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ABSTRACT

Exploratory visualization of physical simulations in virtual environments greatly benefits
from interactively changing parameters with real-time feedback. We address two specific
research questions by problem reformulation and implementation on the Graphics Pro-
cessing Unit (GPU)’s many-core architecture towards a simulation and interaction in
real-time: (1) simulating and manipulating wireless radio networks and (2) estimating
and disambiguating neuronal fiber connectivity in the living human brain. We assist in
the exploratory scientific analysis by developing two distinct applications for each do-
main area where we coupled simulation input and output directly with visual feedback
and natural interaction via an interactive Virtual Reality (VR) interface.

Radio Wave Propagation Knowledge of the propagation behavior of radio waves is a
fundamental prerequisite for planning and optimizing mobile radio networks. Propaga-
tion effects are usually simulated numerically, since real-world measurement campaigns
are time-consuming and expensive. The computation should be fast, in order to provide
a large number of simulations to select the best candidates from, and accurate, such
that the simulation reflects the actual propagation behavior.

Diffraction along edges is a predominant effect for common mobile radio frequencies and
is usually modeled by shooting a multitude of rays into the shadow cone of the diffracting
edge which results in a large computational overhead. By exploiting the parallel com-
pute capabilities of GPUs we utilize the concept of shadow volumes to directly render
whole diffraction cones. Our approach transforms the problem of finding diffraction rays
to repeated shadow computations, which can be done extremely fast on recent GPUs.
Moreover, we achieved huge speedups by culling away propagation paths in the early
stage of the computation that will not contribute to the signal reception. We devel-
oped distinct algorithms for specific propagation phenomena such as wall transmission,
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diffraction over rooftops and into street canyons in order to optimize each ray path
computation individually.

Propagation predictions provide the search space for automatic planning algorithms
that explore a vast amount of network configurations to find good deployment schemes.
However, complex urban scenarios demand for a great emphasis on site-specific details
in the propagation environment which are often not covered in automatic approaches.
Therefore, we combined the simulation of radio waves with an interactive exploration
and modification of the propagation environment within a Virtual Environment (VE).
The user is put in direct control over transmitter site locations and network size. In
particular, we let the user manipulate the underlying building database within the VE.
New buildings, that can be constructed by sketching their floor plan on the ground,
are instantly integrated into the simulation. This effectively enables a dynamic plan-
ning process and demonstrates the effect of a specific entity in the environment on the
overall propagation phenomena and network characteristics, such as coverage and inter-
ference.

Fiber Pathway Estimation Understanding the connectivity structure of the human
brain is a fundamental prerequisite for the treatment of psychiatric or neurological dis-
eases. Probabilistic tractography is a promising technique to account for the inherent
uncertainties in Magnetic Resonance Imaging (MRI) data by estimating the likelihood
that a fiber bundle takes its course through a particular voxel. We address two major
aspects of probabilistic tractography – computation and visualization – by presenting
(1) an effective algorithm that is able to compute probabilistic fiber tracts interactively
and (2) an embedded real-time exploratory visualization of the results.

We achieve a real-time fiber estimation by a parallel implementation on the GPU. In
addition to the basic probabilistic streamline integration, we also demonstrate how state-
of-the-art extensions like multi-fiber orientation and loop checking can be adapted to
benefit from the GPU’s many-core architecture. Our visualization approach focuses on
the assessment of fiber probabilities in relation to their structural context. In particular,
we employ a semi-transparent direct volume rendering technique to display the course of
the fiber in relation to its confidence. A VR interface lets the user take an active role in
the exploration process: we use a magic lens technique to support the understanding of
the structure-function relationship and to disambiguate between data modalities, such
as MR, PET, fiber tracts or brain areas. Moreover, exploratory aspects are supported
by a direct coupling between the computation and the visualization of fiber tracts.
Seed regions for probabilistic fiber tracts can either be selected based on a subject-
specific brain atlas, or chosen freely with a Six Degrees of Freedom (6DOF) device. The
combination of these components provide the neuroscientist with an interface to explore
brain connectivity that is very similar to the popular dye injection paradigm in a virtual
wind tunnel.
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CHAPTER 1

INTRODUCTION

1.1. Motivation

This chapter motivates the general thesis background which revolves around the real-
time manipulation and visualization in VR for two specific application areas: simulating
radio waves in urban environments and estimating fiber connections in the human brain.
We approach this by effectively utilizing the computational power of the GPU’s many-
core architecture. We will therefore introduce two programming paradigms for using
graphics hardware as a parallel computing platform: General Purpose Computation
on Graphics Processing Units (GPGPU) for radio wave propagation as we will make
heavy use of the GPU’s rasterization engine, and Compute Unified Device Architecture
(CUDA) for inferring brain connectivity using the latest hardware features for numerical
stochastic integration.

Additionally, we will briefly introduce immersive scientific visualization in VR for ex-
ploring and analyzing complex data with an innovative and natural human-machine
interface. After the general motivation, we will provide an overview of the thesis’ contri-
butions followed up with a list of the author’s publications and close the chapter with an
outline of this thesis. We refer to the individual chapters for a domain related motivation
of the corresponding topics.

1



CHAPTER 1. INTRODUCTION

Figure 1.1.: A schematic illustration of modern CPU (left) and GPU (right) architec-
tures [103, 105]. In contrast to the CPU which has dedicated support for data caching
and flow control, the GPU is especially designed for computations with high arithmetic
intensity.

1.1.1. Programmable Graphics Hardware

Until 1999 graphics cards had a non-programmable fixed-function architecture. Over the
last decade they evolved to configurable pipelines and recently into fully programmable
floating-point GPUs. Modern GPUs are extremely powerful computing devices. The
number of floating point operations per second (FLOPS) of the GPU has increased
dramatically in comparison to the CPU over the last few years, cf. [109]. At the time of
writing (2011), a NVIDIA GPU (GeForce 580) with 512 CUDA cores achieves roughly
1,500 Giga FLOPS (GFLOPS). The performance of an Intel CPU (i7 980 XE) with
six cores is about 107 GFLOPS [71]. For reference, in 2007 a NVIDIA GPU (GeForce
G80) achieved approximately 300 GFLOPS whereas a Quad-Core Intel Xeon processor
(3GHz) of this time had roughly about 80 GFLOPS.

The reason for this is that the GPU is specialized for computational intensive, highly
parallel calculations. Rather than caring for data caching and flow control as the CPU,
the GPU is especially designed to support data processing, cf. Figure 1.1. The GPU
architecture follows the Single Instruction Multiple Data (SIMD) paradigm. Many pro-
cessors simultaneously execute the same instructions on different parts of a data stream.
We will now introduce two programming paradigms for programming graphics hard-
ware: classical GPGPU and the recently introduced Compute Unified Device Architec-
ture (CUDA).

2



1.1. MOTIVATION

Figure 1.2.: The graphics rendering pipeline. Geometric primitives are loaded into the
vertex buffer and transformed by multiple vertex processors in parallel. The rasterization
samples the geometry into pixel positions such that multiple fragment processors can
assign colors that are recorded in the frame buffer for the final image.

1.1.1.1. General Purpose Computations

Before the introduction of CUDA, the key challenge of programming graphics hardware
was to correctly map problems to the graphical rendering context. Input data had to
be transformed into images or geometry and algorithms had to be turned into image
synthesis. A computation on the GPU consists of a pass through the various stages of
the graphics rendering pipeline, see Figure 1.2. We refer to this pass as a rendering pass.
Basic geometrical primitives like points or triangles are loaded into the vertex buffer.
The primitives are described by their location in space, i.e., coordinates (vertices) and
associated attributes like material or color. Additionally, data arrays (textures) of integer
or floating point values can be allocated directly in graphics memory. First, multiple
vertex processors execute in parallel the instructions from a user-written program (vertex
program). Vertex programs operate on single vertices with access to their attributes and
global read-only texture memory. Typically, geometric transformations like translation,
rotation and projection are applied. In the subsequent step, the transformed geometry
is sampled (rasterized) into discrete points (fragments). Each fragment corresponds
to a single pixel (picture element) position on the screen, and typically has additional
information like color and a depth value, i.e., the distance between viewer and the
object which originally corresponded to the pixel. The fragment processors operate
analogous to the vertex processors. A user-written fragment program is executed on each
fragment in a parallel fashion. The fragment program is executed once per fragment.
Most instructions are floating-point vector operations. Typically, lighting models are
evaluated and corresponding fragment colors are assigned (shaded).

The frame buffer is a two-dimensional array of pixels. The task of the frame buffer
is to assemble the final result of the GPU computation by collecting and recording all

3



CHAPTER 1. INTRODUCTION

Figure 1.3.: If a problem can be partitioned into blocks of sub-problems that can be
calculated independently from each other, the processing time scales with the number
of available processor cores.

fragments. Frame buffer operations decide how the color from the incoming fragments is
combined with the color already stored at the same pixel position. Thus, many fragments
can contribute to the final color of a pixel. Commonly, the frame buffer contains color
information and hence, it can be displayed on the screen. Information in the frame buffer
can also be read back to host memory, which is especially useful for retrieving results of
GPU computations. For further readings we point the interested reader to introductory
texts and advanced techniques on graphics and shader programming in [1, 137] or [53].
A more general overview of general purpose computations on GPUs and on the evolution
of GPU architectures is given for instance by Owens et al. in [109] and [108].

1.1.1.2. Compute Unified Device Architecture

In order to make the GPU computing platforms more accessible, graphics card manu-
facturers have developed special application programming interfaces (APIs), that can
harness the GPU’s resources without using the rendering pipeline. Mentionable is the
OpenCL API by the Khronos Group [139] and NVIDIA’s CUDA API [84, 105] which
is also used in the present thesis. In contrast to classical GPGPU, OpenCL and CUDA
offer a C like programming interface with random access to the device memory and full
support for integer and bit wise operations.

4



1.1. MOTIVATION

Figure 1.4.: The CUDA programming model organizes the threads in blocks and the
blocks as grid. Each thread has a unique id that can be used to identify its part of the
computation.

GPU Architecture The unified compute APIs also introduce a new terminology with
respect to the GPU architecture. Instead of vertex and fragment shader units the mod-
ern GPU consists of several streaming multiprocessors (SMs), each of which can run
hundreds of computational threads concurrently. In order to map threads to the SMs,
the threads are organized in thread blocks. All threads of a block are processed by the
same multiprocessor. Thus, computations must be partitioned into blocks that can be
solved independently from one another, cf. Figure 1.3. Within each block, computations
are again subdivided and assigned to individual threads of a block. Computations scale
with an increasing number of available SMs as long as thread blocks can be processed
independently from other blocks. In order to reach a good device occupation, CUDA
based programs should therefore always assure that there are enough blocks to process.

CUDA Programming Model The CUDA programming model revolves around compute
kernels which can be considered as the body of for each loops. Each kernel invocation
requires a definition of the underlying block structure and eventually triggers a kernel
execution on each thread. Figure 1.4 illustrates the organization of thread blocks that
are themselves organized in a one- or two-dimensional grid structure, by which each
block and thread gets its own index. This allows the execution of more threads at once
than would fit into a single block. Within the kernel program, each thread can identify
its part of the computation by accessing the indices of its block. In addition to its own

5



CHAPTER 1. INTRODUCTION

Figure 1.5.: The CAVE Virtual Environment with a sliding door at the Virtual Reality
Group of RWTH Aachen University, Germany.

local memory, each thread can also access and share data with threads in the same
block. The global memory is used to share data between all blocks of the grid and is
persistent across launches of different kernels. The local- and shared memory banks are
very limited in size, but they provide much lower access latency than the global memory
which in contrast offers a much higher storage capacity at the cost of increased latency.
The only cached memory is the device’s texture memory unit which is read-only during
a kernel execution. The global memory of the GPU is also accessible from the host
system in order to copy data to and from the graphics device.

1.1.2. Immersive Visualization in Virtual Reality

We refer to Virtual Reality (VR) as “a computer generated environment that the user
can interact with in real-time and experience with his natural senses”. In VR the
immersion of the user is typically realized by stereo displays with tracking hardware.
The user tracking allows for an user centric projection instead of a classical desktop
centered projection which increases spatial perception. State-of-the-art devices include
head mounted displays and multi-wall display environments like a Cave Automatic Vir-
tual Environment (CAVE), cf. Figure 1.5. Interactivity is enabled by spatial input
devices with 6DOF that let the user experience and interact with the environment in a
natural, direct way. Typical devices are for instance data gloves or tracked controllers
like the A.R.T. Flystick (Figure 1.6). VR interfaces require a human-in-the-loop. This
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Figure 1.6.: A controller with reflective (passive) markers for 6DOF interaction on the
left and corresponding infrared optical tracking cameras on the right.

can be for instance a domain expert who uses immersive visualization techniques to
search for patterns or anomalies in his data. This is also referred to as imagination and
concludes the three I’s of VR: immersion, interactivity and imagination.

We will now briefly introduce some of the general challenges of VR that we believe
are of interest to the present work from a broad, big picture’s point of view [145].
Real-time interaction in VR is much more challenging than in desktop applications for
several reasons: (1) screen sizes tend to be very large and hence often have a very high
resolution which in turn increases rendering load, (2) stereo rendering usually doubles
the rendering requirements, and (3) the user is constantly in motion, frequent scene
updates are crucial for head tracking. Low frame rates or lags tend to lead to motion
sickness in a user centric projection which is an extremely undesired effect in VR. In
this sense, maximizing frame rates can be considered in inherent challenge of every VR
application.

Moreover, VR is still in the process of maturing and little consensus and accepted stan-
dards have emerged in terms of general methodology and hardware or software platforms.
In particular, this thesis addresses certain issues of existing rendering and interaction
techniques that arise when scaling and combining these techniques from their proof-of-
concept prototypes to a real-world application.

Closely related are also the research challenges in scientific visualization as formulated
by Johnson [72]. Four of these challenges are of special interest here and we summarize
the take-home messages: work with application scientists to establish a mutual beneficial
collaboration in “Think about the science”, make visualizations interactive by leveraging
available computing power in “Efficiently utilizing novel hardware architectures”, inter-
action should evolve at least at the same pace as computing and visualization to make
information easily accessible in “ Human-computer interaction”, and push visualization
from a post processing step towards an integral part within the scientific computing
pipeline in “Integrated problem-solving environments”.
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All of these challenges point towards exploratory scientific visualization, as a means
to understand theoretical models and data, and VR as a potential tool to enhance
the scientist’s ability to access, manipulate and analyze his data to eventually develop,
reject or accept hypotheses. Or, in other words, to help answer “what if?” questions.
A lot of work has been published towards this end. Prominent examples of immersive
visualization in VR are the pioneering work of Bryson et al. on the virtual wind tunnel
in [31, 30], the visualization of flow structures through an artery by Forsberg et al. [56], or
more recently the blood damage visualization in a ventricular assist device by Hentschel
et al. [66].

1.2. Overview

1.2.1. Contributions

The main contributions of the present thesis can be summarized as follows (see Sec-
tion 4.2 for a more detailed discussion):

• Although the concepts of shadow volumes are well studied in the field of computer
graphics, to the best of our knowledge this is their first use in the context of radio
wave simulation.

• Literature has discussed the principle of diffraction in great detail, however, its
computation has remained computationally expensive. A major contribution is
therefore an efficient formulation and implementation of the corresponding algo-
rithms to compute diffraction ray paths in heterogeneous urban environments. Our
approach has led to the first published real-time simulation of radio waves at a
comparable prediction accuracy.

• We present mathematical models that describe how to derive the received signal
strength from the computed ray paths and estimate unknown influences based on
real-world measurements. In particular, we propose a closed form analytic solution
for multi-path optimization with an arbitrary but fixed number of deflections and
arriving paths. Former approaches to this had been limited either to single path
models or needed an iterative solver that lacks a proof of convergence.

• We developed an VR interface that integrates state-of-the-art interaction compo-
nents directly with a real-time simulation of radio waves. This itself may represent
no original research per se, but presents a none the less significant contribution to
the overall work showing how individual components work in combination to one
another.

8
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• The contribution of this thesis towards the estimation of neural fiber pathways is
not a reinvention of the method itself but a massively parallel implementation on
special purpose compute devices (GPUs) based on the original mathematical model
of probabilistic tractography. It is therefore a predominantly technical contribution
from a computer science’s perspective but with a significant impact towards its
application in the domain of neuroscience.

• A methodical contribution in probabilistic tractography algorithms has been made
by extending the original algorithm by a probabilistic loop checking method that
allows fiber tracts to evolve over longer distances.

• We combined and adapted state-of-the-art direct volume rendering and magic lens
interaction to integrate and disambiguate between different neuroscientific data
modalities. The contribution lies therefore not in a single aspect itself but in a
combination that provides the basic framework for a subsequent interpretation and
exploration of probabilistic tractography.

• We integrated each single aspect – computation, rendering and data interaction –
into a VR interface. Again, this contribution is predominantly of technical nature,
nevertheless non-trivial, showing how all individual contributions work together.

1.2.2. Publications

We divided the list of publications into three parts: Papers related to radio wave prop-
agation, publications related to probabilistic tractography and additional publications
which are indirectly related to this thesis.

1.2.2.1. Radio Wave Propagation

The author’s publications on radio wave propagation discuss how real-time performance
can be achieved for radio wave propagation predictions [37, 119, 120, 121, 124] and how
the user can be provided with efficient interaction techniques for an exploratory analysis
of the complex propagation phenomena [122, 123]. The computation of multi-path effects
is not subject of this thesis, however, the work is published in [131, 132, 134].

Accelerating Radio Wave Propagation Predictions by Implementation on Graphics Hard-
ware [37]. Fast radio wave propagation predictions are of tremendous interest, e.g., for
planning and optimization of cellular radio networks. We propose the use of ordinary
graphics cards and specialized algorithms to achieve extremely fast predictions. Our
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implementation of the empirical COST-Walfisch-Ikegami model allows the computation
of several hundred predictions in one second in a 7 km2 urban area. Further, we present
a ray-optical approach exploiting the programming model of graphics cards. This algo-
rithm combines fast computation times with high accuracy.

This paper introduces key concepts that this thesis elaborates in the chapter on radio
wave simulation.

Graphics Hardware Accelerated Field Strength Prediction for Rural and Urban Envi-
ronments [119]. We present general acceleration techniques on graphics hardware for
field strength prediction algorithms. We identify some basic building blocks of common
propagation algorithms and propose methods which can be efficiently implemented on
GPUs. We show that the use of such acceleration techniques leads to huge speedups in
the evaluation time of propagation algorithms.

This work discusses the use of GPUs in radio wave propagation predictions in more
general terms and contributes to the overview sections of the present thesis.

Hardware Acceleration Techniques for 3D Urban Field Strength Prediction [120]. Plan-
ning and optimization of radio networks are active research areas. Therefore, both fast
and accurate radio wave propagation predictions are required. To fulfill those require-
ments we propose specialized algorithms on ordinary graphics cards. We present an
efficient algorithm for determining the visibility between objects. Therefore, we exploit
the discrete pixel structure on GPUs. This leads to an acceleration of up to 140 times
compared to a CPU version.

This paper presents a direct mapping of ray launching methods from the CPU to the
GPU. It is not discussed directly in the present thesis, however, has influenced the
algorithm design for diffraction into street canyons.

Fast Edge-Diffraction-Based Radio Wave Propagation Model for Graphics Hardware [121].
Fast radio wave propagation predictions are of tremendous interest, e.g., for planning
and optimization of cellular radio networks. We propose the use of ordinary graphics
cards and specialized algorithms to achieve extremely fast predictions. We present a
ray-optical approach for wave diffraction at building edges into street canyons, exploit-
ing the programming model of graphics cards. More than twenty predictions per second
are achieved in a 7 km2 urban area with a mean squared error of less than 7 dB when
compared with measurements.

This paper introduces key concepts that this thesis elaborates in the chapter on radio
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wave simulation.

Accelerating Radio Wave Propagation Algorithms by Implementation on Graphics Hard-
ware [124]. Radio wave propagation prediction is a fundamental prerequisite for plan-
ning, analysis and optimization of radio networks. In this chapter we focus on accelerat-
ing techniques for predicting the mean received signal in dense urban environments. We
use graphics hardware to accelerate the overall computation. Here, the main challenge
is to trick the graphics processors into general purpose computing by transforming input
data into images and algorithms into image synthesis. Among the most time consuming
tasks in ray tracing based wave propagation is identifying all possible interaction sources
for deflected propagation rays. Our method is also based on ray tracing. However, inter-
action sources are found by tracing full line-of-sight beams instead of single rays. Each
beam is constructed such that it covers all rays that fall inside its angular opening. Thus,
fewer beams than rays have to be processed. Moreover, we trace beams by traversing
discrete sections of rays within a beam. As prove of concept, we have implemented
four basic propagation effects: (1) line-of-sight propagation, (2) wall penetration depth
in non-line-of-sight, (3) diffraction into street canyons and (4) diffraction over building
rooftops.

The distinct algorithmic approaches to wall transmission and vertical and horizontal
diffraction are conceptually introduced and evaluated in this paper and are presented in
an extended form in the present thesis.

A Virtual Reality System for the Simulation and Manipulation of Wireless Communica-
tion Networks [123]. The knowledge of the propagation behavior of radio waves is a
fundamental prerequisite for planning and optimizing mobile radio networks. Propaga-
tion effects are usually simulated numerically, since real-world measurement campaigns
are time-consuming and expensive. Automatic planning algorithms can explore a vast
amount of network configurations to find good deployment schemes. However, complex
urban scenarios demand for a great emphasis on site-specific details in the propaga-
tion environment which are often not covered by automatic approaches. Therefore, we
have combined the simulation of radio waves with an interactive exploration and mod-
ification of the propagation environment in a virtual reality prototype application. By
coupling real-time simulation and manipulation tasks we can provide an uninterrupted
user-centered workflow.

This paper is presented in an extended version in the thesis.

Beam Tracing for Multipath Propagation in Urban Environments [131]. We present a
novel method for efficient computation of complex channel characteristics due to mul-
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tipath effects in urban microcell environments. Significant speedups are obtained com-
pared to state-of-the-art ray-tracing algorithms by tracing continuous beams and by
using parallelization techniques. We optimize simulation parameters using on-site mea-
surements from real world networks.

This paper is an extension of the work presented in this thesis, in particular the concept
of beam tracing. In consequence, this is not discussed any further here. However, the
closed-form multi-path optimization as presented in this thesis is first published in this
paper.

Simulation of Radio Wave Propagation by Beam Tracing [132]. Beam tracing can be
used for solving global illumination problems. It is an efficient algorithm, and performs
very well when implemented on the GPU. This allows us to apply the algorithm in a
novel way to the problem of radio wave propagation. The simulation of radio waves is
conceptually analogous to the problem of light transport. However, their wavelengths
are of proportions similar to that of the environment. At such frequencies, waves that
bend around corners due to diffraction are becoming an important propagation effect. In
this paper we present a method which integrates diffraction, on top of the usual effects
related to global illumination like reflection, into our beam tracing algorithm. We use
a custom, parallel rasterization pipeline for creation and evaluation of the beams. Our
algorithm can provide a detailed description of complex radio channel characteristics like
propagation losses and the spread of arriving signals over time (delay spread). Those
are essential for the planning of communication systems required by mobile network
operators. For validation, we compare our simulation results with measurements from a
real world network.

This paper is an extension of the work presented in this thesis. In particular the concept
of beam tracing for the efficient computation of reflection ray paths. In consequence,
this is not discussed any further here.

Efficient Rasterization for Outdoor Radio Wave Propagation [134]. Conventional beam
tracing can be used for solving global illumination problems. It is an efficient algorithm
and performs very well when implemented on the GPU. This allows us to apply the algo-
rithm in a novel way to the problem of radio wave propagation. The simulation of radio
waves is conceptually analogous to the problem of light transport. We use a custom,
parallel rasterization pipeline for creation and evaluation of the beams. We implement
a subset of a standard 3D rasterization pipeline entirely on the GPU, supporting 2D
and 3D frame buffers for output. Our algorithm can provide a detailed description of
complex radio channel characteristics like propagation losses and the spread of arriving
signals over time (delay spread). Those are essential for the planning of communication
systems required by mobile network operators. For validation, we compare our simu-
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lation results with measurements from a real-world network. Furthermore, we account
for characteristics of different propagation environments and estimate the influence of
unknown components like traffic or vegetation by adapting model parameters to mea-
surements.

Only the multi-path parameter optimization is introduced in this thesis whereas the
algorithmic part of the paper is not discussed in this thesis any further.

1.2.2.2. Probabilistic Tractography

The author’s publications in the field of probabilistic tractography address the visu-
alization of probabilistic tracts in VR [148, 122, 125]. In particular, an application
of the proposed techniques has also been published in a neuroscientific journal [36] (co-
authorship). A publication on the parallel implementation of the tractography algorithm
has been submitted at the time of writing (December 2011).

GPU Computation of Probabilistic Diffusion Tractography (submitted) Understand-
ing the connectivity structure of the human brain is a fundamental prerequisite for the
treatment of psychiatric or neurological diseases. Probabilistic diffusion tractography
is a promising technique to account for the inherent uncertainties in DTI data by es-
timating the likelihood that a fiber bundle takes its course through a particular voxel.
Inspired by the virtual wind tunnel paradigm we present a GPU implementation of
probabilistic tractography that allows the scientist to interactively explore global con-
nectivity of diffusion data. Our implementation is based on an established neuroscientific
tractography model that relies on probabilistic streamline integration. We extent the
original algorithm by a probabilistic loop checking that can compromise between accu-
racy and memory requirements to detect undesired loops in streamlines. We establish
the anatomical plausibility of our method by comparing our results against a widely used
reference implementation. Depending on the parameter setting, we achieve speedups of
up to 100X enabling real-time tracing and interactive visualization.

At the time of writing this paper has just been submitted and undergoes a peer review
process. The techniques and results presented in this paper are a summary of the
corresponding thesis chapter on estimating global connectivity.

Visualization of Probabilistic Fiber Tracts in Virtual Reality [125]. Understanding the
connectivity structure of the human brain is a fundamental prerequisite for the treat-
ment of psychiatric or neurological diseases. Probabilistic tractography has become an
established method to account for the inherent uncertainties of the actual course of fiber
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bundles in MRI data. This paper presents a visualization system that addresses the as-
sessment of fiber probabilities in relation to anatomical landmarks. We employ real-time
direct volume rendering to display fiber tracts within their structural context in a VE.
Thereby, we not only emphasize spatial patterns but furthermore allow an interactive
control over the amount of visible anatomical information.

The visualization of probabilistic fiber tracts is an essential component of the visual
coupling of the probabilistic simulation of global connectivity.

GPU Implementation of 3D Object Selection by Conic Volume Techniques in Virtual
Environments [122]. In this paper we present a GPU implementation to accurately
select 3D objects based on their silhouettes by a pointing device with 6DOF in a VE.
We adapt a 2D picking metaphor to 3D selection in VEs by changing the projection and
view matrices according to the position and orientation of a 6DOF pointing device and
rendering a conic selection volume to an off-screen pixel buffer. This method works for
triangulated as well as volume rendered objects, no explicit geometric representation is
required.

The techniques presented in this paper are essential building blocks in the VR prototypes
for the simulation of radio waves and the visualization of probabilistic fiber tracts.

Evaluating a Visualization of Uncertainty in Probabilistic Tractography [148]. In this
paper we evaluate a visualization approach for representing uncertainty information in
probabilistic fiber pathways in the human brain. We employ a semi-transparent volume
rendering method where probabilities of fiber tracts are conveyed by colors and opacities.
Anatomic orientation is provided by placing anatomic landmarks in form of cortical or
functional defined brain areas. In order to quantify the effectiveness of our approach we
have conducted a formal user study concerning preferred anatomic context information
and coloring of fiber tracts.

This work is partly included in the chapter about probabilistic tractography.

Probabilistic fiber tract analysis of cytoarchitectonically defined human inferior pari-
etal lobule areas reveals similarities to macaques [36]. The human inferior parietal
lobule (IPL) is a multi-modal brain region, subdivided in several cytoarchitectonic areas
which are involved in neural networks related to spatial attention, language, and higher
motor processing. Tracer studies in macaques revealed differential connectivity patterns
of IPL areas as the respective structural basis. Evidence for comparable differential
fiber tracts of human IPL is lacking. Here, anatomical connectivity of five cytoarchi-
tectonic human IPL areas to 64 cortical targets was investigated using probabilistic
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tractography. Connection likelihood was assessed by evaluating the number of traces
between seed and target against the distribution of traces from that seed to voxels in
the same distance as the target. The main fiber tract pattern shifted gradually from
rostral to caudal IPL: Rostral areas were predominantly connected to somatosensory
and superior parietal areas while caudal areas more strongly connected with auditory,
anterior temporal and higher visual cortices. All IPL areas were strongly connected with
inferior frontal, insular and posterior temporal areas. These results showed striking sim-
ilarities with connectivity patterns in macaques, providing further evidence for possible
homologies between these two species. This shift in fiber tract pattern supports a differ-
ential functional involvement of rostral (higher motor functions) and caudal IPL (spatial
attention), with probable overlapping language involvement. The differential functional
involvement of IPL areas was further supported by hemispheric asymmetries of connec-
tion patterns which showed left-right differences especially with regard to connections
to sensorimotor, inferior frontal and temporal areas.

This paper is a neuroscientific publication that showcases the proposed visualization
technique of probabilistic fiber tracts.

1.2.2.3. Additional Publications

Although the publications presented in this section are only indirectly related to the
content of the present thesis, they are listed for the sake of completeness.

Interactive Particle Tracing in Time-Varying Tetrahedral Grids [32]. Particle tracing
methods are a fundamental class of techniques for vector field visualization. Specifically,
interactive particle advection allows the user to rapidly gain an intuitive understanding
of flow structures. Yet, it poses challenges in terms of computational cost and memory
bandwidth. This is particularly true if the underlying data is time-dependent and rep-
resented by a series of unstructured meshes. In this paper, we propose a novel approach
which maps the aforementioned computations to modern many-core compute devices in
order to achieve parallel, interactive particle advection. The problem of cell location
on unstructured tetrahedral meshes is addressed by a two-phase search scheme which is
performed entirely on the compute device. In order to cope with limited device mem-
ory, the use of data reduction techniques is proposed. A CUDA implementation of the
proposed algorithm is evaluated on the basis of one synthetic and two real-world data
sets. This particularly includes an assessment of the effects of data reduction on the
advection process accuracy and its performance.

