason for this process to be
limited, unless the outer boundaries of the cell are reached.

Regarding the trend of the standard deviation o, the simulated decrease contradicts
the expectations. A greater filament volume should result in a higher number of
possible configurations and therefore a broader distribution. The deviation from the
expected trend might be explained by the strong influence of the current limiting
effect. In the simulated distributions, the bending starts around the current median
(0c). Compared to the measurement, where the bending is initiated at approx. -1.5¢,
the standard deviation will be much more affected by the bending in the simulation.
Though, this first simulation with the static version of the statistical retention model
provides read current distributions in good agreement with the presented experi-
ments. This includes the log-normal statistics, as well as the current limiting effect.
The general concept of the statistical model furthermore explains this effect by the
limited number of possible random defect configurations.

Due to the discussed problems of this simulation in extracting the trend of y and ¢
regarding a broadening of the filament, a second approach is presented in figure 5.17.
Here, the length of the filament is kept constant at lgap = 2.75 nm. The number of
defects is reduced to 20 and the filament area is varied between (1.5 - 1.5) nm? and
(4.5 -4.5) nm?. The resulting read current distributions are shown in figure 5.17,
a). As expected with a constant gap, the data is normally distributed. Due to the
reduced number of vacancies the overall current is lower and the current limiting
effect is not observed. Again, the characteristic parameters are extracted and plotted
in figure 5.17, b). The median y of the read current follows the same decreasing trend
as observed before, which can again be attributed to the higher mean distance of
the defects in a larger volume. In contrast to the usual terminology of this work,
the standard deviation ¢ in figure 5.17, b) represents the standard deviation of the
linear data (usually the standard deviation of the logarithmic current is intended),
because it describes the reciprocal slope of the normal distribution. In contrast to the

previous simulation, ¢ exhibits no decreasing trend. Proceeding from the smallest
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FIGURE 5.17: a) Simulated read current distributions for 20 defects and a fixed gap
length of lgop = 2.75 nm. Distributions are simulated for varying filament area, ranging
from (1.5 -1.5) nm? to (4.5 - 4.5) nm?. b) Characteristic parameters extracted from the
distributions. p decreases with Ag; as expected. No clear trend can be determined for ¢.
Note that ¢ here is the standard deviation of the normal distribution (i.e. linear current).

area, it seems that ¢ rather increases with Ag;. Though, no clear trend can be deter-
mined. This means that a broadening of the filament does not provide a substantial
explanation for the experimentally observed retention characteristics.

Secondly, the impact of a defect diffusion towards the active electrode, resulting
in a reduced gap length Iy, is investigated. The simulation setup is illustrated by
exemplary defect configurations in figure 5.18, a). Here, the base of the filament is
kept constant at Ag = (2-2) nm? and 30 defects are placed randomly in the filament
volume. The length of the gap is varied between 0.75 nm and 3.75 nm. The resulting
read current distributions are shown in figure 5.18, b). Because the gap length is
constant within each individual distribution, the lines are linear on the linear current
scale, indicating normally distributed read current. With decreasing tunneling gap, a
clear trend is observed. As expected, the distributions shift strongly towards higher
current, if the tunneling gap is reduced. Additionally, they tilt towards broader
distributions and higher standard deviation ¢.

However, at low values of [g5p < 1.25 nm the impact of the gap length on the read
current seems to perish. This phenomenon might be explained by two aspects. On
the one hand, the higher mean distance between defects with increasing filament
volume could come into account as competing mechanism to the smaller tunneling
gap. On the other hand, the tunneling process at the active electrode is affected by
the Fermi distribution of the respective electrode metal. If the defect is too close to
the electrode, there might be less free states in the electrode (or vice versa less free
electrons) resulting in a reduced tunneling probability. Further simulations with the
statistic model revealed that the latter is more probable as origin of this saturation.
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FIGURE 5.18: Static simulation for 30 defects with variation of the gap length lg,,. a)
Exemplary configurations of defects with decreasing gap. b) Normally distributed read
current distributions. A decreasing gap results in increased read current and tilting
of the distribution towards higher ¢. Note that ¢ here is the standard deviation of the
normal distribution, accounting for linear current. The combined distribution for all
gaps is given by the dashed line. c) data from b) on logarithmic current scale, revealing
log-normal statistics (LNS) for the combined distribution. d) and e) Extracted trend of u
and ¢. Both parameters increase with decreasing gap. At 1.25 nm the trend saturates to
a plateau. Partially reproduced with permission from S. Wiefels et al. [210], © 2020 IEEE.
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Furthermore, the normal distributions with different gaps are combined to the dashed
line, representing a distribution with equally distributed tunneling gaps. On the loga-
rithmic scale in figure 5.18, c) the main part of the combined distribution is observed
to be log-normally distributed. At both ends of this distribution a bending or current
limiting effect is observed. Here, the line approaches the normal distribution with
the largest or smallest gap respectively. This underlines that the boundaries of the
simulated system (here the borders of the gap) limit the intrinsic log-normal statistics.
Again, the characteristic parameters of the distributions are plotted versus the tun-
neling gap in figure 5.18, d) and e). As explained, the median increases exponentially
with reduction of the gap until the discussed limit at 1.25 nm is reached. At the same
time, the standard deviation ¢ of the normal distributions (linear current) increases
as well. At very small gaps o also approaches a plateau. Compared to the experi-
mental results, these trends fit very well the dominating degradation effects, being
the increase in y and o over time (excluding the initial decrease in y). Therefore, the
diffusion of defects from the filament region towards the active electrode, resulting
in a reduced gap, is considered as very likely mechanism of the high temperature or
long term degradation.

To extend the understanding of this mechanism, the simulation is repeated with a
significantly increased number of defects. Figure 5.19, a) illustrates random config-
urations of 200 defects with variation of the gap. It can be seen in the first frame
of figure 5.19, a) that this high number of defects is very densely packed for large
gaps. This leads to a very small number of possible configurations which results
in a very steep read current distribution as observed in figure 5.19, b). Here, the
same trend is observed for the normal distributions for different gaps, i.e. an increase
of current and standard deviation with decreasing tunneling gap. The combined
distribution is analogously given as dashed line. In comparison to the previous result,
this combined set approaches a normal distribution as it is typically observed in LRS.
Considering the higher number of defects and higher overall read current this transi-
tion towards normal statistics is very consistent with the experimentally observed
transition from HRS to LRS. Though, the presented distribution with varying gaps is
still considered a log-normal distribution as shown in figure 5.19, c). Furthermore, the
combined distribution exhibits more discrete steps between the underlying normal
distributions. This accounts for the fewer possible configurations due to the high
number of defects in the filament volume.

The extracted trends of y and ¢ are again shown in figure 5.19, d) and e). Despite
the significantly increased number of defects, the trend is equal to the previous
simulation, including the plateau below 1.25 nm. Thus, it can be concluded that

a decrease of the tunneling gap is very likely to be the mechanism underlying the



5.3. Statistical Model

Gap

—3.25
—2.75
2.25|7
1.75
—1.25
—0.75| 1
——=—All

0 05 1 15 2 25 0.1 05 1 2 5
Current / / pA Current // pA

1 1.5 2 2.5 3 0 1 1.5 2 2.5 3
Gap length lGap / nm Gap length lGap / nm
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resulting in few possible configurations. d) and e) Extracted trend of y and ¢. Both
parameters increase with decreasing gap. At 1.25 nm the trend saturates to a plateau.
Partially reproduced with permission from S. Wiefels et al. [210], © 2020 IEEE.
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FIGURE 5.20: Static simulation for varying numbers of defects in a (2.5 - 2.5) nm? filament
with a height of 2.25 nm. a) Exemplary configurations for 300, 150 and 50 defects. b)
Normally distributed read current distributions. A decreasing defect concentration
significantly decreases the read current. c) Extracted trend of y and ¢. u increases
quadratically with the number of defects. o exhibits a maximum at 300 nm. Note that o
here is the standard deviation of the normal distribution, accounting for linear current.

experimentally observed degradation at high temperatures and long bake times.
The last aspect, investigated with the static version of the statistical model is a
variation of the defect concentration. Figure 5.20, a) shows exemplary defect configu-
rations with a number of defects decreasing from 300 to 50. The outer boundaries
of the filament are kept constant. The resulting read current distributions are given
in figure 5.20, b). As expected, the read current is strongly affected by the defect
concentration. A decrease in the number of defects shifts the distributions to signifi-
cantly lower current. As usual, the characteristic parameters y and ¢ are extracted
and displayed in figure 5.20, c). Regarding the current median, the square-root of u
is plotted which reveals a rather linear slope. Thus, y increases quadratically with
the number of defects in the filament volume.

