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a b s t r a c t 

In this paper, we study the problem of planning the growth of crops on shelves in vertical farming cab- 

inets under controlled growth conditions. By adjusting temperature, humidity, light, and other environ- 

mental conditions in different parts of the cabinets, a planner must ensure that crop growth is able to 

satisfy some deterministic demand. We prove this problem to be N P -hard and propose an integer pro- 

gramming formulation able to capture real-life operational characteristics, including changes of growth 

conditions on a daily, shelf-by-shelf basis, over a planning horizon of months. We compare four objec- 

tive functions from which a planner can choose, depending on the specific operations of the company. A 

computational study on realistic instances, which we make available as a public dataset, shows that the 

choice of objective function heavily influences both the difficulty of solving the model with a standard 

solver and the solution characteristics. 

© 2021 The Authors. Published by Elsevier B.V. 
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. Introduction 

The stocks of arable land per person are declining worldwide, 

ue to increasing population and urbanisation rates, decreasing 

ater availability, and climate change ( Fedoroff, 2015 ). Increasing 

and use for standard agricultural practices has undesirable effects, 

uch as deforestation, an elevated use of fertilisers and pesticides, 

oil degradation and its eventual depletion, low yield per unit of 

urface, and extensive transportation costs to move produce from 

he production to the consumption site ( Benke & Tomkins, 2017 ). 

ll these effects take their toll both economically and, more im- 

ortantly, on the environment and the well-being of urban and 

ural communities alike. The large-scale increase in food demand 

orecast to take place within the next decades has prompted the 

nvestigation of alternative production methods. The main aim of 

hese effort s is to increase the yield per square meter while reduc- 

ng negative effects on the environment and being economically 

iable ( Beacham, Vickers, & Monaghan, 2019 ). 

One of the new production methods which is gaining consid- 

rable traction is Vertical Farming (VF), i.e., growing crops in ver- 

ical stacked layers rather than on the ground ( Beacham et al., 

019 ). Fig. 1 shows three stacked layers hosting mulberry plants. 
∗ Corresponding author. 
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ach shelf provides the plants with nutrients; in the case depicted 

n the figure, the plants grow without soil and absorb the nutri- 

nts directly from water (a growth method known as hydropon- 

cs). The shelves also provide light, ventilation and, optionally, con- 

rolled temperature and CO 2 levels. The size of the stacks can vary 

onsiderably and spans from small shelf cabinets to entire plant 

actories ( Kozai, 2018; Kozai, Niu, & Takagaki, 2015 ). Their hosting 

tructures range from specially-built buildings to shipping contain- 

rs and from reused pre-existing buildings to cabinets no larger 

han a standard refrigerator. 

A desirable property of the host structure is that it is isolated 

rom the external environment. This allows the plants to grow in 

 controlled environment (CE) with regulated levels of light, water, 

nd humidity that can even vary on a shelf-by-shelf basis. One 

f the advantages of CE systems is that they are independent of 

xternal weather and light conditions and can thus be used in a 

ariety of regions: they are not affected by floods, droughts, and 

ther catastrophic events. They also allow for minimal interaction 

ith the outside environment, sheltering the crops from parasites, 

athogens, or heavy metals (all common occurrences in open-air 

arming) and thus eliminating the need for pesticides and herbi- 

ides. Final commercial users, such as restaurants, food markets, or 

otels, can accommodate the cabinets on their premises, reducing 

r eliminating any transport cost and the resulting negative effects 

n the environment. Crops growing in CE are also not affected by 

easonality, and the operators can plan their production to match 

he demand all year round ( Benke & Tomkins, 2017 ). 
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Fig. 1. Stacks of shelves in which mulberries are growing in a hydroponic system, i.e., receiving their nutrients directly from water, without soil. Photograph by Satoshi 

Kinokuni, distributed under a CC-BY-2.0 license. 
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On the negative side, growth in a CE is more expensive in terms 

f energy than open-air farming due to the need of constant arti- 

cial lightning. In recent years, however, the energy footprint of 

E systems has improved thanks to low-consumption LED lights 

nd the increased efficiency of on-site renewable energy produc- 

ion and storage. 

VF offers opportunities that contribute to achieve the Sustain- 

ble Development Goals of the United Nations ( UN General As- 

embly, 2015 ): Goal 2: Zero Hunger can be supported by large-scale 

F systems producing staple foods in large quantities in countries 

ith restricted space availability or hostile conditions for open-air 

arming, while the ability of VF systems to reduce the negative ef- 

ects of traditional farming as described above can play a role in 

chieving Goal 12: Responsible Consumption and Production and Goal 

5: Life On Land . Moreover, we note that in pandemic situations 

ike the outbreak of COVID-19, VF systems may offer the additional 

utonomy and independence from transport operations that is nec- 

ssary to implement quarantine measures in affected areas. 

.1. Problem description 

We consider the problem of a planner who must operate a VF 

abinet to grow crops and meet some deterministic future demand. 

ach cabinet is composed of a set of stacked shelves, which can 

ost the crops during their growth cycle. Industry-grade cabinets 

llow to specify the growth conditions of each shelf individually, 

nd may vary it day by day. The planner must define the growth 

onditions (temperature, light, humidity) of each shelf, for every 

ay of the planning horizon, keeping in mind that changing config- 

rations too frequently can lead to mistakes and reduce the energy 

fficiency of the system (for example, swapping back-and-forth be- 

ween colder and hotter temperatures). 

The planner must also decide in which shelf they will place 

ach plant, making sure that the receiving shelf has the right con- 

itions for the current growth phase of the plant. Growth times 

f crops under controlled conditions are predictable, and there- 

ore, the planner will plant with suitable advance depending on 

he days in which there is demand for each crop. In other words, 

he planner does not have to choose the growth start time or the 

equence of crops to grow because both are predetermined by 

he demand. Another factor influencing the allocation of crops to 

helves is that shelves have limited capacity, which can vary de- 
378 
ending on the growth medium used (e.g., hydroponics, aeropon- 

cs, peat, synthetic material). 

The planner can also move plants from one shelf to another 

uring their growth, however, too many movements can damage 

he crops. For example, moving plants can be beneficial to con- 

olidate in the same shelf plants requiring the same growth con- 

itions, but that are currently located in different shelves; in this 

ay, the planner can empty shelves to use for growing other crops 

equiring different conditions. 

In the days with demand, the planner will harvest the required 

lants. In case demand is too high compared to the size of the 

abinet, the planner can decide to reject some orders and not meet 

art of the demand. An easy way to ensure demand is met is to 

uild larger cabinets, but this would lead to higher building and 

perating costs. Thus, the planner might also want to know what 

s the optimal size of their cabinet, given some future demand. 

To meet the diverse requirements outlined above, we propose 

nd study four possible goals that a planner can find useful: 

(i) maximise the demand met, given a fixed number of cabi- 

nets; 

(ii) minimise the number of times shelf configurations change; 

(iii) minimise the number of times crops move between shelves; 

(iv) minimise the number of shelves required to meet a given 

demand. 

We call this problem the Crop Growth Planning Problem 

CGPP). 

.2. Contribution 

The main contributions of this paper are the following. 

• To the best of our knowledge, we are the first to consider the 

problem of optimally planning the growth of crops in VF cabi- 

nets. The relevance of this problem stems from the social, envi- 

ronmental, and economic challenges to which VF offers a viable 

solution, as outlined above. 
• We incorporate real-life constraints determined by crop growth 

conditions and the available infrastructure. Our model is flexi- 

ble enough to allow for the growth conditions to change daily 

and on a shelf-by-shelf basis. Growers require such a degree of 

flexibility to provide the crops with ideal growth conditions and 

maximise the quality of their yield. 
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• We formalise the CGPP and provide a complete Integer Linear 

Programme (ILP), proposing four models that differ in their ob- 

jective functions as outlined above, and decision makers can 

choose the objective function most suitable for their needs. We 

prove that the problem is N P -hard, independent of the objec- 

tive function used. 
• We perform an extensive computational study to compare the 

performance of the models, to determine the size of problem 

instances solvable via standard solvers, and to compare the op- 

erational effects of choosing different objective functions. We 

use a realistic dataset with instances containing up to six crops, 

twelve shelves, and a time horizon of 100 days. We conclude 

that the objective function has a large effect on the difficulty 

of solving the problem. Moreover, solutions obtained optimising 

with regards to one objective typically fare poorly with respect 

to the other objectives. 

After providing an overview of the literature in Section 2 , we 

ormalise the CGPP and frame it as an ILP in Section 3 . In Section 4 ,

e present the outcome of extensive experiments on realistic in- 

tances, providing computational results and managerial insights. 

e conclude and point out future research directions in Section 5 . 

