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1 Abstract

The interpretation of high-dimensional data, like those obtained from Direct Numer-
ical Simulations (DNS) of turbulent reacting flows, constitutes one of the biggest
challenges in science and engineering. Although these simulations are a source of
key information to advance the knowledge of turbulent combustion, as well as to de-
velop and validate modeling approaches, the dimensionality of the data often limits
the full opportunity to leverage the detailed and comprehensive information stored
in data-sets.
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The Principal Component Analysis (PCA), and its local formulation (LPCA), are
widely used in many fields, including combustion. During the last 20 years, they
have been used in combustion for the identification of low-dimensional manifolds,
data analysis, and development of reduced-order models. Lower-dimensional struc-
tures, either global or local, can provide better insights on the underlying physical
phenomena, and lead to the formulation of high-fidelity models.

This chapter aims to o�er to the reader a comprehensive introduction of the PCA
potential for data analysis, firstly introducing the main theoretical concepts, and then
going through all the required computational steps by means of a MATLAB® code.
Finally, the methodology is applied to data obtained from a DNS of a turbulent
reacting non-premixed n-heptane jet in air. The latter can be regarded as an optimal
case for data-analysis because of the complex physics characterized by turbulence-
chemistry interaction and soot formation.

2 Theory

2.1 Building the data-set and data-set preprocessing

In order to apply any kind of statistical tool, data must be organized as matrices. The
matrix X, representing the original dataset, consists of n rows, which represent the
statistically equivalent observations of a phenomenon, i.e., the di�erent samples of
an experiment, or the grid points of a numerical simulation, and p columns, which
represent the variables of the problem, i.e., chemical species, velocity, temperature,
pressure. Since the variables are characterized by di�erent units and ranges, pre-
processing in the form of centering and scaling is a mandatory operation [1, 2].
Data centering consists of subtracting the mean value of each variable to all data-set
observations: in this way, all the observations can be seen as fluctuations from a
mean value. Scaling is achieved by dividing each variable by a given scaling factor,
which can be di�erent depending on the adopted scaling criterion. Therefore, the
i-th observation of the j-th variable, xi, j , from the original data-set matrix X, can be
centered and scaled by means of Equation 1, where x̄ j and d j are the centering and
scaling factor for the considered j-th variable, respectively.

x̃i, j =
xi, j � x̄ j

d j
(1)

The way data are preprocessed can have a strong influence on the data analysis and
the reduced-order modeling for combustion applications [3], as the scaling technique
can be more or less sensitive to the presence of outliers or it can highlight a specific
pattern in the data:

1. Auto scaling: the standard deviation of each variable, �(x), is used as a scaling
factor. After Auto scaling, all the variables are characterized by a standard devi-
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ation equal to one. It is also one of the most used scaling criteria as it allows to
consider evenly all the variables.

2. Pareto scaling: it uses the square root of the standard deviations for each variable,p
�(x), as a scaling factor. More importance is given to variables with a very high

standard deviation and with high numerical values. Importantly, the variables do
not become dimensionless after scaling.

3. Range scaling: the di�erence between the minimum and the maximum value
is adopted as scaling factor. It results to be more sensitive, if compared to the
other scalings, to outliers, which can significantly change the numerical values of
minimum and maximum.

4. Vast scaling: the scaling factor is the product between a variable’s standard
deviation and the coe�cient of variation, i.e., the ratio: �(x)

mean(x) . It has been
proven to focus on the variables which do not show strong variation.

Auto scaling is the optimal option for combustion applications if the main objective
is the reconstruction of the overall state space, with no major di�erences between the
major and minor state variables [3]. The other scalings, such as Range scaling and
Vast scaling, on the other hand, are more focused on the stable and major species [3].
In Table 1, the aforementioned scaling criteria, as well as their associated scaling
factors, are summarized.

Scaling criterion Scaling factor (d)
Auto �(x)

Pareto
p
�(x)

Range max(x) �min(x)
Vast �(x) � (x)

mean(x)

Table 1 Scaling criteria and scaling factors for multivariate data-sets.