Related to the present work in terms of GPU implementation techniques.
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Comparing Steering-Based Travel Techniques for Search Tasks in a CAVE [149]. We
present a novel bimanual body-directed travel technique, PenguFly (PF), and compare
it with two standard travel-by-pointing techniques by conducting a between-subject ex-
periment in a CAVE. In PF, the positions of the users head and hands are projected
onto the ground, and travel direction and speed are computed based on direction and
magnitude of the vector from the midpoint of the projected hand positions to the pro-
jected head position. The two base-line conditions both use a single hand to control the
direction, with speed controlled discretely by button pushes with the same hand in one
case, and continuously by the distance between the hands in the other case. Users were
asked to travel through a simple virtual world and collect virtual coins within a set time.
We found no significant differences between travel conditions for reported presence or
usability, but a significant increase in nausea with PF. Total travel distance was sig-
nificantly higher for the baseline condition with discrete speed selection, whereas travel
accuracy in terms of coin-to-distance ratio was higher with PF.

Related to the present thesis in terms of basic navigation principles in VR.

Towards the Visualization of Spiking Neurons in Virtual Reality [150]. This paper
presents a prototype that addresses the visualization of the microscopic activity struc-
ture in the mammalian brain. Our approach displays the spiking behavior of neurons
in multiple layers based on large-scale simulations of the cortical microcircuit. We will
apply this visualization to the activity of brain-scale simulations by coupling the micro-
scopic structure with the macroscopic level. Thereby, we hope to convey an intuitive
understanding of the concise interaction and the activity flow of pairs of distant brain
areas.

This paper addresses brain visualization on a microscopic level wheres the corresponding
chapter of this thesis focuses on the macroscopic visualization.

Interactive Particle Tracing with Cumulative Blood Damage Computation for Ventricu-
lar Assist Devices [78]. This paper presents the results of a student research project
and deals with the interactive particle tracing of derived quantities. Additionally to
common vector field advection a complex model for the computation of blood damage
in a ventricular assist device is computed for every particle. Thereby, we not only de-
pict hydraulic flow structures but furthermore convey information like deformation and
stress of blood particles. The employed blood damage model models the morphological
deformation of blood cells along pathlines. Due to the large amount of simulation data,
previous work on interactive blood damage analysis for ventricular assist devices relied
on the precomputation of pathlines along the flow field of the artificial pump with an
incremental computation of the blood damage. Therefore, the main contribution of this
work lies in the interactive computation of both, particle tracing and blood damage

16



1.2. OVERVIEW

computation based on an implementation on a parallel many-core compute platform.
However, due to memory limitations we operate on a downsampled version of the orig-
inal grid. Nevertheless, the interactivity of our proposed technique reveals important
flow structures and especially enables the exploration in virtual reality systems and use
of natural interaction techniques with the complex three-dimensional data according to
the virtual windtunnel paradigm.

Related to the present thesis in terms on GPU implementation techniques.

1.2.3. Outline

This chapter gave some general background information on programmable graphics hard-
ware as a parallel computing platform and immersive scientific visualization. We dis-
cussed two major GPU programming paradigms: general purpose computations which
transform algorithms into graphics and a unified approach that uses a C-like program-
ming languages. We also introduced immersive visualization in VR with respect to some
broader research areas related to the present thesis.

Chapter 2 addresses our real-time implementation of radio wave propagation. We first
cover the basic foundations of urban propagation models and then describe the core con-
cepts and individual algorithms for predicting path loss on the GPU. After introducing
models for received signal strength that can be calibrated to real-world measurements
we present a VR interface towards an interactive manipulation of site-specific details.
We conclude the chapter with an in-depth discussion of computation time and accuracy
of the individual models.

We present our parallel GPU approach to probabilistic tractography in Chapter 3. After
presenting the technical background and problem statement we introduce the underlying
mathematical model of tractography and discuss aspects of our parallel implementation.
We briefly describe our visualization and interaction interface and conclude the chapter
with a detailed examination of our algorithm in terms of anatomical plausibility and run
time.

Chapter 4 concludes the thesis with a summary, possible extensions of the presented
work and discusses the thesis’ contributions in more detail.
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CHAPTER 2

RADIO WAVE PROPAGATION

Abstract Knowledge of propagation behavior of radio waves is a fundamental prerequi-
site for planning and optimizing mobile radio networks. Propagation effects are usually
simulated numerically, since real-world measurement campaigns are time-consuming and
expensive. Measurements are usually only provided in small quantities in order to in-
spect the simulation results for correctness and accuracy. To choose optimal antenna
sites, many different candidates have to be simulated. Hence, the computation should be
both fast, in order to cope with the vast amount of simulations, and accurate, such that
the simulation reflects the actual propagation behavior. Automatic planning algorithms
can explore a vast amount of network configurations to find good deployment schemes.
However, complex urban scenarios demand for a great emphasis on site-specific details
in the propagation environment which are often not covered in automatic approaches.
Therefore, we combined the simulation of radio waves with an interactive exploration and
modification of the propagation environment in a virtual reality. By coupling real-time
simulation and manipulation tasks we are able to provide an uninterrupted user-centered
workflow.

The work presented here can be classified into two categories: (1) how real-time perfor-
mance can be achieved for radio wave propagation predictions [37, 119, 120, 121, 124]
and (2) how the user can be provided with efficient interaction techniques for an ex-
ploratory analysis of the complex propagation phenomena [122, 123]. The computation
of multi-path effects will not be discussed any further here, however the work is published
in [131, 132, 134].

The remainder of the chapter is organized as follows. After a brief motivation and
problem statement in Section 2.1 and Section 2.2, respectively, we introduce general
background information and review previous work on radio wave propagation in Sec-

19



CHAPTER 2. RADIO WAVE PROPAGATION

tion 2.3. We present our real-time simulation algorithm in Section 2.4, where we present
the technical details for the computation of urban propagation phenomena and describe
path loss models. Model parameters are retrieved by solving a constrained optimiza-
tion problem which is formulated in Section 2.4.3. Then, we present a VR interface for
the interactive manipulation of site-specific details in Section 2.5. Here, we first give
an overview of the general application layout and features and discuss the technical re-
alization of a VR prototype application. We give a performance analysis in terms of
computation time, accuracy and usability in Section 2.6 and conclude the chapter in
Section 2.7.

2.1. Motivation

Radio wave propagation prediction is a fundamental prerequisite for planning, analyzing
and optimizing radio networks. For instance coverage analysis, interference estimation
or channel and power allocation all rely on propagation predictions. In wireless commu-
nication networks optimal antenna sites are determined by either conducting a series of
expensive propagation measurements or by estimating field strengths numerically. In or-
der to cope with the vast amount of different configurations to select the best candidate
from, numerical predictions have to be both, accurate and fast.

One important aspect in radio wave propagation is the prediction of the mean received
signal strength which can be simulated by taking complex interactions between radio
waves and the propagation environment into account (see Figure 2.1). Thus, the sim-
ulation of radio waves for propagation predictions becomes a computationally intensive
task.

Much effort and interest has been put into the acceleration of ray optical approaches,
since most ray tracing algorithms tend to be computational intensive and exhibit run
times up to several hours. Therefore, we focus on the efficient implementation of wave
guiding effects on graphics hardware for the frequency range of common mobile commu-
nication systems, i.e., several hundred MHz up to few GHz.

2.2. Problem Statement

Among the most time consuming tasks in computing ray interactions with the propaga-
tion environment is the problem of visibility between objects, i.e., the identification of all
possible interaction sources for diffracted or reflected propagation rays. The algorithms
we will present here, are specifically designed to reduce the computational cost of the
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Figure 2.1.: Example propagation path (side profile). A ray is emanating from the
radiation source, diffracted at the rooftop of the first building, and reflected at the second
building into the street: xs  x1  x2  x3  xe.

visibility computations by exploiting special features of graphics cards.

Requirements The basic propagation phenomena are reflection, diffraction and scat-
tering. All effects contribute to the radio signal distortions and give rise to signal fluc-
tuations (fading) and additional signal propagation losses. We distinguish propagation
effects according to the characteristics of the propagation environment by approximating
which propagation paths (see Figure 2.1) are most likely to occur.

If receiver and transmitter antenna have an unobstructed direct path, they are in Line-
of-Sight (LOS), otherwise in Non-Line-of-Sight (NLOS). An urban high-rise scenario
consists predominantly of streets lined with tall buildings of several floors each. Ac-
cording to Andersen et al. [3] high building heights make significant contributions from
diffraction over multiple rooftops rather unlikely. Therefore, if transmitter antennas are
mounted below rooftops, dominant propagation effects are expected from reflection and
diffraction into street canyons. See Figure 2.7(b) for an illustration. Furthermore, an ur-
ban low-rise scenario is characterized by wide streets and buildings with less than three
floors. Antennas are usually mounted above average rooftop level and diffraction over
rooftops (Figure 2.9(a)) becomes the dominant propagation effect. Propagation paths
due to reflection are not considered in this chapter. However, we have presented an
approach for the efficient computation of reflection paths in collaboration with Schmitz
et al. in [134].

We formulate the requirements of our propagation algorithm as follows: (1) It is nec-
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Figure 2.2.: Typical urban propagation environment with a simplistic city model and
a satellite image for geographical reference.

essary to efficiently distinguish between regions in LOS and in NLOS. (2) In case of
NLOS, we require our algorithm to compute different propagation paths, namely wall
penetration depth, diffraction into street canyons and diffraction over rooftops.

Approach A promising approach is the use of ordinary graphics cards, nowadays avail-
able in every personal computer. With over 1000 Gigaflops, modern graphics hardware
offers the computational power of a small-sized supercomputer. This is achieved by
a strict parallel many-core architecture which can be accessed by a high level of pro-
grammability. The main challenge of utilizing graphics hardware for scientific compu-
tations is to trick the graphics processors into general purpose computing by casting
problems as graphics: Input data is transformed into images and algorithms are turned
into image synthesis.

Our method is based on ray tracing, however, interaction sources are found by tracing
full line-of-sight beams instead of single rays. Each beam is constructed such that it
covers all rays that fall inside its angular opening. Thus, fewer beams than rays have
to be processed. Moreover, we do not actually compute any intersections between the
propagation environment and radiation sources. We use a discrete sampling approach,
i.e., we trace beams by traversing discrete points of all rays that lie within a beam.
Our approach results in an acceleration of wave propagation algorithms by developing
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a specialized implementation that exploits the parallel architecture of modern graphics
hardware.

As prove-of-concept, we have implemented four basic propagation effects: (1) line-of-
sight propagation, (2) wall penetration depth in non-line-of-sight, (3) diffraction into
street canyons and (4) diffraction over building rooftops.

2.3. Background

2.3.1. Empirical Models

A widely adapted model (cf. [117]) for describing the path loss between transmitter and
receiver at a distance d is the log-distance model

P dB

logd(d) = cf + γ · 10 · log10 (d) (2.1)

at a frequency f where

cf = 20 · log10

(
4πf

c

)
is the frequency dependent loss and c denotes the speed of light. The path loss coefficient
γ depends on the land cover and usually ranges between 2 (free space) and 3.5 (urban
environment).

We will now introduce two well-known empirical models [60, 45], the COST-Hata model
and the COST-Walfisch-Ikegami, in more detail. Both models are based on the log-
distance model and describe the prediction of mean received signal strength in urban
propagation environments and will later be compared against our approach. The COST-
Hata model treats the propagation environment as either urban, suburban or rural.
Additionally, the COST-Walfisch-Ikegami model distinguishes between propagation in
LOS and NLOS. Since no actual propagation paths are considered both models are
limited to the approximation of indirect wave fronts.

2.3.1.1. COST-Hata Model

For a receiver r at height ∆hr in distance dr to a transmitter site with frequency f at
height ∆hT the path loss for an urban propagation environment is given as

P dB

urban (r) = 33.9 · lg (f) +
(
44.9− 6.55 · lg (∆hT )

)
· lg (dr)

+ gCOST-H (f,∆hT ,∆hr)
(2.2)
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Figure 2.3.: This figure sketches the influencing terms for the COST-WI model (2.8).
It takes into account statistics about the propagation environment like mean street
separation b or mean building heights ∆h.

similar to the log-distance model (2.1) with an additional empirical correction term

gCOST-H (f,∆hT ,∆hr) = 46.3− 13.82 · lg (∆hT )−∆P dB (f,∆hr)

+

{
3 , urban center

0 , otherwise

(2.3)

and a correction for receiver height gains

∆P dB (f,∆hr) =
(
1.1 · lg (f)− 0.7

)
·∆hr −

(
1.56 · lg (f)− 0.8

)
. (2.4)

The attenuation for suburban and rural environments is described as

P dB

suburban (r) = P dB

urban (r)− 2 · lg
(

lg

(
f

28

))2 − 5.4 (2.5)

and

P dB

rural (r) = P dB

urban (r)− 4.78 · lg
(

lg (f)
)2

+ 18.33 · lg (f)− 40.94. (2.6)

Hence, the attenuation for suburban and rural environments is based on the urban model
with additional frequency dependent and constant correction terms.

2.3.1.2. COST-Walfisch-Ikegami Model

The COST-WI model is also based on the log-distance model (2.1) and similar to COST-
Hata distinguishes between urban and suburban building density. Additionally, building
information is considered to account for LOS and NLOS situations between sender and
receiver. Further building information is only used in the form of mean building heights
∆h, mean street widths w and mean building distances b, cf. Figure 2.3.
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The LOS attenuation at a receiver location r is defined as

P dB

LOS (r) = cf + 26 · lg (dr) + 10.2 (2.7)

which is again a composition of frequency and distance dependency but with a constant
empirical correction. The numerical values are derived from empirical measurements
in various European cities. The rather low attenuation coefficient of the distance is
explained by wave front propagation effects along street canyons.

The NLOS loss is described with varying empirical correction terms

P dB

NLOS (r) = P dB

F0 + max
{

∆P dB

F,rts + ∆P dB

F,msd, 0
}

(2.8)

where

P dB

F0 = 20 · lg
(
dr ·

4πf

c

)
= cf + 20 · lg (dr) (2.9)

denotes the base loss for free space (isotropic) propagation at speed of light c in m/s.
The additional correction terms approximate the influence of diffraction and scatter
losses, cf. Figure 2.3 and will be discussed briefly in the following.

∆P dB
F,rts estimates the attenuation due to the last diffraction edge between a receiver in

the street canyon and is referred to as roof-top-to-street-diffraction. It is influenced by
the street width w and the orientation ϕ between the direct path and the respective
street. The COST-WI model approximates this as

∆P dB

F,rts =− 16.9− 10 · lg (w) + 10 · lg (f) + 20 · lg (∆h−∆hr) (2.10)

+


−10 + 0.354 · ϕ , falls 0◦ ≤ ϕ < 35◦

2.5 + 0.075 · (ϕ− 35◦) , falls 35◦ ≤ ϕ < 55◦

4.0 + 0.114 · (ϕ− 55◦) , falls 55◦ ≤ ϕ < 90◦

whereas multiple screen diffraction, i.e., the diffraction over multiple rooftops is described
as

∆P dB

F,msd = ∆P dB

F,msd,1 + ∆P dB

F,msd,2 + kd · lg (dr) + kf · lg (f)− 9 · lg (b) (2.11)

with

∆P dB

F,msd,1 =

{
−18 · lg (1 + ∆hT −∆h) , ∆hT > ∆h

0 , otherwise
. (2.12)

If the transmitting antenna is below the mean rooftop level an additional loss is added
to account for the first diffraction to reach the roof level

∆P dB

F,msd,2 =


54 , ∆hT > ∆h

54− 0.8 (∆hT −∆h) , dr ≥ 0.5km and ∆hT ≤ ∆h

54− 0.8 (∆hT −∆h) d
0.5

, dr < 0.5km and ∆hT ≤ ∆h

(2.13)
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with

kd =

{
18 , ∆hT > ∆h

18− 15∆hT−∆h
∆h

, otherwise
(2.14)

and

kf =

{
−4 + 0.7

(
f

925
− 1
)

, suburban

−4 + 1.5
(
f

925
− 1
)

, urban center
. (2.15)

Since the COST-WI model takes only statistical information about the propagation
environment into account, it performs best in uniform scenarios. However, heterogeneous
environments like historically grown cities may require more sophisticated approaches
that consider the actual propagation geometry. Nevertheless, the COST-Hata as well
as the COST-WI model both require only few computations for a path loss prediction
and are therefore often chosen for a fast preview of the propagation behavior in large
radio networks. For reference, we implemented both models also on the GPU and will
discuss their performance in terms of computation time and accuracy in more detail in
Section 2.6.

2.3.2. Related Work

A theoretical foundation of radio wave propagation is given by Rappaport in [117].
Since a variety of approaches exists for solving the problem of predicting mean received
signal strength we point the reader to [42] for an overview. In general, we distinguish
between empirical (stochastic) channel models and deterministic propagation algorithms.
Propagation models that approximate the path loss by a parametrized function like (2.1)
can be categorized as empirical models, whereas deterministic approaches are often based
on ray tracing. That is, they identify ray paths through the propagation environment
based on wave guiding effects like reflection or diffraction.

Well-known empirical models are the work of Hata [64] and Ikegami et al. [70]. They
propose to model the radio propagation phenomena by approximating the actual prop-
agation loss (path loss) by a set of parametrized functions. Hata determined parameter
values by conducting extensive measurement campaigns. Ikegami et al. extended Hata’s
work by analyzing the dependence of approximate equations for mean field strength in
urban propagation environments with respect to height gain, dependence on street width,
propagation distance and radio frequency. Due to their widespread use, we discussed
both models in more detail in Section 2.3.1. Erceg et al. [52] pursued a similar approach
and presented a stochastic channel model which can be applied to frequency ranges
above two GHz (WiMAX). Additionally to height gains and propagation distance, they
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included a parametrization of the environment into their model according to a flat or
hilly terrain with either high or low vegetation density. Such empirical models are typ-
ically characterized by short evaluation time but are prone to prediction errors if their
original model assumptions contradict the physical reality of the supplying area. Espe-
cially in Europe with its heterogeneous propagation environments of historically grown
cities these models provide only limited value [45].

Therefore, most deterministic algorithms rely on the computation of actual propagation
paths due to wave guiding effects like reflection, diffraction and scattering (see Fig-
ure 2.1). The principle of diffraction has been introduced in the field of electromagnetic
by the Geometric Theory of Diffraction [77] and the Universal Theory of Diffraction [87]
and is discussed in subsequent work in great detail, however, it has remained computa-
tionally expensive.

Typical deterministic approaches are often based on ray tracing, which was originally
introduced by Whitted [158] to compute global illumination effects based on geometric
optics for image synthesis. Although global illumination as formulated by Kajiya [76]
and radio wave propagation are similar problem statements, different propagation ef-
fects like diffraction or interference become dominant when shifting from visible light
to radio waves due to the different size of wavelengths. Since the computation of
global lighting effects requires a huge amount of calculations, various approaches that
focus on acceleration techniques by mapping global illumination algorithms onto the
GPU [152, 19, 44, 153] have been developed. Furthermore, global illumination tech-
niques have been used for different problems before, for instance for sound rendering.
Notable here are the works of Tsingos et al. [141, 142] and Funkhouser et al. [59]. Most
approaches focus on the efficient computation of reflection, however some work on the
diffraction effect is described for instance by Stam [138] for application in computer
graphics, whereas Tsingos et al. apply diffraction theory for modeling acoustics in vir-
tual environments.

Ikegami et al. [69] showed that classical ray tracing can also be applied to the estimation
of radio propagation losses. Due to complex interactions of radio waves and geometric
structures, this is a time consuming task. However, high prediction accuracy can be
achieved. For instance, [128, 51, 79] and [133] state that their predicted path loss values
were generally within 4 to 8 dB of the measured path loss, which is considered as a
very good result. Reasonable computation times are for instance achieved in [94] where
a ray launching algorithm is used, which represents an urban environment as a grid
of discrete blocks. Ray-object intersections are found by traversing the blocks by a
line sampling method, thereby greatly reducing computation time. In order to further
reduce the computational complexity, we presented a GPU-based approach to radio wave
propagation in [37, 121] and [124], where we trace propagation paths in a discrete fashion
by repeated rasterization of line-of-sight regions. Part of this work is presented in this
chapter.
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The idea of ray tracing can be further extended to the concept of beams, which are a
continuum of rays. Beam tracing was first introduced by Heckbert and Hanrahan [65].
The benefits of beam tracing are mainly reduced intersection tests and less sampling
problems. After a few iterations ray samples tend to become either too sparse or too
dense, this can be alleviated by tracing beams. Work in this area includes application of
real time rendering by Overbeck et al. [107] or audio rendering by Funkhouser et al. [59].
An application of beam tracing to the problem of radio wave propagation can be found
in the work by Rajkumar et al. [116] and more recently by Schmitz et al. [132]. They
especially address the issue of delay spread due to multi-path propagation.

Recent applications of VR to simulation tasks include but are not limited to the recon-
struction of traffic flows in [146] or the interactive simulation of nanoparticle manipu-
lation in [25]. To the best of our knowledge, this is the first application of radio wave
propagation in VR.
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Symbol Description
s = (x, y, z) Radiation source location with height s.z
R Discrete set of receiver points with constant ground level

R.z
W Set of all building walls w
w = (p0, p1, p2, p3, ~n) Building wall with p0, p1 at ground level and p2, p3 at

rooftop level. The normal vector ~n is perpendicular to
the wall and points away from the associated building.

NLOS (s→ w) Shadow polygon cast by wall w when viewed from point
s

LOS (s) ⊆ R Subset of R that is in line-of-sight to s
VDS (s) Set of vertical (street) diffraction sources for a radiation

source s
VDB (x) ⊆ R Vertical diffraction beam with origin at the diffraction

source x, i.e. a subset of R that forms a secondary wave
front.

HDB (s→ w) Horizontal (roof) diffraction beam with origin s and
diffraction edge w.

Table 2.1.: Algorithm Notation

2.4. Wave Propagation

Similar to [151], the input data requirements of our algorithms for radio wave propaga-
tion are building structures with corresponding building heights. The shape of rooftops
is usually omitted and hence, a building is described by its polygonal outline and one
height value. We refer to this representation as 2.5 dimensional. Building structures are
usually given in vector format with a location accuracy in the order of 1 to 10 meter. In
order to produce reliable results, height accuracy should be around 1 to 2 meter. Infor-
mation about vegetation is not considered and terrain is assumed to be flat. Figure 2.2
shows a typical propagation environment.

In general, the output is a discrete two-dimensional raster image which serves as a role
model for the discrete representation of results from GPU computations. An image
consists of pixels that are organized in a regular array. Pixels are the data elements
of this structure. However, pixels are not restricted to contain only color information.
Pixel data is interpreted according to the current context of the GPU computation.

In order to provide a formal description of the presented algorithms we introduce the
following notation (see Table 2.1): Let s = (x, y, z) be a radiation source location, e.g.,
the transmitter antenna, where the height is referred to as s.z. All height values are
relative to ground. A wall w of a building structure consists of two points p0 and p1

at ground level and two points p2 and p3 at rooftop level. Due to the 2.5 dimensional

29



CHAPTER 2. RADIO WAVE PROPAGATION

x

y

z

x

z

y

x

z

y

x

y

z

Figure 2.4.: Top and side profile of the shadow polygon (dark gray) according to the
intercept theorem. Left: source height s.z is greater than the wall height pi.z. Right:
source height s.z is less or equal to the wall height pi.z.

database, the wall point coordinates differ only in their height components, i.e. they
rise perpendicular to the ground plane. The set containing all walls w is denoted by
W . Additionally, we associate a normal vector ~n with each wall. Normal vectors are
perpendicular to the respective wall and point away from the corresponding building.
Since the terrain is assumed to be rather flat and the receiver points are typically located
1.5 meter above ground we define a receiver plane R to be a discrete set of receiver
points at constant height R.z. We restrict ray path calculations to only those paths
that intersect the receiver plane.

2.4.1. Algorithms

We will now describe algorithms, which are explicitly designed to run directly on graphics
hardware. First, we present a method for determining LOS regions. Then we will
show how this algorithm can be extended to provide additional NLOS information.
Furthermore, we show how graphics cards can be exploited for ray path calculation due
to diffraction into street canyons and diffraction over rooftops. GPU implementations
are obtained by separating the calculation of these effects into distinct algorithms.

2.4.1.1. Line-of-Sight

The LOS algorithm computes a sampling of the receiver plane R, where each location
p ∈ R is marked whether it is in clear line-of-sight to a source s or not. This algorithm
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will be one of the main building blocks in the computation of ray paths on graphics
hardware.

The GPU computation is based on the concept of shadow volumes, cf. [54]. This tech-
nique constructs a polygonal representation of the shadow cone (shadow volume) for
3-dimensional triangular geometry. Since the description of urban propagation environ-
ments involves usually just a polygonal outline and one corresponding height value, we
propose a specialized algorithm for this particular form of geometry (see [37]). The main
idea is to extract the shadow of each building wall directly in the receiver plane. We
refer to the intersection of the shadow cone and the receiver plane as shadow polygon.
Regions are in LOS, if and only if they are in no shadow polygon. The construction of
the shadow polygon of a wall w proceeds as follows: each shadow polygon is a quadran-
gle with corners (q0, q1, q2, q3). Points q0 and q1 are given by the corners of the wall p0

and p1 on the ground. The remaining two corners are determined by the intersection of
the receiver plane R and each of the straight lines through the source point s and the
wall point at roof level p2 and p3.

According to the intercept theorem (see Figure 2.4), qi, i ∈ {2, 3} is then given by

qi = pi + λ · (pi − s) (2.16)

where

λ =

{
pi.z−R.z
s.z−pi.z , if s.z − pi.z > 0

∞ , otherwise
. (2.17)

The corners of each shadow polygon are computed by a vertex program in parallel for
each wall and sampled into discrete points by the subsequent rasterization phase. The
result is a two-dimensional pixel array, every (discrete) receiver location lies either in
LOS or inside a shadow polygon, hence in NLOS.

With q2 and q3 according to equation (2.16), we refer to the shadow polygon of a single
wall w with source point s as

NLOS (s→ w) = {p ∈ R | p ∈ polygon (w.p0, w.p1, q2, q3)} . (2.18)

A LOS beam LOS (s) is the set of discrete points in the receiver plane that do not lie in
any shadow polygon of the source s

LOS (s) =
⋂
w∈W

{p ∈ R | p /∈ NLOS (s→ w)} . (2.19)

Figure 2.5 shows an example of a discretized receiver plane with pixels in LOS (dark
gray) and NLOS (light gray) pixels. Although the result is two-dimensional, all shadow
computations are performed using all 2.5-dimensional information.
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Figure 2.5.: Top view of the discrete non-line-of-sight beam (dark gray) with the
source point in the center (blue symbol). Building interior is shown in light gray. The
discretization is overemphasized by a black grid for visualization purposes.

Algorithm Details Algorithm 1 describes the realization of (2.16) and (2.17) as a vertex
shader, i.e., it transforms geometry on a per vertex basis to construct the edges of the
shadow polygon. Algorithm 2 implements (2.18), it calls the vertex processor with
Algorithm 1 and assembles the fragments of each shadow polygon by rasterization. In
the fragment processor all corresponding fragments are then shaded with a color that
encodes NLOS. The implementation of a discrete LOS beam is detailed in Algorithm 4.
Fragments are initialized with the set of discrete points in the receiver plane. Shadow
fragments are subtracted from this set by repeated calls to Algorithm 2. For convenience,
we also define the complementary NLOS beam in Algorithm 3.

A practical application of these algorithms is given in Algorithm 5. We detail the
implementation of a two-slope model (similar to the COST-WI model) that is entirely
performed on the GPU. To avoid multiple evaluations of the path loss model on fragments
that coincide due to overlapping shadow regions, we employ a two-phased approach. We
disable model evaluation by turning off color assembling, fill the depth buffer with zeros
and accept all incoming fragments, regardless of their depth. Then, we render the shadow
polygons of each wall with a fixed depth value of one. This will not change the shape of
the polygon in the receiver plane. So far, no shading (and hence no model evaluation)
has been performed but a one has been recorded in every fragment of the depth buffer
that corresponds to the NLOS beam, whereas all other parts of the depth buffer are
still zero (thus marking a LOS fragment). Now, we exploit the depth buffer test by
setting the depth comparison function to accepts only fragments of the same depths as
the one already in the depth buffer. Color assembling is activated again and we fill two
buffers, one with the evaluation of the LOS model and the other with the evaluation of
the NLOS model. These buffers are than renders as a flat texture with a depth value of
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zero and one, respectively. The depth test makes sure that only fragments of the same
depth value are shaded with the correct slope of the path loss model.

Algorithm 1 shadow shader(Vertex p, s)

Note: p is vertex of a wall, p.y corresponds to wall height. s is radiation source.
d ← p− s
if s.y > p.y then
λ ← p.y

s.y−p.y
else
λ ← ∞

end if
p ← p+ λ · d
return p

2.4.1.2. Wall Transmission

The algorithm for LOS beams can be extended to provide additional non-line-of-sight
information. This can include for instance the number of penetrated walls or material
which can be achieved by taking all walls into account that intersect the direct ray from
the source to a receiver as sketched in Figure 2.6.

