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Abstract

The recent development of theoretical and experimental study of emergent phenomena, such
as anomalous Hall effects, topological electronic band structures as well as quantum spin
liquid states in condensed matter physics have evoked tremendous research interest in the
search and study of novel quantum materials. High quality single crystal samples of the quan-
tum materials, which serve as a key prerequisite to study the novel properties are of great im-
portance in the study of quantum materials. In this PhD work, employing two cutting-edge
methods: molten flux and chemical vapour transport, series of novel quantum material sin-
gle high quality crystal samples have been grown, such as CeSb, PrSb, NdSb, α-RuCl3, Mn3Sn,
Sr2IrO4, Cr2Ge2Te6, Cr2Si2Te6, CeZn3As3, PrZn3As3, PtBi2, ZrTe5, which have been studied
intensively in this PhD work as well as other cooperators.
The second important part of this PhD thesis is to study the correlation among crystal struc-
ture, magnetic structure and physical properties in two novel quantum materials: Mn3Sn and
α-RuCl3 by comprehensive characterization methods.
Mn3Sn, which is proposed to be a candidate of magnetic Weyl semimetal has been studied
by a combination of polarised and unpolarised neutron diffraction techniques in this work.
Single crystals of topological semimetal Mn3Sn have been grown by Sn self-flux method. The
magnetic susceptibility and electronic resistivity showed a magnetic phase transition at 285
K and below that, the anomalous Hall effects at room temperature disappeared completely.
With a combination of unpolarised and polarised neutron study, the crystal structure and
magnetic structure at low temperature have been determined and a novel double-q magnetic
ground state is found. As a result of breaking symmetry, AHE could not be realised in this
kind of magnetic structure but the double-q magnetic structure has offered a rare case to study
the non coplanar order in materials with kagomé lattice.
α-RuCl3, which is a candidate to realise Kitaev quantum spin liquid, is a layered two dimen-
sional materials bonded with the weak Van der Weals force. Growing high quality samples of
α-RuCl3 single crystals has been a big challenge since the stacking faults will be introduced
inevitably. In this thesis, single crystals up to 700 mg were successfully grown by optimising
the crystal growth conditions. Based on the high quality single crystals, the low temperature
crystal structure of α-RuCl3 has been proved to be R3 instead of C2/m by single crystal neu-
tron diffraction which demonstrates that α-RuCl3 maybe a perfect candidate to study Kitaev
physics without lattice distortion. Besides, with spherical polarised neutron analysis the or-
dered magnetic moment direction of Ru3+ has been precisely determined which will help to
reveal the microscopic interaction in Kitaev quantum spin liquids physics. In addition, the
phase diagram of α-RuCl3 under isostatic pressures has also been determined by single crys-
tal neutron diffraction. The results reveal the magnetic order in α-RuCl3 could be effectively
suppressed with increase of external hydrostatic pressure. However, a pressure induced struc-
tural phase transition occurs when the pressure is higher than 0.15 GPa. Despite that the quan-
tum spin liquid state is not realised in α-RuCl3 by the isostatic pressure, this result has proved
that the pressure could change the transition temperature in Kitaev materials explicitly and
will shed lights on the pressure tuning magnetic order in similar materials.
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Zusammenfassung

Experimentelle und theoretische Untersuchungen über “emergent phenomena”, wie der ano-
male Hall-Effekt (AHE), topologische Bandstrukturen und Quantenspinflüssigkeiten wecken
immer mehr Interesse für die Forschung an Quantenmaterialien. Um diese neuartigen Effekte
untersuchen zu können werden Einkristalle von hoher Qualität benötigt, weshalb ein Fokus
dieser Doktorarbeit die Entwicklung und Implementierung von Methoden zum Kristallwach-
stum in unserem Labor ist. Mithilfe von zwei nmodernen Methodenwurden, Schmelzfluss
und chemischer Dampftransport, wurden viele Einkristalle neuartiger Quantenmaterialien
für unsere Gruppe und Kooperationspartner gezüchtet, wie etwa CeSb, PrSb, NdSb, α-RuCl3,
Mn3Sn, Sr2IrO4, Cr2Ge2Te6, Cr2Si2Te6, CeZn3As3, PrZn3As3, PtBi2, ZrTe5. Ein anderer wichti-
ger Teil dieser Doktorarbeit ist eine umfassende Studie zweier Materialien um das Zusam-
menspiel von Kristallstruktur, magnetischer Ordnung und physikalischen Eigenschaften zu
untersuchen. Mn3Sn ist ein möglicher Kandidat eines magnetischen Weyl Halbmetalls und
zeigt einen starken AHE bei 300 K und α-RuCl3 ist eine mögliche Kitaev Quantenspinflüs-
sigkeit. Einkristalle des topologischen Halbmetalls Mn3Sn wurden mit der Sn Selbstflussmeth-
ode gezüchtet. Die magnetische Suszeptibilität und elektrische Widerstand zeigen einen mag-
netischen Phasenübergang bei 285 K und der anomale Hall-Effekt, sichtbar bei 300 K, ver-
schwindet komplett. Die Kristallstruktur und magnetische Struktur für niedrige Temperatur
wurde durch eine Kombination von unpolarisierten und polarisierten Neutronenmessungen
bestimmt und ein neuartiger doppel-q magnetischer Grundzustand ermittelt. Durch einen
Symmetriebruch kann der AHE in dieser magnetischen Struktur zustande kommen nicht
und die magnetische doppel-q Struktur eröffnet die seltene Möglichkeit eine nicht-koplanare
Struktur in Materialien mit Kagomé Struktur zu untersuchen. Da α-RuCl3 ein zweidimension-
ales Van-der-Waals Material ist, ist das Wachstum von hochqualitativen Einkristallen eine
große Herausforderung, weil Stapelfehler zwangsläufig auftreten werden. Durch viele Ver-
suche wurden die Wachstumsbedingungen für α-RuCl3 bestimmt und Einkristalle bis zu 700
mg gezüchtet. Neutronendiffraktion an diesen Einkristallen führte zur Bestimmung der R3
Kristallstruktur bei niedrigen Temperaturen, nicht C2/m, was α-RuCl3 zu einem idealen Kan-
didaten macht um Kitaev Physik ohne Gitterverzerrung zu untersuchen. Außerdem konnte
durch Sphärische Polarisierte Neutronen Analyse die Ordnung der magnetischen Momente
von Ru3+ präzise bestimmt werden, was helfen wird die mikroskopischen Interaktionen in
Kitaev Quantenspinflüssigkeiten zu ermitteln. Zusätzlich haben wir auch das Phasendiagram
von α-RuCl3 bei isostatischen Drücken am D10 Instrument am ILL gemessen. Die Resul-
tate zeigen, dass externe hydrostatische Drücke die magnetischer Ordnung in α-RuCl3 un-
terdrücken können und dass sich die Kristallstruktur für Drücke über 0.15 GPa ändert. Quan-
tenspinflüssigkeitszustand in α-RuCl3 durch hydrostatische Drücke nicht realisiert werden
konnte, zeigen unsere Resultate dass Druck die Übergangstemperatur von Kitaev Materialien
ändern kann und sie werden helfen den Einfluss von Druck auf die magnetischer Ordnung
in ähnlichen Materialien zu verstehen.
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1
Introduction

In the current trends in condensed matter physics research, there has been a rapidly growing
interest in collective phenomena where the many-body physics, commonly known as strongly
correlated electrons in solids, gives rise to a variety of emergent phenomena, like unconven-
tional superconductivity, quantum Hall effect (QHE), anomalous Hall effect (AHE), novel
phases and exotic magnetic excitations [1–3]. The interpretation of such emergent physics
calls for quantum effects to be brought into in view of facts that they cannot be approxi-
mated by a classical description at a macroscopic level, leading to the come-to-being of the
concept of Quantum Materials. Topology, one of the significant concepts in the understand-
ing of electronic states in quantum materials characterizes the non-trivial nature of topologi-
cal superconductivity, topological insulator and topological semimetal [4–20]. For instance, a
topological insulator band inversion observed in materials with strong spin-orbit coupling is
identified by the non-trivial gapless Dirac cone-like surface states inside the bulk band gap
[11, 12]. Topological surface states could also be realized in the so-called Weyl semimetals
when the spatial inversion or the time-reversal symmetry is further broken, and this surface
state is characterised by the topological Fermi arcs [14]. It comes to the conclusion that Weyl
semimetals may only be realised in materials with specific symmetries, for instance in non-
centrosymmetric or magnetically ordered materials. This draws the attention to the important
roles of crystal structure and magnetic order in the search for novel quantum materials.
Another important concept that is strongly related to the crystal structure in the study of
quantum materials is magnetic frustration, which happens in the materials where the local-
ized magnetic moments, or spins in magnetic materials which interact through the competing
exchange interactions that cannot be simultaneously satisfied, causing a large degeneracy of
the system ground state. Geometric frustration occurs in spin systems that involve triangu-
lar lattices where the three spins cannot all be antiparallel with antiferromagnetic nearest-
neighbour interactions, while competing exchange frustration arises in materials where two
magnetic ions are connected by several competing interaction exchange paths. In this regard,
a large class of materials with magnetic ions occupying in a face-centre cubic pyrochlore lat-
tice, triangular lattice, kagomé lattice, square lattice and honeycomb lattice with Kitaev ex-
change paths have been extensively explored and investigated as the potential playground
for the study of magnetic frustration. Therefore, revealing the relationship among novel prop-
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CHAPTER 1. INTRODUCTION

erties, crystal structure and magnetic order is of great importance in the study of quantum
materials.
The strong interplay among charge, spin, orbital, lattice degrees of freedom and topology
constitute the fundamental attributes of quantum materials, which often leads to emergent
quantum phenomena and novel functionalities. To shed light on the coupling between topol-
ogy, magnetic order and lattice in novel quantum materials, high quality single crystals have
benn prepared in this word via cutting-edge crystal growth techniques, and physical proper-
ties measurement, crystal structure determination and magnetic structure solution were also
performed with diverse techniques.
The goal of this thesis is to obtain a better understanding of the interplay among physical
properties, crystal structure and magnetic order by carefully performing experiments such
as in-house characterisations, non-polarised and polarised neutron scattering under ambient
conditions as well as isostatic pressures on high quality single crystals.
It is organized as the following chapters:
Chapter 1 introduces a general summary of the study motivation, goal and structure of this
PhD work.
Chapter 2 presents a short introduction to the basic concepts of topological materials, AHE
and magnetic frustration.
Chapter 3 gives a summary of crystal growth methods, neutron scattering theory and princi-
ples as well as approaches of magnetic structure determination from neutron diffraction data.
Chapter 4 presents the crystal growth of the topological Weyl semimetal Mn3Sn, phase tran-
sition studied by various neutron scattering techniques. The magnetic structure of the mod-
ulated phase at 225 K and the reasons for the incommensurate magnetic order as well as the
absence of AHE.
Chapter 5 is dedicated to the crystal structure and magnetic structure studies of the Kitaev
quantum spin liquid candidate α-RuCl3. In addition, the phase diagram of α-RuCl3 under hy-
drostatic pressures is also reported.
Chapter 6 summarizes the important results described in this thesis and discuss the outlook
of future studies of those fascinating compounds.
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2
Scientific Background: Quantum Materials

The search for emergent phenomena and novel functionalities in condensed matter has been
an active field that is being expanded beyond strongly correlated electron systems, giving rise
to the emergent concept of quantum materials [21].

Figure 2.1: Various degrees of freedom of strongly correlated electrons in solids, which respond to
external stimuli. These strong couplings lead to the emergent functions with the cross correlations
among different physical observables and to the developments towards the potential applications
of emergent functions such as Mottronics, magnetoelectrics, topological electronics, and quantum
computing (taken from Ref.[2]).

The study of quantum materials has included but is not limited the following topics: topolog-
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CHAPTER 2. SCIENTIFIC BACKGROUND: QUANTUM MATERIALS

ical insulators, Weyl semimetals, AHE, anomalous quantum Hall effects and quantum spin
liquids etc., with particular focus on the strong interplay among various degrees of freedom,
such as spin, charge, orbital, topology and lattice. These strong couplings lead to the emergent
functions with the cross correlations among different physical properties and to the develop-
ments towards the potential applications of emergent functions such as Mottronics, magne-
toelectrics, topological electronics, and quantum computing [2]. A brief introduction to the
concepts of topological materials, AHE and quantum spin liquid that are related to this PhD
study will be introduced in the next sections.
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2.1. TOPOLOGICAL MATERIALS

2.1 Topological materials

2.1.1 Topological insulators

An insulating behaviour in solid-state materials can often be explained due to the presence of
the large energy gap between conduction and valence electronic energy bands. Topological
insulators are a class of materials that has a finite energy gap in the bulk but possessing non-
trivial gapless surface states. This emergent state of matter is mainly due to the strong spin-
orbit coupling interaction, and its non-trivial surface state is topologically protected since
spin-orbit coupling preserves the time-reversal symmetry. Similar to unconventional super-
conductivity and other emergent phenomena, the exotic physical properties in topological in-
sulators may harbour potential application in the development of new generation topological
spintronics devices, and may also provide a novel platform for future quantum technologies.
Topological insulators have already been found in many materials, such as A2X3 (A = Bi,Ab
and X = S,Se,Te) family [12, 22–24] and so on.

(a) (b)

Figure 2.2: Surface states in the topological insulator Bi2Se3. (a) Electronic band structure was obtained
from angle-resolved photoemission spectroscopy (ARPES) experiment. EB is the measured electron
energy. Γ, M are the respective symbols for Brillouin-zone centre and Brillouin-zone boundary in the
reciprocal space. Dirac point at Γ is regarded as the proof for topological insulator. (b) Theoretical
calculation of the electronic band structure of Bi2Se3, showing the rotation of the spin degree of freedom
(red arrows) as an electron (with energy E) moves around the Fermi surface (taken from Ref.[25]).

Fig.2.2 illustrates the electronic band structure of topological insulators Bi2Se3 from angle-
resolved photoemission spectroscopy (ARPES) experiment [12]. A Dirac-cone shape linearly
dispersive band due to topologically non-trivial surface states is clearly observed in Fig.2.2(a),
in which the opposite direction of the electron spin is marked.
A current study focus in topological insulators is to combine topology and electronic corre-
lation for instance by looking into systems with the presence of magnetism, especially fer-
romagnetism. This has led to the new theoretical frameworks and the recent discoveries of
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CHAPTER 2. SCIENTIFIC BACKGROUND: QUANTUM MATERIALS

magnetic topological insulators [20, 26–28]. In such magnetic topological insulators, as illus-
trated in Fig.2.3, the time-reversal symmetry breaking, which will lead to the opening of an
energy gap at the Dirac point, giving rise to the emergence of quantum anomalous Hall effect
(QAHE), a quantized Hall effect that occurs at zero magnetic field. The QAHE manifests it-
self as a chiral edge mode, the direction of which not only depends on the sign of the Chern
number, a number that describes the topological invariant and could be calculated from the
surface integral of the Berry flux, but also the direction of magnetization (shown in Fig.2.3(c)
and (d)). The realisation of magnetic topological insulators has been achieved in the magnetic
ions (for instance Mn, Cr or V) doped topological insulators and in some thin films. The re-
cent discovery of MnBi2Te4 with ferromagnetic arrangement of Mn-atoms in each layer has
already stimulated considerable interests in the study of magnetic topological insulators [29–
31].

(a)

(b) (d)

(c)

Figure 2.3: Comparison of the electronic band structure of topological insulators and magnetic topologi-
cal insulators in the momentum space and real space. (a) and (b): A Dirac cone shape dispersion of the
surface state in a topological insulator and electrons with opposite spins move in the opposite directions
in the real space. (c) and (d): The gapless Dirac dispersion is gapped in magnetic topological insulators
and the chiral edge mode appears if the Fermi level EF is located in the gap induced by the magnetic
exchange interaction (taken from Ref.[20]).
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2.1. TOPOLOGICAL MATERIALS

2.1.2 Topological semimetals

Another large class of intriguing topological materials that has attracted tremendous research
attention is topological semimetal, for instance Weyl semimetal that is manifested by the topo-
logical Fermi arcs that connect two so-called Weyl points in the Fermi surface [14–16, 32]. The
Weyl points in Weyl semimetals refer to the nodes where the energy bands disperse linearly
in momentum space. In Fig.2.4, the bulk and surface energy band structures of the topological
materials are summarised. Similar to topological insulators, a band inversion happens as a re-
sult of large spin-orbit coupling effects as shown in Fig.2.4. If the time-reversal symmetry and
spatial inversion symmetry persist in the materials, a Dirac semimetal appears with a pair of
Weyl points, otherwise it degenerates to Weyl semimetals as shown in Fig.2.4(b).

(a)

(b)

(c) (d)

Figure 2.4: The bulk and surface band structures in topological materials. The topologies of topological
insulators and a Weyl or Dirac semimetal require band inversion with large spin-orbit coupling. (a) The
spin-orbit coupling opens a full gap after the band inversion in a topological insulator, giving rise to
metallic states on the surface. (b) In a Weyl or Dirac semimetal, due to the topology of the bulk bands,
topological states appear on the surface and form exotic Fermi arcs. In a Dirac semimetal all bands are
doubly degenerated, whereas in a Weyl semimetal, the degeneracy is lifted owing to the breaking of
the inversion symmetry or time-reversal symmetry or both. (c) The type-I Weyl semimetal. The Fermi
surface shrinks to zero at the Weyl points when the Fermi energy is sufficiently close to the Weyl points.
(d) The type-II Weyl semimetal. Due to the strong tilting of the Weyl cone, the Weyl point acts as the
touching point between electron and hole pockets in the Fermi surface (taken from Ref.[32]).

In summary, the emergence of Weyl fermions in materials require the breaking of time-reversal
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symmetry and spatial inversion symmetry. Berry curvature, which describes the topological
entanglement between conduction and valence band, plays an essential role for the under-
standing of the topological properties such as quantum Hall effect, AHE and becomes singu-
lar at Weyl points [32]. The pair of Weyl points has different chirality acting as monopoles in
momentum space, which means it could be a source or a sink of Berry curvature connected by
the unclosed lines of the Fermi arcs that start from one Weyl point and end at other with oppo-
site chirality. The Fermi arcs are considered to be a robust and reliable experimental evidence
for the identification of Weyl semimetals as displayed in Fig.2.5.

(a)

(b)

Figure 2.5: Topological Fermi arc surface states on the (001) surface of TaAs observed by ARPES. (a)
ARPES Fermi surface map and constant–binding energy contours measured with incident photon
energy of 90 eV. (b) High-resolution ARPES Fermi surface map of the crescent Fermi arcs (taken from
Ref.[15]).

Weyl semimetals can be further classified into type I and type II. In type I Weyl semimetals,
the Fermi surface shrinks to zero at Weyl points when the Fermi energy is sufficiently close to
the Weyl points, while in type II Weyl semimetals, the Weyl cones can be either the electron
or hole pockets in the Fermi surface at Weyl points as shown in Fig.2.4 (c) and (d). The ex-
perimental discovery of Weyl fermions was achieved very recently in TaAs family [15, 33–35]
after the theoretical prediction [36, 37]. In addition to the TaAs family, Y2Ir2O7 [38], HgCr2Se4

[39], WTe2 [40], MoTe2 [41], Co3Sn2S2 [42] have also been proved to be Weyl semimetal can-
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2.1. TOPOLOGICAL MATERIALS

didates and Na3Bi [43], Cd3As2 [44] to be Dirac semimetal candidates. Another candidate,
Mn3Sn [45], in which large AHE generated by the Berry curvature is observed, has been an
active research topic for the potential application in the novel spintronics devices and has
been studied comprehensively in this work.

9



CHAPTER 2. SCIENTIFIC BACKGROUND: QUANTUM MATERIALS

2.2 Anomalous Hall effect

The interpretation of the AHE has become a standing issue that has puzzled theoretical and
experimental scientists for more than a century since it was reported in ferromagnetic irons
by Edwin Hall [46]. The early semi-empirical relation of the Hall resistivity ρxy, magnetic field
Hz and magnetization Mz [47, 48] is

ρxy = R0Hz + Rs Mz, (2.1)

where R0 and Rs depend on the density of carriers and specific materials. This formula is
derived from the results of ferromagnets and applies to many materials over a broad range
of external fields. Recent theoretical and experimental achievements have unveiled the key
role of the time-reversal symmetry breaking for the emergence of AHE. The discovery of
the quantum Hall effect (QHE) and its successful explanation by the topological properties
of electronic wave functions have a great impact on the understanding of the origin of the
intrinsic AHE [49, 50]. The adoption of the Berry phase concepts in the intrinsic AHE has
established a link between the AHE and the topological nature of the Hall currents [51, 52].

Figure 2.6: Illustration of the three main mechanisms that can give rise to an AHE. In a real material all
of these mechanisms can act to influence the electron motion (taken from Ref.[53]).

In order to understand the deep physics in AHE, three mechanisms were introduced as shown
in Fig.2.6:(i) intrinsic mechanism, which is dependent only on the band structure of perfect
crystals [54]. The intrinsic contribution to AHE from Berry curvature in momentum space
could be regarded as "unquantized" version of QHE. The other two originate from the scat-
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2.2. ANOMALOUS HALL EFFECT

tering process: (ii): the skew scattering, which comes from the asymmetric scattering caused
by the spin-orbit coupling effects [55, 56]; (iii) the side jump, which is a sudden shift of elec-
tron coordinates during scattering [57]. Therefore, the anomalous Hall conductivity could be
expressed by

σAH
xy = σAH−int

xy + σAH−skew
xy + σ

AH−sj
xy , (2.2)

where σAH−int
xy , σAH−skew

xy , σ
AH−sj
xy are contributions from the intrinsic mechanism, skew scat-

tering and side jump to AHE, respectively. On the experimental front, various new experi-
mental studies of the AHE in transition metals, transition metal oxides, such as spinels, py-
rochlores helped to establish a systematic understanding of this phenomenon. These two de-
velopments, in concert with first-principles electronic structure calculations, strongly favour
the dominance of an intrinsic Berry-phase-related AHE mechanism in metallic ferromagnets
with moderate conductivity. The intrinsic AHE can be expressed in terms of the Berry-phase
curvatures and it is therefore an intrinsic quantum-mechanical property of a perfect crystal
[53]. Since the intrinsic AHE is linked to the topological properties of the materials and it has
deep relationship with the structure in materials, we will discuss further about this in the next
sections.

2.2.1 Intrinsic anomalous Hall effect

The pioneer work done by Karplus and Luttinger (KL) [54] has laid the foundation of under-
standing of the intrinsic AHE in ferromagnets. KL showed that when an external electric field
was applied to a solid, electrons acquired an additional contribution to their group velocity.
KL’s anomalous velocity was perpendicular to the electric field and therefore could contribute
to the Hall effects. In the case of ferromagnetic conductors, the sum of the anomalous velocity
over all occupied band states could be non-vanishing. Because this contribution depends only
on the band structure and is largely independent of scattering, it has recently been referred to
as the intrinsic contribution to the AHE. When the conductivity tensor is inverted, the intrin-
sic AHE yields a contribution ρxy ≈ σxy/σ2

xx. The current development of theory [58–60] in
the topological nature of the intrinsic AHE has shown that the intrinsic contribution to AHE
can be calculated by

σA−int
xy = e2} ∑

n 6=n′

∫ dk
(2π)2 [ f (εn(k))− f (εn′(k))] Im

〈n, k |vx(k)| n′, k〉
〈
n′, k

∣∣vy(k)
∣∣ n, k

〉
(εn(k)− εn′(k))

2

(2.3)
for an ideal lattice, given the eigenstates |n, k〉 and eigenvalues εn(k) of a Bloch Hamiltonian
H, where the velocity operator v(k) is defined using k-dependent Hamiltonian [H(k)] by

v(k) =
1
i} [r, H(k)] =

1
}∇kH(k). (2.4)

11
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Eq.2.3 is directly linked to the topological properties of Bloch states. Specially it is propor-
tional to the integration of Berry phases over the Fermi surface segments. Thus, it can be
further reduced as

σAH−int
ij = −εij`

e2

} ∑
n

∫ dk
(2π)d f (εn(k)) b`n(k) (2.5)

where bn(k) is the Berry phase curvature. In case an(k) = i 〈n, k |∇k| n, k〉 is the Berry phase
connection, the Berry phase curvature can also be expressed as:

bn(k) = ∇k × an(k). (2.6)

The Berry phase curvature bn(k) is regarded as a “fictitious” magnetic flux acting on electrons
with the state |n, k〉. In the presence of an electric field, an electron can acquire an anomalous
velocity proportional to the Berry curvature of the band. The formula for the velocity in a
given state becomes

vn(k) =
1
}

∂εn(k)
∂k

− e
}E× bn(k). (2.7)

Eq.2.7 reveals that the anomalous velocity in the second term is transverse to the magnetic
field and thus gives rise to the anomalous Hall current.