2.2 Principal Component Analysis

The Principal Component Analysis (PCA) is a statistical technique used to find a
reduced set of uncorrelated variables, starting from a larger set of interdependent
variables, losing only a small amount of information [4, 5]. Starting from a centered
and scaled data matrix X̃, consisting of n observations and p variables, it is possible
to compute the associated covariance matrix S and decompose it by means of an
eigenvalue decomposition:

S = 1
n � 1

X̃T X̃ (2)

S = ALAT (3)
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The columns of the matrix A, whose size is p ⇥ p, are an orthonormal basis of
eigenvectors (Principal Components), while the diagonal elements of L correspond
to their associated eigenvalues. Each eigenvalue represents a fixed percentage of
information, in terms of variance of the original data-set, accounted by the associated
Principal Component (PC). As the eigenvalues are ordered in descending order of
magnitude l1 > l2 > ... > lp , the PCs are also ordered in descending order of
importance. The matrix X̃ can be expressed as a function of the Principal Components
by means of the scores matrix, Z:

Z = X̃A. (4)

With the linear transformation described in Equation 4, the original variables are
recasted into a new set of uncorrelated variables. From a geometrical point of view,
the axes of the new variables are represented by the columns of the matrix A.
Moreover, given the orthonormality of the latter, it results that: AT = A�1.
Thus, it is possible to uniquely recover the values of the original variables from Z:

X̃ = ZAT. (5)

The dimensionality reduction comes by considering only a q-dimensional subset,
Aq , from the original p-dimensional full set of PCs, A. If the cumulative variance,
tq , for the truncated q-dimensional basis of eigenvectors is within a desired accuracy,
the basis can be considered as representative of the problem, and the original dataset
X̃ can be correctly compressed to the chosen reduced dimensionality finding the
matrix of the scores, Zq. Equations 6 and 7 report the expressions for the cumulative
variance, tq , and the representation of the original data by means of the truncated
basis of PCs, Aq:

tq =

Pq
j=1 � j
Pp

j=1 � j
, (6)

Zq = X̃Aq. (7)

The data matrix X̃ can be reconstructed from the reduced-dimensionality space
by means of Equation 8:

X̃ ⇡ X̃q = ZqAT
q . (8)

The di�erence between the data matrix X̃ and the reconstructed X̃q is defined as
the low-rank approximation error, and it can be used to evaluate the quality of the
dimensionality reduction. The low-rank approximation error, ✏ , can be defined as:

✏ =
pX

j=q+1
� j =

nX

i=1

pX

j=1
(x̃q,i j � x̃i j )2, (9)

where x̃q,i j and x̃i j correspond to the lower-dimensional and the original observation,
respectively.



Analysis of turbulent reacting jets via Principal Component Analysis 5

The possibility to use PCA as a data-analysis tool comes by considering that each
PC is a linear combination of the original variables of the data-set. The j-th variable
will be characterized by a weight wi, j , indicating how much it is represented by the
i-th PC [6, 7]. Thus, analyzing the distribution of the weights on the retained PCs of
Aq, it is possible to gain a better insight about the features of the system. As PCA
is particularly sensitive to the presence of outliers, an outlier removal procedure is
recommended in the preprocessing step, before applying the algorithm, in case of
analysis on data obtained from experimental set-ups [3].

In the case of data-sets with a large number of variables, it could be sometimes
di�cult to perform the analysis via visual inspection of the weights, because many
variables could have comparable weights. Thus, the PCs physical interpretation can
be aided by rotation methods, a class of statistical tools often coupled to PCA and
other similar techniques such as Factor Analysis [7, 8]. The Varimax rotation, firstly
developed by Kaiser [9], is an orthogonal rotation method which rigidly rotates the
PCs over a fixed angle, while keeping the components orthogonal. When rotated, the
subset of PCs spanning the lower dimensional space accounts for the same amount of
cumulative variance as the unrotated, but it is redistributed within the components.
Therefore, the information regarding the relative importance of the PCs, if the latter
are rotated, is lost [4].

2.3 Local Principal Component Analysis

PCA is a linear technique, so the dimensionality reduction is limited when dealing
with data-sets obtained from non-linear systems such as those in combustion, since
large reconstruction errors are obtained.

