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In this paper, we study the problem of planning the growth of crops on shelves in vertical farming cab-
inets under controlled growth conditions. By adjusting temperature, humidity, light, and other environ-
mental conditions in different parts of the cabinets, a planner must ensure that crop growth is able to
satisfy some deterministic demand. We prove this problem to be NP-hard and propose an integer pro-
gramming formulation able to capture real-life operational characteristics, including changes of growth
conditions on a daily, shelf-by-shelf basis, over a planning horizon of months. We compare four objec-
tive functions from which a planner can choose, depending on the specific operations of the company. A
computational study on realistic instances, which we make available as a public dataset, shows that the

choice of objective function heavily influences both the difficulty of solving the model with a standard
solver and the solution characteristics.
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1. Introduction

The stocks of arable land per person are declining worldwide,
due to increasing population and urbanisation rates, decreasing
water availability, and climate change (Fedoroff, 2015). Increasing
land use for standard agricultural practices has undesirable effects,
such as deforestation, an elevated use of fertilisers and pesticides,
soil degradation and its eventual depletion, low yield per unit of
surface, and extensive transportation costs to move produce from
the production to the consumption site (Benke & Tomkins, 2017).
All these effects take their toll both economically and, more im-
portantly, on the environment and the well-being of urban and
rural communities alike. The large-scale increase in food demand
forecast to take place within the next decades has prompted the
investigation of alternative production methods. The main aim of
these efforts is to increase the yield per square meter while reduc-
ing negative effects on the environment and being economically
viable (Beacham, Vickers, & Monaghan, 2019).

One of the new production methods which is gaining consid-
erable traction is Vertical Farming (VF), i.e.,, growing crops in ver-
tical stacked layers rather than on the ground (Beacham et al.,
2019). Fig. 1 shows three stacked layers hosting mulberry plants.
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Each shelf provides the plants with nutrients; in the case depicted
in the figure, the plants grow without soil and absorb the nutri-
ents directly from water (a growth method known as hydropon-
ics). The shelves also provide light, ventilation and, optionally, con-
trolled temperature and CO, levels. The size of the stacks can vary
considerably and spans from small shelf cabinets to entire plant
factories (Kozai, 2018; Kozai, Niu, & Takagaki, 2015). Their hosting
structures range from specially-built buildings to shipping contain-
ers and from reused pre-existing buildings to cabinets no larger
than a standard refrigerator.

A desirable property of the host structure is that it is isolated
from the external environment. This allows the plants to grow in
a controlled environment (CE) with regulated levels of light, water,
and humidity that can even vary on a shelf-by-shelf basis. One
of the advantages of CE systems is that they are independent of
external weather and light conditions and can thus be used in a
variety of regions: they are not affected by floods, droughts, and
other catastrophic events. They also allow for minimal interaction
with the outside environment, sheltering the crops from parasites,
pathogens, or heavy metals (all common occurrences in open-air
farming) and thus eliminating the need for pesticides and herbi-
cides. Final commercial users, such as restaurants, food markets, or
hotels, can accommodate the cabinets on their premises, reducing
or eliminating any transport cost and the resulting negative effects
on the environment. Crops growing in CE are also not affected by
seasonality, and the operators can plan their production to match
the demand all year round (Benke & Tomkins, 2017).
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Fig. 1. Stacks of shelves in which mulberries are growing in a hydroponic system, i.e., receiving their nutrients directly from water, without soil. Photograph by Satoshi

Kinokuni, distributed under a CC-BY-2.0 license.

On the negative side, growth in a CE is more expensive in terms
of energy than open-air farming due to the need of constant arti-
ficial lightning. In recent years, however, the energy footprint of
CE systems has improved thanks to low-consumption LED lights
and the increased efficiency of on-site renewable energy produc-
tion and storage.

VF offers opportunities that contribute to achieve the Sustain-
able Development Goals of the United Nations (UN General As-
sembly, 2015): Goal 2: Zero Hunger can be supported by large-scale
VF systems producing staple foods in large quantities in countries
with restricted space availability or hostile conditions for open-air
farming, while the ability of VF systems to reduce the negative ef-
fects of traditional farming as described above can play a role in
achieving Goal 12: Responsible Consumption and Production and Goal
15: Life On Land. Moreover, we note that in pandemic situations
like the outbreak of COVID-19, VF systems may offer the additional
autonomy and independence from transport operations that is nec-
essary to implement quarantine measures in affected areas.

1.1. Problem description

We consider the problem of a planner who must operate a VF
cabinet to grow crops and meet some deterministic future demand.
Each cabinet is composed of a set of stacked shelves, which can
host the crops during their growth cycle. Industry-grade cabinets
allow to specify the growth conditions of each shelf individually,
and may vary it day by day. The planner must define the growth
conditions (temperature, light, humidity) of each shelf, for every
day of the planning horizon, keeping in mind that changing config-
urations too frequently can lead to mistakes and reduce the energy
efficiency of the system (for example, swapping back-and-forth be-
tween colder and hotter temperatures).

The planner must also decide in which shelf they will place
each plant, making sure that the receiving shelf has the right con-
ditions for the current growth phase of the plant. Growth times
of crops under controlled conditions are predictable, and there-
fore, the planner will plant with suitable advance depending on
the days in which there is demand for each crop. In other words,
the planner does not have to choose the growth start time or the
sequence of crops to grow because both are predetermined by
the demand. Another factor influencing the allocation of crops to
shelves is that shelves have limited capacity, which can vary de-
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pending on the growth medium used (e.g., hydroponics, aeropon-
ics, peat, synthetic material).

The planner can also move plants from one shelf to another
during their growth, however, too many movements can damage
the crops. For example, moving plants can be beneficial to con-
solidate in the same shelf plants requiring the same growth con-
ditions, but that are currently located in different shelves; in this
way, the planner can empty shelves to use for growing other crops
requiring different conditions.

In the days with demand, the planner will harvest the required
plants. In case demand is too high compared to the size of the
cabinet, the planner can decide to reject some orders and not meet
part of the demand. An easy way to ensure demand is met is to
build larger cabinets, but this would lead to higher building and
operating costs. Thus, the planner might also want to know what
is the optimal size of their cabinet, given some future demand.

To meet the diverse requirements outlined above, we propose
and study four possible goals that a planner can find useful:

(i) maximise the demand met, given a fixed number of cabi-
nets;
(ii) minimise the number of times shelf configurations change;
(iii) minimise the number of times crops move between shelves;
(iv) minimise the number of shelves required to meet a given
demand.

We call this problem the Crop Growth Planning Problem
(CGPP).

1.2. Contribution

The main contributions of this paper are the following.

o To the best of our knowledge, we are the first to consider the
problem of optimally planning the growth of crops in VF cabi-
nets. The relevance of this problem stems from the social, envi-
ronmental, and economic challenges to which VF offers a viable
solution, as outlined above.