We first provide a more thorough look at GPU frame buffer operations, which are an
integral part of the algorithm for transmission depth. When fragments are collected
and recorded in the frame buffer at the final stage of the rendering pipeline (cf. Sec-
tion 1.1.1), frame buffer operations decide how fragments that fall on the same pixel
position, contribute to the final color of that pixel. Commonly, the fragment with the
lowest depth value, i.e., which is nearest to the viewer, determines (replaces) the pixel
color. Alternatively, the final color can be a combination (interpolation) of the values
of both fragments, the one already in the frame buffer and the new one, which wants to

Algorithm 2 non line of sight(Vertex source, p, q)

Note: Assemble fragments of shadow polygon.
p′ ← shadow shader(p, source) {vertex processor}
q′ ← shadow shader(q, source) {vertex processor}
poly ← polygon(p′, p, q, q′)
fragments ← rasterize polygon(poly) {rasterizer}
for all frag ∈ fragments {fragment processor} do

frag.color ← RGBA(NLOS) {mark fragment as NLOS }
end for
return fragments
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Algorithm 3 NLOS beam(Vertex source, WallSet W)

Note: Collects all shadow fragments for a given source and wall set.
frags ← ∅
for all w ∈ W do

frags ← frags ∪ non line of sight(source, w.p2, w.p3) {add shadow fragments}
end for
return frags

Algorithm 4 LOS beam(Vertex source, WallSet W)

Note: Collects all line-of-sight fragments for a given source and wall set.
frags ← R− NLOS beam(source,W) {remove NLOS fragments from discrete receiver

points }
return frags {return remaining LOS fragments}

Algorithm 5 two slope(Vertex source, WallSet W)

Note: A two slope model evaluates path loss differently in LOS and NLOS.
disable buffer(color buffer) {disable color assembling }
clear buffer(depth buffer,0) {fill depth buffer with zeros}
depth func(always) {depth buffer test accepts all incoming fragments}
for all w ∈ W do
p ← w.p2

q ← w.p3

p.z ← q.z ← 1 {set depth value z = 1}
non line of sight(source, p, q) {render NLOS region}

end for
depth mask(false) {set read-only access to depth buffer }
enable buffer(color buffer) {enable color assembling}
depth func(equal) {only accept fragments of same depth value}
tex LOS ← eval model(LOS) {evaluate LOS model for all receiver points}
tex NLOS ← eval model(NLOS) {evaluate NLOS model for all receiver points}
draw texture(tex LOS, z = 0) {render with depth value z = 0}
draw texture(tex NLOS, z = 1) {render with depth value z = 1}
return color buffer
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Figure 2.6.: The Wall transmission depth is taken into account by counting the number
of walls in the direct path between the source and the receiver points. This is achieved
by an additive blending of shadow polygons on the graphics card.

occupy the same pixel position. This technique is called blending. In image synthesis,
blending is commonly used to draw translucent objects.

Here, we use the blending capability to increase the value in the frame buffer with every
rendered shadow polygon. Thus, instead of a solid rendering (replacement of fragments)
of the shadow polygons, we apply an additive blending. This effectively counts the
number of shadow fragments at each receiver location. However, frame buffer operations
like blending are currently implemented in hardware with a precision of 8 bits, only. This
means that we could only count up to 255 wall transmissions, which may not be enough
for large and complex scenarios. A solution is presented by graphics cards that offer
buffers (textures) of higher precision like 32 bit. Blending has to be implemented by a
user-written fragment program since high precision blending is not yet directly supported
in hardware.

To overcome this drawback and to support propagation environments with an arbitrary
number of walls, we employ a hybrid approach that combines 8 bit hardware and 32
bit software blending. Two 32 bit buffers are created and filled with zeros. These
buffers will provide a so-called ping-pong scheme because current GPUs do not support
a simultaneous read and write access to the same buffer. One buffer is referred to as the
next buffer, it is the buffer which will be rendered to. The other buffer is referred to as
the current buffer, it is bound as a texture and read from in the updating step. After
each pass, the buffers are swapped, so that the next buffer becomes the current buffer
and vice versa.

Hence, one buffer will keep track of the total transmission depth for every fragment and
the other will store intermediate results. The actual rendering of the shadow polygons
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is done into a third 8 bit frame buffer with hardware supported additive blending. The
vertex buffer containing the wall geometry is rendered in separate chunks of 255 walls
each. After each chunk rendering the transmission depth of every fragment is added to
the next buffer. This is done by a fragment shader which reads the current buffer and
the 8 bit buffer containing the transmission depths of the latest wall chunk. A simple
add operation is performed and the result is stored in the next buffer. This procedure
is repeated until all wall chunks have been processed. This approach is a multi-pass
algorithm, for n walls it requires d n

255
e rendering passes. This number can be reduced if

chunks of non overlapping shadow polygons are rendered in parallel.

Algorithm Details The hardware blending part is sketched in Algorithm 6. The ping-
pong scheme can be seen as an outer loop to this. We enable GPU alpha blending
and set an additive blending function such that the incoming source color is multiplied
by the source alpha value and added to the destination color. This way, different wall
material coefficients can be incorporated in the corresponding color components. The
accumulated NLOS information is recorded in the color buffer and gives the number of
shadow polygons per fragment. This information can then in turn be used for a path
loss model evaluation, cf. the Multi-Wall model [91] or Section 2.4.2.2.

Algorithm 6 wall transmission(Vertex source, WallSet W)

Note: Provide additional non-line-of-sight information.
enable(blending) {enable GPU alpha blending}
blend func(additive) {set GPU blending function to dest.col+ = src.col · src.a }
clear buffer(color buffer,0)
for all w ∈ W do

RGB wall type ← color from wall type(w)
set color(wall type,1/255) {color encodes wall material}
non line of sight(source, w.p2, w.p3) {record NLOS fragments with current mate-

rial properties in color buffer}
end for
return color buffer

2.4.1.3. Diffraction into Street Canyons

Classical ray tracing algorithms for radio wave propagation commonly model diffraction
effects by tracing a multitude of rays into the respective diffraction cone as illustrated
in Figure 2.7(a). This is computationally intensive, as one ray (the one hitting the
diffraction edge) is split into many secondary rays. Shooting fewer rays usually results
in an under sampling of the propagation environment, leading to regions where no rays
arrive, and consequently no path loss calculations can be performed.
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Figure 2.7.: (a) Diffraction is modeled by shooting a multitude of rays into the diffrac-
tion cone. (b) Diffraction beams propagate in nearby street canyons. Diffraction sources
are VDS (s) = {x0, x1} and VDS (x1) = {x2}. Geometric ray paths can be constructed
for instance as s x0  r0 or s x1  x2  r2.

A solution to this problem is presented by the following approach. In order to achieve a
high throughput of diffraction computations, we trace full beams instead of single rays.
This has the advantage that beams cover a lot more area than single rays and thus, a lot
fewer beams than rays have to be processed for a sufficient sampling of the propagation
environment. The algorithm consists of three main steps. (1) Identify all potential
diffraction sources for a propagation into street canyons. (2) Determine the propagation
paths of the secondary wave fronts. (3) Compute geometrical paths in reverse order
from the target location towards the diffraction source. This procedure can be applied
recursively if propagation paths along multiple street canyons are desired. The idea is
sketched in Figure 2.7(b).

Let s be a radiation source. According to Section 2.4.1.1 the set of discrete points that
are in line-of-sight to s is defined by LOS (s). We define a diffraction source as an end
point of a wall w that satisfies the following criteria: (1) A wall w is in LOS to the
radiation source s if one of the end points w.p0, w.p1 is in LOS

w ∈ LOS (s)⇐⇒ w.p0 ∈ LOS (s) ∨ w.p1 ∈ LOS (s) (2.20)

and (2) if the normal vector ~n of the wall w is facing away from the radiation source s

〈
w.~n,

w.p0 − s
‖ w.p0 − s ‖2

〉
< 0. (2.21)

For a radiation source s, we collect all possible vertical diffraction sources in the set
VDS (s)

VDS (s) =
⋃

w∈LOS(s)

{
{w.pj} , if

〈
w.~n, w.p0−s

‖w.p0−s‖2

〉
< 0

∅ , otherwise
(2.22)
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Figure 2.8.: Step-by-step illustration of the algorithm for vertical diffraction into street
canyons. First, we identify all diffraction sources within the discrete LOS beam of the
radiation source. Each diffraction source triggers in turn a computation of secondary
LOS beams from where geometric ray paths can be reconstructed.

where each w.pj is chosen such that

j ∈ {0, 1}∧ ‖ w.pj − s ‖2≤‖ w.p1−j − s ‖2 . (2.23)

By construction, a diffraction source is always a point on the wall that is closest to the
radiation source.

Now, we set up the vertical diffraction beam VDB (x) as the set of points that forms
a secondary wave front originating at the diffraction source x ∈ VDS (s). With that
notation we can write a diffraction beam as

VDB (x) = {r ∈ R | r ∈ LOS (x) ∧ r /∈ LOS (s)} . (2.24)

All points which have been in line-of-sight to the original radiation source s will not
be part of the diffraction beam. Thereby, we ignore regions that would result in very
large diffraction angles which would in turn not contribute to the overall signal level,
significantly.

The final step consists of the reconstruction of geometric ray paths based on the beam
information. For each receiver location in VDB (x), we create a ray path

Υ (x) = {υ 0 , . . . , υ N } = {s x r | r ∈ VDB (x)} . (2.25)

Thus, every point within the beam travels along its diffraction source towards the original
radiation source. Diffraction paths of arbitrary length can be constructed by assigning
the start points of the rays as new diffraction sources in a recursive fashion.

Algorithm Details Algorithm 7 describes the implementation of finding vertical diffrac-
tion sources as formally defined in (2.22). This involves checking every wall for LOS sta-
tus and orientation, cf. (2.20) and (2.21), which is realized in a vertex shader in parallel
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Algorithm 7 vertical diffraction sources(Vertex source, WallSet W)

Note: Collects all vertical diffraction points for a given source and wall set.
frags los ← LOS beam(source,W) {get LOS fragments from source }
VDS ← ∅ {set of vertical diffraction sources}
for all w ∈ W do
if w.p0 ∈ frags los or w.p1 ∈ frags los then

if
〈
w.~n, w.p0−source

‖w.p0−source‖2

〉
< 0 then

if ‖ w.p0 − s ‖2≤‖ w.p1 − s ‖2 then
VDS ← VDS ∪{w.p0}

else
VDS ← VDS ∪{w.p1}

end if
end if

end if
end for
return VDS

since walls can be processed independently from one another. Figure 2.8 illustrates the
process. Vertical diffraction can only occur at vertical building edges. Hence, for every
wall this is a diffraction candidate, the diffracting edge is the one nearer to the radiation
source. Since we are only interest in ray path with significant power contributions we
choose the corresponding wall vertex at roof top level.

For better performance we integrated the computation of vertical diffraction beams (2.24)
and ray paths (2.25) into one algorithm, Algorithm 8. If we would consider all possible
ray interactions, a huge number of secondary rays would be constructed with no signif-
icant power contributions due to large diffraction angles. To counteract, we employ an
early-out strategy and only keep the secondary rays with the lowest diffraction angles.
This can efficiently be accomplished by exploiting depth buffer capabilities of the GPU.
Initially, we fill the depth buffer with the angle π in radians. The depth buffer test is set
to only accepts fragments of lesser values than those already at the same pixel position
and we encode each respective diffraction angle in the fragment’s depth value in the
fragment shader. The actual deflection point is encoded in each fragment’s color value
to allow a subsequent reconstruction of the diffraction ray paths.

2.4.1.4. Propagation over Rooftops

The algorithm for diffraction into street canyons (see Section 2.4.1.3) always maps one
wall edge to one source point for LOS since only ray paths that hit the receiver plane are
computed. The calculation of propagation paths over rooftops is different because the
diffraction source now spans over the whole edge of the roof, cf. Figure 2.9(a). Hence,
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Algorithm 8 vertical diffraction raypath(Vertex source, WallSet W)

Note: Constructs vertical diffraction ray paths for a given source and wall set.
Υ ← ∅ {set of ray paths}
frags src los ← LOS beam(source,W) {get LOS fragments from radiation source }
VDS ← vertical diffraction sources(source,W)
clear buffer(color buffer,0)
clear buffer(depth buffer,π)
for all v ∈ VDS do

frags diff los ← LOS beam(v,W) {get LOS from diffraction source v }
{for all fragments that are in LOS to v but not to source}
for all frag ∈ frags diff los − frags src los do

frag.color ← v {encode diffraction source as color}
α ← acos (〈‖ v − source ‖2, ‖ frag.pos− v ‖2〉) {compute diffraction angle}
frag.depth ← α {encode diffraction angle as depth value}
{depth test only keeps fragments with lower diffraction angle}
if frag.depth < depth buffer[frag.pos] then

depth buffer[frag.pos] ← frag.depth
color buffer[frag.pos] ← frag.color

end if
end for

end for
for all frag ∈ color buffer do
{create new ray path from source over diffraction point to current receiver location }
Υ ← Υ ∪ {source frag.color  frag.pos}

end for
return Υ 
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this section describes how propagation paths due to diffraction over rooftops can be
calculated efficiently on the graphics processing unit. The algorithm basically consists
of two steps: (1) A discretized version of the diffraction cones is constructed for every
rooftop. (2) Ray paths are found by going backwards from each receiver location towards
the transmitter.

An integral part of our method is the computation of diffraction beams for every rooftop
simultaneously. Therefore, no identification of diffraction sources is required, we define
the set of roof diffraction sources directly as the set of all building walls W . By con-
struction the recursion depth is automatically set to the total number of walls. By
formulating the computation as follows, high computational performance is achieved
by directly parallelizing the computation over the recursion steps, i.e. the diffraction
cones for each ray path length are computed at the same time, independently from one
another.

Let s be a radiation source. As illustrated in Figure 2.9(a), a horizontal (roof) diffraction
beam HDB (s→ w) of a wall w directly corresponds to the shadow polygon

HDB (s→ w) = NLOS (s→ w) . (2.26)

Due to the construction of the beam, all geometric ray paths from HDB (s→ w) to the
radiation source s have a deflection point somewhere on the wall w at rooftop level, e.g.
s w  r. For a point r ∈ HDB (s→ w) the exact deflection point xr on the wall can
be found as the intersection of the two lines l0 = (w.p2, w.p3) and l1 = (r, s) as sketched
in Figure 2.9(b), hence

xr = intersect (l0, l1) . (2.27)

The intersection point can directly be computed for instance by using determinants [20,
5] whereas the height is given by the corresponding wall. The geometric ray paths for
each beam HDB (s→ w) are then

Υ (s, w) = {υ 0 , . . . , υ N } = {s xr  r | r ∈ HDB (s→ w)} . (2.28)

Some care has to be taken when ray paths are concatenated due to diffraction over
multiple rooftops. If two consecutive points of a ray path are in LOS to each other,
all points in between must be removed from the final path, cf. Figure 2.13. This can
be achieved by computing the upper convex hull of all points on a ray path. Further
implementation details are discussed in the following paragraph.

Algorithm Detail An effective parallelization of the above method requires some non
trivial steps which we will describe now in more detail. We parallelize our implementa-
tion in two ways, over the receiver points where ray paths may emerge, and in particular,
over ray path recursion levels. First we explain the principles of our algorithm, briefly.
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Figure 2.9.: Illustration of roof diffraction beams. (a) The figure depicts two nested
roof diffraction beams from a top view. (b) Due to discretization artifacts, we have to
correct the geometric deflection point xr to xu by first advancing towards c, the center
of the diffracting wall and then towards s, the original source, until we reach a new
diffraction cone.

For each point in the receiver plane we determine which is the last diffracting wall on the
ray path to the transmitter, i.e. which (if any) wall is the first to block the LOS condition.
This information is written into the Horizontal Diffraction Wall Map (HDWM) and used
to calculate the last diffraction point for each receiver point, i.e., the intersection of the
ray path and the last diffracting wall. Iterating this procedure until LOS is reached will
generate a sequence of points containing all possible diffraction points.

The HDWM is essentially the discrete representation of all horizontal diffraction beams
(2.26) with an inverse lookup function: a query at a receiver point will give its diffract-
ing wall (cf. Figure 2.10 bottom right). A pseudo code implementation is given in
Algorithm 9. We let the transmitter “drop” from an infinite height down to its original
height. For each height of the transmitter we record the NLOS fragments of the virtual
diffraction sources in the color buffer. The fragments are encoded with each wall’s unique
ID. We use the depth buffer to ensure, that only the very first shadow casting wall is
recorded. Thus, IDs are only written to the HDWM once: when a receiver points enters
NLOS for the first time. Figure 2.10 illustrates the steps of the dropping algorithm and
Figure 2.11 depicts a visualization of an HDWM for a small example scenario where
each color encodes a discrete horizontal diffraction beam.

Horizontal diffraction ray paths can now be constructed in reverse order, starting at the
receiver location, cf. Algorithm 10 and Figure 2.12. The preceding deflection xr point
is given by the intersection of the diffracting wall segment (from the HDWM) with the
straight connection between the receiver and transmitter. The height of the deflection
point must be corrected to the corresponding wall height. In this step, some effort is
necessary to cope with discretization artifacts, cf. Algorithm 11: xr may intersect the
wall line but must not necessarily lie within the wall endpoints (i.e. on the line segment).
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Figure 2.10.: The HDWM is constructed by “dropping” the transmitter from an
infinite height to its original height. Unique wall IDs are recorded in the color buffer
only when a receiver points enters NLOS for the very fist time. The last picture in the
series shows the resulting HDWM with pointers for each region to its diffraction source.

In this case we proceed by traversing receiver pixels towards the radiation source (with
the Bresenham [29] line drawing algorithm). The point for further diffraction lookups
xu is found similarly in order to make sure that the ray path progresses towards the
radiation source, see Figure 2.9(b). As mentioned earlier, if two consecutive points on a
concatenated ray path are in LOS to one another, all points in between must be removed,
see Figure 2.13. We use Andrew’s Monotone Chain algorithm [4] to construct the final
convex ray path. As the points on the path are already sorted, this step can be skipped
here.

Figure 2.11.: Visualization of an HDWM (right) for a small example scenario (left).
Each color encodes a discrete horizontal diffraction beam.
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Figure 2.12.: Concatenation of multiple horizontal diffraction beams.
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Figure 2.13.: The convex ray path is constructed by successively looking up points in
the HDWM and removing intermediate points that are in LOS to one another.

Algorithm 9 horizontal diffraction wall map(Vertex source, WallSet W)

Note: Constructs the HDWM by letting the transmitter “drop” from an infinite height.
clear buffer(color buffer,0)
h ← h0 {assign initial height}
while h ≥ source.y do
for all w ∈ W do
set color(w.id) {color identifies diffracting edge }
s′ ← Vertex(source.x,source.y,h) {create virtual diffraction source at height h}
non line of sight(s′, w.p2, w.p3) {record NLOS fragments in color buffer}

end for
h ← (h−∆h) {decrease virtual source height}

end while
return color buffer {color buffer contains HDWM}
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Algorithm 10 horizontal diffraction raypath(Vertex source, receiver )

Note: Ray paths are constructed in reverse order.
υ ← receiver {ray path ends at receiver location}
p ← receiver
buf NLOS ← NLOS beam(source,W) {get NLOS from source }
while buf NLOS[p] 6= LOS {as long as ray path has not yet reached line-of-sight} do

(xr, xu) ← horizontal diffraction predecessor(p) {retrieve deflection and

lookup location for p}
υ ← xr  υ {prepend to ray path }
p ← xu

end while
υ ← source υ {ray path always starts at source }
υ ← convex hull(υ ) {remove deflection points that are not part of the convex hull}
return υ 

Algorithm 11 horizontal diffraction predecessor(Vertex p)

Note: Predecessor computes two points which may but must not coincide: the deflection
point on the ray path xr and the point for further diffraction lookups xu
w ← HDWM[p] {look up diffracting edge}
l0 ← (w.p2, w.p3) {line of diffracting edge}
l1 ← (source, p) {line of direct path }
xr ← intersect(l0,l1)
while xr not on w {account for discretization errors} do
p++ {shift by one voxel towards source}
w ← HDWM[p] {additional lookup}
l1 ← (source, p) {line of direct path }
xr ← intersect(l0,l1)

end while
xu ← xr
while HDWM[xu] == w {do not stay on the same diffracting edge} do
xu++ {shift by one voxel towards source}

end while
return (xr, xu)
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2.4.2. Path Loss Calculation

This section describes how ray paths are mapped to the received signal strength. Every
received signal experiences a basic propagation attenuation due to frequency dependent
losses

cf = 10 log10

((
4πf

c

)2
)

(2.29)

with signal frequency f and speed of light c.

We could also incorporate an (unknown) dampening coefficient into the frequency de-
pendent loss to account for additional losses due to vegetation or weather. Let f ′ = f ·ρ
for a dampening coefficient ρ, with the corresponding loss

cf ′ = 10 log10

((
4πf · ρ
c

)2
)

= 10 log10

((
4πf

c

)2
)

+ 20 log 10 (ρ) . (2.30)

We introduce an additional term c0 as base loss with c0 = 20 log 10 (ρ) and can write

cf ′ = cf + c0. (2.31)

The signal attenuation due to distance d between sender and receiver for a path loss
coefficient γ can be written as

PLdB

dist (d) = 10 log10 (dγ) . (2.32)

We have a clear unobstructed LOS path if a ray path is of the form

υ = s x (2.33)

for a radiation source s and a receiver location x. We can write the corresponding path
loss in dB as

PLdB

LOS (υ ) = cf + PLdB

dist (‖ x− s ‖2) . (2.34)

The path loss prediction in regions with no direct LOS is known to be more complex.
Consider a ray path υ given as

υ = x0  . . . xi−1  xi  xi+1  . . . xN (2.35)

for a radiation source x0 and a receiver xN .
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The change of direction α
(i)
υ according to the deflection of the wave front at xi is given

by

α
(i)
υ = acos (〈‖ xi − xi−1 ‖2, ‖ xi+1 − xi ‖2〉) . (2.36)

Let α be the change of direction of the corresponding deflection, based on the Taylor
series [6] we approximate the (unknown) angle dependent attenuation by a polynomial
of degree 2

g (α) = a0 + a1α + a2α
2. (2.37)

We retrieve the unknown model coefficients (a0, a1, a2) by a calibration to real-world
measurements, thus modeling the stochastic influence of traffic and vegetation. The
calibration can be realized by a formulation as a constraint least-square problem. The
optimal parameter vector can then be calculated by common solver algorithms like
Gauss-Newton or Levenberg-Marquardt (see [90]). We will come back to the parameter
optimization in Section 2.4.3 when discussing multi-path effects.

Different types of wave guiding effects are taken into account by introducing distinct
attenuation functions. The attenuation functions due to a single diffraction over rooftops
and into street canyons are denoted by g (α) and h (β) with deflection angles α and β,
respectively.

The logarithmic attenuation for a rooftop diffraction with Nr deflection points and cor-
responding deflection angles α

(i)
υ is described by the sum of each single attenuation

PLdB

roof (υ ) =
Nr∑
i=1

g
(
α

(i)
υ 

)
. (2.38)

The same holds for a series of diffractions along street canyons

PLdB

street (υ ) =
Ns∑
j=1

h
(
β

(j)
υ 

)
(2.39)

with Ns deflection points and corresponding angles β
(j)
υ .

For the attenuation due to wall transmissions PLdB
wall (Nw) we use a model similar to the

Multi-Wall model by [91] which depends only on the number of penetrated walls Nw of
a ray path υ 

PLdB

wall (υ ) = Lw ∗Nw (2.40)
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where Lw is a material constant describing the propagation loss per wall penetration.
This can be seen as an approximation to the rooftop diffraction where the deflection
angles are considered constant.

The overall attenuation of a receiver location r is hence the sum of the arriving ray paths
Υ = υ 0 , . . . , υ

 
N , we write informally

PLdB

all (Υ ) = cf +
∑

υ ∈Υ 


PLdB

dist (‖ x− s ‖2) , υ of the form s x

PLdB
street (υ ) , υ due to diff. into street

PLdB
roof (υ ) , υ due to diff. over roof

PLdB
wall (υ ) , υ due to wall transmissions

. (2.41)

From this general model we derive two specific models that rely on a subset of ray path
calculations. We will show in Section 2.6.5 that these derivations will in practice pro-
vide a good compromise between computation time, numerical stability and prediction
accuracy.

2.4.2.1. Roof Diffraction Model

In this section we introduce the Roof Diffraction Model (RDM) for urban environments.
We assume that rays propagate in a straight line from the transmitter and may be
diffracted downwards at the roof of buildings. The path loss for a ray path υ is
modeled by

PLdB

RDM (υ ) = cf + c0 + PLdB

dist (dυ ) + PLdB

roof (υ ) (2.42)

which yields

PLdB

RDM (υ ) = cf + c0 + γ · 10 · lg (dυ ) +
Nr∑
i=1

g
(
α

(i)
υ 

)
. (2.43)

The second term depends on the path loss exponent γ and the length of the diffracted
path dυ =‖ xN − x0 ‖2. Nr denotes the number of roof diffractions and α

(i)
υ i-th

diffraction angle. The function

g (α) = a0 + a1α + a2α
2, α ∈

[
0,
π

2

]
(2.44)

with parameters a0, a1, a2 ∈ R models the attenuation due to a diffraction angle α.

Adequate values for the parameter γ and the coefficients a0, a1, a2 are retrieved from
a calibration with measurement data, cf. Section 2.4.3 and Section 2.6.5.1. Route
METRO202 of the COST-Munich scenario yields

γ = 2.76; a0 = 3.37; a1 = 0; a2 = 4.9.

The above values are used in this work when calculating the path loss for the RDM.
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2.4.2.2. Edge Diffraction Model

We now present a different specialization of the general model (2.41), which we will refer
to as the Edge Diffraction Model (EDM). Again, we assume that rays propagate in a
straight line from the transmitter. Incoming wave fronts may be diffracted at vertical
building edges which practically model diffraction into street canyons. We model the
diffraction of multiple rooftops by counting the number of diffractions but, unlike the
RDM, we do not consider the angle of each diffraction. This assumption is based on
an informal observation that the total sum of deflection angles is more or less the same
for most propagation paths and therefore can be treated as an empirical constant of the
propagation environment that can be retrieved by parameter calibration. This claim is
supported by the higher stability and thereby accuracy of the EDM over the RDM as
presented in Section 2.6.

The path loss for a ray path υ is modeled by

PLdB

EDM (υ ) = cf +c0 +


PLdB

LOS (υ ) , υ in LOS

PLdB
LOS (υ ) + PLdB

VD (υ ) , υ due to diff. at vertical edge

PLdB
HD (υ ) , otherwise

(2.45)

with

PLdB

LOS (υ ) = γLOS · 10 · log10(dυ ) (2.46)

PLdB

VD (υ ) =
Ns∑
i=1

h
(
α(i)
r

)
(2.47)

PLdB

HD (υ ) = γNLOS · 10 · log10(dr) +Wr · Lw (2.48)

and the frequency dependent term cf as above. Again, dυ =‖ xN − x0 ‖2 denotes the
path length between receiver and transmitter, and γLOS, γNLOS the corresponding path
loss exponents. Ns is the number of edge diffractions and α

(i)
r the i-th diffraction angle.

The function

h (α) = b0 + b1α + b2α
2, α ∈ [0, π] ,

with parameters b0, b1, b2 ∈ R models the attenuation due to a diffraction angle α. As
above, Nw is the number of walls in the direct path from the transmitter to the receiver
and Lw the loss per obstructing wall.

Adequate values for the parameters are usually obtained from a calibration with mea-

49



CHAPTER 2. RADIO WAVE PROPAGATION

surement data. Route METRO202 of the COST-Munich scenario yields

γLOS = 2.6007; γNLOS = 3.4330; Lw = 0.2522;

b0 = 1.4562; b1 = 0.4022; b2 = −0.0022.

These values are used in this work when calculating the path loss for the EDM.

2.4.3. Model Parameter Calibration

The modeling of urban propagation environments often consists of polygonal building
outlines with one height value per building, the so-called 2.5 dimensional description.
Other influencing factors like building material, roof style, texture or vegetation are
typically not included in the description of the urban models since the acquisition of
this information is either very expensive or sometimes simply not available. However, a
city with modern skyscrapers that consist predominantly of glass fronts and flat roof tops
will certainly exhibit a different attenuation behavior than a small town with pitched
roofs and fronts made of concrete [94, 131, 134].

In literature, it is therefore quite common to adapt propagation models to different
types of environments. A qualitative description of a propagation environment would
for instance consist of a classification into rural or urban, or by building density and
street widths. However, such coarse grain classification usually reflects typical propaga-
tion characteristics very poorly. Therefore, we use an implicit description by adapting
model parameters to different environments by calibration from real-world measure-
ments. Thus, we model unknown components of the propagation environment like traffic
or vegetation by introducing variable coefficients (model parameters) into our path loss
calculation.

Since the logarithm does not change the basic behavior of a function and therefore pre-
serves the minimum, we choose to optimize the logarithm of the path loss formula (2.41).
Hence, the product in the numerator is transformed to a sum which can be expressed
easily in matrix notation. The linear system is set up as:

C
1

dγ

N∏
i=1

fi → 1 logC − γ log d+
N∑
i=1

log fi. (2.49)

We can then formulate the adaption of model parameters as a constrained least-squares
problem in order to minimize the mean squared error between predicted and measured
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data:

min
x
||F (x)||22 = min

x

∑
i

F 2
i (x) (2.50)

such that

F (x) = M · x− d (2.51)

A · x ≤ b (2.52)

B · x = c. (2.53)

Each row of the matrix M corresponds to one measurement location, whereas the
columns are formed by the arriving ray paths that reach the respective location, like
travel distance of each arriving path and number of deflections. The vector d con-
tains the measured path loss at each location. Hence, the optimal parameter vector x̂
minimizes the mean squared error between the predicted and measured path loss with re-
spect to the constraints (2.52) and additionally satisfying the equality constraints (2.53).
Such constraints can incorporate expert knowledge on the propagation phenomena into
the optimization problem, e.g., the path loss coefficient γ is known to be in the range
between two for free space propagation and five inside densely populated cities. The
optimal x̂ can then be calculated by common solver algorithms like Gauss-Newton or
Levenberg-Marquardt [90]. Section 2.6.5.1 shows a complete example of this procedure
for the RDM model that works on all models with a single (strongest) path.

To the best of our knowledge, previous approaches to the adaption of model parameters
from ray paths like the one of Mathar et. al [94] have been restricted to the optimization
of the strongest ray paths, only. First, they adapt their model parameters to best match
their least attenuated ray path at each receiver location based on an initial parameter
vector. Then they cyclically iterate between the computation of strongest ray paths and
corresponding parameter estimation because changes in the model parameters can result
in different strongest paths in the next iteration. They fail to provide a strict proof for
convergence of their alternating approach, however they claim to achieve good results in
practice after two or three iterations. Obviously, this procedure heavily depends on the
initial parameter vector and is not guaranteed to find the global optimum because the
optimization algorithm has no access to the information of all incoming ray paths.

