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Abstract

The advent of modern technology in the communication and the transportation industry
encouraged the proliferation of its consumer base. Due to the rising demand on many
of these modern applications and scenarios, centralization was no longer deemed a viable
approach for managing their operations. These days, many modern infrastructures are
designed to allow for multiple strategic users who make decisions that suit their indi-
vidual utility. Consequently, non-cooperative game theory has emerged as an essential
tool in analyzing and predicting the outcome of decentralized systems. We study vari-
ous algorithmic aspects arising due to strategic behavior among multiple non-cooperative
users in several classes of resource allocation problems using a game theoretic approach.
The classes of strategic games we study, succinctly represent many of the socio-economic
scenarios arising due to decentralization.

At first, we consider congestion games which are often used to model various scenarios
of resource allocation by non-cooperative users. In these games, the resources could pos-
sibly correspond to edges in a road or communication network, machines in distributed
systems, etc., and have cost functions with a diseconomy of scale. The players in a conges-
tion game then iteratively pick feasible subsets of resources that maximize their individual
utility. The players continue to strategically deviate, if necessary, until the game converges
to a widely studied solution concept known as the pure Nash equilibrium. The hardness
of computing a pure Nash equilibrium in congestion games has been of significant inter-
est in the scientific community over the past two decades. As computing an exact pure
Nash equilibrium is known to be hard, we study a weaker notion of pure Nash equilib-
rium called an approximate pure Nash equilibrium and to that extend, analyze an efficient
algorithm that computes approximate pure Nash equilibria in congestion games with an
approximation guarantee that is by far the best known in the literature.

The impact of non-coordination among the users on the self emerging solutions of a
congestion game are provably bad. One of the many approaches used to alleviate the effects
of non-cooperativeness is the introduction of taxes. Economic incentives have provably
shown to influence the users to induce solutions that are significantly closer to the optimal
solution. We present a mechanism to compute load dependent taxes for congestion games
that are robust against the changes in the number of users and resources in the game.

In spite of being the predominant class of games to model resource allocation problems
involving different users, congestion games lack an element of time dependence, especially
in certain application scenarios such as the road transportation network. It is quite un-
natural to assume that all users of a road section experience the same congestion. A cost
sharing mechanism must also take into account the order in which a resource processes
the users assigned to it. We extend congestion games with resource dependent priority list
to model the impact of fixed order scheduling on the strategic behavior of users. We then
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study the question of existence and inefficiency of pure Nash equilibria in the extended
model. It is quite natural to then consider a scheduling game on parallel machines, in
which jobs try to minimize their completion time by choosing a machine to be processed
on. Each machine uses an individual priority list to decide on the order according to
which the jobs on the machine are processed. Here, we study the existence of a pure
Nash equilibrium and characterize classes of instances in which a pure Nash equilibrium
is guaranteed to exist. For each of these classes, we settle algorithmic questions such as
tractability and the inefficiency of pure Nash equilibria.

Finally, we study the impact of non-cooperative users in a large scale distributed
communication network such as the peer-to-peer overlay network, where the existence
of non-cooperative and malicious users is considered as a rule rather than an exception.
Due to its distributed architecture, users or peers are allowed to join and leave without
admission control. A necessary condition to maintain the stability of a distributed overlay
network that allows for efficient storage and retrieval of information is to have certain
degree of commitment and coordination among the peers in the network. Moreover, the
lack of a centralized mechanism entails that the peers in the network coordinate among
themselves. However, peers joining and leaving the network in a non-coordinated manner
leads to instability and loss of information. We model this scenario using an adversary
and present an algorithm that is able to ensure stability in the network in the presence of
large fraction of non-cooperative peers.
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Zusammenfassung

Die kontinuierlichen Entwicklungen innerhalb der Kommunikation- sowie Transportindu-
strie führten zur einer stetigen Zunahme der Nutzer in den letzten Jahrzehnten. Aufgrund
der damit einhergehenden Steigerung des Bedarfs an modernen Applikationen und Szenari-
os sind zentralisierte Lösungen heute kein zufriedenstellendes Konzept mehr diese Anwen-
dungen umzusetzen. Moderne Infrastruktur-Systeme sind daher so entwickelt, dass viele
strategische Nutzer eigenständig Entscheidungen tätigen können. Diese Eigenständigkeit
hat jedoch die Folge, dass die jeweiligen Entscheidungen nur ihren persönlichen Nutzen
maximieren. Dieser Tatsache geschuldet entwickelte sich die Nicht-kooperative Spieltheo-
rie, in der die Ausgänge dieser dezentralen Systeme analysiert und vorhergesagt werden.

In der vorliegenden Arbeit studieren wir verschiedene algorithmische Fragestellungen,
die sich aus der Existenz von nicht-kooperativen Spielern in Auslastungsspielen ergeben.
Hierzu nutzen wir insbesondere Techniken aus der Spieltheorie sowie der Komplexitäts-
theorie. Die untersuchte Klasse der strategischen Spiele beschreibt zuverlässig diverse
sozioökonomische Szenarien, die im Zusammenhang mit Dezentralisierung entstehen.

Zuerst betrachten wir Congestion-Games, die häufig in Modellen genutzt werden in
dennen eine gewisse Anzahl an Ressourcen auf nicht-kooperative Spieler aufgeteilt wer-
den. Hier präsentieren wir einen Algorithmus, der approximative Nash-Gleichgewichte in
Congestion-Games berechnet und dessen Approximationsgüte bekannte Resultate in der
Literatur stark verbessert. Darüber hinaus betrachten wir eine Erweiterung des Spieles,
in der die Spieler durch finanzielle Anreize zu besseren Entscheidungen für die Allgemein-
heit bewogen werden sollen. Hier präsentieren wir Kostenfunktionen für die Ressourcen,
die von der jeweiligen Belegung der Ressourcen abhängen. Diese Kosten erweisen sich als
robust gegenüber Veränderungen in der Anzahl der Spieler als auch der Ressourcen des
Spiels.

Darüber hinaus untersuchen wir eine weitere Abwandlung von Congestion-Games, in-
dem wir eine zeitliche Komponente hinzufügen. Die einzelen Resourcen werden nicht mehr
simultan von allen Spielern genutzt, sondern nacheinander entsprechend einer Priorität-
sliste der Ressource. In diesem Modell studieren wir die Frage der Existenz und der Ef-
fizienz von Nash-Gleichgewichten. Zudem untersuchen wir algorithmische Fragestellungen
in den sogenannten Scheduling-Games.

Zuletzt untersuchen wir den Einfluss von nicht-kooperativen Benutzern in distribu-
tiven Kommunikationsnetzwerken, wie zum Beispiel in Peer-to-Peer Netzwerken, in denen
die Existenz von nicht vertrauenswürdigen Nutzern angenommen werden muss. Unter
Berücksichtigung dieser Unsicherheit für das System präsentieren wir einen Algortihmus,
der Stabilität im Netzwerk garantieren kann, selbst wenn eine große Anzahl von nicht-
kooperativen Spielern existiert.
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Chapter 1

Introduction

Algorithmic game theory studies the strategic behavior of users in many of the socio-
economic situations involving different users [NRTV07]. The advent of technology and
growing consumer base saw a rising demand for the decentralization of various large scale
infrastructures. The absence of a central authority implied that the strategic decisions of
individual users played a vital role in determining the overall efficacy and performance of an
infrastructure. For example, there has been an increasing demand on road transportation
networks across the world over the years. The steady rise in motor vehicle production
and sales due to increasing demand for transportation of people and goods, warranted
for well planned transportation networks. However, the non-cooperative behavior among
the users of the network resulted in sub-optimal traffic flows and avoidable delays. The
time needed for the users to commute then inevitably depends on the total amount of
traffic in the network [U.S64], i.e., the delay a user incurs also depends on the strategic
choices of other users in the network. Therefore, it is quite natural to model the strategic
nature of users in a transportation network as a strategic game. A strategic game consists
of a finite set of players and for each player, a finite set of strategies. A predefined
cost function then determines the cost of a player conditioned on the strategies of the
other players in the game. The players’ objective is to iteratively pick feasible strategies
that minimize their personal cost until the game converges to a stable solution in which
none of the players deviate. Analyzing various factors such as traffic congestion, average
travel time, etc., in a road transportation network can be studied by investigating the
efficiency of the self emerging solutions in the corresponding game. The most commonly
used solution concept among many others to characterize these self emerging solutions
are the equilibrium concepts, most famous of them all being the Nash equilibrium. The
concept of a Nash equilibrium was introduce by John Forbes Nash, Jr. in his seminal
dissertation [Nas50]. A Nash equilibrium describes a solution in which none of the players
have a unilateral deviation by which they could improve their cost or utility. The last two
decades have seen significant amount of literature investigating algorithmic aspects such
as inefficiency, existence and tractability of Nash equilibrium solutions. In particular, the
existence and computational hardness of pure Nash equilibria [NRTV07, p. 12] in various
strategic games that model a diseconomy of scale [FPT04, ARV08]. In addition to their
theoretical significance, the existence and computation of pure Nash equilibria is of utmost
importance to the practitioners as they succinctly describe and predict the uncertainty in
various strategic problems arising due to non-coordination.
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1 Introduction

The existence of pure Nash equilibria in strategic games is not always guaranteed,
e.g., Matching Pennies [NRTV07, see, Example 1.7]. However, certain classes of games
always exhibit a pure strategy Nash equilibrium [MS96]. The most prominent of all are
the congestion games introduced by Rosenthal [Ros73a]. Congestion games constitute an
important class of games that succinctly represents a game theoretic model for resource
allocation among non-cooperative and strategic users [EK12]. In particular, a congestion
game is a cost-minimization game defined by a set of resources with a diseconomy of scale
and a set strategic players. For congestion games, Rosenthal [Ros73a] using a potential
function argument proved that it belongs to a class of games in which a pure Nash equi-
librium always exists, i.e., the game always consists of a self-emerging solution in which no
user is able to improve by unilaterally deviating. Moreover, the computational complexity
of pure Nash equilibria in congestion games has been well studied [FPT04, ARV08, CS11].
The computation of exact pure Nash equilibria in general is shown to be hard [FPT04].
However, certain restricted structures in the strategy space [FPT04, ARV08] or cost func-
tions [CS11] have shown positive results. The literature has also received considerable
attention towards studying a rather weaker notion of equilibrium know as an approximate
pure Nash equilibrium. To our knowledge, the concept of α-approximate pure Nash equi-
libria was introduced by Roughgarden and Tardos [RT00] in the context of non-atomic
selfish routing games [NRTV07]. An α-approximate pure Nash equilibrium is a solution
in which none of the users can unilaterally deviate to improve by a factor of at least α.
The computational hardness of approximate pure Nash equilibria in congestion games has
been well studied [CS11, SV08, CFGS11]. In particular, for congestion games with non-
decreasing cost functions that are bounded degree polynomials [CFGS11]. We study the
computation of approximate pure Nash equilibria in congestion games with non-decreasing
cost functions and to that extend, present a polynomial time algorithm that improves the
results in [CFGS11].

The outcome of a strategic game need not be unique. The order in which the players
iteratively deviate essentially decides the feasible outcome to which the game converges.
Therefore, to understand the uncertainty in the outcome of a resource allocation problem
with a diseconomy of scale involving strategic users, it is crucial to be able to measure
their worst-case inefficiency. There exists significant amount of literature investigating the
bounds on the inefficiency of equilibria [KP99] for various non-cooperative games [AAE05,
Ros73b, RS11b, CQ12, GLMM10, CCG+15, CMS12, BFFM11, KST19, BV17]. It is easy
to see the negative impact of non-cooperativeness on the quality of the equilibrium. One
of the many approaches used to improve the inefficiency is the introduction of economic
incentives [CKK06, FKK10, FS07, Swa12, BV16, Vij17]. Cole et al. [CDR06] study the
influence of taxes and subsidies on the strategic behavior of players to improve inefficiency
of equilibria in non-atomic selfish routing games [NRTV07, p. 462]. They investigate the
influence of economic incentives and its ability to induce desirable solutions in the game.
Bilò and Vinci [BV16] present an algorithm to compute optimal load dependent taxes
in congestion games. We study universal load dependent taxes which are robust against
perturbation in the game instance such as number of players and resources. We provide
improved bounds on the inefficiency of equilibria in congestion games under robust load
dependent taxes.

Although congestion games remain to be one of the predominant and well studied
model for analyzing traffic behavior in transportation networks, it is easy to see that it
lacks an element of time dependency and assumes that all users on the road experience
the same delay. However, observe that a vehicle can only be delayed by the vehicles ahead
of it. It would only but be more realistic, if we extend the model to incorporate some

2



element of time dependency such that, it precisely reflects the delay incurred by a user
at each section of the road network, e.g., based on the order in which they arrive at that
section. Variants to congestion games that incorporates certain restricted structures of
time dependence have been well studied [AGM+08, FOV08, GMMT15, PNS16, BV20].
We relax these restrictive assumptions and present a model that generalizes the time
dependency in congestion games. We study the existence, computational complexity, and
settle bounds on the inefficiency of equilibria in these games. It is also quite natural then
to theoretically understand the impact of fixed order scheduling from a parallel machine
scheduling perspective.

Scheduling problems are considered to be some of the most fundamental topics in the
area of theoretical computer science. A typical scheduling problem can be described as
assigning a set of independent jobs to machines such that, the assignment minimizes a
predefined objective, e.g., the maximum load across machines [Gra66], the sum of delays
incurred by jobs [Smi56], etc. We refer the readers to the book of Michael L. Pinedo [Pin08]
for a comprehensive introduction to various models of scheduling problems. Scheduling
problems have traditionally been studied from a centralized point of view. However,
the impact of order based time dependency on scheduling problems has only received
marginal attention in the literature [AGA99, ANCK08, All15, BFO+19]. In order to
model time dependence, we consider priority based scheduling on parallel machines. In
this variant of scheduling we consider, the request of some jobs are preferred over the
others, i.e., each machine imposes a preferential order over the jobs assigned to it. The
preference order may be machine dependent and need not be restricted to general rules
such as fair cost sharing, first-in first-out, shortest processing time first, etc. We believe
that many real-world applications such as airline boarding and vehicle parking, can be
succinctly modeled using the aforementioned variant. We study the hardness in computing
an optimal assignment under local fixed order scheduling and settle some of the complexity
results for certain interesting settings of the problem.

Although scheduling problems have traditionally been studied from a centralized per-
spective, as a consequence of decentralization many modern job scheduling applications
are designed to allow for multiple strategic users, i.e., the outcome of these applica-
tions are determined by the strategic decisions taken by the users instead of a cen-
tral authority. As a result, non-cooperative game theory has become an essential com-
ponent in the study of job-scheduling applications, where jobs are controlled by non-
cooperative users who independently and strategically choose resources that are beneficial
to them [CV07, AART06, GLMM10, Vöc07]. Additionally, the impact of priority based
scheduling in these games with certain restrictive assumptions have been widely studied
with respect to the inefficiency of equilibria [CKN04, ILMS09, CCG+15, DN09, AJM08].
However, we believe that there are no natural justifications to these assumptions and
therefore, we relax them and consider a significantly more general setting in which ma-
chines have arbitrary individual priority over the jobs. That is, each machine schedules
those jobs that have chosen it according to its priority list. We study algorithmic aspects
such as existence, inefficiency and computability of pure Nash equilibria in these games
for objectives such as minimum makespan of the schedule and sum of job completion time.

Strategic behavior need not necessarily be restricted to users choice of resources,
routes, etc., in a decentralized infrastructure. One can also consider the level of altruism
shown by users in maintaining coordination and stability in a distributed network of sys-
tems, as a strategic decision. Traditional Internet Protocol (IP) networking architecture
was primarily based on the client-server networking principles. In this model, users of the
communication network participate either as a client or as a server. The communication
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1 Introduction

framework typically comprises of a single server catering to many clients. Most file shar-
ing applications, e.g., the File Transfer Protocol (FTP) were traditionally based on this
client-server model of networking. However, the last few decades have seen file sharing
applications steadily shifting towards ad-hoc networking principles like the Peer-To-Peer
(P2P) overlay networks [Sch01, ECP+05]. The users in P2P networks are often referred
to as peers and participate in the communication model as both clients and servers si-
multaneously. Peers in the network provide computational and storage infrastructure for
efficient information storage and retrieval in the network. This gives rise to a distributed
networking architecture without the need for a central mechanism to orchestrate file shar-
ing in the IP network. The self-orchestrating nature of the P2P network implied that
peers were allowed to join and leave (churn) the network without any form of admission
control. The peers coordinated among themselves to ensure stability in the network. This
also allowed for better fault tolerance and scalability in the network [ECP+05].

Although P2P overlay networks enabled significant reduction in computational over-
head as a consequence of decentralized orchestration, it imposed considerable challenges
on the network maintenance. A necessary condition for maintaining a decentralized net-
work that allowed for efficient storage and retrieval of information is to have trusted
peers, i.e., the network warrants a certain degree of commitment and coordination from
the peers in the network. In large scale distributed systems without admission control,
the existence of non-cooperative and malicious peers is considered as a rule rather than
an exception [SR06]. This poses as a major challenge in maintaining P2P network sta-
bility [ECP+05]. However, the severity of the problem is partly governed by the overlay
topology. P2P overlay networks have been mainly classified into three types: Structured,
Unstructured and Hybrid. We refer the readers to Darlagiannis [Dar05] and EK Lua et
al. [ECP+05] for a comprehensive introduction to these classes of overlay networks. Here,
we only briefly discuss some of the specific details of structured and unstructured overlays
that alludes to their efficacy in information storage and retrieval in a large scale distributed
network of systems.

The predominant and naturally emerging form of P2P overlay network in the Internet
today are the unstructured overlay networks. As the name suggests, an unstructured P2P
overlay does not impose a structure on the overlay’s topology. Peers are allowed to choose
random neighborhood and data exchange is usually based on flooding and random walk
techniques on the induced graph [GMS04, APR+15]. Many file sharing applications such
as BitTorrent are based on unstructured P2P networking principles [ECP+05]. The omis-
sion of structure enables them to be built relatively fast and are highly resilient to peer
dynamics such as churn and maliciousness [JC10, ECP+05]. However, the randomness in
the topology make them less suitable for file sharing frameworks that require data to be
stored and retrieved from specific locations in the network. In contrast, the structured
overlay networks enforce a strict structure on the topology. This enables the file shar-
ing applications built over these networks to control the location where the information
is stored and therefore, ensure efficient retrieval [RS11a, FSY05, AS21]. These networks
typically employ the Distributed Hash Table (DHT) mechanism to organize and retrieve
information in the network [NW07, ECP+05]. Although structured overlay networks are
efficient in terms of information storage and retrieval, they are usually less resilient to
faults arising due to maliciousness and unpredictable participation (churn) of nodes in the
network. The last two decades have seen extensive amount of work in building highly
churn resistant structured overlay networks [Sch05, FSY05, AS07, AS21, DGS16]. One of
the many approaches in the literature to tackle unpredictable churn is to design mecha-
nisms that induce structural robustness in the overlay against churn. One such mechanism
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1.1 Strategic Games and Equilibrium Concepts

is to continuously reorganize the overlay to restore structure [MS06]. We model the unpre-
dictability in node dynamics using an omniscient adversary and analyze a structured P2P
overlay network based on a graph topology that we refer to as Linearized DeBruijn Swarm.
We then present a distributed algorithm that maintains the stability of the network in the
presence of adversarial churn.

1.1 Strategic Games and Equilibrium Concepts

We now introduce the classes of games we study in the remainder of this thesis and
the necessary game theoretic preliminaries required for their analysis. We remark that
we restrict our attention to the relevant details of only a selected class of games and
deliberately refrain from presenting a broader introduction to game theory. We refer the
readers to [NRTV07] for a comprehensive introduction to Algorithmic Game Theory. We
begin by understanding the fundamental notion of a strategic game.

Definition 1.1 (Strategic Game). A strategic game denoted by the tuple(
N , (Su)u∈N , (Cu)u∈N

)
consists of a finite set of players N = {1, . . . , N} and for each player u ∈ N , a fi-
nite set of pure strategies Su and a cost function Cu : S → R≥0 that maps a state
s ∈ S := S1 × S2 × · · · × SN to the cost of player u ∈ N .

For a state s := (s1, . . . , sN ) ∈ S, let Cu(s
′
u, s−u) denote the cost of a player u ∈ N on

strategy s′u, while all the other players adopt their strategy in s.

Definition 1.2 (Mixed Nash Equilibrium). Let σu be a probability distribution over the
strategy set Su of a player u ∈ N . Then, the set (σ1, . . . , σN ) is a mixed Nash equilib-
rium if no player is able to improve their expected cost under the product distribution
σ = ×(σu)u∈N by unilaterally deviating, i.e., for all u ∈ N and for all σ′

u,

Es∼σ [Cu(s)] ≤ Es−u∼σ−u

[
Cu(s

′
u, s−u)

]
.

Every finite game has at least one mixed Nash equilibrium [Nas50].

A state s is called a pure strategy profile, if each player u ∈ N , picks exactly one
strategy from the set of available strategies in Su. For a pure strategy profile s and a
player u ∈ N , we denote by s−u the strategy profile without player u. A pure strategy
profile s is considered as a pure Nash equilibrium (PNE), if none of the players can improve
their cost by unilaterally deviating to an alternative strategy. We say the game is in a pure
Nash equilibrium in the strategy profile s. All strategic games which are also potential
games exhibit at least one pure strategy Nash equilibrium [MS96].

Definition 1.3 (Pure Nash Equilibrium). A state s ∈ S := S1 × S2 × · · · × SN is a pure
Nash equilibrium if no player u ∈ N can improve their cost by unilaterally deviating from
their current strategy in s to another strategy s′u ∈ Su, i.e., for all players u ∈ N and for
all s′u ∈ Su it holds that,

Cu(s) ≤ Cu(s
′
u, s−u).

For the sake of convenience we often refer to the pure Nash equilibrium condition in
the above definition as the Nash inequality.
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A strategy profile s is not a pure Nash equilibrium if there exists at least one player
u ∈ N and at least one strategy s′u ∈ Su such that,

Cu(s) > Cu(s
′
u, s−u).

It is natural for players to always deviate to alternative strategies that minimizes their
cost. The deviation that minimizes a player’s cost among all the other allowed deviations
is termed as the best response.
Definition 1.4 (Best Response). A strategy su ∈ Su for a player u ∈ N is called a best
response if it is the best strategy with respect to a fixed strategy of the other players, i.e.,
for all s′u ∈ Su,

Cu(su, s−u) ≤ Cu(s
′
u, s−u).

Computing an exact pure Nash equilibrium is shown to be hard in certain classes
of games [FPT04, ARV08]. Therefore, it is natural to consider a weaker notion of pure
Nash equilibrium known as an approximate pure Nash equilibrium [RT00, SV08, CS11,
CFGS11]. A strategy profile s is considered to be in an α-approximate pure Nash equilib-
rium for some α > 1, if none of the players are able to improve their cost by a factor of
α.
Definition 1.5 (α-Approximate PNE). A state s ∈ S := S1 × S2 × · · · × SN is an α-
approximate pure Nash equilibrium for some α > 1, if no player u ∈ N can improve
their cost by a factor of at least α by unilaterally deviating from their current strategy to
another strategy, i.e., for all players u ∈ N and for all s′u ∈ Su it holds that,

Cu(s) ≤ α · Cu(s
′
u, s−u).