The standard deviation ¢ is observed to have a maximum at 300 defects and from
there decreases in both directions. In the statistical model ¢ is determined by the
amount of possible (different) configurations of defects. With the given geometry, the
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trend of ¢ indicates that the maximum number of configurations is apparent with
300 defects. If the number is increased, the decreasing number of available locations
for defects lowers the number of possible configurations. Vice versa, a reduced
number of defects results in less defects to contribute to the random configuration.
The trade-off of these competing events determines the observed maximum.

It was discussed above that a decrease of the number of defects is considered as
degradation mechanism rather than an increase. Regarding the experimental trends,
the reduction of the defect concentration could explain the observed increase of o,
if the actual number of defects and the filament geometries are in the respective
region. Though, the impact of Nf; on ¢ is comparatively low, considering the wide
range of simulated concentrations. Nevertheless, u is found to decrease significantly
with decreasing Ng;. This contradicts the measured long term trend of the retention
experiments but could be an explanation for the short term current decrease after
programming. Here, a limiting factor could be the depletion of oxygen in the elec-
trodes which is required for the recombination of oxygen vacancies. Alternatively, the
number of oxygen vacancies close enough to the respective electrode to recombine
could act as limiting factor.

In conclusion, the experimentally observed degradation (c.f. chapter 5.1.2) might
be explained as follows: Initially, few oxygen vacancies recombine with oxygen of
one of the electrodes until one of the mentioned limiting factors applies. As a result,
the read current initially decreases. Subsequently, the diffusion of defects from the
tilament region towards the active electrode, resulting in a reduction of the gap,
causes both long term degradation effects, i.e.

* monotonously increasing median y, and
e tilting or broadeing of the distribution towards higher c.

A reduced read current due to loss of oxygen vacancies is also considered in literature
as typical origin of high temperature degradation [130]. Furthermore, increasing
current due to diffusion of oxygen vacancies towards a depleted (gap) region has
been reported [132]. This dissertation combines both approaches. Furthermore, the
applied focus on statistics reveals a broadening of the distribution which is explained
by the second process as well.

As discussed above, a broadening of the filament (increasing Ag;) seems to play no
significant role for the retention of the tested devices. Besides the simulated trends of
u and o for the variation of Ag) do not fit the experimental trends, it can be stated that
the other two simulated processes (i.e. recombination of V) and decrease of tunneling
gap) are sufficient to explain the measured retention characteristics. Additionally,

the simulated trends are collected in table 5.4. All in all, this dissertation emphasizes
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TABLE 5.4: Conclusion of the simulated degradation effects (c.f. figure 5.15). For each
observed degradation effect, the possible underlying processes are listed

ut| ui ot |od
(b) | (@), (c) | (b), (c) | (0)

to evaluate retention data regarding their statistics and therefore to analyze read
current distributions for the characteristic parameters of their underlying statistics.
The overview in table 5.4 should provide an orientation in the identification of the
degradation processes underlying any observed retention characteristics.

As presented above, the model is able to reproduce the experimental results very
well and provides a certain guidance towards finding the origin of the long term
degradation. Though, the presented static version of the statistical model is limited
to the manual variation of the boundary conditions for the generation of random
defect configurations. In the following section, the model is extended to a dynamical
version by inclusion of the KMC algorithm to confirm the degradation mechanisms

predicted using the static model.

5.3.2 Dynamic Model

One of the greatest open questions regarding VCM ReRAM is the discrepancy
between the high long-term stability (Retention) of the programmed state and the
low short-term stability (Read Noise). Whereas ReRAM is justifiably considered
non-volatile and exhibits room temperature stability up to 10 years, the state varies
significantly on a millisecond scale as discussed in chapter 4. If both underlying pro-
cesses are due to diffusion of oxygen vacancies (random walk) then it is to question
why such different time scales are observed.

To answer this question and to confirm the findings of the static model, the latter
is extended by including the KMC algorithm. The general concept is to investigate
the dynamic diffusion of defects within regions of different activation energies. Fig-
ure 5.21 shows the schematic of the resulting dynamic model. In figure 5.21, a) the
geometries are sketched. The cell used in the static model is now divided into three

regions with distinct activation energies, i.e.
(i) afilament region (red) with very low activation energy of E5 = 0.7 eV,
(ii) a gap region (blue) with medium activation energy of Eo = 1.0 eV, and

(iii) the surrounding oxide with a high activation energy of E5 = 1.5eV.



5.3. Statistical Model 97

2) b)
t =0 [ Generate defect distribution |
[]E=15ev []E=07eV .

[l E =10eV [ Solve Poisson equation |

“+ Potential
¥
Solve TAT equations

| > Current

[Solve heat flow equation|

| » Local temperature
¥
KMC:
Calculate transition rates
Select and execute process
(Diffusion/Generation/Recombination)

@ End

FIGURE 5.21: Schematic of the dynamic (KMC) version of the statistical model. a) Sketch
of the underlying geometries. The cell is divided into 3 regions with different activation
energies for defect diffusion. Within the filament (red), defects may diffuse easily with
a low activation energy. Towards the gap region (blue) higher energy is required. The
highest activation energy is implemented for the surrounding oxide (black). The cell is
initialized with 50 defects placed randomly in the red filament region. Over time, some
defects diffuse into the blue gap region. b) Flow Chart of the dynamic simulation.

7z / nm

Thus, defects may diffuse easily within the filament volume. At higher temperatures
or longer bake times, the defects may also diffuse into region (ii), resulting effectively
in a reduced tunneling gap. The least favorable region for defect diffusion is the
surrounding oxide (iii) which should constrain the majority of defects to region
(i) and (ii). The activation energy for the generation of oxygen vacancies is set to
2.8 eV. Respectively, the activation energy for their recombination is 1.5 eV. With the
lower activation energies for the diffusion of defects within region (i) and (ii), these
processes should be favored over generation and recombination.

The simulation flow is shown in figure 5.21, b). Att = 0 an initial defect distribution
is generated regarding the generation rules used in the static model. Thus, 50 defects
are placed on random sites within the filament volume (red, (i)). Analogously to the
static model, the potential is calculated by solving the Poisson equation (2.5). The TAT
equations (2.7)-(2.10) are solved to obtain the current for each defect. Additionally,
the local temperature is calculated via the heat flow equation (2.15). Subsequently,
the KMC module is used to determine the transition rates for all defects and possible
processes (i.e. Diffusion, Generation or Recombination) based on the temperature
of the system. According to the calculated transition rates, one process is executed.
It may be noted that in this simulation no external voltage is applied to the cell to
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FIGURE 5.22: Results of the dynamic retention model. Simulations are performed

at various temperatures from 300 K to 600 K a) Relative degradation (i.e. Current

divided by initial current) reveals comparatively linear slopes on double logarithmic

axises, superimposed by significant fluctuations due to random defect diffusion. The

degradation time is extracted for 50 %, 100 % and 200 % current increase and added to

the Arrhenius plot in b). The resulting activation energies range from 0.96 eV to 0.99 eV,
corresponding to diffusion in region (ii).

simulate the degradation during a bake experiment analogously to the experimental
data. Except the generation of the initial defect configuration, all steps are repeated
until a defined simulation time fmax is reached. After each KMC step, the state of
the cell is read out by applying 0.2 V with deactivated KMC module, equal to the
static simulation. Thus, the state can be determined without having to account for an
influence of the applied voltage to the retention.