Multi-Path Models We propose an alternative approach that does not depend on a
sequence of path computations and parameter estimations. In particular, we directly
incorporate all incoming paths into the parameter estimation by binary encoding all
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Figure 2.14.: Each row of the optimization matrix corresponds to one measurement
location. Each column is formed by the travel distance and number of deflections of
arriving ray paths at the respective location.

existing paths. Hence, we can achieve a closed form for the optimization algorithm and
thereby inheriting all properties of the optimization procedure at hand.

The main idea is to incorporate the binary encoding in the optimization matrix M
(cf. Fig. 2.14). For ease of understanding we describe the procedure only for the hori-
zontal diffraction. However, the concept is of course not limited to propagation paths
based on horizontal diffraction only, but can easily be extended to support paths that
are based on other propagation phenomena.

Let R be the maximum recursion level of the diffraction and N the maximum number
of arriving paths. Each row of M is then of the form (without the leading constant)(

log d1 δ1,1 . . . δ1,R . . . log dN δN,1 . . . δN,R
)

(2.54)

where δi,j is a binary encoding such that

δi,j =

{
1 , if path i has j or more diffractions

0 , otherwise
. (2.55)

Hence, we use the δi,j’s to switch certain parts of the matrix M on or off, so to speak.
Thereby providing the required uniform input matrix for the optimization algorithms
while still supporting a varying number of arriving paths for each receiver location. An
application of our approach can be found in [131, 132] and [134].
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Figure 2.15.: Propagation prediction in the virtual CAVE environment.

2.5. Virtual Reality Interface

Dense urban areas demand for a great emphasis on site-specific details in the propagation
environment which are often not covered in automatic approaches. City models may not
be as up-to-date as recent satellite images of the same area and common issues are often
incomplete or missing information in the geographical databases that serve as input to
the propagation simulations. There may be critical sites or clinical areas (e.g. hospitals)
where exposure to certain power levels may be hazardous to medical equipment and a
minimum safe distance for radio transmitter sites has to be maintained. Areas along
country borders are also often subject to restrictions in order to reduce interference with
foreign signals.

With our real-time propagation simulation (cf. Section 2.4) we can now design an
application that offers an interactive manipulation and modeling of the propagation en-
vironment that is directly coupled to the simulation. We present a prototype interface
that integrates real-time simulations of propagation predictions with the interactive ex-
ploration and analysis in a VE. All user input and manipulation from within the VE
is directly communicated to the simulation algorithm which immediately updates all
propagation predictions such that the effect is instantly visible to the user. Parts of this
work have been published in [123].
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Figure 2.16.: Simulation of radio wave propagation with visualization of mean received
field strength, colors ranging from red (strong) to white (medium) and blue (weak).

2.5.1. Overview

We formulate the conceptual requirements of our VR application based on informal
discussions with domain experts as follows: (1) Visualization of the radio network within
a geographical reference frame, (2) Modification and setup of transmitter sites, (3) In
situ simulation of propagation effects and (4) Manipulation of site-specific details.

Furthermore, a fundamental prerequisite is the real-time requirement of the overall sys-
tem in order to provide an interactive VR experience. We derive the main tasks from the
above formulated requirements: (1) Adjustment of visualization parameters, (2) Con-
figuration of transmitter sites and (3) Manipulation of the city model. We coupled our
VR application directly to the simulation such that every user input triggers a real-time
update of the simulation input parameters and thereby a subsequent computation of the
propagation predictions.

2.5.1.1. Geographical Reference & Visualization

Geographical reference is usually provided by a specification of the supplying area in
a global coordinate system. Coordinates are often given in latitudes and longitudes
according to the World Geodetic System (latest revision: WGS84) or as grid based
horizontal and vertical positions according to the Universal Transverse Mercator (UTM)
system.
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Figure 2.17.: The relationship of multiple antennas are displayed as network properties
that reveal different statistics. The left image shows the coverage of field strength
whereas the middle picture indicates from which antenna the strongest signal arrives.
The right image depicts the ratio of interference from other signals, green stands for
low interference, red for high interference. For good reception high coverage must be
combined with low interference.

Context is provided in form of satellite images and a city model (cf. Figure 2.2) which for
instance can be acquired from LIDAR data as demonstrated for the creation of virtual
cities in [113]. Most of the time, satellite images are up-to-date and very accurate,
whereas city models are usually very expensive and of rather coarse resolution (two to
five meters). Often, we observe a gap between the information of recent satellite images
and the corresponding building data of the city model. Building information may be
incomplete or do not reflect the latest building development. Sometimes recent buildings
are missing completely. We address this issue in Section 2.5.1.3.

As illustrated in Figure 2.16 transmitter sites are visualized on top of the geographical
data and may be subject to further manipulation. The simulation results in terms of
predicted signal strength or interference are displayed as a colored pixel image parallel
to the ground plane. Initially, it depicts the propagation effects at 1.5 meters above
ground which is common for analyzing cell phone reception.

2.5.1.2. Simulation of Propagation Effects

Ray tracing approaches are an established technique for radio wave propagation simu-
lations, however, such approaches need to be extended to include diffraction, which is
a predominant effect for common mobile radio frequencies. Diffraction along edges is
usually modeled by shooting a multitude of rays into the shadow cone of the diffracting
edge which usually results in a large computational overhead.
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The key idea for implementing diffraction on the GPU is to utilize the concept of shadow
volumes to mark regions which are in shadow. For the propagation of radio waves, only
those propagation paths are of interest which pass through a certain height level above
ground where cell phone reception is required. By applying a modified shadow volume
technique, all pixels that are inside a diffraction cone are identified on an image plane,
which is setup such as to correspond to the receiver plane. Hence, a GPU algorithm
can implement the problem of finding diffraction rays as repeated shadow computations,
which can be done extremely fast on recent graphics cards. Specifics about the algorithm
and details of our GPU implementation can be found in Section 2.4.

Here, we want to discuss what our VR prototype has to know about the propagation
algorithm, hence what is the input and the output of the radio wave simulation that
the system and thereby the user will be aware of. We start with the data requirements
of the simulation which basically is just a simplified city model. Shape of rooftops are
usually omitted in common propagation algorithms. Thus, a building is described by its
polygonal outline and one height value. The propagation loss is calculated as a function
of city model, radiation parameters and location of the transmitting antenna. If multiple
antennas are present in a network, the simulation has to be done separately for each
given transmitter location. The simulation result is a simple pixel map where each pixel
corresponds to a grid location within the supplying area that describes the mean signal
attenuation.

Changes to a particular antenna lead to a complete recalculation of network proper-
ties. Currently, we provide the following statistics for network analysis: (1) Maximum
intensity (MI), (2) Best server (BS) and (3) Carrier-to-Interference (CI). The MI view
displays the attenuation of the strongest received signal strength among all antennas
at each location. For the BS view each antenna is assigned a unique color and each
receiving location is colored with the color of the strongest antenna, it provides a so-
called sector view. The CI view shows the signal to interference ratio, hence the ratio
between the strongest and all other combined signals. The CI value is a major indicator
of network capacity in interference limited networks which basically are all current (3G
and 4G) standards for mobile telecommunications. Figure 2.17 gives an impression of
the three statistic views.

2.5.1.3. Manipulation of Site Specific Details

We will first describe the manipulation options for transmitter sites and then those for
the city model.

Transmitter Sites An initial network setup with the description of transmitter site
locations can for instance be computed by automatic cell planning algorithms or can
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Figure 2.18.: The creation of a new transmitter site is depicted in the sector view where
the receiver plane is colored according to the base station with maximum strength. When
the mode for adding a transmitter site is entered, a wireframe model of a transmitter is
rendered at the target location (middle image). The antenna is added to network by a
button press and the propagation simulation immediately updates the sector view (blue
for the new antenna in the right image).

simply be a hexagonal layout where antennas are evenly distributed over the supplying
area. In our prototype application the user now can change at run time the location
of antenna sites. If required, additional sites can be added to the network by pointing
with a hand-held 6DOF device at the desired position and pressing the correspond-
ing button. Figure 2.18 depicts the creation of a new transmitter site within the VR
prototype. During all antenna operations, visual feedback and simulation updates are
performed instantly in real-time. This is achieved by using a simulation algorithm which
is implemented entirely on the GPU as introduced in Section 2.4.

City Model To account for missing or incorrect information in the city model database,
we let the user manipulate the city model directly in the simulation environment. Sketch-
ing has been an established method for generating content on-the-fly, a recent example
is content authoring in AR games as described in [63]. Since satellite images are already
provided as geographical context information we let the user correct or create missing
buildings by drawing their footprint on top of the satellite image, see Figure 2.19. A
3D model is created automatically be extruding the floor plan along the axis pointing
upwards. For fine-tuning building heights or also to get in intuitive understanding of
the influence on the radio wave propagation, the rooftop level of each building can be
adjusted separately. All changes to the building database are directly communicated to
the simulation algorithm which immediately updates all propagation predictions such
that the effect is instantly visible to the user.
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2.5.2. Realization

So far we have described the conceptual features of our prototype application from the
view of the user. In this section we want to discuss issues that arose in the actual
implementation of certain features and what challenges had to be faced to maintain
interactive frame rates for simulation and manipulation tasks. We will focus on the
differences and difficulties we faced when providing a virtual reality interfaces as opposed
to common 2D desktop metaphors.

In order to realize the above described interaction we need the following basic building
blocks: (1) navigation through the virtual environment, (2) selection of objects that can
be subject to manipulation, (3) real-time simulation of propagation effects, (4) object
manipulation based on 6DOF tracking data and (5) system control.

Setup The virtual reality toolkit that we use [7] is basically a master-slave system.
Since our CAVE system consists of five walls in total each with passive stereo, it is
operated by 10 rendering slaves, two for each wall and one for each eye per wall. The
slaves are synchronized by a master node which handles all user inputs and tracking
data, and distributes it to all rendering slaves. Therefore, in our usual setup every slave
runs its own instance of the virtual reality application performing all computations on
its own to minimize data transfer between nodes.

Navigation Since the user is equipped with a hand-held 6DOF device, navigation is
achieved by a simple travel-by-pointing metaphor. Furthermore, the user can change
the overall scale between being in the city and a world-in-miniature (WIM) view. This
way, we provide an overview of the whole scene in the WIM and details can be provided
on demand by standing inside the city model.

Selection We introduce selection as an extra paragraph here because the number of
objects that the user can interact with proved to be a performance issue. Our test
scenario of approximately 7 km2 consists of 2086 distinct buildings with approximately
82,000 triangles in total. First tests showed heavy drops in performance when computing
the intersections between selection ray and objects naively on every render node (which is
default for the used VR toolkit). We then switched the computation to a designated node
(the master) which would not do any renderings. We used an asynchronous connection
that would broadcast the results from the selection process on a multicast address where
every rendering node could listen and react accordingly. A refresh rate of 30 Hz to update
object selection did not seem to introduce a noticeable lag to the system. By decoupling
the selection process from the main body of the application and using a asynchronous
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Figure 2.19.: A missing building is sketched directly on the satellite image. A grid
raster is displayed around the cursor to assist the user in case of jitter. The effect of the
new building becomes instantly visible in the simulation results.

multicast broadcast for scattering the information we maintained the same frame rate
as without selection with no significant increase in network traffic.

Simulation The technical details for achieving a real-time simulation of a single trans-
mitter site are described in Section 2.4. Here, we focus on how to couple the simulation
with a changing propagation environment. In order to offer a real-time manipulation we
had to update the city model database directly on the GPU. For computation efficiency
the city model was initially transformed into a vertex buffer object in GPU memory.
Additional information was attached to the vertex geometry (e.g. material properties
and computational flags). For the manipulation of existing buildings (change of roof
top level) we introduced an additional dependent texture lookup in the vertex shader
that would transform the building geometry. The texture lookup maps unique building
identifiers to a height value. To minimize data transfers between GPU (device) and CPU
(host) we kept identical copies of the lookup table in host and device memory. Upon
changes to building heights it is sufficient to upload only the modified part of the lookup
table to texture memory. A subsequent simulation of the propagation prediction will
then automatically use the updated texture for the dependent lookup. The remainder
of the simulation code was left unchanged. Newly created buildings were registered to
the simulation by introducing new vertex buffer objects which were created dynamically
at run time.

Manipulation The main challenge was how to benefit from direct 3D interaction, avoid
jitter or tracking inaccuracies without imposing restrictions on user interaction. For
all manipulation tasks, extremely small hand movements were compensated similar to
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Figure 2.20.: User stands in the VE with a tracked marker attached to his non-
dominant hand and a tracked pointing device in his dominant hand. His left hand is
slightly raised to look at a panel for system control. The selection of the panel icon is
done with the pointing device in his right hand. Upon completion the panel is hidden
by lowering the non-dominant hand.

the PRISM [57] technique. Furthermore, we split the manipulation of transmitter sites
into two sub tasks, changing site location and changing antenna height. This effectively
reduced the 3D manipulation task into a two-dimensional (changing location) and a
one-dimensional task (change height). Though this might seem like a restriction at first,
it turned out to be much more precise and would naturally stick to the planning process:
first find out where your antenna site should be located and then adjust the height of
the antenna tower for maximum coverage and minimum interference.

Sketching a new building on the satellite image also suffered heavily from jitter in hand
movements. We assisted in the creation process by depicting discrete grid points over
the image and building edges would snap onto the grid. A new building is then created
by first entering the edit mode, one button adds the current grid point to the building
outline whereas another button allows to undo the last operation. A building is finished
by placing the last building corner in the vicinity of the first corner. Building walls are
then extruded to generate a 3D model and visualization and simulation databases are
updated accordingly.
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System control We needed an interface that makes the control of visualization and
network parameters accessible directly from within the VE. Common approaches are
the use of 3D menus or small hand-held computer devices (e.g. Tablet-PC). However,
we felt not comfortable with either of them. The 3D menus would clutter the visual field
of the VE and are sometimes hard to use due to jitter. An additional hand-held device
would encumber the user and would require him to switch context between immersive 3D
and a 2D screen. We tried to combine both approaches by tracking the non-dominant
hand and attaching a virtual screen to the hand position as soon as the user raises
the hand above his waist. This idea is inspired from the use of a mobile smart phone
that the user takes out of his pocket. The virtual screen depicts icons for controlling
the application which can be selected by pointing and clicking with the device in the
dominant hand. Figure 2.20 shows a picture of a user in the VE with his left hand raised
and selecting a network statistic with his right hand.
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2.6. Results

We will first introduce our benchmark scenario and present an informal evaluation of
the VR interface (cf. Section 2.5). We will then define our prediction quality criteria
and discuss the performance and quality of the presented propagation models. First,
we will examine the two empirical models (COST-Hata and COST-WI) and then the
two proposed ray optical models (RDM and EDM). In particular, we will compare our
approach with results from literature and commercial tools, at least as far as data is
publicly available.

2.6.1. Benchmark Scenario

We use building and urban micro cell measurements of downtown Munich, Germany for
evaluating our methods. This data has been created during the COST 231 action as
described by [45] and is now publicly available at [93]. The scenario comprises an area
of 2,400 × 3,400 m (7 km2) of approximately 18,000 building walls. The database offers
a resolution of 5 m, the standard deviation of building heights was 8.56 m and that of
the underlying terrain about 3.87 m.

A path loss measurement at 947 MHz has been performed by the Mannesmann Mobilfunk
GmbH. Three different measurement routes are available and referred to as METRO200
(970 points) , METRO201 (355 points) and METRO202 (1,031 points). The scenario
along with the transmitter location is depicted in Figure 2.21. The transmitter height
is 13 m and measurements were performed at 1.5 m above ground. The path loss has
been stored as an approximately 10 m sector average.

All predictions were performed on the whole area of 7 km2 with a resolution of 5 me-
ter. This requires the evaluation of more than 3 · 105 receiver points. The path loss
calculations for the ray optical models RDM, EDM and Cube-Oriented-Ray-Launching-
Algorithm (CORLA) [94] are all based on a calibration to the measurement points along
route METRO202.

2.6.2. Virtual Reality Interface

We tested the COST 231 Munich scenario in a CAVE virtual environment of five walls
each with passive stereo (1600 × 1200 pixels) which is operated by 10 rendering slaves
(one for each eye per wall) and a master node which handles user inputs, tracking, data
distribution and synchronization. Each node is equipped with an NVIDIA Quadro FX
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Figure 2.21.: This image shows the COST 231 scenario overview with buildings
and measurement routes. The measurement routes METRO200, METRO201 and
METRO202 are colored in red, green and blue, respectively. The transmitter loca-
tion during measurements (roughly in the middle of the scenario) is indicated as a black
star.
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5600 graphics card. Latency of our infrared optical tracking system was between 80–
120ms at an update rate of 60 Hz. The average frame rate did not drop below 40 frames
per second for a network of eight transmitters and 2,086 buildings.

We performed a primary questioning of two domain experts (communication theory)
regarding usability and features. They were first introduced by example in the basic
features of the application. We asked them to create new antenna sites and adjust
the position and height of the transmitters. We let them switch to different networks
statistics and activate the various visualization settings (e.g. building wireframe vs. solid
rendering, satellite image overlay on/off for geographic context) by using the control
panel which was attached to a tracking device at their non-dominant hand. We also
asked them to create an additional building that was outlined in the satellite image but
was not available in the building database. After that, they were free to explore the
radio wave simulation on their own.

Both found the potential of our application interesting. When asked for the worst feature
they stated that they would like to have more control over the propagation simulation
settings (e.g. antenna radiation pattern or power regulation). They liked the overview
in the VE, especially the possibility to create missing buildings and stated that it would
be great for debugging propagation algorithms. They assessed the overall application as
good for finding weak spots in an initial planning phase.

2.6.3. Prediction Quality Criteria

We quantify the accuracy of our propagation predictions by the Mean Error (ME),
the Mean Squared Error (MSE) and the Standard Deviation (STD) between prediction
and measurement data. Let the number of measurement points be N , and ri the ith
measurement point. M dB (ri) denotes the measured and PLdB (ri) the predicted path
loss at ri.

We define the mean error as

ME =
1

N

N∑
i=1

[M dB (ri)− PLdB (ri)] , (2.56)

the mean squared error as

MSE =

√√√√ 1

N

N∑
i=1

[M dB (ri)− PLdB (ri)]
2 (2.57)
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and the standard deviation as

STD =

√√√√ 1

N − 1

N∑
i=1

[M dB (ri)− PLdB (ri)−ME]2. (2.58)

2.6.4. (Semi-)Empirical Models

2.6.4.1. COST-Hata Model

As described in Section 2.3.1 the COST-Hata model treats the propagation environment
as either urban, suburban or rural and is based on the log-distance model (2.1) with
empirical correction terms. We compared the urban model

P dB

urban (r) = 33.9 · lg (f) +
(
44.9− 6.55 · lg (∆hT )

)
· lg (dr)

+ gCOST-H (f,∆hT ,∆hr)

against the measurements in the COST 231 scenario, cf. Table 2.2. At first glance
the COST-Hata model performs surprisingly well (mean STD of 8.4 dB) considering
that building information are completely ignored and the computation time can be
neglected. However, an exact point-to-point comparison (Figure 2.22) of prediction and
measurement reveals the weakness of the model. The predicted values miss the actual
attenuation sometimes by more than 10 dB. Only the basic shape of the measurement
curve is reproduced.

Measurement Route ME MSE STD
METRO200 −7.6 dB 12.2 dB 9.5 dB
METRO201 −2.1 dB 7 dB 6.7 dB
METRO202 −0.9 dB 8.9 dB 8.9 dB

All -3.5 dB 9.4 dB 8.4 dB

Table 2.2.: Prediction accuracy in COST 231 Munich for the COST-Hata model.
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Figure 2.22.: Comparison between measured and predicted path loss for the COST-
Hata model along the METRO routes in COST 231 Munich.
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2.6.4.2. COST-Walfisch-Ikegami Model

The attenuation of the COST-WI model (cf. Section 2.3.1) depends whether the receiv-
ing location has an unobstructed LOS path or not. We set up our evaluation of this
model as follows: For the fixed transmitter location in COST 231 Munich we first divide
the receiver plane into points in LOS and the ones in NLOS according to the algorithm
in Section 2.4.1.1. For the first set of points (LOS) we evaluate the path loss as

P dB

LOS (r) = cf + 26 · lg (dr) + 10.2

and for the second set (NLOS) as

P dB

NLOS (r) = P dB

F0 + max
{

∆P dB

F,rts + ∆P dB

F,msd, 0
}
.

Interestingly, our implementation of the COST-WI model achieves very high accuracy
in terms of STD (5.9 dB) which is in the same order of magnitude as the deterministic
models, cf. Table 2.3 and Table 2.13. Again, a comparison of the actual shape of
the predicted and measured path loss reveals that the COST-WI model predominantly
averages the overall attenuation but neglects most of the spikes and signal fluctuations,
cf. Figure 2.24. The main difference to the COST-Hata model is the distinction between
LOS and NLOS which is particularly visible in METRO201 (center) and METRO202
(bottom). This leads to a much better estimation of points in LOS by the COST-WI
due to the additional degree of freedom. In general, the COST-WI model prediction
overestimates the actual attenuation. The measured received signal strength is stronger
than the COST-WI prediction which is probably due to additional wave guiding effects
in street canyons that are neglected in the model.

Measurement Route ME MSE STD
METRO200 −6.2 dB 9.5 dB 6.1 dB
METRO201 −10.7 dB 12.6 dB 5 dB
METRO202 −11.5 dB 14 dB 6.7 dB

All -9.5 dB 12 dB 5.9 dB

Table 2.3.: Prediction accuracy in COST 231 Munich for the COST-WI model.
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Figure 2.23.: Line-of-sight calculation time on different generations of graphics cards
in the COST 231 Munich scenario.

Concerning the computational performance of our implementation, we identified the
limiting factor of the model evaluation to be the computation of the LOS/NLOS region.
The computation time of the evaluation of the actual path loss formula can again be
neglected. Therefore, we analyzed the performance of the LOS computation with respect
to scalability of the underlying resolution and number of shader units (cores). Table 2.4
gives an overivew of the hardware specifications. Figure 2.23 depicts the computations
per second over the size of the underlying discrete grid. At the common resolution
of 5 meters these cards achieve 100, 200 and over 500 LOS computations per second,
respectively. Thus, we observe a speedup by a factor of 2 for every new generation of
graphics cards. In terms of throughput, the 500 LOS computations per second can also
be expressed as roughly 1.6 ·108 receiver points per second. The total number of receiver
points is roughly 3 ·105 at a resolution of 5 meter. As point of reference, the commercial
tool Winprop [8] states that their COST-WI implementation requires approximately 5
seconds at a resolution of 10 meters.

type year core clock core config bandwidth (DDR3)
GPU1 6600GT 2004 500 MHz 3:8:8:4 ∗ 14.4 GB/sec
GPU2 7800GT 2005 400 MHz 7:20:20:16 ∗ 32.0 GB/sec
GPU3 8800GTX 2007 575 MHz 128:32:24 † 86.4 GB/sec

Table 2.4.: GPU Hardware Specifications. All graphics cards are NVIDIA Geforce
cards. ∗ core config is vertex shader : pixel shader : texture mapping unit : render
output unit. † core config is unified shaders : texture mapping unit : render output
unit.
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Figure 2.24.: Comparison between measured and predicted path loss for the COST-
Walfisch-Ikegami model along the METRO routes in COST 231 Munich. The main
difference to the COST-Hata model is the distinction between LOS and NLOS which is
particularly visible in METRO201 (center) and METRO202 (bottom).
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Figure 2.25.: This image shows the field strength prediction of the COST-WI model
in the COST 231 scenario in downtown Munich, Germany.
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2.6.5. Ray Optical Models

2.6.5.1. Roof Diffraction Model

We recall the path loss computation of the RDM from Section 2.4.2.1 as

PLdB

RDM (υ ) = cf + c0 + γ · 10 · lg (dυ ) +
Nr∑
i=1

g
(
α

(i)
υ 

)
with the angle dependent attenuation g (α) = a0 + a1α + a2α

2.

Model Parameter Optimization We formulate physical constraints to the model param-
eters of the angle dependent loss as

(a) g (α) = a0 + a1α + a2α
2 ≥ 0

(b) g′ (α) = a1α + 2a2α ≥ 0

}
∀α ∈

[
0,
π

2

]
(2.59)

where (2.59a) ensures that diffraction does not increase received power and (2.59b) that
diffraction loss increases with increasing deflection angle. To fit our optimization frame-
work (2.50), these constraints must be reformulated as equivalent linear constraints:

g (0) = a0 ≥ 0
g′ (0) = a1 ≥ 0
g′
(
π
2

)
= a1 + a2π ≥ 0.

(2.60)

With parameter vector v = (c0, γ, a0, a1, a2)T we can formulate the linear optimization
problem as

v̂ = arg min
v

N∑
i=1

(
M dB (ri)− PLdB (ri)

)2
(2.61)

with

a0 ≥ 0
a1 ≥ 0
a1 + a2π ≥ 0

(2.62)

where v̂ minimizes the mean squared error between predicted and measured data.

Solving (2.61) with constraints (2.62) for each individual measurement route yield the
parameter vectors detailed in Table 2.5. We observe major differences between the
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Optimized / Parameter Value c0 γ b0 b1 b2

METRO200 −53.36 5.02 0 0 4.22
METRO201 −29.04 3.95 1.5 4.27 −1.09
METRO202 −48.06 4.72 0.15 1.99 2.24

Table 2.5.: Parameter vectors according to constraints (2.62)

Optimized / MSE METRO200 METRO201 METRO202 average
METRO200 6.1 dB 5.5 dB 6.6 dB 6.1 dB
METRO201 8 dB 4.4 dB 6.4 dB 6.3 dB
METRO202 6.9 dB 4.8 dB 6.1 dB 5.9 dB

Table 2.6.: Prediction accuracy of RDM calibrated with constraints (2.62).

parameter vectors which may diminish their ability to generalize well to other scenarios.
The behavior of the angle dependent loss function is depicted in Figure 2.26 (left) for each
parameter set per measurement route. In particular, the loss function of ROUTE201
deviates significantly in behavior from the ones of ROUTE200 and ROUTE202. We
marked the range between 0 and π

4
(45 degree) since most diffraction angles are expected

to fall into that range. Table 2.6 details the prediction quality with respect to the
MSE for each pair of parameter vector and measurement route when using the physical
constraints (2.62).

To compensate for the fluctuations in parameter characteristic and prediction quality we
introduce an additional constraint by forcing the base loss c0 to zero. Hence, the path
loss will solely be determined by distance to sender and deflection angles. The modified
constraints are

c0 = 0
a0 ≥ 0
a1 ≥ 0
a1 + a2π ≥ 0.

(2.63)

Again, we solve (2.61) for each measurement route, now with the more strict constraints
(2.62). The resulting parameter sets are given in Table 2.7. We observe a significant
improvement in stability over the previous parameters. The characteristics of the angle
dependent loss functions are now in good agreement in the most important range between
0 and 45 degree, cf. Figure 2.26 (right). We notice a decrease in overall prediction quality
(Table 2.8). However, we believe that the improved generality of parameters is worth
the slight drop in accuracy.
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Optimized / Parameter Value c0 γ b0 b1 b2

METRO200 0 3.06 2.09 0.059 5.37
METRO201 0 2.86 2.59 1.74 2.24
METRO202 0 2.76 3.37 0 4.9

Table 2.7.: Parameter vectors according to the more strict constraints (2.63).

Optimized / MSE METRO200 METRO201 METRO202 average
METRO200 8.1 dB 6.9 dB 9 dB 8 dB
METRO201 9.8 dB 4.7 dB 7.5 dB 7.3 dB
METRO202 9.8 dB 4.8 dB 7.4 dB 7.3 dB

Table 2.8.: Prediction accuracy of RDM calibrated with the more strict constraints
(2.63).

In the remainder of this work all path loss calculations were performed with parameters

c0 = 0.0; γ = 2.76; a0 = 3.37; a1 = 0; a2 = 4.9

which was retrieved from a calibration to route METRO202 in the COST 231 Munich
scenario with additional physical constraints according to (2.63). Basically, the parame-
ter vector represents unknown components like material properties or vegetation in the
propagation environment. The main difference to the empirical models is the consid-
eration of actual diffraction effects at building rooftops. As a result of the parameter
optimization to the data points of route METRO202, the ME is almost zero there. For a
fair comparison to the empirical models, the STD may be the major accuracy indicator
since it removes the ME from the performance criteria.

Accuracy and Performance The RDM can achieve a much better reconstruction of
the measured signal as illustrated in Figure 2.27. However, strong fluctuations are
visible in METRO200 that happen at large distances between sender and receiving
measurement points are due to the discrete nature of the GPU algorithm. A small
change at the receiver location leads to a large change of the deflection angle of the
roof diffractions which ultimately leads to discontinuities in the path loss computation.
Informally speaking, the discrete resolution can lead to situations where rays are shot
through buildings instead of being deflected. The numerical instabilities have a direct
influence on the performance in terms of STD which is with 7.2 dB less accurate than
the COST-WI prediction, cf. Table 2.9 and Table 2.3. However, the predicted signal
strength of routes METRO201 and METRO202 as depicted in Figure 2.27 are in good
agreement with the actual measurements.

A complete evaluation of the RDM in the COST 231 Munich scenario requires approxi-
mately 3 seconds at a resolution of 5 meters. We compared this to the model CORLA
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Figure 2.26.: Loss functions g (α) for angle dependent part of the RDM, with non-zero
base loss (left) and additional physical constraints (right). Most diffraction angles are
expected to fall in the range between 0 and π

4
(45 degree).

Measurement Route ME MSE STD
METRO200 −4.9 dB 9.8 dB 9.5 dB
METRO201 −0.3 dB 4.8 dB 4.7 dB
METRO202 0.3 dB 7.4 dB 7.3 dB

All -1.6 dB 7.3 dB 7.2 dB

Table 2.9.: Prediction accuracy in COST 231 Munich of RDM.

which we configured to consider only horizontal roof diffraction at a maximum recursion
depth of 6. For a fair comparison we turned off the computation of reflection or vertical
diffraction. At this setting CORLA requires roughly 9 seconds for a prediction in the
same scenario. When judging the speedup of 3X we have to take into consideration
that our RDM implementation inherently computes ray paths of all possible number of
multiple roof diffractions which would correspond to an unbounded level of recursion.