Similar to an exact best response, an α-best response is a unilateral deviation that
also improves the cost of a player by factor at least α for a fixed α > 1.
Definition 1.6 (α-Best Response). A strategy su ∈ Su for a player u ∈ N is called an
α-best response if it is the best factor α improving strategy with respect to a fixed strategy
of the other players, i.e., for all s′u ∈ Su,

Cu(su, s−u) ≤ α · Cu(s
′
u, s−u).

Additional Equilibrium Concepts

Solution concepts such as pure Nash equilibrium and mixed Nash equilibrium are hard to
compute in general [FPT04, DGP06]. However, there exist higher equilibrium concepts
such as the correlated equilibrium which are more permissive than pure and mixed Nash
equilibria and is computationally tractable [NRTV07, p. 79].
Definition 1.7 (Correlated Equilibrium [Aum74]). A probability distribution σ over the
set of states S is said to be a correlated equilibrium if for every player u ∈ N , every two
strategies su, s

′
u ∈ Su and every recommendation s = (s1, . . . , sN ) ∼ σ, the expected cost

for following the recommendation su is not greater than choosing s′u instead, i.e.,

Es∼σ [Cu(s) | su] ≤ Es∼σ

[
Cu(s

′
u, s−u) | su

]
.

Definition 1.8 (Coarse Correlated Equilibrium [MV78]). A probability distribution σ
over the set of states S is said to be a coarse correlated equilibrium (CCE) if for all
su, s

′
u ∈ Su, and for all u ∈ N ,

Es∼σ[Cu(s)] ≤ Es∼σ[Cu(s
′
u, s−u)].

We refer the readers to Roughgarden [Rou15] for further intuitions to these equilibrium
concepts.
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1.2 Congestion Games
Congestion games belong to a class of strategic games that always exhibit a pure Nash
equilibrium [Ros73a] and are often used to model many of the socio-economic scenarios
involving strategic users such as the road transportation network [EK12]. In a congestion
game the players compete over a set of resources in the game and therefore, the strategy
space of a player comprises of subsets of resources.

Definition 1.9 (Congestion Game). A congestion game denoted by

G =
(
N , E, (Su)u∈N , (fe)e∈E

)
consists of a set of players N = {1, 2, . . . , N}, who compete over a set of resources
E = {e1, e2, . . . , em}. Each player u ∈ N has a set of strategies denoted by Su ⊆ 2E .
Each resource e ∈ E has a non-negative and non-decreasing cost function fe : N 7→ R≥0

associated with it.

The cost of a player u ∈ N in any given state s of the game is given by

Cu(s) =
∑
e∈su

fe(ne(s)).

Then, the social cost of a congestion game in a state s is denoted by

C(s) =
∑
u∈N

Cu(s).

For a strategic game G, the state s∗ ∈ S that minimizes the social cost is called the social
optimum and its corresponding cost is denoted by OPT (G).

Congestion games exhibit a cost revealing potential function called the Rosenthal po-
tential. For a state s in a congestion game the value of the potential in the state s is given
as

Φ(s) =
∑
e∈E

Φe(s) =
∑
e∈E

ne(s)∑
i=1

fe(i),

where ne(s) denotes the number of players on resource e in the state s. The Rosenthal
potential is an exact potential, i.e., the change in cost of a player u ∈ N unilaterally
deviating from their strategy in s to an alternative strategy s′u is then exactly equal to
the change in potential. That is,

Φ(s)− Φ(s′u, s−u) = Cu(s)− Cu(s
′
u, s−u).

Using this property, Rosenthal [Ros73a] showed that every congestion game has a pure
Nash equilibrium.

Imposing certain restrictions on the strategy space of a congestion game gives us in-
teresting variants of congestion games.

Definition 1.10. A congestion game is

• symmetric if for all players u, v ∈ N ,

Su = Sv,

and asymmetric, otherwise.
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• singleton if for all players u ∈ N and for all su ∈ Su,

|su| = 1.

We remark that these games are often referred to as selfish scheduling on identical
machines.

1.3 Inefficiency of Equilibria

To understand the outcome of a strategic game, it is crucial to be able to measure the
quality of its self emerging solutions. The price of anarchy (PoA) [KP99] and the price
of stability (PoS) [ADK+08] measures the inherent inefficiency of equilibria in strategic
games. Both PoA and PoS apply to all Nash equilibrium concepts including pure Nash
equilibria (NE).

Let G be a family of strategic games, and let G be a game in G. Let E(G) be the set
of pure Nash equilibria of the game G and assume that E(G) 6= ∅.

Definition 1.11 (Price of Anarchy). The price of anarchy of G is the ratio between the
maximum cost of an NE and the social optimum of G, i.e.,

PoA(G) = max
s∈E(G)

C(s)/OPT (G).

The price of anarchy of G is
PoA(G) = sup

G∈G
PoA(G).

Definition 1.12 (Price of Stability). The price of stability of G is the ratio between the
minimum cost of an NE and the social optimum of G, i.e.,

PoS(G) = min
s∈E(G)

C(s)/OPT (G).

The price of stability of G is
PoS(G) = sup

G∈G
PoS(G).

Caragiannis et al. [CFGS12] introduce the notion of stretch in congestion games. The
stretch of a congestion game G is defined as the worst-case ratio of the potential function
at a pure Nash equilibrium and the global optimum of the potential value in G.

Definition 1.13 (Stretch of a Congestion Game). The stretch of a congestion game G is
the ratio between the maximum potential of a pure Nash equilibrium and the potential at
the potential minimizer s∗, i.e.,

stretch(G) = max
s∈E(G)

Φ(s)/Φ(s∗).

The stretch of a family of congestion games G is

stretch(G) = sup
G∈G

stretch(G).
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1.4 Strategic Games with Fixed Order Scheduling

Restricting the strategy space of a user in a strategic game to singletons gives rise to a
scheduling game [Vöc07]. The impact of imposing scheduling policies on non-cooperative
scheduling problems were first studied by Christodoulou et al. [CKN04]. They introduced
the idea of local scheduling policies to improve the price of anarchy. Note that, for the sake
of consistency with the scheduling literature, in the following definition we use σ instead
of s to denote a strategy profile and use sj to denote the speed of a machine j.

Definition 1.14 (Scheduling Games with Priority Lists). A scheduling game with machine-
dependent priority lists is given by a tuple

G = (N ,M, (pi)i∈N , (sj)j∈M , (πj)j∈M ) ,

where N is a finite set of N ≥ 1 jobs, M is a finite set of m ≥ 1 parallel related machines,
pi ∈ R≥0 is the processing time of job i ∈ N , sj ∈ R≥0 denotes the speed of the machine
j ∈M , and πj : N → {1, . . . , N} is the priority list of machine j ∈M .

A strategy profile σ = (σi)i∈N ∈ MN assigns a machine σi ∈ M to every job i ∈ N .
Given a strategy profile σ, the jobs are processed according to their order in the machines’
priority lists. The set of jobs that delay i ∈ N in s is denoted by,

Bi(σ) = {k ∈ N | σk = σi ∧ πσi(k) ≤ πσi(i)} .

The cost of job i ∈ N is equal to its completion time in σ, given by

Ci(σ) =

∑
k∈Bi(σ)

pk

sσi

.

The social cost of the game for the assignment σ is denoted by C(σ). The cost is
defined with respect to some objective, e.g., the makespan, i.e.,

Cmax(σ) := max
i∈N

Ci(σ),

or the sum of completion times, i.e.,
∑

i∈N Ci(σ).

Scheduling games with priority list can also be extended to games with arbitrary
strategy spaces. Ackermann et al. [AGM+08] were the first to study a congestion game
with priorities. They consider a model in which users with higher priority on a resource
displace users with lower priorities. Later, Farzad et al. [FOV08] study priority based
selfish routing with atomic users and analyze the inefficiency of their equilibria. We
investigate a model that is very similar to Farzad et al.

Definition 1.15 (Weighted Congestion Games with Priority Lists). A weighted congestion
game with resource-dependent priority lists is given by a tuple

G = (N , E, (Su)u∈N , (wu)u∈N , (ce)e∈E , (πe)e∈E) ,

where N is a finite set players, E is a finite set of resources, Su ⊆ 2E is the set of feasible
strategies for player u ∈ N , wu ∈ R≥0 is the weight of player u ∈ N , ce ∈ R≥0 is the cost
coefficient of resource e ∈ E, and πe : N → {1, . . . , N} is the priority list of resource e ∈ E
that defines its preference over the players using it.
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Given a strategy profile s ∈ S := S1 × S2 × · · · × SN , for every player u ∈ N and re-
source e ∈ su, let

Bue(s) = {k ∈ N | e ∈ sk ∧ πe(k) ≤ πe(u)}

denote the set of players that delay player u ∈ N in the state s on resource e. The cost of
a player u ∈ N is given by

Cu(s) = wu ·
∑
e∈su

∑
k∈Bue(s)

ce · wk.

The social cost of the game in a state s is then given by

C(s) =
∑
u∈N

Cu(s).

1.5 Overlay Networks under Churn
Overlay networks are dynamic logical network topologies built over an underlay network
such as the Internet [Sch01, ECP+05]. We consider a model in which time proceeds in
synchronous rounds and observe a dynamic set of nodes V :=

(
V0, V1, . . .

)
such that Vt is

the set of nodes in round t. The model assumes that the node set V is determined by an
adversary. This implies, in every round t the adversary can propose a set Ot ⊂ Vt−1 that
leaves the network and a set Jt ⊂ Vt that joins the network, i.e., Vt := (Vt−1 \Ot) ∪ Jt.
The continuous addition and deletion of nodes in the network is referred to as churn. Each
node u in the network is identified by a unique and immutable identifier (e.g. IP address)
denoted by id(u) of size O(log n), where n is the minimal number of nodes in any given
round. The edges are referred to as the logical links between the nodes in the network.
For all u, v ∈ Vt, there exists a directed edge (u, v) in the network if the node u knows
id(v). A node u ∈ Vt can send a message to a node v ∈ Vt if and only if it knows the
identifier of v, i.e., id(v). Let us denote by Du

t the neighborhood of node u in round t, i.e.,

Du
t := {v ∈ Vt | u knows id(v) in round t},

then (Du
t )u∈Vt completely defines the logical links and therefore, the structure of the

overlay network in round t. Exchange of messages in each round results in a series of
directed communication graphs G :=

(
G0, G1, . . .

)
with Gt = (Vt, Et) and

Et := {(u, v) | v receives a message from u in round t}.

A node can send messages to O(log n) different nodes in each round with message length
at most O(polylogn) bits. The model assumes an (a, b)-late adversary, i.e., the adversary
can see the edges Et in round t+ a and the set (Du

t )u∈Vt in round t+ b.
We consider an overlay network based on a topology that has a well defined structure

called a Linearized DeBruijn Swarm (see, Figure 7.1).

Definition 1.16. For n ∈ N≥0 and κ ≥ 1, let V be a set of nodes with |V | ≥ n posi-
tioned on the [0, 1)-interval and λ := 2 log(κn). Then, the Linearized DeBruijn Swarm
D := (V,EL ∪ EDB) with parameter c ∈ N≥0 has the following properties:

• (v, w) ∈ EL ⇐⇒ w ∈ V and d(v, w) ≤ 2cλ
n .

• (v, w) ∈ EDB ⇐⇒ w ∈ V and d
(
v+i
2 , w

)
≤ 3cλ

2n with i ∈ {0, 1},

where d : V × V 7→ R≥0 is the distance function.
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1.6 Notations

1.6 Notations

• For n ∈ Z+, set [n] = {1, . . . , n}.

• For any m,n ∈ Z with n ≥ m, set [n]m = {m,m+ 1, . . . , n}.

• For a resource e ∈ E and a state s ∈ S, ne(s
′
u, s−u) denotes the number of players

on resource e, when player u plays strategy s′u, while all the other players play their
strategy in s.

• For a, b ∈ [0, 1) and b ≤ a, [a± b] denotes the interval [a− b, a+ b].

1.7 Complexity

Complexity theory distinguishes between optimization and decision problems. While opti-
mization (minimization or maximization) problems such as The Traveling Salesman Prob-
lem [Wor86] ask for the optimal solution to a given instance of the problem, decision
problems such as 3-Dimensional Matching [Kar72] are posed as a yes or no question.
A crucial factor to consider while designing algorithms for non-trivial problems is their
runtime efficiency. It is commonly accepted that an algorithm with a runtime which is
polynomially bounded in its input size is efficient. We assume that the readers are familiar
with the standard complexity classes P and NP. It is a widely believed hypothesis that P
6= NP, i.e., there exist problems in NP that do not exhibit polynomial time algorithms.
The complexity class NP consists of all decision problems for which there exists a poly-
nomial time algorithm that can verify, given an instance of the decision problem and a
polynomial sized certificate, whether the instance is a yes instance. A decision problem
X ∈ NP is NP-complete if every problem X ′ ∈ NP can be transformed to an instance of
X in polynomial time. An optimization problem can be formulated as a decision problem
by imposing a bound on the value to be optimized. This allows us to study the hardness
of an optimization problem by applying the theory of NP-completeness on its decision
variant. Therefore, in order to prove if an optimization problem is hard, it is sufficient to
show that its decision variant is hard. A problem X is NP-hard if every problem X ′ ∈ NP
can be transformed to an instance of X in polynomial time. We refer the readers to Garey
and Johnson [GJ79], Cook [Coo00], and Karp [Kar72] for a comprehensive introduction
to complexity theory and the notion of NP-completeness.

A natural approach to deal with intractability of NP-hard optimization problems is
to investigate the existence of polynomial time approximation algorithms, i.e., efficient
algorithms to compute good solutions that approximate the optimal solution closely. We
refer the readers to [ACG+13] for further details on approximability of NP-hard problems.
An approximation algorithm for a minimization problem X has a performance guarantee
of α, if and only if the algorithm outputs a feasible solution for each instance I ∈ X with
cost at most α times the cost of the optimal solution for I, i.e., cost(I) ≤ α ·OPT (I).
The complexity class APX is the class of all optimization problems with a constant factor
approximation algorithm, i.e., α = O(1). An elegant description of the class APX can also
be found in Hoogeveen et al. [HSW01] and Kann [Kan92]. It is desirable to derive ap-
proximation algorithms for optimization problems with α arbitrarily close to 1, if possible.
A widely used approach for this is the polynomial time approximation scheme (PTAS).
A PTAS for an optimization problem is a family of polynomial time approximation al-
gorithms with an approximation guarantee of (1 + ε) for every fixed ε > 0. Similarly, a
quasi-polynomial time approximation scheme (QPTAS) for an input of size n has runtime
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nlogO(1) n for each fixed ε > 0. A natural question that arises is whether such approxima-
tion algorithms always exist for NP-hard problems. Papadimitriou and Yannakakis [PY91]
introduce the concept of L-reduction and prove that if there exists an L-reduction from
an optimization problem X to another optimization problem Y with parameters α, β > 0
and if problem X has some polynomial time approximation scheme for every fixed ε > 0,
this implies that there also exists a polynomial time algorithm for problems in Y with
approximation guarantee of 1 + αβε for every fixed ε > 0.

Definition 1.17 (Papadimitriou and Yannakakis [PY91]). Let Π1 and Π2 be two opti-
mization problems. We say Π1 L-reduces to Π2 if there exist polynomial time computable
functions f, g and constants α, β > 0 such that for each instance I ∈ Π1 the following
holds,

1. f(I) ∈ Π2 such that, OPT (f(I)) ≤ α ·OPT (I).

2. Given any solution ϕ to f(I), g(ϕ) is a feasible solution to I such that

|cost(g(ϕ))−OPT (I)| ≤ β · |cost(ϕ)−OPT (f(I))|.

The class APX is closed under approximation preserving reductions such as an L-
reduction. Therefore, APX-complete problems are the hardest of problems in the class
APX and APX-hard problems are those which are at least as hard as all problems in APX.
APX-complete problems do no exhibit a polynomial time approximation scheme [ALM+98].
It is widely believed that showing that a problem is APX-hard also implies that the prob-
lem does not exhibit a QPTAS [HPQ17].

1.8 Outline and Bibliographical Notes
The thesis has been divided into two parts. In the first part we study different models of
non-cooperative games. Particularly, we focus on their algorithmic aspects such as com-
putability, existence and the inefficiency of their self emerging solutions. The second part
focuses on decentralized overlay networks. Here, we present an algorithm that maintains a
routable overlay network under high adversarial churn. We would like to remark that due
to the diversity in the models we consider, we deliberately refrain from discussing details of
the related work at this point and refer the readers to the individual chapters. Also, we in-
tentionally repeat the description and preliminaries of the relevant model in the individual
chapters to allow for a chapter to be read separately. Here, we give a brief overview about
the results presented in the subsequent chapters of the thesis. We would like to remark
that most of the results presented in this thesis are part of peer-reviewed manuscripts
published as journal articles or as extended abstracts in conference proceedings. In most
cases the proofs are also available as arXiv preprint.

Approximate pure Nash equilibria

We study the computability of pure Nash equilibria in congestion games. Congestion
games belong to a class of local search problems in the complexity class PLS. We refer
the readers to Johnson, Papadimitriou, and Yannakakis [JPY88] and [NRTV07, Chapter
19] for an overview on the complexity class PLS. It has been established that computing
an exact [FPT04] or even an approximate [SV08] pure Nash equilibrium in congestion
games is in general PLS-complete. This alludes our attention towards computing approxi-
mate pure Nash equilibrium in certain restricted classes of congestion games. Particularly,

12



1.8 Outline and Bibliographical Notes

we consider congestion games with non-decreasing cost functions. In their seminal paper,
Caragiannis et al. [CFGS11] present a polynomial-time algorithm that computes a (2 + ε)-
approximate pure Nash equilibrium for games with linear cost functions and further results
for polynomial cost functions. In Chapter 2 we show that this factor can be improved to
(1.61+ε) and also show further improved results for polynomial cost functions, by a seem-
ingly simple modification to their algorithm that allows for the cost functions used during
the best response dynamics to be different from the overall objective function. Interest-
ingly, our modification to the algorithm also extends to efficiently computing improved
approximate pure Nash equilibria in games with arbitrary non-decreasing resource cost
functions.

Universal Load Dependent Taxes

In Chapter 3 we extend the techniques presented in Chapter 2 and show that our analysis
exhibits an interesting method to compute universal load dependent taxes that improves
the inefficiency of equilibria in congestion games. Furthermore, using linear programming
duality we prove lower bounds on the price of anarchy under universal taxation, e.g., 2.012
for linear congestion games and further results for polynomial cost functions. Moreover,
our cost functions are locally computable and in contrast to [BV16] are independent of
the actual instance of the game.

The results in Chapters 2 and 3 are joint work of the author with Alexander Skopalik
and are part of the extended abstract of the following conference proceedings and arXiv
preprint:

• [RVS20] Improving Approximate Pure Nash Equilibria in Congestion Games
Vipin Ravindran Vijayalakshmi and Alexander Skopalik
In the proceedings of the 16th Conference on Web and Internet Economics (WINE),
December 2020, pages 280-294.

• [SR20] Improving approximate pure Nash equilibria in congestion games
Vipin Ravindran Vijayalakshmi and Alexander Skopalik
arXiv preprint 2007.15520 (2020).

Fixed Order Scheduling

In Chapter 4 we study a simple, yet challenging variant of a parallel machine scheduling
problem. Here, we consider a variant of a scheduling problem in which each machine has
its own priority over the sequence in which jobs assigned to it are processed. Priority
based scheduling succinctly models many socio-economic situations and therefore, duly
warrant analysis from a theoretical perspective. We study the computational hardness
and inapproximability of the optimal solution in this model under local and global priority
rules. To the best of our knowledge, the model has only been considered marginally in
the literature. The unpublished results presented in Chapter 4 are joint work of the
author with Marc Schröder (School of Business and Economics, Maastricht University,
Netherlands) and Tami Tamir (School of Computer Science, The Interdisciplinary Center,
Israel).

• [RST21b] Scheduling with machine-dependent priority lists
Vipin Ravindran Vijayalakshmi, Marc Schröder, and Tami Tamir
Unpublished.
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Non-cooperative Fixed Order Scheduling

In Chapter 5 we analyze the model described in Chapter 4 in a non-cooperative setting.
Here, we consider a scheduling game on parallel related machines, in which jobs try to
minimize their completion time by choosing a machine to be processed on. Inline with
the model, each machine has an individual priority list to decide on the order in which
the jobs assigned on the machine are to be processed. We prove that it is NP-hard to
decide if a pure Nash equilibrium exists and characterize four classes of instances in which
a pure Nash equilibrium is guaranteed to exist. For each of these classes, we present
an algorithm that computes a Nash equilibrium, we prove that best-response dynamics
converge to a Nash equilibrium, and we bound the inefficiency of Nash equilibria with
respect to objectives such as makespan of the schedule and the sum of completion times.
Additionally, we prove that although a pure Nash equilibrium is guaranteed to exist in
instances with identical machines, it is NP-hard to approximate the best Nash equilibrium
with respect to both objectives.

Weighted Congestion Games with Scheduling Policy

Chapter 6 generalizes the model discussed in Chapter 5 to allow for arbitrary strategy
sets and studies weighted congestion games with priority lists. We show that in general,
even with unit weight players, a pure Nash equilibrium need not exist by making use of
the famous Condorcet paradox [MdC85]. We use this construction to prove that even
with unweighted players, it is NP-hard to decide whether a pure Nash equilibrium exists.
We also prove a certain inapproximability result for the notion of approximate pure Nash
equilibrium in these games. On a positive note, for matroid congestion games with un-
weighted players, we show that a pure Nash equilibrium always exists. Finally, we analyze
the price of anarchy with respect to the sum of weighted costs and show that the upper
bound of 4 proven by Cole et al. [CCG+15] for unrelated machine scheduling with Smith’s
rule also extends to congestion games with resource-dependent priority lists. This ratio is
smaller than the price of anarchy of the atomic game with priorities defined by Farzad et
al. [FOV08]. Furthermore, we extend our analysis to games with polynomial cost functions
of maximum degree d.

The results presented in Chapters 5 and 6 are joint work of the author with Marc
Schröder and Tami Tamir. Parts of the results presented in Chapter 5 and 6 can also
be found in the extended abstracts of the following conference proceedings and journal
publication:

• [RST21a] Scheduling games with machine-dependent priority lists
Vipin Ravindran Vijayalakshmi, Marc Schröder, and Tami Tamir
In Theoretical Computer Science, Volume 855, 2021, pages 90-103.

• [STRV19] Scheduling Games with Machine-Dependent Priority Lists
Marc Schröder, Tami Tamir, and Vipin Ravindran Vijayalakshmi
In the proceedings of the 15th Conference on Web and Internet Economics (WINE),
December 2019, pages 286-300.

Parts of the results in Chapter 6 can be found in the following arXiv preprint:

• [STR19] Scheduling (Congestion) Games with Machine-Dependent Prior-
ity Lists
Vipin Ravindran Vijayalakshmi, Marc Schröder, and Tami Tamir
arXiv 1909.10199 preprint (2019).
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1.8 Outline and Bibliographical Notes

Churn Resistant Overlay Networks

In Chapter 7 we investigate the maintenance of a structured overlay network under high
adversarial churn, where an adversary may churn a constant fraction of nodes in the
network over the course of O(log n) rounds. In particular, the adversary has almost up-
to-date information on the network topology as it can only observe a slightly outdated
topology that is at least 2 rounds old with a provably minimal restriction that new nodes
can only join the network via nodes that have taken part in the network for at least
two rounds. We present an algorithm based on four sub-routines that constructs a new
overlay—completely independent of all previous overlays—every 2 rounds with congestion
O(log3 n) messages each round. We extend a topology based on Linearized DeBruijn
Graph [RS11a] and present a structured overlay network called Linearized DeBruijn Swarm
(LDS), a highly churn resistant overlay. We believe that our techniques can be adapted
to a variety of classical P2P topologies, where nodes are mapped into the [0, 1)-interval.
The results presented in Chapter 7 are joint work of the author with Thorsten Götte and
Christian Scheideler. Preliminary results in Chapter 7 were presented in the following
conference proceedings:

• [GRS19] Always be Two Steps Ahead of Your Enemy
Thorsten Götte, Vipin Ravindran Vijayalakshmi, and Christian Scheideler
In the proceedings of the 2019 IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS), 2019, pages 1073-1082.