2.2.2 Symmetry conditions for the intrinsic anomalous Hall effect

Actually, in many experiments the observed AHE can be well described by the semi-empirical
Equ.2.1. In materials with the co-existence of time-reversal symmetry and spatial inversion
symmetry, the Berry curvature vanishes throughout the Brillouin zone. Therefore a compre-
hensive description of the AHE in relation to the symmetry, especially the magnetic symmetry
in magnetically ordered materials is essential for the understanding of this effect in quantum
materials.
In Eq.2.7, considering the magnetic symmetry elements in a given magnetic material, the
transformation properties could be derived since symmetry-operation of vn(k), εn(k), bn(k)
and k are known. For instance, the Berry curvature bn(k) is invariant under the translational
symmetry operation. Besides, it is transformed in the same way as an ordinary vector un-
der the rotational symmetry operation in momentum space and the space inversion brings
bn(k) to bn(−k). In this case, the Berry curvature acts as an axial vector in momentum space
and as might be expected, we will have bn(k) transferred to −bn(−k) for the time-reversal
symmetry. Therefore, for any materials possessing both time-reversal symmetry and spatial
inversion symmetry, it will readily prove bn(k) = −bn(k) = 0, resulting in bn(k) = 0.
Tab.2.1 surveys the symmetry constraint on the Berry curvature in momentum space for some
representative symmetries, where Bα(k) refers to the Berry curvature along one of the three
x, y, z Cartesian coordinate directions. Based on the symmetry properties of bn(k) in momen-
tum space, one can easily derive the symmetry properties of the intrinsic AHE. For instance,
if the Berry curvature satisfies the condition Bα(Rk) = −Bα(k) (R is the rotation operator)
due to a magnetic symmetry, the corresponding AHE must be zero since the Berry curvature

12
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at k and Rk are cancelled out by integration of the whole Brillouin zone. Besides, for any n-
fold rotation symmetry operator, the components of σAH−int

xy that perpendicular to the n-fold
symmetry should vanish.

Table 2.1: Constraint on the Berry curvature bn(k) in momentum space for some representative symme-
tries. Here, x, y, z express the Cartesian coordinates. Cnµ indicates the n-fold rotation operator along
the µ axis, P is the spatial inversion operator, and T is the time-reversal operator. The mirror operation
whose mirror plane is normal to the µ axis corresponds to PC2µ (taken from Ref.[61]).

Unitary operators Antiunitary operators

C2z Bx (−kx,−ky, kz
)
= −Bx (kx, ky, kz

)
TC2z Bx (kx, ky,−kz

)
= Bx (kx, ky, kz

)
By (−kx,−ky, kz

)
= −By (kx, ky, kz

)
By (kx, ky,−kz

)
= By (kx, ky, kz

)
Bz (−kx,−ky, kz

)
= Bz (kx, ky, kz

)
Bz (kx, ky,−kz

)
= −Bz (kx, ky, kz

)
PC2z Bx (kx, ky,−kz

)
= −Bx (kx, ky, kz

)
TPC2z Bx (−kx,−ky, kz

)
= Bx (kx, ky, kz

)
By (kx, ky,−kz

)
= −By (kx, ky, kz

)
By (−kx,−ky, kz

)
= By (kx, ky, kz

)
Bz (kx, ky,−kz

)
= Bz (kx, ky, kz

)
Bz (−kx,−ky, kz

)
= −Bz (kx, ky, kz

)
C2|110] Bx (−ky,−kx,−kz

)
= −By (kx, ky, kz

)
TC2[110] Bx (ky, kx, kz

)
= By (kx, ky, kz

)
By (−ky,−kx,−kz

)
= −Bx (kx, ky, kz

)
By (ky, kx, kz

)
= Bx (kx, ky, kz

)
Bz (−ky,−kx,−kz

)
= −Bz (kx, ky, kz

)
Bz (ky, kx,−kz

)
= Bz (kx, ky, kz

)
PC2[110] Bx (ky, kx, kz

)
= −By (kx, ky, kz

)
TPC2[10] Bx (−ky,−kx,−kz

)
= By (kx, ky, kz

)
By (ky, kx, kz

)
= −Bx (kx, ky, kz

)
By (−ky,−kx,−kz

)
= Bx (kx, ky, kz

)
Bz (ky, kx, kz

)
= −Bz (kx, ky, kz

)
Bz (−ky,−kx,−kz

)
= Bz (kx, ky, kz

)
C3[111] Bx (kz, kx, ky

)
= By (kx, ky, kz

)
TC3[111] Bx (−kz,−kx,−ky

)
= −By (kx, ky, kz

)
By (kz, kx, ky

)
= Bz (kx, ky, kz

)
By (−kz,−kx,−ky

)
= −Bz (kx, ky, kz

)
Bz (kz, kx, ky

)
= Bx (kx, ky, kz

)
Bz (−kz,−kx,−ky

)
= −Bx (kx, ky, kz

)
PC3[111] Bx (−kz,−kx,−ky

)
= By (kx, ky, kz

)
TPC3[111] Bx (kz, kx, ky

)
= −By (kx, ky, kz

)
By (−kz,−kx,−ky

)
= Bz (kx, ky, kz

)
By (kz, kx, ky

)
= −Bz (kx, ky, kz

)
Bz (−kz,−kx,−ky

)
= Bx (kx, ky, kz

)
Bz (kz, kx, ky

)
= −Bx (kx, ky, kz

)

A complete list of relations between symmetry operators and forbidden components of in-
trinsic AHE is shown in Tab.2.2. For simplicity, we denote the intrinsic AHE component as
σ` for x, y, z Cartesian coordinates. For a given magnetic material, if the magnetic structure
is known, one can analyse the possible AHE component by taking into account the magnetic
symmetry elements.
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Table 2.2: Complete list of the symmetry operators which are forbidden if the intrinsic anomalous
Hall conductivity (AHC) components is non-vanishing. The translational part of the operators, which
does not affect the results, is not shown. All the superscripts of the AHC are explicitly written such as
σ`

ij ≡ σ` = σij(i, j, ` = x, y, z). The integer in parentheses shows the number of Oh (D6h) magnetic point
group elements (taken from Ref.[61]).

AHE component Unitary operators Antiunitary operators

Cubic

σk
ij Cn(ij), PCn(ij)(n = 2, 4)(16) TCnk, TPCnk(n = 0, 2, 4)(16)

σ[111] C2[110], C2[011], C2[101], TCn[111], TPCn[111](n = 0, 3)(6)

PC2[1I0], PC2[01I], PC2[ ˜I01](6)

Hexagonal

σz
xy C2(xy), PC2(xy)(12) TCnz, TPCnz(n = 0, 2, 3, 6)(12)

σx
yz Cnz, PCnz(n = 2, 3, 6) TCnz, TPCnz(n = 0, 3, 6)

C2y, PC2y(12) TC2x, TPC2x(12)

σ
y
zx Cnz, PCnz(n = 2, 3, 6) TCnz, TPCnz(n = 0, 3, 6)

C2x, PC2x(12) TC2y, TPC2y(12)

(a) (b)

Figure 2.7: Illustration of the magnetic symmetry operators in the hexagonal ab basal plane of Mn3Sn for
(a) Cm’cm’ and (b) Cmc’m’ magnetic structure models, respectively, where m and m

′
refer to the mirror

symmetry and time-reversal mirror symmetry, respectively. a and b are the crystallographic axes in a
hexagonal setting. The two magnetic structure models can be converted from one to another by rotating
the direction of the magnetic moments by 90◦. Magnetic structure model is plotted by Vesta [62].

The application of such analysis can be shown in the novel topological Weyl semimetal antifer-
romagnet Mn3Sn, which has an inverse-triangle antiferromagnetic structure and experiences
a large AHE at room temperature [63–66]. The magnetic space group model is proposed to be
either Cm’cm’ or Cmc’m’, despite the true magnetic structure of Mn3Sn is still under debate
[67]. Both of them follow the same irreducible representation and there is a unitary mirror
symmetry to preserve the finite in-plane Berry curvature by breaking the time-reversal sym-
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metry. The magnetic symmetry elements in ab basal plane have been illustrated in Fig.2.7 for
(a) Cm’cm’ or (b) Cmc’m’ magnetic structure models. Based on symmetry analysis results in
Tab.2.2, we can predict the possible AHE component in Mn3Sn for each magnetic structure
model and the result is summarised in Tab.2.3. Indeed a large AHE has been observed exper-
imentally in Mn3Sn in the ab basal plane. In the experiment of measuring Hall effect, both σx

and σy are observed because the magnetic moments in Mn3Sn can be easily rotated with a
small magnetic field [65].

Table 2.3: Intrinsic AHC components in Mn3Sn based on magnetic symmetry analysis. MiT(i = x, y, z)
is the time-reversal mirror plane along three orthogonal directions. That is, x is along a direction, y is
along (a + 2b) direction and z is along c direction, where a, b, c are three crystallographic axes in the
hexagonal setting.

Structure models Symmetry operators Berry curvature AHE components

MxT Bx = −Bx σx = 0

Cm’cm’ My By = By σy 6= 0

MzT Bz = −Bz σz = 0

Mx Bx = Bx σx 6= 0

Cmc’m’ MyT By = −By σy = 0

MzT Bz = −Bz σz = 0
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2.2.3 Scalar spin chirality and topological Hall effect

The AHE could be also observed in the systems with non-trivial spin textures like Skyrmions
due to spin-orbit coupling interactions, which is so-called "topological Hall effect" (THE) [52].
The scalar spin chirality defined as χ = Si ·

(
Sj × Sk

)
, where Si, Sj, Sk are magnetic moments

as shown in Fig.2.8 is strongly linked to the topological properties originating from the Berry
phase or the associated "fictitious" magnetic field. When the magnetic structure is of coplanar
type, such as commensurate collinear or incommensurate spiral structures, the scalar spin
chirality is vanished as imposed by the symmetry. Therefore, only a non-coplanar magnetic
structure could lead to a finite scalar spin chirality which is linked to the Berry curvature
and generates factious magnetic flux proportional to the scalar spin chirality as the spin-orbit
interaction does in ferromagnetic materials [61, 68–71]. The emergence of THE is considered
as the signature of topological textures, for instance Skyrmions as shown in Fig.2.9. It should
be noted here that in some cases, even if the non-coplanar magnetic structure is realized, the
scalar spin chirality still could be zero due to the symmetry and no THE is therefore expected.
For instance, in a single-k incommensurate magnetic structure, there is a global time-reversal
symmetry at the half of the period and the scalar spin chirality will vanish.

Si

Sj

Sk

Figure 2.8: Noncoplanar magnetic moments and generation of scalar spin chirality. The scalar spin
chirality can be calculated by χ = Si ·

(
Sj × Sk

)
, where Si, Sj and Sk are magnetic moments.

(a) (b)

Figure 2.9: Skyrmion and topological Hall effect in MnSi. (a) Illustration of real space depiction of the
spin arrangement in the Skyrmion phase (taken from Ref.[72]). (b) Topological Hall effect ∆ρxy in the
Skyrmion phase. Data are shifted vertically for better visibility (taken from Ref.[69]).
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2.3 Frustrated magnets and exotic states of matter

Frustrated magnets are a class of magnetic materials in which the localized magnetic mo-
ments interact through competing exchange interactions that cannot be simultaneously satis-
fied, giving rise to a large degeneracy of the system ground states [73]. An easy-to-understand
example is geometry frustration that arises from an equilateral triangular lattice of magnetic
ions with dominant Ising type (the Ising type referring to the spins can be only allowed to
point up ↑ or down ↓) antiferromagnetic exchange interactions as shown in Fig.2.10(a) [74–77].
If only the nearest-neighbour antiferromagnetic coupling is brought into consideration, an an-
tiparallel arrangement can not be simultaneously achieved for all nearest-neighbour spins in
an equilateral triangle. As a result of this magnetic frustration, instead of the two ground
states due to Ising symmetry (↑ and ↓), there are six possible ground states as illustrated in
Fig.2.10(a). The lack of long-range magnetic order and the persistence of a large degeneracy
in the ground state are two hallmarks of frustrated magnets. In addition to triangular lattice,
a kagomé lattice formed by the star of David which has six corner-sharing triangles is an-
other prominent two dimensional (2D) motif that possesses geometrical frustration. In three
dimensional (3D) cases, a tetrahedral lattice with corner-occupying magnetic ions is the basic
unit shown in Fig.2.10(b). Such tetrahedra could be found in pyrochlore or spinels with face
centred structure.
Magnetic frustration can also arise from the competing interactions from J1 − J2 Ising model
in a square lattice as depicted in Fig.2.10(c) [78]. Assuming the nearest-neighbour coupling is
J1 and the next-nearest-neighbour coupling is J2. The exchange Hamiltonian is

HJ1−J2 = J1 ∑
NN

Si · Sj + J2 ∑
NNN

Si · Sj, Si, Sj = ↑ and ↓, (2.8)

where Si, Sj are spins in the corner of the square lattice and NN, NNN denote the nearest and
next nearest spins. If the strength of J1 and J2 are comparable, a simple antiparallel arrange-
ment of spins between all possible nearest-neighbour sites cannot be satisfied simultaneously.
In this case, the ground state of the model depends on the relative strength of the competing
interactions J1/J2. By varying the value of J1/J2, novel ground states could be realised in the
square lattice models. Another exchange frustration example is the well-known Kitaev model
with competing bond-direction dependent exchange interactions in a honeycomb lattice or a
face centred lattice, which will be discussed in next section. In the view point of experiment,
an empirical formula is introduced to the magnetic frustration, which is

f = |θCW | /Ttran, (2.9)

where θCW is the Curie-Weiss temperature fitted from the magnetic susceptibility at high tem-
perature and Ttran is the transition temperature to an ordered ground state. Frustration is
an important source for the emergence of many exotic states of matter, such as "monopole"
excitation in a spin ice system and "spinon" excitations in the quantum spin liquid system.
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Figure 2.10: Magnetic frustrations in various lattices. (a) Geometry frustration in an equilateral triangle
with antiferromagnetic Ising spins gives rise to six possible ground states. (b) A David’ star with six
triangles in the two dimensional (2D) kagomé lattice (left) and three dimensional (3D) tetrahedral
lattice with four non-coplanar triangles (right). (c) In a square lattice with competing antiferromagnetic
interactions of nearest-neighbour coupling J1 and next-nearest-neighbour coupling J2 of Ising spins, if
the strength of J1 and J2 are comparable, a simple antiparallel arrangement of spins between all possible
nearest-neighbour sites cannot be satisfied simultaneously.
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2.3.1 Quantum spin liquid states

Quantum spin liquid (QSL) is an exotic state of matter with a variety of unusual features aris-
ing from its intrinsic topological character [79]. Despite the fact that it is difficult to give a
clear-cut definition of QSL, an essential ingredient of quantum spin liquids is not the lack of
order, but the presence of an anomalously high degree of entanglement, or massive quantum
superposition [80]. As a highly entangled quantum matter, QSL is proposed to be a possible
platform for decoherence-free quantum computing. In the past decades, a number of materi-
als were identified as possible QSL candidates by various experimental techniques in which
neutron scattering is one of the most powerful probes.
The study of QSL could be dated back to 1973 when Anderson’s famous "resonating valence
bond" (RVB) state was put forward [81–83]. In Anderson’s original RVB model, spins with
S = 1

2 pair with each other and form a singlet state with S = 0 as a result of nearest-neighbour
antiferromagnetic interaction as shown in 2.11(a). If all the spins are formed into singlet pairs
and could be partitioned into specific valence bonds, it comes to the "valence bond" state,
which is non-magnetic and has spin-0. When considering the quantum fluctuation effects, the
pairing of valence bonds are not static and the real ground state is a superposition state of
different pairs in 2.11(b) and (c), which is the "RVB" state.

(a)

(b)

(c)

Figure 2.11: Valence-bond states of frustrated antiferromagnets. In a VBS state: (a) a specific pattern of
entangled pairs of spins-the valence bonds is formed. Entangled pairs are indicated by ovals that cover
two points on the triangular lattice. By contrast, in a RVB state, the wavefunction is a superposition of
many different pairings of spins. The valence bonds may be short range (b) or long range (c). Spins in
longer-range valence bonds (the longer, the lighter the colour) are less tightly bound and are therefore
more easily excited into a state with non-zero spin (taken from Ref.[73]).
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(a)

(b)

(c)

(d)

Figure 2.12: Excitations of quantum antiferromagnets (taken from Ref.[73, 84]). (a) In a quasi-1D system
(such as the triangular lattice), 1D spinons are formed as a domain wall between the two antiferromag-
netic ground states. Creating a spinon (yellow arrow) thus requires the flipping of a semi-infinite line
of spins along a chain, shown in red. The spinon cannot hop between chains, because to do so would
require the coherent flipping of an infinite number of spins, in this case all of the red spins and their
counterparts on the next chain. (b) A bound pair of 1D spinons forms a triplon. Because a finite number
of spins are flipped between the two domain walls (shown in red), the triplon can coherently move
between chains, by the flipping of spins along the green bonds. (c) In a 2D quantum spin liquid, a spinon
is created simply as an unpaired spin, which can then move by locally adjusting the valence bonds. (d)
An example of spinon excitation measured from single crystal ZnCu3(OD)6Cl2. The experiment was
performed at 1.6 K and the dynamic structure factor is plotted for }ω = 6 meV, 2 meV and 0.75 meV.
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In the RVB sate, the distribution of the valence bonds is much broader and there is no prefer-
ence for any specific valence bonds, so this state could be regarded as a "liquid" state. A true
QSL state will not break the lattice symmetry but it has long range quantum entanglement.
Based on the nature of the excitation energy gap, QSL could be loosely classified into two
different classes. For instance, a topological QSL is characterised by the global topological
structure of their ground state wave functions and has an energy gap, while a Kitaev QSL has
a gapless excitation spectrum.
One of the most intriguing exotic excitations of QSL is the "spinon" excitation shown in
Fig.2.12. To understand a "spinon", considering a spin string in a one dimensional system
in Fig.2.12(a), by flipping a semi-infinite string of spins, a spinon is created, similar to the
antiferromagnetic domain walls. In one dimensional system, the boundary of strings is its
end point, so the string is guaranteed to cost only a finite energy from its boundary, while in
higher dimensions, the boundary of a string extends to its full length. A string is expected to
have a tension, which means there is an energy proportional to its length. In a true two di-
mensional or three dimensional QSL, the string associated with a spinon remains tensionless
down to 0 K, as a result of quantum fluctuation. This can be understood from the quantum
superposition principle: rearranging the spins along the string simply reshuffles the various
spin or valence-bond configurations that are already superposed in the ground state.
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2.3.2 Kitaev materials

The celebrated Kitaev model that is an exactly solvable quantum spin model on a two di-
mensional honeycomb lattice with spin-1

2 moments was firstly put forward in 2006 [85]. This
model has attracted tremendous research interests not only because it is solvable but also be-
cause the spins in the Kitaev model could fractionalize into Majorana fermions and its ground
state is QSL. The Hamiltonian involving only pure Kitaev terms may be expressed as:

H = ∑
x

Kxsx
i sx

j + ∑
y

Kysy
i sy

j + ∑
z

Kzsz
i sz

j , (2.10)

where three types of bonds are labelled by x, y and z in the honeycomb lattice as shown in
Fig.2.13(a). The summation is taken over all the nearest-neighbour spins Si, Sj of x, y and z
bonds. This Hamiltonian indicates that the interaction of spins are bond dependent and the
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Figure 2.13: Kitaev model and its realisation in 4d5 or 5d5 compounds. (a) The spin- 1
2 magnetic ions

on the corner of the honeycomb lattice with bond dependent Ising interactions. The bonds in blue,
green and red which have easy axes parallel to the x, y and z directions in a local xyz Cartesian frame
are labelled by x, y and z in the honeycomb lattice. These bonds are directed along y−z√

2
, z−x√

2
and x−y√

2
,

respectively. (b) Splitting of five-fold degenerate d levels of d5 in Ir4+ and Ru3+ into the doublet eg and
the triplet t2g in a cubic crystal field ∆cubic of O6 or Cl6 octahedra. As a result of spin-orbit coupling
interaction, t2g manifold further splits into Je f f =

1
2 doublet and Je f f =

3
2 quartet.

bond related interaction Kx, Ky, Kz could be different due to the symmetry. The orthogonal
anisotropies of the three nearest-neighbour bonds of each spin conflict with each other, lead-
ing to frustration and large ground state degeneracies.
In magnetic ions with 4d5 or 5d5 electronic configuration, such as Ru3+ and Ir4+, the cubic
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crystal field splitting is very large, which overcomes Hund’s first rule favouring the high spin
state, leading to all five d electrons accommodated in the triply degenerate t2g manifold that
comprise dxy, dyz and dzx orbitals [86–88]. Then the spin-orbit coupling breaking further splits
the electronic states into Je f f = 1

2 doublet and Je f f = 3
2 quartet. Experimental evidences of

the formation of Je f f =
1
2 states in Ir4+ and Ru3+ have been found by angle-resolved photoe-

mission, optical conductivity, and x-ray absorption measurements recently. Several candidate
Kitaev materials of Ir4+ and Ru3+ have already been found and are summarized in tab.2.4.

Table 2.4: Summary of the candidate materials to study Kitaev physics and their basic physical proper-
ties.

Electronic configuration Materials Crystal structure TN Magnetic ground state

Na2IrO3 C2/m 15 K Zigzag

α-Li2IrO3 C2/m 15 K Spiral

5d5 β-Li2IrO3 Fddd 38 K Spiral

γ-Li2IrO3 Cccm 39.5 K Spiral

H3LiIr2O6 C2/m No Spin liquid

4d5 α-RuCl3 C2/m or R3 6.5-8 K Zigzag

As an important part of this PhD work, the single crystal growth, crystal structure and mag-
netic structure determination, and magnetic order under magnetic fields or hydrostatic pres-
sure of α-RuCl3 have been studied intensively. High quality and large α-RuCl3 single crystal
samples have been successfully prepared in this PhD work for the study of the crystal struc-
ture and magnetic structure by a combination of various techniques in Chapter.5. The current
research progress and the important results of α-RuCl3 are shown in Fig.2.14. In Fig.2.14(a), in-
elastic neutron scattering experiment of single crystals of α-RuCl3 has already been performed
by the time-of-flight spectrometry. Two sharp branches of antiferromagnetic spin waves along
with a broad continuum excitation were observed at 0 T in the magnetically ordered state. At
8 T, the sharp magnetic peaks from spin waves in the zigzag phase disappeared, leaving only
the continuum. The continuum was temperature independent up to well above 100 K and
was considered as the signature of fractionalised excitations in this proximate Kitaev QSL ma-
terial.
In addition, a half-integer thermal Hall conductance plateau was found in α-RuCl3 shown in
Fig.2.14(b). This half-integer quantization of the thermal Hall conductance in a bulk material
was a signature of the topologically protected chiral edge currents of charge-neutral Majorana
fermions (particles that are their own antiparticles), which had half the degrees of freedom
of conventional fermions [89]. The measurement was carried on a tilted α-RuCl3 single crys-
tal, for which the magnetic field along ab plane H‖ could suppress magnetic order and the
magnetic field perpendicular to ab plane H⊥ could induce thermal Hall effects.
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(a)

(b) (c)

Figure 2.14: Key data of the Kitaev QSL candidate α-RuCl3. (a) Inelastic neutron scattering was measured
at T = 2 K along the reciprocal [H, 0, 0] (r.l.u.) direction in a zero external magnetic field and in a field
of 8 T in the honeycomb plane, where the zigzag magnetic order was suppressed (taken from [90]),
leaving only the continuum. (b) Half-integer thermal Hall conductance plateau: Half-integer thermal
Hall conductance plateau was observed in the thermal Hall conductivity κxy/T in a field tilted at θ =
60◦ from ab plane plotted as a function of H⊥. The top axes show the parallel field component, H‖. The
right scales represent the 2D thermal conductivity κ2D

xy /T, in units of (π/6)
(
k2

B/}
)
. Violet dashed Hall

conductivity represent the half-integer thermal Hall conductance κ2D
xy /

[
T(π/6)

(
k2

B/}
)]

= 1
2 (taken

from [91]). (c) Half-integer quantized anomalous thermal Hall: thermal Hall conductivity κxy in the
antiferromagnetic (grey shaded area) and spin liquid (yellow) states for H ‖ a axis (red circles) and H ‖ b
axis (blue circles) at 4.8 K. In the right axis, thermal Hall conductance per 2D layer κ2D

xy is plotted in units
of the quantum thermal conductance K0 =

(
π2/3

) (
k2

B/h
)

T. The small but finite κxy experimentally
observed for H ‖ b is likely attributed to a misalignment of the magnetic field direction from the b axis.
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This observation of a half-integer anomalous thermal Hall effect firmly establishes that the
Kitaev interaction is primarily responsible and that the non-Abelian topological order asso-
ciated with fractionalization of the local magnetic moments persists even in the presence of
non-Kitaev interactions in α-RuCl3.
Despite that many exciting results have been found in the study of α-RuCl3, there are some
fundamental questions which are pending for answers. One is the exact crystal structure at
low temperature (below 100 K). Due to stacking faults in the sample, the crystal structure of
α-RuCl3 has been reported to be C2/m, P3112 or R3 from different samples. Therefore to pre-
pare high quality samples with less stacking faults density is of great importance to solve the
crystal structure.
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3
Experimental Techniques and Theory

3.1 Single crystal growth

3.1.1 An overview

Single crystal samples are of great importance and serve as the prerequisite for the study
of physical properties of materials. Not only do they offer the opportunities to reveal the
anisotropic properties in the study of dispersive collective excitations, electric and thermal
transport, but also the high quality single crystal samples are a prerequisite to eliminate the
influence from the grain boundaries, size effects in powder samples. This situation is partic-
ularly true in the research of the emergent phenomena in quantum materials since the novel
phenomena that condensed matter physicists are interested in are always the results of a dedi-
cate balance of many subtle effects. For example, the external pressure or magnetic field plays
a crucial role in the tuning of quantum criticality in quantum materials with the presence of
the competing phases. In single crystal samples, one will have more options to study their
anisotropic properties when the external pressures or magnetic fields are applied along the
different crystallographic directions. Besides, in the study of two-dimensional frustrated lay-
ered magnetic materials, the weak Van der Waals interlayer coupling may have profound
influence on the magnetic order since the stacking faults will be introduced inevitably. For
instance, in the Kitaev quantum spin liquid candidate α-RuCl3, for sample with AB stacking
sequence, it antiferromagnetically orders at 14 K; while in the sample with ABC stacking se-
quence, its magnetic transition temperature is reduced to 8 K [92]. In single crystal samples
the mixture of AB and ABC stacking sequences is very common as a result of the nature of
Van der Waals materials, which could be seriously misleading in the understanding of the
intrinsic nature of α-RuCl3.
Among a variety of quantum materials, topological materials, two-dimensional materials and
frustrated magnets stand out because of their fascinating physical properties and huge poten-
tial in the application of spintronics and quantum technologies. The crystal growth of novel
quantum materials is an activity encompassing both theoretical and experimental study and
calling for a broad knowledge of material science, solid-state chemistry, physics, crystallog-
raphy and engineering. Two cutting-edge methods: molten melt flux and chemical vapour
transport are employed in the PhD work to grow single crystal samples. In the next sections,
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several most commonly used crystal growth methods for the synthesis of quantum materials
as well as their realisation in this PhD work will be introduced. Furthermore, a list of the crys-
tal growth experiments that have been carried out during the PhD study is given in Appendix
A.1.