For a deeper analysis of the computation time of our RDM implementation, we sub-
divided the evaluation into sub tasks: (1) the computation of LOS and the horizontal
diffraction beams (HDBs), (2) the reconstruction of ray paths due to multiple roof diffrac-
tions and (3) the transformation into convex ray paths with a subsequent evaluation of
the path loss formula (2.43).

As depicted in Table 2.10 we see that although the computation of the HDBs requires a
lot of LOS evaluations it takes the lowest share of computation time with 0.05 seconds
due to our highly efficient GPU implementation (cf. Figure 2.23). The reconstruction of
diffraction paths of arbitrarily length is also performed in parallel on the GPU. However,
the large number of memory accesses in proportion to floating point operations, every
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Task/ Run time NVIDIA 7800 GT AMD 3500
LOS / NLOS + diffraction beams 0.05s (GPU)
Ray path reconstruction 0.8s (GPU)
Convex hull of ray path + model evaluation 2.2s (CPU)
Total 3.05s (GPU+CPU)
CORLA (only roof diffraction with recursion
depth of 6)

9s (CPU)

Table 2.10.: Run time analysis of the RDM at a resolution of 5 meter in the Munich
scenario.

deflection point has to look up its predecessor until the original radiation source is
reached, takes its toll with about 0.8 seconds. The algorithm for the upper convex ray
path hulls has been implemented on the CPU only, due to a missing stack implementation
on the GPU. Accordingly, all intermediate results have to be downloaded from the GPU
and processed sequentially, hence this part makes up the largest portion of the overall
run time with 2.2 seconds. Of course, it would be desirable to reduce the GPU-CPU
bottleneck as much as possible. We will address this issue in the EDM implementation
which can be performed entirely on the GPU.
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Figure 2.27.: Comparison between measured and predicted path loss for the Roof
Diffraction Model (RDM) along the METRO routes in COST 231 Munich. The main
difference to the empirical models is the consideration of actual diffraction effects on
building rooftops.
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Figure 2.28.: This image shows the field strength prediction of the RDM in the COST
231 scenario in downtown Munich, Germany.
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2.6.5.2. Edge Diffraction Model

We use the path loss formulation of the EDM as defined in Section 2.4.2.2

PLdB

EDM (υ ) = cf +


PLdB

LOS (υ ) , υ in LOS

PLdB
LOS (υ ) + PLdB

VD (υ ) , υ due to diff. at vertical edge

PLdB
HD (υ ) , otherwise

with the model parameters

γLOS = 2.6007; γNLOS = 3.4330; Lw = 0.2522;

b0 = 1.4562; b1 = 0.4022; b2 = −0.0022.

As always, all predictions were performed on the whole supplied area of approximately 7
km2 with a resolution of 5 meters in the COST 231 Munich scenario. We have observed
that in the particular scenario the first level of vertical diffraction into street canyons
already provides sufficient prediction accuracy. The fixed angle approximation to the
horizontal diffraction which is realized by determining the wall penetration depth, as
described in Section 2.4.1.2, shows satisfying agreement with regions in deep NLOS, cf.
Figure 2.29.

The achieved criteria for prediction quality are detailed in Table 2.11. On average a STD
of 5.4 dB is achieved. It’s worth noting that the STD and MSE are more or less the
same for all measurement routes due to an almost zero ME. We conclude that the EDM
model assumptions are well suited for the heterogeneous building development in the
historically grown structures of the city of Munich and that the parameter vector which
has been obtained by an optimization to the measurement points of route METRO202
generalizes nicely.

The strong fluctuations in the prediction by the RDM are greatly reduced in the EDM
which in general achieves a much more stable reconstruction of the measured signal.
It can be seen that although the path loss is still sometimes over- or underestimated,
most of the important features in the measurement data are captured quite well by the
propagation prediction. Among the considered models so far, we believe that the EDM
performs best.

Table 2.12 gives an overview of different propagation predictions with respect to accu-
racy and run time for route METRO201. We use the CPU implementation of the ray
launching algorithm CORLA by [94] as reference for our GPU implementation. In our
test scenario, CORLA exhibits run times of about 9 seconds. When switching from the
CPU implementation of CORLA to our GPU method we observe a speedup of roughly
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Measurement Route ME MSE STD
METRO200 2.1 dB 6.2 dB 5.9 dB
METRO201 0.1 dB 4.5 dB 4.5 dB
METRO202 −0.1 dB 5.7 dB 5.7 dB

All 0.7 dB 5.5 dB 5.4 dB

Table 2.11.: Prediction accuracy in COST 231 Munich of the EDM.

3X for the roof diffraction method where the most time (2 seconds) is currently consumed
by the computation of upper convex hull, since this has to be executed on the CPU,
due to a missing stack implementation on the GPU. The computation of propagation
effects (diffraction into street canyon with transmission depth) required for the EDM can
be computed at approximately 0.05 seconds and achieves roughly the same prediction
accuracy. Hence, the diffraction into street canyon with the fixed angle approximation
for horizontal diffraction results in a total speedup of a factor of 160X with respect to
the CPU implementation of CORLA.

Prediction model ME STD run time
CORLA [94] (CPU) 0.1 dB 4.2 dB 9 s

RDM (GPU) −0.2 dB 4.7 dB 3.05 s
EDM (GPU) 0.1 dB 4.5 dB 0.05 s

Table 2.12.: Accuracy and run times of propagation models in COST 231 Munich
along route METRO201.
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Figure 2.29.: Comparison between measured and predicted path loss for the Edge
Diffraction Model (EDM) along the METRO routes in COST 231 Munich. The main
difference to the empirical models is the consideration of actual diffraction effects into
street canyons.
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Figure 2.30.: This image shows the field strength prediction of the EDM in the COST
231 scenario in downtown Munich, Germany.
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Model/Measurement Route ME MSE STD
COST-Hata/METRO200 −7.6 dB 12.2 dB 9.5 dB
COST-Hata/METRO201 −2.1 dB 7 dB 6.7 dB
COST-Hata/METRO202 −0.9 dB 8.9 dB 8.9 dB
COST-WI/METRO200 −6.2 dB 9.5 dB 6.1 dB
COST-WI/METRO201 −10.7 dB 12.6 dB 5 dB
COST-WI/METRO202 −11.5 dB 14 dB 6.7 dB

RDM/METRO200 −4.9 dB 9.8 dB 9.5 dB
RDM/METRO201 −0.3 dB 4.8 dB 4.7 dB
RDM/METRO202 0.3 dB 7.4 dB 7.3 dB
EDM/METRO200 2.1 dB 6.2 dB 5.9 dB
EDM/METRO201 0.1 dB 4.5 dB 4.5 dB
EDM/METRO202 −0.1 dB 5.7 dB 5.7 dB

Table 2.13.: Overview of prediction accuracy in COST 231 Munich for our GPU
implementation of the COST-Hata, COST-WI, RDM and EDM.

2.6.6. Comparison

First, we compare our GPU implementations with each other. Then, we briefly introduce
well-known models from literature that have published results on their performance in
the COST 231 scenario and give an overview of the prediction accuracies and compare
them against the background of our results.

2.6.6.1. Comparison of GPU Implementations

Above, we have discussed the presented models in detail. Here, we give a broader
comparison of the models to each other. For sake of completeness, an overview of the
quality criteria of all implemented models is given in Table 2.13. In the Munich test site
we can achieve higher prediction quality by an increasing computational complexity of
the used models. The COST-Hata and the COST-WI model can offer a fast preview
of the mean path loss, however rather large absolute errors are involved as can be seen
from the large difference between their MSE and the corresponding STD. In general,
the RDM can achieve a much better reproduction of the actual path loss measurements,
but it suffers from instabilities of the discrete computation with a negative effect on
the overall prediction quality. The instabilities have been greatly reduced in the EDM
which performs best among the presented models. The MSE and STD are almost the
same which is also reflected by a good reconstruction of the original signal as detailed
in Figure 2.29.
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2.6.6.2. Comparison with Literature

Most of the propagation models in Table 2.14 are based on empirical approaches or ray
optical methods with either simplified analytical solutions or pure ray tracing techniques.
The various approaches differ greatly on computation time efficiency, analytical path
loss model and input data. Therefore, we will briefly summarize the essential idea and
theoretical background of the individual models.

Ericsson The path loss in this model [21] is determined along paths following different
streets with arbitrary angles of crossing streets. Internally, this is realized by a ray trac-
ing approach. Furthermore, the model uses well known (empirical) path loss expressions
for the loss between two isotropic antennas which is basically a recursive function of
the number of deflection points between sender and receiver. Additionally, regions that
are not reached with ray tracing are approximated by a COST-WI-like model for NLOS
propagation to approximate multiple rooftop diffractions.

CNET The CNET model is an analytical, semi-deterministic approach [159]. It con-
siders reflected and diffracted wave fronts below roof-top level. Propagation into street
canyon can deal with street crossings of four corners (e.g. the Manhattan Grid). The
maximum level of reflection recursion depths is given as 9, both for LOS and NLOS.
Conductivity coefficients are approximated by heuristic parameters.

PPT This model by the Swiss Telecom [127] can handle arbitrary two-dimensional
building geometry with individual permittivity and conductivity of each building wall,
if available. However, the majority of their computations are done by using the same
characteristic for every building. Ground reflection, scattering and over-roof-top propa-
gation are neglected but specular reflections are computed by a ray tracing technique.
Diffraction is computed by placing virtual sources on all building corners and traversing
secondary propagation rays. The path loss is derived by a superposition of all incoming
rays at a receiver location.

PPT TLM The propagation modeling is achieved by a transmission line matrix (TLM)
technique [9] which is based on a direct discretization of the building structures in a
two-dimensional grid. Solution approaches are similar to the Lattice Boltzmann Models
(LBMs) which are commonly used in solving systems in computational fluid dynamics.
In terms of wave propagation, space and time are represented in terms of finite elements
and the propagation equations are solved with corresponding numerical schemes. The
TLM assumes infinite building heights which implies a two-dimensional propagation
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which is referred to as cylindrical source problem. The results are converted back to 3D
by renormalization of the predicted results according to distance between transmitter
and receiver.

COST-WI* see Section 2.3.1.

Uni-Valencia This approach separates the computation of propagation effects into
rooftop diffraction and local scattering in receiver vicinity [34]. They follow an em-
pirical computation approach with the argument that the building maps do not provide
information of rooftop shape. Incident rays at the receiver are scattered at nearby walls
and traced via ray tracing. If the transmitter is below the mean rooftop level, the model
describes an additional diffraction loss, similar to the COST-WI approach.

CSELT This model predominantly estimates the path loss due to propagation over
multiple rooftops [111]. It extends the COST-WI approximation by taking buildings
of different heights within the vertical propagation plane into account. The buildings
are treated as infinitely thin absorbing wedges and thus the Deygout’s diffraction ap-
proach [48] is applied in this model.

PPT MCOR This is another model developed by the Swiss Telecom. The software is
called MCOR and implements a multi-knife edge propagation and is a modified Dey-
gout’s methods proposed by [38]. The modification introduces a linear increase of the
path loss due to multiple diffractions, thus the influence of the diffraction effect is de-
creased with increasing level of recursion. Additionally, a dual slope model is used to
represent the distance dependent loss in LOS and NLOS.

Uni.-Karlsruhe This model proposes a three-dimensional ray tracing approach where
base stations may be above as well as below building heights [41]. The ray tracing
technique takes building information as either pixel grid data or vector oriented data.
The result depends on a reasonable horizontal resolution of the supplying area. If not
provided in the database, building heights are approximated by the number of floors
and corresponding floor heights. The ray tracing implementation includes dominant
propagation paths like rooftop diffraction in the vertical plane and diffraction into street
canyons in the transverse plane. Within these planes, propagation paths are computed
two-dimensionally.
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Prediction model METRO200 METRO201 METRO202 All
ME STD ME STD ME STD STD

Ericsson [21] (R+E) 0.3 6.7 2.3 7.1 1.4 7.5 7.1
CNET [159] (R+O) -2.1 6.9 -3.6 9.5 -0.2 5.6 7.3
PPT [127] (R) -6.1 14.6 -6.7 15.5 -1.1 12.3 14.1
PPT [9] TLM (O) 0.8 13.8 6.7 21.7 6.5 12.9 16.1
COST-WI* (E) 10.8 7.7 15.4 5.9 16.3 7.3 7.0
Uni.-Valencia [34] (E+O) 0.2 8.7 -6.6 7.0 -7.4 10.3 8.7
CSELT [111] (E+O) 21.8 10.4 16.1 12.3 20.6 13.3 12.0
PPT MCOR [38] (O) -3.3 7.0 -0.1 6.2 -1.1 7.6 6.9
Uni.-Karlsruhe [41] (R) -4.3 8.5 2.4 9.1 -1.0 8.6 8.7
CORLA [94] (R) 1.0 6.1 0.1 4.2 0.1 5.6 5.3
Beamtrace [134] (R) 1.0 6.1 0.1 4.2 0.1 5.6 5.3
GPU EDM (R) 2.1 6.2 0.1 4.5 -0.1 5.7 5.4

Table 2.14.: Prediction accuracy in COST 231 Munich for various propagation models.
Methods categorization: empirical (E), ray optical(R), other (O).

CORLA This model [94] is a ray launching algorithm. It represents the 3D propa-
gation environment as a list of surfaces. Rays are launched from the transmitter on a
discrete grid into predetermined directions and may be reflected or diffracted at surfaces.
Diffractions are modeled by emitting new ray bundles into the respective diffraction cone
whereas reflections only change the direction of existing rays. By concatenating deflec-
tion points, ray paths are constructed and based thereof the path loss is determined.
Unknown model coefficients are determined by an iterative approach between calibration
to measurement and computation of strongest propagation paths.

Beamtrace Schmitz et al.[134] presented an algorithm that uses beam tracing instead
of classical ray tracing to efficiently compute propagation predictions. Their work is
inspired by algorithms from global illumination in computer graphics. They focus on
an efficient GPU implementation that relies on a custom rasterization pipeline. Their
algorithm is explicitly designed to compute multi-path effects due to diffraction and
refraction. Propagation Environment characteristics are also captured by calibration to
measurements. Part of their work represents an extension to the algorithms presented
in this thesis.

The quality criteria of the introduced models are summarized in Table 2.14 in terms
of ME and STD. We first observe that the quality is very heterogeneous among the
different models. The worst quality is about 16.1 dB by the PPT TLM. The highest
accuracy is achieved by CORLA and our implementation of the EDM with 5.3 dB and
5.4 dB, respectively. It should be noted, that the MSE and STD can not be reduced
arbitrarily. First, the description of the propagation environment is usually incomplete
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like style of roof, type of material and vegetation. Furthermore, random effects like
weather and traffic can only be modeled mathematically. Second, the measurements
itself are subject to noise and uncertainty. It can be shown that two consecutive test
runs within urban environments under comparable conditions exhibit already a STD of
over 3 dB, cf. [126]. We see that whether the GPU or CPU is involved in the prediction
computation has no significant influence on the propagation accuracy. The performance
of the EDM exhibits similar accuracy as other state-of-the-art models.
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2.7. Conclusions

This chapter showed how to exploit graphics hardware for accelerating the computation
of radio wave propagation predictions. Our method traces discrete line-of-sight beams
and reconstructs ray paths based on radiation source, beam origin and discrete deflec-
tions points within beams. The presented algorithms are designed to benefit from the
computational power and parallel architecture of modern graphics cards. Core compo-
nent of the Graphics Processing Unit (GPU) algorithms is a high throughput Line-of-
Sight (LOS) computation which leads to computation times of 3 to 0.05 seconds in a
scenario of 7 km2 with roughly 18000 walls. This results in a speedup of 3X to 160X times
compared to the CPU algorithm Cube-Oriented-Ray-Launching-Algorithm (CORLA)
which performed best among state-of-the-art models in literature. Our performance
increase is achieved by designing separate algorithms for distinct propagation effects
such as diffraction over rooftops and diffraction into street canyons. An appropriate
combination of propagation effects in the Edge Diffraction Model (EDM) can deliver
propagation predictions at interactive rates. The accuracy of our propagation predic-
tions is quantified by the Mean Squared Error (MSE) and the Standard Deviation (STD)
between predictions and measurement data of 4 to 7 dB which is considered as a very
good result. We conclude that the use of graphics hardware for field strength predictions
does not diminish propagation accuracy but can significantly reduce computation time.
We summarize the main contribution as the development of a run time efficient algo-
rithm that accurately predicts mean received signal strengths in dense urban propagation
environments.

Furthermore, we presented a VR prototype application for wireless communication net-
works that combines the real-time simulation with an interactive manipulation of the
propagation environment. We identified three major interaction tasks: Adjustment of
visualization and simulation parameters, setup and modification of transmitter sites and
the manipulation of the city model which provides the computational basis for the sim-
ulation algorithm. All computational intensive tasks were performed on the GPU to
achieve a real-time response directly in the Virtual Environment (VE). All user input is
immediately communicated to the simulation algorithm which updates all propagation
predictions such that the effect is instantly visible to the user. An expert review of two
domain experts of communication theory revealed a promising potential of the VR in-
terface. In general, they asked for more interactive control over propagation simulation
settings such as radiation pattern or power regulation. They especially liked the overview
in the VE and in particular the possibility to create missing buildings on the fly. They
stated that the overall application of the presented algorithms and VR interface offers
promising potential for finding weak spots in an initial or reviewing planning phase of
communication networks. We hope that by coupling simulation and manipulation with
a VR interface we contributed in the understanding of the underlying mathematical
models and algorithms required for planning and optimizing radio networks.
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CHAPTER 3

FIBER PATHWAY ESTIMATION

Abstract Understanding the connectivity structure of the human brain is a funda-
mental prerequisite for the treatment of psychiatric and neurological diseases. With
Diffusion Tensor Imaging (DTI) we can measure water diffusion and in turn can infer
white matter fiber tracts in the living human brain. However, due to the relative low
resolution of DTI (about 2 – 3 mm3) as compared to the diameter of an axon (about 1
µm) only dominant fiber directions are accounted for. By applying magnetic field gradi-
ents from different spatial directions, the inherent uncertainty within the diffusion data
can be assessed and taken into account by probabilistic tractography when inferring the
course of fiber tracts. In principle, the probability of how likely a fiber bundle takes its
course through a particular voxel is calculated for any two voxels in the brain.

In this chapter, we address two major aspects of probabilistic tractography, computation
and visualization, by presenting (1) an effective algorithm that is able to compute prob-
abilistic fiber tracts in real-time and (2) a subsequent real-time exploratory visualization
of its results. A real-time probabilistic tracing is achieved by a parallel implementation
on the GPU. Besides the basic probabilistic streamline integration, we describe how
state-of-the-art extensions like multi-fiber orientation and loop checking can be adapted
to benefit from the GPU’s many-core architecture. Our visualization approach focuses
on the assessment of fiber probabilities in relation to their structural context. In par-
ticular, the comprehension of the course of the fiber in relation to its confidence is one
of the most crucial steps. We employ a semi-transparent direct volume rendering tech-
nique to display fiber tracts in combination with anatomical landmarks. A VR interface
lets the user take an active role in the exploration process by using magic lens tech-
niques to disambiguate between data modalities and to support the understanding of
the structure-function relationship. Moreover, exploratory aspects are supported by a
direct coupling between the computation and visualization of fiber tracts.
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The remainder of this chapter is structured as follows. After a brief motivation and
problem statement in Section 3.1, we present the technical background and review related
work in Section 3.3. Section 3.4 introduces a model of global connectivity and describes
the algorithmic aspects of probabilistic tractography on the GPU. We describe the
visualization and interaction of our VR interface in Section 3.5. Section 3.6 briefly
discusses the anatomical validity of our fiber tract computation and then focuses on the
computational performance in terms of run time and speedup. We conclude the chapter
in Section 3.7.

3.1. Motivation

Neuroscientific research aims at understanding the structure-function relationship in the
brain. Networks of communicating brain areas are required to fulfill motor, sensory as
well as all mental and cognitive activities. The structural basis of such networks are
nerve fibers connecting the participating brain areas. A profound knowledge about this
connectivity structure is therefore necessary for understanding the computational activ-
ity of the brain. Consequently, the concept of the human ”Connectome“ has recently
evolved a research strategy comparable to the Human Genome Project. One major goal
of the Connectome Project is a complete mapping of the fiber bundles in the brain.

Diffusion tensor magnetic resonance imaging (DT-MRI) allows the assessment of white
matter fiber tracts by inferring the course of fibers by measuring water diffusion in
the living human brain. Based on their Brownian motion, water molecules prefer to
move along directions with lowest resistance, which in the brain is provided along the
Myelin sheaths. By applying magnetic field gradients from different spatial directions,
the uncertainty within the diffusion data can be estimated and used for consecutive
analysis. An effective Diffusion Tensor (DT) can be estimated within each voxel and
leads to derived quantities such as mean diffusivity, principal diffusion direction and
anisotropy of the diffusion ellipsoid [11].

To reconstruct fiber pathways based on the diffusion data, two main methods are cur-
rently used: deterministic tractography, and probabilistic tractography. Deterministic
tractography tries to find the path from a seed to a target voxel based on the main dif-
fusion direction within each voxel on the way. Uncertainty within the course of the fiber
pathway is usually neglected. In contrast, probabilistic tractography explicitly accounts
for the uncertainty of the actual fiber tracts. A local probability distribution of the
diffusion direction is calculated for each voxel. A probabilistic algorithm then estimates
global connectivity by finding the most probable course of a fiber between a seed and
a target voxel. At each voxel the next fiber direction is determined based on the local
probability distribution and its prior course [15]. As a result, probabilistic tractography
does not provide a single fiber tract, but a probability distribution of possible fiber path-
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Figure 3.1.: Thresholding probabilities in 2D and corresponding isosurfaces in 3D. The
result is heavily influenced by the choice of probability thresholds. The desired result is
shown in Figure 3.2.

ways between seed and target voxels, ranging from voxels with a large number of passed
traces to voxels with only a low number of passes.

3.2. Problem Statement

A major issue of current 3D visualization techniques in common DTI analysis tools is
that no indication of uncertainty in the fiber tracts is contained in the final renderings.
For instance in Figure 3.1 and Figure 3.2 (left), the rendering of tracts is achieved by
extracting an isosurface from the fiber tract but with no further clues to anatomical
details or probability distribution within the fiber tract. However, anatomical context
information is crucial for the registration of the most likely course of a fiber pathway in
relation to structural landmarks.

Moreover, a static visualization alone is often not sufficient. For a deeper understanding
of the complex structures, interactivity is the key to provide context and to disambiguate
structural relationships. A main challenge lies in the computational complexity of the
underlying algorithm.

Requirements We address the above problem statement by formulating five concep-
tual requirements of an interactive exploration system based on an interdisciplinary
discussion with DTI domain experts as follows: (1) The visualization should empha-
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Figure 3.2.: The same fiber tract as in Figure 3.1 with desired thresholds depicted as
an isosurface (left) and as probabilistic rendering (right). The probabilistic rendering
also conveys the probability distribution within the fiber tract.

size spatial patterns and present the three-dimensional physical structure in an intuitive
fashion. (2) The final rendering should convey the uncertainty within each fiber tract.
(3) The location of fiber tracts within the human brain should easily be deduced by the
anatomical context. (4) The understanding of the structure-function relationship should
be supported by an on-demand computation of probabilistic fiber pathways. (5) None of
the above requirements may interfere with the interactivity of the exploration system.

Approach We embed the interactive exploration system into a VE, which not only
improves spatial perception due to stereoscopic projections but also enables the use of
direct interaction techniques such that the user becomes an integral part of the visu-
alization pipeline. We address the visualization of probabilistic fiber tracts by a direct
volume rendering approach in order to provide semi-transparent renderings of the uncer-
tainty in combination with structural information in real-time. A magic lens interaction
metaphor, which we will refer to as virtual flashlight, lets the user gain fine-grain control
over the amount of visible anatomical context. In particular, we implement the proba-
bilistic fiber tracking algorithm in parallel on the GPU, thereby reducing the response
time upon a seed query such that the exploration of global probabilistic connectivity
becomes an interactive procedure.

We realize the above described system by using four basic techniques that have been
adapted or developed further where required: (1) An interactive rendering of multi-
modal volumetric data sets in a VE, (2) a direct 3D magic lens interaction to disam-
biguate between data modalities, (3) a real-time selection within the VE with respect
to special requirements due to data set characteristics, and (4) a parallel implemen-
tation of a probabilistic fiber tracking algorithm that enables interactive connectivity
exploration.
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The first three methods (rendering, interaction, selection) are essentially state-of-the-
art algorithms that have been customized to explicitly work in VEs. We will therefore
only briefly discuss them in Section 3.5 together with the VR prototype application.
The main contribution of this chapter is the parallel implementation of the probabilistic
fiber tracking algorithm which will be presented in more detail in Section 3.4.

3.3. Background

This section introduces basic DTI concepts, related work and the mathematical notation
that will be used throughout this chapter.

3.3.1. DTI and Tractography

The following background information on DTI and Tractography is summarized from
Tuch et al. [143] and Behrens et al. [18]. The neural architecture of the human brain
consists of brain cells (neurons) that in turn consist of a cell body which processes signals
received at its dendrites and transmits signals down its axons. Axons are responsible
for passing signals to connected cells. Each axon is surrounded by a fatty substance
known as Myelin to provide electrical insulation. Diffusion based MRI is a non-invasive
technique that provides insight into this tissue architecture at the microscopic level. The
diffusion of water molecules [55] (Brownian motion) is used as a macroscopic probe of
orientation of axonal fibers in brain’s white matter. Hereby, the technique relies upon
the structure of the myelinated axonal sheaths. If a water molecule undergoing random
motion encounters a barrier such as a Myelin wall, it is more likely to diffuse along
the Myelin sheaths than across them. Thus, in white matter water diffusion is usually
anisotropic.

Basser et al. characterized this diffusion anisotropy in [11]. They first introduced Diffu-
sion Tensor Imaging (DTI) by allowing the diffusion process to be different in different
directions. The diffusion is hereby characterized by a positive definite and symmetric
3× 3 matrix which is commonly referred to as the Diffusion Tensor (DT) D. Its three
eigenvectors ε1, ε2, ε3 are orthogonal and form the principle diffusion directions. Thus,
the DT represents a local orthogonal coordinate system. Each orthogonal axis is asso-
ciated with an independent diffusion coefficient that are known as principle diffusivities
and correspond to the three eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ 0. The DT can be written as

D = (ε1|ε2|ε3)

 λ1 0 0
0 λ2 0
0 0 λ3

 (ε1|ε2|ε3)T . (3.1)
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The DT allows the extraction of several scalar quantities, in particular the overall dif-
fusivity and the diffusion anisotropy within a voxel. We will briefly introduce the most
common ones and refer to [14] for a more general review of anisotropic water diffusion.

The overall diffusion in a voxel is described by the trace of the DT which corresponds
to the sum of the eigenvalues

tr (D) =
3∑
i=1

Dii =
3∑
i=1

λi. (3.2)

The diffusion anisotropy describes the degree to which diffusion in a individual voxel
is preferred in one direction over others. Various measures of anisotropy have been
proposed like the eigenvalue ratio

AER =
λ1

λ3

, (3.3)

the normalized eigenvalue ratio [155]

ANER =
λ1 − λ3

λ1

(3.4)

or the volume ratio [13]

AVR =
λ1λ2λ3

λ̄3
(3.5)

with λ̄ = (λ1 + λ2 + λ3) /3. Yet the most commonly used measure is the Fractional
Anisotropy (FA) [13]

FA =

√
3

2 (λ2
1 + λ2

2 + λ2
3)

3∑
i=1

√(
λi − λ̄

)2
. (3.6)

The eigenvalues of the DT can also be used to describe shape properties that reflect the
amount of anisotropy as linear cl, planar cp and spherical cs configuration (cf. [157, 2])
with

cl =
λ1 − λ2

λ1 + λ2 + λ3

, cp =
2 (λ2 − λ3)

λ1 + λ2 + λ3

, cs =
3λ3

λ1 + λ2 + λ3

.

All expressions are normalized by the trace of the DT and are by design positive and sum
to unity. In turn, this means that (cl, cp, cs) can be regarded as a barycentric coordinate
that represents a a mixture of linear, planar and spherical shape. It is apparent, that
the linear metric offers the highest amount of anisotropy, followed by the planar and the
spherical configuration.
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In summary, diffusion anisotropy provides a measure for mean orientation of axons in
voxels. The Principal Diffusion Direction (PDD) as reconstructed from DTI can already
reveal major fiber pathways and are most commonly used as a propagator in determin-
istic streamline tractography. Moreover, the anisotropy measure is commonly used as a
stopping criteria to end fiber tracts that enter regions with no principal direction.

However, the diameter of a typical axon is in the range of few µm whereas Diffusion
Weighted Images (DWIs) are typically acquired at a resolution of several mm3 [14].
Hence, there may be hundreds of thousands of axons passing through each measured
voxel. In particular, Magnetic Resonance (MR) images represent the average of the
measured signal from all tissues per slice. Thus, each voxel in the image may represent
more than one tissue type (or orientation). This phenomenon is commonly referred
to as the partial volume effect. Moreover, if axons are crossing or exhibiting different
orientations within an individual voxel, the diffusion data will contain only information
of limited value. However, in deep white matter, axons tend to organize themselves in
large fiber bundles which then in turn can be identified with DTI. At the same time,
it is a major limitation of general tractography algorithms if they are restricted to the
reconstruction of pathways in deep white matter regions, only.

Visualization of such major fiber pathways have been reported as visually pleasing and
impressive, but have been difficult to interpret scientifically. In particular, deterministic
algorithms have often failed in regions of low diffusion anisotropy where there is no
obvious dominant fiber orientation. For this reason, tractography has also been of limited
use when tracing connections into their gray matter targets. A promising approach
to address this particular issue is probabilistic tractography as a method for inferring
white matter connectivity in the presence of imperfect and low resolution diffusion data.
It results in connectivity distributions with a quantitative description of belief in the
trajectories. Furthermore, is enables tracing from gray matter sources to gray matter
targets which is almost impossible with common streamline algorithms.