. Literature review 

The literature on the topic of crop production planning in VF 

s scarce. The only work we are aware of is that of Bennell, Mar-

inez, and Potts (2017) , who use Operational Research techniques 

or scheduling crops in shelf cabinets. The work stems from an in- 

ustry collaboration with a local business and has not been pub- 

ished as a technical report or journal paper. The authors study 

he problem of minimising unmet demand in a growing cabinet in 

hich each shelf can be subject to different lightning and irriga- 

ion conditions. Another decision is the growing medium to assign 

o each shelf, which influences both its capacity and which crops 

an grow on the shelf. The main difference with the CGPP lies in 

he presence of a scheduling component in the work of Bennell 

t al. (2017) because the crop growth length can vary within a 

iven time window. The authors use an ILP to precisely describe 

he problem. The ILP is large (for example, it uses four set of vari-

bles, three of which are five-indexed), and although the model 

s not explicitly provided in their presentation, the authors report 

hat it can solve instances with 3 crops and a 70-day planning 

orizon, but it is not able to solve a problem with 5 crops within 1

ay of computing time. To tackle realistically-sized instances of the 

roblem, the authors use a heuristic that decomposes the prob- 

em into two subproblems. The first tries to minimise unmet de- 

and while satisfying capacity constraints, but it does not allocate 

rops to shelves. The second subproblem performs the actual allo- 

ation, minimising the number of movements. Thus, the problem 

as a hierarchical objective function. Because the second subprob- 

em is still computationally challenging, the authors solve it with a 

olling-horizon heuristic. Using this approach, they are able to ob- 

ain solutions of instances with up to 9 crops, 15 shelves, and a 

lanning horizon of 70 days. 

As already noted by Bennell et al. (2017) , the problem of 

lanning the growth of crops in VF has superficial similarities 

ith machine scheduling problems. In particular, we can consider 

ach shelf as a machine, and each crop growth phase as a task 

equired to complete a job. Under this analogy, the CGPP has 

imilarities with parallel machine scheduling ( Li & Yang, 2009; 

okotoff, 2001 ) (because shelves work in parallel), parallel ma- 

hine scheduling with splitting jobs ( Xing & Zhang, 20 0 0 ) (because

nits of the same crop can grow on different shelves), scheduling 

ith batching ( Potts & Kovalyov, 20 0 0 ) (because different crops 

an share the same shelf when requiring a common configuration), 
379 
nd job shop scheduling ( Chaudhry & Khan, 2016; Jain & Meeran, 

998 ) (because each crop must go through its growth phases 

n a given order). Under scheduling terminology, crop growth is 

on-preemptive because it cannot stop and resume at a later time, 

nd machines are capacitated because each shelf can host a max- 

mum amount of crop units. From this viewpoint, the CGPP has 

articular similarities with hybrid flow shop scheduling problems 

see, e.g, Ruiz & Vázquez-Rodríguez, 2010 for a comprehensive 

urvey) because each crop may be viewed as a job that must be 

rocessed non-preemptively through a predefined sequence of 

tages (its growth phases), and multiple machines (the shelves) 

re available at each stage. 

However, the CGPP also exhibits considerable differences with 

espect to classical scheduling problems, and cannot be modelled 

s such. The main difference is that scheduling problems involve 

wo sets of decision: first, assigning tasks to machines; second, 

equencing and timing tasks on their assigned machines. In the 

GPP, the second part is missing because the sequence of growth 

ycles is fixed, and the demands and the lengths of growth deter- 

ine in advance the planting and harvesting times. Returning to 

he analogy with hybrid flow shops, this means that no schedul- 

ng decision, in the classical sense, is required at any stage. In fact, 

or each job (crop) and each point in time it is known a priori 

hether the job will be processed at that time. Rather, because 

rops can be moved from one shelf to another without interrupting 

heir growth, the decisions to be taken at each stage are whether 

r not each machine (shelf) is used and to which machine each 

ob is assigned. This is a simplifying factor compared to scheduling 

roblems. On the other hand, a specific difficulty of the CGPP (be- 

ides the fact that shelves are capacitated) is that shelves must be 

onfigured at each stage to be compatible with the crops that they 

ost. As the analysis in Section 3.5 suggests, this aspect seems to 

e the main complexity driver in CGPP. 

Another fundamental difference with respect to classical 

cheduling problems lies in the objective functions considered. 

ypical objectives of scheduling problems involve penalties related 

o makespan, tardiness or earliness; i.e., it is the time at which jobs 

nd which influences the objective cost. In the CGPP these objec- 

ives do not apply because crop demand determines the finishing 

imes of jobs. 

Other characteristics which separate the CGPP from classical 

roblems are the following: 

• Our machines (the shelves) can be reconfigured and, thus, per- 

form a wide variety of tasks. Although some flexible manu- 

facturing systems allow a certain level of machine adaptability 

(see, e.g., Logendran & Sonthinen, 1997 ), in most production en- 

vironments, each machine has a specific function and a limited 

set of tasks it can perform. 
• The CGPP is different from machine scheduling problems with 

preemption because crop growth cannot be put on hold. Al- 

though crops can be moved to any shelf as often as desired, 

the moves are immediate and there is no break in between. 

On the other hand, when preemption is allowed in scheduling 

problems, tasks are normally required to resume on the same 

machine where they stopped (see, e.g., Liu & Cheng, 2002; 

Thevenin, Zufferey, & Potvin, 2017 ) after a setup time. In the 

CGPP, setup times (i.e., the time needed to plant crops in a 

shelf) are generally negligible because our unit of time discreti- 

sation is a day. 
• Machines are capacitated, but their capacity is not fixed and 

rather depends on the configuration used at a given moment. 

By contrast, in most capacitated job shop, flow shop or lot siz- 

ing models, machine capacities are either fixed or can increase 

by paying a (overtime) penalty (see, e.g., Buschkühl, Sahling, 
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Helber, & Tempelmeier, 2010; Ramezanian, Saidi-Mehrabad, & 

Teimoury, 2013 ). 
• Although each job is made up of a sequence of tasks (the 

growth phases), in principle a single machine could carry out 

the whole job if reconfigured to follow the requirements of the 

crop during its different phases. In typical job shop and flow 

shop problems, including their flexible variants, different tasks 

require different machines. 

In terms of its combinatorial structure, the CGPP has closer 

ies to multicommodity fixed-charge network flow models, which 

ecomes evident in the formulations presented in Section 3 . So- 

utions of these models can indeed be interpreted as multi- 

ommodity flows through a time-expanded network in which the 

odes are associated with indicator variables and capacity con- 

traints. There is a vast amount of applications that have been 

odelled and addressed as multicommodity (fixed-charge) net- 

ork flow problems (see e.g., Ahuja, Magnanti, & Orlin, 1993; Batta 

 Kwon, 2013; Magnanti & Wong, 1984 ), and a detailed review is 

eyond the scope of this paper. However, we are not aware of ap- 

lications similar to the one addressed in this paper. For example, 

ur scenario also differs from lot sizing problems ( Brahimi, Absi, 

auzère-Pérès, & Nordli, 2017; Jans & Degraeve, 2008 ) (or similar 

roblems which include a lot-sizing component and can be mod- 

led as fixed-charge network flow problems) because we have no 

nventories and no setup, inventory or backlogging costs. Seeds and 

eedlings are inexpensive to store, so we need not consider raw 

aterial inventories; produce is perishable, so there cannot be any 

nished product inventory; growth is uninterruptible, so there is 

o intermediate product inventory. Also, because of the efficiency 

f VF and the use of high-yield crops with a high value per unit of

eight, the marginal cost for unmet demand is high and deliberate 

tockout is never an economic option. This means that production 

osts are sunk, and we should aim at producing as much as pos- 

ible; only when demand is higher than capacity, we can perform 

 selection of which crops to grow, trying to stock-out on the least 

rofitable crops (see Section 3.2.3 ). 

We conclude that no other planning problem investigated in the 

iterature adequately captures the specificity of growing crops in 

F cabinets. Hence, the necessity exists to develop new, dedicated 

athematical formulations for this problem. 

. Mathematical models 

To formalise the CGPP, we introduce the following notation. We 

onsider a set C of crops that grow on a set S of shelves during a 

ime horizon D = { 1 , . . . , d̄ − 1 } . Each element of D represents one

ay; d̄ is the last day when harvest is possible, and d̄ − 1 is the 

ast day when growth is possible (assume that crops are harvested 

t the beginning of the day). We also consider the extended time 

orizon D 

′ = { 0 } ∪ D, where we use day 0 to model seeds not yet

lanted, which will start growth on day 1. On each day d ∈ D ∪ { ̄d } ,
e have to meet a demand of p cd units for each crop c ∈ C (with

p cd ∈ N ). 