The described simulation is executed for several temperatures ranging from 300 K
to 600 K. The corresponding current traces are plotted on double logarithmic axes
in figure 5.22. Additionally, the current is divided by the initial current to gain the
relative degradation of the state. As expected, the temperature has an extensive
impact on the time scale of the degradation. From 300 K to 600 K the time scale
decreases by approx. 8 orders of magnitude. Besides, the traces are superimposed by
comparatively large random fluctuations resulting from the random movement of
defects in the system. Though, the slopes are rather linear on the double logarithmic
scale and approx. parallel, suggesting a common activation energy.

To identify the mechanism which causes the degradation, the activation energy is
determined from the degradation plots in figure 5.22, a). Therefore, the degradation
time is extracted at 50 %, 100 % and 200 % current increase and added to the Arrhe-
nius plot in figure 5.22, b). It can be seen that, despite the strong current fluctuations,
the degradation times are in very good agreement with the Arrhenius fit. Here, the
deviation from the fit line is most pronounced for the highest degradation of 200 %.
This is reasonable with respect to the large current fluctuation in this range, observed
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in figure 5.22, a).

The activation energies determined from the slopes of the Arrhenius fits are given
in 5.22, b) and range from 0.96 eV to 0.99 eV. Since these values are very close to the
programmed 1.0 eV in the gap region (ii), diffusion of defects into and in this region
is identified as the limiting factor of the observed degradation effect. Whereas the
diffusion of defects in the filament region, favored due to the low activation energy;,
may contribute to the superimposed current fluctuations, the degradation is clearly
caused by defects which diffuse into the gap region and thus decrease the effective
tunneling gap towards the active electrode. This is congruent with the findings
obtained by the static model and therefore confirms the diffusion of defects from a
limited filament region towards the active electrode as likely origin of the increas-
ing current median y during bake experiments. Additionally, the random current
fluctuations in the dynamic model seem to increase with time which would result
in a broader current distribution which could explain the tilting of the distributions
towards higher standard deviation ¢ during bake experiments.

Finally, the dynamic model is used to study the coexistence of high long term stability
(retention) and low short term stability (read variability, noise). Therefore, the simula-
tion discussed above is repeated with 75 defects and for three different temperatures.
The system is tested at a very low operating temperature of 250 K, room temperature
(300 K) and a typical bake temperature of 500 K. The activation energies are equal
to the ones used before (c.f. figure 5.21, a) for all regions but the blue gap region. It
was found that a higher difference between the activation energies of filament and
gap region is required to account for the mentioned discrepancy of the time scales
for retention and noise. Therefore, the activation energy of the blue region (ii) is
increased to 1.2 eV. The resulting current traces are plotted on the same time scale in
figure 5.23, a). The plot reveals three significantly different behaviors: At the lowest
temperature (250 K) the random current fluctuations are suppressed to large extend.
This means, the diffusion of defects is frozen in and no ionic noise is observed. At
room temperature the model produces current fluctuations between rather discrete
levels as observed in typical noise experiments (c.f. section 4.2.1). Though, the current
median seems to be stable on the presented time scale. This is in excellent agreement
with experimental read noise. At the highest simulated temperature (500 K), the
current fluctuations increase significantly and, most importantly, the current median
drifts towards higher current, as observed during the bake in retention experiments.
Thus, the presented dynamic model is able to explain consistently the coexistence of
high retention time and room temperature instability.

Figure 5.23, b) shows two exemplary defect configurations corresponding to the

orange current trace for 500 K in figure 5.23, a). Att = 0 ps all defects remain in
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FIGURE 5.23: The dynamic model combines read variability and retention. a) Cur-
rent traces simulated with 75 defects for low temperature (250 K), room temperature
(300 K) and bake temperature (500 K). At 250 K current fluctuations are suppressed.
At 300 K typical read noise with constant current median is observed. At 500 K the
current median drifts additional to random current fluctuations. b) Exemplary defect
configurations produced by the simulation for 0 ps and 0.63 s at 500 K. It becomes
clear that diffusion of defects into the blue gap region causes the current increase.

the confined, red filament volume. This results in the low initial read current. After
0.63 ps several defects moved into the blue gap region. This lowers the effective
tunneling gap towards the active electrode and results in an increased read current,
as observed for the orange current trace at ¢t = 0.63 ps. This confirms the conclusion
that a diffusion of defects towards the active electrode is the origin of the high tem-
perature or long term degradation, limiting the retention time.

It may be remarked that the time scale in this simulation is comparatively small.
Comparing figure 5.23, a) to the noise characteristics in figure 4.5, the frequency of the
simulated room temperature noise (green) is approx. 8 orders of magnitude higher.
The deviation of the simulation to realistic time scales is even larger regarding the
orange, high temperature simulation. Retention times of several hours at 500 K (c.f.
tigure 5.4) are far above the time frame of 1 ps. However, at a given temperature,
the time scale is directly determined by the programmed activation energies. Thus,
the model could be adjusted to realistic times by increasing the activation energies
of the respective regions. Yet, the determination of the real activation energies for
all processes is challenging and requires comprehensive measurements of noise and
degradation at several time scales and temperatures. The latter should cover high

bake temperatures, room temperature and especially deep temperatures to determine
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the activation energy of the room temperature instability. Simultaneously, the evalu-
ated time scale should cover high frequency fluctuations (ns to s) as well as typical
retention times of hours to days. Since, this data is not available in the frame of this
dissertation, the activation energies of the dynamic model are not tuned toward most
likely real values.

Another aspect is the temporal resolution which scales with the time scale. Regarding
more realistic activation energies, the simulation could not resolve both room tem-
perature instability and high retention. If the model was tuned to exhibit retention
times of several hours at 500 K, the time increments would be far too large to resolve
room temperature noise.

Hence, the parameters are chosen to present the general concept of multiple activa-
tion energies for the diffusion of defects in VCM cells. As presented, using regions
characterized by different activation energies, the model is able to consistently cover
both high retention and high read variability. With a comprehensive data set, the
model could be used to estimate the activation energies of the underlying processes.
Despite the model providing consistent results, it should be discussed why those
regions of different activation energies should occur in a VCM cell. Independently of
this model, it is not yet fully understood why defects should remain in the vicinity of
a conducting filament. The high concentration of defects in this region should pro-
vide a driving force for a radial diffusion of defects until the defects are distributed
equally in the cell volume. Considering reasonable activation energies for the diffu-
sion of oxygen vacancies in HfO,, the actual retention should be significantly worse
due to this effect. Nevertheless, the defects seem to stay in a confined filamentary
region. Therefore, it seems reasonable to assume different activation energies for the
diffusion inside the filament (red) and in or into the surrounding oxide (black). A
possible explanation for this difference might derive from the electroforming process.
The initial generation of the conductive filament is characterized by extremely high
local current and temperature at the moment of dielectric breakdown [11]. It is
conceivable that these conditions yield a local change of the crystal structure [211]
resulting in different conditions for the diffusion of oxygen vacancies in the filament
and the surrounding oxide.

However, this does not account for the difference between the red filament region
and the blue gap region. A promising approach was published by Schie et al. [212]:
Molecular dynamics simulations revealed sub-diffusive behavior in amorphous HfO,.
Using KMC methods this could be attributed to nanoscale confinement of the migrat-
ing defects. According to the study, it seems likely that the switching oxide is divided
into several regions characterized by high ion mobility which are confined by higher

diffusion barriers. The dynamic model discussed in this dissertation, represents a
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strongly simplified implementation of the approach suggested by Schie et al. [212]. It
is demonstrated that the concept is suited to model the coexistence of high retention
and high room temperature instability. Further studies should refine the model by
introduction of an extended number of high-mobility regions separated by higher
barriers. In conclusion, this might be a promising approach to comprehensively
understand both read variability and retention.