Parts of the results in Chapter 7 can also be found in the following arXiv preprint:

• [GRS18] Always be Two Steps Ahead of Your Enemy
Thorsten Götte, Vipin Ravindran Vijayalakshmi, and Christian Scheideler
arXiv preprint 1810.07077 (2018).

Finally, in Chapter 8 we briefly summarize our results and discuss future research direc-
tions.
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Decentralized Resource Allocation
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Chapter 2

Approximate Pure Nash Equilibria

Congestion games are a prominent class of games to model resource allocation by non-
cooperative users. Fabrikant et al. [FPT04] show that computing a pure Nash equilibrium
in congestion games is in general PLS-complete. This naturally draws attention to study-
ing a weaker notion of the equilibrium known as an approximate pure Nash equilibrium.
Skopalik and Vöcking [SV08] show that computing an approximate pure Nash equilib-
rium in general is also PLS-complete. In this chapter we consider a restricted class of
congestion games, i.e., class of games with arbitrary non-decreasing cost functions and
present an algorithm that computes a constant factor approximate pure Nash equilibrium
in polynomial number of player best response moves.

2.1 Introduction

We introduced congestion games in Chapter 1. Let us recall that congestion games con-
stitute an important class of games that succinctly represent a game theoretic model for
resource allocation among non-cooperative strategic users. A canonical example for this
is the road transportation network, where the time needed to commute is a function on
the total amount of traffic in the network (see, e.g., [U.S64]). A rational user picks the
shortest available route to their destination. Therefore, it is quite natural to model the
strategic nature of users in a transportation network as a strategic game. As described
in Section 1.1, a strategic game denoted by the tuple

(
N , (Su)u∈N , (Cu)u∈N

)
consists of

a finite set of players N and for each player u ∈ N , a finite set of strategies Su and a
cost function Cu : S → R≥0 mapping a state s = (su)u∈N ∈ ×u∈NSu to the cost of player
u ∈ N . A congestion game is a strategic game that succinctly represents a decentralized
resource allocation problem involving selfish users. In particular, a congestion game is a
cost minimization game defined by a set of resources E, a set of players N := {1, . . . , N}
with strategies S1, . . . , SN ⊆ 2E , and for each resource e ∈ E, a cost function fe : N 7→ R≥0.
Congestion games were first introduced by Rosenthal [Ros73a] and using a potential func-
tion argument proved that it belongs to a class of games in which a pure Nash equilibrium
always exists, i.e., the game always consists of a self-emerging solution in which no player
is able to improve by unilaterally deviating.

In this chapter, we study the computational aspects of pure Nash equilibria in conges-
tion games. We begin by familiarizing ourselves once again with the model definition and
the necessary preliminaries. However, we remark that the readers may choose to skip the
following subsection.
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2 Approximate Pure Nash Equilibria

2.1.1 The Model

A congestion game denoted by the tuple

G =
(
N , E, (Su)u∈N , (fe)e∈E

)
consists of a set of N players, N = {1, 2, . . . , N}, who compete over a set of resources,
E = {e1, e2, . . . , em}. Each player u ∈ N has a set of strategies denoted by Su ⊆ 2E .
Each resource e ∈ E has a non-negative and non-decreasing cost function fe : N 7→ R≥0

associated with it. Let us denote by ne(s) the number of players on a resource e ∈ E in the
state s, then the cost contributed by a resource e ∈ E to each player using it is denoted by
fe(ne(s)). Therefore, the cost of a player u ∈ N in a state s = (s1, . . . , sN ) ∈ S1×· · ·×SN

of the game is given by
Cu(s) =

∑
e∈E:e∈su

fe(ne(s)).

For an arbitrary state s ∈ S, Cu(s
′
u, s−u) denotes the cost of player u, when only player

u deviates from the state s. A best-response move denoted by BRu(s) is a move that
minimizes a player’s cost while all the other players are fixed to their strategy in s. With
a slight abuse of notation, let BRu(0) denote the best response of a player u assuming
that no other player participates in the game.

A state s ∈ S is a pure Nash equilibrium (NE), if there exists no player who could
deviate to another strategy and decrease their cost, i.e., for all u ∈ N and for all s′u ∈ Su,

Cu(s) ≤ Cu(s
′
u, s−u).

A weaker notion of an NE is the α-approximate pure Nash equilibrium for α > 1, which
is a state s in which no player has an improvement that decreases their cost by a factor
of at least α, i.e., for all u ∈ N and for all s′u ∈ Su,

α · Cu(s
′
u, s−u) ≥ Cu(s).

For congestion games the exact potential function

Φ(s) =
∑
e∈E

Φe(ne(s)) =
∑
e∈E

ne(s)∑
i=1

fe(i),

guarantees the existence of an NE by proving that every sequence of unilateral improving
deviations converges to an NE. We denote the social or global cost of a state s as

C(s) =
∑
u∈N

Cu(s)

and the state that minimizes the social cost is called the optimal, i.e., s∗ = argmins∈S C(s).
The inefficiency of equilibria is measured using the price of anarchy (PoA) [KP99], which
is the worst-case ratio between the social cost of an equilibrium and the social optimum.

A local optimum is a state s in which there is no player u ∈ N with an alternative
strategy s′u such that, Cu(s

′
u, s−u) < Cu(s) and an α-approximate local optimum is a state

s in which there is no player u who has an α-best response move (in short α-move) with a
strategy s′u such that α · Cu(s

′
u, s−u) < Cu(s). Let us remark that there is an interesting

connection between an NE and a local optimum. A NE is a local optimum of the potential
function Φ and similarly, a local optimum is a pure Nash equilibrium of a game in which
we change the resource cost functions from f(x) to the marginal contribution to the social
cost, e.g., to f ′(x) = xf(x) − (x − 1)f(x − 1). Analogous to the PoA, the stretch of a
congestion game is the worst-case ratio between the value of the potential function at an
equilibrium and the potential minimizer [CFGS11, CFGS12].
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2.1 Introduction

2.1.2 Our Contribution

Caragiannis et al. [CFGS11] present a polynomial-time algorithm that computes a (2+ε)-
approximate pure Nash equilibrium for congestion games with linear cost functions and
further constant factor results for polynomial cost functions. We improve the approxima-
tion guarantee achieved in the computation of approximate pure Nash equilibria with the
algorithm in Caragiannis et al. [CFGS11], using a linear programming approach which
generalizes the smoothness condition in Roughgarden [Rou15], to modify the cost func-
tions that users experience in the algorithm. We show the approximation factor can be
improved to (1.61 + ε) for games with linear cost functions and further improved results
for polynomial cost functions, with a seemingly simple modification to their algorithm by
allowing for the cost functions used during the best response dynamics be different from
the overall objective function. Interestingly, our modification to the algorithm also extends
to efficiently computing improved approximate pure Nash equilibrium in games with ar-
bitrary non-decreasing resource cost functions. In Section 2.3 we present an adaptation of
the algorithm in Caragiannis et al. [CFGS11]. Although we only make a seemingly simple
modification to their algorithm, we would like to remark that the analysis is significantly
involved and does not follow immediately from [CFGS11], since the subgame induced by
the algorithm with the modified costs is not a potential game anymore. Table 2.1 lists
our results for resource cost functions that are bounded degree polynomials of maximum
degree d. The values for ρd in Table 2.1 were obtained using the python program in List-
ing A.1. In [Vij17] the author computes cost functions using a linear programming based
approach that improves the stretch in congestion games. We remark that although the
bounds on stretch in [Vij17] are very similar to ours, the cost functions computed using
their LP doesn’t provably guarantee to satisfy the necessary conditions required for the
proofs of our algorithm. Our algorithm strongly relies on the fact that the cost functions
satisfy the strong smoothness condition described in Section 2.2.

d Previous Approx. [CFGS11, FGS14] Our Approx. ρd + ε

1 2 + ε 1.61 + ε
2 6 + ε 3.35 + ε
3 20 + ε 8.60 + ε
4 111 + ε 27.46 + ε
5 571 + ε 98.14 + ε

Table 2.1: Approximate pure Nash equilibria of congestion games with polynomial cost
functions of degree at most d.

Our main result is presented as Theorem 2.1, where the factor ρd is listed in Table 2.1.

Theorem 2.1. For every ε > 0, the algorithm computes a (ρd + ε)-approximate pure
Nash equilibrium for every congestion game with non-decreasing cost functions that are
polynomials of maximum degree d in a number of steps which is polynomial in the number
of players, ρd and 1/ε.

2.1.3 Related Work

Congestion games fit into the framework of local search problems. Fabrikant et al. [FPT04]
show that computing a pure Nash equilibrium in both symmetric and asymmetric con-
gestion games is PLS-complete [JPY88]. They show that regardless of the order in which
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2 Approximate Pure Nash Equilibria

local search is performed, there are initial states from where it could take exponential num-
ber of the steps before the game converges to a pure Nash equilibrium. Also, they show
PLS-completeness for network congestion games with asymmetric strategy spaces. As a
positive result, Fabrikant et al. [FPT04] present a polynomial time algorithm to compute
pure Nash equilibria in certain restricted strategy spaces e.g. symmetric network conges-
tion games. Ackermann et al. [ARV08] show that network congestion games with linear
cost functions are PLS-complete. However, if the set of strategies of each player consists
of the bases of a matroid over the set of resources, then they show that the lengths of all
best response sequences are polynomially bounded in the number of players and resources.

To our knowledge, the concept of α-approximate pure Nash equilibria was introduced
by Roughgarden and Tardos [RT00] in the context of non-atomic selfish routing games. An
α-approximate pure Nash equilibrium is a state in which none of the users can unilaterally
deviate to improve by a factor of at least α. Orlin et al. [OPS04] show that every local
search problem in PLS admits a fully polynomial time ε-approximation scheme. Although
their approach can be applied to congestion games, this does not yield an approximate pure
Nash equilibrium, but rather only an approximate local optimum of the potential function.
In case of congestion games, Skopalik and Vöcking [SV08] show that in general for arbi-
trary cost functions, finding an α-approximate pure Nash equilibrium is PLS-complete,
for any α > 1. However, for polynomial cost function (with non-negative coefficients)
of maximum degree d, Caragiannis et al. [CFGS11] present an approximation algorithm.
They present a polynomial time algorithm that computes a (2 + ε)-approximate pure
Nash equilibrium for games with linear cost functions and an approximation guarantee
of dO(d) for polynomial cost functions of maximum degree d. Interestingly, they use the
convergence of a carefully chosen subsets of players to a (1 + ε)-approximate pure Nash
equilibrium (of that subset) as a subroutine to generate a state which is an approximation
of the minimal potential function value (of that subset), e.g., 2 · OPT for linear conges-
tion games. This approximation factor of the minimal potential then essentially turns
into the approximation factor of the approximate pure Nash equilibrium. Feldotto et
al. [FGS14] using a path-cycle decomposition technique bound this approximation factor
of the potential for arbitrary non-decreasing cost functions.

2.2 Definition and Preliminaries

We begin by familiarizing ourselves with the notion of (λ, µ)-smoothness in cost-minimiza-
tion games. After a long series of papers in which various authors (e.g. [CK05a, AAE05,
ADG+11]) show upper bounds on the price of anarchy of congestion games, Roughgarden
exhibited that most of them essentially used the same technique, which is formalized as
(λ, µ)-smoothness [Rou15]. A cost-minimization game is called (λ, µ)-smooth, if for every
pair of outcomes s, s∗ ∈ S it holds that,

∑
u∈N

Cu(s
∗
u, s−u) ≤ λ · C(s∗) + µ · C(s). (2.1)

The price of anarchy of a (λ, µ)-smooth game with λ > 0 and µ < 1 is then at most λ
1−µ .
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2.2.1 Revisiting (λ, µ)-smoothness

Observe that the original smoothness definition in (2.1) can be extended to allow for an
arbitrary objective function h : S 7→ R≥0 instead of the social cost function

C(s) =
∑
u∈N

Cu(s).

Definition 2.2. A cost-minimization game is (λ, µ)-smooth with respect to an objective
function h : S 7→ R≥0, if for every pair of outcome s, s∗ ∈ S,

λ · h(s∗) ≥
∑
u∈N

Cu(s
∗
u, s−u)−

∑
u∈N

Cu(s) + (1− µ)h(s).

From the definition above, we restate the central smoothness theorem [Rou15].

Theorem 2.3. Given a (λ, µ)-smooth cost-minimization game G with λ > 0, µ < 1 and
an objective function h : S 7→ R≥0, then for every pure Nash equilibrium s and the global
optimum s∗,

h(s) ≤ λ

1− µ
h(s∗).

Proof. Let s be an arbitrary pure Nash equilibrium and s∗ be the optimal solution. From
the Nash inequality we know that ∀u ∈ N ,

Cu(s) ≤ Cu(s
∗
u, s−u).

Then, summing over all the N players gives,∑
u∈N

Cu(s)−
∑
u∈N

Cu(s
∗
u, s−u) ≤ 0.

By the definition of (λ, µ) smoothness in Definition 2.2 we have,

(1− µ) · h(s) ≤ λ · h(s∗) +
∑
u∈N

Cu(s)−
∑
u∈N

Cu(s
∗
u, s−u).

Then, using the Nash inequality the theorem follows.

The smoothness framework introduced by Roughgarden [Rou15] also extends to equi-
librium concepts such as mixed Nash and (coarse) correlated equilibria. The same is
true for our variant with respect to an arbitrary objective function h. For the sake of
completeness we rework Roughgarden’s proof here.

Theorem 2.4 (Extension Theorem). For every (λ, µ)-smooth cost-minimization game
G with respect to an arbitrary objective function h : S 7→ R≥0, every coarse correlated
equilibrium σ and every outcome s∗,

Es∼σ[h(s)] ≤
λ

1− µ
· h(s∗).

Proof. The proof is analogous to [Rou15]. From the (λ, µ)-smoothness condition in Defi-
nition 2.2, we have,

Es∼σ[h(s)] ≤
1

1− µ
Es∼σ

[
λ · h(s∗) +

∑
u∈N

Cu(s)−
∑
u∈N

Cu(s
∗
u, s−u)

]
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2 Approximate Pure Nash Equilibria

=
1

1− µ

[
λ · h(s∗) +

∑
u∈N

Es∼σ[Cu(s)]−
∑
u∈N

Es∼σ[Cu(s
∗
u, s−u)]

]
from the definition of CCE,

≤ λ

1− µ
· h(s∗).

Hence, the theorem.

We remark that a variant to our extension of Roughgarden’s smoothness framework is
independently introduced as generalized smoothness in [CPM19]. From Definition 2.2 we
note the following observation.

Observation 2.5. Every (λ, µ)-smooth cost-minimization game G with λ > 0 and µ < 1

is also
(

λ
1−µ , 0

)
-smooth with its cost functions scaled by a factor 1

1−µ .

Given a strategic game G =
(
N , (Su)u∈N , (Cu)u∈N

)
, one can determine λ and µ that

satisfies the smoothness condition in Definition 2.2, for all pairs of solution s and s∗.
However, since the state space S grows exponentially in the number of players, this would
be computationally inefficient. Therefore, we typically have to work with games in which
the players’ costs and the objective function h can be represented in a succinct way. Recall
that in congestion games, the players cost and the global objective function are implicitly
defined by the resource cost function. In the following, we allow for an arbitrary, additive
objective function h(s), i.e., of the form

h(s) =
∑
e∈E

he(ne(s))

where the function he : N 7→ R≥0 is non-decreasing for all e ∈ E.
We study games in which we change the cost functions Cu experienced by the players.

As a consequence of Observation 2.5 and scaling the cost functions appropriately, we can
always ensure that we satisfy the smoothness inequality with µ = 0, to conveniently restate
the smoothness condition as follows.

Lemma 2.6. A congestion game is (λ, 0)-smooth with respect to an objective function
h(s) =

∑
e∈E he(ne(s)), if for every non-decreasing cost function f ′

e : N 7→ R≥0 and for
every 0 ≤ n,m ≤ N,

λ · he(m) ≥ mf ′
e (n+ 1)− nf ′

e(n) + he(n).

Proof. Let s and s∗ be arbitrary solutions. Summing the inequality of the lemma with
m = ne(s

∗) and n = ne(s) for all e ∈ E gives,

λ
∑
e∈E

he(ne(s
∗)) ≥

∑
e∈E

ne(s
∗)f ′

e(ne(s) + 1)−
∑
e∈E

ne(s)f
′
e(ne(s)) +

∑
e∈E

he(ne(s))

λ · h(s∗) ≥
∑
u∈N

C ′
u(s

∗
u, s−u)−

∑
u∈N

C ′
u(s) + h(s)

which is the (λ, 0)-smoothness condition of Definition 2.2.

From now on, we use f ′ = (f ′
e)e∈E whenever we refer to the modified cost functions

and denote the modified player cost by C ′
u(s) =

∑
e∈su f

′
e(ne(s)).
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Strong smoothness

In Section 2.3 we present an algorithm to compute an approximate pure Nash equilibrium
in congestion games with an improved approximation guarantee than that in Caragiannis
et al. [CFGS11]. The analysis of the algorithm uses the potential function argument on a
subset of players F ⊆ N . In particular, it needs the property that the subgame induced
by every subset of players from N is (λ, 0)-smooth. Unfortunately, Lemma 2.6 does not
guarantee this property. Therefore, we define a stronger notion of (λ, 0)-smoothness that
guarantees that the smoothness condition also holds for the subgame induced by every
arbitrary subset of players in N . Let us denote by nF

e (s) the number of players in F that
use the resource e in the state s.

Definition 2.7. A strategic game is strongly (λ, 0)-smooth with respect to an objective
function h : S 7→ R≥0 and for some λ > 0, if for every subset F ⊆ N and for every s, s∗ ∈ S,

λ · hF (s∗) ≥
∑
u∈F

C ′
u(s

∗
u, s−u)−

∑
u∈F

C ′
u(s) + hF (s),

where hF (s) :=
∑

e∈E he (ne(s))− he

(
n
N\F
e (s)

)
.

Now consider an arbitrary subset of players F ⊆ N and a state s ∈ S. Let us define
the potential of this subset as the potential in the subgame induced by these players in s,
i.e.,

ΦF (s) :=
∑
e∈E

ΦF,e(s) =
∑
e∈E

nF
e (s)∑
i=1

fe

(
i+ nN\F

e (s)
)
.

Denote by GF
s := (F,E, (Su)u∈F , (f

F
e )e∈E) the subgame induced by freezing the remaining

players from N \F with fF
e (x) := fe(x+n

N\F
e (s)), where n

N\F
e (s) is the number of players

outside of F on resource e in the state s. Then, the following lemma gives a stronger notion
of the (λ, 0)-smoothness condition.

Lemma 2.8. For every congestion game G with non-decreasing cost functions f ′
e : N 7→ R≥0,

which is (λ, 0)-smooth with respect to the potential function Φe for every subgame GF
s in-

duced by an arbitrary subset F ⊆ N and arbitrary states s, s∗ ∈ S, i.e.,

λ · ΦF,e(s
∗)− nF

e (s
∗) · f ′

e(ne(s) + 1) + nF
e (s) · f ′

e(ne(s)) ≥ ΦF,e(s),

is also strongly (λ, 0)-smooth.

Proof. The proof is analogous to the proof of Lemma 2.6. Consider an arbitrary subset
of players F ⊆ N , an arbitrary state s, and a subgame GF

s := (F,E, (Su)u∈F , (f
F
e )e∈E)

induced by freezing the remaining players from N \F , that is, let fF
e (x) := fe(x+n

N\F
e (s))

where n
N\F
e (s) is the number of players outside of F on resource e in the state s. Let

s∗ be an arbitrary solution. Summing the inequality of the lemma with m = nF
e (s

∗) and
n = nF

e (s) for all e ∈ E gives,

λ
∑
e∈E

ΦF,e (s
∗) ≥

∑
e∈E

nF
e (s

∗) · f ′
e(ne(s) + 1)−

∑
e∈E

nF
e (s) · f ′

e(ne(s)) +
∑
e∈E

ΦF,e(s)

equivalent to,

λ · ΦF (s
∗) ≥

∑
u∈F

C ′
u(s

∗
u, s−u)−

∑
u∈F

C ′
u(s) + ΦF (s),

which is the strong (λ, 0)-smoothness condition of Definition 2.7.
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This subset property is of particular importance for the algorithm we present in Sec-
tion 2.3 to compute an approximate pure Nash equilibrium, but may be of independent
interest as well. We are not aware of other approximation algorithms that can guaran-
tee this property. We would like to remark that all references to (λ, 0)-smoothness in
Section 2.3 imply strong (λ, 0)-smoothness.

2.3 Approximate Equilibria in Congestion Games
In this section we aim at improving the approximation factor of approximate pure Nash
equilibria in congestion games with arbitrary non-decreasing resource cost functions. We
extend an algorithm based on Caragiannis et al. [CFGS11] to compute an approximate
pure Nash equilibrium in congestion games with arbitrary non-decreasing resource cost
functions. A key element of this algorithm is the so called stretch of a (sub-) game. Recall
that the stretch is the worst-case ratio of the potential function at an equilibrium and the
global minimum of the potential.

The algorithm generates a sequence of improving moves that converges to an approxi-
mate pure Nash equilibrium in polynomial number of best-response moves. The idea is to
divide the players into blocks based on their costs and hence, their prospective ability to
drop the potential of the game. In each phase of the algorithm, players of two consecutive
blocks are scheduled to make improving moves starting with the blocks of players with
high costs. One block only makes q-moves, which are improvements by a factor of at least
q which is close to 1. The other block does p-moves, where p is slightly larger than the
stretch of a q-approximate equilibrium and slightly smaller than the final approximation
factor.

The key idea here is that blocks first converge to a q-approximate equilibrium and
thereby generate a state with a stretch of approximately p. Later, when players of a block
are allowed to do p-moves, there is not much potential left to move. In particular, there
is no significant influence on players of blocks that moved earlier possible. This finally
results in the approximation factor of roughly p. We modify the algorithm in [CFGS11]
by changing the costs seen by the players during their q-moves to be a set of modified
cost functions (f ′

e)e∈E , satisfying smoothness condition of Lemma 2.8 for some constant
λ > 0, and this results in a λ(1 + ε)-approximate pure Nash equilibrium. Note that, λ
is the stretch with respect to the modified cost functions. We present the algorithm as
Algorithm 1, but note that only the definition of θ(q) using λ, the definition of p in Line
1, and the use of the modified cost functions (f ′

e)e∈E in Line 11 has been changed.

2.3.1 Analysis of the Algorithm

We are now ready to prove Theorem 2.1, by restating it as follows. The proof of the theo-
rem follows the proof scheme of Caragiannis et al. [CFGS11], which we have to rigorously
rework to accommodate for our modifications stated above.