A parameter δcs ∈ { 0 , 1 } determines compatibility between 

rops and shelves, taking value 1 iff crop c ∈ C is able to grow on 

helf s ∈ S. For example, some shelves could be not deep or tall

nough for growing certain crops. In addition, we define the set of 

helves compatible with each crop as S c = { s ∈ S : δcs = 1 } . 
Furthermore, a crop goes through different phases in its growth, 

ach requiring precise conditions, such as temperature level, hu- 

idity, and growth medium characteristics. One unit of crop c

rows for γc days, i.e., it has to spend γc days in the VF system. 

n each day of growth g ∈ { 1 , . . . , γc } , we require the system to

eep the shelf that hosts the unit at condition k c,g ∈ K, where K is

he set of possible conditions for the shelves. Practically, K is the 
380 
et of all feasible combinations of parameters for soil type, tem- 

erature, humidity, CO 2 , air flow, etc. In real-life applications, the 

equired conditions do not change on a daily basis but only when 

he crop changes from one growth phase to the next, such as ger- 

ination, seedling growth, etc. The conditions also affect the shelf 

apacity, i.e., the number of units of crops that can grow on the 

helf simultaneously. We denote the capacity of a shelf s ∈ S under 

onditions k ∈ K as q sk , with q sk ∈ N . Note that the capacity refers

o the total number of units of any crop that can grow on the shelf

t the same time, thereby allowing mixing different crops on the 

ame shelf. 

In practice, growers tend to avoid moving plants too much and, 

oth for simplicity and to reduce movements, try to place plants 

n shelves which will be able to accommodate them for their en- 

ire growth cycle. However, it is easy to model a situation in which 

lants can start growth on a short shelf but later need a taller shelf 

y making the compatibility parameter δcs introduced above de- 

endent on the growth day g. 

For modelling convenience, we extend the set S with two 

ummy shelves, obtaining set S ′ = { σ, τ } ∪ S and sets S ′ c = { σ, τ } ∪
 c . Element σ represents the seed vault , i.e., a virtual location for 

nits of crop before they enter the VF system. Analogously, τ rep- 

esents the produce storage , i.e., the virtual location where units of 

rop go when they are ready for pick-up. Furthermore, we denote 

s growth day 0 the last day a unit of crop is in the seed vault.

n other words, the set of extended growth days for a crop c is 

 0 , 1 , . . . , γc } . 
Because commercial VF cabinet shelves are often not all differ- 

nt, we can reduce the size of the model by considering the set 

 of shelf types. Shelves of the same type have the same com- 

atibility with crops and the same capacities. We can then use 

arameters δct ∈ { 0 , 1 } for compatibility between crop c ∈ C and

helves of type t ∈ T , and q tk ∈ N to denote the capacity of any

helf of type t under condition k ∈ K. Analogously, we can define 

ets T ′ = { σ, τ } ∪ T , T c = { t ∈ T : δct = 1 } , and T ′ c = { σ, τ } ∪ T c . We

enote as n t , with n t ∈ N , the number of shelves of type t ∈ T 

vailable in the VF system. 

We use two sets of variables: 

• x 
c,g 

t 1 ,d,t 2 
∈ N is the number of units of crop c ∈ C in their g-th day

of growth ( g ∈ { 0 , . . . , γc } ), growing on shelves of type t 1 ∈ T ′ c 

on day d ∈ D 

′ and going to shelves of type t 2 ∈ T ′ c on day d + 1 .
• y t,d,k ∈ N is the number of shelves of type t ∈ T with configura-

tion k ∈ K on day d ∈ D . 

It is helpful to visualise the shelves (as shelf types) and the 

ime horizon as a time-expanded graph, in which paths represent 

ovement of crops while growing. Fig. 2 depicts an example with 

hree shelf types, two crops (represented by the dashed and dot- 

ed paths, respectively), and no compatibility constraints. The first 

rop needs to spend three days on a shelf with configuration k 1 , 

ollowed by two days on a shelf with configuration k 2 . If we have

emand for this crop on day 6, this means the growth needs to 

tart at the beginning of the time horizon and, in fact, the crop 

eaves the seed vault on day 0 and is already growing on a shelf of

ype 1 on day 1. The second crop needs four days in the system: 

uring the first two, it needs a shelf with configuration k 1 , and 

uring the second two, a shelf with configuration k 3 . In this ex- 

mple, we assume that the total number of units we are growing 

oes not exceed the capacity of the shelves of type 1 (in configura- 

ion k 1 ), and both crops can be present at the same time on these

helves on day 3. 

In the following, we describe in detail a mathematical base 

odel that uses an aggregation of shelves into shelf types. For cer- 

ain objective functions we must modify the model to introduce 

ew variables or index existing ones on the shelves instead of the 

helf types; in this case, we will explain how to set up alternative 
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Fig. 2. Time-expanded graph whose columns represent days, and rows represent shelf types. The two arrow paths (dashed and dotted) show two crops growing in the 

system. The labels next to the nodes represent the shelf configurations. 
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odels. We present the constraints of the model in Section 3.1 and 

iscuss the possible objective functions in Section 3.2 ; the reader 

an also find complete models in the appendix. Section explain 

ow to strengthen the base model by fixing variables and adding 

alid inequalities, respectively. Finally, in Section 3.5 we prove that 

he CGPP is N P -hard. 

.1. Constraints 

In the following, we describe the constraints to ensure that 

e satisfy demand and respect capacity limits and shelf condition 

ompatibility. 

Demand satisfaction implies that the correct amount of units 

of crop reach the produce storage on time: 
∑ 

t∈ T c 
x 

c,γc 

t,d−1 ,τ
= p cd ∀ c ∈ C, ∀ d ∈ D ∪ { d̄ } . (1)

Eq. (1) guarantees that an amount of units of crop c equal to 

the demand on day d is sent from any shelf (where it was 

on day d − 1 ) to the produce storage. 

Capacity constraints ensure that a feasible amount of units of 

crops is grown on any given shelf, on any given day. Recall 

that shelf capacities are not fixed but depend on the specific 

configuration used. We can calculate the number of units of 

crops on shelves of type t 1 with configuration k on a given 

day d by counting, for example, how many units move out 

from these shelves, i.e., summing over outgoing arcs. 

∑ 

t 2 ∈ T ′ 

∑ 

c∈ C 
δct 1 

=1 

δct 2 
=1 

∑ 

g∈{ 1 , ... ,γc } 
k = k c,g 

x c,g 
t 1 ,d,t 2 

≤ q t 1 k · y t 1 ,d,k ∀ t 1 ∈ T , ∀ d ∈ D, ∀ k ∈ K. 

(2) 

Note how Eq. (2) also serves as a linking constraint, forc- 

ing variables y to take non-zero value for a type-day- 

configuration combination when there are x variables using 

a shelf of the given type, with the given configuration, on 

the given day. 

Planting constraints: Because the demand determines when 

the operator needs to harvest a crop, and crop growth lasts 
381 
a fixed number of days, demand indirectly also determines 

when the operator will plant the crops. 
∑ 

t∈ T c 
x c, 0 
σ,d−γc −1 ,t 

= p cd ∀ c ∈ C, ∀ d ∈ { γc + 1 , . . . , d̄ } . (3)

Flow-balance constraints: While Eq. (1) constrains arcs in- 

bound to the produce storage and Eq. (3) constrains arcs 

outbound from the seed vault, the following set of con- 

straints refer to arcs to and from non-dummy shelves. They 

ensure that any amount of crop growing on shelves of one 

type on a given day is sent to the same shelf or other 

shelves for the next day. 

∑ 

t 2 ∈ T ′ c 

x c,g 
t 2 ,d−1 ,t 1 

= 

∑ 

t 2 ∈ T ′ c 

x c,g+1 

t 1 ,d,t 2 
∀ c ∈ C, ∀ g ∈ { 0 , . . . , γc } , ∀ t 1 ∈ T c , ∀ d ∈ D.

(4) 

Note how Eq. (4) also ensures that the growth day increases 

by one each time a day passes. 

Configuration constraints ensure that we select no more con- 

figurations than there are shelves, for each shelf type on 

each day. 
∑ 

k ∈ K 
y t,d,k ≤ n t ∀ t ∈ T , ∀ d ∈ D. (5) 

.2. Objective functions 

Practical applications can vary considerably in the objectives 

hat a planner wants to achieve. In the described VF setting, no 

ingle objective function is obviously the correct one to study. 

herefore, we investigate a number of meaningful objectives in the 

ollowing and describe how they can be modelled. 

.2.1. Minimise the number of movements 

Moving a crop from a shelf to another one is time-consuming, 

an damage the crop, or make it undergo unnecessary stress. It 

ould be convenient, then, for crops to stay as much as possible 

n the same shelf and having the shelf conditions change appropri- 

tely to match crop growth phases. 

If we use variables aggregated on the shelf types, it is impossi- 

le to model each movement of a crop from shelf to shelf. To see 
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Fig. 3. Example of two growth schedules (left and right) which are indistinguishable by looking at the x variables aggregated by shelf type, but are different if we index the 

x variables over the single shelves. 
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t

hy this is the case, consider two crops c 1 , c 2 which grow for 2

ays ( γc 1 = γc 2 = 2 ), and a VF system with two shelves s 1 , s 2 of a

ingle type t, both with large capacities under all growing condi- 

ions. Crop c 1 needs to spend one day in condition k 1 , followed by

ne day in condition k 2 ; crop c 2 needs one day in condition k 1 ,

ollowed by one day in condition k 3 . 