5.3.3 Consistency with Empirical Model

In the preceding sections, two different approaches to model the experimental reten-
tion characteristics are presented. On the one hand, the empirical model utilizes
tunneling via a normally distributed gap (with limited minimal gap) to fit the mea-
sured read current distributions. On the other hand, the statistical TAT model relies
on spatially resolved random configurations of defects. By adding a variability to
the length of the gap lgap, log-normal statistics are achieved. For comparison, fig-
ure 5.24 gives typical results of the statistical model in a) and the empirical model in
b). As shown in figure 5.24, b) the results of the empirical model are in very good
agreement with the experimental data. The model matches the log-normal, as well
as the current limited regime. Figure 5.24, a) depicts read current distributions for
different gap lengths g5, simulated using the statistical TAT model. As discussed
above, log-normal statistics are achieved by the combination these distributions,
which results in a combined distribution with varying gap. At both ends of this dis-
tribution, determined by the borders of the simulated gap interval (i.e. 0.75 nm and
3.75 nm), the log-normal statistics are discontinued. Here, the combined distribution
approaches the respective normal distribution of the corresponding gap (0.75 nm or
3.75 nm). This results in a similar current limited regime as observed experimentally.
Though, this limitation is comparatively sharp due to the hard limit of the minimal
or maximal gap length [ggp.

Although both modeling approaches utilize a variation of the gap length, the sta-
tistical model is by design limited to a spatial resolution of 0.5 nm. Therefore, the
variation of lg,p, is characterized by rather discrete steps. Despite the fact that the
model is able to reproduce log-normal statistics, a finer variation of the gap would be
beneficial for a comparison of empirical and statistical model. The limited resolution
of the statistical model is well motivated by reduction of the simulation time and the
desired limitation of the defect density (c.f. chapter 4.3.2). Though, filament / gap
(or plug / disc) structures in a real, amorphous material are expected to be much less
discrete. Consequently, the simulated data in figure 5.24, a) is extended by interpola-
tion of the gap length to 0.01 nm increments. This is achieved by interpolating the
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FIGURE 5.24: Comparison of empirical and statistical model. a) Exemplary results of
the statistical model with variation of the gap length Ig,,. The combined distribution
(dashed) exhibits log-normal statistics and sharp limitations at both ends. b) Exemplary
measured retention results for a bake at 175 °C, fitted by empirical model V1. c)-g) Exten-
sion of the statistical model by interpolating for finer increments of the gap length, with
c) equally distributed lgap, d) normally distributed lg,p,. €) Read current distributions
with equal gap distribution. The combined distribution (dashed) is smoothed compared
to b), but still sharp limitations at the borders (0.75 nm to 3.75 nm) are observed. f)
Analogous to e) with normally distributed gap. No bending at low current end is
observed. A gradual current limit is observed for small gaps due to the reversing trend
of p for lgap < 1.25 nm. The results show that a normally distributed gap explains the
experimental observations convincingly and connects both model approaches.
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extracted trends of y and ¢ of the individual normal distributions (c.f. figure 5.18,
d) and e)) and generating additional normal distributions for the desired [g,p, with
0.01 nm increments.

The resulting distributions are shown in figure 5.24, e). The respective gap length can
be identified by the color code in figure 5.24, g). Analogous to the originally simulated
distributions in figure 5.24, a) the current median increases exponentially with reduc-
tion of lgap until approx. 1.75 nm. In the red range of distributions (lgap < 1.25 nm)
the trend is reversed. The reason for this might be either the higher mean distance
between defects or the Fermi distribution of the electrode metal, as mentioned above.
Additional to the finer increments of the gap length, the number of cells is increased
to account for statistics in the range of the measured industrial cells.

Again, the linear distributions for different gap lengths are combined to one distribu-
tion depicted by the dashed, black line in figure 5.24, e). As expected, the curve is
smoothed compared to figure 5.24, a). Though, the current limiting regimes at both
ends of the distribution are still comparatively sharp.

The major difference here to the empirical model is that the gap lengths in the com-
bined distribution are effectively drawn from a uniform distribution as depicted in
tigure 5.24, c). For each calculated normal distribution, 3000 cells are considered.
Since the empirical model is based on normally distributed tunneling gaps, this
concept is carried over to the statistical model. As shown in figure 5.24, d), normal
distributions are generated for the same gap length with 0.01 nm increment as before,
but the number of cells for each gap is adjusted to fit a normal distribution. Conse-
quently, 5000 cells are considered for the median gap at 2.25 nm, with a decreasing
number of cells in both directions of the gap length. The resulting read current distri-
butions are shown in figure 5.24, f), with the corresponding color code in g). Here,
the length of the individual lines corresponds with the number of cells included.
Therefore, the field of normal distributions becomes thinner when the lower current
limit is approached. On the opposite side this effect is not as clearly visible. This
is due to the mentioned reversion of the trend for gaps below 1.25 nm. Thus, on
the right side of the field, several lines lay on top of each other. Though, it can be
seen that the dark red lines are shorter than the yellow section. As a consequence,
the combined distribution (dashed black) is not symmetrical at both ends of the
current spectrum anymore. With the right choice of a gap distribution, the bending
of the distribution at low current can be suppressed. Thus, the sharp current limit
due to the former discrete maximum of the gap interval is not visible. At high read
currents, a bending is still observed which is now significantly more gradual, as
observed experimentally. Here, the limitation due to the sharp lower gap limit is

also prevented by the normally distributed gap lengths. Instead, the bending of the
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combined distribution can be attributed to the inverting trend of the read current
with decreasing gap.

This means that the former manually induced limits are replaced by a current limit
originating from the physics of the statistical TAT model. It is remarkable that the
symmetrical gap distribution results in an asymmetrical read current distribution.
All in all, this allows for two major conclusions:

Firstly, with the inclusion of normally distributed gaps, the results of the statistical
model come even closer to the experimental observations. The model intrinsically
explains the current limiting effect (bending) of the distribution at high read currents,
without manually introducing borders.

Secondly, the general concept of a normally distributed gap is suited very well to
account for the observed log-normal statistics. Even though the two presented mod-
els are substantially different, both are based on statistics and a variation of the gap
length. If a normally distributed gap is also considered in the statistical model, the
results of both models are largely consistent and in respectable agreement with the

experimental data.

5.4 Conclusion

In this chapter, experimental retention results were presented for the HRS of two dif-
ferent VCM systems. Regarding ZrO,, the high temperature degradation is character-
ized primarily by tilting (i.e. broadening) of the cumulative read current distribution.
Compared to the academical ZrO; cells, the industrial HfO, based devices provide
a significantly higher number of cells. This enabled a comprehensive analysis of
the statistical aspects of the investigated retention. It was demonstrated that the
degradation of the HRS is composed of tilting and shifting of the log-normal distribu-
tions. Therefore, the characteristic parameters y and o were evaluated quantitatively.
Whereas y initially decreases and subsequently increases with advancing bake time,
o increases monotonously and was observed to be the most critical factor regarding
the retention of the read window. With broadening of the underlying distribution
being the limiting factor of the retention time, it can be stated that the investigation
of single cell retention is ineffective. Instead, the intrinsic statistics should be charac-
terized.

The increased statistics of the industrial devices furthermore revealed a bending of
the distribution at higher read current. This limiting effect could be attributed to the
internal statistics. For given boundary conditions, there will be an optimal defect
configuration, which results in the highest achievable read current.