» We incorporate real-life constraints determined by crop growth
conditions and the available infrastructure. Our model is flexi-
ble enough to allow for the growth conditions to change daily
and on a shelf-by-shelf basis. Growers require such a degree of
flexibility to provide the crops with ideal growth conditions and
maximise the quality of their yield.
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o We formalise the CGPP and provide a complete Integer Linear
Programme (ILP), proposing four models that differ in their ob-
jective functions as outlined above, and decision makers can
choose the objective function most suitable for their needs. We
prove that the problem is AP-hard, independent of the objec-
tive function used.

We perform an extensive computational study to compare the
performance of the models, to determine the size of problem
instances solvable via standard solvers, and to compare the op-
erational effects of choosing different objective functions. We
use a realistic dataset with instances containing up to six crops,
twelve shelves, and a time horizon of 100 days. We conclude
that the objective function has a large effect on the difficulty
of solving the problem. Moreover, solutions obtained optimising
with regards to one objective typically fare poorly with respect
to the other objectives.

After providing an overview of the literature in Section 2, we
formalise the CGPP and frame it as an ILP in Section 3. In Section 4,
we present the outcome of extensive experiments on realistic in-
stances, providing computational results and managerial insights.
We conclude and point out future research directions in Section 5.

2. Literature review

The literature on the topic of crop production planning in VF
is scarce. The only work we are aware of is that of Bennell, Mar-
tinez, and Potts (2017), who use Operational Research techniques
for scheduling crops in shelf cabinets. The work stems from an in-
dustry collaboration with a local business and has not been pub-
lished as a technical report or journal paper. The authors study
the problem of minimising unmet demand in a growing cabinet in
which each shelf can be subject to different lightning and irriga-
tion conditions. Another decision is the growing medium to assign
to each shelf, which influences both its capacity and which crops
can grow on the shelf. The main difference with the CGPP lies in
the presence of a scheduling component in the work of Bennell
et al. (2017) because the crop growth length can vary within a
given time window. The authors use an ILP to precisely describe
the problem. The ILP is large (for example, it uses four set of vari-
ables, three of which are five-indexed), and although the model
is not explicitly provided in their presentation, the authors report
that it can solve instances with 3 crops and a 70-day planning
horizon, but it is not able to solve a problem with 5 crops within 1
day of computing time. To tackle realistically-sized instances of the
problem, the authors use a heuristic that decomposes the prob-
lem into two subproblems. The first tries to minimise unmet de-
mand while satisfying capacity constraints, but it does not allocate
crops to shelves. The second subproblem performs the actual allo-
cation, minimising the number of movements. Thus, the problem
has a hierarchical objective function. Because the second subprob-
lem is still computationally challenging, the authors solve it with a
rolling-horizon heuristic. Using this approach, they are able to ob-
tain solutions of instances with up to 9 crops, 15 shelves, and a
planning horizon of 70 days.

As already noted by Bennell et al. (2017), the problem of
planning the growth of crops in VF has superficial similarities
with machine scheduling problems. In particular, we can consider
each shelf as a machine, and each crop growth phase as a task
required to complete a job. Under this analogy, the CGPP has
similarities with parallel machine scheduling (Li & Yang, 2009;
Mokotoff, 2001) (because shelves work in parallel), parallel ma-
chine scheduling with splitting jobs (Xing & Zhang, 2000) (because
units of the same crop can grow on different shelves), scheduling
with batching (Potts & Kovalyov, 2000) (because different crops
can share the same shelf when requiring a common configuration),
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and job shop scheduling (Chaudhry & Khan, 2016; Jain & Meeran,
1998) (because each crop must go through its growth phases
in a given order). Under scheduling terminology, crop growth is
non-preemptive because it cannot stop and resume at a later time,
and machines are capacitated because each shelf can host a max-
imum amount of crop units. From this viewpoint, the CGPP has
particular similarities with hybrid flow shop scheduling problems
(see, e.g, Ruiz & Vazquez-Rodriguez, 2010 for a comprehensive
survey) because each crop may be viewed as a job that must be
processed non-preemptively through a predefined sequence of
stages (its growth phases), and multiple machines (the shelves)
are available at each stage.

However, the CGPP also exhibits considerable differences with
respect to classical scheduling problems, and cannot be modelled
as such. The main difference is that scheduling problems involve
two sets of decision: first, assigning tasks to machines; second,
sequencing and timing tasks on their assigned machines. In the
CGPP, the second part is missing because the sequence of growth
cycles is fixed, and the demands and the lengths of growth deter-
mine in advance the planting and harvesting times. Returning to
the analogy with hybrid flow shops, this means that no schedul-
ing decision, in the classical sense, is required at any stage. In fact,
for each job (crop) and each point in time it is known a priori
whether the job will be processed at that time. Rather, because
crops can be moved from one shelf to another without interrupting
their growth, the decisions to be taken at each stage are whether
or not each machine (shelf) is used and to which machine each
job is assigned. This is a simplifying factor compared to scheduling
problems. On the other hand, a specific difficulty of the CGPP (be-
sides the fact that shelves are capacitated) is that shelves must be
configured at each stage to be compatible with the crops that they
host. As the analysis in Section 3.5 suggests, this aspect seems to
be the main complexity driver in CGPP.

Another fundamental difference with respect to classical
scheduling problems lies in the objective functions considered.
Typical objectives of scheduling problems involve penalties related
to makespan, tardiness or earliness; i.e., it is the time at which jobs
end which influences the objective cost. In the CGPP these objec-
tives do not apply because crop demand determines the finishing
times of jobs.

Other characteristics which separate the CGPP from classical
problems are the following:

e Our machines (the shelves) can be reconfigured and, thus, per-
form a wide variety of tasks. Although some flexible manu-
facturing systems allow a certain level of machine adaptability
(see, e.g., Logendran & Sonthinen, 1997), in most production en-
vironments, each machine has a specific function and a limited
set of tasks it can perform.

o The CGPP is different from machine scheduling problems with
preemption because crop growth cannot be put on hold. Al-
though crops can be moved to any shelf as often as desired,
the moves are immediate and there is no break in between.
On the other hand, when preemption is allowed in scheduling
problems, tasks are normally required to resume on the same
machine where they stopped (see, e.g., Liu & Cheng, 2002;
Thevenin, Zufferey, & Potvin, 2017) after a setup time. In the
CGPP, setup times (i.e., the time needed to plant crops in a
shelf) are generally negligible because our unit of time discreti-
sation is a day.

e Machines are capacitated, but their capacity is not fixed and
rather depends on the configuration used at a given moment.
By contrast, in most capacitated job shop, flow shop or lot siz-
ing models, machine capacities are either fixed or can increase
by paying a (overtime) penalty (see, e.g., Buschkiihl, Sahling,



A. Santini, E. Bartolini, M. Schneider et al.

Helber, & Tempelmeier, 2010; Ramezanian, Saidi-Mehrabad, &
Teimoury, 2013).