Theorem 2.9. For every constant ε > 0 and every set of cost functions (f ′
e)e∈E which

are strongly (λ, 0)-smooth with respect to Φ, Algorithm 1 computes a λ (1 + ε)-approximate
pure Nash equilibrium for every congestion game with non-decreasing cost functions, in
number of steps which is polynomial in the number of players, ∆ := maxe∈E

fe(N)
fe(1)

, λ, and
1/ε.

Proof. The algorithm partitions the players into blocks B1, B2, . . . , Bẑ such that, a player

u ∈ Bi ⇔ `u ∈ (bi+1, bi] ,
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Algorithm 1 Computing a λ(1 + ε)-approximate pure Nash equilibrium in congestion
games.
Input: Congestion game G =

(
N , E, (Su)u∈N , (fe)e∈E

)
, f ′ := (f ′

e)e∈E and ε > 0.
Output: A state of G in λ(1 + ε)-approximate pure Nash equilibrium.

1: Set q =
(
1 + 1

Nc

)
, p =

(
1

θ(q) −
1+q+2λ

Nc

)−1
, c = 10 log

(
λ
ε

)
, ∆ = maxe∈E

fe(N)
fe(1)

and
θ(q) = λ

1+ 1−q
q

Nλ
, where

λ := min{λ′ ∈ R≥0 : λ
′ satisfies Lemma 2.8 with respect to cost functions (f ′

e)e∈E}.
2: foreach u ∈ N do
3: set `u = Cu (BRu (0));
4: end for
5: Set `min = minu∈N `u , `max = maxu∈N `u and ẑ = 1 + dlog2∆N2c+2 (`max/`min)e;
6: Assign players to blocks B1, B2, · · · , Bẑ such that

u ∈ Bi ⇔ `u ∈
(
`max

(
2∆N2c+2

)−i
, `max

(
2∆N2c+2

)−i+1
]
;

7: foreach u ∈ N do
8: set the player u to play the strategy su ← BRu (0);
9: end for

10: for phase i← 1 to ẑ − 1 such that Bi 6= ∅ do
11: while ∃u ∈ Bi with a p-move w.r.t. the original cost f or ∃u ∈ Bi+1 with a q-move

w.r.t. to modified cost f ′ do
12: u deviates to that best-response strategy su ← BR (s1, · · · , sn).
13: end while
14: end for

where
bi := `max ·

(
2∆N2c+2

)−i+1 and bi+1 := `max ·
(
2∆N2c+2

)−i

define the boundaries of the block Bi, `u = Cu (BRu (0)) and `max = maxu∈N `u .
The players are partitioned to at most ẑ = 1 + dlog2∆N2c+2 (`max/`min)e ≤ N blocks,

where for any block Bi the ratio bi
bi+1

= 2∆N2c+2, ∆ = maxe∈E
fe(N)
fe(1)

and `min = minu∈N `u .
Observe that for cost functions which are polynomials of maximum degree d with non neg-
ative coefficients, ∆ is polynomial in the number of players. As part of the initialization
step, the algorithm forces every player u ∈ N to play their optimistic strategy BRu(0),
thus each player incurs a cost at most ∆bi. This describes the initial state of the game
denoted by s0, where si denotes the state of the game after the phase i. The sequence of
moves in the game is divided into multiple phases determined by the player blocks. The
phases of the game progresses from 1→ ẑ− 1. During a phase i of the game, only players
in the block Bi and Bi+1 make moves. Particularly, players in block Bi make their p-move
using the original cost function f and the players in block Bi+1 make their q-move, but
now using the modified cost functions f ′ that satisfies Lemma 2.8 for some λ > 0.

For player u ∈ N and an arbitrary state s ∈ S, a deviation to a strategy s′u ∈ Su is
referred to as a p-move if

Cu(s
′
u, s−u) <

Cu(s)

p
.

Similarly, a q-move with respect to the modified cost functions f ′ is defined as a move
with

C ′
u(s

′
u, s−u) <

C ′
u(s)

q
.
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A phase i terminates in a state si, if for all u ∈ Bi,

Cu(s
i) ≤ p · Cu(s

′
u, s

i
−u)

i.e., the players in Bi are in a p-equilibrium w.r.t. the original cost functions and for all
u ∈ Bi+1,

C ′
u(s

i) ≤ q · C ′
u(s

′
u, s

i
−u)

i.e., the players in Bi+1 are in a q-equilibrium w.r.t. the modified cost functions. The
remaining players, i.e., u ∈ N \ (Bi ∪ Bi+i) remain frozen to their strategy associated
with the phase i− 1. Also, note that players in a block Bi were frozen to their optimistic
strategy BRu(0) until phase i − 1. Let us denote by Ri the players involved in phase i.
Recall that during the phase i, only players in Ri are allowed to make their best-response
p/q-moves. Let us denote by fRi

e the cost introduced by these players on a resource e ∈ E
of the game. Furthermore, the players N \ Ri are frozen to their strategy in phase i− 1.
Therefore, the cost incurred by a player u ∈ Ri using a resource e ∈ E can be given
as fRi

e (nRi
e (s)) = fe

(
nRi
e (s) + n

N\Ri
e (s)

)
, where nRi

e (s) denotes the number of players

u ∈ Ri in the state s using the resource e and n
N\Ri
e (s) denotes the number of players

on the resource e in the state s that do not participate in the phase i of the game. The
potential among the players in Ri, i.e., the potential of the subgame induced by players
in Ri will be denoted as ΦRi .

Here, we have to take into account that the game played by the players belonging to
block Bi ∪ Bi+1 in phase i is no longer a potential game as the players use different cost
functions. However, we can show that the strong smoothness condition of Lemma 2.8
guarantees that the values of the modified cost functions f ′ can be conveniently bounded.

Lemma 2.10. Let f ′ to be the set of modified cost functions satisfying strong (λ, 0)-
smoothness condition for some λ > 0 and f to be the original cost functions. Then, for
all i ≥ 1,

fe(i) ≤ f ′
e(i) ≤ λfe(i).

Proof. The strong smoothness condition of Lemma 2.8 gives us that

λ ·
m+z∑
j=z+1

fe(j)−mf ′
e(n+ z + 1) + nf ′

e(n+ z) ≥
n+z∑

j=z+1

fe(j)

for all 0 ≤ (n+ z),m ≤ N .
Setting n = 0, m = 1, and z = i− 1 gives,

λfe(i) ≥ f ′
e(i).

Furthermore, with m = 0, n = 1, and z = i− 1 we have that,

f ′
e(i) ≥ f(i).

To bound the stretch of any (sub-) game in a q-approximate pure Nash equilibrium,
the following lemma is useful. In its proof we handle the modified cost functions which
then leads to value of

θ(q) :=
λ

1 +Nλ1−q
q
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(cf. Algorithm 1) that depends on the stretch λ of the modified cost functions, instead of
the original ones. We remark that for this lemma, the property that the induced subgames
are also smooth (i.e., Lemma 2.8) is crucial.

Lemma 2.11. Let s be any q-approximate pure Nash equilibrium with respect to the
modified cost functions and s∗ be a strategy profile with minimal potential. Then, for every
set of players F ⊆ N , ΦF (s) ≤ θ(q) · ΦF (s

∗).

Proof. Let C ′
u and Cu denote the cost of a player u ∈ F using the modified cost functions

f ′ and the original cost functions f , respectively. From the definition of q-approximate
equilibrium we have that,

C ′
u(s) ≤ q · C ′

u(s
∗
u, s−u).

Then, using Lemma 2.10,

C ′
u(s

∗
u, s−u)− C ′

u(s) ≥
1− q

q
C ′
u(s) ≥

1− q

q
λCu(s) ≥

1− q

q
λΦF (s),

summing the above inequality for all players u ∈ F gives,∑
u∈F

(
C ′
u(s

∗
u, s−u)− C ′

u(s)
)
≥ 1− q

q
NλΦF (s). (2.2)

Then, by the smoothness condition of Lemma 2.8 and inequality (2.2) we have,

ΦF (s) ≤ λ · ΦF (s
∗)−

(∑
u∈F

(
C ′
u(s

∗
u, s−u)− C ′

u(s)
))

≤ λ · ΦF (s
∗)− 1− q

q
NλΦF (s).(

1 +
1− q

q
Nλ

)
ΦF (s) ≤ λ · ΦF (s

∗)

ΦF (s) ≤
λ

1 + 1−q
q Nλ

· ΦF (s
∗). (2.3)

Setting θ(q) = λ
1+Nλ 1−q

q

and inequality (2.3) concludes the proof.

The next claim bounds from above and below the value of the potential in an arbitrary
state s of the game.

Claim 2.12 (Caragiannis et al. [CFGS11]). For any state s of a congestion game with a
set of players N , a set of resource E and cost functions (fe)e∈E, it holds that∑

e∈E
fe(ne(s)) ≤ Φ(s) ≤

∑
u∈N

Cu(s).

The following lemmas give us useful bounds on the potential of a subgame in an
arbitrary state s ∈ S.

Lemma 2.13 (Caragiannis et al. [CFGS11]). Let s be a state of the congestion game G
with a set of players N and let F ⊆ N . Then,

Φ(s) ≤ ΦF (s) + ΦN\F (s)

and Φ(s) ≥ ΦF (s).
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Lemma 2.14 (Caragiannis et al. [CFGS11]). Let C(u) denote the cost of player u ∈ Ri

just after making their last move within phase i. Then,

ΦRi(s
i) ≤

∑
u∈Ri

C(u).

We now bound the potential of the set of players Ri ⊆ Bi ∪ Bi+1 that move in any
given phase i. Most importantly, the players of Bi, were in an q-approximate equilibrium
with respect to C ′

u at the end of the previous round. Hence, for every subset of Bi, we
can exploit Lemma 2.11 to obtain a small upper bound on the potential among players
Ri participating in a phase i at the beginning of the phase. Recall that for a phase i,
bi := `max ·

(
2∆N2c+2

)−i+1 and si denotes the state of the game after the execution of
phase i.

Lemma 2.15. For every phase i ≥ 2, it holds that ΦRi(s
i−1) ≤ bi

Nc .

Proof. We prove by contradiction. Let us assume that the inequality does not hold, i.e.,

ΦRi(s
i−1) >

bi
N c

.

Then, we show that the players u ∈ Ri∩Bi were not in a q-approximate equilibrium w.r.t.
the modified cost functions f ′ in the phase i − 1. However, this violates the termination
condition of phase i− 1 in the algorithm.

Observe that the players in the block Bi+1 are not allowed to moved until the conclusion
of phase i − 1 and remain in their optimistic strategy BRu(0) according to the initial
settings of the algorithm. Moreover, the cost incurred by a player u ∈ Bi+1 is at most
∆bi+1. Therefore, the total cost incurred by the players in Ri ∩Bi+1, i.e.,∑

u∈Ri∩Bi+1

∆bi+1 ≤ N∆bi+1.

The potential among players in Ri ∩Bi+1 is bounded by,

ΦRi∩Bi+1(s
i−1) ≤ N∆bi+1. (2.4)

Using Lemma 2.13, (2.4), and our assumption on ΦRi(s
i−1) we get,

ΦRi∩Bi(s
i−1) ≥ ΦRi(s

i−1)− ΦRi∩Bi+1(s
i−1)

>
bi
N c
−N∆bi+1

=

(
2∆N2c+2

N c
−N∆

)
bi+1

≥ N c+1∆bi+1. (2.5)

With a slight abuse of notation, let us denote by C(u) the cost of a player u ∈ Ri ∩Bi

after they made their last move during the phase i. So, the change in potential contributed
by the player u in the phase i is then at least (p−1)C(u). Let us denote by ξi the decrease
of potential due to the moves of the players in Bi+1 in phase i. Note that ξi could be
negative as the players of Bi+1 use the modified cost functions. The change in potential
due to the moves by all the players in Ri is given by (p − 1)

∑
u∈Ri∩Bi

C(u) + ξi and we
can bound

(p− 1)
∑

u∈Ri∩Bi

C(u)

30



2.3 Approximate Equilibria in Congestion Games

≤ ΦRi(s
i−1)− ΦRi(s

i)− ξi

≤ ΦRi∩Bi(s
i−1) + ΦRi∩Bi+1(s

i−1)− ΦRi(s
i)− ξi

≤ ΦRi∩Bi(s
i−1) +N∆bi+1 − ΦRi(s

i)− ξi

<

(
1 +

1

N c

)
ΦRi∩Bi(s

i−1)− ΦRi(s
i)− ξi. (2.6)

To account in the change of potential ξi from si−1 to si due the players in Bi+1, we observe
that the cost of a player u ∈ Ri ∩ Bi+1 was at most Cu(s

i−1) ≤ ∆bi+1 as the player u
was put by the algorithm on the strategy BR(0). By Lemma 2.10, the player’s cost with
respect to the modified cost function on this strategy is C ′

u(s
i−1) ≤ λ∆bi+1. Since, a

player may always switch back to this strategy, their cost in si can be bounded by

Cu(s
i) ≤ C ′

u(s
i) < qλ∆bi+1.

This yields a bound on the change of the potential of

ξi > −qNλ∆bi+1.

Now we can bound the potential in si by the cost of the players. We then can use
inequality (2.6) for the players in Ri∩Bi. By Lemma 2.10, the cost of a player u ∈ Ri∩Bi+1

after they made their last q-move during the phase i is at most λ∆bi+1.

ΦRi(s
i) ≤

∑
u∈Ri

C(u)

=
∑

u∈Ri∩Bi+1

C(u) +
∑

u∈Ri∩Bi

C(u)

< Nλ∆bi+1 +
1

p− 1

(
1 +

1

N c

)
ΦRi∩Bi(s

i−1)

− 1

p− 1
ΦRi(s

i)− 1

p− 1
ξi

≤ λ

N c
ΦRi∩Bi(s

i−1) +
1

p− 1

(
1 +

1

N c

)
ΦRi∩Bi(s

i−1)

− 1

p− 1
ΦRi(s

i) +
q

p− 1
Nλ∆bi+1

≤ λ

N c
ΦRi∩Bi(s

i−1) +
1

p− 1

(
1 +

1

N c

)
ΦRi∩Bi(s

i−1)

− 1

p− 1
ΦRi(s

i) +
q

p− 1

λ

N c
ΦRi∩Bi(s

i−1)

≤ λ(p− 1)

(p− 1)N c
ΦRi∩Bi(s

i−1) +
1

p− 1

(
1 +

1

N c

)
ΦRi∩Bi(s

i−1)

− 1

p− 1
ΦRi(s

i) +
q

p− 1

λ

N c
ΦRi∩Bi(s

i−1)

≤ 1

p− 1

(
1 +

(p− 1)λ+ 1 + qλ

N c

)
ΦRi∩Bi(s

i−1)

− 1

p− 1
ΦRi(s

i)

equivalent to,
p

p− 1
ΦRi(s

i) <
1

p− 1

(
1 +

(p− 1)λ+ 1 + qλ

N c

)
ΦRi∩Bi(s

i−1)

31



2 Approximate Pure Nash Equilibria

=
p

p− 1

(
1

p
+

(p− 1)λ+ 1 + qλ

pN c

)
ΦRi∩Bi(s

i−1)

<
p

p− 1

(
1

p
+

λ

N c
+

1 + qλ

pN c

)
ΦRi∩Bi(s

i−1)

<
p

p− 1

(
1

p
+

λ

N c
+

1 + q

N c

)
ΦRi∩Bi(s

i−1).

Therefore,

ΦRi(s
i) <

(
1

p
+

1 + q + λ

N c

)
ΦRi∩Bi(s

i−1). (2.7)

Observe that until the end of phase i− 1, the players in the block Ri ∩Bi+1 have not
deviated from their initial strategy of BRu(0) in the state si−1. However, this cannot be
guaranteed in the state si where the players in Ri ∩ Bi+1 could have made their best-
response q-moves. Therefore, it is important that the players in Ri ∩ Bi+1 play the same
strategy as they had in phase i− 1, before we compare the potential among the players in
Ri ∩Bi in the state si−1 and si.

Consider the following setting. Let ŝ be a state where player in Ri ∩ Bi play their
strategy in si and players u ∈ N \ (Ri ∩ Bi) play their strategy in si−1. Since, the cost
incurred by players in Ri ∩Bi+1 in the state si after deviating to their strategy in si−1 is
at most Nλ∆bi+1. We can bound the potential among the players in Ri in the state ŝ as,

ΦRi(ŝ) ≤ ΦRi∩Bi(s
i) + ΦRi∩Bi+1(s

i−1)

≤ ΦRi∩Bi(s
i) +Nλ∆bi+1

≤ ΦRi(s
i) +Nλ∆bi+1. (2.8)

Using Lemma 2.13 we get,

ΦRi∩Bi(ŝ) ≤ ΦRi(ŝ)

applying inequality (2.8) we get,
≤ ΦRi(s

i) +Nλ∆bi+1

then from inequalities (2.5) and (2.7),

<

(
1

p
+

1 + q + 2λ

N c

)
ΦRi∩Bi(s

i−1)

=
1

θ(q)
ΦRi∩Bi(s

i−1).

The last equality follows from the definition of p in Algorithm 1.
If s∗ were to be the state in which the game attained its global minimum, then the

last inequality implies that the potential among the players in Ri ∩ Bi in state s∗ i.e.,
ΦRi∩Bi(s

∗) is strictly smaller than 1
θ(q)ΦRi∩Bi(s

i−1), i.e.,

ΦRi∩Bi(s
∗) ≤ ΦRi∩Bi(ŝ)

<
1

θ(q)
ΦRi∩Bi(s

i−1).

However, this violates the equilibrium condition in Lemma 2.11 to conclude that the
players in Ri∩Bi were not in a q-equilibrium at the end of the phase i−1. This contradicts
our assumption.

32



2.3 Approximate Equilibria in Congestion Games

To analyze the convergence of the algorithm, we have to take into account the fact
that players use different cost functions and hence, convergence is no longer guaranteed by
Rosenthal’s potential function. However, it turns out that the Rosenthal potential with
respect to the modified cost functions can serve as an approximate potential function, i.e.,
it also decreases for the p-moves of players using the original cost functions.

Lemma 2.16. The Rosenthal potential Φ̃ with respect to the modified cost functions f ′ is
a p-approximate potential function with respect to the original cost functions f . That is,

Cu(s
′
u, s−u) <

1

p
Cu(s) implies Φ̃(s′u, s−u) < Φ̃(s),

where

Φ̃(s) :=
∑
e∈E

Φ̃e(ne(s)) =
∑
e∈E

ne(s)∑
i=1

f ′
e(i).

Proof. To simplify notation let ne := ne(s). From Lemma 2.10 we know that,

Φ̃e(ne + 1)− Φ̃e(ne) = f ′(ne + 1) ≤ λf(ne + 1),

and
f ′(ne + 1) ≥ f(ne + 1).

Therefore,

1 ≤ Φ̃e(ne + 1)− Φ̃e(ne)

fe(ne + 1)
≤ λ.

Using the above inequalities, the change in potential function Φ̃ due to player u making
a p-move with respect to f , i.e.,

Φ̃(s′u, s−u)− Φ̃(s) =
∑
e∈E

Φ̃e(s
′
u, s−u)− Φ̃e(s)

=
∑

e∈s′u\su

Φ̃e(ne + 1)− Φ̃e(ne) +
∑

e∈su\s′u

Φ̃e(ne − 1)− Φ̃e(ne)

≤
∑

e∈s′u\su

λ · fe(ne + 1)−
∑

e∈su\s′u

fe(ne)

≤ λ

 ∑
e∈s′u\su

fe(ne + 1) +
∑

e∈s′u∩su

fe(ne)


−

 ∑
e∈su\s′u

fe(ne) +
∑

e∈s′u∩su

fe(ne)


= λ · Cu(s

′
u, s−u)− Cu(s)

≤ p · Cu(s
′
u, s−u)− Cu(s).

The last inequality is due to the choice of p in Algorithm 1 such that it is slightly larger
than λ.

The following lemma exhibits an even stronger property. It shows that p-moves with
respect to the original cost functions are q-moves with respect to the modified cost func-
tions.
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Lemma 2.17. Let u ∈ N be a player that makes a p-move with respect to the original
cost function f . Then,

p · Cu(s
′
u, s−u)− Cu(s) ≥ q · C ′

u(s
′
u, s−u)− C ′

u(s),

where Cu and C ′
u are the cost of the player u with respect to f and f ′, respectively.

Proof. Let us recall the definition of p, q, and θ(q) in Algorithm 1,

p :=

(
1

θ(q)
− 1 + 2λ+ q

N c

)−1

q :=

(
1 +

1

N c

)
θ(q) :=

λ

1 + 1−q
q Nλ

Observe that p ≥ θ(q). Therefore,

p · Cu(s
′
u, s−u)− Cu(s) ≥ θ(q) · Cu(s

′
u, s−u)− Cu(s)

=
λ

1 + 1−q
q Nλ

· Cu(s
′
u, s−u)− Cu(s)

=
qλ

1 + 1
Nc (1−Nλ)

· Cu(s
′
u, s−u)− Cu(s)

≥ qλ · Cu(s
′
u, s−u)− Cu(s).

Then, from Lemma 2.10 we have that,
p · Cu(s

′
u, s−u)− Cu(s) ≥ q · C ′

u(s
′
u, s−u)− C ′

u(s).

Using Lemma 2.15 and 2.17, we can bound the runtime which depends on ∆ to allow
for arbitrary non-decreasing functions.

Lemma 2.18. The algorithm terminates after at most O(λ∆3N5c+5) best-response moves.

Proof. The proof follows from Lemma 2.16 and Lemma 2.17. Again, we denote f ′ to be
the modified cost functions and f to be the original cost functions.

Let us recall that the algorithm partitions the sequence of best-response moves in
the game into ẑ − 1 phases, where ẑ = 1 + dlog2∆n2c+2 (`max/`min)e ≤ N . In a phase
i ∈ {1, . . . , ẑ − 1}, players in block Ri ∩ Bi make their p-move with respect to f and
players in block Ri ∩ Bi+1 make their q-move with respect to f ′. We will bound the
number of p-moves and q-moves in any given phase i, using the potential function with
respect to the modified cost function f ′. Lemma 2.16 shows that when players in the
block Bi make their p-moves, they also reduce the potential function with respect to the
modified cost functions f ′. Lemma 2.17 shows that the change in cost of a player due to a
p-move with respect to the function f is at least the change in cost due to a q-move with
respect to f ′. Therefore, in order to bound total number of moves in any given phase i,
it is sufficient to assume that players in block Bi make q-moves with respect to f ′ instead
of p-moves.

Using these we now bound the maximum number of best response moves in a phase,
Phase i = 1:
Let us assume that all players in the phase R1 have a q-move.
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Define
∆′ = max

e∈E,n∈N

f ′
e(n)

fe(1)
≤ max

e∈E,n∈N

λ · fe(n)
fe(1)

,

where the inequality follows from Lemma 2.10. Then, for any player u ∈ R1, the
maximum cost incurred by the player at the beginning of phase with respect to f ′ is at
most ∆′ · b1. Observe that the maximum potential associated with the subgame in the
phase R1 with respect to the modified cost function f ′ is then at most N∆′b1.

Also, observe that the minimum cost experienced by the players in R1 is at least b3.
Therefore, when a player u ∈ R1 makes a best-response q-move, they must reduce the
potential by at least (q− 1)b3. Then, using the fact that bi = 2∆N2c+2bi+1, we obtain the
number of best response moves among the players in R1 to be at most,

N∆′b1
(q − 1)b3

=
N∆′ (4∆2N5c+4

)
N c(q − 1)

≤ 4λ∆3N5c+5. (2.9)

Phase i ≥ 2: Again, let us assume that all players in the Ri have a q-move. Lemma 2.15
shows that for each phase i ≥ 2, the potential among the players Ri participating in the
phase i at the beginning of the phase i.e., ΦRi(s

i−1) is at most bi
Nc .