One option to overcome the intrinsic limitation of the PCA is to adopt a piecewise
linear, local formulation for the dimensionality reduction (LPCA). Partitioning the
data in k groups (clusters) and then performing the dimensionality reduction in each
of them separately, can lead to a drastic decrease of the reconstruction error.

Two methods [10, 11] are available to perform the data-set partitioning: an itera-
tive unsupervised algorithm based on the minimization of the reconstruction error,
the Vector Quantization Principal Component Analysis (VQPCA), or a supervised
partitioning based on an a-priori conditioning, by means of a selected variable which
is known to be important for the process (FPCA). As the latter is not an iterative
algorithm, it allows for a faster clustering in comparison with VQPCA, even if the
choice of the optimal variable could constitute a di�cult task for some applications,
as it requires prior knowledge on the process, and the choice must be assessed case-
by-case. For non-premixed, turbulent combustion applications, the mixture fraction
Z is an optimal variable for the data conditioning, leading to excellent results both for
data compression and interpretation tasks [11]. In the present approach, the FPCA
algorithm groups the data in k bins: k/2 are allocated for all the observations under
the condition of Z being lower than the stoichiometric mixture fraction Zst , and the
remaining k/2 for the observations at Z > Zst .
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The iterative VQPCA algorithm, instead, is based on the following steps:

1. Initialization. The cluster centroids r̃(k) are initializated: a random allocation,
a uniform distribution between all the observations of the data-set or a previ-
ous clustering solution can be chosen to compute the r̃(k) initial values. The
eigenvectors in each cluster, A(k) , are initialized as identity matrices.

2. Partition. Each observation is assigned to a cluster k such that the local recon-
struction error is minimized:

✏ (x̃i, r̃(k) ) = (x̃i � r̃(k) )TA(k)T
q A(k)

q (x̃i � r̃(k) ) (10)

3. PCA. The Principal Component Analysis is performed in each of the clusters found
in the previous step. A new set of centroids is computed after the new partitioning
step: their coordinates are calculated as the mean of all the observations in each
cluster.

4. Iteration. All the previous steps are iterated until convergence is reached.

The available convergence criteria are the following:
i. The global mean reconstruction error, i.e., the averaged reconstruction error taking

into account all the clusters, is below a fixed threshold.
ii. All the clusters centroids positions are not changing between two consecutive

iterations.
iii. The variation of the global mean reconstruction error between two consecutive

iterations is below a fixed threshold.

3 Methods and MATLAB® code for data analysis with PCA

In this Section, a simple procedure for data analysis via PCA with the corresponding
MATLAB

® code is presented, in order to show in details the application of the theory
explained in Section 2. To perform data analysis with PCA, the following steps must
be followed:
i. Standardize the initial data-set by means of centering and scaling.
ii. Perform PCA (global or local algorithm).
iii. Evaluate how many PCs are necessary to properly describe the system using

Equation 6.
iv. Evaluate the variables’ weights on the retained PCs, and possibly apply a rotation

to increase interpretability.
After the data have been organized as a matrix and loaded in MATLAB®, the first
operation to accomplish is the standardization. The code for centering and scaling a
generic X matrix to obtain X̃ is reported below:

Data pre-processing
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[n_obs, n_var] = size(X);

tolerance = 1e-08;

% First of all, the mean value for each variable

% is calculated.

xbar = mean(X);

% Depending on the scaling criterion, the

% scaling factor is calculated:

switch upper(scaling)

case {’NONE’ ’’}

d = ones(1,nvar);

case {’AUTO’ ’STD’}

d = zeros(1,n_var);

for i=1:n_var

d(i) = std(X(:,i),1);

end

case ’VAST’

d = zeros(1,n_var);

for i=1:n_var

d(i) = std(X(:,i),1).^2 ./ (xbar(i));

end

case ’RANGE’

d = max(X)-min(X);

case ’PARETO’

d = zeros(1,n_var);

for i=1:n_var

d(i) = sqrt(std(X(:,i),1));

end

otherwise

error(’Unsupported scaling option’);

end

% All the observations can be now centered and scaled.