If we must plant and harvest both crops at the same time, then 

he following two schedules are both feasible, but the first involves 

ne crop movement while the second involves none: 

• Grow both crops c 1 , c 2 on shelf s 1 on the first day (in config- 

uration k 1 ). Then put s 1 in configuration k 2 and keep crop c 1 
there, and put s 2 in configuration k 3 and move crop c 2 there. 

• Put crop c 1 on shelf s 1 , in configuration k 1 on the first day, and

k 2 on the second day. Put crop c 2 on shelf s 2 , in configuration

k 1 on the first day, and k 3 on the second day. 

Fig. 3 represents the two possible schedules. Notice how in both 

ases the x variables would have the same values: x 
c 1 , 0 

σ, 0 ,t 
= x 

c 1 , 1 

t, 1 ,t 
= 

 

c 1 , 2 

t, 2 ,τ = x 
c 2 , 0 

σ, 0 ,t 
= x 

c 2 , 1 

t, 1 ,t 
= x 

c 2 , 2 

t, 2 ,τ = 1 , with all other x variables equal to

ero. 

To minimise the number of crop movements, we need to use 

 variables indexed over the single shelves, x 
c,g 

s 1 ,d,s 2 
∈ N indicating 

he number of units of crop c ∈ C which are on shelf s 1 ∈ S on day

 ∈ D (which is the crop’s gth growth day) and move to shelf s 2 ∈
on day d + 1 . Then, we can express the required goal with the

ptimisation of the following objective function: 

in 

∑ 

c∈ C 

γc ∑ 

g=1 

∑ 

s 1 ,s 2 ∈ S c 
s 1 � = s 2 

∑ 

d∈ D 
x c,g 

s 1 ,d,s 2 
. (6) 

e can easily adjust the constraints noting that the following re- 

ation between the shelf and the shelf-type x variables hold: 

 

c,g 

t 1 ,d,t 2 
= 

∑ 

s 1 ∈ S t 1 

∑ 

s 2 ∈ S t 2 

x c,g 
s 1 ,d,s 2 

, 

here S t ⊆ S is the set of all shelves of type t ∈ T . We denote the

orresponding model as MinM . 

.2.2. Minimise the number of reconfigurations 

Changing shelf configurations takes time and is prone to errors. 

n some applications it is advisable to keep shelves in stable condi- 

ions and move crops around to the shelf that matches its current 

equirements. Minimisation of the following objective function re- 

ects this necessity: 

in 

∑ 

t∈ T 

d̄ −2 ∑ 

d=1 

1 

2 

∑ 

k ∈ K 
| y t,d,k − y t,d+1 ,k | , (7) 
382 
here the constant 1 / 2 reflects the fact that changing the config- 

ration of one shelf changes the value of two y variables at once. 

ecause no constraint explicitly sets the configuration of an unused 

helf, the objective function will make these shelves keep the con- 

guration they had when last used. In this way, we correctly count 

onfiguration changes and not “switching on/off” of shelves. 

We can linearise Eq. (7) by replacing variables y with variables 

 t,d,k ∈ N taking, in any optimal solution, the absolute value of 

 t,d,k − y t,d+1 ,k . The objective function becomes 

in 

∑ 

t∈ T 

d̄ −2 ∑ 

d=1 

∑ 

k ∈ K 
w t,d,k , (8) 

nd we can link the w and y variables as follows: 

 t,d,k ≥ y t,d,k − y t,d+1 ,k ∀ t ∈ T , ∀ d ∈ { 1 , . . . , d̄ − 2 } , ∀ k ∈ K 

 t,d,k ≥ y t,d+1 ,k − y t,d,k ∀ t ∈ T , ∀ d ∈ { 1 , . . . , d̄ − 2 } , ∀ k ∈ K 

e denote the corresponding model as MinR . 

.2.3. Minimise unmet demand 

If it is not guaranteed that a feasible schedule meeting all de- 

and exists, one can decide to keep part of it unsatisfied. In this 

ase, we introduce a new variable u cd ∈ N , indicating the amount 

f unmet demand for crop c ∈ C on day d ∈ D ∪ { ̄d } . We need to

odify Eqs. (1) and (3) as follows: 
 

∈ T c 
x 

c,γc 

t,d−1 ,τ
+ u cd = p cd ∀ c ∈ C, ∀ d ∈ D ∪ { d̄ } , (9) 

 

∈ T c 
x c, 0 
σ,d−γc −1 ,t 

+ u cd = p cd ∀ c ∈ C, ∀ d ∈ { γc + 1 , . . . , d̄ } . (10) 

hen, the objective function becomes 

in 

∑ 

c∈ C 

d̄ ∑ 

d=1 

ω cd u cd , (11) 

here ω cd ∈ R 

+ is the cost of missing one unit of demand of crop

on day d. We denote the corresponding model as MinUD . 

.2.4. Minimise the number of shelves used 

Moving from the operational to the tactical level, a planner 

ight want to size their VF system and determine what is the 

mallest number of shelves needed to satisfy their demand in typ- 

cal scenarios. To do so, we can add a dummy configuration k 0 ∈ K

epresenting an unused shelf, and a new set of variables v t ∈ N in-

icating the number of shelves of type t ∈ T used in the solution. 

ll capacities associated with k 0 will be zero, i.e., q tk 0 
= 0 for all

 ∈ T . 
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The objective function minimises the number of shelves used: 

in 

∑ 

t∈ T 
v t (12) 

nd the following linking constraints ensure variables v t take the 

orrect values: 

 t ≥
∑ 

k ∈ K\{ k 0 } 
y t,d,k ∀ t ∈ T , ∀ d ∈ D. (13) 

ecause each v t appears in the minimisation objective function, it 

ill take the smallest value allowed by (13) . We denote the corre- 

ponding model as MinS . 

.3. Variable fixing 

In the following, we describe how to preprocess the model by 

xing the value of some of the x variables to 0, when these vari-

bles cannot possibly take any other value in an optimal solution, 

r when they correspond to unfeasible conditions. 

The x variables determine paths in the time-expanded graph: a 

ariable x 
c,g 

t 1 ,d,t 2 
indicates that we use the arc from node (t 1 , d) to

ode (t 2 , d + 1) for some units of crop c and that this arc is the

th in its corresponding path. To ease the description, then, in the 

ollowing, we will talk interchangeably of x variables to fix to 0 or 

f arcs to prune from the time-expanded graph. 

The following variables correspond to arcs that cannot be used 

n any feasible solution and are therefore fixed equal to 0: 

• We neither consider arcs incoming to the seed vault or outgo- 

ing from the produce storage, nor arcs from the seed vault not 

going to non-dummy shelves or coming to the produce storage 

and not coming from non-dummy shelves: 

x c,g 
t,d,σ

= x c,g 
τ,d,t 

= 0 ∀ d ∈ D 

′ , ∀ c ∈ C, ∀ t ∈ T ′ c , ∀ g ∈ { 0 , . . . , γc } , 
x c,g 
σ,d,τ

= 0 ∀ d ∈ D 

′ , ∀ c ∈ C, ∀ g ∈ { 0 , . . . , γc } . 
• We can remove arcs from the seed vault corresponding to non- 

zero growth days, or to the produce storage corresponding to 

unripe crops, or between shelves for infeasible growth days: 

x c,g 
σ,d,t 

= 0 ∀ d ∈ D 

′ , ∀ c ∈ C, ∀ t ∈ T ′ c , ∀ g ∈ { 1 , . . . , γc } , 
x c,g 

t,d,τ
= 0 ∀ d ∈ D 

′ , ∀ c ∈ C, ∀ t ∈ T ′ c , ∀ g ∈ { 0 , . . . , γc − 1 } , 
x c,g 

t 1 ,d,t 2 
= 0 ∀ d ∈ D, ∀ c ∈ C, ∀ t 1 , t 2 ∈ T c , ∀ g ∈ { 0 , γc } . 

• Complementary to the above condition, all arcs with zero 

growth day have to be outgoing from the seed vault, and all 

arcs corresponding to ripe crops have to go to the produce stor- 

age. 

x c, 0 
t 1 ,d,t 2 

= 0 ∀ t 1 ∈ T ′ \ { σ } , ∀ d ∈ D 

′ , ∀ t 2 ∈ T ′ , ∀ c ∈ C , 

x 
c,γc 

t 1 ,d,t 2 
= 0 ∀ t 1 ∈ T ′ , ∀ d ∈ D 

′ , ∀ t 2 ∈ T ′ \ { τ } , ∀ c ∈ C. 

• We cannot use arcs corresponding to crops which cannot get 

ripe on time for the last harvest. To this end, we let d ′ c =
max d∈ D { d : p cd > 0 } be the last day with some demand for

crop c ∈ C, and we set: 

x c,g 
t 1 ,d,t 2 

= 0 ∀ c ∈ C, ∀ t 1 , t 2 ∈ T c , ∀ d ∈ { d ′ c − γc + 1 , . . . , d ′ c } , 
∀ g ∈ { 0 , . . . , γc − (d ′ c − d) } . 