Although each job is made up of a sequence of tasks (the
growth phases), in principle a single machine could carry out
the whole job if reconfigured to follow the requirements of the
crop during its different phases. In typical job shop and flow
shop problems, including their flexible variants, different tasks
require different machines.

In terms of its combinatorial structure, the CGPP has closer
ties to multicommodity fixed-charge network flow models, which
becomes evident in the formulations presented in Section 3. So-
lutions of these models can indeed be interpreted as multi-
commodity flows through a time-expanded network in which the
nodes are associated with indicator variables and capacity con-
straints. There is a vast amount of applications that have been
modelled and addressed as multicommodity (fixed-charge) net-
work flow problems (see e.g., Ahuja, Magnanti, & Orlin, 1993; Batta
& Kwon, 2013; Magnanti & Wong, 1984), and a detailed review is
beyond the scope of this paper. However, we are not aware of ap-
plications similar to the one addressed in this paper. For example,
our scenario also differs from lot sizing problems (Brahimi, Absi,
Dauzére-Pérés, & Nordli, 2017; Jans & Degraeve, 2008) (or similar
problems which include a lot-sizing component and can be mod-
eled as fixed-charge network flow problems) because we have no
inventories and no setup, inventory or backlogging costs. Seeds and
seedlings are inexpensive to store, so we need not consider raw
material inventories; produce is perishable, so there cannot be any
finished product inventory; growth is uninterruptible, so there is
no intermediate product inventory. Also, because of the efficiency
of VF and the use of high-yield crops with a high value per unit of
weight, the marginal cost for unmet demand is high and deliberate
stockout is never an economic option. This means that production
costs are sunk, and we should aim at producing as much as pos-
sible; only when demand is higher than capacity, we can perform
a selection of which crops to grow, trying to stock-out on the least
profitable crops (see Section 3.2.3).

We conclude that no other planning problem investigated in the
literature adequately captures the specificity of growing crops in
VF cabinets. Hence, the necessity exists to develop new, dedicated
mathematical formulations for this problem.

3. Mathematical models

To formalise the CGPP, we introduce the following notation. We
consider a set C of crops that grow on a set S of shelves during a
time horizon D = {1, ...,d — 1}. Each element of D represents one
day; d is the last day when harvest is possible, and d — 1 is the
last day when growth is possible (assume that crops are harvested
at the beginning of the day). We also consider the extended time
horizon D’ = {0} UD, where we use day 0 to model seeds not yet
planted, which will start growth on day 1. On each day d e DuU {d},
we have to meet a demand of p.4 units for each crop c € C (with
Peg €N).

A parameter & € {0,1} determines compatibility between
crops and shelves, taking value 1 iff crop c € C is able to grow on
shelf s € S. For example, some shelves could be not deep or tall
enough for growing certain crops. In addition, we define the set of
shelves compatible with each crop as Sc={seS : 8¢ =1}.

Furthermore, a crop goes through different phases in its growth,
each requiring precise conditions, such as temperature level, hu-
midity, and growth medium characteristics. One unit of crop c
grows for y. days, i.e., it has to spend y. days in the VF system.
On each day of growth ge {1,..., .}, we require the system to
keep the shelf that hosts the unit at condition k¢ g € K, where K is
the set of possible conditions for the shelves. Practically, K is the
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set of all feasible combinations of parameters for soil type, tem-
perature, humidity, CO,, air flow, etc. In real-life applications, the
required conditions do not change on a daily basis but only when
the crop changes from one growth phase to the next, such as ger-
mination, seedling growth, etc. The conditions also affect the shelf
capacity, i.e.,, the number of units of crops that can grow on the
shelf simultaneously. We denote the capacity of a shelf s € S under
conditions k € K as qg., with gy, € N. Note that the capacity refers
to the total number of units of any crop that can grow on the shelf
at the same time, thereby allowing mixing different crops on the
same shelf.

In practice, growers tend to avoid moving plants too much and,
both for simplicity and to reduce movements, try to place plants
on shelves which will be able to accommodate them for their en-
tire growth cycle. However, it is easy to model a situation in which
plants can start growth on a short shelf but later need a taller shelf
by making the compatibility parameter & introduced above de-
pendent on the growth day g.

For modelling convenience, we extend the set S with two
dummy shelves, obtaining set S = {0, 7} US and sets S, = {0, T} U
Sc. Element o represents the seed vault, i.e., a virtual location for
units of crop before they enter the VF system. Analogously, T rep-
resents the produce storage, i.e., the virtual location where units of
crop go when they are ready for pick-up. Furthermore, we denote
as growth day O the last day a unit of crop is in the seed vault.
In other words, the set of extended growth days for a crop c is
{0.1,.... v}

Because commercial VF cabinet shelves are often not all differ-
ent, we can reduce the size of the model by considering the set
T of shelf types. Shelves of the same type have the same com-
patibility with crops and the same capacities. We can then use
parameters 8. € {0,1} for compatibility between crop c € C and
shelves of type t €T, and g, € N to denote the capacity of any
shelf of type t under condition k € K. Analogously, we can define
sets T" ={o, t}UT, T, ={teT : ¢ =1}, and T/ = {0, T} U T.. We
denote as n;, with n; e N, the number of shelves of type t e T
available in the VF system.

We use two sets of variables:

. Xc’g
t1.d,ty
of growth (ge {0, ..., yc}), growing on shelves of type t; e T/
on day d € D’ and going to shelves of type t; € T/ on day d + 1.
* Yr.dk € N is the number of shelves of type t € T with configura-

tion k € K on day d € D.

e N is the number of units of crop c € C in their g-th day

It is helpful to visualise the shelves (as shelf types) and the
time horizon as a time-expanded graph, in which paths represent
movement of crops while growing. Fig. 2 depicts an example with
three shelf types, two crops (represented by the dashed and dot-
ted paths, respectively), and no compatibility constraints. The first
crop needs to spend three days on a shelf with configuration kq,
followed by two days on a shelf with configuration k. If we have
demand for this crop on day 6, this means the growth needs to
start at the beginning of the time horizon and, in fact, the crop
leaves the seed vault on day 0 and is already growing on a shelf of
type 1 on day 1. The second crop needs four days in the system:
during the first two, it needs a shelf with configuration k;, and
during the second two, a shelf with configuration k3. In this ex-
ample, we assume that the total number of units we are growing
does not exceed the capacity of the shelves of type 1 (in configura-
tion kq), and both crops can be present at the same time on these
shelves on day 3.

In the following, we describe in detail a mathematical base
model that uses an aggregation of shelves into shelf types. For cer-
tain objective functions we must modify the model to introduce
new variables or index existing ones on the shelves instead of the
shelf types; in this case, we will explain how to set up alternative
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Fig. 2. Time-expanded graph whose columns represent days, and rows represent shelf types. The two arrow paths (dashed and dotted) show two crops growing in the

system. The labels next to the nodes represent the shelf configurations.

models. We present the constraints of the model in Section 3.1 and
discuss the possible objective functions in Section 3.2; the reader
can also find complete models in the appendix. Section explain
how to strengthen the base model by fixing variables and adding
valid inequalities, respectively. Finally, in Section 3.5 we prove that
the CGPP is A'P-hard.