% In case of big matrices it is convenient to preallocate

% the memory.

X_tilde = zeros(size(X));

for i = 1: n_var

X_tilde(:,i) = (X(:,i) - xbar(i)) / (d(i) + tolerance);

end

After these operations, it is possible to perform PCA.
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Principal Component Analysis

% The covariance matrix of the centered and scaled data

% must be computed.

cov_data = cov(X_tilde, 1);

% The eigenvectors and the eigenvalues are calculated

% from the covariance matrix.

% The eigenvalues, originally returned as a diagonal matrix,

% are stored into a vector (lambda).

[eigenvectors, eigenvalues] = eig(cov_data);

lambda = diag(eigenvalues);

% The eigenvalues must be now sorted in descending order.

% Their original indeces (sort_index) are also stored, as

% they are later used to arrange the eigenvectors in order

% of descending importance, thus building the matrix of

% the Principal Components (PCs).

[sort_eigval, sort_index] = sort(lambda, ’descend’);

PCs = zeros(n_var, n_var);

for i = 1 : n_var

PCs(:,i) = eigenvectors(:, sort_index(i));

end

% Two different kinds of principal component scores can be

% now computed.

% 1) U-scores: obtained by projecting the matrix X_tilde of

% the centered and scaled data on the PCs.

% The resulting U-scores are uncorrelated and have variances

% equal to the corresponding eigenvalues.

% 2) W-scores: obtained by projecting the matrix X_tilde of

% the centered and scaled data on the PCs previously

% scaled by the inverse of the eigenvalues square root.

% The W-scores are still uncorrelated and have variances

% equal to 1.

U_vec = PCs;

W_vec = zeros(n_var, n_var);

for j = 1 : n_var

W_vec(:, j) = (PCs(:, j)/sort_eigval(j)^0.5);

end

U_scores = X_tilde*U_vec;

W_scores = X_tilde*W_vec;
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In alternative, a built-in function is also already available in MATLAB®:

Principal Component Analysis

[PCs, U_scores, Eigenvalues, ~, Explained] = ...

pca(X_tilde, ’Centered’, false);

In this function, as well as providing the n ⇥ p standardized matrix in input, it is
specified that the data have already been centered and scaled. In the output, the
function returns:

i. PCs: the PCs matrix A containing all the principal components, whose size is
p ⇥ p.

ii. U_scores: the scores matrix, Z, which consist of the projection of the input matrix
on the full set of PCs: Z = X̃A.

iii. Eigenvalues: the eigenvalues vector (p⇥1), containing the eigenvalues associated
to each PC.

iv. Explained: the explained variance vector (p⇥1), which consists of the percentage
of explained variance by each PC depending on the magnitude of the associated
eigenvalue.

This last output is important for the next step, the choice of the number of PCs.
As already explained in Section 2, a good approximation of the original problem
requires selecting a basis that can explain a large amount of cumulative variance,
i.e, from 95% to 100%. In this way, it is possible to have an initial guess for the
dimensionality needed by the reduced basis to be representative. In the following
code, it is required that more than 99% of the global variance is explained by the
retained Principal Components:

Choice of the reduced dimensionality

cumulative_explained = cumsum(Explained)/sum(Explained);

variance_cut = find(cumulative_explained > 0.99);

required_number = variance_cut(1);

Once the required number of PCs is calculated, the reduced eigenvectors basis, Aq,
can be built as:

Selecting the PCs



10 G. D’Alessio, A. Attili, A. Cuoci, H. Pitsch and A. Parente

A_q = PCs(:, 1:required_number);

Sometimes the explained variance criterion might not be enough to assess the number
of required PCs, especially if the data are not standardized with the Auto scaling
criterion. Thus, another method must be taken into account to verify if the choice
of the number of PCs is appropriate, checking the reconstruction error for the single
variables. If the number of PCs is correctly determined, the variables’ reconstruction
from the reduced dimensionality is characterized by a low error, otherwise the
number of the retained PCs must be increased. A large reconstruction error can have
a negative impact on the analysis, as the feature extraction process from the data
could also be compromised. In fact, the distribution of the weights on the modes
could be too noisy or some important processes might not be extracted. The code
to reconstruct the original matrix from the reduced dimensionality space is reported
below, assessing the quality of the reconstruction using parity plots of the original
and the reconstructed variables, after uncentering and unscaling the data.