Furthermore, two model approaches were presented: Firstly, an empirical model was
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developed which enables to simulate read current distributions in excellent agree-
ment with the experimental data. Additionally, it allows to extrapolate the measured
retention characteristics toward operating temperatures and technically relevant
retention times (e.g. 10 years at room temperature). Due to the low computational
burden, these simulations can be extended to extremely low percentiles to determine
the retention of the read window for very large memory arrays.

Secondly, a statistical model was presented which grants a deeper understanding of
the processes underlying the observed degradation processes. Thus, the diffusion
of defects from a confined filamentary region toward a tunneling gap at the active
electrode could be identified as likely origin of both tilt and shift of the measured
read current distributions during bake. The model also reproduced and explained
the bending of the distribution at high current. Additionally, the dynamic version of
the statistical model provided a first approach towards a model which consistently
describes the long term stability (retention) and short term instability of VCM cells,

despite their extremely different time (or temperature) scales.
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6 Endurance

After variability and retention, the last key contributor to the reliability of ReRAM
devices is the endurance or maximum number of possible SET / RESET cycles until
device failure. This failure occurs either as RESET failure if the device becomes stuck
in LRS or as SET failure if the device becomes stuck in HRS. Often the occurrence of
one of these failures is caused by unbalanced programming conditions. If the SET
process is too strong, the RESET may fail at some point or vice versa. It is therefore
crucial to find the right programming parameters for the device under test. Based on
the endurance scheme, introduced in chapter 3.3.3, an algorithm is developed in this
work in order to maximize the endurance of the ZrO, based devices which will be
presented in section 6.1.

However, even with ideal SET and RESET parameters, the endurance is observed
to be limited and an irreversible (hard) endurance failure may occur. This hard
tailure does usually not appear as SET failure because deep HRS states can mostly
be recovered by a stronger SET or even another forming operation. Instead, the
end of life normally results from a very low LRS resistance causing a RESET failure.
Stronger RESET conditions may then be futile, either because the voltage mainly
drops over any series resistance or because the thermal stress due to high current
becomes too high.

Guo et al. suggest that the final RESET failure is caused by continuous generation of
excessive oxygen vacancies during cycling [7]. To what extend this happens, depends
on the respective energy barrier, also called defect formation energy (DFE). Therefore,
as explained in chapter 2.2.3, it is proposed to select material combinations with a
high DFE in order to prevent RESET failures and thus ensure long endurance. The
simulated findings of Guo et al. [7] are experimentally verified in section 6.2.

The results in this chapter are published in Transactions on Electron Devices [213].

6.1 Developed Endurance Algorithm

A first approach for an endurance algorithm for the ZrO, based devices investigated
in this work was developed by Hiittemann [93]. The algorithm was based on the
endurance scheme in figure 3.6. After every nedes = 500 cycles, the HRS and
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LRS were evaluated. In case of endurance failure, different rescue operations were
performed to recover operation of the device. This algorithm was observed to be very
successful for devices which intrinsically showed good endurance characteristics.
Moreover, the algorithm allowed a comparatively fast endurance assessment due to
the high number (500) of cycles per pulse sequence [93]. However, this algorithm
proved to be rather inappropriate for devices with weaker endurance characteristics.

Thus, an improved algorithm was developed which is presented in the following.

6.1.1 Algorithm Details

In general, the concept of the endurance algorithm is to find the best programming
conditions for each device. Furthermore, the endurance characteristics of each device
are monitored over the applied switching cycles. Therefore, the SET and RESET
parameters can be adjusted if the cycling characteristics change or the states drift
towards too deep HRS or LRS. Here, a trade-off arises between time efficiency and
the frequency of verify operations [160]. Whereas a high number of verify reads
increases the chance of successful error correction, the measurement speed scales
with the number of cycles which can be performed in pulse sequence. Thus, an
algorithm is developed which dynamically adjusts the number of cycles per sequence
to the success rate of the device under test, inspired by the work of Meng et al. [160].
Figure 6.1 provides an overview of the developed endurance algorithm. After
electroforming, the SET voltage Vsgt, the RESET voltage Vrgsgr and the number of
cycles per pulse sequence Neycles are initialized to Vggr = 0.5V, VRgsgr = —05V
and ncycles = 0. The initial voltages are kept intentionally low to allow the algorithm
to find successful switching voltages with the lowest possible stress to the device.
Neycles Will be increased once appropriate cycling parameters are determined.

As a first step, a SET with Vggr is applied and the resulting cell resistance Ry gs is read
out and evaluated. If the resistance is above a threshold of 3 k(2, Vsgr is increased by
0.1 V and the SET is repeated. This loop is executed until the criterion Rirs < 3 k()
is met. After a successful SET, the algorithm decreases the SET voltage again by 0.1 V
if no increase of Vsgr was necessary. This prevents the algorithm from continuously
increasing the switching voltages over time and allows to find successful parameters
with the lowest possible stress to the cell.

Then, the algorithm proceeds to the RESET process. Analogous to the SET operation,
a RESET is performed and the resulting resistance Rygs is compared to the target
of 8 k(). Each time the RESET fails, the absolute of Vrgsgr is increased by 0.1 V. In
case of successful RESET without voltage increase, |Vrgsgr| is decreased by 0.1 V. If
the SET or RESET fails although Vsgr or VRgsgr is increased to a defined maximum
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FIGURE 6.1: Flowchart of the developed endurance algorithm. In the upper part,

appropriate switching parameters are determined for the tested cell. If SET or RESET

fails, the respective voltage is increased. In case of successful switching, a voltage

decrease is considered. In the lower part, the endurance scheme is executed. Here, the

number of cycles per pulse sequence is increased each time the previous sequence was

successful. This allows for frequent voltage adjustments if the cycling is unstable and
fast endurance assessment in case of reliable switching. Adapted from [213].
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of = 4 V, the current number of cycles is saved as endurance and the algorithm is
terminated.

After one successful cycle of SET and RESET, the algorithm checks if both processes
succeeded without voltage increase. If not, the previous steps are repeated until
appropriate parameters are established. Afterwards, 71¢ycles is increased by 50 (up to a
maximum of 500) and the endurance scheme introduced in chapter 3.3 and figure 3.6
is executed. This means that nyes full cycles with the previously determined
parameters Vsgr and Vggsgr are performed. Within the last cycle of this scheme,
Rirs and Rygs are read out and evaluated. If the ratio Ryrs/ Rirs exceeds the target
of 3, the endurance operation is considered successful. In this case, the algorithm
increases the number of cycles nyqes per operation by 50 (up to a maximum of
500 due to the memory limitations of the tester) and repeats the endurance scheme.
Additionally, a maximum number of cycles is defined at which the algorithm is
terminated regardless of cycling success. It may be noted that the target read window
of Ryrs/Rirs > 3 is comparatively small. Aiming for a larger read window will
presumably reduce the maximum endurance [164].

In the case that Rpyrs/Rirs > 3 becomes false, the algorithm resets 71¢ycles to 0 and
jumps back to the single cycles with voltage adjustments. Thus, the algorithm is able
to adjust the switching parameters if the endurance sequence fails. The frequency of
these adjustments is tuned by 7yces. The more stable the switching characteristics
are, the more cycles per endurance sequence are executed. The algorithm therefore
allows for both high measurement speed and frequent voltage adjustments if needed.

6.1.2 Results

The algorithm presented in the previous section is applied to the standard (30 nm Pt
/ 5nm ZrO, / 20 nm Ta / 30 nm Pt) cross-bar devices investigated in this work (c.f.
chapter 3.1). Exemplary results are depicted by figure 6.2. A statistical evaluation
of the endurance is presented later in section 6.2. Figure 6.2 shows the endurance
of three individual cells. Each plot shows the measured HRS and LRS resistances
versus cycle count in the upper panel. The graph below shows the applied switching
voltages Vsgr and Vygsgr at the respective cycle.