3.1.2 Crystal growth methods

A crystal growth process involves the well controlled transformation of the state or phase
to a solid [93–95]. This may happen from liquid or vapour states to solid states, or from a
solid state to a solid state. The last mentioned case is the solid-solid phase transition, which
is usually unwanted in the process of crystal growth. Based on the states transformation in
the crystal growth [96–108], there are therefore three major methods available for the single
crystal growth: (a) growth of crystals from solutions; (b) growth of crystals from vapours; (c)
growth of crystals from melts.

(a) Growth of crystals from solutions

This kind of method provides the possibilities that crystals can be grown in the tempera-
ture range that is much lower than the melting point, provided there is a suitable solvent and
has the unique advantage that crystals could be grown even if they melt incongruently. The
use of this method is widespread in preparation of water soluble compounds (also known as
hydrothermal method), oxides, halides and intermetallics.
In the hydrothermal method, the lower-solubility crystals are successfully grown in a high-
pressure (above ambient pressure) autoclave. The starting materials and suitable water based
solvents are loaded in the autoclave at ambient condition firstly. Then the autoclave is put in
a precisely temperature controlled incubator. Under the high temperature and high pressure
condition, chemical reactions happen and give rise to the crystallization of the desired com-
ponent. This process may take from several days to several weeks and crystals grown from
the hydrothermal method are usually too small for neutron scattering experiment and have
to be co-aligned together to enhance the signals.
Crystal growth of oxides or intermetallics from solutions (molten flux methods) needs much
higher temperature compared to hydrothermal method. The common working temperature
for this "flux method" is in the range of 100-1200 ◦ C, and this temperature range could be
easily reached by a laboratory furnace. This method is perhaps most generally applicable in
almost every laboratory for the growth of crystals because of the following advantages: (i) the
target compound melts incongruently so it is difficulty to grow it by an optical floating zone
furnace or a Bridgman furnace; (ii) the target compound or the starting materials have very
high melting point, but the growth temperature may be substantially decreased by using a
flux; (iii) flux could help to decrease the loss of volatile constituents and to eliminate the po-
tential risk caused by the high vapour pressure. In the flux growth, the starting materials are
dissolved in a solvent: salt (for oxides) or metal (for intermetallics) with relatively low melting
point firstly. The crystals nucleate and grow at a much lower temperature than the melting
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point at normal condition and grow continuously with the decreasing of the temperature. A
list of the desired properties that an ideal solvent should have is in Tab.3.1.

Table 3.1: Desired properties for an ideal solvent (taken from Ref.[109]).

1. High solubility for the crystal constituents.

2. The crystal phase required should be the only stable solid phase.

3. Appreciable change of solubility with temperature.

4. Viscosity in the range of 1 to 10 centipoise.

5. Low melting point.

6. Low volatility at the highest applied temperature.

7. Low reactivity with the container material.

8. Absence of elements which are incorporated into the crystal.

9. Ready availability in high purity at low cost.

10. Density appropriate for the mode of growth.

11. Ease of separation from the grown crystal by chemical or physical means.

12. Low tendency of the solvent to "creep" out of the crucible.

13. Low toxicity.

Naturally, there is no solvent that fulfils all the requirements and a compromise has to be
made in a real case, depending on the requirement of the size and quality of the crystals. For
instance, the growth of oxides, the solvents that are widely used are listed in Tab 3.2. Crys-
tal growers have to consider all the possible reactions between the solvents and the starting
materials and make the best decision. Lead compounds are still widely used and the most
important attribute of them is the high solubility of refractory oxides owing to the strong
polarization of the Pb2+ ions, and the reaction among staring materials with the lead based
solvents will form the complex ionic species. The solubility of bismuth based compounds is
relatively lower compared to lead based compounds, but in many cases the bismuth com-
pounds can be used to replace the lead compounds since Pb is not very environmentally
friendly. One exception is the growth of crystals containing rare earth elements, in which the
trivalent Bi3+ ions tends to replace the rare earth ions.
When it comes to the growth of intermetallic compounds, there are more information for ref-
erence, for instance the database for binary phase diagrams. Before choosing a suitable flux,
the binary phase diagram is a powerful tool to help to make the decision. The use of metals
with relatively low melting points and high boiling points are widespread and a summary of
metallic fluxes commonly used is listed in Tab.3.3.
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Table 3.2: Properties of the solvents commonly used for the growth of oxides (taken from Ref.[109]).

Type of solvent Solvent Melting
point/◦C

Boiling
point/◦C

Solubility of solvent Remarks

Lead and bismuth PbO 888 1472 Hot HNO3-H2O Environmentally

based compounds PbF2 855 1293 Hot HNO3-H2O unfriendly;

PbCl2 498 954 Hot H2O or acid Corrodes Pt

Bi2O3 820 1890 Hot HNO3-H2O above 1300

Bi2O3-
B2O3

620-720 – Hot HNO3-H2O ◦C

BiF3 727 1027 Hot HNO3-H2O

Borates B2O3 460 1860 HF-H2O

K2B4O7 815 – Hot H2O or acid

BaBO4 1105 – Hot HNO3-H2O

Halides LiF 842 1676 Hot H2O

LiCl 610 1382 Hot H2O

NaF 988 1695 H2O

KF 856 1502 H2O

NaCl 801 1413 H2O

KCl 772 1407 H2O

Hydroxides NaOH 318 1390 H2O

KOH 360 1320 H2O

Table 3.3: Properties of the solvents commonly used for the growth of intermetallics.

Solvent Melting
point/◦C

Boiling
point/◦C

Separation of fluxes Remarks

Sn 232 2270 Centrifugation; Ga; HCl-H2O

Ga 30 2430 Centrifugation; I2-DMF Ref.[110]

In 157 2080 Centrifugation; Ga

Bi 271 1560 Centrifugation;

Pb 327 1740 Centrifugation;

Al 660 2467 Centrifugation; NaOH-H2O

Sb 631 1635 Centrifugation

Te 450 990 Centrifugation; Evaporation

After the crystal growth, the separation between crystals and flux is the last but most impor-
tant step. Decanting and centrifuging are two widely used methods, while the drawback of
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them is self-evident: this process may cause large stress in the crystals from the abrupt ther-
mal shock and the large centrifugal force may break the crystals. Separating flux at very high
temperature is often accompanied by a thermal quenching of the crystal and will thus intro-
duce the thermal shock and internal strain in the crystals inevitably, which may cause serious
problems in the investigation of their physical properties. Yet for all that, many laboratories
choose the centrifuge because they are easily operated and suitable for plenty of different
compounds. A complication of methods to separate the specific flux from crystals has already
been listed in Tab 3.2 and Tab.3.3, and some general techniques that could be considered for
the designing the experiment for the flux separation are shown in Tab.3.4. The experimental

Table 3.4: An overview of the flux separation techniques (taken from Ref.[110]).

Flux separation in the liquid state Czochralski method

Top-seeded solution growth (TSSG)

Centrifugation, spinning off

Pouring out, decanting

Soaking up, ceramic sponge

Flux separation in the solid state Drilling

Etching (acids, bases, water, . . . .)

Evaporation (Mg, Yb, Hg, Zn, . . . .)

Isopropanol route

Alloying (with Hg, Ga)

I2-DMF route

approach and the equipment used (including the tube furnace, centrifugal machine and a
sealed ampoule) for the crystal growth experiments using the flux method in this PhD thesis
are as shown in Fig. 3.1 and in Fig. 3.2, respectively. The Al2O3 crucible with raw materials is
sealed in a quartz ampoule and then it is put in a tube furnace. After it experiences the setted
temperature history, the quartz ampoule is transferred to the centrifugal machine quickly and
the flux is separated from the crystals.
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(a) (b) (c)

Figure 3.1: Sketch of the crystal growth from the flux method in this PhD work. The raw materials are
firstly loaded in an Al2O3 crucible, and then sealed in the silica ampoule with argon atmosphere. When
the growth of crystals finishes, the furnace is rotated by 180 ◦ around a horizontal axis (as shown in the
figure). After that, the ampoule is transferred to the centrifuge to separate the crystals from the flux.

(a) (b) (c)

Furnace

Controllor

Figure 3.2: Equipments of the crystal growth from the flux method in this PhD work. (a) Tube fur-
nace with working temperature from room temperature to 1200 ◦C manufactured by Nabertherm. (b)
Centrifuge. (c) A sealed silica ampoule with samples inside.

(b) Growth of crystals from vapours

The growth of crystals from vapour involves the formation of vapour, cycling of transport
agents and the deposition of crystals [111]. The term chemical vapour transport (CVT) itself
summarizes a variety of reactions that share the following features in common: solid phases
as the reactants and resultants, the presence of one or more intermediate reactants in gas form.
A schematic picture of the crystal growth by CVT is illustrated in Fig.3.3, where the raw ma-
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terials are transferred from the hot end (T1) to the cold end (T2) along with the formation and
growth of crystals.

T
1

T
2

Figure 3.3: Sketch of the chemical vapour transport method. The ampoule is put in the furnace with a
temperature gradient. During the crystal growth, the raw materials in the hot end (T1) are transferred to
the cold end (T2) along with the formation and growth of the crystals.

(a)

(b)

Figure 3.4: Equipments of the crystal growth from CVT method in this PhD work. (a) Three zone tube
furnace for the crystal growth from CVT in this PhD work (Carbolite Gero). (b) A silica ampoule with
α-RuCl3 single crystals after growth inside.

A well-known experiment reported by H. Schäfer in 1956 emphasizes an interesting case that
the migration of iron (III) oxide in the presence of hydrogen-chloride under a temperature
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gradient for the first time. The starting material and transport agent are sealed in quartz am-
poules and this method is still commonly used up to now [112, 113]. The reactions in the
sealed ampoules can be described in a general equation:

iA(s) + kB(g)→ jC(g) + . . . (3.1)

where A(s), B(g) and C(g) are resultants in solid (s) and gaseous (g) form and i, j, k are coef-
ficients. It characterises the fundamental features in a CVT experiment that gaseous products
are transferred from a condensed phase and a gaseous transport agent. The transport rate can
be further calculated by Schäfer’s transport equation:

ṅ(A) =
n(A)

t′
=

i
j
· ∆p(C)

Σp
· T̄0.75 · q

s
· 0.6 · 10−4

(
mol · h−1

)
(3.2)

ṅ(A) Transport rate
(
mol · h−1)

i, j Stoichiometric coefficients in the transport equation
∆p(C) Partial pressure difference of the transport effective species C (bar)
T̄ Mean temperature along the diffusion path (K)
q Cross section of the diffusion path (cm2)
s Length of the diffusion path (cm)
t′ Duration of the transport experiments (h)

The equation can be used in a pressure range between 10−4 and 0.3 kPa to estimate the trans-
port rate in a closed environment. The most important thing for a real experiment is to choose
a suitable transport agent and a proper temperature gradient. There are some popularly used
transport agents: I2, Cl2, Br2, AlCl3, TeCl4, HCl. It must be mentioned here that these trans-
port agents are dangerous at high temperature, thus a rather precise estimation of the possible
vapour pressure in the ampoule at high temperature is necessary. The sealed ampoule is usu-
ally put in a temperature-controlled two or three zone furnace, and in each zone of the furnace,
the temperature can be set independently. The aim of crystal growth for neutron scattering
experiment by CVT is to grow large high quality single crystal. Sadly, it is a pity that the crys-
tals grown by CVT are normally in millimetre sizes and it takes a very long time for a growth
experiment, so it is better to consider other methods first.
The picture of the three zone furnace and one ampoule with α-RuCl3 inside after the crystal
growth is illustrated in Fig. 3.4. There are three independent temperature controlling systems
in the furnace, allowing one to set the temperature gradient depending on the experiment. In
the ampoule, some shiny plate-shape α-RuCl3 crystals can be seen after growth at the end of
the ampoule.

(c) Growth of crystals from melts

The biggest advantage of this method is that crystals grown by this method are usually large
in size, very suitable for neutron scattering experiment, while the drawback is that the crystal
needs to melt congruently and they should not undergo a solid state phase transition during
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cooling. There are three commonly used techniques for growing crystals from the melt:
Czochralski pulling technique: Firstly the starting materials are molten at high temperature
in a crucible. The melt is kept at high temperature and a seed crystal is maintained just below
its melting point. Then in the next step, the seed is brought into contact with the liquid. The
temperatures of the seed and melt are adjusted so that the seed could grow slowly. By pulling
the seed slowly, the crystal could grow along the opposite direction of the pulling.
Bridgman technique: This method needs to maintain the hot zone above the melting point
of the material homogeneously usually by electric induction method. The crucible with ma-
terials inside is slowly moved out of the hot zone, and sometimes a small seed can also be
loaded at the initial point of the growth. The usage of a seed crystal can improve the size of
the crystal and the growth rate can be controlled by the rate of the crucible movement. If there
is no seed, the grain with preferred orientation will be grown by weeding out other grains.
Optical floating zone technique: Crystal growth using this technique has been extensively
used in the preparation of samples, particularly of multiferroics and pyrochlore compounds
for neutron scattering during the past decades. The main part of the optical floating zone fur-
nace is the ellipsoidal or parabolic mirrors to help focus infrared light onto the sample. The
working temperature of the furnace depends on the lamps, and there are two kinds of lamps
that are commonly used: halogen or xenon lamps. The crystal growth procedure is similar to
Bridgman, and the one of the big advantages in the optical floating zone furnace is that by
controlling the focus of the light the heating zone is much smaller, which helps control the
crystal growth precisely. Besides, this technique is suitable for both conducting and insulat-
ing materials. Choosing a suitable crystal growth method is highly dependent on the aim of
experiment. For physical properties measurement, like electric transport or thermal transport,
millimetre size crystals will be enough and for neutron diffraction, a small and high quality
sample is necessary, but for inelastic neutron scattering experiments, especially in order to
observe continuous excitations in quantum spin liquid systems, the requirement for the quan-
tity of the samples is always in several grams. In these experiments, co-aligning many pieces
of small crystals is the most effective way to enhance the weak signals. Therefore, in order to
decide a suitable method for the crystal growth, the available equipments, safety regulations,
the temperature of separation, the mechanical robustness, the chemical stabilities and the tar-
geted experiments for the crystals will have to be taken into account.
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3.2 Neutron scattering theory

Neutron scattering is a powerful tool that can help to gain a microscopic understanding of
many unique properties in condensed matter. Based on the basic properties of neutrons, such
as spin-1

2 , electrical neutrality, neutrons can penetrate deeply into the sample and come close
to the nuclei without overcoming any Coulomb force. In addition, neutron can interact with
magnetic dipole fields due to the unpaired electrons in an atom since it is spin-1

2 , it thus
can provide the information on the arrangement of electron spins and magnetization den-
sity maps in magnetic materials. Neutrons can also be employed to study light elements like
hydrogen or oxygen and distinguish the different isotopes of a element due to their distinct
scattering powers. Moreover, by inelastic neutron scattering, neutrons can detect the dynam-
ics in condensed matter because the energies and wavelengths of neutrons match well to the
time and length scales of many collective excitations in condensed matter. In this section, a
brief description of the general neutron scattering theory [114, 115] will be given.
In a neutron scattering experiment, it is convenient to say the incident neutrons from the
moderator with temperature T have the energy:

E = kBT, (3.3)

where kB is the Boltzmann constant and the de Broglie wavelength of a neutron with velocity
v is

λ =
h

mv
, (3.4)

where h is the Plank constant. The wave vector k and the momentum of the neutron are de-
fined as

k =
2π

λ
, (3.5)

p = }k. (3.6)

Thus, it is easy to obtain the kinetic energy of neutrons given by

E = kBT =
1
2

mv2 =
h2

2mλ2 =
81.81

λ2 . (3.7)

In the above equations, λ is in Å, T is in K, v is in km·s−1 and E is in meV. According to the
energy of a neutron beam, the neutron source for experiments can be divided into three types:
cold (0.1-10 meV), thermal (5-100 meV) and hot (100-500 meV).
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3.2.1 General neutron scattering theory

For an incident neutron beam with incident wave vector ki as shown in Fig. 3.5, the partial
differential cross-section obtained from Fermi’ Golden Rule is(

d2σ

dΩdE′

)
λi→λ f

=
1
N

( m
2π}2

)2 k f

ki
∑

λi ,σi

pλi pσi

∣∣∣〈k f σf λ f |V(r)|kiσiλi

〉∣∣∣2 · δ (}ω + Eλ f − Eλi

)
,

(3.8)
where wave vector ki, spin state σi, energy Eλi represent the sates for an incident neutron, and
after scattering by the interaction potential V(r), the state of neutron becomes k f , σf , Eλ f , and
the quantum numbers λi, λ f denote the initial and finial states of the scattering system. The
δ function describes the law of energy conservation in the scattering system. In addition, a
possible change in energy of the scattering system }ω and the probability pj for the system
or the neutron of being in the quantum state j are also considered. This master formula can
be further applied on neutron scattering of the nuclear with specific interaction potential V(r)
upon some assumptions.

Scattering Plane

Incident
neutrons

k
i

k
f
, θ  ϕ,

dS
dΩ

ϕ

θ

Sample
z axis

Figure 3.5: A sketch of the scattering cross-section, where the incident neutron beam with wave vector
ki changes to k f after scattering at the sample.

The neutron interacts with the nuclei of the sample by short range nuclear forces, which is
much smaller than the typical neutron wavelength. In this regard, the interaction potential of
a crystalline sample can be treated as the point-like potential. The interaction potential can be
described by Fermi pseudo-potential for the nuclear scattering:

V(r) =
2π}2

m ∑
j

bjδ(r− Rj). (3.9)

Here Rj denotes the position of the jth scattering nuclei in the sample, and (r - Rj) provides the
distance between the incident neutron and the jth nuclei. bj is the nuclear scattering length,
which characterises the scattering magnitude of the elements. The momentum transfer is de-
fined as Q = k f − ki, as the spatial variable instead of the neutron wave vectors. The differ-
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ential cross sections for coherent and incoherent nuclear scattering can be further are derived
as (

d2σ

dΩdE′

)
coh

=
1
N

σcoh
4π

1
2π}

k f

ki
∑
j,j′

∫ ∞

−∞

〈
e−iQRj(0)eiQRj′ (t)

〉
eiωtdt (3.10)

and (
d2σ

dΩdE′

)
inc

=
1
N

σinc
4π

1
2π}

k f

ki
∑

j

∫ ∞

−∞

〈
e−iQRj(0)eiQRj(t)

〉
e−iωtdt, (3.11)

where

σcoh = 4π(b̄)2, σinc = 4π
{

b2 − (b̄)2
}

(3.12)

account for the value for the coherent and incoherent scattering length. The coherent scatter-
ing depends on the correlation between the positions of the same nucleus. Therefore it gives
the interference effects and results in the Bragg scattering with a characteristic Q-dependence
of the scattered intensity. The pair correlation function S(Q, ω) can be used to describe the
correlations and concludes the momentum and the energy transfers in a scattering system
with integrating all the correlations in space and time, is the aim for a neutron experiment.

S(Q, ω) =
1
N

1
2π} ∑

j,j′

∫ ∞

−∞

〈
e−iQRj(0)eiQRj′ (t)

〉
eiωtdt. (3.13)

Neutron scattering from crystalline samples

Here the elastic neutron scattering without any energy transfer where the incident and scat-
tered neutrons have the same energy is only discussed. In a crystalline sample, the lattice
vector is given as d = l1a1 + l2a2 + l3a3 if the three basis vectors of the unit cell are denoted
as a1, a2, a3 and l1, l2, l3 are integers. Considering the displacement of atom d from its equilib-
rium position j caused by thermal oscillations ud(j, t), the position of atom d can be expressed
as

Rj,d = j + d + ud(j, t). (3.14)

Therefore, the differential cross section for elastic scattering with invariant incident and scat-
tered energy can be deduced by substituting Rj,d in Equ.3.13.(

dσ

dΩ

)el

coh
=

(2π)3

v0
∑
τ

|FN(Q)|2 × δ(Q− τ), (3.15)

where |FN(Q)|2 is the structure factor, which is defined as

FN(Q) = ∑
d

b̄deiQde−Wd(Q), (3.16)

in which exp(-Wd(Q)) is the Debye-Waller factor, which accounts the mean square displace-
ment of each atom and further reduces the scattered intensity. The |FN(Q)|2 is the Fourier
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transform of the scattering density within the unit cell. It is very important in the determi-
nation of structures and actually is the quantity results measured from a neutron diffraction
experiment since it contains the structure information of the scattered sample.

Magnetic neutron scattering

For magnetic neutron scattering, the incident neutron interacts with magnetization densities
by unpaired electrons by magnetic dipole interactions with the spin of the neutrons. The inter-
action potential between a neutron in spin state S(Q, ω) and a moving electron of momentum
p and spin s is

VM(r) = −γµ2
NµBσ ·

[
curl

(
s× R̂

R2

)
+

1
}

p× R̂
R2

]
, (3.17)

where γ is 1.9132 representing the gyromagnetic ratio, and µN , µB are the nuclear and the
Bohr magneton. Furthermore, by introducing this potential in Equ.3.8 will give the magnetic
scattering expression:(

d2σ

dΩdE′

)
mag

=
(γr0)

2

}
k f

ki
∑
α,β

(
δα,β −

QαQβ

Q2

)
Sα,β(Q, ω), (3.18)

where r0 is the classic electron radius and α, β are spatial coordinates with α, β ∈ [ x,y,z ]. The
corresponding correlation function for magnetic neutron scattering can be interpreted as

Sα,β(Q, ω) =
1

2π

∫ ∞

−∞
∑
j,d

1
2

gd fd(Q)e−Wd(Q)eiQ(j+d)
〈

Sα
0(0)S

β
j+d(t)

〉
e−iωtdt, (3.19)

in which fd(Q) is the atomic form factor of atom d in the unit cell j, g is the Landé factor.

Polarised neutron scattering

The spin of neutrons has provided a unique and invaluable tool to study magnetism in
condensed matter. There are several ways to create polarised neutrons, and the use of He3

gas cells, super-mirrors, Bragg scattering from a crystal monochromator are widespread [116–
120]. The definition of the polarisation of a neutron beam is based on the quantization of the
numbers with neutron in spin up and spin down states, which is written as

P =
n↑ − n↓
n↑ + n↓

. (3.20)

Based on the Blume-Maleyev equation, the polarised neutron scattering differential cross sec-
tion is described with four terms, which are as(

dσ

dΩ

)
= N∗N + M∗⊥ ·M⊥ + (NM∗⊥ + N∗M⊥) · Pi + i (M∗⊥ ×M⊥) · Pi; (3.21)

M⊥ = (Q× FM ×Q), (3.22)
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where N, M⊥ are the structure factor and the magnetic interaction vector, and Pi is the po-
larisation of the incident beam. The first and second term N∗N, M⊥∗ ·M⊥ are pure nuclear
contribution and magnetic contribution respectively. The third term comes from the interfer-
ence between the nuclear and the magnetic signals, and the last one is the chiral magnetic
term. The direction and the magnitude of the beam polarisation is also dependent on the
scattering process. Considering the scattered neutrons have the polarisation Pf, there is

Pf

(
dσ

dΩ

)
= N∗NPi

− (M⊥
∗ ·M⊥) Pi + (Pi ·M⊥∗)M⊥ + (Pi ·M⊥)M⊥

∗

+ (NM⊥
∗ + N∗M⊥)− i (NM⊥

∗ − N∗M⊥)× Pi

− i (M⊥∗ ×M⊥) .