Reconstruction error for the variables

% The original matrix must be reconstructed using the set of

% truncated modes calculated in the previous steps, first.

recovered_X_fromPCA = X_tilde*A_q*A_q’;

% This matrix must be then unscaled and uncentered

% (in this order), with the same scaling and centering

% factors used in the previous steps, to make a proper

% comparison with the original matrix, X.

% Unscaling

for i = 1:n_var

X_unscal(:, i) = recovered_X_fromPCA(:,i)*d(i);

end

% Uncentering

for i = 1:n_var

X_recovered(:,i) = X_unscal(:,i) + xbar(i);

end

% The parity plots between the original and the reconstructed

% variables can then be drawn to evaluate the reconstruction:

% the more the scatter points are aligned with the red solid

% line, the more precise is the PCA reconstruction. In order

% to have a quantitative indication, it is also possible to

% use error metrics such as the Mean Square Error or the
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% Root Mean Square Error.

for i = 1:n_var

figure, plot(X(:,i), X(:,i), ’r’, ’LineWidth’, 2);

hold on

scatter(X(:,i), X_recovered(:,i), 15, ’filled’);

xlabel(’Original variable’);

ylabel(’Reconstructed variable’);

end

For a local, supervised, partitioning in k clusters, using mixture fraction as a
conditioning variable, the following code can be implemented:

Local partitioning via FPCA

% Initialization of bin data matrices

bin_data = cell(k, 1);

idx_clust = cell(k, 1);

idx = zeros(size(X_tilde,1), 1);

% Number of intervals

n = k + 1;

min_z = min(Z);

max_z = max(Z);

ints_1 = linspace(min_z, z_stoich, ceil(n/2));

ints_2 = linspace(z_stoich, max_z, ceil((n+1)/2));

ints = [ints_1(1:ceil(n/2-1)) ints_2];

% Partition

for bin = 1 : k

idx_clust{bin} = find((Z>=ints(bin))&(Z<=ints(bin+1)));

bin_data{bin} = X_tilde(idx_clust{bin}, :);

idx(idx_clust{bin}) = bin;

end

% Perform PCA in each bin after the centroid has been removed

PCs_clusters = cell(k,1);

for i = 1:k

[rows, columns] = size(bin_data{i});

mean_var = mean(bin_data{i}, 1);

X_ave = repmat(mean_var, rows, 1);

X0 = bin_data{i} - X_ave;

[PCs, Scores, Eigenvalues, ~, Explained] = ...
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pca(X0, ’Centered’, false);

PCs_clusters{i} = PCs;

end

% Plot the weights on the PCs to analyze the data

for j = 1:k

A_q = PCs_clusters{j}(:, 1:required_number);

for i = 1: required_number

figure,bar(A_q(:,i),’FaceColor’,[0, 0, 0],’LineWidth’,1.5)

xlabel(’Variables’);

ylabel(’Weights on the PC’);

end

end

4 Application: PCA of a non-premixed sooting flame DNS

4.1 Data description

Data obtained from a 2D slice of a 3D temporally evolving DNS simulation of
an n-heptane turbulent jet [12] are here considered for the analysis by means of
PCA. The jet is non-premixed with a Reynolds number of 15,000. The fuel has an
initial temperature of 400 K, while the oxidizer stream (air) is at 800 K. The kinetic
mechanism used for the n-heptane flame consists of 47 species, including naphthalene
and other soot precursors, with 290 reactions in total. Additional information on the
mechanism and the gas phase hydrodynamics can be found in [12, 13, 14, 15]. This
can be considered as an optimal case for a data-analysis task since it includes a large
number of available observations and chemical species in the mechanism, and the
physics is characterized by many complex phenomena such as turbulence-chemistry
interaction and soot formation. The data-set considered here consists of the full
thermo-chemical space and it is organized as a matrix of 1,048,576 observations
(grid points of the 2D slice) and 48 variables (temperature and mass fractions of all
the chemical species).
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4.2 Analysis