3.1. Constraints

In the following, we describe the constraints to ensure that
we satisfy demand and respect capacity limits and shelf condition
compatibility.

Demand satisfaction implies that the correct amount of units
of crop reach the produce storage on time:

S XK, =Pw VeeCV¥deDu(d).
teT.

(1)

Eq. (1) guarantees that an amount of units of crop c equal to
the demand on day d is sent from any shelf (where it was
on day d — 1) to the produce storage.

Capacity constraints ensure that a feasible amount of units of
crops is grown on any given shelf, on any given day. Recall
that shelf capacities are not fixed but depend on the specific
configuration used. We can calculate the number of units of
crops on shelves of type t; with configuration k on a given
day d by counting, for example, how many units move out
from these shelves, i.e., summing over outgoing arcs.

DI X8 < Auk- Yok Yt €T, VdeD VkeK.

teT' ceC ge{l,...yc}
5511:] k=
ety =1

(2)

Note how Eq. (2) also serves as a linking constraint, forc-
ing variables y to take non-zero value for a type-day-
configuration combination when there are x variables using
a shelf of the given type, with the given configuration, on
the given day.

Planting constraints: Because the demand determines when
the operator needs to harvest a crop, and crop growth lasts
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a fixed number of days, demand indirectly also determines
when the operator will plant the crops.

c,0
Zxo,d—yc—l,t

teT,

=pa VYceCVdel{y.+1,...,d}. (3)

Flow-balance constraints: While Eq. (1) constrains arcs in-
bound to the produce storage and Eq. (3) constrains arcs
outbound from the seed vault, the following set of con-
straints refer to arcs to and from non-dummy shelves. They
ensure that any amount of crop growing on shelves of one
type on a given day is sent to the same shelf or other
shelves for the next day.

Z Xifd—l.tl = Z X

tyeT! tel!

c.g+1
ty,d,t

VceCVge{0,...,y:},Vt1 e T,Vd e D.

(4)

Note how Eq. (4) also ensures that the growth day increases
by one each time a day passes.

Configuration constraints ensure that we select no more con-
figurations than there are shelves, for each shelf type on
each day.

Zy[‘d_k <Nt Vt e T, Vd e D.
keK

(5)

3.2. Objective functions

Practical applications can vary considerably in the objectives
that a planner wants to achieve. In the described VF setting, no
single objective function is obviously the correct one to study.
Therefore, we investigate a number of meaningful objectives in the
following and describe how they can be modelled.

3.2.1. Minimise the number of movements

Moving a crop from a shelf to another one is time-consuming,
can damage the crop, or make it undergo unnecessary stress. It
would be convenient, then, for crops to stay as much as possible
in the same shelf and having the shelf conditions change appropri-
ately to match crop growth phases.

If we use variables aggregated on the shelf types, it is impossi-
ble to model each movement of a crop from shelf to shelf. To see
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d=0 d=1 d=2 d=3
I . ° . .
shelf 1 . A i . .
ky ka'\
type 1 \
shelf 2 . % e \ .
k1 k3 N
«
T . ° pe '

Fig. 3. Example of two growth schedules (left and right) which are indistinguishable by looking at the x variables aggregated by shelf type, but are different if we index the

x variables over the single shelves.

why this is the case, consider two crops cq, c, which grow for 2
days (y¢, = Ve, =2), and a VF system with two shelves sq,s; of a
single type t, both with large capacities under all growing condi-
tions. Crop c; needs to spend one day in condition kq, followed by
one day in condition ky; crop ¢, needs one day in condition ki,
followed by one day in condition k3.

If we must plant and harvest both crops at the same time, then
the following two schedules are both feasible, but the first involves
one crop movement while the second involves none:

e Grow both crops cq,c; on shelf s; on the first day (in config-
uration kq). Then put s; in configuration k, and keep crop c;
there, and put s, in configuration k3 and move crop c, there.

o Put crop c; on shelf sq, in configuration k; on the first day, and
k, on the second day. Put crop ¢, on shelf s, in configuration
kq on the first day, and k3 on the second day.

Fig. 3 represents the two possible schedules. Notice how in both

. .0 1
cases the x variables would have the same values: x?o e = xf‘l .=

1.2 _ 0.0 _ ol 02 : .
X =R 0 =X =X =1 with all other x variables equal to
Zero.

To minimise the number of crop movements, we need to use
x variables indexed over the single shelves, x;g ds, € N indicating
the number of units of crop ¢ € C which are on shelf s; € S on day
d € D (which is the crop’s gth growth day) and move to shelf s, €
S on day d + 1. Then, we can express the required goal with the
optimisation of the following objective function:

Ye
mind >0 D0 D X
ceC g=1 sls.lsisszsc deD

(6)

We can easily adjust the constraints noting that the following re-
lation between the shelf and the shelf-type x variables hold:

Xf{'f”d.tz = Z Z ngd.sz'

S1 eSt1 SZEsz

where S; € S is the set of all shelves of type t € T. We denote the
corresponding model as MinM.

3.2.2. Minimise the number of reconfigurations

Changing shelf configurations takes time and is prone to errors.
In some applications it is advisable to keep shelves in stable condi-
tions and move crops around to the shelf that matches its current
requirements. Minimisation of the following objective function re-
flects this necessity:

d-2
. 1
min Z Z ) Z |Yr.dk — Yedikls

teT d=1  keK

(7)
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where the constant 1/2 reflects the fact that changing the config-
uration of one shelf changes the value of two y variables at once.
Because no constraint explicitly sets the configuration of an unused
shelf, the objective function will make these shelves keep the con-
figuration they had when last used. In this way, we correctly count
configuration changes and not “switching on/off” of shelves.

We can linearise Eq. (7) by replacing variables y with variables
W; g € N taking, in any optimal solution, the absolute value of
Ye.dk —Yr.di1.k- The objective function becomes

d-2
min Z Z Z Wt d ks

teT d=1 keK

(8)

and we can link the w and y variables as follows:
VteT,Vde{l,...,d -2}, VkeK
VteT,Vde{l,...,d -2}, VkeK

Wedk = Yedk — Yed+1.k
Wedk = YVed+1.k = Yedk

We denote the corresponding model as MinR.

3.2.3. Minimise unmet demand

If it is not guaranteed that a feasible schedule meeting all de-
mand exists, one can decide to keep part of it unsatisfied. In this
case, we introduce a new variable u. € N, indicating the amount
of unmet demand for crop c e C on day d € DU {d}. We need to
modify Eqgs. (1) and (3) as follows:

> XK U =pa VceCVdeDuld), (9)
teTe
ZX;,Odfyf,L[ +Uqg=pg Yce(CVde {Vc +1,..., d-} (10)
teT.
Then, the objective function becomes

d
min)_ ) et (11)

ceC d=1

where w, € RT is the cost of missing one unit of demand of crop
c on day d. We denote the corresponding model as MinUD.