Therefore, due to Lemma 2.10 the potential with respect to the modified cost function
is then at most λ·bi

Nc . By the definition of blocks in Algorithm 1, the minimum cost that a
player would incur is at least bi+2. This implies, when a player u makes a best-response
q-move during phase i, they would reduce the potential of the subgame among the players
in Ri by at least (q − 1)bi+2. Hence, using the fact that bi = 2∆N2c+2bi+1, we obtain the
number of best response moves among the players in Ri to be at most,

λ · bi
N c(q − 1)bi+2

=
λ
(
4∆2N4c+4

)
N c(q − 1)

≤ 4λ∆2N4c+4. (2.10)

Using (2.9) and (2.10) we can bound the number of best-response moves in the game to
be at most O(λ∆3N5c+5).

The next lemma shows that when players involved in phases i ≥ 2 make their moves,
they do not increase the cost of players in the blocks B1, B2, · · · , Bi−1 significantly.

Lemma 2.19. Let u be a player that takes part in the phase t ≤ i, then it holds that,

Cu(s
i+1) ≤ Cu(s

i) +
bi+1

N c
+ qNλ∆bi+2.

Proof. We derive the proof by showing that if the increase in cost of the player u is greater
than bi+1

Nc + qNλ∆bi+2, then it violates the fact that ΦRi+1(s
i) ≤ bi+1

Nc .
Now, let us assume that there exists player u ∈ Bi for whom the lemma does not hold

i.e.,

Cu(s
i+1) > Cu(s

i) +
bi+1

N c
+ qNλ∆bi+2. (2.11)

This implies that there exists a set of resources C ⊆ su such that for each e ∈ C it is used
by at least one player in Ri+1 in the state si+1, thus contributing to the increase in cost
of the player u. Then, (2.11) gives us that,∑

e∈C
fe(ne(s

i+1)) >
bi+1

N c
+ qNλ∆bi+2.
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By Claim 2.12 we get,

ΦRi+1(s
i+1) >

bi+1

N c
+ qNλ∆bi+2.

As the players in Ri+1 ∩ Bi+2 might have increased (or decreased) ΦRi+1 by at most
qNλ∆bi+2 and the players Ri+1 \Bi+2 only decreased the potential, we know that

ΦRi+1(s
i) ≥ ΦRi+1(s

i+1)− qNλ∆bi+2

>
bi+1

N c
+ qNλ∆bi+2 − qNλ∆bi+2

=
bi+1

N c

The last inequality violates Lemma 2.15. Hence, this contradicts our assumption and
therefore, the lemma holds.

Lemma 2.20 (Caragiannis et al. [CFGS11]). Let u be a player that takes part in the phase
t ≤ i of the congestion game and let s′u be any strategy other than the one assigned by the
algorithm during the phase t of the game, then it holds that,

Cu(s
′
u, s

i
−u) ≤ Cu(s

′
u, s

i+1
−u ) +

bi+1

N c
.

Proof. We prove by contradiction. Assume the lemma does not hold for some player u,
i.e.,

Cu(s
′
u, s

i
−u) > Cu(s

′
u, s

i+1
−u ) +

bi+1

N c
.

This implies that during the phase i, there exists a subset of resources C ⊆ s′u such that
for each e ∈ C, there exists a player u′ ∈ Ri+1 who used the resource e in the state si but
not in si+1 and thus contributed to cost of the player u at end of the phase i, i.e.,∑

e∈C
fe(ne(s

′
u, s

i
−u)) >

bi+1

N c
.

Furthermore, the cost of these resources yield a lower bound on the potential at the
beginning of the phase, i.e,

ΦRi+1(s
i) ≥

∑
e∈C

fe(ne(s
′
u, s

i
−u))

>
bi+1

N c
.

The last inequality violates Lemma 2.15 and therefore, this contradicts our assumption.

Lemma 2.21. Let u be a player in the block Bt, where t ≤ ẑ − 2. Let s′u be a strategy
different from the one assigned to u by the algorithm at the end of the phase t. Then, for
each phase i ≥ t, it holds that, Cu(s

i) ≤ p · Cu(s
′
u, s

i
−u) +

2p+1
Nc

∑i
k=t+1 bk.

Proof. For the proof we use Lemma 2.19 recursively to obtain the first inequality. The
second inequality follows from the fact that there was no improving p-move to s′u for
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the player in phase t to s′u. The third inequality follows from Lemma 2.20. The fourth
inequality from the definition of bi.

Cu(s
i) ≤ Cu(s

t) +

i∑
k=t+1

(
bk
N c

+ qNλ∆bk+1

)

≤ p · Cu(s
′
u, s

t
−u) +

i∑
k=t+1

(
bk
N c

+ qNλ∆bk+1

)

≤ p

(
Cu(s

′
u, s

i
−u) +

i∑
k=t+1

bk
N c

)
+

i∑
k=t+1

(
bk
N c

+ qNλ∆bk+1

)

≤ p

(
Cu(s

′
u, s

i
−u) +

i∑
k=t+1

bk
N c

)
+

i∑
k=t+1

(
bk
N c

+
qλ

2N2c+1
bk

)

≤ p · Cu(s
′
u, s

i
−u) + (2p+ 1)

i∑
k=t+1

bk
N c

.

As no players’ costs and alternatives is significantly influenced by moves in later blocks,
they remain in an approximate equilibrium which can be used to finally prove the correct-
ness of the algorithm.

Lemma 2.22. The state computed by the algorithm is a p
(
1 + 5

Nc

)
-approximate equilib-

rium.

Proof. We show that after a player u ∈ Bi has made their final best-response move during
a phase i, they would be in a p

(
1 + 5

Nc

)
-approximate equilibrium at the end of the game

in the state sẑ−1, i.e., the cost incurred by them after the final phase of the game is,

Cu(s
ẑ−1) ≤ p

(
1 +

5

N c

)
Cu(s

′
u, s

ẑ−1
−u ),

where s′u ∈ Su is any arbitrary strategy. For players participating in the last phase ẑ−1 of
the game i.e., u ∈ (Bẑ−1∪Bẑ), observe that at the end of the phase ẑ−1, players in block
Bẑ−1 are in a p-approximate equilibrium with respect to the original cost functions f and
players in the block Bẑ are in a q-approximate equilibrium with respect to the modified
cost function f ′. Furthermore, due to Lemma 2.17 players in the block Bẑ are also in
a p-approximate equilibrium with respect to the original cost function f . Therefore, the
lemma holds for players in u ∈ (Bẑ−1 ∪Bẑ).

We show that after the final phase of the game, for the players u ∈ Bt with 1 ≤ t ≤ ẑ−2,

Cu(s
ẑ−1) ≤ p

(
1 +

5

N c

)
Cu(s

′
u, s

ẑ−1
−u ).

As per the assignment of the players to blocks and the fact that the cost of a player
cannot be less than `u = Cu (BRu (0)), it holds that for any player u ∈ Bt after the final
phase of the game,

Cu(s
′
u, s

ẑ−1
−u ) ≥ bt+1. (2.12)
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By the definition of bi, we have,

ẑ∑
k=t+1

bk ≤ 2bt+1. (2.13)

Using inequalities (2.12), (2.13), and Lemma 2.21 we get for p ≥ 1,

Cu(s
ẑ−1) ≤ p · Cu(s

′
u, s

ẑ−1
−u ) + (2p+ 1)

ẑ−1∑
k=t+1

bk
N c

≤ p · Cu(s
′
u, s

ẑ−1
−u ) +

2(2p+ 1)

N c
Cu(s

′
u, s

ẑ−1
−u )

≤ p

(
1 +

5

N c

)
Cu(s

′
u, s

ẑ−1
−u ).

Lemmas 2.18 and 2.22 conclude the proof of the Theorem 2.9 to show that for

q =

(
1 +

1

N c

)
and

p =

(
1

θ (q)
− 1 + 2λ+ q

N c

)−1

the algorithm computes a α-approximate pure Nash equilibrium in polynomial time, where

α ≤
(

1

θ(q)
− 1 + 2λ+ q

N c

)−1(
1 +

5

N c

)
=

1(
1− Nλ

Nc+1

λ − 1+2λ+q
Nc

) (1 + 5

N c

)

=
λ(

1− Nλ
Nc+1 −

λ(1+2λ+q)
Nc

) (1 + 5

N c

)

≤ λ(
1− Nλ

Nc+1 −
λ(2λ+3)

Nc

) (1 + 5

N c

)
,

choosing c = 10 log
(
λ
ε

)
we can easily bound

λ(
1− Nλ

Nc+1 −
λ(2λ+3)

Nc

) (1 + 5

N c

)
≤ λ(

1− ε
5 −

ε
5

) (1 + ε

5

)
≤ λ(1 + ε).

This concludes the proof of correctness for Algorithm 1.
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2.3.2 Improving the Approximation Factor

In Section 2.3.1 we proved that given a set of cost functions f ′ satisfying the strong
smoothness condition of Lemma 2.8 for some λ > 0, Algorithm 1 computes a λ(1 + ε)-
approximate pure Nash equilibrium. We now study how one could optimally choose the
modified cost functions f ′ such that value of λ is minimized. Observe that from Lemma 2.8,
for any resource e ∈ E, the modified cost functions f ′

e can be computed using a linear
program. That is, for an objective function Φe and a bound on the number of players
in N , finding functions f ′

e that minimize λ, can be easily solved by the following linear
program LPΦ with the variables f ′

e(0), . . . , f
′
e(N + 1), and λe.

minλe

λe ·
m+z∑
i=z+1

fe(i)−mf ′
e(n+ z + 1) + nf ′

e(n+ z) ≥
n+z∑

i=z+1

fe(i) ∀(n+ z),m ∈ [N ]0

f ′
e(n+ 1) ≥ f ′

e(n) ∀n ∈ [N ]0

f ′
e(n) ≥ 0 ∀n ∈ [N + 1]0

Choosing the output of the linear program LPΦ as the modified cost functions f ′ and
setting value of λ := maxe∈E λe in Algorithm 1, results in λ(1 + ε)-approximate pure
Nash equilibrium. Moreover, observe that LPΦ is compact, i.e., the number of constraints
and variables are polynomially bounded in the number of players. Hence, we state the
following theorem.

Theorem 2.23. Optimal resource cost functions f ′
e for objective functions Φe can be

computed in polynomial time.

Linear and Polynomial Cost Functions

Observe that Theorem 2.9 holds for all congestion games with arbitrary non-decreasing
cost functions. We now turn to the important class of polynomial cost functions with
non-negative coefficients. We can use a standard trick to simplify the analysis for re-
sources with polynomial cost functions of the form fe(x) =

∑d
i=0 aix

d by replacing such
resources by d+ 1 resources with cost functions a0, a1x, . . . , adx

d and adjust the strategy
sets accordingly. Hence, by an additional scaling argument it suffices to only consider cost
functions of the form fe(x) = xi and i ∈ {1, . . . , d}.

Furthermore, we can show that for polynomials of small degree, it is sufficient to restrict
the attention to the first K = 150 values of the cost functions. Hence, we only need to
solve a linear program of constant size. The following lemma states that for the larger
values of n with appropriate values of λd and ν, we can easily obtain (λd, 0)-smoothness
by choosing f ′(n) = νnd.

Lemma 2.24. For d ≤ 5 and n ≥ 150, the function f ′(n) = νnd with ν = d+1
√
λd is strong

(λd, 0)-smooth with respect to the potential function Φ for an appropriate λd.

Proof. For each degree d and its associated value of λd = ρd (Table 2.1), we need to show
that there exists a ν such that for the smoothness condition in Lemma 2.8, the following
holds for all x ≥ 150,

λd

m+z∑
i=z+1

id −m · ν · (x+ 1)d + (x− z) · ν · xd −
x∑

i=z+1

id ≥ 0.
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For all λd > 0,

λd

m+z∑
i=z+1

id −m · ν · (x+ 1)d + (x− z) · ν · xd −
x∑

i=z+1

id

≥ λd

m+z∑
i=z+1

id −m · ν · (x+ 1)d + (x− z) · ν · xd −
∫ x+1

z+1
tddt

≥ λd

m+z∑
i=z+1

id −m · ν · (x+ 1)d + (x− z) · ν · xd − (x+ 1)d+1

d+ 1
+

(z + 1)d+1

d+ 1

= λd

m+z∑
i=z+1

id −m · ν · (x+ 1)d + ν · xd+1 − ν · z · xd − (x+ 1)d+1

d+ 1
+

(z + 1)d+1

d+ 1

≥ λd

∫ m+z

z+1
tddt−m · ν · (x+ 1)d + ν · xd+1 − ν · z · xd − (x+ 1)d+1

d+ 1
+

(z + 1)d+1

d+ 1

= λd
(m+ z)d+1

d+ 1
− λd

(z + 1)d+1

d+ 1
−m · ν · (x+ 1)d + ν · xd+1 − ν · z · xd − (x+ 1)d+1

d+ 1

+
(z + 1)d+1

d+ 1
.

The above expression is minimized for,

m =
d

√
ν · (x+ 1)d

λd
− z.

Substituting for m we obtain,

≥ λd

(
d

√
ν·(x+1)d

λd

)d+1

d+ 1
− (λd − 1)

(z + 1)d+1

d+ 1
−

 d

√
ν · (x+ 1)d

λd
− z

 · ν · (x+ 1)d

+ ν · xd+1 − ν · z · xd − (x+ 1)d+1

d+ 1

= λd

(
d

√
ν·(x+1)d

λd

)d+1

d+ 1
− (λd − 1)

(z + 1)d+1

d+ 1
− d

√
ν · (x+ 1)d

λd
· ν · (x+ 1)d + z · ν · (x+ 1)d

+ ν · xd+1 − ν · z · xd − (x+ 1)d+1

d+ 1

= (x+ 1)d+1

((
1

d+ 1
− 1

)
ν

d+1
d

d
√
λd
− 1

d+ 1

)
−
(
(λd − 1)

(z + 1)d+1

d+ 1
− z · ν

(
(x+ 1)d − xd

))
+ ν · xd+1.

The above expression is minimized for,

z =
d

√
ν((x+ 1)d − xd)

λd − 1
− 1.

Substituting for z we get,

≥ (x+ 1)d+1

((
1

d+ 1
− 1

)
ν

d+1
d

d
√
λd
− 1

d+ 1

)
−
(

1

d+ 1
− 1

)
ν

d+1
d

d
√
λd − 1

(
(x+ 1)d − xd

) d+1
d

40



2.3 Approximate Equilibria in Congestion Games

+ ν · xd+1 − ν
(
(x+ 1)d − xd

)
.

For any ν ≥ 0 the above expression is,

≥ (x+ 1)d+1

((
1

d+ 1
− 1

)
ν

d+1
d

d
√
λd
− 1

d+ 1

)
+ ν

(
xd+1 − (x+ 1)d + xd

)
.

Now, what is left to show is that there exists a ν ≥ 0 such that,

(x+ 1)d+1

((
1

d+ 1
− 1

)
ν

d+1
d

d
√
λd
− 1

d+ 1

)
+ ν

(
xd+1 − (x+ 1)d + xd

)
≥ 0

equivalent to,

ν
(
xd+1 − (x+ 1)d + xd

)
≥ (x+ 1)d+1

((
1− 1

d+ 1

)
ν

d+1
d

d
√
λd

+
1

d+ 1

)
. (2.14)

For ν = d+1
√
λd and ∀x ∈ N such that,

(x+ 1)d+1

(xd+1 − (x+ 1)d + xd)
≤ d+1

√
λd,

the inequality (2.14) holds. From the fact that,

lim
x→∞

(x+ 1)d+1

(xd+1 − (x+ 1)d + xd)
= 1,

and choice of λd = ρd (Table 2.1), gives for 0 < d ≤ 5, that x ≥ 150 is sufficient.

We further note, that for a given λd > 0, for each n and z, we only need to consider a
limited range for m.

Lemma 2.25. For fixed n, z, if λd ·
∑m+z

i=z+1 i
d−mf ′(n+ z+1)+ nf ′(n+ z) ≥

∑n+z
i=z+1 i

d

is true ∀m ≤ (n+ z + 1)2(d+ 1), it also holds ∀m > (n+ z + 1)2(d+ 1).

Proof. For any given n, z ∈ N, and λd > 0, we show for all m ≥ (n+ z + 1)2(d+ 1) that,

λd

m+z∑
i=z+1

id −mf ′(n+ z + 1) + nf ′(n+ z)−
n+z∑

i=z+1

id ≥ 0.

We first upper bound the feasible values for f ′. From the smoothness condition in
Lemma 2.8, observe that for n = z = 0 and m = 1 the inequality implies that f ′(1) ≤ λd.
Furthermore, by the choice of m = n, we get

f ′(n+ z + 1) ≤ (λd − 1)

n+z∑
i=1

1

i

i∑
j=1

jd

+ λd

≤ (λd − 1)

n+z∑
j=1

jd + λd

≤ (λd − 1)(n+ z)d+1 + λd.
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This gives,

λd

m+z∑
i=z+1

id −mf ′(n+ z + 1) + nf ′(n+ z)−
n+z∑

i=z+1

id

≥ λd

m+z∑
i=z+1

id −m
(
(λd − 1)(n+ z)d+1 + λd

)
+ nf ′(n+ z)−

n+z∑
i=z+1

id

≥ λd

m+z∑
i=z+1

id −m
(
(λd − 1)(n+ z)d+1 + λd

)
−

n+z∑
i=z+1

id

≥ λd

m+z∑
i=z+1

id − λdm(n+ z)d+1 +m(n+ z)d+1 −mλd − (n+ z)d+1

= λd

m+z∑
i=z+1

id − λdm(n+ z)d+1 + (m− 1)(n+ z)d+1 −mλd

≥ λd

m+z∑
i=z+1

id − λdm(n+ z)d+1 −mλd.

Now we can bound for m ≥ (d+ 1)(n+ z + 1)2.

λd

m+z∑
i=z+1

id − λdm(n+ z)d+1 −mλd

= λd

m+z∑
i=z+1

id − λdm((n+ z)d+1 + 1)

≥ λd
m(m+ z)d

d+ 1
− λdm((n+ z)d+1 + 1)

≥ λd
md+1

d+ 1
− λdm((n+ z)d+1 + 1)

≥ 0.

By Lemma 2.24 and 2.25 it remains to solve the following linear program LPK
Φ to

obtain our results ρd as listed in Table 2.1 for d ≤ 5.

min ρd

ρd ·
m+z∑
i=z+1

id −mf ′(n+ z + 1) + nf ′(n+ z) ≥
n+z∑

i=z+1

id ∀(n+ z) ∈ [K − 1]0,

∀m ∈ [(K + 1)2(d+ 1)]0

f ′(n+ 1) ≥ f ′(n) ∀n ∈ [K − 1]0

f ′(K) ≤ νKd

f ′(n) ≥ 0 ∀n ∈ [K]0

Corollary 2.26. For every congestion game with polynomial cost functions of degree d ≤ 5
and for every constant ε > 0, the algorithm computes a (ρd + ε)-approximate pure Nash
equilibrium in polynomial time.
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Chapter 3

Inefficiency of Equilibria under
Universal Taxation

In the previous chapter we presented an interesting extension to Roughgarden’s [Rou15]
(λ, µ)-smoothness framework to obtain cost functions that enabled us to compute improved
approximate pure Nash equilibria in congestion games. In this chapter we study yet
another interesting method based on our analysis from Chapter 2 to compute robust load
dependent taxes that improves the price of anarchy (PoA) in congestion games using
a constant size linear program and then using linear programming duality prove lower
bounds on the PoA under universal taxation.

3.1 Introduction

We introduced congestion games and the notion of price of anarchy (PoA) [KP99] in
Chapter 1. Recall that the PoA measures the inefficiency of equilibria in strategic games.
The last two decades saw various authors, e.g., [CK05a, AAE05, ADG+11, Rou15, RT00,
Rou05] investigating the bounds on the price of anarchy for various non-cooperative
games [NRTV07] and several attempts to improve the inefficiency of their self-emerging
solutions. One of the many approaches used to improve the PoA is the introduction
of taxes [CKK06, FKK10, FS07]. Influence of taxes on the selfish behavior of play-
ers to improve inefficiency of equilibria was first studied in non-atomic selfish routing
games [NRTV07, p. 462] by Cole et al. [CDR06], where they investigate the influence of
economic incentives and its ability to induce desirable solutions. The atomic [NRTV07,
p. 465] variant of selfish routing games with unweighted instances are often referred to as
congestion games. Recall that congestion games are cost-minimization games that con-
stitute an important class of games to model resource allocation among non-cooperative
users. Analyzing and improving the inefficiency of equilibria in these games has been of
considerable interest in the scientific community [CKK06, FKK10, FS07, Swa12].

As described in Chapter 2, a congestion game denoted by the tuple

G =
(
N , E, (Su)u∈N , (fe)e∈E

)
consists of a finite set of players N = {1, 2, . . . , N}, who compete over a finite set of
resources E = {e1, e2, . . . , em}. Each player u ∈ N has a set of strategies denoted by
Su ⊆ 2E . Each resource e ∈ E has a non-negative and non-decreasing cost function
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fe : N 7→ R≥0 associated with it. The cost contributed by a resource e ∈ E to each
player using it is denoted by fe(ne(s)), where ne(s) denotes the number of players on
a resource e ∈ E in the state s. Therefore, the cost of a player u ∈ N in a state
s = (s1, . . . , sN ) ∈ ×(Su)u∈N of the game is given by

Cu(s) =
∑

e∈E:e∈su

fe(ne(s)),

and the social cost of the game in the state s is denoted by

C(s) =
∑
u∈N

Cu(s).

A state s ∈ S is called a pure Nash equilibrium if for all players u ∈ N and for all s′u ∈ Su,

Cu(s) ≤ Cu(s
′
u, s−u),

where Cu(s
′
u, s−u) denotes the cost of player u when only u deviates.

For a set of resources E, the load dependent tax function t : N 7→ R≥0, is the excess
cost incurred by the players on a resource e ∈ E with cost fe(x), e.g.,

f ′
e(x) = fe(x) + te(x).

3.1.1 Our Contribution

We present load dependent tax functions for congestion games that are universal, i.e.,
robust against perturbations of the instance such as addition or removal of resources or
players. Our approach in Chapter 2 yields a simple and distributed method to compute
load dependent universal taxes that improves the inefficiency of equilibria in congestion
games. In [Vij17] the author computes robust load dependent taxes that weakly improve
the PoA in congestion games with cost functions that are polynomials of maximum degree
d. Particularly, in [Vij17] the author shows that for polynomials of maximum degree
d = 1, 2, and 3, the PoA under universal load dependent taxes is at most 2.1, 5.18, and
17.3, respectively. They compute tax functions that achieve the aforementioned bounds
using an LP formulation for which the constraints are derived based on an extention of a
rather complicated technique presented in Feldotto et al. [FGS14]. Here, we extend their
work to achieve much stronger bounds on the PoA under universal taxation for congestion
games with polynomial cost functions of maximum degree d, using a simple and elegant
technique compared to that in [Vij17].