(3.23)

The first line gives the terms parallel to P which do not rotate the polarisation and the second
line gives those which produce rotation towards the interaction vector

M⊥ =< M×Q×M > . (3.24)

Obviously, the nuclear scattering do not change the polarisation while the effect of non chiral
magnetic terms is a precession of the incident polarisation by 180◦ around M⊥. The third term
contributes to the polarisation when magnetic and nuclear signal are in phase and the chiral
term creates polarisation along the scattering Q if it exists. Thus, the scattered neutron spin
P f has the following tensor relationship with incident neutron spin

P f = PPi + P′, (3.25)

where P is a tensor to describe the rotation of the polarisation and P′ is the polarisation cre-
ated.
In experiment, three polarisation directions are defined in a right-handed orthogonal coordi-
nated system, where polarisation direction x is along scattering vector Q, polarisation direc-
tion z is parallel to the scattering plane and polarisation direction y can be found by right-
hand rule. By combining the spin states of the incident or accident states of the polarised
neutron, nine different terms are generated, namely xx, xy, xz, yx, yy, yz, zx, zy and zz, in
which xx, yy, and zz are diagonal terms, which are used for XYZ polarisation analysis.


pfx

pix(N2−M2)−Jyz
Ix pfx

−piy Jx−Jyz
Iy pfx

pizJny−Jyz
Iz

pfy
pix Jnz+Rny

Ix pfy
piy

(
N2+M2

⊥y−M2
⊥z

)
+Rny

Iy pfy
pizRyz+Rny

Iz

pfz
−pix Jny+Rnz

Ix pfz
piyRyz+Rnz

Iy pfz
piz

(
N2−M2

⊥y+M2
⊥z

)
+Rnz

Iz

 (3.26)
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with
N2 = NN∗;

Rni = 2 Re (NM∗⊥i) ; Rij = 2 Re
(

M⊥i M∗⊥j

)
;

Jni = 2 Im (NM∗⊥i) ; Jij = 2 Im
(

M⊥i M∗⊥j

)
;

Ix = N2 + M2
⊥y + M2

⊥z + pix Jyz;

Iy = N2 + M2
⊥y + M2

⊥z + piyRny;

Iz = N2 + M2
⊥y + M2

⊥z + pizRnz,

where N is nuclear structure factor, M⊥y and M⊥z are the magnetic components perpendicu-
lar to Q along polarised y or z direction, thus M⊥ = M⊥y + M⊥z. pix, pix, pix are the incident
neutron beam polarisation. For a pure magnetic reflection, there are N = Rny = Rnz = Jny =

Jnz = 0. In case of pix = pix = pix = p0 and p f x = p f x = p f x = 1, the polarisation matrix can be
further reduced as 

p0M2
⊥−Jyz
Ix

−Jyz
Iy

−Jyz
Iz

0
p0

(
M2
⊥y−M2

⊥z

)
Iy

p0Ryz
Iz

0 p0Ryz
Iy

p0

(
−M2

⊥y+M2
⊥z

)
Iz

 . (3.27)

For each term in the matrix 3.26, the results of the polarisation analysis experiment could
be expressed in terms of generalised cross-sections Iij. The indices i and j each refer to one of
the three orthogonal directions defined by the experiment: the second superscript gives the
direction of polarisation and the first the direction of analysis. They are related to the general
polarisation equation by

Pij =
Iij − I−ij

Iij + I−ij . (3.28)
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3.3 Neutron scattering instruments

DNS (Diffuse scattering neutron time of flight spectrometer)

DNS is a powerful and versatile diffuse scattering cold neutron time-of-flight spectrometer
with polarisation analysis [121, 122]. Based on the XYZ-polarisation analysis technique, DNS
could separate the nuclear coherent, spin incoherent and magnetic scattering unambiguously
and cover a large scattering Q range in reciprocal space. A sketch picture of DNS is illustrated
in Fig. 3.6. Three directions are defined in the DNS as shown in Fig.3.7, where the polarisation
x direction is parallel to the average directions of the scattering vector Q, polarisation z direc-
tion is perpendicular to the scattering plane and polarisation y direction can be determined
by a right-hand rule.

A
B

C

D

E

F

Figure 3.6: Sketch of the DNS instrument. A: Neutron guide NL6-S; B: Monochromator; C: Chopper; D:
Polariser; E: Sample space with XYZ coils; F: Detector banks with polarisation analyser. Figure replotted
from https://mlz-garching.de/dns.
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Scattering Plane

Incident
neutrons

k
i

k
f

Sample

y

Q//x

z┴ scattering plane

Figure 3.7: Definition of the x, y, z direction in a polarised scattering experiment.

The scattering intensity measured in each XYZ-polarisation channel in DNS follows the be-
low rules:

Table 3.5: The scattering intensities measured in different channels at DNS.

Polarisation Spin-flip Non Spin-flip

P ‖ x ‖ Q 2
3

dσ
dΩinc

+ bg + dσ
M⊥y

dΩmag
+ dσM⊥z

dΩmag
dσ

dΩcoh
+ 1

3
dσ

dΩinc
+ bg

P ‖ z ⊥ Q 2
3

dσ
dΩinc

+ bg + dσ
M⊥y

dΩmag
dσ

dΩcoh
+ 1

3
dσ

dΩinc
+ bg + dσM⊥z

dΩmag

where P, x, y, z, Q, dσ
dΩinc

, dσ
dΩmag

, bg denote neutron beam polarisation, x, y, z neutron polari-
sation directions, scattering vector, incoherent cross section, magnetic cross section and back-
ground. The most important separating rule at DNS is when P ‖ x ‖ Q, if the background
and incoherent scattering is ignored, the intensity in x-spin-flip channel is pure magnetic scat-
tering while the intensity in x-non-spin-flip channel only measures the nuclear contributions.
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Single crystal diffractometer

A

B
C

D

E

2θ

(a)

(b)

Figure 3.8: Pictures of the four cycle diffractometer instrument. (a) A picture of HEiDi. Source: https:
//mlz-garching.de/heidi. (b) Sketch of horizontal scattering plane of the diffraction: A: Neutron
guide; B: Monochrometer; C: Slits or collimators before and after sample. D: Sample space; E: Detector.

D10 (Institut Laue-Langevin, Grenoble) and HEiDi (MLZ, Garching) are both typical con-
stant wavelength four circle single crystal diffractometers [123, 124]. The sketch of D10 is
shown in Fig. 3.8(b), where the scattering plane is the horizontal plane when the Orange
Cryostat is used . To start a neutron diffraction experiment at such instrument requires the
pre-knowledge of lattice parameters of the samples and the rough orientation of the crystal-
lographic axes. A typical neutron diffraction experiment normally lasts 3-10 days depending
on the number of measured (hkl) reflections. In order to measure a (hkl) reflection, the detec-
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tor is moved to the calculate 2θ position , and then rotate the sample about a vertical axis to
right position to collect intensities. After collecting the data, neutron data normally needs to
be corrected for the refinement.
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3.4 Physical properties measurement

Magnetization (DC), heat capacity and electrical resistivity measurements are performed on
Quantum Design Physical Properties Measurement Systems (PPMS) (shown in Fig.3.9) by
standard procedure. PPMS uses the thermal relaxation method to measure the heat capac-
ity, which measures the response of the sample after a heat perturbation. A flat-plate-shaped
sample with a smooth surface is mounted on the micro-calorimeter platform linked by four
threads with thermal conductance to the cryostat (Bath). Apiezon N grease is used to increase
the thermal conductivity between the micro-calorimeter platform and the sample. The puck
with an appropriate amount of the grease has to be measured separately and subtracted from
the raw data of the sample measurements to obtain the absolute heat capacity of the sample.
The measurement of longitudinal electrical resistivity and Hall resistivity employs the stan-
dard four points method with ETO option of PPMS on a commercial sample pack from quan-
tum design. Magnetic susceptibility is measured under both field cooling and zero field cool-
ing conditions on a standard procedure at PPMS.

Figure 3.9: Picture of quantum design PPMS system. Source: www.qdusa.com/products/ppms.
html
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3.5 Magnetic structure determinations from neutron diffraction

The magnetic structures of crystalline samples determined form neutron scattering experi-
ments are mainly solved by two crystallographic approaches: magnetic space groups (Shub-
nikov groups) and group representation theory applied to conventional crystallographic space
groups [125–133]. The magnetic space group approach is widespread used to describe the
invariance symmetry properties and commensurate magnetic configurations, while the rep-
resentation analysis is more general and can be applied to all kinds of magnetic structures
[134]. By extending the magnetic space group to the magnetic superspace groups, one can
describe the incommensurate magnetic structures successfully, which has the advantage of
understanding the macroscopic properties derived from the spin configurations [131]. This
section will introduce fundamental knowledge of magnetic symmetry and the application of
group representation in the magnetic structure determination.

3.5.1 Magnetic space groups

Considering the magnetic group M, which is the subgroup of the direct product crystallo-
graphic group G and the time-reversal group G:

M ⊂ G⊗ R (3.29)

where R = {1, 1′} and 1, 1′ are identity and time-reversal symmetry, respectively [128, 129].
The magnetic groups derived from the crystallographic group G can be constructed consid-
ering the index 2 subgroups H of G as constituting the unprimed elements and the rest of
operators, (G − H), those that are multiplied by the time-reversal operator. The magnetic
group is then expressed as

M = H + (G−H)1′. (3.30)

The International Table of Crystallography, Volume A (ITA) has summarised the subgroups
of index 2 for all the space groups.
Following Eq.3.30, one can construct the magnetic point groups. There are 32 trivial mag-
netic point groups, 32 paramagnetic groups and 58 black-white point groups. However, only
31 magnetic point groups are admissible, in which the ordered magnetic structure could be
realised. For instance, if the point group is G = 4/m, the magnetic point groups are

{4/m, 4/m′, 4′/m′, 4′/m}

derived from Eq.3.30. If there is a magnetic moment S is put at the origin pointing along ar-
bitrary direction and applying the operator, the magnetic moment S should vanish. Similarly,
if the magnetic moment is put along the four fold symmetry or lies in the mirror plane, the
magnetic moment also vanishes. This proves that not all the magnetic point groups are admis-
sible. The primitive Bravais lattices could be constructed by the linear combination of three
non coplanar basis vectors {a1, a2, a3}:

TP = {t | t = l1a1 + l2a2 + l3a3, li ∈ Z} ,
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where li, i = 1, 2, 3 are integers. In the centre lattice , the centre vectors are added tC
i , i = 1, ..nc:

TC =
{

t | t = l1a1 + l2a2 + l3a3 + n1tC
1 + n2tC

2 . . . + nnc tC
n,l , li ∈ Z, ni ∈ {0, 1}

}
.

The translation group can always be described using a primitive cell but, in order to simplify
the expressions of the symmetry operators a centred basis is often more convenient. Follow-
ing the previous procedure one can construct the different magnetic Bravais lattices. A total
number of 1651 types of magnetic space groups are derived and among them 230 magnetic
space groups have the form P = G + G′ (paramagnetic or "grey" groups) and 1191 magnetic
space groups are "black-white" groups with the form M = H + (G−H)1′. In the last groups,
the translation subgroup contains "anti-translations" (pure translations combined with the
time-reversal operator).
In the magnetic space groups, the first kind the subgroup of translations is the same as that
of the parent space group, and in other words, the magnetic unit cell is the same as the crys-
tallographic unit cell. In the second kind there are some translations associated with time-
reversal operator, so that the “primitive magnetic unit cell” is bigger than the primitive crys-
tallographic unit cell.
In order to refine the magnetic structure from neutron diffraction data by the magnetic space
group approach, one has several choices. Jana2006 has integrated the magnetic space groups
and the magnetic superspace groups options for users [135]. When input the neutron diffrac-
tion data and propagation vector, Jana2006 could calculate the symmetry allowed magnetic
space groups models and users could refine the data in different models and find the best so-
lution [135]. Besides, Fullprof also supports the refinement by magnetic space groups, and the
corresponding profile controlling file (PCR) could be generated from online crystallographic
tools "Bilbao crystallography server" [136].

3.5.2 Group representation analysis of magnetic structure

The group representation theory is a very useful tool to describe and classify magnetic or-
der in materials [137–141]. The matrices Γ(g) ascribed to each element g for which the same
multiplication rules as for the group G holds is termed a representation of group G:

Γ = {Γ(g) | g ∈ G}, Γ (g1g2) = Γ (g1) Γ (g2) . (3.31)

A new matrix system which is similar to G could be generated by similarity transformation
by the unitary matrix U:

UΓ(g)U−1 = Γ̃(g), (3.32)

which is also a representation of the group G.
If a representation Γ of group G could be portioned so that it has the form

Γ̃(g) =

 Γ11(g) Γ12(g)

0 Γ22(g)

 , (3.33)

for each g ∈ G, then the matrices Γ11(g) and Γ22(g) are also representations of group G. A
representation of a group G is said to be reducible if it could be written in form of Eq.3.33,
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otherwise it is said to be "irreducible", known as irreducible representations ("irreps").
A reducible representation can be expressed as the direct sum of irreps:

Γ = ∑
⊕ν

nνΓν = n1Γ1 ⊕ n2Γ2 ⊕ n3Γ3 · · · ⊕ nmΓm, (3.34)

where ν is the index of the representation with dimension lν. The number of irreducible rep-
resentations of a group and their dimensionality are entirely determined by the structure of
the group.
When Γν

ij and Γµ
lm are the matrices of different irreducible representations, the orthogonality

relation is

∑
g∈G

Γν∗
ij (g)Γµ

lm(g) =
n(G)

lv
δilδjmδµν, (3.35)

where n(G) is the order of group G. The traces of the representation matrix is the character
of the element in group G: χ(g) = tr(Γ(g)) = ∑

n(G)
j=1 Γ(g)jj. The Equ.3.35 could be reduced to

the orthogonality relation for the characters of the irreps

∑
g∈G

χν∗(g)χµ(g) = n(G)δµν. (3.36)

The quantity nν, which describes the multiplicity of the νth irreps is given by

nv =
1

n(G) ∑
g∈G

χ(g)χ∗ν(g). (3.37)

If ϕi(i = 1, 2, ...p) donates a set of physically relevant functions of the working space and the
action of the operator O(g) associated to a symmetry operator when applied to the function
is given by

O(g)ϕj(r) = ϕ′(r) = ∑
i

Γij(g)ϕi(r). (3.38)

The general procedure obtained in the theory of representations for constructing the basis
functions ψ of a given irreps of group G means having the so-called projection operator P act
upon some starting function ϕ

ψv
i = Pν ϕ =

1
n(G) ∑

g∈G
Γ∗νi[j](g)O(g)ϕ (i = 1, . . . lν) . (3.39)

The pure translation group T is a subgroup of the space group, which is Abelian and hence,
the irreps is all one-dimensional. Obviously, an element T(g) corresponding to some transla-
tion t = n1t1 + n2t2 + n1t3 can be represented in multiplication form:

T(t) = [T(t1)]
n1 [T(t2)]

n2 [T(t3)]
n3 . (3.40)

Considering the cyclic condition for a three dimensional finite crystal, the corresponding
equation for the elements of the translational group can be written as

[T(ti)]
Ni+1 = T(ti) (i = 1, 2, 3), (3.41)
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where Ni denotes the number of primitive cells of the crystal in the ith direction. Then the one
dimensional representations representations satisfy the two requirements is

T(t)→ exp
{

2πi
(

p1l1
N1

+
p2l2
N2

+
p3l3
N3

)}
, pi, Ni ∈ Z&0 ≤ pi ≤ Ni − 1. (3.42)

There exist N1N2N3 representations which could be expressed in the reciprocal vectors and
the matrix of representation k corresponding to translation t is then

Γk(t) = exp
{

2πi
(

p1l1
N1

+
p2l2
N2

+
p3l3
N3

)}
= exp{2πikt}, (3.43)

where k =
(

p1
N1

, p2
N2

, p3
N3

)
= p1

N1
b1 +

p2
N2

b2 +
p3
N3

b3 is reciprocal space vector and restricted to
the first Brillouin zone. The basis functions of the irreps of the group of translations could be
written in the Bloch functions

ψk(r) = uk(r) exp{−2πikr}, (3.44)

where uk denotes a periodic function with the periods of the non-inverted lattice.
Then the irreducible representations of the space group G and of their basis functions are
constructed. The pure translations T(t) will transform the function ψk(r) into itself with the
numerical phase factor exp(−ikt). Under the action of other symmetry operators O(g) =

{h|tg} (h and th denote rotation and translation parts) in the space group, the basis functions
will be transformed into some other functions.

{h|th}ψk(r) = ψ′(r). (3.45)

Act the pure translation on the new function ψ′(r), and there will be

O(t)ψ′(r) = exp{2πihkt}ψ′(r), (3.46)

so that Bloch functions also serve as the basis functions. However, the irreps of the group G
are not one-dimensional in general case. If it is assumed that the form

{h|th}ψk(r) = ψhk(r). (3.47)

The set of non-equivalent k vectors obtained by applying the rotational part h of the symmetry
operators of the space group constitutes the "star of k" in case that (H + k) is equivalent to k.

{k} = {h1k1, h2k1, h3k1, h4k1, . . .} =
{

k1, k2, . . . klk

}
, (3.48)

where ki is called the "arm of the star". Since all vectors k start from the centre of Brillouin
zone, the vectors k are not affected by translation. The set of symmetry element that leaves k
unchanged is termed the wave vector group or the little group Gk, which is a subgroup of G.
The expansion of the group G in its subgroup Gk is conveniently stated in cosets:

G = Gk + g2Gk + · · · =
lk

∑
L=1

gLGk. (3.49)
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The arbitrary magnetic structure only taking translation symmetry into consideration could
be expressed as Fourier series:

ml j = ∑
k

Skj exp (−2πikRl) , (3.50)

where the atom j in the unit cell has the lattice vector Rl and k is propagation vector of the
magnetic structure. If k = (0, 0, 0) = 0, there will be ml j = S0j exp (−2πi0Rl) = m0j, which
means the magnetic unit cell coincides with the crystal unit cell. The magnetic structure could
not only be ferromagnetic, but also antiferromagnetic, collinear or non-collinear. This kind of
magnetic structure could be described by one of the 230 monochrome or 674 black-white first
kind magnetic space groups.
If k = 1

2 H (H is a reciprocal lattice vector), there will be

ml j = Skj exp (−πiHRl) = Skj(−1)HR f = Skj(−1)nl = m0j(−1)nl ,

which means the magnetic moments in the jth cell are either parallel or opposite to the 0th
cell. The magnetic structure is naturally antiferromagnetic and can be described by one of the
517 black-white magnetic space groups.
If k is not a special vector as in the two previous cases, there is no magnetic Shubnikov group.
The general expression of Fourier coefficient for the atom j is given by:

ml j = ∑
(k)

{
Rkj cos 2π

[
kRl + φkj

]
+ Ikj sin 2π

[
kRl + φkj

]}
, (3.51)

where
(
Rkj, Ikj

)
are coefficients defined in (xyz) three directions. Incommensurate magnetic

structures like helix or cycloid magnetic structures are expressed in this form.
Now taking Wyckoff positions into consideration, if the magnetic atom site j has equivalent
atoms js(j1, j2, ...jpj) under the symmetry operators of the little group Gk, then the magnetic
representation matrix for the site j and propagation vector k can be calculated by applying
the symmetry operator to the unit vectors of the working complex space, which has the di-
mension nj = 3× pj. The explicit components for the magnetic representation matrices are:

ΓMag → Γkj
qβ,sα(g) = e2πikaj

gs det(h)hβαδ
j
q,gs, (3.52)

where α, β = 1,2,3 or x, y, z and s, q denote equivalent positions. The δ symbol has value to
1 when the operator g transforms the atom s into atom q, and zero otherwise. By introduc-
ing the permutation representation by the axial representation of dimension 3, the magnetic
representation is further expressed as

ΓMag = ΓPerm ⊗ ΓAxial. (3.53)

The magnetic representation ΓMag can be decomposed in irreducible representations of the
propagation vector group. The number of possible basis functions NBV of the irreps of Gk

that describes possible magnetic structures can be calculated by NBV = nν × lν. And the basis
functions of the irreps of Gk can be calculated from the projection operator in Eq.3.39.
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In addition, for symmetry analysis, when working with magnetic structure, the Fourier coef-
ficient Skjs in Eq.3.50 that describes magnetic structures of propagation vector k must be a
linear combination of the basis functions of the Gk irreducible representations:

Skjs = ∑
nλ

Ckv
ni Skv

nλ(js), (3.54)

where ν demotes the active irreps Γν of the little group Gk; λ denotes the component corre-
sponding to the dimension of the representaion Γν; n is an additional index running between
one and the number of times the representation Γν is contained in the global magnetic repre-
sentation Γmag.
This is the principal relation for magnetic symmetry analysis and the the magnetic structure
determination. To refine or analyse the magnetic structure by the the representation approach,
one can perform irreducible representation analysis by "BasIreps" or "SARAh" and obtain the
basis functions of irreps [142, 143]. The magnetic structure could be refined by copying the
basis functions to to the Fullprof input file (PCR) directly.
The general expression for the magnetic structure factor of neutron scattering at position
h = H + k is

M(h) = p
na

∑
j=1

Oj f j(h)e
−Bj|h/2|2 ∑

s=1,...pj

MjsSkj1 exp
{

2πi
[
(H + k){h | t}srj

1 − ψkjs

]}
, (3.55)

where p = 0.2695 is a constant; fi(h) is magnetic form factor; e−Bj|h/2|2 is isotropic thermal
motion term; ψkjs is the phase factor. The sum over j concerns the atoms of the magnetic asym-
metric unit for the wave vector k, so that j labels different sites. The sum over s concerns the
symmetry operators of the wave vector group Gk. The phase factor ψkjs has two components:

ψkjs = Φkj + φkjs, (3.56)

where Φkj is a phase factor that is not determined by symmetry and φkjs is a phase factor
determined by symmetry. If there is more than one propagation vectors in the magnetic struc-
ture known as multiple k magnetic structures, and there is no strong coupling with the crys-
tal lattice, it is not possible to determine unambiguously the spin configuration because the
phase between the different Fourier components can not be determined by diffraction meth-
ods [131].
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Mn3Sn

4.1 Introduction

Anomalous Hall effect (AHE) signified by the transverse voltage jumps at zero magnetic field
arises when an electric current is applied in ferromagnets [53]. Recent developments in the the-
ory and experiment have proved that AHE can also be observed in certain antiferromagnetic
materials when the time-reversal symmetry is broken [61, 68, 144–146]. For example, in a non-
coplanar magnetic structure, the non-vanishing scalar spin chirality could give rise to AHE
because its non-coplanar moments will break time-reversal symmetry with the spin rotation
operator RST, while in a coplanar non collinear magnetic structure, the finite anomalous Hall
effect can be explained with the intrinsic Hall effect concept induced by the non-vanishing
Berry curvature in the momentum space when the time-reversal symmetry is broken (see
Sec.2.2.1).
One famous case is the topological Weyl semimetal Mn3A (A = Sn, Ge), which has been an
active study topic since the discovery of the large anomalous Hall effect, large Nernst ef-
fect at room temperature, magnetic Weyl fermions, magnetic inverse spin Hall effects [40, 45,
63–66, 147–154]. Mn3A (A = Sn, Ge) crystallizes in a hexagonal structure with space group
P63/mmc as shown in Fig.4.1. In every unit cell of Mn3A, manganese atoms form a frustrated
kagomé lattice in each z = 1/4 and z = 3/4 layers with tin or germanium atoms occupying the
centre positions of the kagomé lattice. It has been already well proved that Mn3Sn exhibits
an antiferromagnetic (AFM) order below 420 K [155]. Early neutron experiment reveals that
the magnetic structure has the propagation wave vector k = (0,0,0) with a so-called "inverse
triangular magnetic structure", where for each Mn-triangles in the kagomé plane, it has the
negative vector spin chirality [63] as illustrated in Fig.4.1. This kind of orthorhombic inverse
triangular magnetic structure is stabilized by Dzyaloshinskii-Moriya (DM) interaction, along
with the ordered manganese moments lying in the crystallographic ab basal plane along with
the weak ferromagnetism also in ab plane [67, 156–158]. The magnetic structure space group
model is proposed to either Cm’cm’ or Cmc’m’. Both of them follow the same irreducible rep-
resentation and there is a unitary mirror symmetry in the magnetic structure to preserve the
in-plane Berry curvature staying finite by breaking the time-reversal symmetry as discussed
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in Sec.2.2.2 [65, 147].

a

b

a
b

c

Sn Mn (z=3/4) Mn (z=1/4)

z=¾

z=¼

Figure 4.1: Crystal structure of Mn3Sn. For each z = 1/4 and z = 3/4 layers, Mn-atoms form a frustrated
kagomé plane. For each triangle in the kagomé plane, the vector spin chirality which is calculated by
V = SiSj + SjSk + SkSi where Sj, Sj, Sk are magnetic spins, is negative.

In samples prepared from Czochralski method, the AHE could persist to 50 K from room
temperature [63, 149, 154, 159, 160]. However, in the as-grown samples synthesised from Sn-
flux method, the AHE completely disappears after a magnetic phase transition around T1 =
v280 K. By annealing the samples prepared by the Bridgman method between 700-850 ◦C,
a similar transition could also be observed at much lower temperature and neutron diffrac-
tion experiments in these samples revealed the emergence of two modulated phases, which
were reported from the double in-plane helix magnetic structures at low temperature [155,
161]. Below this phase transition temperature in the flux grown single crystals, the large AHE
vanishes dramatically as well as the weak ferromagnetism in the crystallographic ab plane,
implying a significant change in the magnetic structure [154, 160]. In addition, a very recent
report revealed that excess Mn in Mn3Sn suppressed this magnetic phase transition between
the triangular magnetic structure at room temperature and the modulated phases at low tem-
perature, and introduced magnetic defects at low temperatures, leading to a glassy ferromag-
netic phase in Mn-rich samples [162]. Thus, in order to understand the interplay between
magnetic structure and AHE, high quality Mn3Sn single crystals have been prepared from
the molten flux method [154, 159, 160] and their physical properties and magnetic structures
have been studied via comprehensive methods.