3.2.4. Minimise the number of shelves used

Moving from the operational to the tactical level, a planner
might want to size their VF system and determine what is the
smallest number of shelves needed to satisfy their demand in typ-
ical scenarios. To do so, we can add a dummy configuration kg € K
representing an unused shelf, and a new set of variables v; € N in-
dicating the number of shelves of type t € T used in the solution.
All capacities associated with ko will be zero, i.e., gy, =0 for all
teT.
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The objective function minimises the number of shelves used:

min Z n

teT

(12)

and the following linking constraints ensure variables v; take the
correct values:

> Veak VteT.VdeD.
keK\ {ko}

(13)

Because each v; appears in the minimisation objective function, it
will take the smallest value allowed by (13). We denote the corre-
sponding model as MinS.

3.3. Variable fixing

In the following, we describe how to preprocess the model by
fixing the value of some of the x variables to 0, when these vari-
ables cannot possibly take any other value in an optimal solution,
or when they correspond to unfeasible conditions.

The x variables determine paths in the time-expanded graph: a

variable xf gdt indicates that we use the arc from node (t;,d) to

node (tz,d-i- 1) for some units of crop ¢ and that this arc is the
gth in its corresponding path. To ease the description, then, in the
following, we will talk interchangeably of x variables to fix to 0 or
of arcs to prune from the time-expanded graph.

The following variables correspond to arcs that cannot be used
in any feasible solution and are therefore fixed equal to O:

« We neither consider arcs incoming to the seed vault or outgo-
ing from the produce storage, nor arcs from the seed vault not
going to non-dummy shelves or coming to the produce storage
and not coming from non-dummy shelves:

x;’ja—xtdt—o VdeD' ,VceCVteT/ Vge{0,..., v},
=0 VdeD' Vce(CVge{0,..., ¥}

(r d T
o We can remove arcs from the seed vault corresponding to non-

zero growth days, or to the produce storage corresponding to
unripe crops, or between shelves for infeasible growth days:

Gd[_O VdeD' ,VceCVteT/ ,Vge{l,..., v},
Xf§ =0 VdeD VceCVteT/ ,Vgel0,...,y.—1},
Xtdt_o Vd € D,Vc e C,Vt1,ty € T, Vg € {0, yc}.

e Complementary to the above condition, all arcs with zero
growth day have to be outgoing from the seed vault, and all
arcs corresponding to ripe crops have to go to the produce stor-
age.

X% =0 Vt;eT'\{0},VdeD',Vt; e T',VceC,

=0 Vt; eT ,VdeD Vt eT'\{t},VceC

tdt

cve
X1 dt

e We cannot use arcs corresponding to crops which cannot get
ripe on time for the last harvest. To this end, we let d. =
maxypf{d : pe > 0} be the last day with some demand for
crop ¢ € C, and we set:

=0 Vce(CVt,t eT,Vde{d. -
Vg € {0, - (.- d)}.

e We can remove arcs corresponding to infeasible growth days
(when g is greater than d):

=0 Vce(CVt;,heT/ ,VdeD :d <y, Vgel{d+1,..

[]d[ Vc+1,...,dé},

X "VC}-

We can also tighten the upper bound on arcs outgoing from the
seed vault and incoming to the produce storage because the de-
mand limits the number of units that are planted and harvested:

t,dt
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c,0
Xad Ve— 1t<pCd

C.Ye
Xid-17 = Ped
Finally, we can also fix some of the y variables. First notice that,

because we know the demand and the growth phases of each crop,
we also know how many units of crop will require a given config-
uration on a given day:

VCeC,VteTC,Vde{)/C—i-l,...,d_},

VYceCVteT,VdeDu{d}.

d+ye-1
Nak = Z Z Pa VdeD,VkeK,
=d+1 ceC s.t.
k=ke ye—@r-a-1)

where 714, € N denotes the number of units of any crop which re-
quire configuration k € K on day d € D. We can then fix to O all the
y variables corresponding to configurations that we do not need:

Yedk = 0 VteT,VdeD,VkeK : Nak = 0.

3.4. Valid inequalities

In this section, we describe valid inequalities to strengthen the
linear relaxation of the model.

The first inequality uses parameter 7y, to force a minimum
number of variables y, 4 to take value 1 when we need config-
uration k on a day d. Let §, = max;.r {q;;} be the largest capac-
ity associated with configuration k € K. Each day, then, we need at
least [7n4,/dx | shelves in configuration k to accommodate the crops
which need that configuration. We reflect this with the following
valid inequality:

D Vear = Ma/@] VYdeD,VkeKk.

teT

(14)

Note that this inequality is not valid for model MinUD. In this
model, (14) could make a problem infeasible if there are not
enough shelves to accommodate all the crops, when instead the
planner could decide not to meet some demand.

In formulations in which we model each shelf independently,
we can add “clique-like” constraints to force two crops, requir-
ing two different configurations on a given day, to be on separate
shelves. For each day d € D and configuration k € K, consider the
set Z,, of indices (c, g) giving all crops c that require configuration
k on day d, being at their gth day of growth. We would like to
use clique constraints to ensure that, on any day d, crops occupy-
ing the same shelf s should all be indexed from the same set Zy,.
Because the x variables are not binary, it is not possible to enforce
such clique constraints, but we can use a weaker form:

Z szds’+ Z sts/fmax ndkpndkz}

(c, g)eIdk s'eS’ (c, g)el'dk s'eS’
Vd e D,Vs € S,Vki,ky e K : ki #k>. (15)

The left-hand side of Eq. (15) counts the units of crop on shelf s
requiring configuration k; or k, on day d. The right-hand side lim-
its this number to the larger of the two cumulative demands (of
crops growing in configurations, respectively, k; and k, on day d).
For example, if g, > n4¢, and we assign all units of crop requir-
ing configuration k; on day d to shelf s, then Eq. (15) forces all
units of crop requiring configuration k, to be on another shelf on
that day. These constraints are as strong as clique inequalities only
when the right-hand side is 1.

3.5. Complexity

We prove that the decision version of the CGPP, denoted as d-
CGPP, is N'P-complete in the strong sense by reduction from 3-
PARTITION. By “decision version” we mean the problem of deter-
mining whether there exists a feasible solution in which all the
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(a1) S1
(az) S2 C1 (b)
(as) S3 C2 (b
Cn (b)

(asn) S$3n

Fig. 4. Reduction of 3-PARTITION to d-CGPP.

demand is satisfied. It is obvious that if we set all costs w.4 equal
to a positive value in (11), then asking for any feasible solution
under objectives MinM, MinR or MinS is equivalent to asking for
a solution of cost zero under MinUD. Therefore, a reduction to d-
CGPP suffices for all the four objectives.