In Section 3.2 we derive tax functions using an LP for which the necessary constraints
are obtained from the (λ, 0)-smoothness condition described in Lemma 2.6, which is based
on the famous (λ, µ)-smoothness framework introduced by Roughgarden [Rou15]. We
prove necessary conditions required to compute the tax functions using only a constant size
LP for resource cost functions that are polynomials of maximum degree d ≤ 5. Table 3.1
lists our results for PoA under refundable taxation for resource cost functions that are
bounded degree polynomials. The values for Ψd in Table 3.1 were obtained using the
python program in Listing A.2. Furthermore, in Section 3.3 we prove lower bounds on
the PoA with universal load dependent taxes, using a construction derived from dual of
the LP. This construction shows that PoA under universal taxation is at least the PoA of
selfish scheduling on identical machines. Numerically, our lower bounds match the upper
bounds presented in Section 3.2.

44



3.2 Load Dependent Universal Taxes

We remark that the taxes we consider in Section 3.2 are refundable [CDR06] and do not
contribute to the overall cost of the game. Bilò and Vinci [BV16] present an algorithm to
compute load dependent taxes that improve the price of anarchy e.g., for linear congestion
games from 2.5 to 2. Although our methods yield slightly weaker results, our tax functions
are locally computable and in contrast to [BV16], are independent of the actual instance of
the game. We would like to remark that our results for PoA were achieved independently
of that in Paccagnan et al. [PCFM20] (preprint) that used a similar technique.

d PoA without Taxes Optimal Taxes Universal Taxes Ψd

Aland et al. [ADG+11] Bilò and Vinci [BV16] Local Search w.r.t. ζsc
1 2.5 2 2.012
2 9.583 5 5.10
3 41.54 15 15.56
4 267.6 52 55.46
5 1514 203 220.41

Table 3.1: PoA under taxation in congestion games with polynomial cost functions of
degree at most d.

3.1.2 Related Work

Meyers and Schulz [MS12] study the complexity of computing an optimal solution in a
congestion game and prove NP-hardness. Makarychev and Sviridenko [MS14] give the
best known approximation algorithm using randomized rounding on a natural feasibility
LP with an approximation factor of Bd+1 which is the (d + 1)th Bell number, where d is
the maximum degree of the polynomial cost function. Interestingly, the same was later
achieved using load dependent taxes by Bilò and Vinci [BV16], where they apply the
primal-dual method [Bil18] to upper bound the PoA under refundable [CDR06] taxation
in congestion games. They determine load specific tax functions and show that the PoA
is at most O (d/log d)d+1 with respect to ε-approximate equilibrium. However, we remark
that the load dependent taxes computed in [BV16] are not universal, i.e., they are sensitive
to the instance of the game.

3.2 Load Dependent Universal Taxes

We now look at an extension of Lemma 2.6 for computing load dependent universal taxes
in congestion games. We give a rather simple approach to locally (on resource) compute
load dependent universal taxes. Table 3.1 lists the improved PoA bounds under refundable
taxation using our technique for congestion games with resource cost functions that are
bounded degree polynomials of maximum degree d. By the smoothness argument (The-
orem 2.4, [Rou15]) the new bounds immediately extends to mixed, (coarse) correlated
equilibria, and outcome generated by no-regret sequences. Moreover, since the linear pro-
gram that computes the cost or tax function does only depend on the original cost function
of that resource, the computed taxes are robust against perturbations of the instance such
as adding or removing of resources or players.

We seek to compute universal load dependent taxes that minimize the PoA under
refundable taxation. Therefore, we consider the following optimization problem. For an
objective function h(s) =

∑
e∈E ne(s) ·fe(ne(s)), find functions f ′

e that satisfies Lemma 2.6
minimizing λ. For a resource objective function he(ne(s)) = ne(s) · fe(ne(s)) and a bound
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3 Inefficiency of Equilibria under Universal Taxation

on the number of players in N , this can be easily solved by the following linear program
LPsc with the variables f ′

e(0), . . . , f
′
e(N + 1), and λe.

minλe

λe · he(m)−mf ′
e(n+ 1) + nf ′

e(n) ≥ he(n) for all n ∈ [N ]0,m ∈ [N ]0

f ′
e(n+ 1) ≥ f ′

e(n) for all n ∈ [N ]0

f ′
e(n) ≥ 0 for all n ∈ [N + 1]0

Observe that, we can solve LPsc locally for each resource with cost function fe. For the
LP solution λe and f ′

e(n), define the tax function as te(n) := f ′
e(n)− fe(n). The resulting

price of anarchy under taxation is then λ := maxe∈E λe.
For any (distributed) local search algorithm (such as Bjelde et al. [BKS17]) that seeks

to minimize the social cost C(s) =
∑

e∈E ne(s) · fe(ne(s)), we define

ζsc(s) :=
∑
e∈E

ne(s)∑
i=1

f ′
e(i)

as a pseudo-potential function. Recall that a pure Nash equilibrium is a local optimum of
the potential function and similarly, a local optimum to ζsc is a pure Nash equilibrium of
a game in which we change the resource cost functions to f ′. Then, from Lemma 2.6 it is
guaranteed that every local optimum with respect to ζsc has an approximation factor of at
most λ := maxe∈E λe with respect to the social cost C(s). Using approximate local search
by Orlin et al. [OPS04] w.r.t. ζsc, we can compute a solution close to that in polynomial
time and more so to state the following.

Corollary 3.1. For every congestion game the ε-local search algorithm using ζsc, produces
a λ(1 + ε) local optimum in running time polynomial in the input length, and 1/ε.

Linear and Polynomial Cost Functions

For the interesting case of polynomial resource cost functions of maximum degree d, similar
to Section 2.3, we show that for polynomials of small degree, it is sufficient to restrict the
attention to the first K = 1154 values of the cost functions. Hence, we only need to solve a
linear program of constant size. The following lemma states that for the values of n greater
than K and an appropriate value of ν and λd, we can easily obtain (λd, 0)-smoothness by
choosing f ′(n) = νnd.

Lemma 3.2. For d ≤ 5 and n ≥ 1154, the function f ′(n) = νnd with ν = d+1
√
(d+ 1)λd

is (λd, 0)-smooth with respect to h(n) = nd+1 and an appropriate λd.

Proof. For each degree d and an appropriate value of λd = Ψd (Table 3.1), we need to
show that there exist a ν such that the the smoothness condition in Lemma 2.6 holds for
all n ≥ 1154, i.e.,

λdm
d+1 −mν(n+ 1)d + nνnd − nd+1 ≥ 0.

For all λd > 0,

λdm
d+1 −mν(n+ 1)d + nνnd − nd+1

= λdm
d+1 −mν(n+ 1)d + nd+1(ν − 1).
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3.2 Load Dependent Universal Taxes

The above expression is minimized at,

m = d

√
ν(n+ 1)d

(d+ 1)λd
.

Substituting for m gives,

= λd

(
d

√
ν(n+ 1)d

(d+ 1)λd

)d+1

−

(
d

√
ν(n+ 1)d

(d+ 1)λd

)
ν(n+ 1)d + nd+1(ν − 1)

=

(
1

d+ 1

)
ν

d+1
d

d
√
(d+ 1)λd

(n+ 1)d+1 − ν
d+1
d

d
√
(d+ 1)λd

(n+ 1)d+1 + nd+1(ν − 1)

=

(
1

d+ 1
− 1

)
ν

d+1
d

d
√
(d+ 1)λd

(n+ 1)d+1 + nd+1(ν − 1).

We need to show that there exists a ν ≥ 0 such that,(
1

d+ 1
− 1

)
ν

d+1
d

d
√
(d+ 1)λd

(n+ 1)d+1 + nd+1(ν − 1) ≥ 0

equivalent to,

nd+1(ν − 1) ≥
(
1− 1

d+ 1

)
ν

d+1
d

d
√
(d+ 1)λd

(n+ 1)d+1. (3.1)

For ν = d+1
√
(d+ 1)λd and ∀n ∈ N≥0 such that,

(n+ 1)d+1

nd+1

(
1− 1

d+ 1

)
≤
(

d+1
√

(d+ 1)λd − 1
)
,

the inequality (3.1) holds. Also, using the fact that,

lim
n→∞

(n+ 1)d+1

nd+1
= 1,

and choice of λd = Ψd (Table 3.1), gives for 0 < d ≤ 5, that n ≥ 1154 is sufficient.

We further note, that for a fixed λd > 0 and for each n, we only need to consider a
limited range for m in the LPsc.

Lemma 3.3. For a fixed n, if λd · md+1 − mf(n + 1) + nf(n) ≥ nd+1 is true for all
m ≤ (n+ 1)2, it also holds for all m > (n+ 1)2.

Proof. For any given n ∈ N and λd > 0, we show for all m ≥ (n+ 1)2 that,

λdm
d+1 −mf ′(n+ 1) + nf ′(n)−

n∑
i=1

nd+1 ≥ 0.

We first upper bound the feasible values for f ′(n). From the smoothness condition
in Lemma 2.6, note that for n = 0 and m = 1, implies that f ′(1) ≤ λd. Furthermore,
by the choice of m = n, we get f ′(n + 1) ≤ f ′(n) + λd−1

n nd+1. By recursion, we obtain
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3 Inefficiency of Equilibria under Universal Taxation

f ′(n+1) ≤ (λd−1)
∑n

i=1 i
d+λd which we can simply bound by f ′(n+1) ≤ (λd−1)·nd+1+λd.

Now we can bound for m ≥ (n+ 1)2.

λdm
d+1 −mf ′(n+ 1) + nf ′(n)− nd+1

≥ λdm
d+1 −m

(
(λd − 1)nd+1 + λd

)
− nd+1

= λdm
d+1 −mλdn

d+1 +mnd+1 −mλd − nd+1

≥ λdm
d+1 −mλdn

d+1 −mλd

≥ 0

As a consequence of Lemma 3.2 and 3.3 it only remains to solve the following linear
program of constant size for each d ≤ 5 to obtain our results Ψd (listed in Table 3.1).
Our results match the recent results that were obtained independently by Paccagnan et
al. [PCFM20].

minΨd

Ψdm
d+1 −mf ′(n+ 1) + nf ′(n) ≥ nd+1 ∀n ∈ [K − 1]0,m ∈ [(K + 1)2]0

f ′(K) ≤ νKd

f ′(n+ 1) ≥ f ′(n) ∀n ∈ [K − 1]0

f ′(n) ≥ 0 ∀n ∈ [K]0

Corollary 3.4. For every congestion game with polynomial cost functions of degree d ≤ 5,
each cost function f ′

e can be computed in constant time and the resulting game is (Ψd, 0)-
smooth with respect to social cost.

3.3 Lower Bound
We now present an interesting connection between the PoA of congestion games under
universal load dependent taxation and the PoA of selfish scheduling games. Let us recall
that Lemma 2.6 gives rise to the following optimization problem, i.e., given an objective
function

h(s) =
∑
e∈E

he(ne(s)),

find functions f ′
e that minimize λ. For a resource objective function he and a bound on

the number of players i.e., N , this can be computed using the following linear program
LPh with the variables f ′

e(1), . . . , f
′
e(N + 1) and λe.

minλe

λe · he(m)−mf ′
e(n+ 1) + nf ′

e(n) ≥ he(n) for all n ∈ [N ]0,m ∈ [N ]0

f ′
e(n+ 1) ≥ f ′

e(n) for all n ∈ [N ]0

f ′
e(n) ≥ 0 for all n ∈ [N + 1]0

Any feasible solution to the linear program LPh emerging from Lemma 2.6 are cost
functions f ′

e : N 7→ R≥0 that guarantees that the objective value associated with the
function h is at most λ := maxe∈E λe.
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3.3 Lower Bound

We now prove a lower bound on the PoA of congestion games with universal taxation.
To that end, we consider the dual program to the relaxed LPh, i.e., we omit the constraints
that the functions f ′ must be non-decreasing and show that for every feasible solution of
the dual, we can construct an instance of a selfish scheduling game with an objective value
that is equal to the value of the dual LP solution, regardless of the actual cost function of
the resources in the game.

We now construct an instance of selfish scheduling game on identical machines [CFK+06].
This is a congestion game in which players’ strategies are singletons. Furthermore, each
resource has the same cost function and hence, players only seek to choose a resource
with minimal load. Obviously, every equilibrium in the scheduling game is an equilibrium
in a congestion game in which the resource cost function is an arbitrary non-decreasing
function. The dual program LPDh is as follows:

max

N∑
n=0

N∑
m=0

h(n) · yn,m (3.2)

N∑
n=0

N∑
m=0

h(m) · yn,m ≤ 1 (3.3)

N∑
m=0

n · yn,m −
N∑

m=0

m · yn−1,m ≤ 0 for all n ∈ [N ]

yn,m ≥ 0 for all n,m ∈ [N ]0

Lemma 3.5. Every optimal solution of LPDh with objective value λ can be turned into
an instance of selfish scheduling on identical machines with an objective value of λ− ε for
an arbitrary ε > 0.

Proof. Let ỹ be a feasible solution to LPDh with λ =
∑N

n=0

∑N
m=0 h(n) · ỹn,m. We round

down each ỹn,m to rational numbers yn,m ≥ (1 − ε
λ)ỹn,m and let M be a sufficiently

large scaling factor such that each yn,m · M is an integer. We construct a congestion
game as follows. The game G = (N , R, {Su}u∈N , {cr}r∈R) consist of a set of players
N =

⋃
n∈[0,N ]Nn, where each set Nn consists of n ·

∑N
m=0 yn,m ·M many players. The

set of resources is R =
⋃

n∈[0,N ],m∈[0,N ]Rn,m, where Rn,m represents a pool consisting of
yn,m ·M identical machines.

We will make sure that in the game G, there is an equilibrium s∗ in which on each
machine in each set Rn,m there are exactly n many players. Hence, using (3.2) the total
cost over all resources in s∗ is

N∑
n=0

N∑
m=0

h(n) · yn,m ·M ≥ λ(1− ε/λ)M.

Additionally, there is a state s in which on each machine in each set Rn,m there are exactly
m many players. Hence, using (3.3) the total cost over all resources in s is

N∑
n=0

N∑
m=0

h(m) · yn,m ·M ≤M.

Each player from a set Nn in the game has two strategies, which we call an equilib-
rium strategy and an optimal strategy. The equilibrium strategy consists of one par-
ticular resource r ∈

⋃
m∈[N ]0

Rn,m and the optimal strategy of a particular resource
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3 Inefficiency of Equilibria under Universal Taxation

r ∈
⋃

m∈[N ]0
Rn−1,m. The assignment of resources to strategies is such that each resource

r ∈ Rn,m belongs to exactly n equilibrium strategies of players from Nn and at most m
optimal strategies of players from Nn+1. Note that the existence of such an assignment is
guaranteed by the feasibility of y and hence,

N∑
m=0

n · yn,m ≤
N∑

m=0

m · yn−1,m.

If each player chooses the equilibrium strategy, we obtain a state s∗ as described above
which is a pure Nash equilibrium as switching to the optimal strategy yields exactly the
same load. If each player chooses the optimal strategy we obtain a state s as described
above. Therefore, the objective value is at least λ− ε.

Evidently our upper bound of 2.012 for congestion games with linear cost functions
matches the price of anarchy bound for selfish scheduling games on identical machines
in Caragiannis et al. [CFK+06]. Numerically, the optimal solution to LPDh matches the
optimal solution to LPh. That is, LPh is not only optimizing the smoothness inequality,
but also that there exists no other resource cost function that can guarantee a smaller
objective value than λ. Based on this observation we conjecture that the taxes computed
by LPsc are in fact optimal.
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Chapter 4

Scheduling with
Machine-Dependent Priority Lists

We now introduce a fairly new variant of a scheduling problem on parallel machines based
on fixed order local scheduling rules. To the best of our knowledge, our variant is closely
related to many of the existing models with local precedence constraints in the litera-
ture [BFO+19, AGA99, ANCK08, All15, BV20]. In this chapter we study the model from
an optimization perspective. In later chapters we extend this variant of the scheduling
problem to a strategic model and investigate various algorithmic aspects from a decen-
tralized perspective.

4.1 Introduction
Scheduling problems are considered to be a fundamental and well studied area in theoret-
ical computer science. A typical scheduling problem instance involves assigning a set of
n independent jobs 1, 2, . . . , n to m machines M1,M2, . . . ,Mm, such that the assignment
minimizes a predefined objective, e.g., makespan of the schedule, total job completion
time, etc. The underlying problem then essentially involves two steps:

1. Allocating jobs to machines optimally.

2. Determining the optimal sequence in which jobs assigned to a machine are processed.

We refer the readers to [Pin08] for a comprehensive literature review on various models of
scheduling problems. Here, we study a simple, yet challenging variant of the parallel ma-
chine scheduling problem that often arises in the area of transportation and infrastructure
allocation. We consider priority based scheduling on parallel machines. In priority based
scheduling the request of some jobs are preferred over others, i.e., each machine imposes a
preferential order over the jobs assigned to it. The order may be machine dependent and
need not be restricted to general rules such as fair cost sharing, first-in first-out, shortest
processing time first, etc. Many real-world applications such as airline boarding, vehicle
parking, distributed computing, etc., can be succinctly modeled using the aforementioned
variant. To the best of our knowledge, there is very little known in the literature about
the model we consider from a theoretical perspective.

A priority based scheduling problem is given by a set of jobs N and a set of machines
M , each with a priority list π that determines its preference on the order in which jobs
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4 Scheduling with Machine-Dependent Priority Lists

assigned to it are processed. Each job j ∈ N has a processing time of pij on machine
Mi and the goal is to determine an assignment of jobs to machines that minimize the
total completion time, such that the schedule respects the ordering of jobs on individual
machines. A fixed order scheduling problem can be seen as a special case of scheduling
problem with sequence dependent setup times, where for each pair of jobs there is a
machine dependent change over cost cikj , i.e., the additional cost paid by job j if it must
be scheduled after job k on machine i. Then, our problem can be succinctly described
with cijk ∈ {0,∞}.

When every machine has an identical (global) priority ordering over the jobs, then the
problem can also be viewed as determining m disjoint subsets J1, J2, . . . , Jm of jobs that
minimizes total sum of completion times. Interestingly, in case of identical machines the
problem can also be formulated as the following clustering problem. For every machine
Mi, let Gi be an undirected complete graph in which V = J and E = V × V (including
self-loops). The edge (u, v) has weight pu if πi(u) � πi(v) and weight pv, otherwise. For
example, Figure 4.1(i) illustrates the graph for J = {a, b, c, d}, with processing times
p = (5, 6, 1, 2) and a global priority list π = (a, b, c, d).

a b

cd

5

5

5
6

6

1

5 6

12
(i)

a b

cd

5

5

5
6

6

1

5 6

12
(ii)

Figure 4.1: Clustering Example.

An assignment on m machines corresponds to a coloring χ : V → {1, . . . ,m} of the
vertices, such that the vertices colored i, correspond to jobs assigned on machine i. Then,
the contribution of machine i to the total completion time is given by the total weight of
the (complete) subgraph of the vertices for which χ(v) = i in Gi. With a global priority
list, all the graphs are identical, and an assignment is just a clustering of nodes in G to m
partitions. For example, the optimal solution for the above instance and m = 2 is given
in Figure 4.1(ii).

4.1.1 The Model

An instance of scheduling with machine-dependent priority lists is given by the tuple

(N ,M, (pij)i∈M,j∈N , (πi)i∈M ) ,
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4.1 Introduction

where N is a finite set of n ≥ 1 jobs, M is a finite set of m ≥ 1 parallel unrelated machines,
pij ∈ R≥0 is the processing time of job j ∈ N on machine i ∈M , and πi : N 7→ {1, . . . , n}
is the priority list of machine i ∈ M . A schedule σ = (σj)j∈N ∈ MN assigns a machine
σj ∈M to every job j ∈ N . The jobs must be processed without preemption. We denote
the problem using the standard three field notation as R|π|

∑
Cj . Also, R|πglobal|

∑
Cj

denotes the instance when all machines have an identical priority list.
Given a schedule σ, the jobs are processed according to their order in the machines’

priority lists. The completion time of a job j ∈ N assigned to machine i ∈M is given by,

Cj :=
∑
k∈N

σj=σk ∧ πi(k)�πi(j)

pik.

The total completion time of schedule σ is then given by,

C(σ) =
∑
j∈N

Cj .

Let Ji be the set of jobs assigned to machine i in a given schedule σ. Then, the
completion time of a job is equal to the total processing time of the jobs preceding it, and
its own processing time. Therefore, the total completion time on Mi is given by∑

j∈Ji

∑
k∈Ji:πi(k)�πi(j)

pik.

As a consequence, we can formulate R|π|
∑

Cj as the following optimization problem. The
variable xij ∈ {0, 1} indicates whether job j is assigned to machine i.

min
∑
j∈N

∑
i∈M

∑
k:πi(k)�πi(j)

xij · xik · pik∑
i∈M

xij = 1 for all j ∈ N

xij ∈ {0, 1} for all i ∈M, j ∈ N

Since the priority lists can be arbitrary, approximation techniques such as [Sku01] which
additionally restrict a machine’s priority list to the shortest processing time first order,
are not immediately applicable on the above quadratic program. We would like to remark
that unlike the traditional scheduling problem with precedence constraints [LK78], e.g.,
P |prec|

∑
Cj , our model only imposes local precedence constraints to the subset of jobs

assigned to a machine.

4.1.2 Our Contribution

The traditional scheduling problem that minimizes the total completion time can be solved
optimally. For parallel machines, optimal solutions to these problems schedule jobs on any
given machine according to the shortest processing time first rule. For unrelated machines,
the problem can be solved by means of a matching problem. We study the computational
impact due to imposing a fixed order on each machine.

Table 4.1 lists our main results. In Section 4.2 we show computational hardness of
scheduling with machine-dependent priority list. For identical machines, we show that
the problem is NP-hard when each machine has an arbitrary priority list. However, when
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Instance class \ Type Global Arbitrary
List List

P |π|
∑

Cj QPTAS NP-hard/APX-hard
R|π|

∑
Cj NP-hard/APX-hard NP-hard/APX-hard

R2|π|
∑

Cj P −

Table 4.1: Hardness of scheduling with machine-dependent priority lists.

machines have an identical priority list, we show that a QPTAS exists by proving that the
problem can be reduced to an instance of a problem minimizing the weighted completion
time, where all jobs have unit processing time. For unrelated parallel machines, we show
that the problem is NP-hard even when all machines have identical priority lists. Further-
more, in Section 4.3 we study the non-approximability of the aforementioned problem. We
show that problem is APX-hard. In case of unrelated machines, we show that the problem
is APX-hard even if all machines have identical priority lists. In case of two unrelated
machines and identical priority lists, we show that the problem can be solved optimally
using dynamic programming.

4.1.3 Related Work

To the best of our knowledge, the impact of machine-dependent priority list on scheduling
problems has only been considered marginally in the literature. The problem without pri-
ority list can be solved in polynomial time. The shortest processing time first (SPT) rule is
optimal for P ||

∑
Cj [Smi56, Pin08]. For R||

∑
Cj Horn [Hor73] and Bruno et al. [BCS74]

show that the problem can solved in polynomial time using bipartite matching. In case
of identical priority lists, the problem can also be modeled as a special case of scheduling
with sequence dependent setup time. We refer the readers to [AGA99, ANCK08, All15] for
a comprehensive survey on scheduling with setup times. Bosman et al. [BFO+19] study
fixed order scheduling minimizing weighted total completion time, where all machines
have an identical priority lists. They show a QPTAS for the problem when all jobs have
unit processing time. For the general case they show a LP based randomized rounding
algorithm that has a constant factor approximation guarantee of 29.1.