4.2.1 Principal Component Analysis

The matrix X containing the input data was scaled with the four scalings methods
discussed in Section 2 (Auto, Vast, Pareto, Range) to test their e�ect on the analysis.
A di�erent relative importance given to the PCs is observed in the four cases, due
to the di�erent eigenvalues magnitude distribution. As it is shown in Figure 3, for
Auto and Range scaling criteria, the curve representing the cumulative explained
variance has a more moderate slope, starting from small values (i.e. about 0.4 and
0.65, respectively) and then asymptotes to one for a relatively large number of PCs,
while for Pareto and Vast scaling criteria, the first principal component already
explains an almost unitary cumulative variance. With Auto scaling, the number of
eigenvectors to retain in order to explain at least 99% of the data cumulative variance
is 19, while with Pareto scaling 1 PC is already enough to explain 99% of the total
data variation. The examination of the cumulative explained variance is not always
optimal for the assessment of the number of PCs to analyze, so the reconstruction
error for the variables must be also investigated.

Fig. 1 Cumulative explained variance for the PCs for di�erent scaling criteria.

If the data are reconstructed from nineteen-dimensional compressed space and
from the one-dimensional compressed space, respectively, the results in terms of
accuracy of the reconstruction are totally di�erent. Even if the amount of explained
cumulative variance is the same, the coe�cient of determination, R2, for the parity-
plots obtained from the variables’ reconstruction are completely di�erent: for the
reconstruction of the oxygen radical, in case of auto-scaling with 19 PCs, the R2

amounts to 0.996, while in case of pareto-scaling with 1 PC it amounts to 0.218.
The parity plots for the reconstructed variable using the two di�erent scalings are
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shown in Figure 2. The only variable which has an acceptable reconstruction error
with only 1 PC, in case of Pareto scaling, is the temperature with a R2 equal to 1.

Fig. 2 Left: Parity plot for the reconstruction of the oxygen radical from the compressed space
adopting Auto scaling with 19 retained PCs; Right: Parity plot for the reconstruction of the oxygen
radical from the compressed space adopting Pareto scaling with 1 retained PC; on equal terms of
cumulative explained variance (tq > 0.99).

As highlighted in Section 2, the analysis is performed via examination of the
weights’ distribution on the PCs, and in many cases they tend to represent one or
more physical quantities. For example, examining the sixth rotated PC obtained from
the data scaled with Auto scaling reported in Figure 3, it is possible to notice that
nitrogen and oxygen have the largest negative weights, while n-heptane has the largest
positive weight. This PC clearly represents the mixture fraction, as also confirmed
by its correlation coe�cient with the mixture fraction itself, which is equal to 0.72.
This high correlation is particularly interesting because the mixture fraction was not
included in the variables of the data-set, which consisted only of temperature and
species mass fractions.

Other global important features extracted via PCA were, for example, the most
important radicals involved in the branching reactions (O, OH , H on one rotated
PC and HO2 on another) and in the soot formation mechanism (C6H5, C7H8, C3H3
with highest weights on the third rotated PC).

4.2.2 Local Principal Component Analysis

The quality of the data analysis can be enhanced if a local formulation is considered.
A piecewise linear local formulation for PCA has several advantages with respect
to a global analysis: a lower reconstruction error, a lower intrinsic reduced dimen-
sionality and the possibility to highlight local processes. The algorithm has only one
hyperparameter, namely the choice of the number of bins of mixture fraction (the
number of clusters) to use to partition the data, k. Despite the fact that a defined way
to properly set the number of variables does not exist in literature, the total number of
clusters can be retrieved from a trade-o� between the accuracy of the reconstruction
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Fig. 3 Weights distribution on the sixth Principal Component, Auto scaling criterion.

and the feasibility of the data-analysis. In fact, as the number of clusters grows, the
reconstruction error decreases, but the analysis with an excessively large k could be
infeasible.