• We can remove arcs corresponding to infeasible growth days 

(when g is greater than d): 

x c,g 
t 1 ,d,t 2 

= 0 ∀ c ∈ C, ∀ t 1 , t 2 ∈ T ′ c , ∀ d ∈ D 

′ : d < γc , ∀ g ∈ { d + 1 , . . . , γc } .
We can also tighten the upper bound on arcs outgoing from the 

eed vault and incoming to the produce storage because the de- 

and limits the number of units that are planted and harvested: 
383 
 

c, 0 
σ,d−γc −1 ,t 

≤ p cd ∀ c ∈ C, ∀ t ∈ T c , ∀ d ∈ { γc + 1 , . . . , d̄ } , 
x 

c,γc 

t,d−1 ,τ
≤ p cd ∀ c ∈ C, ∀ t ∈ T c , ∀ d ∈ D ∪ { d̄ } . 

Finally, we can also fix some of the y variables. First notice that, 

ecause we know the demand and the growth phases of each crop, 

e also know how many units of crop will require a given config- 

ration on a given day: 

dk = 

d+ γc −1 ∑ 

d ′ = d+1 

∑ 

c∈ C s.t. 
k = k c,γc −(d ′ −d−1) 

p cd ∀ d ∈ D, ∀ k ∈ K , 

here ηdk ∈ N denotes the number of units of any crop which re- 

uire configuration k ∈ K on day d ∈ D . We can then fix to 0 all the

 variables corresponding to configurations that we do not need: 

 t,d,k = 0 ∀ t ∈ T , ∀ d ∈ D, ∀ k ∈ K : ηdk = 0 . 

.4. Valid inequalities 

In this section, we describe valid inequalities to strengthen the 

inear relaxation of the model. 

The first inequality uses parameter ηdk to force a minimum 

umber of variables y t,d,k to take value 1 when we need config- 

ration k on a day d. Let q̄ k = max t∈ T { q tk } be the largest capac-

ty associated with configuration k ∈ K. Each day, then, we need at 

east � ηdk / ̄q k � shelves in configuration k to accommodate the crops 

hich need that configuration. We reflect this with the following 

alid inequality: 
 

t∈ T 
y t,d,k ≥ � ηdk / ̄q k � ∀ d ∈ D, ∀ k ∈ K. (14) 

ote that this inequality is not valid for model MinUD . In this 

odel, (14) could make a problem infeasible if there are not 

nough shelves to accommodate all the crops, when instead the 

lanner could decide not to meet some demand. 

In formulations in which we model each shelf independently, 

e can add “clique-like” constraints to force two crops, requir- 

ng two different configurations on a given day, to be on separate 

helves. For each day d ∈ D and configuration k ∈ K, consider the 

et I dk of indices (c, g) giving all crops c that require configuration 

 on day d, being at their gth day of growth. We would like to

se clique constraints to ensure that, on any day d, crops occupy- 

ng the same shelf s should all be indexed from the same set I dk .

ecause the x variables are not binary, it is not possible to enforce 

uch clique constraints, but we can use a weaker form: 
∑ 

(c,g) ∈I dk 1 

∑ 

s ′ ∈ S ′ 
x c,g 

s,d,s ′ + 

∑ 

(c,g) ∈I dk 2 

∑ 

s ′ ∈ S ′ 
x c,g 

s,d,s ′ ≤ max { ηdk 1 , ηdk 2 } 

∀ d ∈ D, ∀ s ∈ S, ∀ k 1 , k 2 ∈ K : k 1 � = k 2 . (15) 

he left-hand side of Eq. (15) counts the units of crop on shelf s 

equiring configuration k 1 or k 2 on day d. The right-hand side lim- 

ts this number to the larger of the two cumulative demands (of 

rops growing in configurations, respectively, k 1 and k 2 on day d). 

or example, if ηdk 1 
> ηdk 2 

and we assign all units of crop requir- 

ng configuration k 1 on day d to shelf s, then Eq. (15) forces all 

nits of crop requiring configuration k 2 to be on another shelf on 

hat day. These constraints are as strong as clique inequalities only 

hen the right-hand side is 1. 

.5. Complexity 

We prove that the decision version of the CGPP, denoted as d- 

GPP, is N P -complete in the strong sense by reduction from 3- 

artition . By “decision version” we mean the problem of deter- 

ining whether there exists a feasible solution in which all the 
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Fig. 4. Reduction of 3-partition to d-CGPP. 
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Table 1 

Features of the three types of cabinet considered. Column cabinet is the cabinet 

type. Column #shelves report the total number of shelves in the cabinet, which 

is made up of the number of short and tall shelves, reported respectively in 

columns #short shelves and #tall shelves . 

cabinet # shelves # short shelves # tall shelves 

small 7 5 2 

medium 9 6 3 

large 12 8 4 
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emand is satisfied. It is obvious that if we set all costs ω cd equal

o a positive value in (11) , then asking for any feasible solution 

nder objectives MinM, MinR or MinS is equivalent to asking for 

 solution of cost zero under MinUD. Therefore, a reduction to d- 

GPP suffices for all the four objectives. 

An instance of 3-partition is defined by an integer b ∈ N and 

 set of 3 n integers A = { a 1 , . . . , a 3 n } satisfying the following two

onditions 

(i) 
∑ 3 n 

i =1 a i = n · b and 

(ii) b/ 4 < a i < b/ 2 , ∀ i ∈ { 1 , . . . , 3 n } . 
The problem asks whether there exists a partition of A into 

 subsets A 1 , . . . , A n that satisfy 
∑ 

a ∈ A j a = b, ∀ j ∈ { 1 , . . . , n } . 3-

artition is strongly N P -complete ( Garey & Johnson, 1979 ). 

We now show that 3-partition reduces to d-CGPP. Given any 

nstance of 3-partition , we construct an instance of CGPP with a 

ime horizon of two days, i.e., D = { 1 , 2 } , and a set of n crops C =
 c 1 , . . . , c n } which all grow in one day ( g c = 1 , ∀ c ∈ C). All crops

ave the same demand b which is due at day 2 ( γc = 2 and p c2 =
, ∀ c ∈ C). 

Each crop requires a different configuration. Thus, there are n 

onfigurations k 1 , . . . , k n with k c i 1 = k i , ∀ i ∈ { 1 , . . . , n } . The cabinet

onsists of 3 n identical shelves s 1 , . . . , s 3 n and each shelf s j has

apacity a j independently from its configuration, that is, q s j k = 

 j , ∀ j ∈ { 1 , . . . , 3 n } , ∀ k ∈ K. Finally, all shelves are compatible with

ll crops so that δcs = 1 , ∀ c ∈ C, ∀ s ∈ S. 

It is helpful to visualise this d-CGPP instance using a com- 

lete bipartite graph G (see Fig. 4 ), in which the vertices on the

eft (“shelf-vertices”) represent the shelves and those on the right 

“crop-vertices”) represent the crops. Each crop-vertex i has a sup- 

ly of b units of flow and each shelf-vertex j has a capacity a j 
epresenting the maximum amount of flow that can reach node j. 

ending one unit of flow on edge { i, j} models the assignment of 

ne unit of crop i to shelf j and consumes one unit of its capacity 

 j . It is obvious that this d-CGPP instance is feasible if and only if

e can send out all the supplies from the crop-vertices, in integer 

mounts, while respecting the shelf capacities and the configura- 

ion constraints, i.e., while ensuring that the flow reaching a shelf- 

ertex j originates from nodes i that model crops all requiring the 

ame configuration. So, a solution of a d-CGPP instance with an- 

wer yes corresponds to an integer flow in G . 

We now claim that d-CGPP admits answer yes to the instance 

onstructed above if and only if the given 3-partition instance is 

 yes-instance. Indeed, suppose the d-CGPP instance constructed 

bove admits answer yes and consider a corresponding flow in G . 

1. Because all crops require different configurations, each shelf- 

vertex must receive flow from at most one crop-vertex (other- 
384 
wise the same shelf-vertex would require at least two different 

configurations). 

2. Because b/ 4 < a j < b/ 2 , ∀ j ∈ { 1 , . . . , 3 n } , each crop-vertex must

send flow to at least 3 shelf-vertices (otherwise at least one ca- 

pacity a j would have to be greater or equal than b/ 2 ). 

3. Because nb = 

∑ 3 n 
j=1 a j , each shelf-vertex j must receive exactly 

a j units of flow (otherwise the total flow received would be less 

than the flow sent). 

Thus, using 1, 2, and 3, we can conclude that each crop-vertex 

ust send its supply b to exactly three shelf-vertices. In sum- 

ary, an answer yes to d-CGPP implies that for each crop-vertex 

 = 1 , . . . , n, we can find a subset of exactly three shelf-vertices

j whose capacities a j sum to b, and all these n subsets are dis- 

oint. This yields the desired partition showing that the given 3- 

artition instance is a yes-instance. 