3.3.2. Related Work

Fiber Tractography Fiber tractography from Diffusion Tensor Magnetic Resonance
Imaging (DT-MRI) was first introduced by Basser et. al [10, 12] as a method to calculate
continuous fiber trajectories from the diffusion tensors. They successfully reconstructed
known anatomic structures as the corpus callosum and the pyramidal tract. However,
they found a strong sensibility of their algorithm in regions of low anisotropy. Jones
et al. proposed a similar method in [74] as well as Weinstein et al. [154] and Mori et
al. in [101], who also gives a good overview of the general tractography methodology
in [102].

The strong sensitivity to low anisotropy is partially addressed by probabilistic ap-
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proaches. Koch et al. [85] investigated connectivity by a Monte-Carlo (MC) simulation
to determine whether a particle diffuses between two points based on the components
of the local diffusion tensor. Additionally, they assessed functional connectivity by cor-
relating levels of blood oxygenation between gray and white matter voxels. Björnemo
et al. followed a similar approach in [27], using an extension to classical MC in or-
der to facilitate importance sampling to estimate probability distributions of possible
paths. Another MC approach is proposed by Parker and Alexander [110] who estimated
a probability density function (pdf ) of fiber orientation with MC simulation per voxel.
They modeled single fiber orientation by a Gaussian density function and multiple fibers
by a mixture of Gaussian densities. Moreover, they explicitly took the effect of noise
directly from the DWIs into account.

Xiangfen Zhang et al. [164] addressed the issue of reducing inherent noise in DTI. They
proposed a wavelet transform with anisotropic nonlinear diffusion to remove noise while
preserving texture and edges. Wu and Xie [160] also specifically focused on noise reduc-
tion in DTI. Instead of denoising the DWI (which are used to acquire the DTI) directly,
they employ on anisotropic filtering technique that is smoothing the tensor considering
structure and characteristic of its eigenvalues and eigenvectors.

Mangin et al. [92] followed an alternative approach and inferred anatomical connectiv-
ity based on an energy minimization procedure that defines a trade-off between local
information on voxel level as provided by the diffusion data and a priori information
based on anatomical plausibility. Behrens et al. [15] proposed a general probabilistic
tractography algorithm that tries to find the most probable course of a fiber between
a seed and a target voxel. In each voxel they tried to find the most likely prosecu-
tion of the fiber based on the local probability distribution and its prior course. Other
approaches [89, 73] used statistical bootstrapping methods that derive the uncertainty
from the data themselves (as opposed from acquisition thereof) to estimate dispersion
and errors in classical tractography results. In particular, Bermann et al. [22] combined
bootstrapping with Q-ball imaging [144] to further discriminate multiple fiber popula-
tions per voxel. Behrens et al. [16] also incorporated multiple fiber orientations within a
single voxels in their probabilistic tractography scheme to increase tracking sensitivity.
Similar, Qazi et al. [115] proposed a two-tensor model that incorporates two principal
diffusion directions to trace through regions of low anisotropy with deterministic tensor
streamline integration.

An alternative probabilistic approach based on particle filtering in a non-linear state
space model is presented by Zhang et al. in [161]. Recently, Momayyez and Siddiqi [100]
investigated a novel approach to fiber tracking by characterizing the underlying water
diffusion process as a 3D random walk that is described by stochastic differential equa-
tions. They showed that fiber trajectories correspond to curves of least energy between
source and sink regions.

Mittmann et al. [98] addressed computational issues of classical streamline fiber track-
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ing by comparing implementations on CPU clusters and on GPU. They concluded, that
GPU implementations are much faster in general and hence are better suited for inter-
active applications. Yet, they found CPU clusters to be suitable for batch processing
large amounts of fiber tracts due to the maturity of cluster computing. McGraw and
Nadar [96] presented a GPU implementation of a stochastic connectivity mapping which
is closely related to the present paper. However, the used a different underlying model of
global connectivity and do not considered multi-fiber models or loop checking individual
streamlines.

Visualization A variety of visualization techniques for tensor fields and tractography
have been proposed. Here, we provide only a small overview.

The DT can directly be visualized by glyphs, where small graphical icons represent local
tensor properties by mapping tensor eigenvectors and eigenvalues to the orientation
and shape of geometric primitives. Instead of ordinary ellipsoids that may mislead
the orientation of tensors with rotational symmetry (as common for diffusion tensors),
Kindlmann [80] proposed the use of superquadric glyphs. He showed that a superquadric
tensor glyph exhibits better shape and orientation clues with better profile and shading.
In [156] Westin et al. presented an approach for a similar problem where they used
a composition of several geometric shapes to convey the local diffusion tensor. They
proposed to use several glyphs: a sphere with the radius of the smallest eigenvalue,
a disk with the radius of second largest eigenvalue and a rod with the length twice
the largest eigenvalue. Additionally, the composited glyphs were colored according to
their shape property (linear, planar or spherical). However, in sections of crossing fibers
the glyphs take on a misleading spherical shape due to partial volume effects. In [82]
Kindlmann et al. used glyph packing for multivariate visualization of DT-MRI scans of a
patient with a brain tumor to enable data inspection at discrete points while additionally
providing large-scale continues structures for reference. Their approach is based on
carefully distributing glyphs throughout the field (using energy profiles) to reduce the
visual emphasis of the regular sampling grid of the tensor data and emphasize continuous
features.

Glyph based visualization techniques suffer from visual clutter when too many structures
are represented and the local information they represent is diminished. Direct volume
visualization techniques have also been generalized and applied for the visualization of
diffusion tensor fields in order to present large-scale structures. Kindlmann and Wein-
stein [81] addressed the use of direct volume rendering for 2nd order tensor fields by
directly assigning color, lighting and opacity with a two-dimensional color map on the
unit sphere.

Texture-based visualization techniques perform filtering to reveal the local curvature
of vector fields by texture orientation and frequency. The texture synthesis technique
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known as Line Integral Convolution (LIC) was introduced by Cabral and Leedom [33].
A low-pass filter convolves an input noise texture along streamlines to exploit spatial
correlations in the flow direction. The resulting image exhibits highly correlated inten-
sities along streamlines and uncorrelated intensity values across streamlines. Hsu [68]
generalized LIC to the visualization of diffusion tensor fields by incorporating the princi-
pal and second-order anisotropy of the water diffusion and applied it to the visualization
of myocardial architectures. McGraw et al. [97] adapted LIC to cope with singularities
in the diffusion tensor field of the dominant eigenvector. Zheng and Pang [165] used LIC
for the visualization of anisotropy in symmetric tensor fields. Their proposed technique
provides a global continuous representation of the underlying tensor field that reflects all
eigenvectors. When the tensors are almost linear, their technique reduces to the original
LIC.

Unlike stationary representations, interactive particle tracing [83] has been used for
visualizing vector fields of principal diffusion direction. Kondratieva [86] used GPU
particle tracing for the visualization of 3D diffusion tensor fields. A large amount of
particles can be traced at interactive frame rates to convey the vector field of principal
directions. Different visual representation of the particles like a diffusion dependent
ellipsoidal shape were used for the visualization.

Moreover, spatial continuity of principal diffusion direction can be conveyed by using
streamlines or streamtubes, i.e. integral curves that are tangent to the vector field of
principal directions. Zhang et al.[162] combined streamtubes and streamsurfaces for the
visualization to emphasize linear and planar anisotropy. Streamtubes are used to rep-
resent primarily linear diffusion whereas streamsurfaces represent predominantly planar
structures. In their application to brain tumor surgery they found a good correlation of
the extracted streamtubes to major neural pathways.

Moberts et al. [99] addressed the issue of visual clutter when visualizing a large amount
of individual white matter tracts. They proposed a framework to validate clustering
methods for fiber bundles. They found that a hierarchical clustering using a single-link
and a fiber similarity measure based on the mean distance performed best among the
investigated methods. Enders et al. [50] performed classical streamline tracking with
a subsequent clustering of streamline bundles which are then rendered as surfaces that
wrap bundles of fibers. The surface is generated around the center line of a fiber bundle.
The boundary curves are determined based on the variance of points within equidistant
planes with normals that are tangent to the center line. From a surgical point of view,
this can be interpreted as a safety zone around fiber bundles. It should be noted that
streamline visualization may give a misleading impression of certainty about the location
of fiber tracts since a single line is displayed between two points. Moreover, DTI does
not measure actual fiber connectivity but water diffusion which can be used to infer
connectivity.

Other work on fiber tract visualization has specifically focused on how to efficiently
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access and distinguish between different fiber bundles and connectivity structures. Zim-
mermann et al. [168] proposed a method for modeling and classifying white matter tracts
using classification trees in conjunction with a spatial representation of the individual
fiber to capture the characteristic behavior of specific anatomical structures. Song Zhang
et al. [163] presented a technique for clustering integral curves from DTI into anatomi-
cally plausible bundles. They employ a sampling and culling strategy for the generation
of integral curves with a subsequent clustering based on a proximity measure that is
calculated between every pair of curves. Proximity thresholds can be interactively de-
termined by an expert user. Schultz et al. [135] followed an approach that considers the
asymptotic behavior of probabilistic fiber tracking and defined concepts of flow topology
(critical points, basins, faces) in terms of brain anatomy. Their resulting fuzzy feature
definitions reflect the inherent uncertainty in brain connectivity. Sherbondy et al. [136]
used dynamic queries to assist the exploration and interpretation process of fiber tracts.
They proposed a simple query language in combination with box or ellipsoid-shaped
regions to give interactive access to a precomputed database of fiber pathways and their
statistical properties. Chen et al. [40] combined glyph and streamline visualization tech-
niques by introducing merging ellipsoids. Each ellipsoid represents a local tensor and
either blends with neighboring ellipsoids into a continuous curve representation or breaks
away as a local glyph. They also presented an exploration interface to fiber structures
in [39] that augments classical 3D visualization with 2D embeddings that removes vi-
sual clutter while preserving relationship between fiber bundles. In particular, their
framework allows a quick and accurate selection of fiber bundles.

More recent work addressed the issue of parameter sensitivity in fiber tracking methods
as presented by Brecheisen et al. [28]. They developed a visualization tool that lets the
user explore how small variations in parameter values affect the output of fiber track-
ing. Prckovska et al. [114] considered recent developments in imaging technologies and
presented a multi-field visualization framework that combines classical DTI with High
Angular Resolution Diffusion Imaging (HARDI). They applied a classification scheme
based on HARDI anisotropy to select the fiber model depending whether regions exhibit
single fiber bundle coherence, areas of crossing, or more complex fiber structure.

3.3.3. Stochastic Background

When working with uncertainty, randomness and probabilistic expressions, a clear and
concise notation is required. Therefore, we will introduce the notation and basic expres-
sions used in this work, which is greatly inspired by Mathar [95]. We will introduce the
terms random variable, random vector, probability density function, joint distribution,
and conditional and marginal density. We will refer to the observation space in general
as Ω. In one dimension this can be for instance the set of real numbers R.
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Random Variable and Density Function Let f : R→ R+ be a non-negative real-valued
function with∫ ∞

−∞
f (t) dt = 1.

A real-valued random variable X is called continuous if

FX (x) = P (X ≤ x) =

∫ x

−∞
f (t) dt ∀x ∈ R.

FX (x) refers to the cumulative distribution function of X. The function f is called the
probability density function (pdf ) or simply the density of X. We refer to the pdf of X
also as fX .

The calculation of probabilities P with the pdf of a random variable X is described
as follows. Let I = (a, b] be the interval between a ∈ R and b ∈ R, including a and
excluding b. It then holds that

P (X ∈ I) = P (a < X ≤ b) =

∫ b

a

fX (t) dt.

P (a < X ≤ b) is so to speak the probability that a realization of X lies in the range
between a and b.

Random Vector and Joint Density Often, we are interested in more than only a single
parameter or in a subset of parameters. This will require random vectors, joint distri-
butions and marginal distributions. In the following we will mark vectors and matrices
by a boldface notation. AT will mark the transpose of the vector or matrix A.

A function

X = (X1, . . . , XN)T : Ω→ RN

is called a random vector if X1, . . . , XN are random variables.

The joint distribution of X is defined as

FX (x1, . . . , xN) = P (X1 ≤ x1, . . . , XN ≤ xN)

and we write X ∼ FX.

The joint density fX : RN → R+ of X is then analogously defined as

FX (x1, . . . , xN) =

∫ xN

−∞
· · ·
∫ x1

−∞
fX (t1, . . . , tN) dt1 · · · dtN ∀x1, . . . , xN ∈ R.
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The joint density can be simplified in the special case of Independent Identically Dis-
tributed (iid) random variables X1, . . . , XN . Let X = (X1, . . . , XN)T be a random vector
of iid random variables Xi, then the following holds

fX (x1, . . . , xN) = fX1 (x1) · · · fXN
(xN) (3.7)

and
∏N

i=1 fXi
(xi) is the joint density of X. In fact, X is called iid if and only if equa-

tion (3.7) holds.

Conditional Density If we are interested in only a subset of parameters we require
the conditional density. Let (X, Y ) be a continuous random vector with joint density
fX,Y (x, y). The conditional density of X given Y is defined as

fX|Y (x|y) =

{
fX,Y (x,y)

fY (y)
, if fY (y) > 0

fX (x) , if fY (y) = 0
.

The first case (fY (y) > 0) can be rewritten as

fX,Y (x, y) = fX|Y (x|y) fY (y) = fY |X (y|x) fX (x) .

Informally speaking, the chance of seeing both events X and Y is equal to the chance
of seeing event X given that we have seen event Y multiplied by the chance of seeing
event Y and vice versa. The statement leads directly to Bayes’ theorem

fX|Y (x|y) =
fY |X (y|x) fX (x)

fY (y)
. (3.8)

Marginal Density For a random vector X = (X1, . . . , XN)T every Xi has the marginal
density

fXi
(x) =

∫
. . .

∫
︸ ︷︷ ︸

N−1

fX (u1, . . . , ui−1, x, ui+1, . . . , uN) du1 . . . dui−1dui+1 . . . duN . (3.9)

In general, for a subset of indices I = {i1, . . . , iK} ⊂ {1, . . . , N} the marginal density of
the random vector XI = (Xi1 , · · · , XiK )T is

fXI
(xi1 , . . . , xiK ) =

∫
. . .

∫
︸ ︷︷ ︸
N−K

fX (. . .)
∏
j /∈I

duj.

Thus, the marginal density of a subset of random variables is obtained by integrating
over the joint density over all the values of the other variables.
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Application Context Random variables can be used to account for uncertainty within
a system that we want to model. By observing data from real-world measurements of
the system, we can make assumptions how these random variables should be distributed
in our model. Informally speaking, we want to learn from the observation whereas our
true interest lies not in the observation itself but in specific features of the system that
generated that data.

Let M be a model of such a system with parameter vector ω ∈ Ω that represents
unknown influences. In general, the parameter vector may model noise in the system,
or in the context of radio waves, building materials and information about vegetation
or land use. In the context of fiber tractography in the human brain, the parameters
can be used to describe the distribution of local fiber directions. Each respective model
defines how the parameters (and other input data) are combined with one another to
generate a prediction of a possible outcome. Let a real-world measurement of the system
be described by Y . We can write the probability of predicting the data Y with our model
M and a corresponding parameter set ω as P (Y |ω,M). Ideally, we will find a set of
parameters ω̂ that maximizes that probability. We could then say that M with the
optimal parameters ω̂ is a good approximation to the actual physical system that we
wanted to model. In the Maximum Likelihood (ML) formulation this set of parameters
is described as

ω̂ = arg max
ω
P (Y |ω,M) .

Thus, we would vary over all possible parameter vectors and choose the one that maxi-
mizes the conditional probability. It is apparent that this approach may not be feasible
for real-world problems, in particular, if the parameter domain is continuous. Moreover,
it is more common to update the belief in model parameters based on the observed data
and the model: P (ω|Y,M), which is also referred to as the posterior distribution of the
model parameters. Again, this can be rewritten according to Bayes and yields

P (ω|Y,M) =
P (Y |ω,M)P (ω|M)

P (Y |M)

which is again not trivially computed since the denominator

P (Y |M) =

∫
Ω

P (Y |ω,M)P (ω|M) dω

is an integral which is usually not solvable analytically. However, we can approach the
integral numerically with Markov-Chain-Monte-Carlo (MCMC) sampling techniques like
Metropolis-Hasting or Gibbs sampling. In this case, we usually restrict the sampling to
the distribution of parameters of interest only which can be obtained by marginaliza-
tion

P (ωI |Y,M) =

∫
Ω−I
P (ωI , ω̄I |Y,M) dω̄I .
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ωI are all parameters of interest and ω̄I are all the other parameters.

The latter derivation is the key component to estimating the distribution of local fiber
orientations (details can be found in [17, 16] and [110]). In the next section, we will now
jump directly to the inference of global connectivity.
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3.4. Probabilistic Tractography

The algorithm for probabilistic tractography consists of two major steps: (1) estimate
the distribution of parameters of interest locally at every voxel and (2) infer global
connectivity between any two voxels based on the local distributions.

The local parameters of interest are the local fiber orientations that can be expressed
as spherical coordinates (φ, θ). We consider the local model of diffusion according to
the diffusion tensor model [11, 13] for a single fiber orientation as well as for multi-fiber
fields [16]. The estimation of local parameters has to be performed only once, and hence
can be done in an off-line preprocessing step. Details of the local parameter estimation
are sketched in Section 3.3.3 and discussed in detail by Behrens et al. in [17] and [16].
For the remainder of this chapter, we assume that the local parameter distributions have
already been calculated.

The estimation of global connectivity [17] is derived from the local fiber orientations. It
describes the probability that a connection between any two points passes through a par-
ticular voxel. Thus, the global connectivity is given as a spatial probability distribution
with a discrete probability value at each voxel. The estimation of global connectivity
has to be performed very often: for every seed voxel of interest and for a large number
of samples to increase the signal-to-noise ratio in our inherent probabilistic framework.
Due to the independence of computation between voxels, this tasks maps well to an
implementation on the GPU.

3.4.1. A Model of Global Connectivity

This section introduces the general notation as used in the remainder of this chapter
and provides the mathematical model of global connectivity as introduced by Behrens
at al. in [17]. Certain formulations may differ from the original model in order to ease
the correspondence in the algorithmic description that follows in Section 3.4.2.

Let V be the space of all voxels, U, V ∈ V individual voxels, NV the number of voxels,
and Vi the ith voxel. We refer to the observed DTI data for all voxels as YV . Let (θ, φ)V
be a complete set of (principal) diffusion directions. For the remainder of this chapter,
we assume that we already have the local parameter distribution of fiber orientation
fθ,φ|YV for the single-fiber case and fθ1,φ1|YV , . . . , fθM ,φM |YV for multi-fiber fields with M
modeled fibers per voxel.

In case of no uncertainty about fiber orientations we can write the probability that a
connection exists between voxels U and V given the (deterministic) knowledge of local
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fiber orientations as a delta function

P (∃ U! V | (θ, φ)V) =

{
1 , there exists a streamline from U to V

0 , otherwise
.

It can be computed by common streamline algorithms that follow the path of principal
diffusion direction. The probability will be one if there exists a streamline connecting U
and V and zero otherwise.

When uncertainty about fiber orientation is introduced into the model the connectivity
probability must be expressed as the existence of connection and all local fiber ori-
entations given the observation. This can be expressed as P (∃ U! V, (θ, φ)V |YV) ,
transformed into its pdf notation, reformulated with Bayes and expanded to

f∃ U!V,(θ,φ)V |YV = f∃ U!V |(θ,φ)V
f(θ,φ)V |YV

= f∃ U!V |(θ,φ)V

NV∏
i=1

f(θ,φ)Vi
|YVi .

Hence, the connectivity probability is the product of all probabilities of fiber connections
that would contribute in the streamline case for any fixed set of fiber orientations.
By marginalizing over all possible fiber orientations at every voxel the connectivity
probability of any two points U and V given the observation data YV is described by

f∃ U!V |YV =

∫ 2π

0

∫ π

0

· · ·
∫ 2π

0

∫ π

0

f∃ U!V |(θ,φ)V

fθV1
,φV1
|YV . . . fθVNV ,φVNV |YV

dθV1dφV1 . . . dθVNV dφVNV .

(3.10)

Since all local pdf s are generated by a sampling technique (e.g. MCMC, cf. Section 3.3.3)
no analytical solution exists for (3.10). In consequence, it has to be computed numeri-
cally as detailed in the following section.
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3.4.2. Algorithms

We subdivide the computation into four basic parts and two extensions. Algorithm 12
describes the core of the tracing procedure: starting from a seed voxel, the current
position is propagated along a random direction at each step until a stopping criteria is
met. Algorithm 13 shows how a local (random) direction is determined by a query into
the discrete representation of local fiber distributions. Algorithm 14 updates the current
diffusion direction based on the previous direction and a new local fiber orientation.
Finally, all probabilistic streamline samples are collected and recorded as sketched in
Algorithm 15 to construct a spatial pdf that reflects the connectivity distribution of the
original seed voxel to every other voxel.

Additionally, these algorithms can be extended to support multiple fiber orientations
per voxel as well as to check for artificial loops. Algorithm 16 shows how multiple
fiber orientations per voxel are incorporated into the tracing procedure. The direction
that matches the current streamline direction best is selected among all possible local
fiber directions. We introduce an additional random component in Algorithm 17 to
compromise between the memory footprint and accuracy of the loop check. This reduces
the chance of artificially increasing the probability within loops. We will now discuss
the individual algorithms in greater detail.

Probabilistic Streamline Integration Algorithm 12 sketches the main compute kernel
of the probabilistic streamline procedure. It generates a probabilistic streamline that
starts at the seed voxel U . Since a voxel is usually represented by discrete cell indices
we first transform it into a continuous form to support sub-voxel accuracy in the tracing
procedure. Similar to common streamline algorithms, the front of the streamline is
propagated by moving a certain step ∆ into the direction of diffusion. Typical step sizes
correspond to half or a quarter voxel. Since diffusion directions are represented as pdf s
we draw a random sample from the corresponding distribution (cf. Algorithm 13). This
procedure is repeated until a stopping criteria is met. Possible stopping criteria may be
an anisotropy measure (cf. Section 3.3.1), an anatomical curvature threshold or simply
leaving the voxels that actually belong to the brain.

Random Neighbor Interpolation In principle, the local pdf s exist only in continuous
space. However, they are provided on discrete grid points due to the MR acquisition
method. Any kind of interpolation between the fiber orientations may result in averaged
values which no longer presents the original orientation very well. As proposed by
Behrens et al. [17] and also adapted by McGraw and Nadar in [96] we use a probabilistic
data interpolation scheme. The main idea is to exploit the inherent probabilistic nature
of the method and simply pick one of the neighboring fiber orientations at random. The
interpolation scheme is set up such that in the parameter dimension u, the probability
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Algorithm 12 trace probabilistic streamline(Voxel U)

Note: Generate a probabilistic streamline that starts at voxel U
Vertex p ← U {start at U , trace with sub-voxel accuracy}
repeat
s ← p {append current position to streamline}
(θ, φ) ← prob sample(p, fθ,φ|YV )
{draw a random sample at p from fθ,φ|YV , cf. Algorithm 13}
~d ← update dir(~d, θ, φ) {update direction}
p ← p+ ∆~d {move p along diffusion direction}

until stopping criteria
return s 

of choosing data from location buc is

P (buc|u) = due − u

and for choosing due

P (due|u) = 1− P (buc|u) .

b.c denotes the floor and d.e the ceiling function. This is implemented in Algorithm 13
by computing the fractional part of the sub-voxel query position and drawing a uni-
formly distributed sample ρ ∼ U (0, 1). If the sample is less than the fractional part we
round down, otherwise we round up to the next integer voxel. Hence, two probabilistic
streamlines that pass through the same voxel may have different interpolated values and
therefore can experience different diffusion directions. Another random sample is drawn
to select the bin of the discrete pdf representation for the interpolated voxel position.
Hence, four uniformly distributed random values have to be drawn in the process, three
for each component of the probabilistic interpolation and one for selecting the bin.

Direction Update Algorithm 14 sketches how the next streamline direction is deter-
mines based on the previous direction and a new fiber orientation. Its main purpose is
to have a consistent direction to avoid going forth and back. We are not applying any
curvature thresholds here, which are commonly used in deterministic algorithms, since
we rely on loop checking (cf. Algorithm 17) as a major stopping criteria.

Creating a Spatial Probability Distribution Function With probabilistic streamlines
generated with Algorithm 12 we are already able to create a spatial pdf that describes the
connectivity distribution of the seed to every other voxel. The construction is sketched
in Algorithm 15. Each voxel is initialized with zero, i.e. no connectivity. Each proba-
bilistic streamline is traversed and at every new (integer) voxel position the connectivity
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Algorithm 13 prob sample(p, fθ,φ|YV )

Note: Sample from a discrete pdf
{probabilistic interpolation}
for all i ∈ {x, y, z} do
r ← dp.ie − p.i
ρ ← uniform random(0,1) {draw random sample ρ ∼ U(0, 1) }

Ui ←

{
bp.ic , ρ < r

dp.ie , otherwise

end for
ν ← uniform random(0,1) {choose among B bins by drawing random sample ν ∼
U(0, 1)}
b ← bν · (B − 1) + 0.5c {round to discrete index}
discrete pdf← sample pdf(fθ,φ|YV ) {transform the continuous pdf fθ,φ|YV into a discrete

representation (cf. [17], usually done in a preprocessing step) }
return discrete pdf[b][U ]{return sample from the discrete pdf at voxel U of bth bin}

Algorithm 14 update dir(~dprev, θ, φ)

Note: Update diffusion direction based on previous direction and local fiber orientation
~d ← Vector(cosφ sin θ, sinφ sin θ, cos θ)

if
〈
~d, ~dprev

〉
< 0 then

~d ← −~d
end if
return ~d

count is increased. This procedure is iterated until all streamlines are processed. A
sufficient number of streamlines is required to convergence in a stable distribution. A
normalization over the total number of streamlines guarantees a value range between
zero and one. As discussed in Section 3.4.4, the construction of the spatial pdf is a major
synchronization point in the computation. Data from all individual samples is collected
and is read from and written into the same block of memory.
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Algorithm 15 create spatial pdf(Streamlines s 1 , . . . , s
 
K)

Note: Creates a spatial pdf from a set of probabilistic streamlines
PDF ← memset(NV , 0) {initialize all voxels of the pdf with zeros}
for all i ∈ {1, . . . , K} do

cur ← voxel pos(s i [1]) {retrieve initial voxel position}
PDF[cur]++ {increase voxel count at current position}
for j = 2→ length(s i ) do

next ← voxel pos(s i [j]) {retrieve next voxel position}
if next 6= cur then

cur ← next
PDF[cur]++ {increase voxel count for every new voxel position}

end if
end for

end for
for all i ∈ {1, . . . , NV} do

PDF[i] ← PDF[i] /K {normalize PDF by total number of streamlines}
end for
return PDF
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Algorithm 16 multi fiber(p, ~dprev, fθ1,φ1|YV , . . . , fθM ,φM |YV )

Note: Determines next fiber orientation in a multi-fiber field.
for all i ∈ {1, . . . ,M} do

(θi, φi) ← prob sample(p, fθi,φi|YV )
~di ← Vector(cosφi sin θi, sinφi sin θi, cos θi)

αi ←
〈
~dprev, ~di

〉
end for
k ← index of minimum(|α1| , . . . , |αM |)
p ← p+ ∆~dk {move p along selected diffusion direction}

3.4.3. Extensions

In addition to the basic algorithm we implemented two major extensions: a multi-fiber
model and loop checking, which both improve the overall signal-to-noise ratio and offer
significant advantages in the sensitivity when tracking in non-dominant fiber populations
or in regions of low anisotropy.

Multiple Fiber Orientations Behrens et al. [16] presented a direct extension to the prob-
abilistic tractography method that incorporated multiple fiber orientations per voxel.
The basic principle relies on automatic relevance determination when constructing the
local distributions of fiber orientation. If supported by the data, their method locally
extracts the distribution of more than one fiber orientation. The probabilistic tracing
(cf. Algorithm 12) can be extended to incorporate that knowledge. The main idea
is to draw a sample from all local distributions and compute each local fiber direction
every time a streamline is updated. Then, the fiber direction that is closest to parallel
to the current streamline direction is chosen to propagate the current front. The general
approach is sketched in Algorithm 16. In their experiment with a multi-fiber fit to a
60 direction data set [16], Behrens et al. found that about a third of voxels with an
FA > 0.1 were able to support more than one fiber orientation, but no single voxel in
their data set supported more than two orientations. Therefore, we optimized our actual
implementation for the two-fiber case which has certain benefits on the compute device
as discussed in Section 3.4.4.

Stopping Criteria and Loop Checking Stopping criteria are usually used to discard
invalid streamlines from the overall computation. Common stopping criteria are usually
thresholds on the anisotropy measure or on the local curvature. Although heavily used
in most deterministic algorithms, strict stopping criteria may reduce the ability of the
algorithm to trace through regions of noise, or low anisotropy. Conversely, if stopping
criteria are chosen too lax, streamlines may turn back to already visited locations, thus,
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Algorithm 17 loop check(ID,cur,next,loop check)

Note: Perform loop checking on a coarse voxel grid based on per thread memory
if cur == next then
return false {continue tracing within same voxel}

end if
belief ← loop check[ID + next] {our belief that we have seen the supervoxel before}
ρ ← uniform random(0,1) {draw random sample ρ ∼ U(0, 1) }
if belief > ρ·threshold then
return true {loop detected: reject new streamline front and stop tracing}

else
loop check[ID + next] ← belief++ {increase our belief}
return false {accept new streamline front and continue tracing}

end if

artificially increasing the probability in these loops which is usually an undesired be-
havior. Checking for loops in the probabilistic streamlines can therefore greatly reduce
the need for curvature thresholds without introducing major changes in the probability
distribution. However, two main issues have to be addressed in the implementation of
loop checking: computational performance and memory requirements. In particular,
the memory requirement in terms of size and number of memory accesses is the limit-
ing factor since the actual tracing is performed in lightweight compute kernels on the
device.

