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Abstract
Burning of clinker is the most influencing step of cement quality during the pro-
duction process. Appropriate characterisation for quality control and decision-
making is therefore the critical point to maintain a stable production but also for
the development of alternative cements. Scanning electronmicroscopy (SEM) in
combination with energy dispersive X-ray spectroscopy (EDX) delivers spatially
resolved phase and chemical information for cement clinker. This data can be
used to quantify phase fractions and chemical composition of identified phases.
The contribution aims to provide an overview of phase fraction quantification
by semi-automatic phase segmentation using high-resolution backscattered elec-
tron (BSE) images and lower-resolved EDX element maps. Therefore, a tool for
image analysis was developed that uses state-of-the-art algorithms for pixel-wise
image segmentation and labelling in combinationwith a decision tree that allows
searching for specific clinker phases. Results show that this tool can be applied to
segment sub-micron scale clinker phases and to get a quantification of all phase
fractions. In addition, statistical evaluation of the data is implementedwithin the
tool to reveal whether the imaged area is representative for all clinker phases.
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1 INTRODUCTION

SEM-EDX has been used for decades to image and anal-
yse cements.1–6 The challenge of SEM-EDX analysis for
cement-based materials is the small size of the phases as
well as the wide variety of elements contained in these
phases. Portland cement clinker consists of seven major
phases: alite (impure form of Ca3SiO5) belite (impure form

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.
© 2021 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society

of Ca2SiO4) C3A*1 (cubic or orthorhombic polymorph,
impure form of Ca3Al2O6), C4AF (solid solution with vari-
able Fe2O3/Al2O3), periclase (MgO), free lime (CaO) and
alkali sulphates (arcanite, K2SO4 or other).
Existing, highly specialised imaging systems, for exam-

ple the QEMSCAN7,8 or the Mineral Liberation System,9
were developed to ensure efficient usage of the state-of-the-
art imaging technologies also in industrial applications.

1 Cement chemist notation: C - CaO, S - SiO2, A - Al2O3, F - Fe2O3, M -
MgO, K - K2O, N - Na2O, $ - SO4
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High-quality spectral data from EDX is used to segment
and identify the different mineral phases automatically.
However, applying the method to fine-grained materials
(grain size < 1 μm) remains a challenge due to insufficient
spatial resolution, caused by the large size of the interac-
tion volume where X-rays are emitted from.
The common approach to increase SEM imaging reso-

lution is to reduce the acceleration voltage of the electron
beam.10 This has led to the field of low voltage electron
microscopy with ultra-high-resolution for electron imag-
ing. Depending on the material, a resolution down to 0.5–
1 nm is achievable by now.10 Chemically heterogeneous
materials such as Portland cement require not only high-
resolution imaging but also high-resolution EDX analysis.
The factor that limits the resolution of EDX analysis is
that heavy elements such as iron and titanium should be
included in the analysis. Therefore, the minimum excita-
tion energy needed is 7 keV (using X-ray L-lines for Fe and
Ti), which still leads to a much lower EDX resolution as
compared to the resolution of SEM imaging. As a result, a
common approach is to combine the high-resolution BSE-
SEM images with EDX mapping data aiming to improve
the resolution of the EDX mapping data.11
A specific workflow togetherwith an analysis tool is pre-

sented here that allows obtaining high-resolution phase
maps from cement clinkers including quantification of
phase fractions and representative element area (REA)
analysis. The workflow comprises five steps as outlined in
Figure 1: (1) acquisition of high-resolution BSE images and
EDX mappings, (2) segmentation of combined BSE-EDX
map into regions using superpixel algorithm, (3) adaptable
decision tree that searches for clinker phases, (4) creating
phase map and option to use a manual element intensity
thresholding tool to improve the result and (5) REA analy-
sis for individual clinker phases.
Standard image segmentation algorithms rely on thresh-

olding and watershed algorithms,12 which can be applied
to grayscale images (e.g. BSE images) or single-channel
arrays (e.g. EDX count arrays of a single element). How-
ever, they are not able to segment phases by taking into
account EDX information from all relevant elements at
the same time. Georget et al. (2021)11 used a simple linear
iterative cluster (SLIC13) segmentation algorithm to gen-
erate superpixels based on a RGB composite map, which
combines three selected elemental EDX count arrays (e.g.
red = Si, green = Al, blue = Ca). The superpixel segmen-
tation partitions the image into subareas/regions while
preserving image boundaries, that is, one subarea/region
does not extend across two different objects/phases. SLIC
is a cluster-based algorithm, which first initialises k clus-
ter centres on a regular grid. Then, each pixel is associ-
ated with the nearest cluster centre whose search region
overlaps its location according to colour similarity. After