In Figure 4, the reconstruction error obtained with FPCA for an increasing number
of clusters, starting from the global PCA (k = 1), is reported. The error decreases
in total of one order of magnitude, and it starts asymptoting from k = 16. The
latter could also be ideally chosen as a good k to perform the analysis as it is a
reasonable number of clusters to examine, not being too large for the manual weights
inspection and interpretation, as k = 64 or k = 128 could be. LPCA is also robust
to underfitting and overfitting, as the reconstruction error does not depend on the
data-set dimensions, as also shown in the aforementioned figure where the errors
using the full dataset and only the 50% of the observations are compared.

As discussed in Section 2, for the FPCA algorithm the mixture fraction space is
divided in k/2 bins for all the points below the stoichiometric mixture fraction and in
k/2 above Zst , while VQPCA assigns the cluster index to one particular observation
on the basis of the reconstruction error minimization criterion. In Figures 5 and
6, the flame partitionings for k = 16 for the two di�erent LPCA algorithms are
reported. As expected, the results are di�erent; even if the VQPCA partitioning is
completely unsupervised, it gives better results in terms of data compression, as its
average reconstruction error for k = 16 amounts to 0.0121, while with FPCA, the
reconstruction error for the variables is 0.0256 on equal terms of number of clusters
and number of retained principal components. In each of the sixteen clusters, the
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Fig. 4 Reconstruction error for an increasing number of bins of mixture fraction for the full data-set
(all the observations) and a data-set consisting only of half of the total observations. The value for
number of clusters equal to 1 is the error with global PCA.

main features of the flame can be visualized plotting the weights of the variables on
the modes as done in the previous paragraph.

Fig. 5 Left: DNS flame partitioning via FPCA with k = 16; Right: mixture fraction partitioning
via FPCA with k = 16. The colorbar indicates the index of the cluster assignment.

As shown in the mixture fraction - temperature plot, coloured by means of the
LPCA partitioning, the unsupervised algorithm allocates only two clusters for the
lean conditions (from zero up to stoichiometric), while with the supervised approach,
eight clusters were intentionally allocated for low values of Z . One of these two clus-
ters found via VQPCA for the lean conditions contains all the points below the
curve (in light green, cluster number 11), and it groups all the points of local extinc-
tion, characterized by quasi-stoichiometric and stoichiometric mixture fraction, low
temperature, and OH concentration almost equal to zero. In the right branch of the
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Fig. 6 Left: DNS flame partitioning via VQPCA with k = 16; Right: mixture fraction partitioning
via VQPCA with k = 16. The colorbar indicates the index of the cluster assignment.

mixture fraction - temperature plot, corresponding to rich conditions, the clusters
found via the unsupervised algorithm have a larger extension in terms of mixture
fraction range if compared to the supervised ones. In this case, separate clusters
are assigned to points at the same mixture fraction range, but di�erent temperature.
Examining the plot on the right of Figure 6, indeed, it is possible to see that cluster
number 9 goes from Z ⇠ 0.5 to Z ⇠ 0.95, the same mixture fraction covered by
clusters number 1 and number 10, but with the latter being at a lower temperature.
This partitioning is totally in line with the physics of the flame, as these clusters are
representative of di�erent chemical features. In fact, while clusters number 1 and 10
are representative for the fuel jet and its decomposition, as the highest weights on
the first modes are representative for species such as n-C7H16, C7H15, C5H10, C4H8,
C2H5, CH2O, cluster number 9 is representative of soot precursors, as in the first
two modes the species characterized by highest weights are all aromatics involved in
the soot formation such as naphtalene and its naphtyl radical C10H8, C10H�7 , benzyl
radical and ethynyl benzene C7H7, C8H7. Thus, the FPCA algorithm, despite the
conditioning variable proven to be optimal for turbulent non-premixed reacting jets,
was not capable to be competitive with VQPCA for data analysis purposes as the
physics of the jet were too complex, involving local extinction phenomena and the
dynamics of soot precursors.