4.2 Computational Hardness
Identical Machines

We prove the hardness of solving P |π|
∑

Cj optimally using a reduction from the Max-
imum Bounded 3-Dimensional Matching (Max-3DM-3) problem. Max-3DM-3 is
known to be NP-hard [Kan91].

Maximum Bounded 3-Dimensional Matching:
The input to the Max-3DM-3 problem is a set of triplets T ⊆ X × Y ×Z, where |T | ≥ n
and |X| = |Y | = |Z| = n. The number of occurrences of every element of X ∪ Y ∪ Z in T
is at most 3. The goal is to decide whether T has a 3-dimensional matching of size n, i.e.,
there exists a subset T ′ ⊆ T , such that |T ′| = n, and every element in X ∪ Y ∪Z appears
exactly once in T ′.

Theorem 4.1. The problem P |π|
∑

Cj is NP-hard.
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Proof. The hardness proof is by a reduction from Max-3DM-3. Given an instance of
MAX-3DM-3 matching and 0 < ε < 1/9n, we construct the following instance of
P |π|

∑
Cj . There are m = |T | identical machines, M1,M2, . . . ,M|T |. The set of jobs

N consists of:

1. 3n jobs with processing time ε—one for each element in X ∪ Y ∪ Z.

2. A set D of m− n jobs with processing time 1.

3. A set U of m jobs with processing time 2.

The priority lists are defined as follows. For every triplet e = (xi, yj , zk) ∈ T , the
priority list of the machine Me is (D,xi, yj , zk, U,X \{xj}, Y \{yj}, Z \{zj}). Note that a
set in the priority list implies that all the jobs in the set appear in a fixed arbitrary order.
We now show that for every 0 < ε < 1/9n, it is NP-hard to decide whether the scheduling
problem instance has an assignment with sum of completion times less than 4m− 2n+ 1
or at least 4m− 2n+ 1 + 3nε.

Claim 4.2. If a 3D-matching of size n exists, then the sum of completion times is less
than 4m− 2n+ 1.

Proof. Let T ′ be a matching of size n. For every e ∈ T ′, assign the three jobs of e on Me.
Also, assign one job from D on each of the remaining m−n machines. Finally, assign one
job from U on every machine.

Observe that, every machine with a triplet contributes (1 + 2 + 3)ε+ 2 + 3ε = 2 + 9ε
to the total completion time. Every other machine contributes 1 + 3 = 4 to the total
completion time. All together we get that for 0 < ε < 1,∑

j∈N
Cj = 4m− 2n+ 9nε < 4m− 2n+ 1.

Claim 4.3. If a 3D-matching of size n does not exist, then the sum of completion times
is at least 4m− 2n+ 1 + 3nε.

Proof. Let us first consider the schedule only with the m U -jobs of length 2 and the m−n
D-jobs of length 1. Their contribution to the total completion time is at least 4m − 2n,
since in an optimal SPT order of these jobs there are n machines with only one U -job and
m−n machines with one U - and one D-job. Also, in any schedule in which some machine
processes two U -jobs or two D-jobs, the contribution of the U -jobs and the D-jobs to the
total completion time is at least 4m− 2n+ 1.

Since each of the jobs originating from X ∪Y ∪Z contributes at least its own length to
the total completion time, in order to have total completion time less than 4m−2n+1+3nε,
it must be that no machine processes two U - or two D-jobs. Thus, m−n machines process
exactly one D-job each, and every machine processes exactly one U -job.

Given that a 3D-matching does not exist, in every schedule, the jobs originated from
X ∪ Y ∪ Z, either spread on more than n machines, or at least one of them is processed
after a U -job on some machine. In the first case, some machine processes both a D-job and
some ε-job. By the aforementioned priority lists, the ε-job is processed after the D-job,
and thus contributes at least 1+ ε to the total completion time. In the second case, some
ε-job is processed after a U -job, and thus contributes at least 2+ε to the total completion
time. We get that the total completion time is at least 4m− 2n+ 1 + 3nε.
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4 Scheduling with Machine-Dependent Priority Lists

Theorem 4.1 follows immediately from Claims 4.2 and 4.3.

Next, we show that for the case when all machines have an identical priority list, the
problem P |πglobal|

∑
Cj exhibits a QPTAS. Let us denote by P |pj = 1, πglobal|

∑
wjCj a

weighted instance of the problem P |πglobal|
∑

Cj , where all jobs have unit processing time.
Also, denote by π̃ the priority list π in a reversed order. Then we show that the problem
P |πglobal|

∑
Cj can be reduced to an instance of the problem P |pj = 1, πglobal|

∑
wjCj in

polynomial time.

Theorem 4.4. P |πglobal|
∑

Cj =p P |pj = 1, πglobal|
∑

wjCj.

Proof. An instance (p1, . . . , pn) and π of P |πglobal|
∑

Cj has a polynomial time reduction
to an instance (w1, . . . , wn) and π̃ of P |pj = 1, πglobal|

∑
wjCj as follows: wj = pj for all

j ∈ N and π̃ is the reverse of π. Then,∑
j∈N

Cj =
∑
j∈N

nj · pj =
∑
j∈N

wjC
′
j ,

where for any feasible assignment σ, nj =| {j′ ∈ N | σj = σj′ and π(j) � π(j′)} | and C ′
j

is the completion time of job j in P |pj = 1, πglobal|
∑

wjCj with π̃.

Bosman et al. [BFO+19] present a quasi-polynomial time approximation scheme (QP-
TAS) for P |pj = 1, πglobal|

∑
wjCj . As a consequence, we state the following result.

Corollary 4.5. For every scheduling instance of P |πglobal|
∑

Cj and every ε > 0, there
exists a ε-approximation scheme with running time nO(log1+ε n).

Unrelated Machines

We now show that even with identical priority lists on every machine the scheduling
problem is NP-hard in the case of unrelated machines.

Theorem 4.6. The problem R|πglobal|
∑

Cj is NP-hard.

Proof. The hardness proof is by a reduction from Max-3DM-3. Given an instance I
of Max-3DM-3 matching and 0 < ε < 1/6n, we construct the following instance of
R|πglobal|

∑
Cj . There are m = |T | machines, M1,M2, . . . ,M|T |. All machines have the

same priority list, π = (D,X, Y, Z).
The set of jobs consists of:

1. 3n element-jobs, one for each element in X ∪ Y ∪ Z. Let e` = (xi, yj , zk) be the `th

triplet in T . Then, the processing times of the three element jobs corresponding to
xi, yj , zk on M` is ε. All the other element-jobs have processing time 1 on M`.

2. A set D of m − n jobs. The processing time of every job in D is 1, independent of
the machine.

We prove that it is NP-hard to decide if the problem has a schedule with sum of
completion time less than m− n+ 1 or at least m− n+ 1

Claim 4.7. If a 3D-matching of size n exists, then the sum of completion times is less
than m− n+ 1.
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Proof. Let T ′ be a matching of size n. For every e ∈ T ′, assign the three jobs of e on Me.
Also, assign one job from D on each of the remaining m − n machines. Every machine
with a triplet contributes (1 + 2 + 3)ε = 6ε to the total sum of completion time. Every
other machine contributes 1 to the total sum of completion time. All together we get that
for 0 < ε < 1/6n, ∑

Cj = m− n+ 6nε < m− n+ 1.

Claim 4.8. If a 3D-matching of size n does not exist, then the sum of completion times
is at least m− n+ 1.

Proof. The contribution of the D-jobs to the total completion time is at least m−n. Given
that a 3D-matching does not exist, in every schedule, the jobs originated from X ∪Y ∪Z,
either spread on more than n machines, or at least one of them is processed on some
different triplet machine. In the first case, some machine processes both a D-job and some
ε-job. By the priority lists, the ε-job is processed after the D-job, and thus contributes
at least 1 + ε to the total completion time. In the second case, some ε-job contributes at
least 1 to the total completion time. Therefore, we get that the total completion time is
at least m− n+ 1.

The proof of Theorem 4.6 follows from Claims 4.7 and 4.8.

Scheduling on 2 Unrelated Machines

Although the problem R|πglobal|
∑

j Cj is NP-hard, if we restrict ourselves to the case of
2 machines, the problems can be solved efficiently.

Theorem 4.9. R2|πglobal|
∑

Cj is polynomial time solvable.

Proof. We will solve R2|πglobal|
∑

Cj by means of a dynamic program. W.l.o.g. let us
assume π = (n, n− 1, . . . , 2, 1). Let OPT (k, r) denote the objective value of the optimal
solution for jobs 1, . . . , k given that the first machine processes r jobs and the second
machine processes k − r jobs. Observe that OPT (0, 0) = 0. Then for k = 1, . . . , n and r
such that 1 ≤ r ≤ k, we have

OPT (k, r) = min {(OPT (k − 1, r − 1) + r · pk1) , (OPT (k − 1, r − 1) + (k − r + 1) · pk2)} .

The entire table (OPT (i, j))i∈[n],j∈[i] can be computed in O(n2) time.
To prove correctness, recall that the total completion time of a machine with n jobs

scheduled to that machine can be expressed as∑
Cj = np(1) + (n− 1)p(2) + . . .+ p(n),

where p(j) denotes the processing time of the job in the jth position in the sequence. Then,
the partition of jobs minimizing the total sum completion time can be determined from
the table (OPT (i, j))i∈[n],j∈[i].
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4 Scheduling with Machine-Dependent Priority Lists

4.3 Inapproximability
In Section 4.2 we showed that the scheduling problem P |π|

∑
Cj and R|πglobal|

∑
j Cj

are NP-hard. We now show that they also do not exhibit a polynomial time approxima-
tion scheme using an L-reduction from Maximum Bounded 3-Dimensional Matching
(Max-3DM-3) which is known to be APX-hard [Kan92]. Let us first recall the definition
of an L-reduction.

Definition 4.10 (Papadimitriou and Yannakakis [PY91]). Let Π1 and Π2 be two opti-
mization problems. We say Π1 L-reduces to Π2 if there exist polynomial time computable
functions f, h and constants α, β > 0 such that for each instance I ∈ Π1 the following
holds,

1. f(I) ∈ Π2 such that, OPT (f(I)) ≤ α ·OPT (I).

2. Given any solution ϕ to f(I), h(ϕ) is a feasible solution to I such that,

| cost (h(ϕ))−OPT (I) |≤ β | cost(ϕ)−OPT (f(I)) | .

Recall that in Max-3DM-3 we are given three disjoint sets X = {x1, . . . , xq}, Y =
{y1, . . . , yq}, Z = {z1, . . . , zq}, and a set of triplets T ⊆ X × Y × Z with |T | = s, such
that any element of X,Y, Z occurs in exactly one, two or three triplets in T . The goal is
to find a subset T ′ ⊆ T of maximum cardinality such that no two triplets of T ′ agree in
any coordinate. Max-3DM-3 is known to be APX-hard even if one only allows instances
where the optimal solution consists of q triples [Pet94]. In the following we will only
consider this additionally restricted version of Max-3DM-3.

Theorem 4.11. The scheduling problem P |π|
∑

Cj is APX-hard.

Proof. We present an L-reduction from Max-3DM-3 to show that P |π|
∑

Cj does not
have a PTAS unless P = NP. Given an instance I = (q, T ) of Max-3DM-3, we construct
an instance f(I) of P |π|

∑
Cj with 4q + 2s jobs and q + s machines as follows.

The set of jobs consists of:

E : 3q element-jobs with processing time 1—one for each element in X ∪ Y ∪ Z.

D : s dummy jobs with processing time 5.

U : q + s dummy jobs with processing time 10.

The set of machines consists of:

S : s triplet machines.

Q : q dummy machines.

The priority lists of the machines are as follows. Note that a set in the priority list
implies that all the jobs in the set appear in a fixed arbitrary order.

1. Let (xu, yv, zw) be the `-th triplet in T . The priority list of S` is

π` = (D,xu, yv, zw, U,X \ {xu}, Y \ {yv}, Z \ {zw}).

2. For any machine e ∈ Q, πe = (D,X,U, Y, Z).
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4.3 Inapproximability

Observe that the transformation f : Max-3DM-3 7→ P |π|
∑

Cj is polynomial time com-
putable and therefore, satisfies the condition in Definition 4.10. Next, we specify the
function h : P |π|

∑
Cj 7→Max-3DM-3 as required in Definition 4.10. Let ϕ be a feasible

schedule for f(I). A triplet machine in ϕ is referred to as good if the first three jobs it
processes compose a triplet in T . Let h(ϕ) be the corresponding set of triplets—that are
scheduled first on a good machine.

We proceed to show that condition 1 in Definition 4.10 is satisfied with α = 79.

Claim 4.12. If OPT (I) = q then OPT (f(I)) ≤ 79q.

Proof. Let T ′ be a matching of size q. For every e ∈ T ′, assign the three jobs of e on Me.
Also, assign one job from D on each of the remaining s− q triplet machines, and each of
the dummy machines. Finally, assign one job from U on every machine. Every machine
with a triplet contributes 1 + 2 + 3 + 13 = 19 to the total completion time. Every other
machine processes one D-job and one U -job, and contributes 5 + 15 = 20 to the total
completion time. All together we get OPT (f(I)) ≤ 19q + 20s. Since s ≤ 3q, we have
OPT (f(I)) ≤ 79q = 79 ·OPT (I).

Next, we show that there exists β > 0 such that condition 2 in Definition 4.10 is valid.
For a given schedule ϕ, let cost(ϕ) be the total completion time of the jobs, and let g be
the number of good machines. Recall that h(ϕ) is the corresponding set of triplets—that
are scheduled first on good machines. We show that for some β > 0 that

| cost (h(ϕ))−OPT (I) |≤ β | cost(ϕ)−OPT (f(I)) | .

Observe that, since OPT (I) = q and cost (h(ϕ)) = g, it is sufficient to show that there
exists β > 0, such that q − g ≤ β (cost(ϕ)−OPT (f(I)). Particularly, we show that this
is true for β = 1.
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Figure 4.2: An optimal schedule (i), best schedule with g good machines when q − g is
even (ii) and odd (iii).

Claim 4.13. q − g ≤ cost(ϕ)−OPT (f(I))

Proof. We first show that the lemma is valid for a nicely structured schedule, and then
show that every other schedule with g good machines has a higher cost.

We distinguish between q−g being even and odd. First, assume q−g is even. Assume
that ϕ, i.e., our schedule with g good machines has the following structure as illustrated
in Figure 4.2(ii).
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4 Scheduling with Machine-Dependent Priority Lists

1. There are g good triplet machines, each processing jobs corresponding to one triplet
and a U -job. Their contribution to cost(ϕ) is (1 + 2 + 3 + 13)g = 19g.

2. There are q− g triplet machines, each processing a job from Y , a job from Z, and a
U -job. We remark that this is feasible as we assume that a matching of size q exists.
Their contribution to cost(ϕ) is (1 + 2 + 12)(q − g) = 15q − 15g.

3. There are s − q triplet machines, each processing a D-job and a U -job. Their
contribution to cost(ϕ) is (5 + 15)(s− q) = 20s− 20q.

4. There are (q−g)/2 dummy machines, each processing two jobs from X, and a U -job.
Their contribution to cost(ϕ) is (1 + 2 + 12)(q − g)/2 = 7.5(q − g).

5. There are (q − g)/2 dummy machines, each processing two D-jobs, and a U -job.
Their contribution to cost(ϕ) is (5 + 10 + 20)(q − g)/2 = 17.5(q − g).

6. There are g dummy machines, each processing a D-job and a U -job. Their contri-
bution to cost(ϕ) is (5 + 15)g = 20g.

Summing up we obtain, cost(ϕ) = 20q + 20s − g, which together with the fact that
OPT (f(I)) ≤ 19q + 20s implies that cost(ϕ)−OPT (f(I)) ≥ q − g.

Next, assume q− g is odd. Assume that ϕ, our schedule with g good machines has the
following structure as illustrated in Figure 4.2(iii).

1. There are g good triplet machines, each processing jobs corresponding to one triplet
and a U -job. Their contribution to cost(ϕ) is (1 + 2 + 3 + 13)g = 19g.

2. There are q− g triplet machines, each processing a job from Y , a job from Z, and a
U -job. Again, notice that this is feasible as we assume that matching of size q exists.
Their contribution to cost(ϕ) is (1 + 2 + 12)(q − g) = 15q − 15g.

3. There are s − q triplet machines, each processing a D-job and a U -job. Their
contribution to cost(ϕ) is (5 + 15)(s− q) = 20s− 20q.

4. There are (q − g − 1)/2 dummy machines, each processing two jobs from X, and a
U -job. Their contribution to cost(ϕ) is (1 + 2 + 12)(q − g − 1)/2 = 7.5(q − g − 1).

5. There are (q− g− 1)/2 dummy machines, each processing two D-jobs, and a U -job.
Their contribution to cost(ϕ) is (5 + 10 + 20)(q − g − 1)/2 = 17.5(q − g − 1).

6. There is 1 dummy machine, processing a D-job, a job from X, and a U -job. Its
contribution to cost(ϕ) is (5 + 6 + 16) = 27.

7. There are g dummy machines, each processing a D-job and a U -job. Their contri-
bution to cost(ϕ) is (5 + 15)g = 20g.

Summing up, cost(ϕ) = 20q+20s−g+2, which together with OPT (f(I)) ≤ 19q+20s,
implies that cost(ϕ)−OPT (f(I)) ≥ q − g + 2 ≥ q − g.

In order to conclude the proof, we show that schedule ϕ is the optimal schedule given g
good machines. In other words, we prove that for every schedule ϕ′ with g good machines,
we have cost(ϕ′) ≥ cost(ϕ), as required.

Recall that the total completion time of a machine with n jobs scheduled to that
machine can be expressed as∑

Cj = np(1) + (n− 1)p(2) + . . .+ p(n),
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4.3 Inapproximability

where p(j) denotes the processing time of the job in the jth position in the sequence.
Finding an optimal schedule boils down to optimally assigning coefficients to processing
times conditional on the priorities of the machines.

Fix the 3g element jobs on the g good machines. Given that on each good machine 3
element jobs are fixed, the coefficient of each position on a good machine after the three
element jobs is increased by an additive constant of 3—in order to make sure that the
increase in coefficient of the three element jobs is also taken into account.

In order to minimize the sum of completion times, we assign q + s − g U -jobs to the
1-coefficients. Since 10+ 3 < 2 · 10, the remaining g U -jobs will be assigned a 1-coefficient
on good machines (hence the additive constant of 3).

Similarly, we want to assign as many as possible D-jobs to 2-coefficients. On all s−q+g
machines with two jobs this is feasible. Since D-jobs always have the highest priority, they
can never be assigned to a 2-coefficient when scheduled with an element job (recall that
on every machine we also scheduled a U -job). So the remaining q − g D-jobs should be
assigned to machines in pairs so that b(q − g)/2c D-jobs are assigned a 2-coefficient and
the remaining d(q − g)/2e D-jobs are assigned a 3-coefficient.

Finalizing the proof, we assign q − g + d(q − g)/2e element jobs to the remaining
2-coefficients, and the remaining q − g + b(q − g)/2c element jobs to a 3-coefficient.

Since schedule ϕ fulfills the properties of the optimal schedule given g good machines
described above, the proof is complete.

The proof of Theorem 4.11 then follows from Claims 4.12 and 4.13.

Next, we consider hardness of approximating R|πglobal|
∑

Cj . Although the construc-
tion in Theorem 4.11 can be easily adapted for the case of unrelated machines, we prove
APX-hardness using a slightly different construction.

Theorem 4.14. The scheduling problem R|πglobal|
∑

Cj is APX-hard.

Proof. We present an L-reduction from Max-3DM-3 to show that R|πglobal|
∑

Cj does
not have a PTAS unless P = NP. Given an instance I of Max-3DM-3, we construct an
instance f(I) of R|πglobal|

∑
Cj with m + 2q jobs and m = |T | machines as follows. All

machines have the same priority list, π = (D,X, Y, Z).
The set of jobs consists of:

1. 3q element-jobs, one for each element in X ∪ Y ∪ Z. Let e` = (xi, yj , zk) be the `th

triple in T . The processing times of the three element-jobs corresponding to xi, yj , zk
on M` is 1. All the other element-jobs have processing time ∞ on M`.

2. A set D of m−q dummy jobs. The processing time of every job in D is 3, independent
of the machine.

Next we specify the function h as required in Definition 4.10. Let ϕ be a feasible
schedule for an instance f(I) of R|πglobal|

∑
Cj . Every machine M` processes at most 3

jobs whose processing time on M` is 1, specifically, the jobs corresponding to e`. A triple
e` is included in h(ϕ) if M` processes exactly these three corresponding jobs. Note that f
and h are polynomial-time computable. We turn to show that they fulfill the requirements
specified in Definition 4.10.

Claim 4.15. If OPT (I) = q then OPT (f(I)) ≤ 12 ·OPT (I).
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Proof. Recall that I is an instance of Max-3DM-3 that has an optimal solution with
q triples, that is, OPT (I) = q. Consider the following schedule for instance f(I): For
each triple e` = (xi, yj , zk) in the optimal matching of I, assign the three element-jobs
corresponding to xi, yj , zk on M`. Next, assign the m − q dummy jobs on the remaining
m − q machines, one dummy job on each machine. In the resulting schedule there are
q machines with three unit-length jobs and m − q machines with a single job of length
3. Thus,

∑
Cj = (1 + 2 + 3)q + 3(m − q) = 3(q + m). Note that m ≤ 3q, since any

element of X,Y, Z occurs in at most three triples in T , and m = |T |. We conclude that
OPT (f(I)) ≤ 3(q + m) ≤ 12q = 12 · OPT (I). That is, condition 1 in Definition 4.10 is
fulfilled with α = 12.

We now show that the condition 2 is fulfilled with β = 1. Consider a schedule ϕ for an
instance f(I). Without loss of generality we may assume that in ϕ every job has a finite
processing time; otherwise, cost(ϕ) is infinite and condition 2 is clearly satisfied.

Claim 4.16. W.l.o.g., no machine processes three or more dummy jobs.

Proof. Assume that some machine Mu processes at least three dummy jobs. If there is a
machine Mv in ϕ with a single job, then ϕ can be improved by moving a dummy job from
Mu to Mv. The total completion time on these two machines is decreased by at least 9
and is increased by 6.

If all the machines have at least two jobs, then there must be a machine Mv with
two element-jobs. Suppose not, then since there are only m − q dummy jobs, there are
more than q machines without a dummy job. So we need 3q element-jobs to fill those
machines plus m− q element-jobs to fill the machines with a dummy job yielding a total
of more than 3q +m− q ≥ 3q element-jobs, contradicting the fact that there are only 3q
element-jobs in I.

Furthermore, by moving a dummy job from Mu to Mv, the total completion time is
reduced by at least 9 and is increased by 9.

For i = 1, 2, let di denote the number of machines in ϕ that process i dummy jobs,
and let m3 denote the number of good machines that process exactly 3 element-jobs. The
remaining m −m3 − d1 − d2 machines process only element-jobs, and there are at most
two element-jobs on each of these machines.

We conclude that out of the 3q element-jobs, 3m3 are processed on good machines, at
most 2(m −m3 − d1 − d2) are processed on machines that process exactly two element-
jobs, and the remaining jobs are processed after at least one dummy job, and thus have
completion time at least 4.

The total completion time of the element-jobs is therefore at least

(1 + 2 + 3)m3 + (1 + 2)(m−m3 − d1 − d2) + 4(3q − 3m3 − 2m+ 2m3 + 2d1 + 2d2).