4.2 Single crystal growth

The Mn-Sn binary phase diagram [163] is shown in Fig.4.3 and it is evident that Mn3Sn exists
only with excess Mn presence in Mn3Sn below 984 ◦C. This can explain why the real compo-
sitions of Mn3Sn differ from samples to samples, since for different crystal growth methods,
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they have been prepared from different starting compositions and cooling speeds. Compared
to crystals grown from other methods, for instance Bridgmann or Czochralski mehods, crys-
tals grown by Sn self-flux methods have the advantage that samples could be separated from
the melt by using a centrifuge and its composition is decided by the phase diagram. In the
Sn self-flux grown method, 30 at.% of Sn and 70 at.% of Mn have been used as the starting
material, which could help decrease the precipitation temperature of Mn3Sn. In some batches,
the centrifuging temperature has been set to be 800 ◦C for test, but the second phase Mn2Sn
will precipitate, which is ferromagnetic order at 230 K and have some effects on the character-
ization of sample properties.
High quality Mn3Sn single crystals were grown from molten Sn self-flux methods [154, 159,
160]. Starting materials of Mn pieces (99.95%, Alfa Asear) and Sn Granules (99.99%, Chempur)
with a molar ratio of 7:3 were loaded in an Al2O3 crucible with some quartz wools on the top
of crucible as a filter and then the crucible was sealed in a quartz ampoule. The ampoule was
heated to 1100 ◦C in 10 hours, dwelt at 1100 ◦C for 20 hours, and cooled down to 900 ◦C at a
rate of 1 ◦C/hour. Finally, when the temperature decreased to 900 ◦C, the ampoule was trans-
ferred to a centrifuge quickly to separate crystals from the Sn flux. In some batches, crystals
were not fully separated from flux and excess Sn flux could be removed mechanically easily
from Mn3Sn crystals. As-grown crystals are very shiny and there is no flux left on the samples.
Typical pictures of as-grown crystals are shown in Fig.4.2.

Figure 4.2: Picture of as-grown Mn3Sn single crystals on the millimetre paper from batch WX098 (left)
and batch WX100 (right).
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Figure 4.3: Mn-Sn binary phase diagram [163].
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4.3 Chemical composition determination

The chemical composition of the as-grown samples was determined by EDX (Energy-dispersive
X-ray spectroscopy) and neutron diffraction experiment. Based on the fundamental principle
that each element has a unique atomic structure allowing a unique set of peaks on its elec-
tromagnetic emission spectrum, EDX is widespread used in the determination of material
compositions in the materials science. Two batches of the samples were selected to be tested
by EDX. As-grown single crystals from two batches WX098 and WX100 were picked for EDX
measurement and the results are summarised in Tab.4.1. For each batch, five small pieces of
crystals were glued on the surface of the conductive tape and the composition of Mn or Sn
was determined by averaging different samples. The results in Tab.4.1 prove that the compo-
sition of the as-grown crystals is quite close to the stoichiometric sample and the excess of Sn
in the sample may come from the Sn flux.

Table 4.1: EDX (Energy-dispersive X-ray spectroscopy) results for Mn3Sn samples grown from Sn
self-flux method with the starting molar ratio of 7:3 of Mn and Sn.

Batches Mn (at.%) Sn (at.%) Mn3Sn

WX098 74.37 25.63 Mn3Sn1.033

WX100 70.85 29.15 Mn3Sn1.234

Single crystal neutron diffraction was also carried out to determine the composition of Mn3Sn
at HEiDi at MLZ. It is well known that Mn has a negative scattering length while Sn has a
positive scattering length, which creates a large contrast for the refinement. In this regard, the
composition of Mn3Sn could be decided very accurately by refining the single crystal neutron
diffraction data.
Single crystal neutron diffraction experiment was performed on four circle neutron diffrac-
tometer HEiDi at MLZ at 210 K (reasons will discussed in Sec.4.4). 707 nuclear reflections
were collected for the determination of the composition and crystal structure at 210 K. The
refinement was conducted on the crystallographic computing system Jana 2006 [135]. The
picture of refined square of structure factors versus calculated square of structure factors is
shown in Fig.4.4 and the refined lattice parameters are shown in Tab.4.2. The refined weighted
Rw is good, as small as 2.64 %, indicating there is no structural transition down 210 K. The
refined occupation for Mn is 1.016(7) for the flux grown high quality crystal. If the excess man-
ganese will occupy the positions of tin, the plausible composition is Mn3.012Sn0.988 assuming
there is no vacancies in Sn sites in the sample. This result means only 1.2% of tin is replaced
by manganese, proving that the sample is quite close to the stoichiometric sample and high
quality.
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Observed square of
structure factors

Figure 4.4: Refined square of structure factors versus calculated square of structure factors of the pure
nuclear reflections for the Mn3Sn from single crystal neutron diffraction data at 210 K collected at HEiDi
at MLZ.

Table 4.2: Mn3Sn nuclear structure refinement parameters from neutron single crystal diffraction data
taken at 210 K.

Atom Site x y z Occ. Uiso (Å2)

Mn 6h 0.8387(1) 0.6773(2) 0.25 1.016(7) 0.0073(2)

Sn 2c 0.3333 0.6667 0.25 0.3333 0.0064(3)

Occ.: atoms occupation

a=b=5.66(8) Å, c = 4.52(8) Å

R(obs) = 2.30%, Rw(obs) = 2.59%, Rw(all) = 2.64%

58



4.4. MAGNETIC PROPERTIES OF MN3SN

4.4 Magnetic properties of Mn3Sn

Firstly, to check the sample quality among different batches, three batches of the sample were
measured by PPMS. All of the crystals showed the same magnetic phase transition at 280 K,
proving the reproducibility of the sample preparation method as shown in Fig.4.5. WX098
and WX138 batches have the same starting compositions, which is Mn:Sn (7:3 in molar ratio)
and the starting materials ratio for WX 100 batch is Mn:Sn (7.2:2.8 in molar ratio). Therefore
the magnetic phase transition temperature in the sample from WX100 batch is a little different
from WX0198 and WX139 batches. The different susceptibility behaviours below 260 K result
from the contamination of Mn2Sn in the samples , which orders ferromagnetically below 250
K [164, 165].
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Figure 4.5: Comparison of magnetic susceptibility of Mn3Sn from different batches measured for field
along c direction under zero field cooling condition, where a phase transition is observed at v280 K.

Magnetic properties of an as-grown crystal (batch WX098) were further measured in the crys-
tallographic ab plane and along c direction in various conditions as shown in Fig.4.6. Zero
field cooling (ZFC) and field cooling (FC) susceptibility measured with 1000 Oe external field
in ab plane are illustrated in Fig.4.6(a). The results prove the occurrence of a manifested phase
transition around 280 K, which is expected for the magnetic phase transition from the trian-
gular antiferromagnetic structure to the modulated phases. From 300 K to 280 K, ZFC and

59



CHAPTER 4. MN3SN

FC susceptibilities well coincide with each other and at 280 K a conspicuous drop in mag-
netic susceptibility happens at T1 = 280 K. After this drastic change in magnetic susceptibility,
there is initially no difference between ZFC and FC susceptibilities, implying that this mag-
netic structure below T1 is still antiferromagnetic. In the following temperature range, the
magnetic susceptibility exhibits several kinks, the one at round ∼250 K comes from the con-
tamination of Mn2Sn [164, 165], which has a magnetic phase transition from the paramagnetic
state to the ferromagnetic state. In addition, there is another kink at∼200 K, which is reported
to be the anisotropy change of double helix magnetic structures [159].

(a)
(b)

(c) (d)

Figure 4.6: Magnetic properties of Mn3Sn single crystals. (a) Temperature dependence of magnetic
susceptibility measured in Mn3Sn ab basal plane and c direction under a magnetic field of 1000 Oe in
field cooling (FC) and zero field cooling (ZFC) conditions. (b) and (c) Isothermal magnetization of ab
plane and c direction measured at 300 K, 270 K and 2 K. (d) Comparison of isothermal magnetization of
ab plane and c direction at 270 K.

Below 45 K, a drop in ZFC susceptibility happens, which is considered to be a spin glass be-
haviour similar to that observed also in crystals grown from other methods. By comparison
of magnetic susceptibility of ab basal plane and c direction measured under field cooling con-
dition in Fig.4.6(a), it is obvious that above T1 the magnitude of susceptibility for ab plane is
about three times of that for c direction, while after the phase transition at T1, the anisotropy
between ab basal plane and c direction reverses, which is direct evidence for the change of
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magnetic anisotropy in Mn3Sn. Isothermal magnetization data for both ab plane and c direc-
tion measured at 300 K, 270 K and 2 K are illustrated in Fig.4.6(b), respectively. At 300 K, it is
clear that a weak ferromagnetic hysteresis loop can be found in ab plane with the remanence
of Br(300 K) = ∼5 mµB per Mn. Besides, this weak ferromagnetism is absent for c direction,
which is similar to the previous report [63]. While at 270 K below phase transition at T1, the
magnetic hysteresis disappears completely in ab plane with no obvious change in c direction
as shown in Fig.4.6(d).
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4.5 Electrical transport properties of Mn3Sn

Electrical resistivity and Hall effects were measured on an oriented as-grown single crystal
from the same batch (WX098) with the magnetic susceptibility. Longitudinal resistivity ρxx

was measured along [1,2,0] and [0,0,1] directions from 300 K to 2 K at zero field, which are
plotted in Fig.4.7. When temperature decreases to the base temperature, the resistivity demon-
strates the metallic behaviour for both directions and a small but distinct resistivity jump can
be seen at T1 in [1,2,0] direction, consistent with the magnetic phase transition temperature.
The jump of resistivity in [1,2,0] direction implies the decrease of electron density of states at
Fermi surface, which could be explained as the open of energy gaps at the Fermi surface. By
contrast, there is no such a jump in the resistivity of [0,0,1] direction.

T
1

I // [-1,2,0]

I // [0,0,1]

Figure 4.7: Temperature dependence of longitudinal electrical resistivity ρxx of the Mn3Sn as-grown
single crystal with current applied along [0,0,1] and [1,2,0] at zero field.

Magnetic field dependence of Hall effects measured under various conditions are depicted
in Fig.4.8. When the magnetic field B ‖ [0,1,0], AHE arises at 300 K for I ‖ [0,0,1] and I ‖
[1,2,0] as shown in Fig.4.8 (a) and (b) with the same magnitude as the samples prepared from
other methods [63]. While when B ‖ [0,0,1], no AHE is observed, indicating only an in-plane
magnetic field could induce AHE in Mn3Sn. This result is consistent with previous report be-
cause only the Berry curvature in ab plane is preserved by the symmetry. When temperature
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is below T1, AHE disappears in all the directions and does not recover until 2 K, indicating sig-
nificant change in the magnetic structure at T1. It is concluded that the symmetry conditions
for the non-vanishing of Berry curvature is broken in the magnetic structure since there is no
structural phase transition at low temperature. Therefore, a systematic study of the magnetic
structures in Mn3Sn is essential to understand the disappearance of AHE in Mn3Sn.

(a) (b)

(c) (d)

Figure 4.8: Magnetic field dependence of Hall effects in Mn3Sn. (a) Measured with the electric current
along [0,0,1] and magnetic field along [0,1,0] under various temperatures. (b) Measured with the electric
current along [1,2,0] and magnetic field along [0,1,0] under various temperatures. (c) Measured with the
electric current along [0,0,1] and magnetic field along [0,0,1] under various temperatures. (d) Comparison
of AHE among three above measured conditions at 300 K.
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4.6 Neutron diffraction

Various neutron diffraction experiments have been performed to study the phase transition
and magnetic structure of Mn3Sn at low temperature:
DNS at MLZ for xyz polarisation analysis;
HEiDi at MLZ for crystal structure and magnetic structure determination;
D23 at Institut Laue-Langevin (ILL) for high resolution diffraction study;
IN12 at ILL for spherical polarisation analysis with Cryopad option.
With the combination of the results of these techniques, the magnetic structure at room tem-
perature and especially the low temperature modulated phases are successfully and ambigu-
ously solved.

4.6.1 Magnetic structure at room temperature

It has been already well proved that Mn3Sn exhibits an antiferromagnetic (AFM) order around
420 K [155]. Early polarised neutron experiments revealed that the magnetic structure is k
= (0,0,0) orthorhombic inverse triangular magnetic structure. The magnetic structure space
group model is proposed to be either Cm’cm’ or Cmc’m’. Both of them follow the same ir-
reducible representation and there is a unitary mirror symmetry in them to preserve the in-
plane Berry curvature finite by breaking the time-reversal symmetry [65, 147] as shown in
Fig.4.9. The only difference for the proposed magnetic structure models is the direction of
ordered magnetic moments: in the Cm’cm’ model, magnetic moments are parallel to 〈110〉
crystallographic directions while in Cmc’m’ model, magnetic moments are parallel to 〈100〉
directions.
To further confirm the magnetic structure at 300 K, single crystal neutron diffraction experi-
ment was carried out at single crystal neutron diffractometer HEiDi at MLZ at 300 K [123].
Irreducible representation analysis was performed by online crystallographic tools Bilbao
crystallographic server [136]. For the k = (0,0,0) room temperature magnetic structure, the
little group Gk can be decomposed as

Gk =

mGM(1)
1− ⊕mGM(1)

2+ ⊕mGM(1)
2− ⊕mGM(1)

3+ ⊕mGM(1)
3− ⊕mGM(1)

4+ ⊕mGM(2)
5+ ⊕ 2mGM(2)

5−

⊕ 2mGMG(2)
6+ ⊕mGM(2)

6−

The active irreducible representation (Irreps) mGM(2)
6+ is two dimensional and allows two mag-

netic space group models: Cmc′m′ and Cm′cm′ as shown in Fig.4.9 (a) and (c). 1350 reflections
were refined by crystallographic computing system Jana2006 and the calculated structure fac-
tor versus observed ones for each the magnetic structure is shown in Fig.4.9. Both the calcu-
lated square of structure factors for the two models are quite consistent with the measured
values and the refined ordered moment at 300 K is 2.54(8) µB and 2.53(10) µB for each model,
close to 3.00(1) µB that was obtained by J. Brown at 200 K [67]. To separate the two models
is quite challenging for the unpolarised neutron experiment because of the existence of the
magnetic domains. In a recent spherical polarised neutron diffraction experiment on Mn3Ge,
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the magnetic structure model Cm’cm’ has been determined to be the ground state at 1.5 K
[166]. Ab initio calculation has demonstrated that the energy difference between these two
magnetic structure models is in the calculation uncertainty [151, 152], thus a small perturba-
tion may favour one of them.
As also marked in Fig.4.9 (a) and (c), the mirror symmetry in Cmc′m′ and Cm′cm′ is along x or
y direction, respectively, which ensures the non-vanishing of Berry curvature in momentum
space.

(a)

(c)

(b)

(d)

m

m’

x

y

x

Mn 3/4)(z = Mn ( 1/4)z =

m

m’

y

Figure 4.9: (a-d) Two magnetic structure models Cm’cm’ ( (a) and (b)), Cmc’m’ ((c) and (d)) and the
refined structure factors versus measured structure factors from single crystal neutron diffraction data
collected at HEiDi at MLZ. Magnetic symmetry elements in ab plane are also marked, where x is parallel
to crystallographic [1,0,0] direction and y is parallel to crystallographic [1,2,0] direction. m is mirror
plane symmetry and m′ is mirror plane plus time-reversal symmetry. Single crystal neutron diffraction
data was collected at HEiDi at MLZ at 300 K.
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Table 4.3: Refined results for the magnetic structures of Mn3Sn at 300 K with magnetic propagation
vector k = (0,0,0) from single crystal neutron diffraction data collected at HEiDi at MLZ. The Wyckoff
position used here is still from P63/mmc space group.

Magnetic space group model 1: Cm′cm′

Atom Site x y z Occ. Uiso(Å2)

Mn1 6h 0.8387(1) 0.6775 0.25 1.016 0.00615(13)

Mn2 6h -0.6775 0.1612(1) 0.25 1.016 0.00615(13)

Sn 2c 0.3333 0.6667 0.25 0.3333 0.00462(12)

R(obs) = 2.27%, Rw(obs) = 2.72%, Rw(all) = 3.05%

MMn = 2.54(8) µB

Magnetic space group model 2: Cmc′m′

Atom Site x y z Occ. Uiso(Å2)

Mn1 6h 0.8386(1) 0.6773 0.25 1.016 0.00617(13)

Mn2 6h -0.6773 0.1614(1) 0.25 1.016 0.00617(13)

Sn 2c 0.3333 0.6667 0.25 0.3333 0.00467(13)

R(obs) = 2.30%, Rw(obs) = 2.75%, Rw(all) = 3.08%

MMn = 2.53(10) µB

a = b = 5.66(9) Å, c = 4.52(9) Å

It should be mentioned here that for an ideal kagomé lattice formed by Mn-atoms, the six
triangles have the same bond length. In Mn3A materials, the Wyckoff position for Mn is 6h (x,
2x, 1/4), only when x = 5/6 (0.8333) the kagomé plane is perfect, otherwise it develops into the
breathing type with unequal bond length between two nearest triangles. In Mn3Sn, the refined
x is 0.8386(1) in the flux grown crystal, close to a recent Bridgman grown crystal, where the
refined x is 0.8385(1), which also shows a similar transition at∼ 260 K [167]. The slight change
in the atom positions of Mn-atoms results in a non-ignorable breathing amplitude as large as
0.18 Å with a 6.6% difference in ratio between two nearest triangles by contrast to that of
0.01 Å in a Czochralski method grown Mn3Ge sample in Tab.4.4. The small difference in the
structure between Mn3Sn and Mn3Ge may explain the phase transition in Mn3Sn at 280 K.

Table 4.4: Crystal structure parameters for Mn3Ge obtained from [168].

Atom Site x y z Occ.

Mn 6h 0.833(1) 0.666(2) 0.25 1

Ge 2c 0.3333 0.6667 0.25 0.95

a = b = 5.338(1) Å, c = 4.3148(3) Å
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4.6.2 Polarised analysis of DNS

XYZ-polarisation analysis of Mn3Sn was carried out at DNS as shown in Fig.4.10.
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Figure 4.10: Contour maps of the measured neutron diffraction intensities in the (h0l) scattering plane of
the Mn3Sn as-grown single crystal under x spin-flip, z spin-flip and z non spin-flip channels measured
at 300K, 260, 210 K and 140 K reconstructed from DNS-data, respectively.
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For XYZ-polarisation analysis, the scattered intensity for each channel has been introduced
in Sec.3.5. A high quality as-grown Mn3Sn single crystal was aligned in (h0l) scattering plane
and measured in x spin-flip (xsf), x non-spin-flip (xnsf), z spin-flip (zsf) and z non-spin-flip
(znsf) channels at various temperatures.
The results are shown in Fig.4.10, in which xns f data is omitted since no magnetic reflections
are measured in this channel. At 260 K below the magnetic phase transition, the magnetic
reflection at (1,0,0) in xs f channel vanishes completely along with the emergence of pairs of
satellite reflections around (1,0,±0.1) in xs f , zs f and zns f channels. When temperature is re-
duced down from 260 K to 140 K, there is no evident change in all the channels.
The resulting cross section results cut (Q-scan calculated from the contour maps) from DNS
contour maps at 260 K, 210K and 140 K are illustrated in Fig.4.11. It is evident that the antifer-
romagnetic peak (1,0,0) for the inverse triangular magnetic structure disappears completely
in xsf channel and there are two pairs of modulation peaks in xs f channel around (1,0,±0.1)
which could be well separated by zs f and zns f channels surprisingly. The modulated reflec-
tions in zns f and zs f channels are denoted as q1 and q2, respectively. When temperature is
lowered to 210 K, in xs f channel there is only a single peak but it could still be separated into
two reflections in zns f and zs f channels, but they appear at the same position. At 140 K, the
reflections in zns f and zs f channels split again, but now the reflections q1 and q2 in zns f and
zs f exchange Q positions: the reflection in zns f channel moves from low Q to high Q, while
the reflection in zs f moves from high Q to low Q. The temperature dependent behaviour of
the periods of the modulated phase proves that the low temperature magnetic structure is
incommensurate.
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(a)

(b)

(c)

Figure 4.11: Q-scan along [1,0,L] (r.l.u.) direction obtained from cutting along [1,0,L] (r.l.u.) direction in
DNS contour maps in xsf, zsf and znsf channels at (a) 260 K, (b) 210 K and (c) 140 K: two modulated
reflections in xsf channel can be well separated in zsf and znsf channels.
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To understand the polarisation analysis results from DNS, the scattering geometry for this
experiments are discussed in Fig.4.12.
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Figure 4.12: Scattering geometry of the experiments at DNS at MLZ. (a) The scattering plane is (h0l)
plane where the magnetic moment M in (hk0) plane can be decomposed into M[1,2,0] and M[1,0,0] first.
Then M[1,0,0] can be further projected onto [0,0,1] direction M[1,0,0]⊥Q. Q1 is the scattering vector for the
reflection [1,0,0] in crystallographic ab plane and Q2 is the scattering vector for modulated reflections. θ

is the angle between scattering vector Q and (hk0) plane. (b) The (h0l) plane and the scattering vectors
are depicted, where θ is shown.

According to the definition of XYZ directions at DNS, x polarised direction is parallel to the
average scattering vectors Q in the experimental scattering (h0l) scattering plane, and the
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vertical direction perpendicular to the scattering plane is the z polarised direction which is
always parallel to [1,2,0] crystallographic direction in this experiment. It is clear that for the
magnetic scattering, only the magnetic components M⊥Q are measured and they will be pre-
sented in xs f channel because of Q ‖ P. And for zs f channel and zns f channels, the presence
of magnetic peaks are practically dependent on the geometry relationships among P, Q and
the magnetic interaction vector M⊥Q. When measuring at (1,0,0) peak, the scattering vector
Q1 is in ab basal plane along [1,0,0] direction as depicted in Fig.4.12. In this geometry, there
will not be any intensity contribution from ab basal plane to the zs f channel since Mab⊥Q ‖ z,
so all the intensities in zs f will measure only magnetic components along c direction. By con-
trast, except the nuclear reflection, zns f channel will also measure the magnetic contribution
along [1,2,0] direction. Therefore, the magnetic contribution can be decomposed into two or-
thogonal parts for Q1: the magnetic moments lying in ab plane will be measured in zns f
channel and the magnetic moments along c direction will be measured in zs f channel. In the
polarised analysis data at 300 K in Fig.4.10, magnetic reflections only appear in xs f and zns f
channels proving that all the magnetic moments well lie in the ab basal plane at 300 K, which
is consistent with the neutron diffraction experiment at HEiDi.
When it comes to 260 K below T1, the scattering vector Q2 for xs f channel is along [1,0,δ] for
each satellite peak. In this case, both magnetic components in and out of ab basal plane will
be measured in zs f channel because the scattering vector Q2 is not in ab plane any longer. In
zs f and zns f channels, the intensity that have been measured can be written in the following
formulas if the background and incoherent scattering are not considered:

σ
s f
zz = σ

s f
xx − σ

s f
yy = M2

y = M2
[1,0,0] sin2 θ + M2

[0,0,1] cos2 θ

σ
ns f
zz − σ

ns f
xx = σ

s f
yy = M2

z = M2
[1,2,0]

(4.1)

where σ
j
i , i = xx, yy, zz and j = s f , ns f are intensity in x, y or z channels in spin-flip chan-

nel or non-spin-flip channel. Assume that there is no magnetic component along c direction
just as previously reported [161, 167], the contribution from magnetic components only in ab
plane to the intensity in zs f channel can be estimated. Considering at Q position (1,0,1/10)
which is at the middle of two modulated reflections, the angle between Q2 and ab basal plane
is about θ2 = tan−1(((2π/c) ∗ 0.1)/(2π/(

√
3a/2)) = 6.22◦. The magnetic moments project-

ing perpendicularly to Q2 from ab basal plane is as small as M//[1,0,0]⊥Q = M//[1,0,0]sinθ2 =
0.11M//[1,0,0], which means less than 1.2% magnetic moment will contribute to the observed

intensities in zs f channel because of I ∝ M⊥Q
2. However, the magnetic modulated reflection

observed in zs f channel is even stronger than that of zns f channel, thus it can be deduced that
there should be some contribution from the magnetic moments along c direction. As a result,
the magnetic structure below 280 K has transformed from a non collinear coplanar inverse
triangular magnetic structure to a modulated non-coplanar magnetic structure. This is a new
result since in all the previous papers, the low temperature magnetic structure is considered
as a double helix magnetic structure, but the polarised neutron analysis shows the emergence
of out plane magnetic moment explicitly.
At DNS, the x spin polarisation direction is parallel to the average directions of scattering
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vector Q and in this case, the x spin flip channel could not be separated with y spin flip chan-
nel since for a specific scattering position x polarisation direction is not strictly parallel to Q.
Polarised neutron diffraction experiment was also performed at the triple axis spectrometer
IN12 at the ILL in Grenoble with the help of the Cryopad option [116], which ensured that
the x polarisation direction is strictly perpendicular to the scattering vector Q and y is per-
pendicular to x direction and z direction. Two samples from different batches were aligned in
the (h0l) and (hk0) scattering planes, respectively. The magnetic phase transition was firstly
checked by following the intensity of (1,0,0) and (1,1,0) in xs f and xns f channels as shown in
Fig.4.13. It is clear that both the magnetic reflections (1,0,0) and (1,1,0) completely disappear
in the samples and the magnetic phase transition occurs at 280 K, consistent with the mag-
netic susceptibility and electrical resistivity results. Below the magnetic phase transition, the
polarisation analysis was measured in six channels at 260 K and 178 K as shown in Fig.4.14.
This result is consistent with DNS results but the modulated reflections are fully separated
due to the high resolution at IN12.