In general, it shows that a cell endurance of 10° to 107 can be achieved in the inves-
tigated material system using the presented algorithm. In more detail, it can be
stated that the endurance characteristics are comprised by very stable regions and
more unstable regions where the algorithm has to adjust the switching parameters
frequently to prevent early endurance failures. In figure 6.2, a) the switching char-
acteristics appear slightly unstable in the beginning. Using static programming
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FIGURE 6.2: Exemplary endurance results for three cells of the standard (30 nm Pt/5 nm

ZrO, /20 nm Ta/30 nm Pt) cross-bar structure. In each part, the upper plot shows HRS

and LRS resistance versus the cycle number. Below, the voltage applied by the algorithm

at the respective cycle is shown. Irreversible RESET failure occurs after a) 7.3 - 10° cycles

and b) 5.1 - 10° cycles. No terminal failure is observed in c). The measurement is

terminated at the maximum cycle number. Partially reproduced with permission from
S. Wiefels et al. [213], © 2021 IEEE.
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conditions, endurance failure would have occurred several times within the first few
hundred cycles and in the range of one to three million cycles. Thus, the algorithm
prolonged the life of the tested cell significantly. After approx. 3 - 10° cycles, the
cycling characteristics become extremely stable. Here, Vsgr and VRgser can be kept
constant and 71¢yles i automatically increased to its maximum of 500 cycles per pulse
sequence. At approx. 7.3 - 10° cycles the cell becomes stuck in a comparably low
ohmic LRS state and the RESET fails despite increased Vgrgsgr. This denotes the final
endurance failure and end of life of the tested cell.

In contrast to the cell in figure 6.2, a), a second cell shown in figure figure 6.2, b)
never reached a sustained stable state. Instead, Ryrs and Ry rs fluctuate significantly
from cycle to cycle causing several reversible (soft) endurance failures. Nevertheless,
the algorithm managed to keep this rather unstable cell alive for up to 5 - 10° cycles.
Again, a final RESET failure left the cell stuck in LRS and terminated the endurance.
Figure 6.2, c) shows one of the best cells, tested in this work, with respect to endurance.
Here, the characteristics are notably similar to the first cell in figure 6.2, a). Within the
first 3 - 10° cycles, several soft endurance failures occur which have to be corrected by
the algorithm. Afterwards, Ryrs and Ry rs accumulate in very stable bands resulting
in a cell endurance of more than 2 - 107 cycles. Finally, the defined maximum cycle
number was reached and the measurement terminated although the cell was still
operating successfully.

All in all, the presented endurance measurements show very typical characteristics
for the investigated ZrO,/Ta material system. In most cases the cycling is initially
rather unstable and early endurance failures are likely. Therefore, an algorithm as
the one presented in this work is especially useful to correct early failures and to find
switching parameters which enable sustained stable switching.

The combination of initially unstable switching followed by a more reliable regime
is also reported for industrial ReRAM devices [214]. Panasonic developed different
endurance schemes ranging from a relaxation technique [215] without verify, over a
conventional program-verify approach [216] to a hard verify with significant dis-
tribution shaping [214]. Although the latter causes significant stress to the cycled
device, the best endurance is achieved if this hard verify is applied during the first
1000 cycles followed by the relaxation technique [215] without any verify.

The algorithm in this work is initiated with low voltages and tries to find the lowest
possible biasing conditions which allow successful switching. This contradicts the
approach with initially 1000 hard verify cycles by Panasonic [214]. In the further
development of the endurance algorithm, stronger SET and RESET pulses within the

tirst cycles should therefore be taken into account.



6.2. Influence of the Ohmic Electrode 113

6.2 Influence of the Ohmic Electrode

In addition to the presented endurance results for the standard (30 nm Pt / 5 nm
71Oy / 20 nm Ta / 30 nm Pt) cells, devices with exchanged ohmic electrode are tested.
According to the simulations by Guo et al. [7], the likely-hood of irreversible RESET
failures is determined by the ohmic electrode metal as discussed in chapter 2.2.3. The
RESET failure is believed to be caused by excessive generation of oxygen vacancies
during cycling [7]. Thus, a high energy barrier or defect formation energy (DFE)
is desirable for high endurance. It is therefore expected that ohmic electrode met-
als with lower oxygen chemical potential result in a higher DFE and hence higher
endurance [7].

To verify the theoretical findings of Guo et al. [7], the endurance experiments are
extended to cells with Hf, Zr or Ti replacing Ta as ohmic electrode metal. The expected
trend of the DFE and thus endurance is Hf < Zr < Ti < Ta.

In order to obtain comparable endurance data, two different approaches can be con-
sidered. Either the programming conditions are equal for all cells or the parameters
have to be optimized for each material system separately. The straight forward
approach with equal parameters seems to produce the most comparable results.
However, this would mean that Vgt and VRgsgr are optimized for one stack. A
worse endurance for the other stacks could therefore be due to imbalanced program-
ming conditions. Hence, it becomes impossible to determine which material system
is ideal with respect to endurance.

Thus, the second approach is used in this work. By determining the ideal program-
ming conditions for each stack, the best possible endurance for each material system
is obtained. Thus, the maximum endurance for each stack can be compared to find
the best material system. Here, the developed algorithm plays a significant role since
it is designed to find the optimal programming parameters for each tested cell.
Prior to the statistical evaluation of the endurance, exemplary endurance results for
the devices with Hf, Zr or Ti as ohmic electrode metals are presented in figure 6.3.
Analogous to the previous results for the standard ZrO, /Ta devices, the HRS and
LRS resistances are shown in the upper panel and the respective SET and RESET
voltages in the plot below. Figure 6.3, a) shows typical endurance characteristics
for a cell with Hf as ohmic electrode metal. As expected according to Guo et al. [7]
the maximum number of cycles is significantly lower compared to the Ta devices.
Several soft endurance failures occurred which could be corrected by the algorithm.
After approx. 38,000 cycles the endurance is terminated by a very low resistive LRS
state resulting in permanent RESET failure.

Similar results are obtained for cells with Zr as ohmic electrode metal as exemplarily



114 Chapter 6. Endurance

a)C} 102FHf  "[° HRS © LRS] ! ' ' . .
i oo ]
\-o 101 dﬁ o° Ooooooﬁ %@o° °°°°o oo°€ ﬁ Q%U’o é’ o°0 °°o° oo g - 1

< w Oo ]
& 10 J ) SV S — G’“°°§ R g w0 ]

o 4
1 1 1 1

V I I I I

e —

;;h_l

|

f
-0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
Cycle #/10¢

5 2k zr [© HRS ° LRS] " " 3

RRead / k2

2 -
>
§ 15 ”TU*H "L‘— |
|
o 1 1 1 }l !}— | T
0'50 0.05 0.1 0.15 0.2 0.25
Cycle #/10°
c) 2% - - - € °
i o HRS © LRS e _ o
o 10°F e Ti TR | | o) g
4 14
N
[~
~ 10 ; .
-1 [ 1 1 ] °
10 T
2_
>
=~ 15F
N
|
0'50 0.5 1 1.5 2 2.5

Cycle #/10°

FIGURE 6.3: Exemplary endurance results for cells of the stack (30 nm Pt / 5 nm ZrO, /

20 nm X / 30 nm Pt), with X being a) Hf, b) Zr and c) Ti. In each part, the upper plot

shows HRS and LRS resistance versus the cycle number. Below, the voltage applied by

the algorithm at the respective cycle is shown. Irreversible RESET failure occurs after a)

3.8 - 10* cycles, b) 2.3 - 10° cycles and c) 2.5 - 10° cycles. Reproduced with permission
from S. Wiefels et al. [213], © 2021 IEEE.
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shown in figure 6.3, b). After multiple corrected soft endurance failures, a hard
RESET failure terminates the measurement. However, the endurance is increased by
nearly one order of magnitude compared to the ZrO, /Hf device which is also in line
with the simulation of Guo et al. [7].