On the other hand, suppose that the given 3-partition instance 

s a yes-instance implying the existence of a partition of A into 

 subsets A 1 , . . . , A n that satisfy 
∑ 

a ∈ A j a = b, j = 1 , . . . , n . Again,

b = 

∑ 3 n 
j=1 a j and b/ 4 < a j < b/ 2 , ∀ j ∈ { 1 , . . . , 3 n } imply that each

ubset A i contains three elements. We can then assign the b units 

f flow of each crop-vertex i to the three shelf-nodes with capaci- 

ies in A i . Because the subsets A i are disjoint, this yields an outflow 

f b units at each crop-vertex i and an inflow of a j units at each

helf-vertex j, all coming from the same node i . Therefore, the d- 

GPP instance has answer yes. 

To conclude, we note that problem d-CGPP is in class N P , 

nd that the described reduction is both polynomial and pseudo- 

olynomial. 

. Computational experiments 

This section describes the computational experiments on an 

xtensive set of benchmark instances (see Section 4.1 for a de- 

cription) to compare the performance of the different models 

 Section 4.2 ) and to investigate the structure of the solutions ob- 

ained with different objective functions ( Section 4.3 ). 

.1. Benchmark instances and computational environment 

We created a set of benchmark instances based on confiden- 

ial real-life data, which we published online together with de- 

ailed results on an instance basis (see Santini, 2020 ). The base 

ata contains information about crops and characteristics of com- 

ercial VF cabinets, and also includes historical demand data. It 

ssumes three types of cabinets containing different numbers of 

tacked shelves: small ones with seven shelves, medium ones with 

ine shelves, and large ones with twelve shelves. The shelves can 

e of two types (short or tall), and Table 1 shows how shelves are

istributed in the cabinets. Note that we do not report the capacity 

f the shelves because it varies with the configuration used (more 

oncretely, it depends on the growth medium). 

We have data about six crops, which we denote using letters 

rom A to F . Crop A requires tall shelves, while the other crops can

row on both short and tall shelves. We handle this crop-to-shelf 
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Table 2 

Real-life data about the crops that we used as a base for instance generation. Column crop is the crop identifier. Column total growth time 

gives the total time in days that the crop needs to be in the cabinet (quantity γc ). Column #growth phases is the number of different growth 

phases the crop goes through; each growth phase requires a different configuration. Column shares config with indicates which other crops 

have at least one required configuration in common with the considered crop (recall that crops which have common configurations can 

share the same shelf). Column shelf type states whether a crop can grow in any shelf or requires a tall one. 

crop total growth time # growth phases shares config with shelf type 

A 64 3 — tall 

B 15 2 C, F short, tall 

C 15 2 B, F short, tall 

D 44 5 F short, tall 

E 35 4 — short, tall 

F 35 4 B, C, D short, tall 

Table 3 

Percentage of feasible instances when varying each of the four instance generation 

parameter. Column value indicates the parameter value, while column %feas reports 

the number of feasible instances in percent. 

#crops cabinet demand mult time horizon 

value %feas value %feas value %feas value %feas 

1 58.50 small 41.61 1.0 66.03 60 82.80 

2 61.39 medium 50.42 1.2 64.54 80 51.94 

3 54.33 large 61.04 1.4 57.96 100 34.48 

4 41.90 1.6 46.50 

5 26.07 1.8 43.74 

6 19.44 2.0 27.39 
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c

ompatibility via parameters δct introduced in Section 3 . The crops 

e consider need between 15 and 64 days to grow, and go through 

wo to five growth phases, with each phase corresponding to the 

eed for a different configuration. Table 2 reports the crop data 

n more detail: Column total growth time gives the total time in 

ays that the crop needs to stay in the cabinet (parameter γc ). Col- 

mn #growth phases is the number of different growth phases the 

rop goes through. Column shares config with indicates which other 

rops have at least one required configuration in common with the 

onsidered crop (recall that crops requiring the same configuration 

t the same time can share a shelf). Column shelf type indicates 

hether a crop can grow in any shelf or requires a tall one. 

The demand pattern is based on historical data and has a con- 

tant trend with weekly seasonality and some spikes on particular 

ays (for example, holidays). Given the base data and this historical 

emand pattern, we generate new instances varying the number of 

rops considered and the time horizon length, and using a demand 

ultiplier to simulate different demand situations: 

• We consider all possible combinations of crops, starting from 

instances with demand for only one crop, then considering the (
6 
2 

)
possible ways of selecting two crops, etc. up to instances 

with demand for all six crops. 
• For each crop combination, we generate instances for the large, 

the medium, and the small cabinet. 
• For each choice of crops and cabinet, we generate six in- 

stances by multiplying the base demand by a factor of 

1 . 0 , 1 . 2 , 1 . 4 , 1 . 6 , 1 . 8 , 2 . 0 . 
• For each choice of the three above parameters, we consider 

time horizons of 60, 80, and 100 days. 

Given 2 6 − 1 = 63 possible ways to choose a crop combination 

with at least one crop), 3 cabinets, 6 demand multiplier values, 

nd 3 time horizon lengths, we have a total of 3402 instances. Re- 

oving instances with a time horizon of 60 but containing crop A , 

hich needs 64 days to grow, leaves us with 2826 instances. 

While all instances are feasible for model MinUD , this is not 

rue for the other models ( MinM , MinR and MinS ). Therefore, the 

rst aim of our computational study was to determine which of 

he 2826 instances are feasible for the other three models (note 
385 
hat an instance is either feasible for all three or none of the mod- 

ls). We coded the models using IBM ILOG Optimization Program- 

ing Language and ran them on a cluster equipped with Intel 

eon processors at 2.4GHz, reserving four cores and 4GB of RAM 

or each run. We used the solver CPLEX 12.7 with a time limit of 

 h and default settings. 

At the end of the runs, we determined that 1441 instances 

re feasible and 1382 are provably infeasible. We were not able 

o establish the feasibility of the remaining 3 instances because 

PLEX neither proved them infeasible nor produced a feasible so- 

ution within the time limit. Table 3 reports the relationship be- 

ween the instance generation parameters and the number of fea- 

ible instances. Increasing the number of crops tends to decrease 

he number of feasible instances because crop demands are inde- 

endent of each other: for example, instances with six crops have 

oughly twice the demand of instances with three crops. Unsur- 

risingly, larger cabinets and lower demands lead to a higher num- 

er of feasible instances. Finally, longer time horizons correspond 

o fewer feasible instances because it only takes one day with a 

urge in demand which the system cannot accommodate to render 

he whole instance infeasible; a longer time horizon corresponds 

o more opportunities for one such day. 

.2. Performance of the models 

In this section, we investigate the performance of each of the 

our models and analyse the effect of the instance parameters 

number of crops, cabinet type, demand multiplier, time horizon) 

n this performance. Table 4 reports the results of the models 

ased on the set of 1441 instances that we proved to be feasible 

or all models. The five parts of the table show the results in aggre- 

ated form (grouped according to different settings of the instance 

arameters and as overall aggregate). For each value of instance 

arameter, column instances reports the number of instances ag- 

regated in the row. For each model, column %feas reports the per- 

entage of instances for which the respective model found a feasi- 

le solution within the 1-hour time limit. Column %opt reports the 

ercentage of instances solved to optimality, column %gap the av- 

rage optimality gap in percent, and column time the average run- 

ime of CPLEX in seconds. Columns %gap and time are computed 

ased on the instances with a feasible solution found by the re- 

pective model within the time limit. 

Of the stricter models, i.e., those models in which demand has 

o be met, MinM shows the worst performance. It provides the 

ewest instances with a feasible solution (in fact, for the large ma- 

ority of instances, CPLEX cannot produce a feasible solution within 

he time limit), the largest optimality gaps, and the highest run- 

imes. This is due to the fact that, in this model, we cannot aggre- 

ate shelves into shelf types, leading to considerably more vari- 

bles and constraints. A higher number of crops (beyond four), 

arger cabinets, higher demands, and longer time horizons have a 

lear negative effect on the ability of the model to find feasible so- 
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utions. The effect of the instance parameters on solution quality 

s rather small and not always monotonic, which can be explained 

y the generally weak performance of the model on nearly all in- 

tances. 

With regards to finding feasible solutions, we observe a clear 

mprovement for model MinR and again for MinS . However, even 

or MinS , instances exist for which no feasible solution can be de- 

ermined within the time limit. This highlights the necessity of al- 

ernative solution approaches to provide the planner with at least 

ne feasible solution to implement. While the instance parame- 

ers have only a very slight impact on the feasibility of solutions 

or MinS , for MinR , a higher number of crops, larger cabinets, and 

igher demands clearly increase feasibility (the effect of longer 

ime horizons is unclear). A possible explanation is that larger cab- 

nets correspond to a larger solution space, which can be harder to 

xplore but can make it easier to find a feasible solution. 