(a)

(b)

Figure 4.13: Temperature dependence of magnetic reflections: (a) (1,0,0) and (b) (1,1,0) measured in xs f
and xns f channels at IN12 at ILL, respectively. The reflections (1,0,0) and (1,1,0) were measured on
samples from two different batches.
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Based on the equation 4.1, the square of magnetic components |M|2
[1,2,0]

and |M|2[0,0,1] could
be calculated. As mentioned before, the angle between the scattering vector for satellite re-
flection and ab plane is as small as θ2 = 6.22◦, thus in zs f channel, the contribution from
|M|2[1,0,0] could be omitted. In this regard, the intensities in zs f and zns f represent magnetic

components along |M|2[0,0,1] and |M|2
[1,2,0]

, which are plotted in Fig.4.14. This result is quite
surprising because it means the magnetic components along c direction and in ab plane have
different modulated wave vectors.

260 K

260 K

178 K

178 K

(a) (b)

(c) (d)

Figure 4.14: Polarised analysis results obtained at IN12 at ILL. (a-b) XYZ polarised analysis measured in
six channels at 260 K and 178 K for satellite reflections. (c-d) Calculated square of magnetic components
|M|2

[1,2,0]
and |M|2[0,0,1] from (a-b) at 260 K and 178 K.

4.6.3 High resolution neutron diffraction study of modulated phases

Due to the poor resolution at DNS, it is difficulty to separate the two modulated reflections
completely. In this regard, high resolution unpolarised neutron diffraction data was also taken
at D23 in ILL, Grenoble under various temperatures to study the temperature dependence
behaviour of the modulated phases. The data has been plotted as a contour map and is illus-
trated in Fig.4.15. From the contour map, in the temperature range between 300 K and 2 K,
the magnetic phases could be roughly classified into four regimes: (i) above 280 K, where the
magnetic structure is k = (0,0,0) antiferromagnetic; (ii) between 280 K and 250 K, where the
modulated wave vectors q1 < q2; (iii) between 250 K and 200 K, where the modulated wave
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vectors q1 = q2 and (iv) between 200 K and 2 K, where the modulated wave vectors q1 > q2.
Single crystal neutron diffraction data was also collected at 225 K with propagation vector k
= (0,0,1/10) to solve the magnetic structure since at this temperature q1 = q2 = 0.1L(r.l.u).
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Figure 4.15: Contour map of temperature dependence of incommensurate phases in Mn3Sn measured at
the two-axis neutron diffractometer D23 at ILL.
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In addition, the higher order harmonics q3 which are present around (1,0,±0.3) are also very
clear from the high resolution scan. By fitting each scan, one can obtain the fitted peak centres,
which reflect the modulated wave vectors in Fig.4.16. From the polarisation analysis results, it
is clear that the magnetic intensity in zs f channel comes from the magnetic components along
c direction while the magnetic intensity in zns f channel comes from the magnetic components
in ab plane. The q1 in zns f channel can be denoted as qT which means the magnetic compo-
nents are transverse with the wave vector that is along c direction and q2 in zs f channel as
qL as it propagates along the longitudinal direction of the wave vector. The higher order is
to be indexed by calculating three times of qT or qL according to previous reports [156, 158],
but this does not work as illustrated in Fig.4.16 (b). Then the third harmonic is indexed by
the combination of qT and qL. Surprisingly, the high order harmonic q3 could be successfully
indexed by (2qL + qT), which is a solid evidence of the emergence of a double-q magnetic
modulation at low temperature in Fig.4.16 (c).
A spin density wave magnetic structure model could explain this double-q magnetic struc-
ture, which can be expressed as the combination of a helix with magnetic moments parallel
to the ab plane and rotation axis perpendicular the ab-plane and a longitudinal sine-wave
modulation along c direction with independent q wave vector. For the helix modulation in ab
plane, it can be further decomposed into two orthogonal parts for each Mn(Rl):

(Mab)[1,2,0] = Mabcos(2πqT ·Rl + φab);

(Mab)[1,0,0] = Mabsin(2πqT ·Rl + φab)

and the observed intensity in zns f channel is actually contributed from

(Mab)[1,2,0].

The magnetic moments along c direction can only be modulated in their amplitudes:

Mccos(2πqL ·Rl + φc).

As a result, the moment for Mn in each layer is

MMn(Rl) = Mab(2πqT ·Rl + φab) + Mc(2πqL ·Rl + φc),

thus the total amplitude of Mn can be l independent only if

qT = qL.

This physical picture of spin density wave model is consistent with the electrical resistivity in
Fig.4.7, where a sudden increase of the resistivity upon cooling is observed that corresponds
to the formation of an energy gap around the magnetic phase transition at 280 K, which is a
signature of the formation of the spin density wave.
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(a)

(b)

(c)
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Figure 4.16: (a) The Q-scan measured from D23 at ILL could be well fitted by simple Gaussian functions
for each peak. The higher order harmonic q3 has been scaled up by 10 times. (b) and (c) The index of the
higher order harmonic q3. Only (2qL + qT) could fit q3 very well, which is the direct evidence that the
low temperature magnetic structure is a double-q magnetic structure.
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4.6.4 Magnetic structure of Mn3Sn at 225 K

When the modulation wave vectors qT = qL = 0.1L(r.l.u.) between 250 K and 200 K, there is
a single peak in xs f , zs f , zns f channels. It has to be mentioned that this single peak measured
at unpolarised neutron diffraction could still be well separated at DNS with two nearly equal
intensity peaks in zs f and zns f channels in Fig.4.10. The magnetic structure of this qT = qL
phase at 225 K was investigated by single crystal neutron diffraction at HEiDi in MLZ.

Figure 4.17: Refined square of structure factors versus calculated structure factors for magnetic structure
of Mn3Sn at 225 K from single crystal neutron diffraction data collected at HEiDi at MLZ.

362 reflections (168 main + 194 satellite) were collected with propagation wave vector k =
(0,0,1/10) at 225 K and refined with the magnetic superspace approach by Jana2006 [135]. In
the magnetic superspace approach, the magnetic moment of the atom µ can be expressed by
a Fourier series of the type:

Mµ

(
k · rµ

)
=Mµ,0 + ∑

m

[
Mµ,ms sin

(
2πmk · rµ

)
+Mµ,mc cos

(
2πmk · rµ

)]
where Mµ,0, Mµ,ms and Mµ,mc are the absolute value, amplitude of sine term and amplitude of
the cosine term, respectively. The representation analysis and possible magnetic superspace
symmetry analysis is performed automatically by Jana2006 [126]. By trials and errors, the best
fitting magnetic superspace model is found, which is P6322.1′(00g)-h00s shown in Fig.4.17
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with refined R(obs) = 3.43%, Rw(obs) = 5.27%, Rw(all) = 5.49% and the refined parameters
are summarized in tab.4.5. As illustrated in Fig.4.18, this structure model is indeed a non-
coplanar spin density wave where the phase and the amplitude of of the magnetic moment
on the Mn atoms varies periodically, consistent with the polarised neutron analysis. The trans-
verse magnetic components lying in ab plane is a helix and the magnetic components alongc
direction is a longitudinal spin density wave.

c
ba

(a) (b) (c)

Figure 4.18: Refined magnetic structure from single crystal neutron diffraction data of Mn3Sn at 225 K
collected at HEiDi at MLZ. (a) Superstructure of Mn3Sn with ten Mn3Sn unit cells, where only Mn atoms
are plotted. Magnetic structure model is plotted by Vesta [62]. (b) The magnetic components along c
direction are a longitudinal spin density wave, which are measured in zns f channels. (c) The magnetic
components lying in ab plane are a helix, which are measured in zs f channels.
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Table 4.5: Refined parameters of the topological semimetal Mn3Sn at 225 K based on the magnetic
superspace model P6322.1′(00g)-h00s from single crystal neutron diffraction data collected at HEiDi at
MLZ.

Atom Site x y z Occ. Uiso (Å2)

Mn 6h 0.8383(2) 0.6766(2) 0.25 1.016 0.0050(3)

Sn 8j 0.3333 0.6667 0.25 0.3333 0.0040(5)

Refined magnetic parameters for waves in Bohr magnetons:

Waves length (µB)

0 0.0(0)

sin 3.0(5)

cos 2.7(3)

R(obs) = 3.43%, Rw(obs) = 5.27%, Rw(all) = 5.49%

The observed reflections are those reflections with I/sigma ≥ 3.

Occ.: atom occupation;

Uiso: isotropic atomic displacement parameters.
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4.7 Discussion

4.7.1 Sample comparison between the samples in this work and old Bridgmann
samples

Fig.4.19 shows the Q-scan along [1,0,L] (r.l.u) in the flux grown sample (a-b) and Q-scan
along [1,0,L] (r.l.u) in an old Bridgman sample (c) and (d) [161] respectively. It is clear that
at 260 K (1,0,0) peak in the sample in this work is about 11300 cts/s and the intensity for the
modulated peak is 4000 cts/s, leading to a ratio about 2.82, while for the Bridgman sample, the
intensities for (1,0,0) and the modulated peak are 71000 ct/min, 700ct/min, leading to a ratio
of 101.43 at 260 K. Apparently, the phase transition in the old Bridgman sample pertains only
to a very small part of the sample and most of it remains in the room temperature triangular
inverse antiferromagnetic order. In addition, in the sample in this work the polarised neutron
diffraction has proven the complete disappearance of the antiferromagnetic (1,0,0), indicating
the intrinsic nature of this transition in the sample. Besides, a latest resistivity study of Mn3Sn
has demonstrated that only when the composition of the sample is close to stoichiometry, this
magnetic phase transition at ∼280 K will not be suppressed [162].

(a) (b)

(c) (d)

Figure 4.19: Comparison of the Q-scan along [1,0,L] (r.l.u) direction in the flux grown sample in this
work and Q-scan along [1,0,L] (r.l.u.) direction in an old Bridgman sample from [161]. (a)-(b): The sample
in this work measured at 260 K and 210 K. (c-d) The Bridgman sample measured at 260 K and 220 K.
The cut-off peak (1,0,0) in (c) and (d) has an intensity of ∼ 71000 Counts/min.
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4.7.2 Reasons for non-coplanar order

The possible reasons for the non-coplanar magnetic order in Mn3Sn are discussed from the
crystal structure and Dzyaloshinskii–Moriya (DM) interaction.
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Figure 4.20: (a-b) Crystal structure of Mn3Sn. The unit cell of Mn3Sn and a kagomé lattice in crystal-
lographic ab plane. In the kagomé plane, the length of the nearest triangles d1 and d2 has a breathing
amplitude of 0.18 Å, giving a ratio of 1.066. (c)-(d) DM interactions in a kagomé plane with and without
a mirror plane: (c) The DM interaction vectors (red dots and green arrows) are perpendicular to the
kagomé plane. (d) When the mirror plane of the kagomé is broken, there are in plane DM interaction
vectors. (e) The interlayer DM interaction vectors which are perpendicular to the two fold rotation sym-
metry in the kagomé plane lie in the ab plane. This in-plane DM interactions could drive the magnetic
moments to tilt out of the ab kagomé plane.

The slight distortion of the kagomé lattice could be one of the reasons for the non-coplanar
magnetic order. As mentioned before, for an ideal kagomé lattice formed by Mn-atoms, the
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six triangles in kagomé plane have the same bond length. In Mn3A materials, the Wyckoff
position for Mn is 6h (x, 2x, 1/4), only when x = 5/6 (0.8333) the kagomé plane is perfect,
otherwise it develops into the breathing type with unequal bond length between two nearest
triangles as shown in Fig.4.20. In Mn3Sn, the refined x is 0.8386(1) in the flux grown crystal in
this work, close to a recent Bridgman grown crystal, where the refined x is 0.8385(1), which
also shows a similar transition at ∼ 260 K [167]. The slight change in the atom positions of
Mn-atoms results in a non-negligible breathing amplitude as large as 0.16 Å with a 6.6% dif-
ference in ratio between two nearest triangles as shown in Fig.4.20. Whereas for Mn3Ge, it
is quite close to a perfect kagomé lattice with only 0.007 Å breathing amplitude. Similar to
the negligible breathing difference, there is no report about sample dependence or phase tran-
sition in Mn3Ge to the knowledge. The small in-plane distortion of Mn3Sn may cause this
non-coplanar magnetic order since frustrated magnets are very sensitive to these delicate in-
teractions.
In addition, as shown in Fig.4.20 (c)-(e), three kinds of DM interaction are considered in
Mn3Sn from the viewpoint of Moriya’s law [169]. For a kagomé plane the middle of the con-
nection of two nearest Mn atoms is not on an inverse centre. Besides, if this kagomé plane is
a mirror plane, the direction of DM interaction will be perpendicular to the kagomé plane at
this position, which is the case (c). In case (d), if the mirror plane is broken, then there will
be in-plane DM interactions, which will drive the magnetic moments from in-plane to out of
plane. The crystal structure of Mn3Sn was checked at 210 K by single crystal neutron diffrac-
tion and there is no structural transition, which means the kagomé plane is a mirror plane
so that there will not be any in-plane DM interaction arising from the nearest interaction in
kagomé plane. However, if the next nearest interlayer interaction of Mn3Sn is considered, as
shown in case (e), there is a two fold rotation symmetry crossing the kagomé plane, the mid-
dle point C of the connection the two atoms A and B is located in kagomé plane, which has
the in-plane direction for the DM interaction. This in-plane DM interaction may cause the
magnetic moment tilted from ab plane to c direction.

4.7.3 Reasons for absence of AHE in the low temperature

In order to understand the absence of anomalous Hall effect below T1 = 280 K, first consider
the qT = qL phase. In the low temperature modulated phases, the mirror symmetry in the in-
verse triangular structure has been broken by the non-coplanar order so it is not expected any
contribution from non-vanishing Berry curvature. From the viewpoint of symmetry analysis,
a general property of incommensurate magnetic modulation with single modulated wave vec-
tor is the existence of a spatial translation time-reversal symmetry in the superspace group,
where there is a time-reversal operator combined a lattice translation of one half for the mag-
netic superspace [130]. In this case for the qT = qL phase, since the period is 10c, the magnetic
moments at "lic" and "(li+5)c" are related by the time-reversal symmetry in the superspace.
In addition, as mentioned before, for a non-coplanar magnetic structure, the non-vanishing
scalar spin chirality can generate AHE and it is defined as

κijk = si · (sj × sk)
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, where si, sj, sk are the spins. This result is further confirmed by the online magnetic space
group model analysis on Bilbao Crystallographic Server [129, 136, 170] and the single crystal
neutron diffraction result. To integrate the scalar spin chirality of the qT = qL phase in a
superspace structure, the summation will readily be zero due to the existence of the spatial
translation time-reversal symmetry. In this regard, it is anticipated that the AHE in the qT =

qL phase would vanish since there will be no contribution from either the non-vanishing Berry
curvature or the scalar spin chirality. For the qT 6= qL phases, the magnetic structure could
be described by a double-q magnetic structure of a superposition of two single-q magnetic
structures which describe the magnetic moments in ab plane and c direction by qT and qL,
respectively. The scalar spin chirality is still zero because qT and qL are orthogonal to each
other. That is the reason that AHE from 280 K to 2 K is not observed.
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4.8 Conclusion

In this chapter, the high quality single crystal growth, magnetic phase transition and magnetic
structures of the topological Weyl semimetal Mn3Sn are systematically studied. The following
important results are obtained:
1. There is a magnetic phase transition around ∼ 280 K in the self-flux grown sample in this
work, which is a transition from coplanar inverse triangular magnetic structure to a novel
double-q non-coplanar incommensurate magnetic structure.
2. The large AHE has completely disappeared after the magnetic phase transition because of
the broken symmetry.
3. In the experiments of the polarised neutron scattering study at DNS and high resolution
neutron diffraction at D23, the temperature dependence of this double-q magnetic structure
has successfully been revealed .
4. Single crystal neutron diffraction experiment on Mn3Sn at 225 K was performed and the
magnetic structure in the qT = qL phase was successfully determined.
This work is of great research importance because it is the first time to reveal the nature of low
temperature magnetic structure of Mn3Sn. Since materials with multiple-q magnetic order
are fertile playgrounds to study the topological textures and novel electrical properties, it
is anticipated that Mn3Sn may become a new prototype material to study the relationship
between magnetic order and topological properties in antiferomagnets.
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α-RuCl3

5.1 Single crystal growth of α-RuCl3

Single crystals of α-RuCl3 were grown by the chemical vapour transport method in a three-
zone furnace. The principles and methods of chemical vapour transport have been discussed
in Sec.3.1.2. As discussed before, the greatest challenge in the growth of α-RuCl3 is to min-
imize the stacking faults density, since stacking faults are inevitable for the growth of Van
der Waals materials by chemical vapour transport methods. By optimising the crystal growth
condition, controlling the crystal growth speed and improving the purity of starting materi-
als, the density of stacking faults has been reduced substantially in this work.
The stacking faults in α-RuCl3 will introduce some magnetic orders from different stacking se-
quences at low temperature, which could be observed in the heat capacity with several small
anomalies between 10 K and 15 K along with the main zigzag magnetic anomaly around 7.5 K
[92, 171, 172]. Fig.5.1 compares the heat capacity of α-RuCl3 single crystal samples grown from
different batches. The heat capacity of WX009, WX011 and WX031 shows several kinks at∼10
K, ∼14 K, which are signatures of the magnetic order from different stacking sequences [92],
while in the heat capacity of samples from WX086, only a sharp λ-shape peak is observed,
proving high quality of this sample.
The final optimised growth procedure is as following: The raw materials α-RuCl3 powders
(∼3-5 g) are sealed in a silica ampoule with 12 cm in length and 2 cm in diameter in vacuum.
Then the ampoule is put in the three zones furnace, where the middle point temperature is
set as 700 ◦C, and 780 ◦C for the source part, 680 ◦C for the sink part. Depending on the
amount of the raw materials, it takes 4 days for 3 g starting materials for the growth. After
growth, the ampoule is taken out from the furnace directly without cooling down the furnace.
This procedure is very important because it avoids the formation of small crystals during the
cooling of ampoule in the furnace. It also should be mentioned here, that the quality of the
raw material is essential to grow large crystals with minimised stacking fault density. The
raw materials with high quality are black powders and that in this PhD work is bought from
Furuya metal, which has 49.37 wt..% Ru in α-RuCl3 without containing any water or RuOCl.
A typical picture of an as-grown α-RuCl3 single crystal is shown in Fig.5.2.
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Figure 5.1: Comparison of heat capacity among different crystal growth batches measured on PPMS.
The sample quality of WX086 is best as there is only one sharp transition peak at 7.5 K.

Figure 5.2: Picture of an α-RuCl3 as-grown single crystal (∼540 mg) on the millimetre paper.
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5.2 Heat capacity

As mentioned before, α-RuCl3 shows a zigzag type antiferromagnetic order at ∼8 K. For the
antiferromagnetic order, an effective way to suppress the magnetic order is applying a mag-
netic field. In α-RuCl3 there have been been a vast number of studies about its behaviour
under magnetic fields [171, 173–175], and we also check this in our as-grown sample. Con-
sistent with previous reports, when the magnetic field is applied along the ab plane, the anti-
ferromagnetic order is gradually suppressed and when the magnetic field reaches 10 T, it is
fully suppressed . By contrast, when the magnetic field is applied along c direction, it will not
suppress the magnetic order until ∼ 60 T [176].

C
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p
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p

Figure 5.3: Field dependence of heat capacity of α-RuCl3 measured under magnetic fields along ab basal
plane and crystallographic c directions. The α-RuCl3 sample is from WX011 batch.
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5.3 Crystal structure and magnetic structure determination

5.3.1 Structural transition in α-RuCl3

The real crystal structure of α-RuCl3 at low temperature is still under debate. For the room
temperature, it has been proved to be the monoclinic C2/m as shown in Fig.5.4, while for the
low temperature (below 50 K) crystal structure, there are several proposed models such as
C2/m, R3, P3112 [92, 177]. If the low temperature crystal structure is not C2/m, which means
there is a structural transition. Actually, many techniques like magnetization measurement,
thermal expansion, infrared spectroscopy measurement reveal a first order phase transition
by observing a hysteresis from 50 K to 200 K, which is the signature of the structural transition
[178–181]. However, the structural transition temperatures reported from different groups are
quite different, which are from 200 K to 50 K. Up to now, there is not a systematic study of
this phase transition and the crystal structure below this transition by neutron scattering tech-
nique. One big challenge is the stacking faults in the samples as discussed before, thus in
order to solve the crystal structure in the low temperature, the first step is to grow high qual-
ity α-RuCl3 single crystal.
From previous X-ray synchrotron study, the low temperature crystal structure of α-RuCl3 is
rhombohedral R3 instead of the monoclinic crystal structure C2/m [177]. Besides, previous
neutron scattering experiment on our α-RuCl3 single crystals at IN12 and D23 have demon-
strated the systematic disappearance of reflections and the emergence of many additional
reflections below 50 K. These new peaks could be indexed with a rhombohedral unit cell and
reflection conditions: Reflections (hkl) observed only if −h + k + l = 3n or h − k + l = 3n.
Therefore, the low temperature structure of α-RuCl3 should be rhombohedral.

a

b

c

a

b

c

(a)
(b)

Ru Cl

Figure 5.4: Crystal structure of α-RuCl3 at room temperature. (a) The monoclinic C2/m unit cell, where
Ru-atoms are in a Cl-atoms Octahedron. (b) The each layer, Ru-atoms from a honeycomb lattice. Crystal
structure model is plotted by Vesta [62].

88



5.3. CRYSTAL STRUCTURE AND MAGNETIC STRUCTURE DETERMINATION

(a) (b)

(c) (d)

(119) (119)

(114)(114)

Figure 5.5: Temperature dependence of the intensity of reflections (1,1,9), (1,1,4) and the related rocking
curve scans at 200 K and 20 K, respectively measured at HEiDi at MLZ. Reflection (1,1,9) is forbidden
in the monoclinic structure model and (1,1,4) is forbidden in the rhombohedral structure model. The
disappearance of (1,1,4) reflection and the appearance of (1,1,9) reflection indicate the low temperature
crystal structure of α-RuCl3 is rhombohedral.

In order to study the structure transition, a high quality α-RuCl3 single crystal with a mass of
∼30 mg was selected for the single crystal neutron diffraction experiment. The heat capacity
measurement of this sample showed only one strong anomaly at 8 K, indicating a low stack-
ing fault density.
The structural transition was firstly studied at the single crystal diffractometer HEiDi. By
following the intensity of (1,1,9) and (1,1,4) reflections during cooling and heating, a struc-
tural transition hysteresis loop was traced as shown in Fig.5.5. The (1,1,9) reflection cannot
be indexed by a C2/m structural model, while for (1,1,4) reflection which is forbidden in the
rhombohedral structure model can be indexed the C2/m model. In this case, it it evident that
there is a structural phase transition from C2/m to R3 and the rocking curves of (1,1,9) and
(1,1,4) reveal the complete phase transition in this sample. During cooling, the intensity of
(1,1,9) increases from ∼145 K and saturates at 130 K while the intensity of (1,1,4) decreases
dramatically to zero in this temperature range. With heating up the sample, the onset tran-
sition temperature shifts up to 160 K with a ∼15 K temperature hysteresis compared with
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cooling. The large temperature hysteresis of the intensity of (1,1,4) and (1,1,9) upon cooling
and heating heating clearly shows that this transition is of first order.

5.3.2 Structure determination at low temperature

Single crystal neutron diffraction was performed on the same crystal which was used for the
study of phase transition on HEiDi at MLZ. 601 neutron single crystal reflections were col-
lected based on the primitive hexagonal setting below the magnetic phase transition at at 2
K. The crystal structure refinement was performed on the crystallographic computing system
Jana2006. In Jana2006, the crystal domains or twins could be introduced into the refinement
manually with a transformation matrix, which describes the symmetry relationship between
the main refined crystal structure model and the domains or twins. The R3 structure model is
refined with two rhombohedral twins: reverse and obverse and the reflections from them are
related by the following twin law matrix:


−1 0 0

0 −1 0

0 0 1


In order to refine the C2/m structure model, three domains related by a pseudo three fold
symmetry operator along c∗ directions are introduced according to a previous report [92].

2bh

2ah

a1

a3

a2

b1

b2

b3

(a) (b)

a , ah 1

bh

ch

b1

3c1

β

Figure 5.6: Construction of three monoclinic domains from the hexagonal unit cell. (a) Three monoclinic
domains and their unit cell axis projected on the ab basal plane. (b) The relationship of the hexagonal
unit cell and the unit cell of monoclinic domain 1, where a1 = ah; b1 = ah + 2bh; c1 = (−ah + ch)/3.

