h1

h2

h3

h4

h5
h6


001     818642
005     20250930090624.0
024 7 _ |2 datacite_doi
|a 10.18154/RWTH-2021-04545
037 _ _ |a RWTH-2021-04545
041 _ _ |a English
100 1 _ |0 P:(DE-82)IDM01459
|a Sauer, Dirk Uwe
|b 0
|u rwth
245 _ _ |a Time-series cyclic aging data on 48 commercial NMC/graphite Sanyo/Panasonic UR18650E cylindrical cells
260 _ _ |c 2021
336 7 _ |2 BibTeX
|a MISC
336 7 _ |0 PUB:(DE-HGF)32
|2 PUB:(DE-HGF)
|a Dataset
|b dataset
|m dataset
|s 1623335500_15124
336 7 _ |0 26
|2 EndNote
|a Chart or Table
336 7 _ |2 DataCite
|a Dataset
336 7 _ |2 ORCID
|a DATA_SET
336 7 _ |2 DINI
|a ResearchData
520 _ _ |a This dataset contains time-series data (time, current, voltage, temperature) of a cyclic aging test of 48 lithium-ion battery cells. In the experiment, 48 cells of the same type were aged with the same profile under equal conditions. Prior to aging, the initial performance was determined by a comprehensive begin-of-life (BOL) test. Aging reference parameter tests (RPT) were conducted in regular intervals to determine the current cell performance. The cells used in this investigation are Sanyo/Pana-sonic UR18650E cylindrical cells which are commercially available and produced in large quantities in an established fabrication process. This type uses a carbon anode and NMC as a cathode material. The dataset consists of two files. The file Rawdata.zip contains individual .csv files with the time series data for every tested cell. The file Content.pdf contains information about the test setup, data, and license.
591 _ _ |a Germany
787 0 _ |0 RWTH-2021-05565
|a Li, Weihan et.al.
|d New York, NY [u.a.] : Elsevier, 2021
|i RelatedTo
|t One-shot battery degradation trajectory prediction with deep learning
856 4 _ |u https://git.rwth-aachen.de/isea/battery-degradation-trajectory-prediction
856 4 _ |u https://publications.rwth-aachen.de/record/818642/files/RWTHPublications_Forschungsdaten_signed.pdf
856 4 _ |u https://publications.rwth-aachen.de/record/818642/files/Content_RWTH-2021-04545.pdf
|y OpenAccess
856 4 _ |u https://publications.rwth-aachen.de/record/818642/files/Rawdata.zip
|y OpenAccess
909 C O |o oai:publications.rwth-aachen.de:818642
|p driver
|p VDB
|p open_access
|p openaire
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)IDM01459
|a RWTH Aachen
|b 0
|k RWTH
914 1 _ |y 2021
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
920 1 _ |0 I:(DE-82)618310_20140620
|k 618310
|l Lehrstuhl für Elektrochemische Energiewandlung und Speichersystemtechnik
|x 0
980 1 _ |a FullTexts
980 _ _ |a dataset
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-82)618310_20140620


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21