initialisation, a recursive update of cluster centres and pix-
els of each cluster will be performed until convergence.
This approach has two drawbacks: (1) It can only segment
phases using up to three elements. For example, it cannot
consider all available EDX information. (2) The number of
generated superpixels 𝑘 must be defined beforehand and
must be larger than the number of grains within the map.
Because the number of phases in a map is difficult to pre-
dict, many superpixels should be generated to make sure,
that no superpixel includes two different phases. How-
ever, the more superpixels are generated, the smaller each
superpixel becomes. However, a relatively small super-
pixel may not contain sufficient amount of element inten-
sity information, especially using short EDX scanning
times.
With this contribution, we propose a novel segmen-

tation algorithm based on edge detection and distance
transform (DT) watershed, which can create regions with
similar properties (superpixel) in BSE and EDX maps.
We developed a semi-automatic tool based on decision
trees and element threshold to enable fast phase class
labelling. The obtained phase maps can be used for
characterisation of various cement types and as ground
truth for further machine learning-based automatic phase
classification.

2 MATERIALS ANDMETHODS

2.1 Cement clinker

Portland cement clinker (type CEM I according to DIN/EN
197-1) obtained from an industrial process has been used
for this investigation. The chemical composition of the
clinker as determined by chemical analysis (inductively
coupled plasma – optical emission spectroscopy) is given
in wt.% as follows: 21.5 SiO2, 5.8 Al2O3, 0.3 TiO2, 3.1
Fe2O3, 65.6 CaO, 2.0 MgO, 1.1 K2O, 0.1 Na2O, 0.6 SO3 and
0.1 P2O5.

2.2 Sample preparation and imaging
protocol

The sample material was a CEM I clinker, which was
ground to a mean particle size of 25 μm. From this pow-
der, tablets were pressed with an approximate diameter
of 12 mm and a height of approximately 2–3 mm. This
procedure ensures the homogeneity of the sample and
maximum representativeness of the sample phase frac-
tions. The tablets were embedded in epoxy resin using
vacuum pressure impregnation. Polishing of the surfaces
was carried out using oil-based diamond pastes with a
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F IGURE 1 Workflow of the tool. (A) BSE/EDX hypermaps, (B) superpixel segmentation based on hypermaps overlaying a BSE image,
(C) decision tree, (D) phase map overlayed by REA box calculation, (E) REA analysis for alite

decreasing particle size of 15, 9, 3, 1 and¼ μm, respectively.
To reduce the number of scratches and to further clean the
surface, argon-broad ion beam (TIC 3X, Leica, Germany)
etching was applied. The sample surface was tilted to an
angle of 20◦ relative to the ion beams and a beam volt-
age of 4 kV was applied for 20 min on the rotating sample
surface.
For the SEM-EDX analyses the samples were coated

with a layer of approximately 10 nm carbon. The SEM-
EDX analyses were performed with a Helios G4 UX (Ther-
mofisherScientific, USA) including an EDX Detector (X-
MAX 80, Oxford Instruments, UK). The SEM acceleration
voltage was 12 kV and the EDX maps were acquired using
the Aztec (Oxford Instruments, UK) software. The reso-
lution of the acquired EDX maps is 0.08 μm/pixel. Res-
olution of the BSE image was 0.04 μm/pixel. The acqui-
sition time for EDX element distribution maps was set
as such that sufficient X-ray counts were detected (200–
250 million counts per image at 12 kV and 0.8 nA) to dis-
tinguish alite and belite in the Si map and to distinguish
orthorhombic and cubic C3A using the combined Na and
K map.

3 RESULTS

3.1 BSE and EDX image segmentation
using a superpixel algorithm

In Figure 2, the results of a combination of segmentation
algorithms are illustrated. Furthermore, the EDX element
map (Figure 2A, here exemplarily the Almap) and the BSE
image (Figure 2B) are shown. As the BSE segmentation
was not sufficient to determine the exact phase boundaries
of belite and C3A, both BSE and Al segmentations were
combined. The DT method was applied using the follow-
ing steps: (1) detection of edges on BSE images and EDX
elementmaps, (2) combining all edgemaps into one single
edgemap, (3) generating a distancemap by performing DT
on the combined edge map, (4) computing superpixel by
running a watershed algorithm on the distance map. After
superpixel/regions were generated, each of these regions
was treated as a homogeneous particle and was anno-
tated to a corresponding class, which could be solved with
the use of automatic machine learning classification algo-
rithms such as random forest,14 k-nearest neighbours14
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F IGURE 2 Superpixel segmentation, the background is a BSE image covered with a 50% transparent composite RGB image (red = Al,
blue = Fe, green = Si). (A) Edge detection on Al map; (B) combined edge detection of BSE and Al map; (C) DT watershed result based on B
(red = C3A, yellowish grey = C4AF, dark grey = belite); (D), (E), (F) SLIC segmentation with different amount of SLIC-superpixels per area
(D < E < F)

or neural network.15 However, machine learning algo-
rithms require a large amount of training data/labelled
data and to generate these data sets it is very time con-
suming, even with a state-of-the-art manual labelling
tool.16,17
Results in Figure 2C and D compare the superpix-

els extracted by DT watershed as well as by the popu-
lar SLIC algorithm.11 Both algorithms can capture most
of the details in the background image. However, SLIC
cannot detect the boundaries of some obfuscated phases,
even after combining BSE and EDX into a composite RGB
image, because the EDX data is often very noisy and the
value differences are much smaller than the grey values
within the BSE image. Besides that, as shown in Figure 2D
and E, the set amount of SLIC-superpixels per area highly
affects the result of the segmentation. Increasing the num-
ber of superpixels will not assure a better segmentation
result. In contrast, DT watershed can extract most of the
boundarieswithout a predefined superpixel size or amount
(Figure 2C). Intuitively, DTwatershed generates a segmen-
tation which, according to visual inspection, outperforms
the SLIC segmentation.