Concerning solution quality, MinR finds more optimal solutions 

ithin clearly shorter runtimes than MinS while average gaps 

re slightly larger. The performance difference between these two 

odels strongly depends on instance parameters. A higher num- 

er of crops clearly improves solution quality for the former model 

hile strongly decreasing it for the latter. This is due to the poor 

ehaviour of variables y in the linear relaxation of all models, 

hich is caused by capacity and linking constraints (2) . To bet- 

er illustrate the impact of these constraints, in Appendix B we 

resent an example of how constraints (2) lead to a linear relax- 

tion solution with a 100% gap to optimal integer solution. The 

oor behaviour of (2) is exacerbated when shelves operate near 

ull capacity and few shelves can be empty, e.g., when consider- 

ng a large number of crops or longer time horizons. In this case, 

any y variables will be non-zero and will take fractional values 

lose to, but strictly less than one in the linear relaxation, thus re- 

uiring more branching. In model MinS , the objective function in- 

irectly penalises variables y through variables v , which therefore 

end to assume fractional values more often, leading to worse per- 

ormance. Larger cabinets have a slightly positive effect on MinR 

nd a slightly negative effect on MinS ; higher demands increase 

olution quality for both models. 

Contrary to these observations, the less strict model MinUD al- 

ays produces feasible solutions with ease (for example, a solution 

ot growing anything is feasible). It also shows the highest per- 

entage of instances solved to optimality and the lowest average 

aps, confirming that solving the model with a commercial solver 

s a valid approach to the CGPP when minimising unmet demand. 

 higher number of crops and larger cabinets decrease solution 

uality while the effect of higher demands and longer time hori- 

ons is small and unclear. 

If for the other objectives, MinM , MinR or MinS , instances are in- 

easible or it is not possible to find a feasible solution in reasonable 

untime, the following simple strategy can be used to provide de- 

ision support. We first solve the MinUD model to obtain a subset 

f crops which are guaranteed to satisfy the capacity constraints 

f the VF system. Then, the original objective function can be used 

n an instance only containing the crops selected by MinUD . If it 

s still hard to find a feasible solution of the problem instance, the 

olution produced by model MinUD can be used as a last resort. 

.3. Effect of different objective functions 

In this section, we investigate the impact of optimising with re- 

ards to a certain objective function on the structure of the re- 

ulting solutions. More precisely, we want to see to what extent 

he characteristics stipulated by the other objective functions can 

lready be witnessed in the solutions, i.e., whether the studied ob- 

ectives are synergic or contradictory. To this end, we recorded the 

umber of crop movements, reconfigurations, and used shelves in 
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Fig. 5. Each box spans the second and the third quartiles, with whiskers extending to the rest of the distribution (excluding outliers). The horizontal black line inside each 

box depicts the median. Each dot represents one instance. 
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he solutions of all models. Fig. 5 (a)–(c) report the information 

bout, respectively, the number of reconfigurations per shelf, the 

umber of movements per unit of crop, and the fraction of shelves 

sed in the solutions found by the different models. 

In all the figures, we note that only the model minimising the 

iven objective achieves satisfactory results. In Fig. 5 (a), the mod- 

ls which do not minimise the number of reconfigurations give so- 

utions with a median of up to twenty reconfigurations per shelf 

nd model; MinS even has outliers with up to 60 reconfigurations 

er shelf. Intuitively, indeed, if a planner wants to minimise the 

umber of used shelves, he has to juggle as many configurations 

s possible in the few active shelves, which makes these two ob- 

ectives contradictory. We can observe the same effect in Fig. 5 (b): 

hen minimising the number of shelves the planner has to fre- 

uently move around crops. Finally, Fig. 5 (c) shows that when shelf 

inimisation is not explicitly demanded by the objective function, 

he models try to use as many shelves as possible: all models ex- 

ept MinS have median shelf usage of 100%. 

To attempt to reconcile the objectives MinR and MinS , we inves- 

igate the effect of using a hierarchical objective which first min- 

mises the number of reconfigurations and then the number of 

helves used. The hierarchical objective reduces average shelf us- 

ge over all instances from 93.2% (without hierarchical objective) 

o 92.4%. This shows that the objectives are inherently conflicting, 

hich makes a multi-objective approach compelling for practition- 
e

387 
rs, who want to achieve different desirable objectives simultane- 

usly. The planner can clearly not rely on the assumption that op- 

imising with regards to one objective will produce solutions of ac- 

eptable quality with respect to any other objective. 

. Conclusions 

In this paper, we present four mathematical models for plan- 

ing the growth of crops in a vertical farming system, which are 

trengthened using variable fixing and valid inequalities. The mod- 

ls mainly differ in their objective to minimise, respectively, move- 

ents, reconfigurations, shelf usage, or unmet demand. Numerical 

xperiments on a large set of benchmark instances based on real- 

orld data show that the performance of the models when solved 

ith a standard solver is diverse and strongly dependent on in- 

tance data. In particular, when minimising the number of crop 

ovements, we cannot solve to optimality more than 97% of the 

nstances, and the average gaps are above 84%. By contrast, aver- 

ge gaps are below 4% for the other objectives. This suggests that 

eveloping ad-hoc algorithms to minimise the number of move- 

ents is an interesting area for future research. 

We also find that none of the objectives steers the solutions to 

e acceptable with regards to any of the other objectives, which 

akes multi-objective optimisation techniques another fruitful av- 

nue for future investigations. In this work, we assume that, be- 
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ause the crops are highly perishable, their growth should com- 

lete on the same day in which there is demand for them. This 

s particularly true for crops currently popular for VF systems, 

uch as basil, chives, or leafy greens. As VF technology improves, 

owever, the range of crops which one can grow in a controlled- 

ondition cabinet will increase. In this case, a promising research 

irection is to allow some crop units to be harvested before their 

ue date thereby introducing flexibility in the time when their 

rowth is started. This clearly adds a scheduling component to our 

odel. Such a research direction would benefit the area of ma- 

hine scheduling in general, because there are currently no other 

odels allowing such a great flexibility in reconfiguring machines 

nd moving tasks between machines. 
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ppendix A. Complete models 

In this section we provide complete models for the four formu- 

ations presented in Section 3 . 

.1. Minimise the number of movements 

in 

∑ 

c∈ C 

γc ∑ 

g=1 

∑ 

s 1 ,s 2 ∈ S c 
s 1 � = s 2 

∑ 

d∈ D 
x c,g 

s 1 ,d,s 2 
(A.1) 

.t. 
∑ 

s ∈ S c 
x 

c,γc 

s,d−1 ,τ
= p cd ∀ c ∈ C, ∀ d ∈ D ∪ { d̄ } (A.2) 

∑ 

s 2 ∈ S ′ 

∑ 

c∈ C 
δcs 1 

=1 

δcs 2 
=1 

∑ 

g∈{ 1 , ... ,γc } 
k c,g = k 

x c,g 
s 1 ,d,s 2 

≤ q s 1 k · y s 1 ,d,k ∀ s 1 ∈ S, ∀ d ∈ D, ∀ k ∈ K 

(A.3) 

∑ 

s ∈ S c 
x c, 0 
σ,d−γc −1 ,s 

= p cd ∀ c ∈ C, ∀ d ∈ { γc + 1 , . . . , d̄ } (A.4) 

∑ 

s 2 ∈ T ′ c 

x c,g 
s 2 ,d−1 ,s 1 

= 

∑ 

s 2 ∈ T ′ c 

x c,g+1 

s 1 ,d,s 2 
∀ c ∈ C, ∀ g ∈ { 0 , . . . , γc } , ∀ s 1 ∈ S c , ∀ d ∈ D 

(A.5) 

∑ 

k ∈ K 
y s,d,k ≤ 1 ∀ s ∈ S, ∀ d ∈ D (A.6) 

 

c,g 

s 1 ,d,s 2 
∈ N ∀ c ∈ C, ∀ s 1 , s 2 ∈ S ′ c , ∀ d ∈ D 

′ , ∀ g ∈ { 0 , . . . , γc } 
(A.7) 

 s,d,k ∈ { 0 , 1 } ∀ s ∈ S ′ c , ∀ d ∈ D 

′ , ∀ k ∈ K (A.8) 

.2. Minimise the number of reconfigurations 

in 

∑ 

t∈ T 

d̄ −2 ∑ 

d=1 

∑ 

k ∈ K 
w t,d,k (A.9) 
u

388 
.t. 
∑ 

t∈ T c 
x 

c,γc 

t,d−1 ,τ
= p cd ∀ c ∈ C, ∀ d ∈ D ∪ { d̄ } (A.10) 

∑ 

t 2 ∈ T ′ 

∑ 

c∈ C 
δct 1 

=1 

δct 2 
=1 

∑ 

g∈{ 1 , ... ,γc } 
k c,g = k 

x c,g 
t 1 ,d,t 2 

≤ q t 1 k · y t 1 ,d,k ∀ t 1 ∈ T , ∀ d ∈ D, ∀ k ∈ K 

(A.11) 

∑ 

t∈ T c 
x c, 0 
σ,d−γc −1 ,t 

= p cd ∀ c ∈ C, ∀ d ∈ { γc + 1 , . . . , d̄ } (A.12) 