An instance of 3-PARTITION is defined by an integer b € N and
a set of 3n integers A = {ay, ..., as,} satisfying the following two
conditions

(i) X" aj=n-band
(i) b/4 < a; <b/2, Yie{1,...,3n}.

The problem asks whether there exists a partition of A into
n subsets Aq,...,Ap that satisfy ZaeAJ_a=b, Vje{l,...,n}. 3-
PARTITION is strongly A“P-complete (Garey & Johnson, 1979).

We now show that 3-parTITION reduces to d-CGPP. Given any
instance of 3-PARTITION, we construct an instance of CGPP with a
time horizon of two days, i.e., D = {1, 2}, and a set of n crops C =
{c1,....cn} which all grow in one day (g- =1, VYc € C). All crops
have the same demand b which is due at day 2 (y =2 and p; =
b, Yc e C).

Each crop requires a different configuration. Thus, there are n
configurations ki, ..., kn with keq =k;, Vie {1,...,n}. The cabinet
consists of 3n identical shelves sq,...,s3;, and each shelf s; has
capacity a; independently from its configuration, that is, As;k =
aj, Vje{l,...,3n}, Vk € K. Finally, all shelves are compatible with
all crops so that 6cs =1, YceC, VseS.

It is helpful to visualise this d-CGPP instance using a com-
plete bipartite graph G (see Fig. 4), in which the vertices on the
left (“shelf-vertices”) represent the shelves and those on the right
(“crop-vertices”) represent the crops. Each crop-vertex i has a sup-
ply of b units of flow and each shelf-vertex j has a capacity a;
representing the maximum amount of flow that can reach node j.
Sending one unit of flow on edge {i, j} models the assignment of
one unit of crop i to shelf j and consumes one unit of its capacity
a;. It is obvious that this d-CGPP instance is feasible if and only if
we can send out all the supplies from the crop-vertices, in integer
amounts, while respecting the shelf capacities and the configura-
tion constraints, i.e., while ensuring that the flow reaching a shelf-
vertex j originates from nodes i that model crops all requiring the
same configuration. So, a solution of a d-CGPP instance with an-
swer yes corresponds to an integer flow in G.

We now claim that d-CGPP admits answer yes to the instance
constructed above if and only if the given 3-PARTITION instance is
a yes-instance. Indeed, suppose the d-CGPP instance constructed
above admits answer yes and consider a corresponding flow in G.

1. Because all crops require different configurations, each shelf-
vertex must receive flow from at most one crop-vertex (other-
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Table 1

Features of the three types of cabinet considered. Column cabinet is the cabinet
type. Column #shelves report the total number of shelves in the cabinet, which
is made up of the number of short and tall shelves, reported respectively in
columns #short shelves and #tall shelves.

cabinet #shelves #short shelves #tall shelves
small 7 5 2
medium 9 6 3
large 12 8 4

wise the same shelf-vertex would require at least two different
configurations).

. Because b/4 < a; < b/2, Vje{1,...,3n}, each crop-vertex must
send flow to at least 3 shelf-vertices (otherwise at least one ca-
pacity a; would have to be greater or equal than b/2).

. Because nb = 2?21 a;, each shelf-vertex j must receive exactly
a; units of flow (otherwise the total flow received would be less
than the flow sent).

Thus, using 1, 2, and 3, we can conclude that each crop-vertex
must send its supply b to exactly three shelf-vertices. In sum-
mary, an answer yes to d-CGPP implies that for each crop-vertex
i=1,....,n, we can find a subset of exactly three shelf-vertices
Jj whose capacities a; sum to b, and all these n subsets are dis-
joint. This yields the desired partition showing that the given 3-
PARTITION instance is a yes-instance.

On the other hand, suppose that the given 3-PARTITION instance
is a yes-instance implying the existence of a partition of A into
n subsets Aq,...,A; that satisfy ZaeAja:b, j=1,...,n. Again,

nb = 2?21 aj and b/4 <aj <b/2, Vje{1,...,3n} imply that each
subset A; contains three elements. We can then assign the b units
of flow of each crop-vertex i to the three shelf-nodes with capaci-
ties in A;. Because the subsets A; are disjoint, this yields an outflow
of b units at each crop-vertex i and an inflow of a; units at each
shelf-vertex j, all coming from the same node i. Therefore, the d-
CGPP instance has answer yes.

To conclude, we note that problem d-CGPP is in class NP,
and that the described reduction is both polynomial and pseudo-
polynomial.

4. Computational experiments

This section describes the computational experiments on an
extensive set of benchmark instances (see Section 4.1 for a de-
scription) to compare the performance of the different models
(Section 4.2) and to investigate the structure of the solutions ob-
tained with different objective functions (Section 4.3).

4.1. Benchmark instances and computational environment

We created a set of benchmark instances based on confiden-
tial real-life data, which we published online together with de-
tailed results on an instance basis (see Santini, 2020). The base
data contains information about crops and characteristics of com-
mercial VF cabinets, and also includes historical demand data. It
assumes three types of cabinets containing different numbers of
stacked shelves: small ones with seven shelves, medium ones with
nine shelves, and large ones with twelve shelves. The shelves can
be of two types (short or tall), and Table 1 shows how shelves are
distributed in the cabinets. Note that we do not report the capacity
of the shelves because it varies with the configuration used (more
concretely, it depends on the growth medium).

We have data about six crops, which we denote using letters
from A to F. Crop A requires tall shelves, while the other crops can
grow on both short and tall shelves. We handle this crop-to-shelf
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Table 2
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Real-life data about the crops that we used as a base for instance generation. Column crop is the crop identifier. Column total growth time
gives the total time in days that the crop needs to be in the cabinet (quantity y.). Column #growth phases is the number of different growth
phases the crop goes through; each growth phase requires a different configuration. Column shares config with indicates which other crops
have at least one required configuration in common with the considered crop (recall that crops which have common configurations can
share the same shelf). Column shelf type states whether a crop can grow in any shelf or requires a tall one.

crop total growth time # growth phases shares config with shelf type
A 64 3 — tall

B 15 2 CF short, tall
C 15 2 B, F short, tall
D 44 5 F short, tall
E 35 4 — short, tall
F 35 4 B,C,D short, tall

Table 3

Percentage of feasible instances when varying each of the four instance generation
parameter. Column value indicates the parameter value, while column %feas reports
the number of feasible instances in percent.

#crops cabinet demand mult time horizon
value %feas value %feas value %feas value %feas
1 58.50 small 41.61 1.0 66.03 60 82.80
2 61.39 medium 50.42 1.2 64.54 80 51.94
3 54.33 large 61.04 1.4 57.96 100 34.48
4 41.90 1.6 46.50

5 26.07 1.8 43.74

6 19.44 2.0 27.39

compatibility via parameters & introduced in Section 3. The crops
we consider need between 15 and 64 days to grow, and go through
two to five growth phases, with each phase corresponding to the
need for a different configuration. Table 2 reports the crop data
in more detail: Column total growth time gives the total time in
days that the crop needs to stay in the cabinet (parameter y.). Col-
umn #growth phases is the number of different growth phases the
crop goes through. Column shares config with indicates which other
crops have at least one required configuration in common with the
considered crop (recall that crops requiring the same configuration
at the same time can share a shelf). Column shelf type indicates
whether a crop can grow in any shelf or requires a tall one.