Finally, an exemplary endurance trace for a device with Ti electrode is given in
figure 6.3, c). Very unstable switching characteristics are observed for the ZrO, /Ti
devices and therefore a high number of voltage adjustments is applied by the algo-
rithm. Nevertheless, the endurance is increased by another order of magnitude with
respect to the ZrO, /Zr device. Only the ZrO, /Ta devices endured more cycles until
hard failure. Thus, the endurance of the presented examples follows the expected
trend Hf < Zr < Ti < Ta.

However, as stated throughout this work, reliability aspects should not be investi-
gated on single cells. Instead, a statistical evaluation is required to reliably verify
the theoretical findings of Guo et al. [7]. Therefore, the study is extended to 50
cells of each material stack. Here, the experimental setup with 32 contacted cells
plays a significant role. With the measurement routines outlined in chapter 3.3, all
contacted cells can be formed and tested automatically. Afterwards, the endurance
algorithm is applied to all functioning cells. By this, the endurance of several cells
can be determined automatically in a reasonable time and with low work effort.

As a result, cumulative distributions of the endurance are given for the four tested
material systems in figure 6.4, a). Although the single distributions are comparatively
wide, covering two to three orders of magnitude in endurance, it is observed that
the general trend and thus the median follows the expected trend Hf < Zr < Ti < Ta.
Since the difference in calculated DFE for ZrO, /Hf and ZrO, /Zr is comparatively
small, it is reasonable that both endurance distributions are similar and close to each
other. Nevertheless, the endurance is slightly higher with Zr as ohmic electrode
metal, following the prediction of Guo et al. [7]. As expected, the highest endurance
is observed with the standard ZrO,/Ta stack. Here, the distribution is cut at the
upper edge of 20 million cycles which equals the maximum number of cycles defined
for the endurance algorithm. Probably, higher maximum endurance values could
have been achieved here.

Additional to the general trend of defect formation energies (Hf < Zr < Ti < Ta), the

respective numbers are extracted from [7] and summarized in table 6.1. It may be

TABLE 6.1: Defect formation energies extracted from [7]

Material | Hf | Zr | Ti| Ta
DFE/eV |01 ]02| 1 |1.65
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FIGURE 6.4: a) Cumulative probability of the endurance for Hf, Zr, Ti or Ta as ohmic
electrode metals. b) Forming statistic for the same material stacks. c) The logarithm
of the endurance linearly follows the DFE. d) The forming voltage linearly increases
with DFE. A trade off arises for materials selection: Ohmic electrode metals with lower
oxygen chemical potential result in higher DFE which increases both endurance and
forming voltage. Data in b) taken from [93]. DFE in c) and d) extracted from [7].
Reproduced with permission from S. Wiefels et al. [213], © 2021 IEEE.
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noted that the numbers are calculated for each metal with respect to HfO, with a
DFE in the bulk oxide of E¢yimpuik = 5.9 eV. However, since HfO, and ZrO, are
nearly identical with respect to their physico-chemical properties, the difference is
expected to be minor. For the generation of oxygen vacancies in bulk ZrO, values
of Eform pulk in a range of 5.4 to 6.4 eV are reported [217]. Foster et al. determined
Eformpuik = 5.94 eV for m-ZrO; [218, 219]. Nevertheless, the relative trend for the
four metals should not be affected by an offset in E¢om bulk-

Accordingly, the median endurance is extracted from the distributions in figure 6.4,
a) and plotted versus the DFE in figure 6.4, c). Interestingly, the logarithm of the
maximum cycle number not only reproduces the general trend of the DFE, but fol-
lows a nearly perfect linear dependency. It is therefore concluded that the measured
endurance is in excellent agreement with the simulated data by Guo et al. [7]. It
is experimentally verified that irreversible RESET failures as the key challenge in
the device endurance can be significantly reduced by the choice of ohmic electrode
metals with a low oxygen chemical potential. In this dissertation, the median of the
endurance is increased by three orders of magnitude by Ta as ohmic electrode metal
instead of Hf.

Potentially, the endurance could be further increased by exchanging Ta for a metal
with even lower oxygen chemical potential as for example W or Ru which could
be subject to future investigations. However, as a higher DFE energy hinders the
generation of oxygen vacancies, it should also affect the forming voltage. Thus,
forming statistics were recorded for the four discussed stacks by Hiittemann [93].
The resulting distributions are plotted in figure 6.4, b). As expected, the forming
voltage is observed to increase with DFE. Unfortunately, only few of the devices with
Ti as ohmic electrode were operational in this work. Nevertheless, the respective
distribution fits to the expected trend. Accordingly, the median of the forming volt-
age is plotted versus the DFE in figure 6.4, d). Here, the forming voltage seems to
follow a linear trend with the DFE. The deviation of Ti from the linear trend could be
explained by the limited statistics due to the low number of functioning cells. These
results confirm the conclusion of hindered oxygen vacancy generation by increased
DEFE.

Although a further increase of the DFE could lead to even higher endurance, the
forming voltage would increase as well which can become an issue if the applied
current compliance during forming is not ideal. Here, a higher forming voltage may
cause higher parasitic currents in the moment of dielectric breakdown which could
cause irreparable damage to the cell. All in all, the positive effect of an increased DFE
on the endurance comes along an increase in forming voltage. This trade off has to be

taken into account for material selection. Kim et al. investigated Ta,Os devices and
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reported a similar trend regarding the DFE. With W as ohmic electrode an improved
endurance along with higher forming voltage was reported [168]. Furthermore, the
higher DFE was observed to result in a larger read window [220].

Apart from the forming voltage, it seems likely that the programming voltages (Vsgr
and VRgsger) required for successful switching are affected by the DFE. As the pro-
gramming algorithm adjusts both parameters to the cycling characteristics of each
cell, a trend may be detectable regarding the DFE. Therefore, cumulative distributions
of all occurring SET and RESET voltages are given in figure 6.5, a) and b). Compared
to endurance and forming voltage, the impact of the DFE on the required switching
voltages is significantly lower. This indicates that the resistive switching mainly
occurs at the active (Pt) electrode. Respectively, the impact of the ohmic electrode is
limited.

However, the devices with Zr or Hf as ohmic electrode and a rather low DFE are
observed to require slightly higher RESET and lower SET voltages compared to Ti
and Ta. Respectively, the ratio Vsgr/ VReser is slightly decreased with lower DFE,
as demonstrated in figure 6.5, c). Thus, the algorithm automatically shifts the bias
towards the RESET direction to counteract the parasitic generation of excessive oxy-
gen vacancies, if necessary. On the one hand, this underlines the effectiveness of the
presented algorithm. On the other hand, this trend is in very good agreement with
the simulation results of Guo et al. [7].

6.3 Conclusion

In this chapter, a sophisticated endurance algorithm is presented which allows for
a fast and automated assessment of endurance. On the one hand, the algorithm
is able to correct early endurance failures and aims to find the ideal switching
parameters for each cell. On the other hand, the adaptive number of cycles per
pulse sequence addresses the trade off between measurement time and frequency of
voltage adjustments. The measurement speed is increased if a cell switches reliably
and decreased if frequent corrections are required.

The algorithm is initiated with low voltages and tries to find the lowest possible
voltages for successful switching to limit the stress to the device. Although this
was demonstrated to be a successful approach to enhance the device endurance, the
results by Panasonic suggest a potential improvement. Hard verify cycles within
the first 1000 cells and subsequently softer programming may further improve the
presented algorithm which should be aspect of further studies [214].