∑ 

t 2 ∈ T ′ c 

x c,g 
t 2 ,d−1 ,t 1 

= 

∑ 

t 2 ∈ T ′ c 

x c,g+1 

t 1 ,d,t 2 
∀ c ∈ C, ∀ g ∈ { 0 , . . . , γc } , ∀ t 1 ∈ T c , ∀ d ∈ D 

(A.13) 

∑ 

k ∈ K 
y t,d,k ≤ n t ∀ t ∈ T , ∀ d ∈ D (A.14) 

 t,d,k ≥ y t,d,k − y t,d+1 ,k ∀ t ∈ T , ∀ d ∈ { 1 , . . . , d̄ − 2 } , ∀ k ∈ K 

(A.15) 

 t,d,k ≥ y t,d+1 ,k − y t,d,k ∀ t ∈ T , ∀ d ∈ { 1 , . . . , d̄ − 2 } , ∀ k ∈ K 

(A.16) 

 

c,g 

t 1 ,d,t 2 
∈ N ∀ c ∈ C, ∀ t 1 , t 2 ∈ T ′ c , ∀ d ∈ D 

′ , ∀ g ∈ { 0 , . . . , γc } 
(A.17) 

 t,d,k ∈ N ∀ t ∈ T ′ c , ∀ d ∈ D 

′ , ∀ k ∈ K (A.18) 

 t,d,k ∈ N ∀ t ∈ T , ∀ d ∈ { 1 , . . . , d̄ − 2 } , ∀ k ∈ K (A.19) 

.3. Minimise unmet demand 

in 

∑ 

c∈ C 

d̄ ∑ 

d=1 

ω cd u cd (A.20) 

.t. 
∑ 

t∈ T c 
x 

c,γc 

t,d−1 ,τ
+ u cd = p cd ∀ c ∈ C, ∀ d ∈ D ∪ { d̄ } (A.21) 

∑ 

t 2 ∈ T ′ 

∑ 

c∈ C 
δct 1 

=1 

δct 2 
=1 

∑ 

g∈{ 1 , ... ,γc } 
k c,g = k 

x c,g 
t 1 ,d,t 2 

≤ q t 1 k · y t 1 ,d,k ∀ t 1 ∈ T , ∀ d ∈ D, ∀ k ∈ K 

(A.22) 

∑ 

t∈ T c 
x c, 0 
σ,d−γc −1 ,t 

+ u cd = p cd ∀ c ∈ C, ∀ d ∈ { γc + 1 , . . . , d̄ } (A.23) 

∑ 

t 2 ∈ T ′ c 

x c,g 
t 2 ,d−1 ,t 1 

= 

∑ 

t 2 ∈ T ′ c 

x c,g+1 

t 1 ,d,t 2 
∀ c ∈ C, ∀ g ∈ { 0 , . . . , γc } , ∀ t 1 ∈ T c , ∀ d ∈ D 

(A.24) 

∑ 

k ∈ K 
y t,d,k ≤ n t ∀ t ∈ T , ∀ d ∈ D (A.25) 

 

c,g 

t 1 ,d,t 2 
∈ N ∀ c ∈ C, ∀ t 1 , t 2 ∈ T ′ c , ∀ d ∈ D 

′ , ∀ g ∈ { 0 , . . . , γc } 
(A.26) 

 t,d,k ∈ N ∀ t ∈ T ′ c , ∀ d ∈ D 

′ , ∀ k ∈ K (A.27) 

¯

 cd ∈ N ∀ c ∈ C, ∀ d ∈ D ∪ { d } (A.28) 
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Fig. B1. Example instance in which the continuous relaxation of model MinM would show a gap of 100%. 
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.4. Minimise the number of shelves used 

in 

∑ 

t∈ T 
v t (A.29) 

.t. 
∑ 

t∈ T c 
x 

c,γc 

t,d−1 ,τ
= p cd ∀ c ∈ C, ∀ d ∈ D ∪ { d̄ } (A.30) 

∑ 

t 2 ∈ T ′ 

∑ 

c∈ C 
δct 1 

=1 

δct 2 
=1 

∑ 

g∈{ 1 , ... ,γc } 
k c,g = k 

x c,g 
t 1 ,d,t 2 

≤ q t 1 k · y t 1 ,d,k ∀ t 1 ∈ T , ∀ d ∈ D, ∀ k ∈ K 

(A.31) 

∑ 

t∈ T c 
x c, 0 
σ,d−γc −1 ,t 

= p cd ∀ c ∈ C, ∀ d ∈ { γc + 1 , . . . , d̄ } (A.32) 

∑ 

t 2 ∈ T ′ c 

x c,g 
t 2 ,d−1 ,t 1 

= 

∑ 

t 2 ∈ T ′ c 

x c,g+1 

t 1 ,d,t 2 
∀ c ∈ C, ∀ g ∈ { 0 , . . . , γc } , ∀ t 1 ∈ T c , ∀ d ∈ D 

(A.33) 

∑ 

k ∈ K 
y t,d,k ≤ n t ∀ t ∈ T , ∀ d ∈ D (A.34) 

 t ≥
∑ 

k ∈ K\{ k 0 } 
y t,d,k ∀ t ∈ T , ∀ d ∈ D (A.35) 

 

c,g 

t 1 ,d,t 2 
∈ N ∀ c ∈ C, ∀ t 1 , t 2 ∈ T ′ c , ∀ d ∈ D 

′ , ∀ g ∈ { 0 , . . . , γc } 
(A.36) 

 t,d,k ∈ N ∀ t ∈ T ′ c , ∀ d ∈ D 

′ , ∀ k ∈ K (A.37) 

 t ∈ N ∀ t ∈ T (A.38) 

ppendix B. Example of solution of the continuous relaxation 

f model MinM 

A disadvantage of the proposed formulations is their weak lin- 

ar relaxation, mainly due to the presence of constraints (2) . These 

nequalities serve both as capacity constraints and as linking con- 

traints for the x - and y -variables, but they provide a weak linking

etween these variables once the integrality requirements are re- 

oved. 

To illustrate this point consider model MinM and an instance 

ith two identical shelves of capacity 2 and three crops: 
389 
• crop c 1 is planted on day 0 and grows for two days, in config- 

uration k 1 on the first day and in k 2 on the second; 
• crop c 2 is also planted on day 0 and grows for two days, in

configuration k 3 on the first day and in k 2 on the second; 
• crop c 3 is planted on day 1 and grows for one day in configu- 

ration k 4 . 

Each crop has demand 1 only on the third day. Fig. B.1 (a) 

hows an optimal solution to this instance. In the figure, 

he movements of crop c 1 are visualised as dashed arrows, 

hose of crop c 2 as dotted arrows and those of crop c 3 
s solid arrows. Note that the objective value of this solu- 

ion is 1, because crop c 2 moves from shelf s 2 to s 1 in 

ay 2. The value of the non-zero variables in this optimal 

olution is: x 
c 1 , 0 

σ, 0 ,s 1 
= x 

c 1 , 1 

s 1 , 1 ,s 1 
= x 

c 1 , 2 

s 1 , 2 ,τ
= x 

c 2 , 0 

σ, 0 ,s 2 
= x 

c 2 , 1 

s 2 , 1 ,s 1 
= x 

c 2 , 2 

s 1 , 2 ,τ
=

 

c 3 , 0 

σ, 1 ,s 2 
= x 

c 3 , 1 

s 2 , 2 ,τ
= 1 and y s 1 , 1 ,k 1 = y s 1 , 2 ,k 2 = y s 2 , 1 ,k 3 = y s 2 , 2 ,k 4 = 1 . 

On the other hand, if we consider the continuous relaxation, we 

an obtain a solution with an objective value equal to zero thus 

ielding an integrality gap of 100% . Such a solution is shown in 

ig. B.1 (b). Here, shelf s 1 can be assigned half configuration k 1 and 

alf configuration k 3 on day 1 because variables y s 1 , 1 ,k 1 and y s 1 , 1 ,k 3 
an both be given a value 0.5. Since the shelf capacity is 2 it can

ccommodate both crops c 1 and c 2 simultaneously and with these 

ractional values for variables y s 1 , 1 ,k 1 and y s 1 , 1 ,k 3 constraints (2) are 

ndeed satisfied. 

Overall, the value of the non-zero variables in the optimal solu- 

ion to the linear relaxation is: x 
c 1 , 0 

σ, 0 ,s 1 
= x 

c 1 , 1 

s 1 , 1 ,s 1 
= x 

c 1 , 2 

s 1 , 2 ,τ
= x 

c 2 , 0 

σ, 0 ,s 1 
=

 

c 2 , 1 

s 1 , 1 ,s 1 
= x 

c 2 , 2 

s 1 , 2 ,τ
= x 

c 3 , 0 

σ, 1 ,s 2 
= x 

c 3 , 1 

s 2 , 2 ,τ
= 1 , y s 1 , 1 ,k 1 = y s 1 , 1 ,k 3 = 0 . 5 and

 s 1 , 2 ,k 2 
= y s 2 , 2 ,k 4 = 1 . As noted above, this solution does not violate 

onstraints (2) , nor the other linear constraints of the model. 
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