The demand pattern is based on historical data and has a con-
stant trend with weekly seasonality and some spikes on particular
days (for example, holidays). Given the base data and this historical
demand pattern, we generate new instances varying the number of
crops considered and the time horizon length, and using a demand
multiplier to simulate different demand situations:

* We consider all possible combinations of crops, starting from
instances with demand for only one crop, then considering the
(g) possible ways of selecting two crops, etc. up to instances
with demand for all six crops.

o For each crop combination, we generate instances for the large,

the medium, and the small cabinet.

For each choice of crops and cabinet, we generate six in-

stances by multiplying the base demand by a factor of

1.0,1.2,1.4,1.6,1.8,2.0.

For each choice of the three above parameters, we consider

time horizons of 60, 80, and 100 days.

Given 26 — 1 = 63 possible ways to choose a crop combination
(with at least one crop), 3 cabinets, 6 demand multiplier values,
and 3 time horizon lengths, we have a total of 3402 instances. Re-
moving instances with a time horizon of 60 but containing crop A,
which needs 64 days to grow, leaves us with 2826 instances.

While all instances are feasible for model MinUD, this is not
true for the other models (MinM, MinR and MinS). Therefore, the
first aim of our computational study was to determine which of
the 2826 instances are feasible for the other three models (note
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that an instance is either feasible for all three or none of the mod-
els). We coded the models using IBM ILOG Optimization Program-
ming Language and ran them on a cluster equipped with Intel
Xeon processors at 2.4GHz, reserving four cores and 4GB of RAM
for each run. We used the solver CPLEX 12.7 with a time limit of
1 h and default settings.

At the end of the runs, we determined that 1441 instances
are feasible and 1382 are provably infeasible. We were not able
to establish the feasibility of the remaining 3 instances because
CPLEX neither proved them infeasible nor produced a feasible so-
lution within the time limit. Table 3 reports the relationship be-
tween the instance generation parameters and the number of fea-
sible instances. Increasing the number of crops tends to decrease
the number of feasible instances because crop demands are inde-
pendent of each other: for example, instances with six crops have
roughly twice the demand of instances with three crops. Unsur-
prisingly, larger cabinets and lower demands lead to a higher num-
ber of feasible instances. Finally, longer time horizons correspond
to fewer feasible instances because it only takes one day with a
surge in demand which the system cannot accommodate to render
the whole instance infeasible; a longer time horizon corresponds
to more opportunities for one such day.

4.2. Performance of the models

In this section, we investigate the performance of each of the
four models and analyse the effect of the instance parameters
(number of crops, cabinet type, demand multiplier, time horizon)
on this performance. Table 4 reports the results of the models
based on the set of 1441 instances that we proved to be feasible
for all models. The five parts of the table show the results in aggre-
gated form (grouped according to different settings of the instance
parameters and as overall aggregate). For each value of instance
parameter, column instances reports the number of instances ag-
gregated in the row. For each model, column %feas reports the per-
centage of instances for which the respective model found a feasi-
ble solution within the 1-hour time limit. Column Zopt reports the
percentage of instances solved to optimality, column %gap the av-
erage optimality gap in percent, and column time the average run-
time of CPLEX in seconds. Columns %gap and time are computed
based on the instances with a feasible solution found by the re-
spective model within the time limit.

Of the stricter models, i.e., those models in which demand has
to be met, MinM shows the worst performance. It provides the
fewest instances with a feasible solution (in fact, for the large ma-
jority of instances, CPLEX cannot produce a feasible solution within
the time limit), the largest optimality gaps, and the highest run-
times. This is due to the fact that, in this model, we cannot aggre-
gate shelves into shelf types, leading to considerably more vari-
ables and constraints. A higher number of crops (beyond four),
larger cabinets, higher demands, and longer time horizons have a
clear negative effect on the ability of the model to find feasible so-
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Fig. 5. Each box spans the second and the third quartiles,
box depicts the median. Each dot represents one instance.

the solutions of all models. Fig. 5(a)-(c) report the information
about, respectively, the number of reconfigurations per shelf, the
number of movements per unit of crop, and the fraction of shelves
used in the solutions found by the different models.

In all the figures, we note that only the model minimising the
given objective achieves satisfactory results. In Fig. 5(a), the mod-
els which do not minimise the number of reconfigurations give so-
lutions with a median of up to twenty reconfigurations per shelf
and model; MinS even has outliers with up to 60 reconfigurations
per shelf. Intuitively, indeed, if a planner wants to minimise the
number of used shelves, he has to juggle as many configurations
as possible in the few active shelves, which makes these two ob-
jectives contradictory. We can observe the same effect in Fig. 5(b):
when minimising the number of shelves the planner has to fre-
quently move around crops. Finally, Fig. 5(c) shows that when shelf
minimisation is not explicitly demanded by the objective function,
the models try to use as many shelves as possible: all models ex-
cept MinS have median shelf usage of 100%.

To attempt to reconcile the objectives MinR and MinS, we inves-
tigate the effect of using a hierarchical objective which first min-
imises the number of reconfigurations and then the number of
shelves used. The hierarchical objective reduces average shelf us-
age over all instances from 93.2% (without hierarchical objective)
to 92.4%. This shows that the objectives are inherently conflicting,
which makes a multi-objective approach compelling for practition-
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with whiskers extending to the rest of the distribution (excluding outliers). The horizontal black line inside each

ers, who want to achieve different desirable objectives simultane-
ously. The planner can clearly not rely on the assumption that op-
timising with regards to one objective will produce solutions of ac-
ceptable quality with respect to any other objective.

5. Conclusions

In this paper, we present four mathematical models for plan-
ning the growth of crops in a vertical farming system, which are
strengthened using variable fixing and valid inequalities. The mod-
els mainly differ in their objective to minimise, respectively, move-
ments, reconfigurations, shelf usage, or unmet demand. Numerical
experiments on a large set of benchmark instances based on real-
world data show that the performance of the models when solved
with a standard solver is diverse and strongly dependent on in-
stance data. In particular, when minimising the number of crop
movements, we cannot solve to optimality more than 97% of the
instances, and the average gaps are above 84%. By contrast, aver-
age gaps are below 4% for the other objectives. This suggests that
developing ad-hoc algorithms to minimise the number of move-
ments is an interesting area for future research.