3.2 Decision tree and manual
thresholding

The identification of phases for the identified superpixel
areas was done using a decision tree as shown in Figure 1.
The decision tree allows searching for individual clinker
phases using several element distribution maps. Decision
trees for various types of cements (CEM I, calcium alumi-
nate, calcium sulphoaluminate etc.) or other materials can
be created and applied. Modifying the decision tree allows,
for example, to search for Na- and K-rich C3A using the
Al, Na, K map. If the combined Na and K content of C3A
is above approximately 1.0 wt.% the orthorhombic poly-
morph is expected, below this threshold the cubic poly-
morph is prevailing.1
In a similar manner, the decision tree can be modified

to search for other clinker phases like for example Ti-rich
C4AF.
Figure 3C andF shows two clinker phasemaps thatwere

obtained by using two different decision trees. For exam-
ple, the K and Na element distribution maps were used to
discriminate between the alkali rich and alkali poor C3A
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F IGURE 3 BSE image (A) and Si element distribution map (D) of a CEM I clinker. (B), (E) Intensities (x-axis) of superpixels in the Si
map plotted against the index of superpixels. (D) Manual threshold in Si intensity map set to differentiate belite. (C), (F) Final phase maps
without and with manually set threshold (C and F, respectively) as illustrated in E

(Figure 3F). The smallest feature size segmented in Fig-
ure 3C and F are belite inclusions in alite with a phase
diameter of approximately 0.5 μm, which is in accordance
to the Nyquist criterion.
To further support the phase identification, the tool

allows users to manually adjust thresholds within the ele-
ment distribution maps. As shown in Figure 3C–F the
manual thresholding allows to separate belite (blue area
in Figure 3F) from alite.

3.3 Statistical evaluation (REA analysis)

Additionally, the developed software tool includes the pos-
sibility to determine a statistical evaluation if the analysed
area is representative to quantify phase fractions (RAE
analysis). In general, it plots the fractions of the differ-
ent phases versus the image area, when the fractions do
not vary significantly beyond a certain image area it can
be inferred that the REA is reached. The user has the
option to choose between a box counting and a statisti-
cal method.18,19 The box counting method starts from a
given box and is calculated by increasing the number of
boxes or the box size until the actual image size is reached.
In the statistical method the image is divided into non-
overlapping boxes that are randomly selected, phase frac-
tions are cumulated without resampling and plotted ver-
sus total box size.20 This method is helpful when the phase
fractions are spatially clustered for example due to prefer-

ential layering or grain size sorting. The results are plotted
in a graph with average area percentage, standard devia-
tion, standard error as well as area percentage of the whole
image (Figure 1).

4 CONCLUSIONS

The results presented here reveal that the developed tool
performs high-resolution phase segmentation using BSE
images and EDX mapping data. It was shown that a fea-
ture size of 0.5 μmdiameter could be resolved by this anal-
ysis (Figure 3F). The used combination of superpixel image
segmentation, decision tree-based phase search and the
element intensity threshold tool allows to discriminate not
only major cement clinker phases but also to search for
specific phases such as orthorhombic and cubic C3A, alkali
sulphates etc. The determined phase fractions can further
be used for clinker characterisation and to verify standard
characterisationmethods such as X-ray powder diffraction
analysis of cements. Also, the tool, particularly the decision
tree, can be adapted to analyse other composite materials
such as rocks.
Ultimately, the tool provides an easyway to obtain phase

distribution maps that can be used as ground truth for fur-
ther machine learning-based image analysis.
The prerequisite for successful application of the tool is

that the analysed BSE andEDXdata are recordedwith ade-
quate resolution and sufficient number of X-ray counts.



6 JIANG et al.

Analysis of even smaller particles/inclusions contained in
cement clinker and other materials can be achieved if for
example more efficient EDX detectors are used and the
number respectively size of the superpixels is decreased.
The tool is flexible and user-friendly and provides a

multi-layer image viewing graphical interface. This inter-
face can be used to manually design other decision-trees
for new materials and to directly observe the correspond-
ing phase masks on the BSE image. RAE analysis is also
implemented in the interface
The next development step of the tool will implement

an automatic output of the chemical composition of the
segmented phases. The tool can be acquired byMaPGmbH
or clinker analyses can be carried out upon request.
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