Since the reflections were collected in a hexagonal setting, in order to refine the crystal struc-
ture in a monoclinic structure, these reflections should be converted to a monoclinic setting.
Firstly, the monoclinic unit cell on the hexagonal unit cell is constructed. According to previ-
ous report [92], there are three 120◦ structure domains in the C2/m structure, so they have to
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be included in refinement. The relationship between three monoclinic domains and hexago-
nal unit cell is plotted in Fig.5.6. The unit cell of the three monoclinic domains is constructed
by the following cell transformation matrices:

a1 = ah

domain 1 : b1 = ah + 2bh

c1 = (−ah + ch)/3

a2 = bh

domain 2 : b2 = 2ah − bh

c2 = (−bh + ch)/3

a3 = −ah − bh

domain 3 : b3 = ah − bh

c3 = (ah + bh + ch)/3

where ai, bi, ci, i = 1, 2, 3 are the unit cell axis for three monoclinic domains and ah, bh, ch

are the unit cell axis for rhombohedral structure in a hexagonal setting. Based on the unit cell
relationship, the reflections should be converted to a monoclinic setting. In order to convert
the observed reflections (h, k, l) from a hexagonal cell to monoclinic unit cell, the following
matrices based on the unit cell transformation matrices are used to index them in three C2/m
domains:

domain 1 :


1 1 −1/3

0 2 0

0 0 1/3



domain 2 :


0 −2 0

1 −1 −1/3

0 0 1/3



domain 3 :


−1 −1 1/3

−1 −1 1/3

0 0 1/3


It should be mentioned here that there exists 122 reflections that could be not indexed by
any of the monoclinic domains, for instance (1,1,9) reflection, which highly suggests the low
temperature space group is not C2/m. In order to compare these two models, a test refinement
of these reflections that could be indexed by C2/m model was also performed. The refinement
of these two structure models was also performed in Jana2006.
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(a)

(b)

Figure 5.7: Calculated square of structure factors |F|2cal versus observed square of structure factors
|F|2obs in R3 in C2/m and R3 models. |F|2obs was obtained from the single crystal neutron diffraction
measurements at T = 2 K. (a) Observed square of structure factor square |F|2obs versus calculated ones
for R3 structure model. (b) Observed square of structure factor square |F|2obs versus calculated |F|2cal for
C2/m structure model.
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In Jana2006, all the reflections (h, k, l) are firstly indexed by the domain 1 and then reflections
from the left two domains are calculated by the following domain laws in Jana2006:

domain 2 :


−1/2 −3/2 1/2

1/2 −1/2 −1/6

0 0 1



and

domain 3 :


−1/2 3/2 1/2

−1/2 −1/2 1/6

0 0 1



.

Table 5.1: α-RuCl3 structure refinement results from neutron single crystal diffraction data collected at
HEiDi at MLZ based on R3 structure model at 2 K.

Atom Site x y z Occ.

Ru 6c 0 0 0.3332(3) 1

Cl 18 f 0.3203(4) 0.3356(4) 0.4114(8) 1

Occ. is atom occupation:

ADP harmonic parameters:

U11 (Å2) U22 (Å2) U33 (Å2)

Ru 0.0033(10) 0.0033(10) 0.0107(14)

Cl 0.0063(9) 0.0040(8) 0.0069(5)

U12 (Å2) U13 (Å2) U23 (Å2)

Ru 0.0016(5) 0 0

Cl 0.0029(7) 0.0021(5) -0.0007(4)

twin populations for reverse and obverse twins: 0.44(4)

lattice parameters: a = b = 5.97(3) Å, c = 16.93(6) Å

R(obs) = 7.45%, Rw(obs) = 9.07%, Rw(all) = 9.46%

The observed reflections are those reflections with I/sigma ≥ 3.
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Table 5.2: α-RuCl3 structure refinement results from neutron single crystal diffraction data collected at
HEiDi at MLZ based on C2/m structure model at 2 K.

Atom Site x y z Occ. Uiso (Å2)

Ru 4g 0 0.3343(5) 0 1 0.0057(9)

Cl1 8j 0.7447(10) 0.1748(3) 0.7643(4) 1 0.0062(7)

Cl2 4i 0.7278(11) 0 0.2348(5) 1 0.0062(7)

three monoclinic domain populations: 0.319(5); 0.302(2)

a = 5.97(3) Å, b = 10.34(6) Å, c = 5.98(3) Å, β = 109.4(3)◦

R(obs) = 11.89%, Rw(obs) = 12.45%, Rw(all) = 12.98%

The observed reflections are those reflections with I/sigma ≥ 3.

Since some of the reflections like (0,0,3n), (3n,0,0) and (3n,0,3n) belong to multiple domains,
with these reflections the domain population can be well refined. The calculated square of
structure factors versus observed square of structure factors are shown in Fig.5.7 and the
refined parameters are summarised in Tab.5.1 and Tab.5.2. The refined R value for R3 is 7.45%,
much better than 11.89% for C2/m model. The refined twin population is 0.44(4) for R3, which
is close to 0.5, the theoretical ratio for obverse and reverse twins in rhombohedral structure.
The result demonstrates that even for these reflections could be indexed in the monoclinic
model, their calculated intensities do not match with the observed ones. The results strongly
prove that the low temperature crystal structure is R3 for α-RuCl3.

5.3.3 Spherical neutron polarisation analysis of magnetic structure

In order to reveal the direction of the ordered magnetic moments of α-RuCl3, spherical neu-
tron polarised study was performed. The principles of the spherical neutron polarised exper-
iment are introduced in Sec.3.2.1. Spherical neutron polarisation analysis was performed on
the cold three axis spectrometry IN12 in the Institut Laue Langevin, Grenoble. The zero field
polarimeter Croypad was installed on IN12 for the collection of polarisation analysis data.
A 100 mg high quality α-RuCl3 single crystal grown by chemical vapour transport method
was mounted on the (h0l) scattering plane. According to previous reports [92, 177], α-RuCl3
orders antiferromagnetically at ∼8 K. There are two proposed magnetic strictures, and both
magnetic moments are parallel to the crystallographic axis a or b but tilted from ab basal
plane by 35◦ and 48◦, respectively. Here they are denoted as model II and model III, and
model I is for the magnetic structure in this work. The propagation vector is k = (0, 0.5, 1),
and by performing irreducible representation analysis, the star of the k contains three arms:
k1 = (0, 0.5, 1), k2 = (0.5, 0.5, 1) and k3 = (0.5, 0, 1), which will give rise to separate magnetic
reflections from every configuration magnetic domain. Besides, since the magnetic reflections
are also totally separated from nuclear reflection, the nuclear-magnetic interference effect is
not considered. Therefore, the magnetic reflections (±0.5,0,±L) in this experiment come from
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one single domain and their polarisation matrix can be calculated from the formula in matrix
5.1.

bm(b* )m

am(a* )m

cm(c* )m

z

y

x//Q

φ

-am(-a* )m

bm(b* )m

am(a* )m

cm(c* )m

z

y

x//Q

φ

-am(-a* )m

am

cm

bm

θ
β

M

(a) (b)

(c)

Figure 5.8: (a) and (b) Scattering geometry of the experiment for the magnetic reflections (+0.5,0,+L)
and (-0.5,0,-L). An auxiliary magnetic unit cell is built from the R3̄ parent structure with am = 2ah + bh,
bm = bh, cm = ch and α = β = γ = 90◦. The scattering plane is (h0l), where the polarisation direction x
is parallel to scattered vector Q and the polarisation direction z which is along cm is perpendicular to
the scattering plane. ϕ is the angle between x and c∗. (c) The direction of the magnetic moment of Ru3+

in the auxiliary unit cell is plotted with assuming that the magnetic moment M is inclined from the cm

axis by angle (90− θ) and the bm axis by angle β.
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In order to analyse the data, an auxiliary magnetic unit cell is setup for assistance. This aux-
iliary magnetic unit cell is constructed based on our new refined crystal structure and the
magnetic unit cell. The scattering geometry in our experiment can be summarized in Fig.5.8,
where in the auxiliary magnetic unit cell, the base is defined as: am = 2ah + bh, bm = bh,
cm = ch and α = β = γ = 90◦. The magnetic reflections (0.5,0,L) are indexed by (1,0,L) in the
auxiliary magnetic unit cell, but for convenience, the (0.5,0,L) index in the hexagonal cell is
still used in this thesis.
The scattering plane is (h0l), and as shown in Fig.5.8 (a) and (b) the polarisation direction x
is parallel to scattering vector Q strictly. z is perpendicular to the scattering plane and y is
the third direction in a right-handed orthogonal coordinate system as mentioned before. The
magnetic components projection along different polarised directions are calculated. First, the
magnetic moment in a spherical coordinates is defined. For each magnetic reflection, ϕ is the
angle between x polarisation direction or Q and c∗m in Fig.5.8 (c). The direction of magnetic
moment of Ru3+ in the auxiliary unit cell is shown in Fig.5.8(a), assuming that the magnetic
moment M is inclined from the cm axis by angle (90◦ − θ) and the bm axis by angle β. Appar-
ently in model II and model III, β equals 0◦. For a magnetic reflection (0.5,0,L), the expressions
for the components of the magnetic interaction vectors M⊥ along each polarisation axis are
summarized in Tab.5.3.

Table 5.3: Components of the magnetic interaction vectors M⊥ on three polarisation axes for (0.5,0,L)
magnetic reflection.

Magnetic components

M⊥x 0

M⊥y −M⊥sin(θ)sin(ϕ) + M⊥cos(θ)sin(β)cos(ϕ)

M⊥z M⊥cos(θ)cos(β)

For the experiment, the strong magnetic reflections were firstly checked for the measurement
of the polarisation matrix. Since the propagation vector is k = (0, 0.5, 1), the magnetic reflec-
tion will appear at (0.5,0,L) (L 6= 3n) positions. The rocking curves (A3 scan, A3 is the sample
rotation at IN12) of each reflection is depicted in Fig.5.9 (a). The low Q magnetic reflection
(0.5,0,1) is very strong and the (0.5,0,4) reflection is relatively weak due to the strong magnetic
form factor fall-off at large Q. In this regard, four peaks (0.5,0,1), (0.5,0,1), (0.5,0,2), (0.5,0,4)
are chosen for this measurement. To take data of each term in the polarised matrix, firstly
move the instrument to the peak maximum and count 10 min. After that rotate the sample by
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±5◦ and measure 5 mins for (A3 + 5)◦ and (A3 - 5)◦ for background (A3 is sample rotation at
IN12).
The real intensity could be calculated by subtracting the background from the intensity of
the peak maximum. After measurement of each term of matrix 5.1, one can fit the value of
θ and β by the the least squares method. It should be mentioned here that because the mag-
netic reflections do not coincide with the nuclear reflections, the amplitude of the magnetic
moment cannot be decided but the relationship between ordered magnetic moment and crys-
tallographic axis could be measured precisely. Fig.5.9 (b-f) also summarizes the Q-scan of
magnetic refection (0.5,0,1) in xx, yx, yy, yz and zz channels at 2 K. The magnetic reflections
have different intensity in xx, yy, yz and zz channels for spin up and spin down states of the
scattered polarised neutron beams, and for yx channel the intensities for spin up and and spin
down states of the scattered polarised neutron beam are same because there is no nuclear and
magnetization interaction.
The calculated polarisation Pij versus measured ones are illustrated in Fig.5.10. The best fit-
ting result with χ2 = 0.127 is shown in Tab.5.4, where β = −12(2)◦ and θ = 17(3)◦.
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Figure 5.9: Raw data of the A3 scans of the magnetic reflections in different channels. (a) A3 scan of
magnetic reflections (0.5,0,1), (0.5,0,2), (0.5,0,4), (0.5,0,1) and (0.5,0,4) at XX+- channel. (b)-(f) Q-scan
along [H,0,1] (r.l.u) in various spin polarised channels at 1.5 K measured at IN12.
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Figure 5.10: Comparison between calculated polarisation elements Pij (dashes) based on Model I and
measured ones (circles with error bars) for magnetic reflections (0.5,0,1), (0.5,0,1), (0.5,0,2) and (0.5,0,4) at
IN12 at 1.5 K. From left to right, for each reflection the polarisation terms are in the following sequence:
Pxx, Pxy, Pxz, Pyx, Pyy, Pyz, Pzx, Pzy and Pzz. Data was obtained at 1.5 K at IN12 at ILL, Grenoble.

Table 5.4: The χ2 is defined as χ2 = ∑ij
(
Pij (calculated)−Pij (measured)

)2 in this experiment. Com-
parison of refined χ2 for three magnetic structure models with different β and θ [92, 177]. The minus
sign of β indicates it has opposite rotation direction compared to the assuming value. Model I in this
work was obtained at 1.5 K at IN12 at ILL, Grenoble.

Model I (our work) Model II Model III

β(◦) -12(2) 0 0

θ(◦) 17(3) 35 48(3)

χ2 0.127 0.686 3.168

Details of the tilted magnetic moment in the honeycomb lattice of α-RuCl3 are shown in
Fig.5.11 (a). This result indicates the magnetic moment does not only tilt from the hexago-
nal ab basal plane but also tilts from the crystallographic axis a or b. The χ2 for model II and
model III is calculated, which are 0.686 and 3.168, respectively (see Tab.5.4). Besides, assum-
ing the value of β is zero, the best fitted θ is 27◦, with a large χ2 = 0.294. Fig.5.11 (b) shows the
direction of the magnetic moment in the local xyz orthogonal coordination system. According
to theoretical calculation, the tilt of the magnetic moment is probably as a result of the large
off-diagonal exchange term in the spin Hamiltonian [182, 183] and the result in this work calls
for further quantum chemistry calculation for a better understanding of the Kitaev physics in
α-RuCl3.
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Figure 5.11: (a) Illustration of magnetic structure refined from the spherical neutron polarisation data at
1.5 K obtained from IN12. (b) and (c) the direction Magnetic moment of Ru3+ are depicted in a local
rectangular coordination xyz for model I and model II and III. This local coordinate system has been
introduced in Fig.2.13.
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5.4 Neutron diffraction study of α-RuCl3 under isostatic pressures

It has been well proved that pressure is an effective way to tune the magnetic order in Kitaev
materials by previous experiments since it changes the lattice parameter directly [184, 185]. In
case of α-RuCl3, there has been many studies of its magnetic order under isostatic pressures
[178, 181, 186–194]. Heat capacity measurements show that the zigzag order transition tem-
perature increases slowly under quasi-isostatic pressures and suddenly disappears at 1 GPa.
The magnetization and NMR studies on a AB stacking reveal the phase transition tempera-
ture experiences a concave shape in which the phase transition decreases below 0.5 GPa and
then grows up till 1.05 GPa. A phase separation happens at 0.5 GPa and the magnetic volume
fraction is completely suppressed at 1.05 GPa. This result is similar to the magnetization mea-
surements on a ABC stacking α-RuCl3 sample where the zigzag order keeps constant up to
about 0.2 GPa and then it undergoes a pressure induced phase transition into a non-magnetic
state. Besides, a symmetry-breaking is observed by optical studies, which is forbidden for the
realisation of Kitaev physics.
Up to now, the questions that arise, from an experimental point of view, are:
(a) what is the effect of pressure on the magnetic transition in the low pressure range, and
what is the critical pressure for the structural separation in α-RuCl3 if it exists?
(b) In addition, a structural phase transition is found in α-RuCl3 at ambient condition from
∼50 K to ∼200 K (see Sec.5.3.1). If one applies pressures at room temperature, it means the
pressures are applied on another phase (high temperature phase) initially, after the structural
transition the pressure will be passed to the phase (low temperature phase) that hosts the an-
tiferromagnetic order. Since the pressure dependence of the structural transition in α-RuCl3 is
still unknown and in order to avoid the effects of this structural transition, it will be better to
apply the pressure below the structural transition. In order to shed lights on these questions,
single crystal neutron diffraction experiment was performed at D10 at ILL, Grenoble to study
the in situ pressure dependence of magnetic order of α-RuCl3 with isostatic pressures applied
at 30 K.
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5.4.1 Experiment preparation and setup

A 60 mg high quality α-RuCl3 single crystal sample was prepared for the experiment as shown
in Fig.5.12.

(a)

(b) (c)

Figure 5.12: (a) Heat capacity of the α-RuCl3 single crystal for the neutron diffraction experiment. There
is no obvious anomaly between ∼10 K and ∼ 14 K, proving the high quality of our sample [92] (see
sec.5.1). (b) and (c) Picture of the sample and its X-ray Laue diffraction result. The Laue picture shows
sharp peaks and the three-fold symmetry.

102



5.4. NEUTRON DIFFRACTION STUDY OF α-RUCL3 UNDER ISOSTATIC PRESSURES

In Fig.5.12 (a), the heat capacity of a cleaved small part of the sample demonstrates there
is only one sharp magnetic phase transition at TN = ∼8 K, proving there is a low stacking
fault density in the sample. The quality of the sample was also checked by X-ray Laue by
scanning the surface of the crystal and a typical picture of the sample shows sharp peaks and
three-fold symmetry. Single Crystal neutron diffraction experiment was carried out on the
four cycle diffractometer D10 at Institut Laue-Langevin, Grenoble.

(a) (b)

(c) (d)

MgO

Figure 5.13: Experiment equipments for the isostatic pressure experiment at D10 at ILL, Grenoble. (a)
Controller of pressure of the helium compressor. (b) and (c) Gauge of helium pressure. (d) Samples
and the sample holder, where an additional MgO single crystal was glued next to the sample for the
pressure calibration.
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The isostatic pressure was generated with a gas compressor with helium gas acting as a pres-
sure medium. A gaseous pressure transmit would ensure the pressure applied on the sample
was always isostatic. As shown in Fig.5.13 (a) and (b), the pressure could be adjusted contin-
uously by the valves. There was a pressure gauge close to the sample, which measured the
gas pressure in the sample chamber and displayed it on the digital monitor in Fig.5.13 (c). In
order to monitor the pressures in the sample chamber, a gas pressure gauge was also installed
on the top of the Orange cryostat to measure the pressure of the helium gas. As illustrated in
Fig.5.13 (d), the α-RuCl3 single crystal sample was glued to the holder by GE varnish (type GE
7031) and a MgO single crystal was also mounted close to the sample to measure the pressure
near the sample.
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5.4.2 Magnetic phase transition under isostatic pressures

First the sample was cooled down to base temperature 1.5 K and the intensity of the magnetic
reflections were checked. At D10, there were two detectors, one was a 2D detector which had
relatively large detecting area, and another one was a point detector with the analyser, which
would help reduce the background. For alignment, the nuclear reflections were collected by
the 2D detector. After that, the magnetic reflections were measured by the point detector with
analyser. Four magnetic reflections were found at 1.5 K as plotted in Fig.5.14, in which the
magnetic reflection (0.5,0,1) was strongest, so the intensity of this peak was measured to study
the magnetic order of α-RuCl3 under various isostatic pressures.

(a) (b)

(c) (d)

Figure 5.14: Rocking curves of magnetic reflections (0.5,0,1), (0.5,0,1),(0.5,0,2) and (0.5,0,2) under zero
pressure measured at 2 K at D10 at ILL, Grenoble.

For the study of the pressure dependence of the transition temperature, the sample was first
cooled down to 1.5 K with pressure applied and the temperature dependence of the intensity
(peak maximum) of the magnetic peak (0.5,0,1) was measured during heating up the sample
step by step. In order to make sure the temperature was stable at the sample, 1 minute before
collecting data was waited. After finishing the measurement at one pressure, the sample was
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warmed up to 30 K slowly and the pressure increased by the external helium gas compressor
gradually and slowly. This ensured the pressure was applied in the paramagnetic state of
α-RuCl3 and also far below the structural transition. For each pressure, the sample was re-
aligned individually to ensure the sample was always in the scattering centre.

(0.5,0,1)

Figure 5.15: Temperature dependence of peak intensity of magnetic Bragg reflection (0.5,0,1) under
various isostatic pressures obtained at D10 at ILL, Grenoble.

The temperature dependence of the peak intensity of magnetic reflection (0.5,0,1) under dif-
ferent pressures is depicted in Fig.5.15. The temperature dependence curve can be fitted by
the power critical law:

I = A
(

TN − T
TN

)2β

+ bg, (5.2)

where TN , β is magnetic phase transition temperature and fitted critical exponent; bg is back-
ground.
At zero pressure the zigzag antiferromagnetic transition happens at 7.91(5) K consistent with
our heat capacity measurement and similar experiment on other samples with ABC stacking
sequence [92, 177]. It is evident that the antiferromagnetic transition temperature decreases
systematically as a function of increasing pressures in Fig.5.15. This can be further confirmed
by the comparison of Q-scan along [1,0,0] (r.l.u.) direction (H scan) and [0,0,1] (r.l.u) direction
(L scan) for the magnetic reflection (0.5,0,1) under 0.065 GPa and 0.14 GPa at 7 K in Fig.5.16.
The (0.5,0,1) magnetic reflection can be clearly observed at 0.065 GPa while it is completely
suppressed at 0.14 GPa at 7 K because the transition temperature has been shifted from 7.29(5)
K at 0.065 GPa to 6.30(3) K at 0.14 GPa. Fig.5.17 presents the rocking curves of (0.5,0,1) mag-

106



5.4. NEUTRON DIFFRACTION STUDY OF α-RUCL3 UNDER ISOSTATIC PRESSURES

netic reflection at 10 K and 2 K for 0.065 GPa, 0.14 GPa and 0.16 GPa, respectively. The left
picture is the nuclear reflection (3,0,0) measured by the 2D detector. As for 0.065 GPa and 0.14
GPa, the data was collected by the high resolution analyser at D10. For a good counting statis-
tics, each point was measured 6 minutes and the zigzag magnetic order was observed for both
pressures at 2 K. And for the pressure 0.16 GPa, every point was measured about 20 minutes
by integrating the intensities from the 2D detector. It is clear that there is no evidence for the
appearance of the magnetic reflection (0.5,0,1) of the zigzag order at 2 K under 0.16 GPa. This
result is quite inspiring because following the large linear slope of -11.5 K/GPa from 0 GPa
to 0.14 GPa, it can be deduced that the antiferromagnetic order could be fully suppressed by
a small pressure ∼0.7 GPa and the sample may attain a quantum spin liquid state. However
this is not realised in this experiment because a pressure induced structural transition occurs
at a larger pressure.
In addition, from the 2D data, it is clear that reflection (3,0,0) is quite sharp and strong for
0.065 GPa and 0.14 GPa, but at 0.16 GPa this reflection has become quite broad and fuzzy as
shown in Fig.5.17. The evolution of (3,0,0) reflection under pressures implies crystal structure
of α-RuCl3 gradually becomes another phase at the high pressure.
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(a)

(b)

Figure 5.16: (a) and (b) H and L scans for magnetic Bragg reflection (0.5,0,1) under 0.065 GPa and 0.14
GP at 7 K obtained at D10 at ILL, Grenoble. The data for 0.065 GPa is raised by 200 counts.
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Figure 5.17: Rocking curves of magnetic Bragg reflection (0.5,0,1) under (a) 0.065 GPa , (b) 0.14 GPa,
(c) 0.16 GPa for 2 K and 10 K, respectively collected at D10 at ILL, Grenoble. Left: 2D contour maps of
nuclear reflection (3,0,0) under these pressures at 10 K.