We also find that none of the objectives steers the solutions to
be acceptable with regards to any of the other objectives, which
makes multi-objective optimisation techniques another fruitful av-
enue for future investigations. In this work, we assume that, be-
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cause the crops are highly perishable, their growth should com-
plete on the same day in which there is demand for them. This
is particularly true for crops currently popular for VF systems,
such as basil, chives, or leafy greens. As VF technology improves,
however, the range of crops which one can grow in a controlled-
condition cabinet will increase. In this case, a promising research
direction is to allow some crop units to be harvested before their
due date thereby introducing flexibility in the time when their
growth is started. This clearly adds a scheduling component to our
model. Such a research direction would benefit the area of ma-
chine scheduling in general, because there are currently no other
models allowing such a great flexibility in reconfiguring machines
and moving tasks between machines.
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Appendix A. Complete models

In this section we provide complete models for the four formu-
lations presented in Section 3.

A.1. Minimise the number of movements

oYY Y YR, (A1)
ceC g=1s51,52eS; deD
S1#52
LY XK =De VceCVdeDu{d) (A2)
seSe
Z Z Z x51ds2—q51k Ys,.dk VsleS,VdeD,VkeK
5eS" ceC gefl,....yc}
sy = keg=k
8552:

(A.3)
> X0 yots = Ped YceCVdely.+1,...,d} (A4)
seS¢
Yo =0 ngl;;z VYceCVge{0,...,y}.Vs1 €5.Vd e D
Sp€T! S,€T!

(A.5)
D Ysar =1 VseSVdeD (A.6)
keK
gfd.SZ eN VYceC, Vsi,52 €S, VdeD, Vge{0,..., v}

(A7)
Vsax €1{0,1} VseS., VdeD, VkeK (A.8)
A.2. Minimise the number of reconfigurations

d-2
miny ">y wpax (A.9)

teT d=1 keK
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YceC Vd e Du{d} (A10)

C.Ye
SLY L = P
teTe

22 X

[1dt2—q[1k Ye.dk Vf]ET,VdED,VkEK

tyeT’" ceC ge{l,....yc}
oty = keg=k
Say=1 ©
Clz
(A11)
Zxad yo1t = Pad VeceCVde{y+1,....d} (A12)
teT,
YoXE = XL VeeCVge(0,...y), ¥t €T, ¥deD
beT! beT!
(A13)
D Veak <M VteT,VdeD (A14)
keK
Weak = Vedk —Yeamx  VteT, Vde{l,....d=2}, VkeK
(A15)
Wedk = Ye.d+1.k — Yedk VteT, Vd e {1, ey (I— 2}, Vk e K
(A.16)
xf]gdt eN VceC, Vt,tp T/, Vde D', Vge{0,...,y}
(A7)
YVeak €N VteT/, VdeD, VkeK (A18)
Wegx €N VteT, Vde{l,...,d—2}, VkeK (A19)
A.3. Minimise unmet demand
d
miny "> weqlicq (A.20)
ceC d=1
SEY XN HlUeg = Pea VYceC Vd e Du{d) (A.21)

teT,

Z Z Z xtldtz —qﬁk yﬁdk

Vt; e T,Yd e D,Vk e K

el ceC gefl,....yc}
;=1 keg=k
ety =1
(A22)
X i tUa =Py  VceCVde{y+1,...d} (A23)
teT:
YoxE =Y x5 VeeCVge{0.... ¥} Vel VdeD
tel! tel!
(A24)
> Vedk <M VteT,VdeD (A.25)
keK
x5, €N VceC, Vi, €T/, VdeD', Vge{0,..., v}
(A.26)
Yedk €N VteT/, VdeD, VkeK (A.27)
UgeN VYceC, Vd e Du{d} (A.28)
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(a) Optimal solution for model MinM.
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(b) Optimal solution of the continuous relaxation of model MinM.

Fig. B1. Example instance in which the continuous relaxation of model MinM would show a gap of 100%.

A.4. Minimise the number of shelves used

min ) v (A.29)
teT
SEY X =D YceC Vd e Du{d) (A.30)
teTe

2 )

xffdytz < ek Ve, dk Vt; e T,Vd e D,Vk € K

teT' ceC gell,..., Ve)
ct) = kc‘g:k
Ity =
(A.31)
fo{,od—yc—u = Ped VeeCVde{y+1,....d} (A32)
teT,
C.g C.g+1
Z th,d—].tl = Z xl’].d.fz VC € C’ Vg € {0’ v yC}’ th < TC’ Vd €b
teT! Lel!
(A.33)
ZJ’t.d,k < n; VteT,VdeD (A.34)
keK
U > Z Yedk VteT.VdeD (A35)
keK\{ko}
XE €N VeeC V.t eT/, VdeD' Vge{0..... v}
(A.36)
Vedk €N VteT/, VdeD, VkeK (A37)
v eN VteT (A.38)

Appendix B. Example of solution of the continuous relaxation
of model MinM

A disadvantage of the proposed formulations is their weak lin-
ear relaxation, mainly due to the presence of constraints (2). These
inequalities serve both as capacity constraints and as linking con-
straints for the x- and y-variables, but they provide a weak linking
between these variables once the integrality requirements are re-
moved.

To illustrate this point consider model MinM and an instance
with two identical shelves of capacity 2 and three crops:
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e crop c; is planted on day 0 and grows for two days, in config-
uration k; on the first day and in k, on the second;

e crop ¢, is also planted on day 0 and grows for two days, in
configuration k3 on the first day and in k, on the second;

e crop c3 is planted on day 1 and grows for one day in configu-
ration ky.

Each crop has demand 1 only on the third day. Fig. B.1(a)
shows an optimal solution to this instance. In the figure,
the movements of crop c; are visualised as dashed arrows,
those of crop c; as dotted arrows and those of crop c3
as solid arrows. Note that the objective value of this solu-
tion is 1, because crop c; moves from shelf s, to s; in
day 2. The value of the non-zero variables in this optimal

. e .0 _ .1 02 00 ol 02
solution  is: x(r,O,s] T s 15y T Ts1.2T _x(r,O,sz T Tsy sy T Ts1.2t T
3.0 _ 3.1 _ _ _ _
Xois, =Xg2p=1a0d Ys 11 =V5 2k =Vsy. 1k =Vsp 2k = 1-

On the other hand, if we consider the continuous relaxation, we
can obtain a solution with an objective value equal to zero thus
yielding an integrality gap of 100%. Such a solution is shown in
Fig. B.1(b). Here, shelf s; can be assigned half configuration k; and
half configuration k3 on day 1 because variables ys, 1, and ys, 1,
can both be given a value 0.5. Since the shelf capacity is 2 it can
accommodate both crops c¢; and ¢, simultaneously and with these
fractional values for variables y;, 1, and ys, i, constraints (2) are
indeed satisfied.

Overall, the value of the non-zero variables in the optimal solu-

. . . f 1.0 Ll _ 12 00
tion to the linear relaxation is: Xo0s; =51 15, =Xs12.0 =Xg 0.5,
.1 02 .0 31 _ _

Xi1s; = %5120 =Xo1s, = X520 = L Ysiady =Vs1ky =05 and

Vs,.2.k, = Ys,.2.k, = 1. As noted above, this solution does not violate
constraints (2), nor the other linear constraints of the model.
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