We considered two approaches how to implement loop checking. We could either store
the path history with each streamline front or for each voxel store whether it has seen
a particular streamline. The first approach would require a dynamic memory block
(or a fixed block of by memory with enough excess capacity) with a subsequent self-
intersection test. In any case, this easily introduces a lot of divergent branches for a set of
streamlines with different histories. Again, this is an undesired behavior when executing
a large number of lightweight compute kernels in parallel. The second approach will
not introduce a divergent branch, the loop check is simply a lookup of the streamline’s
current front position in memory. However, the additional memory footprint can be
substantial. Each voxel has to offer read/write access for a bit vector the length of the
current sample population.

Since the tracing algorithm is inherent probabilistic, a probabilistic approximation of
the loop check may not lead to significant different results. Thus we propose a hybrid
approach of a low-resolution representation of visited areas in combination with a random
component that represents the believed visited state of a voxel.

We reduced the memory footprint of the second approach by combining blocks of voxels
into supervoxels, thereby creating a coarse resolution level of the tracing environment for
loop checking. Additionally, we introduced a random component to account for artifacts
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that may result from the lower resolution. The inputs to the loop checking Algorithm 17
are the current thread ID, the current and next supervoxel position of the streamline and
a pointer to the memory block reserved for loop checking a fixed number of streamlines
concurrently. The size of this memory block must be the number of concurrent threads
times the number of supervoxels. We reserve eight bits for each entry that is initialized
with zero and increased each time a streamline visits the supervoxel. To prevent an
overflow we stop increasing the counter at 255 visits. The value of each entry presents
our belief that the particular supervoxel has been visited. Each time a streamline’s
next position enters a previously visited supervoxel we draw a uniformly distributed
random sample. If our belief of having seen the supervoxel is greater than the random
sample we reject the new front of the streamline and stop its tracing, otherwise we
accept the new front and continue tracing while increasing our belief of having seen the
corresponding supervoxel. Thereby, we increase the rejection probability each time a
sample is accepted.
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Figure 3.3.: Layout of the compute kernel. Solid arrows symbolize control flow whereas
dashed arrows represent memory accesses. The arrow direction indicates a read (outgo-
ing arrow) or write access (incoming arrow).

3.4.4. Implementation Details

Computational Flow For efficiency reasons, the computational flow of our implementa-
tion differs slightly from the algorithmic description in some details. First, the compu-
tation has been packed into one kernel execution, see Figure 3.3. Each kernel invocation
computes one update step for all streamline samples concurrently. Second, the con-
struction of actual streamlines is omitted in order to reduce the memory footprint of
the computation. Intermediate results are directly recorded in the spatial pdf . Conse-
quently, visual feedback can be provided by rendering the scalar field of the spatial pdf
after each step.

At the beginning of an update step, each thread reads its sample position, direction
and random generator state. The local fiber orientation is retrieved and the current
fiber direction updated accordingly (Algorithm 13 and Algorithm 14). If multiple fiber
orientations per voxel are available, the one that is best aligned to the current direction
determines the next sample position (Algorithm 16). If a loop is detected (Algorithm 17),
a sample is marked as invalid and is discarded in subsequent computations. Whenever a
sample position advances to a new voxel position the corresponding entry in the spatial
pdf is increased accordingly (Algorithm 15). Finally, the updated sample position,
direction and random generator state is saved and the computation returns the control
back to the host. This procedure is iterated until the spatial pdf has converged or a
certain number of steps has been reached.

113



CHAPTER 3. FIBER PATHWAY ESTIMATION

Figure 3.4.: Memory layout of the probabilistic streamline integration. Read and write
access is required for each sample’s position, direction, random generator state, and loop
check data. The spatial pdf memory is updated at every step of the computation and
can be used to visualize intermediate results.

Memory Layout Figure 3.4 illustrates the memory layout of our algorithm. We require
read and write access to the position, direction, random generator state and loop check
data for each sample. Thus, each attribute occupies a block of global memory. Let S
be the total number of samples. Then, sample position and direction and generator
state each require 4S · 32bit. In addition, the loop check state of each sample accounts
to NV/NSV · 8bit if each supervoxel consists of NSV voxels. In practice, the supervoxel
memory tends to dominate the others in size.

The discrete representation of the pdf s describing the distribution of local fiber orienta-
tion is packed into a 3D texture to benefit from cached read accesses. We realigned the
memory structure of the pdf s to fit them into a 3D texture block. Thus, memory offsets
have to be computed before each texture fetch to access the realigned memory. Let the
number of discrete bins per parameter of interest be B (depends on the local parame-
ter estimation). The local estimation used in this work produced B = 50 bins. When
represented as floating point values, the two parameters of interest for the probabilistic
tracing (θ, φ) thus require 2 · 32bit. Since 3D textures can store up to 4 values (RGBA)
per texel, two value slots were still unoccupied and we were able to pack the second
local fiber orientation (θ′, φ′) of the two-fiber model into the same memory location. In
general, for a multi-fiber model with M local orientations, the memory requirement of
the local pdf s accounts to NV · dM/2e · 4B · 32bit.

The spatial pdf keeps track how often a voxel has been visited by a probabilistic stream-
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line and thus also needs to be read from and written to by all threads concurrently.
Alternatively, the construction of the spatial pdf would require a huge amount of dedi-
cated memory per sample. Since memory is a very rare resource on the compute device
(cf. loop checking in Section 3.4.3) we use the same (global) memory block for all threads
for collecting the connectivity counts at the cost of thread level synchronization. Thus,
total memory requirement is NV · 32bit. Moreover, if visual feedback is desired, the
block of memory representing the connectivity distribution has to be accessible from the
rendering pipeline. To this end, the corresponding memory block is registered as a 3D
texture after each compute run and mapped to compute memory prior to it. The mem-
ory for additional visual cues, for instance structural MRI and other data modalities,
must then fit in the remaining device memory.

Random Number Generation An essential building block of the implementation is the
generation of random numbers directly on the GPU. A variety of random number gen-
erators exist, some of which have been analyzed how well they perform on the GPU in
terms of computation time and randomness [67, 88, 166]. Previous GPU implementa-
tions of probabilistic algorithms (e.g. McGraw et al. in [96]) have avoided that issue
by generating random numbers on the CPU and packing them into a texture. If a huge
number of random numbers are required this approach has high memory requirements.

We use a hybrid approach in our implementation. First, we generate a random seed
vector on the CPU for every thread that will run in parallel on the device. These numbers
are also packed into a texture for cached access in the compute kernel. Additionally, we
have implemented a variant of the Hybrid Taus generator [67] which is a combination of
a linear congruential generator and Tausworthe algorithm [140] directly in the compute
kernel. A detailed analysis of the performance of this generator is discussed by Zhmurov
et al. in [166]. We use the same constants as in [67] for Tausworthe algorithm and the
congruential generator with periods pi:

p1 = 231 − 1, p2 = 230 − 1, p3 = 228 − 1, p4 = 232

where the combined period is the least common multiple of p1, p2, p3 and p4 which is
approximately 2121.
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Figure 3.5.: Multi-modal brain visualization displaying brain’s white matter, brain
areas, a probabilistic fiber tract and the corresponding seed region. White matter and
brain areas are clipped by a magic lens to reveal the fiber tract inside.

3.5. Virtual Reality Interface

This section presents a VR prototype application of the probabilistic tractography that
combines the interactive computation of probabilistic fiber tracts from the previous
section with a real-time visualization and interaction to assist in exploratory discoveries
and the development of an intuitive understanding.

Our VR interface implementation is based on the virtual reality toolkit ViSTA [7]. In
consequence, our prototype application runs on a broad range of systems, ranging from
common desktop computers to immersive virtual environments (cf. Figure 1.5 left).
The remainder of this section presents our choice of visualization and interaction tech-
niques and discusses how we tailored existing state-of-the-art techniques to our specific
requirements.

3.5.1. Visualization

In probabilistic tracking algorithms, individual streamlines no longer carry significant
information, and hence standard visualization techniques like streamlines or stream-
tubes [130, 118] are no longer appropriate. Conveying the uncertainty in the rendering
is an inherent requirement for neuroscientists to evaluate probabilistic tractography.
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In most current visualizations uncertainty is only represented on two-dimensional slices
whereas 3D representations of probabilistic fiber tracts are often generated by extracting
opaque isosurfaces for certain probability ranges (cf. Figure 3.1 and Figure 3.2).

However, the visualization of the probability in three dimensions is an essential step for
the registration of the most likely course of a fiber bundle and can be addressed by using
direct volume rendering in order to provide semi-transparent renderings of volumetric
data in real-time.

Moreover, anatomical and multi-modal information is required to reveal the fiber in
its correct context. Data modalities may include, but are not limited to structural
Magnetic Resonance Tomography (MRT), cortical or functionally defined brain areas,
diffusion data and fiber tracts or information on the biochemical level (Positron Emis-
sion Tomography (PET)). Thus, an appropriate visualization should be able to display
multiple , transparent voxel-based information, simultaneously. State-of-the-art tech-
niques for direct volume rendering needs to be adapted for an interactive visualization
in a VE. The main reason for this is that the process of rendering transparent objects,
which usually relies on either depth sorting or ray casting, is a complex process in gen-
eral and becomes even more demanding the more objects are involved. Recent work
on that particular issue in medical visualization has also been investigated by Beyer et
al. in [24, 23]. In a VE the real-time requirements of a visualization are even stricter
because of the high pixel resolution of VR screens and in particular because of frequent
changes in viewer orientation and position due to head tracking.

However, we can exploit the fact, that most medical data sets are already registered
in a common reference space. Hence, we can fine-tune our implementation of direct
volume rendering specifically to this kind of data. We adapt the classical direct volume
rendering to efficiently handle multiple co-registered data sets as follows: We interleave
the individual data sets into one vector-valued data field. The proxy geometry (texture
slices or cubes [61, 62]) is setup such that it represents the shared reference space and
is rendered only once. This avoids depth-sorting multiple proxy geometries. A special
shader program handles each integration step of the individual data sets separately. The
temporary integration values are combined (e.g. maximum intensity or weighted sum)
into a single value and standard volume integration can be performed. This way, fiber
probability and structural information can be classified according to separate transfer
functions but form a consistent and correctly depth-sorted transparent image without
introducing significant overhead. Additional anatomical cues are provided by opaque
cross sections of the brain, which also can provide an unbiased view on the original data
as sometimes preferred by domain scientists. In particular, the cross sections can be
used as occluders to terminate the volume rendering early. In our implementation we
have integrated this step directly in the setup of the proxy geometry.

Figure 3.5 shows a visualization of a brain with four different data channels: segmented
white matter, brain areas, probabilistic fiber tract, and tract seed region. The brain
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Figure 3.6.: The virtual flashlight: structural data is clipped by a magic lens to reveal
the fiber tract inside. Images show slightly different locations of the flashlight position
to show the boundaries of the fiber tract.

areas shown here are from the Jülich-Düsseldorf cytoarchitectonic atlas[167] and the
corresponding annotations are positioned automatic within the VE by a component of
the underlying VR toolkit as described by Pick et al. [112]. Typically, we encode high
probabilities of the fiber tract with bright and opaque colors and low probabilities by
dark and transparent colors.

3.5.2. Interaction

In addition to visualization, the intuitive exploration of data can also benefit greatly from
interactive manipulation and direct interaction where the user takes an active role. Both
are an integral part of every interactive VR system. This section describes a magic lens
interaction for data disambiguation, a selection technique for brain areas, and seeding
strategies on how to define starting regions for the probabilistic tractography.

3.5.2.1. Virtual Flashlight

We have incorporated a direct interaction metaphor into our VR application, the virtual
flashlight. The basic principle of the virtual flashlight is similar to magic lenses which
were first discussed by Bier et al. [26] as a 2D see-through user interface that changes the
representation of content in a special window. A well-known example is the magnifying
glass. In [147], Viega et al. extended the concept of magic lenses to VEs. They pre-
sented an implementation of volumetric lenses that uses hardware clipping of geometric
primitives to reveal the inner structure of objects. Fuhrmann et al. [58] used a magic
box to present a higher-resolution of a flow visualization in order to focus attention on
these regions and investigate them in more detail.
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In the presented VR prototype, the user can directly control the amount of visible
anatomical structure by a 3D interaction device (cf. Figure 1.5 right), similar to the
beam of a flashlight. Figure 3.6 illustrates the concept of how interesting parts of the
probabilistic fiber tracts can be revealed and referenced with anatomical landmarks
with reduced occlusion or visual clutter. This allows a more accurate inspection of the
anatomic structure in the direct vicinity of fiber pathways.

Our implementation of the virtual flashlight is realized by mediating between two com-
ponents of the ViSTA VR Toolkit: the interaction widgets and the volume rendering.
The interaction widgets provide the user interface that can be modified either by a mouse
on a desktop or 6DOF devices in a VE. For the virtual flashlight we use a spherical
widget that can change it location and size to reflect the round organic shape of struc-
tures within the brain. The widget’s information is communicated to a specialization of
our volume renderer that uses an alternative transfer function for fragments within the
magic lens’ range.

3.5.2.2. Object Selection

Object selection is a basic interaction block in order to trigger further actions or ma-
nipulations. Thus, brain areas and fiber tracts, key components of the probabilistic
tractography computation, have to be accessible directly from the VR interface. We no-
ticed two issues that had to be addressed specifically since the objects that are subject
to selection are (1) brain areas of usually non-convex shape and densely packed to one
another, and (2) probabilistic fiber tracts which essentially are volumetric distributions
in space and therefore have no explicit geometrical representation. In turn, this may
introduce selection ambiguity when selection is done on the basis of coarse bounding vol-
umes. Hence, our desired selection algorithm should distinguish between object based
on their silhouette and be able to select polygonal as well as volumetric objects in a VE
with a 6DOF pointing device.

For these reasons we adapted a 2D picking metaphor to 3D selection in VEs. Similar to
the desktop picking we select the object that corresponds to the pixel that is seen through
the eye of a 6DOF pointing device. The technique is easily implemented by a back buffer
selection method. All selectable objects are rendered twice. The second render pass
assigns unique object identifiers instead of colors. In a VE, this means changing the
projection and view matrices for the second render pass according to the position and
orientation of the pointing device. Hence, the perspective view frustum of the pointing
device represents a conic selection volume. The opening angle of the selection volume
can be adjusted by changing the field of view of the perspective projection. Visible pixels
of the objects within the selection volume will be recorded by their identifiers in the off-
screen buffer. State-of-the-art scoring schemes based on pixel based object statistics (e.g.
time and distance ranking) can then be applied to choose the active object. In [122],
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we have shown that this method works fast enough in a VE for triangulated as well as
volume rendered objects with no explicit geometric representation. In the following we
will present the basic steps.

Selection Rendering The relevant transformations are MModel which transforms from
object space into world space, MV iew which transforms world space into eye space, and
a final projection which maps eye space into screen space. Let MProj be a standard per-
spective projection matrix, MV CP the projection matrix of a viewer centered projection
that accounts for motion parallax in a head-tracked VE, and MTracking the transforma-
tion of the tracked pointing device from eye space into world space.

Each object is rendered twice, first for its visual representation and then for writing its
selection ID. Let the point p be the coordinate of an object defined in local object space.
Usually the transformation from object space into the screen space of the VE is achieved
by

p′ = MV CP ·MV iew ·MModel · p.

In selection mode the projection of p into the screen space of the pointing device is

ps = MProj ·M−1
Tracking ·MModel · p.

Hence, if the first render pass for visual representation looks something like this

1. load_matrix(MV CP · MV iew · MModel)
2. use_shader(fancy_lighting)
3. for_each(Object obj)
4. obj.render()

the second render pass for selection simply would be

5. load_matrix(MProj · M−1
Tracking · MModel)

6. use_shader(render_id)
7. for_each(Object obj)
8. load_selection_id(obj.ID)
9. obj.render().

Due to performance reasons, we are using an unused texture unit to pass object IDs as
colors instead of using uniform shader variables.

Create Pixel Based Object Statistics The result of the selection rendering process is a
two-dimensional pixel array P . Each pixel position contains a value that is either zero (no
object) or an integer number (ID) that corresponds to an object. By construction, the
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center pixel position c corresponds to the center of the selection cone. A popular scoring
metric for instance used by [47] is the projected distance d between the cone center and
an object at pixel position p which is d = ||c− p||2. In [75] different rankings for object
selection candidates have been introduced. Object statistics are created based on the
time and stability of presence within the selection volume, distance to the volume’s origin
or center proximity. The pixel array P allows the computation of the above mentioned
rankings, the choice of metric of course depends on user preference and application.

We extend the basic algorithm by describing how to get the actual contact point on the
selected object and how to select regions of volumetric objects that have been rendered
with a direct volume rendering technique.

Contact Point on Selected Object We can exploit the structure of our selection im-
plementation to directly deliver the contact point on the selected object by saving the
three-dimensional vertex positions to the off-screen buffer in addition to the object ID.
Hence, each pixel points to an object via an identifier and to the 3D location that
was mapped to the corresponding pixel position. The implementation on the GPU is
straightforward, a vertex program would simply pass the transformed vertex position to
the fragment shader.

Selection with Direct Volume Rendering When using a pixel based selection, every-
thing that can be rendered can be selected with little additional effort. Explicit geo-
metric representations are not required. Therefore, the same method can be used to
select parts of volume rendered objects by using an alternative transfer function in the
selection render pass that maps density values to object IDs. To ensure the uniqueness
of object IDs, blending must be disabled and the texture lookup to the transfer function
should use nearest neighbor interpolation. In consequence, the selection is restricted to
parts that are closest to the selection cone. The rendering of the volume in the selection
pass can be done at a very coarse sampling distance. In practice one-fifths of the original
sampling distance turned out to be sufficient.

3.5.2.3. Seeding Strategies

The main user input to our probabilistic tractography algorithms is the definition of
seed locations. We have integrated two typical seeding strategies in our VR interface:
seeding from a predefined brain area and free seeding from a user defined location.

Seeding from a Brain Area We realized seeding from a specific brain area in our VR
interface by letting the user point to a predefined set of areas on the brain and start the
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Figure 3.7.: Seeding from Broca’s area. The left image shows the white matter segmen-
tation and the seeding region for anatomic reference. The middle and right image show
the evolution of the probabilistic fiber tract from the beginning until its convergence.

Figure 3.8.: Free seed placement in the corpus callosum. The left image shows the
cross hairs cursor at the location of the seed origin and the right image depicts the fiber
tract after a certain number of iterations.

tractography process by a button click. Interactive visual feedback is provided by ren-
dering the current spatial probability distribution after each tracking step of all samples.
Figure 3.7 shows the selection of Broca’s area on the gray-white matter interface and the
corresponding tracking result. As seeding and tracking happens in diffusion space, brain
areas have to be mapped from their reference space to the individual diffusion space. In
[36] brain areas are mapped onto the gray-white matter interface in diffusion space to
allow fiber tracts to start in anisotropic regions and seeding is based on the center voxel
of the mapped brain area. As this mapping may easily introduce mapping artifacts, our
interface can also be used as a fast preview tool to see if an individual mapping has led
to the desired results. The selection of brain areas is realized with the above described
selection algorithm in order to be able to accurately select areas on the whole cortex.

Free Seeding Our free seeding strategy lets the user decide at which voxel the tracto-
graphy algorithm should start without any restrictions on the location. This strategy
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allows seeding from deep gray matter voxels as well as within white matter as illus-
trated in Figure 3.8 and is meant as an exploratory approach to figure out good seeding
positions. In a VR setup, free seeding interaction is naturally achieved by direct 3D in-
teraction with a tracked 6DOF device where the seeding origin can be defined by simply
moving or pointing the tracked device to the desired location.
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Figure 3.9.: Visualization of probabilistic fiber tracts of inferior parietal lobule areas
(left hemisphere). The resulting tracks are volume rendered by coding probabilities as
colors (yellow high, red low) and opacities. The corresponding seed regions are depicted
by the green areas.

3.6. Results

This section presents the results of our parallel implementation of the probabilistic
tractography algorithm. After a short remark on the visualization of probabilistic fiber
tracts, we address the anatomical plausibility of our obtained results to establish the
correctness of the computations. The main focus of the work was to accelerate the
computation of global connectivity. Consequently, we cover the achieved performance in
greater detail with respect to scalability, concurrent execution and speedup of different
compute conditions.

3.6.1. Visualization

In a recent study [36], Caspers et al. debate how the structural and functional het-
erogeneity of the Human Inferior Parietal Lobule (IPL) relates to local connectivity
patterns by analyzing the anatomical connectivity of five cytoarchitectonically defined
IPL areas (PFt, PF, PFm, PGa, PGp) using DTI and probabilistic tractography. The
IPL is a multi-modal brain region with marked functional heterogeneity that is reflected
by a structural segregation into several cytoarchitectonic areas [35, 15]. Figure 3.9 il-
lustrates how our proposed visualization technique (cf. Section 3.5.1) has been used for
the presentation of the corresponding probabilistic fiber tracts.
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hOC1 hOC1

hOC1 hOC1

Figure 3.10.: Visualization of probabilistic fiber tracts that were seeded from the
primary visual cortex in the left hemisphere. The first row shows the results from the
FSL tool suite [43] and the second row from our GPU algorithm. The first column depicts
the results without loop checking ad the second column with loop checking (supervoxel
size 5). Fiber tracts computed with loop checking of a supervoxel size of 10 did not
reveal apparent visual differences and are therefore omitted.

3.6.2. Anatomical Plausibility

To the best of our knowledge, there is now apparent or established method for comparing
the course of probabilistic fiber tracts automatically. Dauguet et al. [46], for instance,
used segmentation and registration in combination with visual comparison and a sta-
tistical analysis when comparing fiber tracts derived from in-vivo DTI with histological
tracer reconstruction on a macaque brain. Whereas Okada et al. [106] compared fiber
tracking results from 3.0-T and 1.5-T MR Imaging only by a visual (manual) inspection
and classification of domain experts in the field of neuroradiology.

Apparently, manual inspection for all tractography computations in our benchmark
setup (cf. Table 3.1) is unfeasible. In an informal discussion with our domain expert
we agreed to conduct a spot-checked inspection of selected tractography computations
where the results are commonly known anatomic structures. In particular, we decided
on two specific seed locations: hOC1 (primary visual cortex) and PMC 4a (primary
motor cortex), both in a male subject (M1). The expected course of the hOC1 tract
should exhibit a more or less horizontal propagation towards the frontal lobe. Seeding
from primary motor should reveal a connectivity towards the spinal cord.
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PMC 4a PMC 4a

PMC 4a PMC 4a

Figure 3.11.: Visualization of probabilistic fiber tracts that were seeded from the
primary motor cortex in the right hemisphere. Again, the first row shows the results from
the FSL tool suite [43] and the second row from our GPU algorithm. The first column
depicts the results without loop checking ad the second column with loop checking
(supervoxel size 5). Fiber tracts computed with loop checking of a supervoxel size of 10
did not reveal apparent visual differences and are therefore omitted.

Tractography parameters were set to a sample population of 100,000 with 5,000 steps at
a step size of 0.25 (quarter voxel). We computed a probabilistic fiber tract for each of the
five compute conditions (detailed in the next section). Two of five compute conditions
estimated fiber tracts with the established FSL [43] tool suite and three with our GPU
implementation. The visual inspection was not blind, meaning the domain expert knew
the compute condition of each tract.

Figure 3.10 and Figure 3.11 show the visualization of the resulting fiber tracts. The
first row depicts the results from the FSL condition, the second row from our GPU
computation. The first column displays tracking results without loop checking and the
second column with loop checking.

The domain expert stated that the fiber tracts were in fact comparable. All compute
conditions produced fiber tracts with the correct connectivity trend towards the frontal
lobe (hOC1) and towards the spinal cord (PMC 4a), respectively. Seeding in the pri-
mary visual cortex with loop checking did reveal a slightly clearer fiber tract with our
probabilistic loop checking approach. This was not observed for the FSL computation.
Moreover, loop checking with FSL in the seeding from the primary motor cortex slightly
decreased the signal-to-noise ratio and in turn lessened the connectivity impression to-
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wards the spinal cord. In contrast, the probabilistic loop checking of our implementation
lead to an significant improvement of the fiber connectivity between the seed in the pri-
mary motor cortex and the spinal cord. In summary, the domain experts assessed the
connectivity distributions of our implementation as plausible. She noticed a slight em-
phasis towards regions near the seed location with our approach compared to FSL. Nev-
ertheless, voxel further away from the seed were still reached, although sometimes with
lesser probabilities and less distinct forks. Having established anatomical plausibility of
our results, we will now go on to discuss the computational performance.
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3.6.3. Tractography Performance

After defining performance metrics and benchmark conditions we will discuss scalability,
the performance impact of loop checking and the two-fiber model, and speedup of our
GPU implementation.

Performance Metrics Let Ttrace be the total computation time per trace in seconds,
Ntrace the number of trace steps and, Strace the number of samples per trace. We define
the computation time per step simply as Tstep = Ttrace

Ntrace
. To incorporate the number of

traced samples into the performance measure we define million samples per second per

trace as MStrace/sec = Strace·10−6

Ttrace

and million samples per second per trace step as MSstep/sec = Strace·10−6

Tstep
, respectively.

All timings exclude the transfer time from hard drive to host memory but include host to
device memory transfer times. If not noted otherwise, all performance figures are given
as averages over all (ten) individual patient data sets. Measures relating to individual
patients are marked with subject number and gender.

The rate at which data is transferred between host and device, i.e. the bandwidth, is
another important performance indicator that is affected by the choice of memory in
which data is stored and accessed, how data is laid out and in which order it is ac-
cessed. Moreover, comparing theoretical bandwidth and effective (observed) bandwidth
offers insight into performance and optimization efforts. The peak theoretical memory
bandwidth in GB/sec of a compute device is defined as

BWth = Mc · 106 · Miw

8
· dr ·

1

10243
.

Where Mc describes the memory clock in MHz, Miw the memory interface width in bit
and dr the memory data rate. When using Double Data Rate (DDR) memory (as most
current devices do), the data rate dr is two. The effective bandwidth in GB/sec can be
computed as

BWeff =
(Br +Bw) /10243

time

where Br is the number of bytes read per kernel, Bw the number of bytes written per
kernel and the computation time is in seconds (cf. [104]).

Benchmark Variables and Compute Conditions Our benchmark variables are imple-
mentation type, size of super-voxel, step size, number of steps and samples, data set,
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variable values
implementation FSL (CPU) our method (GPU)
size supervoxel 0∗ (no lc) 5 (lc5) 10† (lc10)
num. steps 5,000
step size 0.25
num. samples 10K 25K 50K 75K 100K 125K 250K 500K 750K 1M

data set subject M1 F1 M2 F2 M3 F3 M4 F4 M5 F5

seed region hOC1 L hOC1 R PMC 4a L PMC 4a R
seed type center voxel area mask†

Table 3.1.: Algorithm parameters and their values for the performance benchmarks:
0∗ disables loop checking, † this setting was only measured on the GPU device.

seed region and seed type. Table 3.1 gives an overview of the possible values each vari-
able can take. In particular, the implementation type is either the FSL suite [43] or our
GPU implementation. The size of the supervoxels defines at which resolution we per-
form the loop checking, a value of zero disables loop checking. We fixed the number of
steps to Ntrace = 5, 000 with a step size of 0.25 (quarter voxel). The number of samples
Strace ranged between 10K and 1M. Ten individual data sets were made available [36]:
five male and five female subjects each with individual mapped brain areas for the pri-
mary visual (hOC1) and primary motor cortex (PMC 4a), each for the left and right
hemisphere. These brain areas were used for seeding in the corresponding areas. We
distinguished between two seeding strategies, seeding from the center voxel of an area
and seeding from all area voxels.

We refer to a Compute Condition (CC) as a particular configuration of benchmark
variables. For convenience we define five CCs that are used through the remainder of
this section:

CCCPU = (FSL, no lc, *, *, *, *, *, center voxel)
CCCPU LC = (FSL, lc5, *, *, *, *, *, center voxel)
CCGPU = (our method, no lc, *, *, *, *, *, *)
CCGPU LC5 = (our method, lc5, *, *, *, *, *, *)
CCGPU LC10 = (our method, lc10, *, *, *, *, *, *)

The asterisk (*) is a placeholder for all available values of a variable. If not otherwise
noted, performance results were averaged over the number of samples, data sets, and seed
regions. The supervoxel size of 10, was not available in FSL and consequently could only
be computed with our method. Moreover, the seeding from all area voxels (area mask)
was only computed with our method as a direct comparison in terms of computation
time to FSL would have been unfair towards FSL due to different implementation specific
issues. In consequence, comparisons between CPU and GPU are always performed with
seeding from the center voxel only.

129



CHAPTER 3. FIBER PATHWAY ESTIMATION

3.6.3.1. Scalability

We discuss the scalability of our approach with respect to two measures: total trace
time and throughput in terms of samples per second. In addition, we investigate pos-
sible performance variation due to different seed origins and strategies and present the
effective bandwidth of our implementation. The data shown Figure 3.12, Figure 3.13,
Figure 3.15, and Figure 3.16 is averaged over all individual subjects and all seeding types
for each particular sample population and compute condition whereas the data shown
in Figure 3.14 is averaged only over individual subjects, thereby preserving seed specific
influences.

Total Trace Time Figure 3.12 shows the total trace time Ttrace over an increasing sample
population (10K to 1M samples). x- and y-axis scales are logarithmic to depict the
behavior of CPU and GPU conditions in one plot. In both CPU conditions (CCCPU

and CCCPU LC ) samples are processed sequentially, in consequence the total trace time
increases linearly. The computation time for the GPU conditions exhibits an improved
scaling due to increasing device occupation with an increasing number of samples. In
particular, 1M samples can still be computed in under 10 seconds on the GPU whereas
25K samples on the CPU already take more than 10 seconds to trace. We observe no
significant differences between CCGPU and CCGPU LC5 , however, CCGPU LC10 performs
slightly better than the other GPU conditions.
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Figure 3.12.: Scaling of total trace time with respect to the number of samples.
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Figure 3.13.: Computational throughput in terms of million samples per second per
step. More samples lead to an increased device occupation that reaches its maximum
after 100K samples.

Throughput Figure 3.13 depicts the number of samples per second per trace step
MSstep/sec. Since normalized to time and sample population, the MSstep/sec can be
considered as a measure of computational throughput. Apparently, the CPU conditions
do not show any change in throughput with an increasing sample population. How-
ever, on the GPU throughput is directly related to device occupation. Consequently, we
observe an improved throughput for a higher number of samples. For the CCGPU and
CCGPU LC5 conditions, the maximum throughput (700 million samples) is reached at a
sample size of 100K samples. At the same sample population, the CCGPU LC10 condition
reaches its maximum of approximately 900 million samples per second per step.