In order to reveal the pressure dependence of the structural transition and its critical pressure,
the integrated intensity of (3,0,0) as a function of temperatures and pressures has been studied.
The critical pressure test was carried out by increasing pressures gradually at 30 K and moni-
toring the intensity of nuclear reflection (3,0,0) at the same time. The result is summarized in
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Fig.5.18 (a) by normalising the integrated intensity of each peak with the zero pressure data.
It is clear that a drastic drop of the integrated intensity happens at 0.14 GPa. Here the critical
pressure Pd is defined as the critical pressure where the (3,0,0) reflection has the half intensity
compared to 0 GPa, which is 0.15 GPa at 30 K.
Fig.5.18 (b) illustrates the temperature dependence of normalised integrated intensity of (3,0,0)
under various pressures. The pressure is loaded at 100 K and after applying the pressures the
sample is cooled down slowly along with monitoring the integrated peak intensity of (3,0,0)
by the 2D detector. When the phase transition finishes, the intensity of (3,0,0) becomes less
temperature dependent. The sample is then warmed up again to measure its pressure de-
pendence upon heating. A giant hysteresis loop is found during cooling and warming in the
measurement as a signature of the first order transition.
In addition, as shown in Fig.5.18 (b) even at very high pressure the intensity of (3,0,0) does
not completely disappear and the residual intensity decreases upon increasing pressure. For
instance, under 0.165 GPa there is still 11% residual intensity at 45 K while under 0.26 GPa it
decreases to 8%. Despite that a phase separation picture can explain the residual intensity in
this measurement but indeed there is no any indication of the long range magnetic order at
0.16 GPa where the zigzag magnetic reflection is supposed to still have at least 10% intensity.
This means as soon as the occurrence of the pressure induced structural transition, the long
range zigzag magnetic order has been broken. The result in this work is different from other
macroscopic studies where they have observed the coexistence of the magnetic order phase
and the pressure induced phase. This may result from the difference in the experiment setup.
For all the macroscopic measurement the pressure was applied at room temperature while in
this experiment the pressure was applied at 30 K to the magnetic phase that hosts the antifer-
romagnetic order. Therefore, the sample states will not be affected by any structural transition
upon cooling in this measurement.
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Figure 5.18: (a) Critical pressure test for the nuclear Bragg peak (3,0,0) at 30 K. The integrated intensity
is normalised by the data at 0 GPa obtained at D10 at ILL. (b) Temperature dependence of peak intensity
of nuclear reflection (3,0,0) normalised to the zero pressure value under various isostatic pressures upon
cooling obtained at D10 at ILL, Grenoble.
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The compared Q-scan curves for (0,0,3) and (3,0,0) nuclear reflections under 0.14 GPa and 0.26
GPa are shown in Fig.5.19 (c) and (d). It is anticipated that under 0.14 GPa the peaks of both
(0,0,3) and (3,0,0) are sharp and strong, but for 0.26 GPa the peaks become much broader and
weaker. Besides, the peak maximum moves to high Q position for both reflections at 0.26 GPa,
implying the shrinkage of lattice parameters and distortion in the structure. Thus, the residual
intensities of (3,0,0) we have measured at different pressures come from the broadening peaks
in the distorted lattice. Due to the limit of the instrument, the maximum pressure is 0.3 GPa at
30 K. It is also clear that 0.26 GPa is not large enough to drive α-RuCl3 into the high pressure
phase and that’s the reason it is called distorted phase since it is in the intermediate range
between the ambient structure and the high pressure structure.
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(a)

(b)

Figure 5.19: Q-scans for (0,0,3) and (3,0,0) reflections at (a) 0.14 GPa and (b) 0.26 GPa were measured at
D10 at ILL, Grenoble. At 0.14 GPa, Q-scan curves were obtained by the point detector with the analyser,
so the background is very low. At 0.14 GPa, Q-scan curves were obtained by integrating the intensity
measured from 2D detector, so the background is very high.
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A phase diagram could be constructed based on the neutron diffraction results as depicted in
Fig.5.20(a), where the left axis represents the antiferromagnetic zigzag order transition tem-
perature and the right axis represents the transition temperature of the distorted phase. The
antiferromagnetic transition temperatures below Pd are fitted from the temperature depen-
dence by the critical power law equation in Equ.5.2, where β is the critical exponent. And for
the pressure induced distorted phase, the transition temperatures Td are assigned by cooling
and warming processes separately. At low pressure regime (P < Pd), it has been demonstrated
that the zigzag phase transition could be well suppressed with the increase of isostatic pres-
sures, while when P > Pd a pressure induced structural transition happens along with the
totally disappearance of the zigzag order. The obtained critical exponent β from the power
law for each pressure is 0.12(3) at 0 GPa, 0.12(4) at 0.065 GPa, 0.14(4) at 0.1 GPa and 0.11(4)
at 0.14 GPa, close to the ideal 2D Ising model where β is 0.125. If it is assumed the magnetic
pressure dependence of phase transition temperature under different pressures also follows
2D Ising, it is easy to estimate the critical pressure Pc1 = 0.255 GPa.
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Ru Cl

(a)

Distorted Phase

α

Figure 5.20: (a) Phase diagram of α-RuCl3 under isostatic pressures constructed from single crystal
neutron diffraction data collected at D10 at ILL. The left axis represents the transition temperature of the
antiferromagnetic zigzag order and the right axis represents the transition temperature of the distorted
phase upon cooling and warming. Pd is the critical pressure of distorted phase. Pc1 is the estimated
critical pressure when the magnetic pressure dependence of phase transition temperature is 2D Ising
type type if the structural transition would be absent. (b) The honeycomb plane of α-RuCl3 and the
Ru-Cl-Ru angle is marked.

In order to understand the pressure effects in α-RuCl3 under different pressures, several struc-
ture reflections were also collected at 0 GPa and 0.14 GPa. Due to the limit of D10, only the
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reflections in the (h0l) plane could be collected. 12 reflections were measured and all of them
could be indexed by a rhombohedral unit cell. Based on the crystal structure determined in
this PhD work in Sec.5.3.1, the crystal structure of α-RuCl3 under pressures were refined in
the R3 space group by Jana2006.

Table 5.5: Compared refined structures of α-RuCl3 at 2 K under 0 GPa and 0.14 GPa.

0 GPa 0.14 GPa ratio

Ru-Ru (c) (Å) 5.648(5) 5.633(4) -0.266%

Ru-Ru (ab nearest) (Å) 3.446(3) 3.443(3) -0.087%

Ru-Ru (ab next nearest) (Å) 5.968(4) 5.964(5) -0.067%

∠Ru-Cl-Ru (α) (deg) 93(3) 94(2) 1%

From the refined results, there is no structural transition or distortion between 0 GPa and
0.14 GPa. Besides, the change in the coordination of Ru atoms is also compared between 0
GPa and 0.14 GPa as shown in Tab.5.5. For the distance between Ru atoms in ab basal plane,
there is no significant change. For the distance between two Ru atoms in different layers, the
distance has decreased -0.266% which is about 3 times larger than the lattice change in ab
basal plane. This is easily understood because the layers in α-RuCl3 are connected by the Van
der Waals force, which is a very weak force, leading to a larger compressibility along c di-
rection. Another change occurs in the angle Ru-Cl-Ru (α) shown in Fig.5.20 (b), which has a
significant change of 1% from 0 GPa to 0.14 GPa. According to a previous quantum chem-
istry computation result [189, 195], with increasing the Ru-Cl-Ru angle, the Kitaev interaction
reaches its peak at 94◦ and the Heisenberg interaction changes its sign at about 92.5◦. This
calculation is based on varying the Ru-Cl-Ru angles with fixed Ru-Ru distance at 3.44 Å. In
the refinement results the Ru-Ru distance is 3.446(3) Å and 3.443(3) Å for 0 GPa and 0.14 GPa,
respectively. When increasing isostatic pressure, the Ru-Cl-Ru angle (α) increases gradually,
leading to the increase of Kitaev interaction from 93(3)◦ to 94(2)◦. As a result, the magnetic
order is suppressed by the enhancement of the Kitaev exchange.
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5.5 Conclusion

In this chapter, the following important results are obtained:
1. The optimised method to prepare high quality and sizeable α-RuCl3 single crystals for neu-
tron scattering study was found.
2. Neutron diffraction study was performed at 2 K on α-RuCl3 and the crystal structure of
α-RuCl3 was successfully determined.
3. Using spherical neutron polarisation analysis, a tilted zigzag magnetic ground state was
revealed in α-RuCl3, which will contribute to a better understanding interactions in Kitaev
materials.
4. The phase diagram of α-RuCl3 under isostatic pressures was successfully determined. In
contrast to the initial anticipation, α-RuCl3 could not be driven into the quantum spin liquid
state by external pressure because of pressure induced structural transition, but it has been
demonstrated that pressure indeed affects the transition temperature greatly. This experimen-
tal finding will also be helpful for the future study of Kitaev physics.
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Summary and Outlook

In this PhD work, a series of high quality single crystals have been successfully grown by
molten flux method or chemical vapour transport method. Along with that, a comprehensive
study of crystal structure, magnetic structure of the topological semimetal Mn3Sn and Kitaev
quantum spin liquid candidate α-RuCl3 by means of both in-house characterizations and neu-
tron scattering techniques is presented. The focus is to study the relationship among crystal
structure, magnetic order and physical properties. This chapter is dedicated to a summary of
some essential results and gives a perspective discussion of further studies.

6.1 Summary

Employing cutting-edge crystal growth methods, series of quantum materials have been grown
successfully, such as CeSb, PrSb, NdSb, Cr2Ge2Te6, Cr2Si2Te6, CeZn3As3, PrZn3As3, EuMnBi2,
YbMnBi2, PtBi2, ZrTe5, α-RuCl3 and Mn3Sn. The topological Weyl semimetal Mn3Sn has been
an active study topic since the discovery of the large anomalous Hall effect, large Nernst ef-
fect at room temperature, magnetic Weyl fermions and magnetic inverse spin Hall effects. Its
large AHE arising from non trivial band structure is connected to the inverse triangle mag-
netic structure at room temperature. Almost 30 years ago, a magnetic phase transition was
found in a Bridgman grown Mn3Sn single crystals characterised along the emergence of a
pair of modulated reflections around (1,0,0.1). The magnetic ground state was claimed as the
double spiral magnetic structure. Very recently the large AHE was found to be completely
suppressed in the modulated phases along with a great change in the magnetic anisotropies in
the flux grown single crystal samples. With the Sn self-flux method, large high quality Mn3Sn
single crystals were successfully grown for physical properties study and neutron scattering
experiments. The electrical resistivity measurement revealed that in the sample there was a
jump at 280 K, which was consistent with the magnetic phase transition detected in magnetic
susceptibilities. After this magnetic phase transition, the AHE also completely disappeared in
the sample in this work.
With polarised neutron scattering at DNS and IN12, the magnetic phase transition was con-
firmed to be intrinsic in the samples which was signified by the complete vanishing of the
magnetic reflection (1,0,0) and (1,1,0) of the room temperature k = (0,0,0) magnetic structure.
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Besides, it is surprising that the modulated reflections below 280 K could be well separated by
zs f channel and zns f channel respectively, which indicates they should come from different
magnetic components. Each magnetic component for the modulated reflection was identified
and the results show the modulated reflection in zs f channel from the magnetic components
along c direction, while the modulated reflection in zns f channel was from the contribution
of magnetic components in ab plane, denoted as qT and qL, respectively. With the high reso-
lution diffraction experiment at two axis diffractometer D23, the temperature dependence of
the modulated phases was mapped out and a higher order harmonic, q3 was found, which
was considered as the third order of the modulated reflection qT in the previous report. How-
ever, q3 could not be indexed by the three times of qT or qL. By trials with the combination of
qL and qT, q3 was successfully indexed by (2qL + qT), which is a solid evidence of the emer-
gence of a double-q magnetic modulation at low temperature. The temperature dependence
of qT, qL and q3 revealed the existence of single-q magnetic structure in the temperature
range between 250 K and 200 K, when qT = qL. Single crystal neutron diffraction was per-
formed at Heidi to collect the satellite reflections with k = (0,0,1/10) at 225 K. The result is
consistent with the polarisation neutron analysis since the magnetic structure at 225 K can
be decomposed into a longitudinal spin density wave along c direction and a helix magnetic
structure in ab basal plane. The longitudinal spin density wave along c direction is consistent
with the jump in electric resistivity at 280 K because an energy gap will be formed when the
spin density wave emerges.
Based on the magnetic structure, the disappearance of AHE could be explained by the break-
ing of the mirror symmetry in ab basal plane. In addition, the formation of this non-coplanar
magnetic order could result from the magnetic frustration and the next nearest interlayer DM
interactions.
The study of Kitaev quantum spin liquid candidate α-RuCl3 arises as a fertile playground to
search exotic excitations and Majorana Fermions. However, there still exist some fundamental
questions to be answered, for instance the crystal structure and magnetic structure of α-RuCl3
at the low temperature. The big challenge is the sample quality because α-RuCl3 is a Van de
Waals material and stacking fault is easily introduced during crystal growth, which makes it
difficulty to solve the crystal structure. Large α-RuCl3 single crystals were successfully grown
up to 670 mg per crystal in This PhD work. The heat capacity measurement reveals that there
was low stacking fault density in the sample since there was only one sharp antiferromag-
netic peak at ∼7.5 K. A structural phase transition was clearly found in the sample and a
single crystal neutron diffraction experiment at 2 K has proved the low temperature crys-
tal structure is R3 instead of C2/m as previously reported. In addition,spherical polarisation
neutron scattering experiment was carried out to study the direction of the ordered magnetic
moment of α-RuCl3. The results showed that the ordered magnetic moment did not only tilt
from ab basal plane but also inclined from the crystallographic a axis, which could be a re-
sult from the large off-diagonal interaction term in α-RuCl3. In addition, neutron diffraction
experiment under isostatic pressures was also carried out at D10 at ILL. It was clear that the
zigzag magnetic order at∼7.5 K under ambient condition was suppressed gradually with the
increase of the pressure. When the pressure come to 0.15 GPa, a pressure induced structural
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transition was found and the zigzag magnetic order also disappeared. As a result of this pres-
sure induced structural transition, a pressure induced quantum spin liquid state could not be
realised in α-RuCl3. However this result reveals a great pressure effect towards a suppression
of the magnetic order with a slope of -11.5 K/GPa which sheds lights on the possibility of
studying pressure-tuned magnetic order in other Kitaev materials.

121



CHAPTER 6. SUMMARY AND OUTLOOK

6.2 Outlook

Among the current study topics of quantum materials, the coupling of magnetism and topol-
ogy stands out because of the novel physical phenomena, such as the magnetic topological
insulators and magnetic Weyl fermions. By doping 3d magnetic ions Mn or Cr into topologi-
cal insulators like Bi2Te3, one has already observed the quantum anomalous Hall effect in the
antiferromagnetic MnBi2Te4 at low temperature and the next step is to realise the quantum
anomalous Hall effect at room temperature in a ferromagnetic material. Frustration, which is
another parameter to tune quantum materials, is now studied extensively in kagomé lattices
or triangular lattices. Recent discovery of antiferromagnetic Skyrmions in the geometrically
frustrated kagomé compound Gd2PdSi3 has demonstrated that frustration could also give
rise to topological textures. Mn3Sn which now has been proven in this thesis to experience a
non coplanar magnetic in the kagomé plane at low temperature is a promising candidate to
study the correlation between topological magnetic order and external fields or pressures. In
addition, other Mn-based materials with incommensurate magnetic order such as RMn6Sn6

(R is the rare earth element) also have a Mn kagomé plane, and would constitute another set
of candidate compounds to study the topological magnetic orders. To search for the Kitaev
quantum spin liquid, the two dimensional halides of general formula RX3 would be good
candidates since some of them have similar crystal structure as α-RuCl3. In addition, the rare
earth faced centred double perovskite, which has three orthogonal interaction exchange paths
for rare earth could also be materials hosting Kitaev physics.

An essential prerequisite for such studies is always the successful growth of sufficiently
large, high quality single crystals.
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A
Appendix

A.1 Summary of crystal growth experiments

In this PhD work, more than 200 batches of crystal growth experiments have been performed
for my study and a summary of them is shown in Tab A.1, Tab. A.2, Tab. A.3 and Tab. A.4.
The tables only list experiments that I carry out individually at MLZ in Garching. For those
not in the list, batches WX001-WX028 have been done with Dr. Thomas Wolf at Institut für
Festkörperphysik (IFP) in Karlsruher Institut für Technologie (KIT) during January to March
2017 and batches WX054-WX080 are carried out with the assistance of Dr. Changjiang Yi and
Prof. Dr. Youguo Shi at Institute of Physics, Chinese Academy of Sciences. In addition, these
experiments only for the feasibility test are also excluded.
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Table A.1: Summary of crystal growth experiments (I).

Batch
number

Date Crystals to grow Methods Duration
/ day

Results

WX029 05.05.2017 α-RuCl3 CVT 4 Crystals size < 5mg

WX030 10.05.2017 α-RuCl3 CVT 4 failed

WX031 18.05.2017 α-RuCl3 CVT 5 Crystals size < 5 mg

WX032 24.05.2017 α-RuCl3 CVT 3 Crystals size < 10 mg

WX033 01.06.2017 α-RuCl3 CVT 1 Crystals size < 5 mg

WX034 03.06.2017 α-RuCl3 CVT 1 failed

WX035 09.06.2017 α-RuCl3 CVT 6 Crystals size < 20 mg

WX036 11.06.2017 α-RuCl3 CVT 1 Crystals size < 5 mg

WX037 15.06.2017 α-RuCl3 CVT 1 failed

WX038 22.06.2017 α-RuCl3 CVT 5 failed

WX039 23.06.2017 α-RuCl3 CVT 0 ampoule sealed failed

WX040 03.07.2017 α-RuCl3 CVT 1.5 Crystals size < 5 mg

WX041 09.07.2017 α-RuCl3 CVT 1.5 Crystals size < 3 mg

WX042 13.07.2017 α-RuCl3 CVT 1 Crystals size < 5 mg

WX043 16.07.2017 α-RuCl3 CVT 2 Crystals size < 5 mg

WX045 20.07.2017 PrSb Flux 10 Crystals size < 200 mg

WX046 21.07.2017 α-RuCl3 CVT 3 Crystals size < 10 mg

WX047 09.06.2017 NdSb Flux 10 Crystals size < 300 mg

WX048 27.07.2017 PrSb Flux 10 Crystals size < 400 mg

WX049 01.08.2017 α-RuCl3 CVT 6 Crystals size < 5 mg

WX050 08.08.2017 α-RuCl3 CVT 6 Crystals size < 5 mg

WX052 23.08.2017 α-RuCl3 CVT 6 Crystals size < 10 mg

WX053 29.07.2017 α-RuCl3 CVT 6 Crystals size < 20 mg

WX081 25.01.2018 α-RuCl3 CVT 5 Crystals size < 5 mg

WX082 31.01.2018 α-RuCl3 CVT 2 Crystals size < 10 mg

WX083 02.02.2017 α-RuCl3 CVT 5 Crystals size < 100 mg

WX084 05.02.2018 α-RuCl3 CVT 6 failed

WX085 10.02.2018 α-RuCl3 CVT 9 failed

WX086 12.02.2018 α-RuCl3 CVT 3 failed

WX087 16.02.2018 α-RuCl3 CVT 3 Crystals size < 20 mg

WX088 19.02.2018 α-RuCl3 CVT 1 Crystals size < 5 mg

WX089 20.02.2018 α-RuCl3 CVT 3 Crystals size < 50 mg
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Table A.2: Summary of crystal growth experiments (II).

Batch
number

Date Crystals to grow Methods Duration
/ day

Results

WX090 20.02.2018 α-RuCl3 CVT 1 Power failed

WX091 01.03.2018 α-RuCl3 CVT 3 failed

WX092 01.03.2018 α-RuCl3 CVT 0 Oxided

WX093 02.03.2018 α-RuCl3 CVT 5 No trasfer.

WX094 09.05.2018 α-RuCl3 CVT 6 Crystals size < 20 mg

WX095 23.05.2018 α-RuCl3 CVT 5 Crystals size < 50 mg

WX096 27.06.2018 Na2IrO3 Flux 10 failed

WX097 28.06.2018 α-RuCl3 CVT 5 Crystals size < 5 mg

WX098 11.07.2018 Mn3Sn Flux 5 Crystals size < 100 mg

WX099 16.07.2018 Na2IrO3 Flux 10 failed

WX100 19.07.2018 Mn3Sn Flux 5 Crystals size < 20 mg

WX101 27.07.2018 EuMnBi2 Flux 6 Crystals size < 200 mg

WX102 30.07.2018 Mn3Sn Flux 6 Crystals size < 50 mg

WX103 02.08.2018 YbPtBi Flux 8 Crystals size < 20 mg

WX104 05.08.2018 YbMnBi2 Flux 8 Crystals size < 300 mg

WX105-1 09.08.2018 CeSb Flux 13 Crystals size < 400 mg

WX105-2 16.10.2018 CeSb Flux 15 failed

WX106 22.08.2017 α-RuCl3 CVT 8 Crystals size < 15 mg

WX107-1 29.08.2018 Cr2Ge2Te6 Flux 11 Crystals size < 50 mg

WX107-2 29.08.2018 Cr2Ge2Te6 Flux 11 Crystals size < 20 mg

WX108-1 28.08.2018 YbPtBi Flux 9 Crystals size < 30 mg

WX108-2 28.08.2018 YbPtBi Flux 8 Crystals size < 100 mg

WX109 05.09.2018 Fe3Sn2 Powders 7 failed

WX110 12.09.2018 Cr2Ge2Te6 Flux 7 Crystals size < 30 mg

WX111-1 11.10.2018 Mn3Sn Flux 11 Ampoule broken

WX111-2 11.10.2018 Mn3Sn Flux 6 Ampoule broken

WX112-1 19.09.2018 Cr2Ge2Te6 Flux 6 Flux separated failed

WX112-2 19.09.2018 Cr2Ge2Te6 Flux 6 Crystals size < 10 mg

WX116-1 20.09.2018 α-RuCl3 CVT 4 Crystals size < 75 mg

WX116-2 20.09.2018 α-RuCl3 CVT 8 Crystals size < 70 mg

WX117-1 07.11.2018 Cr2Ge2Te6 Flux 14 Crystals size < 10 mg
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Table A.3: Summary of crystal growth experiments (III).

Batch
number

Date Crystals to grow Methods Duration
/ day

Results

WX117-2 07.11.2018 Cr2Ge2Te6 Flux 7 Crystals size < 10 mg

WX118-1 08.11.2018 Cr2Si2Te6 Flux 6 Crystals size < 1500 mg

WX118-2 08.11.2018 Cr2Si2Te6 Flux 7 Crystals size < 1000 mg

WX119-1 09.11.2018 Mn3Sn Flux 10 Crystals size < 50 mg

WX119-2 09.11.2018 Mn3Sn Flux 10 Crystals size < 50 mg

WX121-1 09.11.2018 α-RuCl3 CVT 6 failed

WX121-2 16.11.2018 α-RuCl3 CVT 3 Crystals size < 170 mg

WX121-3 19.11.2018 α-RuCl3 CVT 3 Crystals size < 100 mg

WX122-1 22.11.2018 YbPtBi Flux 9 Crystals size < 30 mg

WX122-2 22.11.2018 YbPtBi Flux 8 Crystals size < 20 mg

WX124 15.11.2018 α-RuCl3 CVT 1 Crystals size < 50 mg

WX125 16.11.2018 α-RuCl3 CVT 4 failed

WX127 23.11.2018 α-RuCl3 CVT 5 Crystals size < 610 mg

WX128-1 21.11.2018 Mn3Sn Flux 10 Crystals size < 50 mg

WX128-2 21.11.2018 Mn3Sn Flux 10 Crystals size < 50 mg

WX129 21.11.2018 CeSb Flux 14 Crystals size < 300 mg

WX131 26.11.2018 Mn3Sn Flux 9 Crystals size < 30 mg

WX132-1 28.11.2018 Mn3Sn Flux 8 Crystals size < 10 mg

WX132-2 28.11.2018 Mn3Sn Flux 8 Crystals size < 10 mg

WX134 04.12.2018 Cr2Ge2Te6 Flux 14 Crystals size < 30 mg

WX135 04.12.2018 Cr2Ge2Te6 Flux 15 Crystals size < 100 mg

WX136 03.12.2018 α-RuCl3 CVT 3 failed

WX137 07.12.2018 α-RuCl3 CVT 4 Crystals size < 200 mg

WX138 15.12.2018 α-RuCl3 CVT 7 Crystals size < 720 mg

WX139-1 06.12.2018 Mn3Sn Flux 12 Crystals size < 2000 mg

WX139-2 06.12.2018 Mn3Sn Flux 12 Crystals size < 1000 mg

WX139-3 06.12.2018 Mn3Sn Flux 12 Crystals size < 1000 mg

WX140 05.02.2019 α-RuCl3 CVT 5 Crystals size < 200 mg

WX142 12.02.2019 PtBi2 Flux 8 Crystals size < 30 mg

WX148 15.02.2019 α-RuCl3 CVT 7 failed

WX150 28.02.2019 α-RuCl3 CVT 7 Crystals size < 50 mg

WX151 07.03.2019 α-RuCl3 CVT 4 Crystals size < 100 mg
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Table A.4: Summary of crystal growth experiments (IV).

Batch
number

Date Crystals to grow Methods Duration
/ day

Results

WX152 11.03.2019 α-RuCl3 CVT 6 Crystals size < 150 mg

WX153-1 15.03.2019 Mn3Sn Flux 10 Crystals size < 50 mg

WX153-2 15.03.2019 Mn3Sn Flux 10 failed

WX155 18.03.2019 Mn3Sn Flux 4 Crystals size < 150 mg

WX156-1 22.03.2019 Mn3Sn Flux 11 Centrifuging failed

WX156-2 22.03.2019 Mn3Sn Flux 12 Mn oxidised

WX162 23.04.2019 α-RuCl3 CVT 5 Crystals size < 200 mg

WX176 21.07.2019 ZrTe5 Flux 12 No crystals

WX181 30.09.2019 ZrTr5 CVT 25 Crystals size < 20 mg
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A.2. GLOSSARY

A.2 Glossary

AFM Antiferromagnetic

AHE Anomalous Hall effect

ARPES Angle-resolved photoemission spectroscopy

B Magnetic induction

CVT Chemical vapour transport

∆cubic Cubic crystal field

DM Dzyaloshinskii-Moriya interaction

DNS Diffuse scattering neutron time of flight spectrometer

EDX Energy-dispersive X-ray spectroscopy

f Frustration index

FC Field cooling

G Crystallographic group

Gk Little group

H Hamiltonian

H Subgroup of index 2

}ω Energy transfer of neutrons in neutron scattering experiment

I Electrical current

Irreps Irreducible representation

Je f f Effective total angular momentum operator

k Propagation wave vector

Kx, Ky, Kz Bond dependent Kitaev Hamiltonian

k f Scattered neutron wave vector

ki Incident neutron wave vector

κxy Thermal Hall conductance

κ2D
xy Two dimensional thermal Hall conductance

K0 Quantum thermal conductance

λ Spin orbit coupling

M Magnetic group

m Mirror plane

m′ Mirror plane plus time-reversal symmetry

M⊥ Magnetic interaction

MSG Magnetic space group

MSSG Magnetic superspace group

N Nuclear structure factor
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NSF Non spin flip

Occ. Atoms occupation

1D One dimensional

P Neutron beam polarisation states tensor

P Polarisation of a neutron beam

Pf Polarisation of a scattered neutron beam

PPMS Quantum Design Physical Properties Measurement Systems

Pi Polarisation of an incident neutron beam

Q Neutron scattering wave vector

QAHE Quantum anomalous Hall effect

QHE Quantum Hall effect

QSL Quantum spin liquid

R Time reversal symmetry group

ρH Hall electrical resistivity

ρxx Longitudinal electric resistivity

SF Spin flip

RVB Resonating valence bond

3D Three dimensional

THE Topological Hall effect

TI Topological insulator

2D Two dimensional

ZFC Zero field cooling
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