These data-analysis methods can also be coupled to other techniques, such as
Principal Variables (PV) [4, 16, 17]. Its purpose is to find a relationship between
the Principal Components and a subset of the original variables by means of the
maximization of the variance of the original data. Many strategies to find the PVs
are available in the literature: in the present work, the B2 backward method [4]
was tested. This technique has been successfully used for reduced order modeling
in combustion applications [17, 18, 19, 20]. The variables extracted by the latter
can be grouped in three main categories: radicals involved in branching reactions,
such as H, HO2, CH3, C7H15, stable species, such as O2, CO2, and species involved
in the soot formation mechanism, like aromatic compounds C10H8, C8H7, C7H7,
C7H6O and propargyl C3H3. Many of these species were also extracted by means
of a direct analysis of the clusters’ weights found via VQPCA, as a proof of the
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e�ectiveness of the local PCA for data analysis tasks. Moreover, the possibility to
know the spatial position of the cluster where these features are important constitutes
a relevant property of the partitioning algorithm. On the other hand, the PV algorithm
o�ers the possibility to identify features in an automated fashion, without having to
visually inspect the weights of the LPCA modes, which could be unfeasible in case
of a high number of clusters or retained modes for each cluster.

An optimal solution for data analysis could be represented by a hybrid method
VQPCA-PV. The first algorithm can be used to partition the original data-set in k
groups according to the reconstruction error minimization, and then the principal
variables can be found in each cluster. In this case, applying the PV algorithm in each
cluster found with the previous VQPCA partitioning led to similar results in terms of
extracted features, but in a totally unsupervised fashion, without a visual inspection
of the weights to be required. In Figure 7, the contours of the mass fractions of
naphthalene and propargyl, two species identified as principal variables in cluster
number 9, are reported, and it can be observed that the highest concentrations for
these species are observed in the region of the geometrical domain corresponding
to that cluster, which is reported, colored in yellow, in Figure 8. In fact, this cluster
resulted again to be associated to soot formation, with the chemical species C6H5,
C6H7, C7H8, C10H7, C2H3 identified as local principal variables.

Fig. 7 Left: mass fraction contours of naphtalene; Right: mass fraction contours of propargyl.

5 Conclusions

The present work investigates the potential of the Principal Component Analysis
to analyze data obtained from Direct Numerical Simulations of turbulent reacting
flows.

The Principal Component Analysis is widely used in many fields for dimensional-
ity reduction, but it can also be exploited for data analysis tasks. In fact, if the original
variables’ weights distribution on the principal components is examined, it is possi-
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Fig. 8 Cluster number 9 obtained via VQPCA partitioning (in yellow).

ble to obtain a physical interpretation for the latter, and an insight about the system
features can be gained. Moreover, two local formulations of the PCA are available to
overcome the limitations due to the linearity of the method: an iterative unsupervised
algorithm, based on the minimization of the reconstruction error (VQPCA), and a
supervised partitioning algorithm, based on an a-priori conditioning by means of a
selected variable which is known to be important for the process (FPCA). With the
last two algorithms, the local phenomena, which could have been overlooked by a
global analysis, can be highlighted.

The aforementioned techniques were tested on the analysis of data obtained in
a 3D temporally evolving DNS of an n-heptane turbulent jet in air. The data-set
consisted of the full thermo-chemical space, organized as a matrix of 1,048,576
observations (grid points of the simulation) and 48 variables (temperature and mass
fractions of all the chemical species).

The global PCA was able to recognize the key-role covered by the mixture frac-
tion in the process even if it was not included in the variables of the dataset, as well
as to highlight the most important radicals involved in the branching reactions and
in the soot formation mechanism. The analysis done using the local algorithms was
more e�ective both in terms of reconstruction error and feature extraction, as more
physical processes such as: decomposition of the fuel jet, local extinction phenom-
ena, branching reactions and soot formation were highlighted. In particular, VQPCA
was more e�ective than FPCA because the conditioning variable, the mixture frac-
tion, although proven to be optimal for turbulent non-premixed reacting jets, was
not capable to deal with the complex physics of the system, characterized by local
extinction phenomena and the dynamics of soot precursors. Finally, an hybrid al-
gorithm coupling VQPCA with the Principal Variables method was proposed. This
led to similar results as with VQPCA in terms of extracted features, but in a totally
automated fashion, without requiring a visual inspection of the weights.
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