Performance Variation The course of a fiber tract greatly varies based on its seeding
region. Hence, we address the question whether the seeding region or strategy also has a
strong influence of the total computing time. We refer to this as performance variation
with respect to seeding. Figure 3.14 shows the total trace time Ttrace for each seeding
configuration in the GPU conditions averaged over all ten subject. In particular, seed
regions are the primary visual cortex (hOC1) and the primary motor cortex (PMC 4a)
for both, the left and the right hemisphere. Each computation was performed with every
GPU condition for both seeding types (center voxel and area mask) with a fixed sample
population of 100K. We observe that the average computation times within one condition
are almost constant for both, different seed areas and different seeding strategies.

131



CHAPTER 3. FIBER PATHWAY ESTIMATION
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Figure 3.14.: This figure shows that the total trace time is almost independent of
seeding area and strategy and only depends on the compute condition.

Concurrent Execution The total trace time greatly depends on the number of threads
that can process the samples concurrently on the compute device. Apparently, the re-
quired amount of memory increases with larger sample populations and thereby limits
the number of samples that can be traced in parallel. To this end, we analyzed the
number of concurrent kernel executions on various compute conditions and memory re-
strictions. For convenience, we consider the unit of parallelism as the number of kernel
invocations on the GPU. We considered two different compute devices, the first one
was equipped with 1.5 GB of main memory and the other with 6 GB. About 1 GB was
required for storing input data like the probability distributions of local fiber directions
and some device memory was already allocated by other applications (possibly the oper-
ating system) such that a remaining amount of 230 MB was left for the fiber tracking on
the first device and roughly 4.1 GB of device memory on the second device. Figure 3.15
shows the percentage of the sample population that can be processed concurrently on
the compute devices for the three GPU conditions CCGPU , CCGPU LC5 and CCGPU LC10.
As already discussed previously, loop checking requires considerable amount of device
memory. Accordingly, we observe that roughly 12.5K samples fit into the 230 MB of
device 1 and about 250K into the 4.1 GB of device 2 in the CCGPU LC5 conditions (su-
pervoxel size of 5). When doubling the supervoxel size in the CCGPU LC10 condition,
memory requirements are greatly reduced. Device 1 is now able to process 100K sam-
ples within one kernel invocation whereas the memory of device 2 is already sufficient
to execute the tracing procedure for all 1M samples with one single call. No subdivision
into several kernel invocations has to be done for the CCGPU condition without loop
checking for both devices. The memory is sufficient for storing the positions, directions
and random seed state for all 1M samples.
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Figure 3.15.: Percentage of concurrent executions for an increasing number of samples
and two devices with different available memory.

Effective Bandwidth Figure 3.16 shows the effective bandwidth for the GPU compute
conditions for an increasing number of samples. For reference, our GPU had a peak
theoretical memory bandwidth of 165 GB/sec. We used the effective bandwidth compu-
tation as described in the beginning of this section. Each kernel invocation accessed 16
bytes for each of the following: local fiber orientations, sample position, direction and
random generator state. An additional 4 bytes were required for the count of the spatial
distribution and 1 byte for checking a loop in a supervoxel. Only the access to the fiber
orientations was read-only. In total, this sums up to 69 bytes that were read per kernel,
and 53 bytes that were written per kernel. Disabling loop checking would save a byte
on either side. We will discuss the effective bandwidth in more detail in the following
section on the loop checking extension.

3.6.3.2. Performance Impact of Multiple Fiber Orientations and Loop Checking

Multiple Fiber Orientations We argued in Section 3.4.3 that it is sufficient to optimize
an actual implementation of the multi-fiber model for the two-fiber case. Due to our
memory layout for the storage of local fiber distributions (cf. Section 3.4.4), the intro-
duction of a second fiber orientation revealed no significant degradation in performance.
The main reason for this is that the memory layout on the device is optimized for a word
size of four floats (RGBA), i.e. a read access to texture memory. Thus, the memory
access for the single fiber model used only two float values (φ, θ) such that the second
fiber orientation can be accessed with no further cost for the additional two components
(φ′, θ′). In consequence, we performed all our benchmark directly with the two-fiber
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Figure 3.16.: Effective bandwidth for the GPU compute conditions.

orientation model. This was also in agreement with domain experts who preferred using
the two-fiber orientation model over the single-fiber model for increased computational
accuracy.

Loop Checking In contrast, loop checking exhibits a measurable difference in com-
putation time and has therefore been included in all performance considerations as a
separate compute condition. Moreover, loop checking can have a significant influence
on the effective bandwidth as depicted in Figure 3.16. When increasing the size of the
supervoxels used for loop checking, the effective bandwidth is increased from 85 GB/sec
(in the CCGPU condition) to 107 GB/sec (in the CCGPU LC10 condition); samples that
enter a loop can be discarded early, thereby allowing other samples to take their place
within the thread pool. In summary, loop checking increases the per-thread memory re-
quirements significantly, thus decreasing the number of concurrent kernel executions (cf.
Figure 3.15). However, loop checking also provides an early out mechanism for samples
that enter a loop thereby allowing traces to terminate prior to reaching the desired trace
length and in turn increasing the overall throughput (cf. Figure 3.13).

3.6.3.3. Speedup

We define the speedup as the ratio of total trace times. Specifically, we refer to the
individual factors as

Sno lc =
Ttrace (CCCPU )

Ttrace (CCGPU )
, Slc5 =

Ttrace (CCCPU LC )

Ttrace (CCGPU LC5 )
, Slc10 =

Ttrace (CCCPU LC )

Ttrace (CCGPU LC10 )
.

Figure 3.17 gives an overview of the speedup factors achieved by the different compute
conditions over an increasing number of samples. The total trace time of the GPU
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speedup CPU vs. GPU
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Figure 3.17.: Speedup factors in terms of total trace time ratio between CPU and
GPU conditions.

methods include the host-device memory transfer times.

Sno lc (first column) ranges from 185X for 10K samples to 843X for 250K samples. We
did not compute the speedup for this condition for more than 250K samples due to the
excessive computation time of the CPU condition. This condition utilizes the computa-
tional power of the device best: it requires only an initial data transfer between host and
device and it has a low per-thread memory requirement such that all samples can be pro-
cessed with one kernel invocation (cf. Figure 3.15). Loop checking greatly reduces the
total trace time for both, serial and parallel, implementations: Samples can be discarded
early as soon as a loop is detected (cf. Figure 3.12). However, the concurrency level of
the GPU conditions now greatly depends on the amount of available device memory (cf.
Figure 3.15). Still, we observe significant speedups: 17X for 10K samples to 78X for
1M samples for Slc5. If the per-thread memory requirement is reduced by increasing the
size of the supervoxels as in the CCGPU LC10 condition, more kernels can be executed
concurrently. This is reflected in slightly higher speedups for Slc10: 17X for 10K samples
to 100X for 1M samples. In summary, the speedup of our GPU implementation depends
on various parameters such as number of samples and per-thread memory which can be
adjusted as a trade-off between quality and speed (although we discussed quality only
briefly in terms of plausibility).
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3.7. Conclusions

We presented a parallel implementation of a probabilistic tractography algorithm that
estimates the likelihood of connectivity between any two voxels. The method is based on
a stochastic sampling of the tractography integral (3.10). Samples move along a multi-
fiber field based on their current direction and the local distributions of fiber orientations.
Samples that run into a loop are detected and discarded from the computation. The
current front of every active sample is recorded in a spatial buffer. With a sufficient
number of samples that buffer represents a spatial connectivity profile based on the
relative frequency of visited samples.

Based on an expert review of fiber tracts from the primary motor and primary visual
cortex we found a good overall agreement of our results in consistency with known
anatomical structures. Moreover, we extended the original algorithm by a probabilistic
loop checking approach which shows promising results in terms of an improved tract
development compared to the deterministic loop check. However, a generalization of this
observation would require further investigations from a neuroscientists’ perspective.

By mapping the tractography algorithm to the many-core architecture of the GPU we
were able to significantly reduce the overall run time. A sample population of 100K
could be computed in under one second, a population of 1M samples took about ten
seconds. Although fiber tracts may vary greatly depending on their seed location, we
showed that the run time of our implementation is almost independent of seed location
and seed strategy. We found an optimal device occupation with samples sizes of 100K
or more which corresponds to a throughput of roughly 750 million samples per second
per step (no loop checking and loop checking with supervoxel size 5). With a supervoxel
size of ten, the throughput could be increased to approximately 950 million samples per
second per step. The major limitation of our approach is the limited amount of device
memory. In particular, our loop checking method requires a considerable amount of
per thread memory which in turn limits the number of concurrent executions per kernel
invocation. This limitation can be somewhat alleviated by increasing the size of the
supervoxels. However, when compared to a CPU reference implementation, we obtained
huge speedups: 185X to 800X without loop checking, 17X to 78X with loop checking
(supervoxel size 5) and up to 100X with a supervoxel size of ten for 10K and 1M samples,
respectively.

We also combined the tractography computation with an interactive visualization of the
resulting fiber tracts by a direct volume rendering where probabilities are encoded as
colors and opacities. Our proposed representation of probabilistic fiber tracts has already
been used in several neuroscientific publications [49, 36]. Chapter A in the appendix also
shows some additional visualizations which have been created with our VR prototype
(cf. Section 3.5) by our collaborators at the Institute of Neuroscience and Medicine at
the Research Center Jülich, Germany.
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CONCLUSIONS

4.1. Summary & Future Directions

We presented two specific application areas for exploratory visualization in VR: simu-
lating radio waves and estimating neural fiber pathways. We put a special focus on the
acceleration of the underlying computational methods to assist the human-in-the-loop
pose “what if?” questions.

In the remainder of this chapter we will summarize the individual chapters, discuss
possible extensions and future ideas, and identify the contributions of this thesis.

4.1.1. Radio Wave Propagation

Being able to predict the propagation behavior of radio waves is a crucial premise for
every planning and optimizing algorithm for wireless networks. Moreover, propagation
predictions must be both, accurate and fast, to be useful in real-world applications.
Although most empirical models require little computational effort, they are known to
perform poorly in heterogeneous urban environment, in particular in historically grown
cities. Although ray tracing approaches can provide a much better prediction quality,
high run times (in comparison to empirical approaches) have so far inhibited wide-spread
use in large-scale scenarios.

The prediction of radio waves is quite similar to computing global illumination from a
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computer graphics point of view. Due to the different wave lengths of common mobile
radio frequencies, diffraction at building edges becomes a dominant propagation effect.
Thus, in order to benefit from the acceleration of global illumination algorithms, those
approaches have to be adapted to also incorporate diffraction efficiently. Towards this
end, we presented distinct algorithms to compute dominant propagation paths due to
diffraction at street corners and over building rooftops. Our main method is based on
the repeated computation of discrete LOS regions which can efficiently be determined on
the GPU. We adapted a basic shadow volume algorithm to work particularly fast on the
special 2.5D geometry of common building databases, where a building is represented
only by its polygonal outline and its height.

Moreover, we developed urban micro cell prediction models that derive the mean re-
ceived signal strength directly from our diffraction ray paths. A key component of these
models is a calibration technique to estimate unknown environmental influences like
building material or vegetation directly from measurements. We show that this calibra-
tion process is not limited to dominant path models only but can also be extended to a
closed-form solution for multi-path models. Our EDM model can be evaluated in under
0.05 seconds with the proposed GPU implementation and achieves a standard deviation
between prediction and measurement of 4 to 7 dB. This is an extremely accurate result,
considering that two consecutive measurement test runs already vary approximately
around 3 dB.

In summary, we developed a run time efficient prediction algorithm that approximates
dominant ray paths based on diffraction. We combined this algorithm with an accu-
rate prediction model of the mean received signal strength in dense urban propagation
environments.

In addition, we developed a VR interface to let the user interactively explore an urban
propagation environment. While the user take active control over antenna placement
he receives instant feedback on the propagation behavior of individual transmitter sites.
Additional transmitter sites can also be constructed and network statistics show overall
coverage, cell sizes and inter-cell interference estimates. We also made the building
database dynamic and let the user change building heights and immediately show the
influence on the propagation prediction. In particular, we developed a sketching based
interface that lets the user outline a building on a geographical referenced satellite image
directly in the VE. Thereby we further strengthened our exploratory approach to assist
the domain scientist investigating or developing hypothesis about the data.

Future Directions The work of this thesis on the computation of diffraction paths could
be extended to also include propagation paths due to reflection or scattering which may
have a significant influence depending on the building material and vegetation in the
propagation environment. Additionally, the computation of multi-path effects are of
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great interest when designing channel coding and control algorithms. Since our com-
putation is optimized for the estimation of the strongest paths, alternative approaches
should be explored to compute a number of arriving rays per receiving location. More-
over, a limitation of the proposed algorithms is that they all require a discrete transfor-
mation of the propagation environment at a very early stage of the computation which
sometimes introduces aliasing artifacts. Keeping a continuous data representation as
long as possible is therefore a desirable goal in future algorithms. Some of the above
points have already been addressed by Schmitz et al.[134] as an extensions to the present
work. Moreover, the effect of vegetation, terrain elevation or dynamic traffic has been
neglected so far and would be an interesting area to explore in future research.

4.1.2. Fiber Pathway Estimation

Chapter 3 presented a prototype implementation of the probabilistic tractography al-
gorithm as introduced by Behrens et al. [15] which we adapted to specifically benefit
from the GPU’s many-core architecture. Based on the underlying mathematical model
of probabilistic tractography (3.10), we derived the individual computational steps, ex-
amined possible computing device related restrictions, and formulated corresponding
algorithms.

The computational core, as sketched in Algorithm 12, starts the tracing from a seed
voxel and propagates the seed’s position along local (random) fiber orientations until
a stopping criteria is met. A new fiber orientation can depend on the previous direc-
tion to assure an anatomically consistent fiber course. All intermediate positions of the
fiber streamlines are recorded in a global buffer that represents the global connectivity
distribution of the original seed voxel to every other voxel after a sufficient number of
iterations. We also implemented two state-of-the-art extensions: a multi-fiber model and
loop checking. The multi-fiber model increases sensitivity in regions of low anisotropy
or when tracking non-dominant fiber directions, thus, further supporting the general
methodological issue of crossing fibers. Checking the generated traces for loops is of
particular importance to avoid an artificial increase of probability within loops. We
presented an extension to current approaches that also makes use of the inherent proba-
bilistic framework and allows the trade-off between memory requirement and accuracy.
We established the anatomical plausibility of our implementation with an expert review,
where we also discussed possible advantages of our probabilistic loop checking approach
with respect to the resulting fiber structure.

We show that our GPU implementation significantly reduced the overall run time com-
pared to a reference CPU implementation. Populations of 100K samples can be com-
puted in under one second and 1M samples can still be processed in less than ten seconds.
A major limitation of our approach is the memory consumption of loop checking which
reduces the number of concurrent executions per kernel invocation. However, we obtain
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huge speedups over the reference implementation, ranging from 185X to 800X without
loop checking for 10K and 1M samples, respectively. With loop checking we get speedups
in the range of 17X to 78X with a supervoxel size of five and up to 100X with a super-
voxel size of ten, again for 10K and 1M samples. The size of the supervoxel is a major
criteria to trade a lesser memory requirement for a reduced loop checking accuracy.
However, it remains an open issue if a reduced loop checking accuracy may significantly
affect the resulting fiber tracts. This is an issue best addressed in close collaboration
with domain scientists who are able to appropriately assess fiber tract difference since
an overall ground truth is still subject to an ongoing discussion.

In addition to an efficient parallel implementation, we put a special focus on a direct cou-
pling between the tracing procedure and a visualization of intermediate results such that
the user can direct the computation towards a desired outcome if necessary. Our visu-
alization of probabilistic fiber tracts relies on the direct volume rendering of their spatial
distributions. By encoding the probabilities with color and opacity, the course of the
fiber structure is displayed in relationship to its confidence and anatomical landmarks.
We adapted a classical ray casting approach to support multiple data modalities and
integrated it into the visualization library FlowLib [129] of the ViSTA VR Toolkit [7].
The value of our visualizations can also be seen by their usage in the neuroscientific
publications of Eickhoff et al. [49] and Caspers et al. [36].

In summary, we integrated the computation and the visualization into a VR prototype
application that incorporated the following aspects: (1) An interactive computation of
probabilistic fiber tracts to assist in exploratory discoveries and the development of an
intuitive understanding, (2) a real-time visualization of probabilistic fiber tracts that is
directly coupled to the tract computation and conveys the course of uncertainty, and (3)
a real-time interaction to disambiguate between multiple data modalities and to reveal
fibers in their structural context.

Future Directions We currently use the voxel resolution given by the DTI measure-
ments also for recording samples in the spatial pdf (cf. Algorithm 15 in Section 3.4.2).
Since we already trace with subvoxel accuracy, we could easily extend Algorithm 15
to also record the connectivity profile at a higher resolution. In turn, the resulting
probabilistic fiber tracts may exhibit finer structures and smoother transitions between
probabilities.

Additional seeding strategies could be integrated in the VR interface to further support
the exploratory analysis process. Of special interest would be a seeding with additional
way points. Only fiber tracts which reach all of the way points would be included in
the final connectivity profile. However, this would require a change in the algorithmic
structure, instead of showing intermediate results after each step, the validity of a single
streamline could only be determined after a certain number of steps, i.e., when all way
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points have been visited. Such a change would either require extra device memory per
sample or a memory transfer to the host after each integration step.

We use cytoarchitectonically brain areas [167] that are also described as probability
maps. Currently, seeding masks are constructed by thresholding against a certain prob-
ability value (e.g. 90 percent) and uniformly distributing seeds within the mask. Since
our approach allows the seeding of much more samples than was possible before, we
could also integrate the probability profile of the brain areas into the seeding procedure.
The main idea is to distribute the number of seeding points per voxel in the brain mask
weighted with the local probability.
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4.2. Contributions

We structure the main contributions of this thesis based on the individual chapters and
sections.

Radio Wave Propagation

• The principle of diffraction has been introduced in the field of electromagnetics
by the Geometric Theory of Diffraction [77] and the Universal Theory of Diffrac-
tion [87] and is discussed in subsequent work in great detail. However, the com-
putation has remained computationally expensive. Work in computer graphics
has focused on visually pleasing representations of the diffraction effect on small-
scale objects such as a compact disc [138]. Formulating and implementing efficient
algorithms for the computation of diffraction ray paths in heterogeneous urban
environments is therefore the major contribution of Section 2.4. Moreover, this
approach has led to the first published real-time simulation of radio waves at a
comparable prediction accuracy.

• Although the concept of shadow volumes [54] is well studied in computer graphics,
to the best of our knowledge this is their first use in the context of radio wave
simulation. We adapt the principal idea and construct geometric representations of
diffraction cones to let the GPU rasterize areas of diffraction. Moreover, we exploit
the special structure of the underlying 2.5D building database to speed up the cone
construction, cf. Section 2.4.1.1. We apply this method to effectively reconstruct
ray paths due to diffraction into street canyons and over building rooftops.

• We present mathematical models that describe how to derive path loss and re-
ceived signal strength from the computed ray paths. A key component of these
models is the estimation of unknown influences from a small measurement sam-
ple. Section 2.4.2 shows how we can significantly increase prediction accuracy and
discusses some stability issues of the calibration process with respect to differ-
ent physical constraints. This estimation procedure has previously been proposed
only to single path models as an iterative algorithm that lacks a proof of conver-
gence [94]. Although the computation of multi-path effects is not discussed in detail
in this thesis, we present a closed-form solution for multi-path optimization with
an arbitrary but fixed number of deflections and arriving paths in Section 2.4.3.

• We integrated the individual components in a VR interface where the user can
explore the propagation environment and interact with antenna placement, net-
work statistics, and especially with a dynamic building database. In particular,
we discuss the necessary steps to make established interaction techniques in VR
work in combination to each other. The combination of these techniques itself may
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represent no original research per se, but form a technical and not less significant
contribution towards the implementation of real-world systems.

Tracing Neuronal Fiber Pathways

• Although quite novel, probabilistic tractography itself is a published and accepted
method for the estimation of brain connectivity [15, 89, 73]. The contribution of
this thesis is not a reinvention or a completely new approach of the probabilistic
tractography method. In contrast, we investigated how the promising approach
of Behrens et al. [15, 16] can be adapted to benefit from a massively parallel im-
plementation on special purpose compute devices (GPUs). We decomposed the
original mathematical model into parallel tasks that scale with a huge number of
cores, each with very limited computing capabilities. It is therefore a predom-
inantly technical contribution from a computer science’s perspective but with a
significant impact towards its application in the domain of neuroscience. In dis-
cussion with domain experts, we found that a limiting factor on the application
of probabilistic tractography is in fact computation time, in particular when ex-
ecuting large-scale studies on hundreds of human brains. Since the algorithm is
inherently probabilistic, a large number of samples are required for a reliable con-
nectivity distribution, further adding to the overall computation time. Reducing
the computation time by a factor of 100 for a practical computing condition (cf.
Section 3.6.3.3) is therefore a main contribution of Chapter 3.

• Moreover, a methodical contribution in probabilistic tractography algorithms has
been made by extending the original algorithm by a probabilistic loop checking
method that allows fiber tracts to evolve over longer distances. Previously, loop
checking has been performed on a coarser grid resolution and traces that revisit
a coarse grid voxel were discarded. In consequence, we observed a tendency for
fiber tracts to stop earlier (even when not running in loops) than their counterpart
with no loop checking (cf. Figure 3.10 and Figure 3.11). Instead of a hard decision
to discard traces we introduced a soft state that describes our belief of revisiting
a previously seen supervoxel. We would then continue to trace samples based on
thresholding our loop belief against a random component. The first results show
a promising potential for our probabilistic loop checking in terms of more evolved
and longer fiber tracts, consistent with the expected outcome.

• We also addressed the issue of interpreting the resulting probabilistic fiber tracts,
in particular, the integration and disambiguation of the various neuroscientific data
modalities (e.g. MRT, PET, brain areas). We approached this by adapting state-
of-the-art direct volume rendering techniques to easily visualize multiple data sets
and customizing it to the special requirements of VEs. Moreover, we combined
the static visualization with interaction techniques (magic lens interaction) to dis-
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ambiguate between different data modalities. Therefore, the contribution of this
thesis to neuroscientific visualization lies not in a single aspect itself but in a com-
bination and adaption of established methods that provide the basic framework
for an interpretation and exploration of probabilistic tractography.

• We developed a VR application that combines each single aspect of the probabilis-
tic tractography – computation, rendering and interaction – by a direct coupling
between simulation and visualization of probabilistic fiber tracts. This contribu-
tion is predominantly of technical nature, nevertheless non-trivial, integrating all
individual contributions into a real-world application.

In relation to the big picture as described in Chapter 1.1 the present thesis contributed
to the two specific application areas by allowing the user to be an integral part of the
workflow, observe computation results in real-time and to react appropriately. We en-
abled an interactive manipulation by decomposing and reformulating the domain specific
algorithms into parallel sub tasks and demonstrated their scalability in the presence of
a huge number of cores as available on current graphics hardware. Moreover, the sig-
nificant increase in computing power has not only lead to an ever increasing amount of
data sizes, but also to more and more complex algorithms. Controlling and making the
best possible use of such algorithms is therefore crucial to exploit the full potential of
a human-in-the-loop to see patterns and structures arise. Our major motivation to use
VR interfaces is therefore to put the user in more control of the computing pipeline, or
in a manner of speaking, to put the user directly at the interface between computation
and visualization with the means to influence both.
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BRAIN DATA & ADDITIONAL

VISUALIZATIONS

Data Acquisition for Probabilistic Tractography The institute of Neuroscience and
Medicine (INM-2) Research Center Jülich, Germany provided us with diffusion-weighted
data from ten healthy, right-handed human subjects (five males, five females). Diffusion
data was acquired on a 3.0 T Tim-Tri Siemens whole-body scanner (Siemens, Erlan-
gen, Germany) with a maximum gradient strength of 40 mT m−1, using a 12-channel
phased-array head coil for signal reception. Subjects had no history of neurological or
psychiatric disease, or head injury. All subjects gave informed, written consent to partic-
ipate in the study which was conducted by the INM-2 and approved by the local Ethics
Committee of the RWTH Aachen University.

Diffusion-weighted images were acquired using a twice-refocused spin-echo sequence (ax-
ial slices, slice thickness: 1.8 mmm, number of slices: 75, matrix = 128 × 128, field of
view = 230 × 230 mm2, bandwidth = 1502 Hz / pixel, reconstruction using an iPAT
GRAPPA-scheme, final voxel resolution of 1.8 × 1.8 × 1.8 mm3). The diffusion sensitive
gradients were distributed along 60 directions in the icosahedral scheme [74]. For each
set of diffusion-weighted data, 60 volumes with b-value = 800 s / mm2 and 7 volumes
with b-value = 0 s / mm2 were obtained. For each subject, the entire diffusion measure-
ment was repeated four times in successive sessions for subsequent averaging. The total
scan time for the diffusion-weighted imaging protocol was about 50 min.

Additional Visualizations The visualizations depicted here were made by the neurosci-
entists from the Institute of Neuroscience and Medicine (INM-2) Research Center Jülich,
Germany using our VR interfaces as described in Section 3.5.
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Figure A.1.: This figure shows a combination of MRT and PET that were recorded
with different imaging devices and then co-registered. The MRT image provide structural
context information for the PET image which is shown in distinct slices (PET resolution
of approximately 2 mm3).

Figure A.2.: This data set examines the post-operative location of stimulation elec-
trodes (black structure). Next to the electrodes are the core areas: subthalamic nucleus
(nucleus subthalamicus), substantia nigra (substantia nigra), and red nucleus (nucleus
ruber) and the fiber tracts: pyramidal tract (tractus pyramidalis), dentatorubrothala-
mic tract, (tractus dentatorubrothalamicus), anterior thalamic radiation, and medial
forebrain bundle. The electrodes were reconstructed from CT data which had not been
co-registered within the remaining MRT data. This leads to the increased distance be-
tween the electrodes and the rest of the brain and the skull as seen in the visualization.
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Figure A.3.: This MR image shows a lesion on the right hemisphere near the motor
cortex the brain. The affected regions are sulcus centralis, gyrus precentralis passing to
sulcus frontalis superior, and gyrus postcentralis.

Figure A.4.: This data set consists of 5123 voxels and shows a small subsection of a
3D reconstructed blockface data set from PLI near the cerebellum/brainstem.
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Figure A.5.: This figure shows the decrease in brain volume. The data set was recon-
structed from images taken in intervals of several months. The visualizations shows a
particular strong change in the motor region.

Figure A.6.: This image series shows different visualization of probabilistic brain areas.
The left image shows volume rendering of the probability distribution, the middle images
overlays the volume rendering with a thresholded geometric representation and the right
image adds the structural information to the volume rendering.
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APPENDIX B

TERMINOLOGY

T transpose of a vector or matrix
|x| absolute value of a scalar x

‖ ~x ‖2 length of vector ~x
〈~x, ~y〉 scalar product of two vectors ~x and ~y
∧ logical operator and
∨ logical operator or⋂

set operator intersection⋃
set operator union

∅ empty set
c speed of light
f frequency
γ distance dependent path loss coefficient

PLdB () path loss in dB
υ ray path, for instance υ = xi−1  xi  xi+1 describes

a ray path that starts at xi−1, changes direction at xi and arrives at xi+1

Υ set of ray paths υ 0 , . . . , υ
 
N

Table B.1.: General notation of radio wave propagation in Chapter 2.

149



APPENDIX B. TERMINOLOGY

R set of real numbers
Ω observation space, in one dimension this can be for instance R

FX (x) cumulative distribution function of a random variable X
fX (x) probability density function (pdf ) of a random variable X

P (X ∈ I) probability that a realization of X lies in I
fX,Y (x, y) joint pdf of X and Y
fX|Y (x|y) conditional pdf of X given Y

(φ, θ) fiber orientation in spherical coordinates
V space of all voxels
NV number of voxels
U, V individual voxels
Vi ith voxel
YV observed DTI data for all voxels

(θ, φ)V set of diffusion directions
P (θ, φ|YV) local distribution of fiber orientation

Table B.2.: General notation of neural pathway estimation in Chapter 3.

Uniform Distribution A random variable X is uniformly distributed, X ∼ U (a, b) , a <
b ∈ R, if

fX (x) =

{
1
b−a , a ≤ x ≤ b

0 , otherwise

=
1

b− a
· I[a,b] (x) , with IA (x) =

{
1 , x ∈ A
0 , x /∈ A

,A ⊆ R.
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ACRONYMS

6DOF Six Degrees of Freedom
CAVE Cave Automatic Virtual Environment
CC Compute Condition
CORLA Cube-Oriented-Ray-Launching-Algorithm
COST-WI COST-Walfisch-Ikegami
CPU Central Processing Unit
CT Computed Tomography
CUDA Compute Unified Device Architecture
DDR Double Data Rate
DT Diffusion Tensor
DTI Diffusion Tensor Imaging
DT-MRI Diffusion Tensor Magnetic Resonance Imaging
DVR Direct Volume Rendering
DWI Diffusion Weighted Image
EDM Edge Diffraction Model
FA Fractional Anisotropy
GPGPU General Purpose Computation on Graphics Processing Units
GPU Graphics Processing Unit
HARDI High Angular Resolution Diffusion Imaging
HDWM Horizontal Diffraction Wall Map
iid Independent Identically Distributed
IPL Human Inferior Parietal Lobule
LIC Line Integral Convolution
LOS Line-of-Sight
MC Monte-Carlo
MCMC Markov-Chain-Monte-Carlo
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ME Mean Error
ML Maximum Likelihood
MR Magnetic Resonance
MRI Magnetic Resonance Imaging
MRT Magnetic Resonance Tomography
MSE Mean Squared Error
NLOS Non-Line-of-Sight
PDD Principal Diffusion Direction
pdf probability density function
PET Positron Emission Tomography
PLI Polarized Light Imaging
RDM Roof Diffraction Model
RV Random Variable
SIMD Single Instruction Multiple Data
STD Standard Deviation
TF Transfer Function
VE Virtual Environment
VR Virtual Reality
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