The second part of this chapter addresses the influence of the ohmic electrode with
respect to endurance. Here, the theoretical results by Guo et al. [7] are experimentally
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verified. It is demonstrated that ohmic electrode metals with lower oxygen chemical
potential lead to a higher DFE and thus hinder the generation of oxygen vacancies.
This results in less terminal RESET failures and therefore prolonged endurance.
However, the hindered generation of oxygen vacancies also increases the forming
voltage. This trade off has to be taken into account for the materials selections.
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RESET and lower SET voltages to counteract excessive oxygen vacancy generation due
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7 Conclusion

The subject of the presented work was the reliability of VCM type ReRAM devices.
Here, the focus was to proceed from the characterization of single devices towards
large sets or arrays of cells. By this, statistically sound results were obtained but,
more importantly, the intrinsic statistics of the tested devices could be characterized.
This especially allowed, for the first time, to link reliability aspects to changes in the
statistical parameters.

This dissertation covered two material systems, one based on ZrO,, the other based
on HfO; as switching oxide. On the one hand, a novel measurement setup was
developed for the statistically sound characterization of the self-fabricated ZrO,. It
allows to probe and characterize 32x1 line arrays with a high level of automation due
to the developed programming environment. On the other hand, experimental data
of up to 2.5 million industrial HfO, was investigated in this work which provides
exceptional opportunities for a university environment. Due to the physico-chemical
similarity of the two oxides, comparable results were obtained to a large extend.
However, differences between the industrial HfO, and ZrO, which was fabricated
under laboratory conditions were pointed out.

With regard to the reliability of the investigated systems, three major aspects were
covered, being their variability, the data retention and the cycling endurance. The

respective results are summarized in the following.

7.1 Variability

The variability or stochastic nature of VCM ReRAM remains one of the largest chal-
lenges for their large scale adaption in industrial applications. In chapter 4, three
different types of variability were presented, being device to device (D2D), cycle to
cycle (C2C) and read to read (R2R). The variability between single devices (D2D)
seems to be dominated by the stochasticity of the switching process. Large fluctu-
ations in the resulting cell resistance occur from cycle to cycle and thus the C2C
variability becomes indistinguishable from D2D variability. Since these types of
variability can be significantly reduced by smart programming algorithms, the short
term instability of the once programmed states (R2R) remains as key challenge.
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It was demonstrated in this work that R2R variability determines the intrinsic statis-
tics of a large set of cells and effectively limits the read window between LRS and
HRS. Whereas the metallic nature of the conduction in LRS results in a normal distri-
bution of read currents or resistances, the HRS usually is log-normally distributed.
Via an empirical model as well as KMC methods, the most likely origin of these
statistics was found to be tunneling across a normally distributed gap in HRS. Here,
the exponential dependence of the read current on the tunneling gap or barrier results

in the observed log-normal statistics.

7.2 Retention

These findings could directly be transported towards the understanding of long-
term degradations which determine the retention of a memory array. Since the read
current of individual devices fluctuates already on very short time scales (ns - ps),
the retention can not be reliably characterized by tracing single devices. Instead, it
was demonstrated that the long-term degradation appears as change of the intrinsic
statistics or R2R variability. Firstly, the whole distributions were observed to shift
over time either to lower or higher read current. The former is explained by loss of
oxygen vacancies due to recombination, the latter by diffusion of oxygen vacancies
from a plug or filament region towards a gap or disc region.

Secondly, the width of the distribution was observed to increase over time. This
broadening or increase in standard deviation occurs in both LRS and HRS and is
identified as major challenge regarding retention. Conclusively, the remaining read
window is mainly limited by this process. Here, two different models were devel-
oped. On the one hand, an empirical model assuming tunneling across a normally
distributed gap fits the experimental data very well. It represents a novel approach
for the extrapolation of high temperature measurements towards the required reten-
tion time at lower operating temperatures. On the other hand, a statistical model
was developed. It reproduces the intrinsic variability of the investigated devices
by random configurations of oxygen vacancies within defined boundaries. It was
demonstrated for the first time that a change in these boundaries can explain the
observed degradation effects. A loss of oxygen vacancies leads to the expected cur-
rent decrease. An expansion of the filament boundaries towards the active electrode

accounts for both current increase and broadening of the distribution.
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7.3 Endurance

In order to improve the endurance of VCM ReRAM two approaches were presented
in this work. Firstly, a novel programming algorithm was developed which combines
fast assessment of the cell endurance with frequent adjustments of the programming
parameters. In order to perform 10® and more cycles within reasonable measurement
time, as many cycles as possible are applied within one pulse sequence. However, the
number of cycles applied at once needs to be reduced if the switching characteristics
are unstable. The algorithm dynamically adjusts the SET and RESET voltage, as
well as the number of cycles per pulse sequence in order to achieve the maximum
endurance within reasonable experiment time.

Secondly, this algorithm is used to determine the maximum endurance for cells with
varying ohmic electrode metal. Guo et al. [7] predicted from ab-initio methods that
ohmic electrode metals with a lower oxygen chemical potential would decrease the
chance to generate excessive oxygen vacancies during cycling. Therefore, less RESET
failures occur and a higher endurance is achieved. The theoretical findings of Guo
et al. [7] were verified in this work by demonstrating increasing endurance going
from Hf and Zr over Ti towards Ta as ohmic electrode metals. It was furthermore
demonstrated that the same trend applies for the forming voltage. This results in
a trade-off for the material selection between achievable endurance and required
voltage to electroform the devices. This provides valuable information for future

device engineering.

7.4 QOutlook

Based on the presented results, it is suggested to keep the focus on device statistics
instead of single cell characterization. The graphical tests of normality and log-
normality used in this work [197, 198] should be extended by additional statistical
tests as Chi-Squared test [199], Shapiro-Wilk test [200] or Jarque-Bera test, in order
to deepen the understanding of the underlying distributions. Future studies could
investigate in more detail how the intrinsic statistics could be tuned in favor of the
application. It is evident that the internal statistics are linked closely to the domi-
nating electrical conduction mechanism. A systematic variation of material systems
and crystal structures could give rise to factors of influence. Furthermore, the cell
size could be scaled down in combination with oxygen rich or poor environments to
investigate the impact of a confined conducting filament.

Moreover, it was demonstrated that R2R fluctuations are initially very large. They
decay exponentially and approach a rather constant level [86, 121]. Although the
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fluctuations do not disappear entirely, a way to accelerate this decrease might prove
to be valuable. Chang et al. report that soft RESET pulses during SET program-
ming decrease read disturb failures [221]. Future studies could investigate if RESET
algorithms containing both voltage polarities could produce more stable HRS distri-
butions.

For both variability and retention, the statistical model presented in this work proved
to be an excellent way to model the highly stochastic character of VCM ReRAM.
The dynamical version of the model consistently explained both R2R variability and
retention by introducing regions of different energy barriers for oxygen vacancy
diffusion. Though, the defined regions are rather arbitrary in the current version.
However, Schie et al. [212] suggested that small regions with low energy barriers
confined by higher energy barriers are likely to be present in HfO,. Therefore, a
refinement of the presented model with multiple sub-diffusive regions seems reason-
able and is very likely to provide an even better description of the observed short-
and long-term instabilities.

With respect to the device endurance, the presented programming algorithm could
be developed further. Yonai et al. reported that hard verify programming during the
tirst 1000 cycles, followed by softer programming at higher cycle numbers resulted in
the highest endurance [214]. Following these results, the algorithm presented in this
work could be adapted to apply initially hard SET and RESET pulses. After the first
few cycles it could return to the currently implemented goal of finding the lowest
SET and RESET voltages which enable reliable switching.

Additionally, the study regarding the influence of the ohmic electrode could be
extended towards metals with a higher oxygen chemical potential than Ta. In theory,
this should provide even higher endurance. However, the trade-off with also increas-
ing forming voltage has to be considered.

All in all, the key statement of this dissertation is that reliability aspects of VCM
ReRAM have to be evaluated for their intrinsic statistics. Degradation effects like
broadening of a read current (or resistance) distribution which are identified as key
challenge could not have been detected on single or few devices. With respect to
the large scale application of VCM ReRAM, the worst cells in a memory array are
the ones which determine the reliability. To predict the behavior of these cells, it is
crucial to understand the statistics of the whole system.
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