In addition, the total completion time of the dummy jobs is 3d1 + 9d2.
Summing up, we get∑
Cj ≥ 6m3 + 3m− 3m3 − 3d1 − 3d2 + 12q − 12m3 − 8m+ 8m3 + 8d1 + 8d2 + 3d1 + 9d2

= 12q −m3 − 5m+ 8d1 + 14d2.

We now use the fact that d1 + 2d2 = m− q to get

∑
Cj ≥ 12q −m3 − 5m+ 8d1 + 14d2
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4.3 Inapproximability

> 12q −m3 − 5m+ 7(d1 + 2d2)

= 12q −m3 − 5m+ 7m− 7q

= 12q −m3 + 2m.

Recall that OPT (f(I)) ≤ 3(q +m). Thus,∑
Cj −OPT (f(I)) ≥ 12q −m3 + 2m− 3q − 3m

= 9q −m3 −m

≥ 6q −m3.

The last inequality follows from the fact that m ≤ 3q.
Observe that given any solution ϕ to f(I), h(ϕ) is a feasible solution to I such that,

| cost(h(ϕ))−OPT (I) |= q−m3 < 6q−m3 ≤| cost(ϕ)−OPT (f(I)) |, i.e., condition 2 is
fulfilled with β = 1.
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Chapter 5

Scheduling Games with
Machine-Dependent Priority Lists

In the last chapter we introduced a variant of scheduling problem on parallel machines,
where each machine uses an individual priority list to decide on the order according to
which the jobs on the machine are processed. Surprisingly, the side constraint of local
precedence makes the problem computationally challenging even with identical machines.
In this chapter we investigate this scheduling variant as a strategic game on related ma-
chines, where individual jobs are allowed to selfishly pick a machine that minimize their
completion time.

5.1 Introduction
Scheduling problems have traditionally been studied from a centralized point of view in
which the goal is to find an assignment of jobs to machines so as to minimize some global
objective function. Two of the classical results are that Smith’s rule, i.e., schedule jobs
in decreasing order according to their ratio of weight over processing time, is optimal
for single machine scheduling with the sum of weighted completion times as objective
[Smi56] and list scheduling, i.e., greedily assign the job with the highest priority to a free
machine, yields a 2-approximation for identical machines with the minimum makespan as
objective [Gra66]. Many modern systems provide service to multiple strategic users, whose
individual payoff is affected by the decisions made by others. As a result, non-cooperative
game theory has become an essential tool in the analysis of job-scheduling applications.
The jobs are controlled by selfish users who independently choose which resources to use.
The resulting job-scheduling games have by now been widely studied and many results
regarding the efficiency of equilibria in different settings are known.

A particular focus has been placed on finding coordination mechanisms [CKN04], i.e.,
local scheduling policies, that induce a good system performance. In these works, it is
common to assume that ties are broken in a consistent manner (see, e.g., Immorlica et
al. [ILMS09]), or that there are no ties at all (see, e.g., Cole et al. [CCG+15]). In practice,
there is no real justification for this assumption, except that it avoids subtle difficulties in
the analysis. We relax this restrictive assumption and consider the more general setting in
which machines have arbitrary individual priority lists. That is, each machine schedules
those jobs that have chosen it according to its priority list. The priority lists are publicly
known to the jobs.
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We introduced scheduling games with machine-dependent priority lists in Chapter 1.
In this chapter we analyze the effect of having machine-dependent priority lists on the
corresponding job-scheduling game. We study the existence of pure Nash equilibria (NE),
the complexity of identifying whether an NE profile exists, the complexity of computing
an NE, in particular a good one, and the equilibrium inefficiency. We begin by once again
familiarizing ourselves with the model description and preliminaries. However, we remark
that the readers may choose to skip the following subsection.

5.1.1 The Model

An instance of a scheduling game with machine-dependent priority lists is given by a tuple

G = (N ,M, (pi)i∈N , (sj)j∈M , (πj)j∈M ) ,

where N is a finite set of n ≥ 1 jobs, M is a finite set of m ≥ 1 related machines, pi ∈ R≥0

is the processing time of job i ∈ N , sj ∈ R≥0 denotes the speed of the machine j ∈ M ,
and πj : N → {1, . . . , n} is the priority list of machine j ∈M .

A strategy profile σ = (σi)i∈N ∈ MN assigns a machine σi ∈ M to every job i ∈ N .
Given a strategy profile σ, the jobs are processed according to their order in the machines’
priority lists. The set of jobs that delay i ∈ N in σ is denoted by

Bi(σ) = {i′ ∈ N | σi′ = σi ∧ πσi(i
′) ≤ πσi(i)}.

Note that job i itself also belongs to Bi(σ). Let pi(σ) =
∑

i′∈Bi(σ)

pi′ , then the cost of job

i ∈ N is equal to its completion time in σ, given by

Ci(σ) =
pi(σ)

sσi

.

Each job chooses a strategy so as to minimize its costs. A strategy profile σ is a pure
Nash equilibrium (NE) if for all i ∈ N and all σ′

i ∈M , we have that

Ci(σ) ≤ Ci(σ
′
i, σ−i).

Let E(G) denote the set of Nash equilibria for a given instance G. We would like to remark
that E(G) may be empty.

For a strategy profile σ, let C(σ) denote the cost of σ. The cost is defined with respect
to some objective, e.g., the makespan, i.e.,

Cmax(σ) := max
i∈N

Ci(σ),

or the sum of completion times, i.e., ∑
i∈N

Ci(σ).

It is well known that decentralized decision-making may lead to sub-optimal solutions
from the point of view of the society as a whole. For a game G, let P (G) be the set of
feasible profiles of G. We denote by OPT (G) the cost of a social optimal solution, i.e.,
OPT (G) = minσ∈P (G)C(σ). We quantify the inefficiency incurred due to self-interested
behavior according to the price of anarchy (PoA) [KP99], and price of stability (PoS)
[ADK+08]. Let us recall the definitions of PoA and PoS in Chapter 1. The PoA is the
worst-case inefficiency of a pure Nash equilibrium, while the PoS measures the best-case
inefficiency of a pure Nash equilibrium.
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5.1 Introduction

Definition 5.1. Let G be a family of games, and let G be a game in G. Let E(G) be the
set of pure Nash equilibria of the game G. Assume that E(G) 6= ∅.

• The price of anarchy of G is the ratio between the maximum cost of an NE and the
social optimum of G, i.e., PoA(G) = max

σ∈E(G)
C(σ)/OPT (G). The price of anarchy of

G is PoA(G) = supG∈G PoA(G).

• The price of stability of G is the ratio between the minimum cost of an NE and the
social optimum of G, i.e., PoS(G) = min

σ∈E(G)
C(σ)/OPT (G). The price of stability of

G is PoS(G) = supG∈G PoS(G).

5.1.2 Our Contribution

In Section 5.2 we first show that for scheduling games with machine-dependent priority
lists a pure Nash equilibrium in general need not exist, and use this to show that it is
NP-complete to decide whether a particular game has a pure Nash equilibrium. We then
provide a characterization of instances in which a pure Nash equilibrium is guaranteed
to exist. Specifically, existence is guaranteed if the game belongs to at least one of the
following four classes:

G1 : all jobs have unit processing time.

G2 : there are two machines.

G3 : all machines have the same speed.

G4 : all machines have the same priority list.

For all four of these classes, there is a polynomial time algorithm that computes a pure
Nash equilibrium. In fact, for all four classes we prove that better-response dynamics
converge to a pure Nash equilibrium. This characterization is tight in a sense that our
inexistence example disobeys it in a minimal way, i.e., it describes a game on three ma-
chines, two of them having the same speed and the same priority list. We also show that
the result for G2 cannot be extended for games with two unrelated machines. Another
characterization we consider is the number of jobs in the instance. We present a game of
4 jobs that has no pure Nash equilibrium, and show that every game of 3 jobs admits a
pure Nash equilibrium.

In Section 5.3 we analyze the efficiency of Nash equilibria by means of two different
measures of efficiency: the makespan, i.e., the maximum completion time of a job and
the sum of completion times. For all four classes of games with a guaranteed pure Nash
equilibrium, we provide tight bounds for the price of anarchy and the price of stability
with respect to both measures. Our results are summarized in Table 5.1.

1. If jobs have unit processing times, we show that the price of anarchy is equal to 1,
which means that selfish behavior is optimal.

2. For two machines with speed 1 and s ≤ 1 respectively, we prove that the PoA and
the PoS are at most s+ 1 if s ≤

√
5−1
2 , and s+2

s+1 if s ≥
√
5−1
2 . Moreover, our analysis

is tight for all s ≤ 1. The maximal inefficiency, listed in Table 5.1, is achieved for
s =

√
5−1
2 . In case the sum of completion times is considered as an objective, the

price of anarchy can grow linearly in the number of jobs.
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5 Scheduling Games with Machine-Dependent Priority Lists

Instance class \ Objective Makespan Sum of Comp. Times
PoA/PoS PoA/PoS

G1 : Unit jobs 1 1

G2 : Two machines (
√
5 + 1)/2 Θ(n)

G3 : Identical machines 2− 1/m Θ(n/m)

G4 : Global priority list Θ(m) Θ(n)

Table 5.1: Our results for the equilibrium inefficiency.

3. If machines have identical speeds, but potentially different priority lists, the price
of anarchy with respect to the makespan is equal to 2 − 1/m. The upper bound
follows because every Nash equilibrium can be seen as an outcome of Graham’s List-
Scheduling algorithm. This generalizes a similar result by Immorlica et al. [ILMS09]
for priorities based on shortest processing times first. The lower bound example
shows the bound is tight, even with respect to the price of stability. For the sum of
completion times objective, we show that the price of anarchy is at most O(n/m),
and provide a lower bound example for which the price of stability grows in the order
of O(n/m).

4. If there is a global priority list and machines have arbitrary speeds, we show that
the Θ(m)-approximation of List-Scheduling carry over for the makespan inefficiency,
and the results for two machines carry over for the sum of completion times.

We conclude with results regarding the complexity of computing a good NE. While a
simple greedy algorithm can be used to compute an NE for an instance with identical
machines (the class G3), in Section 5.4 we show that it is NP-hard to compute an NE
schedule that approximates the best NE of a game in this class. Specifically, it is NP-hard
to approximate the best NE with respect to the minimum makespan within a factor of
2− 1/m− ε for all ε > 0, and it is NP-hard to approximate the best NE with respect to
the sum of completion times within a factor of r for any constant r > 1.

5.1.3 Related Work

Scheduling games were initially studied in the setting in which each machine processes
its jobs in parallel so that the completion time of each job is equal to the makespan
of the machine. The goal of these papers were to characterize the inefficiency of selfish
behavior as measured by the price of anarchy [KP99]. Most attention has been given
to the makespan as a measure of efficiency. Czumaj and Vöcking [CV07] gave tight
bounds on the price of anarchy for related machines, whereas Awerbuch et al. [AART06]
and Gairing et al. [GLMM10] provided tight bounds for restricted machine settings. We
refer to Vöcking [Vöc07] for an overview. These tight bounds grow with the number
of machines and that is why Christodoulou et al. [CKN04] introduced the idea of using
coordination mechanisms, i.e., local scheduling policies, to improve the price of anarchy.
They studied the price of anarchy with priority lists based on longest processing times first.
Immorlica et al. [ILMS09] generalized their results and studied several different scheduling
policies, among which longest and shortest processing times first, in multiple scheduling
settings. Both these policies guarantee the existence of a pure Nash equilibrium in the
related machine setting. These results are a special case of our result, as we prove the
existence of a pure Nash equilibrium if there is a global priority list. For shortest processing
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5.2 Equilibrium Existence and Computation

times first, a pure Nash equilibrium is also guaranteed in the unrelated machines setting.
Here, the set of Nash equilibria corresponds to the set of solutions of the Ibarra-Kim
algorithm. A result that is also proven in Heydenreich et al. [HMU07]. Other (in)existence
results are Dürr and Nguyen [DN09], who proved that a Nash equilibrium exists for two
machines with a random order and balanced jobs, Azar et al. [AJM08], who showed that
for unrelated machines with priorities based on the ratio of a job’s processing time to
its fastest processing time, a Nash equilibrium need not exist, Lu and Yu [LY12], who
proved that group-makespan mechanisms guarantees the existence of a Nash equilibrium,
and Kollias [Kol13], who showed that non-preemptive coordination mechanisms need not
induce a pure Nash equilibrium.

For the sum of weighted completion times, Correa and Queyranne [CQ12] proved a
tight upper bound of 4 for restricted related machines with priority lists derived from
Smith’s rule. Cole et al. [CCG+15] generalized the bound of 4 to unrelated machines
with Smith’s rule and proposed better scheduling policies. Hoeksma and Uetz [HU19]
gave a tighter bound for the more restricted setting in which jobs have unit weights and
machines are related. Caragiannis et al. [CGV17] proposed a framework that uses price
of anarchy results of Nash equilibria in scheduling games to come up with combinatorial
approximation algorithms for the centralized problem.

5.2 Equilibrium Existence and Computation

In this section we give a precise characterization of scheduling game instances that are
guaranteed to have an NE. The conditions that we provide are sufficient but not necessary.
A natural question is to decide whether a given game instance that does not fulfill any
of the conditions has an NE. We show that answering this question is an NP-complete
problem.

We first show that an NE may not exist, even with only three machines, two of which
have the same speed and the same priority list.

Example 5.2. Consider the game G∗ with 5 jobs, N = {a, b, c, d, e}, and three machines,
M = {M1,M2,M3}, with π1 = (a, b, c, d, e), and π2 = π3 = (e, d, b, c, a). The first machine
has speed s1 = 1 while the two other machines have speed s2 = s3 = 1/2. The job
processing times are pa = 5, pb = 4, pc = 4.5, pd = 9.25, and pe = 2.

Job a is clearly on M1 in every NE. Therefore job e is not on M1 in an NE, as job e
is first on M2 or M3. Since these two machines have the same priority list and the same
speed, we can assume w.l.o.g., that if an NE exists, then there exists an NE in which job e
is on M3. We distinguish two different cases for job d, as given that e is on M3, d prefers
M2 over M3.

1. Job d is on M1. Then as job b has the highest remaining priority among b and c on
all machines, job b picks the machine with the lowest completion time, which is M2,
and job c lastly is then on M1. As a result, d prefers M2 (since 18.5 < 18.75) over
M1.

2. Job d is on M2. Then as job b has the highest remaining priority among b and c on
all machines, job b picks the machine with the lowest completion time, which is M1,
and job c lastly is then on M3. As a result, d prefers M1 (since 18.25 < 18.5) over
M2.

Thus, the game G∗ has no pure Nash equilibrium.
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5 Scheduling Games with Machine-Dependent Priority Lists

We can use the above example to show that deciding whether a game instance has an
NE is NP-complete by using a reduction from 3-bounded 3-dimensional matching.

Theorem 5.3. Given an instance of a scheduling game, it is NP-complete to decide
whether the game has an NE.

Proof. Given a game and a profile σ, verifying whether σ is an NE can be done by checking
for every job whether its current assignment is also its best-response, therefore the problem
is in NP.

The hardness proof is by a reduction from Maximum Bounded 3-Dimensional
Matching (Max-3DM-3). Recall that the input to the Max-3DM-3 problem is a set
of triplets T ⊆ X × Y × Z, where |T | ≥ n and |X| = |Y | = |Z| = n. The number of
occurrences of every element of X ∪Y ∪Z in T is at most 3. The goal is to decide whether
T has a 3-dimensional matching of size n, i.e., there exists a subset T ′ ⊆ T , such that
|T ′| = n, and every element in X ∪ Y ∪ Z appears exactly once in T ′. Max-3DM-3 is
known to be NP-hard [Kan91].

Given an instance T of Max-3DM-3 matching and ε > 0, we construct the following
scheduling game GT . The set of jobs consists of:

1. The 5 jobs {a, b, c, d, e} from the game G∗ in Example 5.2.

2. A single dummy job f , with processing time 2.

3. A set D of |T | − n dummy jobs with processing time 3.

4. A set U of |T |+ 1 dummy jobs with processing time 20.

5. 3n jobs with processing time 1—one for each element in X ∪ Y ∪ Z.

There are m = |T |+4 machines, M1,M2, . . . ,M|T |+4. All the machines except for M2 and
M3 have speed sj = 1. For M2 and M3, s2 = s3 = 1/2.

The heart of the reduction lies in determining the priority lists. The first three ma-
chines will mimic the no-NE game G∗ from Example 5.2. Note that if job e is missing
from G∗ then there exists an NE of {a, b, c, d} on M1,M2,M3. The idea is that if a
Max-3DM-3 matching exists, then job e would prefer M4 and leave the first three ma-
chines for {a, b, c, d}. However, if there is no Max-3DM-3, then some job originated from
the elements in X ∪Y ∪Z will precede job e on M4, and e’s best-response would be on M2

or M3, where it is guaranteed to have completion time 4, and the no-NE game G∗ would
come to life. The dummy jobs in U are long enough to guarantee that each of the jobs
{a, b, c, d} prefers the first three machines over the last |T |+ 1 machines.

The priority lists are defined as follows. When the list includes a set, it means that
the set elements appear in arbitrary order. For the first machine,

π1 = (a, b, c, d, e, f, U,X, Y, Z,D).

For the second and third machines,

π2 = π3 = (e, d, b, c, a, f, U,X, Y, Z,D).

For the fourth machine, we have priority list

π4 = (f,X, Y, Z, e, U,D, a, b, c, d).
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5.2 Equilibrium Existence and Computation

The remaining |T | machines are triplet-machines. For every triplet t = (xi, yj , zk) ∈ T ,
the priority list of the triplet-machine corresponding to t is

(D,xi, yj , zk, U, f,X \ {xj}, Y \ {yj}, Z \ {zj}, a, b, c, d, e).

Observe that in any NE, the dummy job f with processing time 2 is assigned as the
first jobs on M4. Also, the dummy jobs in D have the highest priority on the triplet-
machines, thus, in every NE, there are |D| = |T | − n triplet-machines on which the first
job is from D. Finally, it is easy to see that in every NE there is exactly one dummy job
from U on each of the last |T |+ 1 machines.

Figure 5.1 provides an example for n = 2 and |T | = 3.
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b c
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Figure 5.1: (a) Let T = {(x1, y1, z1), (x2, y2, z2), (x1, y2, z2)}. A matching of size 2 exists.
Job e is assigned on M4, an NE exists. (b) Let T = {(x1, y1, z1), (x2, y2, z1), (x1, y2, z2)}.
A matching of size 2 does not exist. Job e is not assigned on M4 and the no-NE game G∗

is induced on the first three machines.

In order to complete the proof we prove the following two claims that relate the exis-
tence of a NE in the game GT to the existence of a perfect matching in the 3DM-3 instance
T . We first show that if the Max-3DM-3 instance has a perfect matching, then the game
induced due to our construction has a pure Nash equilibrium.

Claim 5.4. If a 3D-matching of size n exists in T , then the game GT has an NE.

Proof. Let T ′ ⊆ T be a matching of size n. Assign the jobs of X ∪ Y ∪ Z on the triplet-
machines corresponding to T ′ and the jobs of D on the remaining triplet-machines. Assign
f and e on M4. Also, assign a single job from U on all but the first 3 machines. We are left
with the jobs a, b, c, d that are assigned on the first three machines: a and d on M1, b on
M2 and c on M3. It is easy to verify that the resulting assignment is an NE. The crucial
observation is that all the jobs originated from X ∪ Y ∪ Z completes at time at most 3,
and therefore have no incentive to select M4. Thus, job e completes at time 4 on M4 and
therefore, has no incentive to join the no-NE game on the first three machines.

The next claim shows that if the Max-3DM-3 instance does not have a perfect match-
ing, then as a consequence of our construction, the no-NE subgame G∗ is triggered, and
GT has no NE.

Claim 5.5. If a 3D-matching of size n does not exist, then the game GT has no NE.
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5 Scheduling Games with Machine-Dependent Priority Lists

Proof. Since a matching does not exist, at least one job from X ∪ Y ∪ Z, is not assigned
on its triplet machine, and thus prefers M4, where its completion time is 3. Thus, job e
prefers to be first on M2 or M3, where its completion time is 4. The long dummy jobs
guarantee that machines M1,M2 and M3 attracts exactly the 5 jobs {a, b, c, d, e} and the
no-NE game G∗ is played on the first three machines.

The proof of Theorem 5.3 then immediately follows from Claims 5.4 and 5.5.

We now introduce four classes of games for which an NE is guaranteed to exist. This
characterization is tight in a sense that our inexistence example disobeys it in a minimal
way. For classes G3 (sj = 1 for all j ∈ M) and G4 (πj = π for all j ∈ M), a simply
greedy algorithm shows that an NE always exists. We refer the readers to Correa and
Queyranne [CQ12], and Farzad et al. [FOV08], respectively, for a formal proof.

The following algorithm computes an NE for instances in the class G1, i.e., pi = 1 for
all i ∈ N . It assigns the jobs greedily, where in each step, a job is added on a machine on
which the cost of a next job is minimized.

Algorithm 2 Calculating an NE of unit jobs on related machines
1: Let `j denote the number of jobs assigned on machine j. Initially, `j = 0 for all

1 ≤ j ≤ m.
2: repeat
3: Let j? = argminj (`j + 1)/sj .
4: Assign on machine j? the first unassigned job on its priority list.
5: `j? = `j? + 1.
6: until all jobs are scheduled

Theorem 5.6. If pi = 1 for all jobs i ∈ N , then Algorithm 2 calculates an NE.

Proof. Let σ? be the schedule produced by Algorithm 2. We show that σ? is an NE. Note
that the jobs are assigned one after the other according to their completion time in σ?.
That is, if j1 is assigned before j2 then Cj1(σ

?) ≤ Cj2(σ
?). Assume by contradiction that

σ? is not an NE, and let i be a job that can migrate from its current machine to machine
j and reduce its completion time. Assume that if it migrates, then i would be assigned as
the k-th job on machine j. This contradicts the choice of the algorithm when the k-th job
on machine i is assigned, since j should have been selected. If no job is k-th on machine
i, then we get a contradiction to the assignment of i.

The following algorithm produces an NE for instances in the class G2, i.e., m = 2.

Algorithm 3 Calculating an NE schedule on two related machines
1: Assign all the jobs on M1 (fast machine) according to their order in π1.
2: For 1 ≤ k ≤ n, let the job i for which π2(i) = k perform a best-response move (migrate

to M2 if this reduces its completion time).

Theorem 5.7. If m = 2, then an NE exists and can be calculated efficiently.

Proof. Assume w.l.o.g. that s1 = 1 and s2 = s ≤ 1. Consider Algorithm 3, which initially
assigns all the jobs on the fast machine. Then, the jobs are considered according to their
order in π2, and every job gets an opportunity to migrate to M2.
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5.2 Equilibrium Existence and Computation

Let us denote by σ̂ the schedule after the first step of the algorithm (where all the jobs
are on M1), and let σ denote the schedule after the algorithm terminates. The following
two claims show that after the termination of the algorithm, no job has a unilateral
deviation that improves its cost, i.e., σ is an NE.

Claim 5.8. No job for which σi = M1 has a beneficial migration.

Proof. Assume by contradiction that job i is assigned on M1 and has a beneficial migration.
Assume that π2(i) = k. Job i was offered to perform a migration in the k-th iteration
of step 2 of the algorithm, but chose to remain on M1. The only migrations that took
place after the k-th iteration are from M1 to M2. Thus, if migrating is beneficial for i
after the algorithm completes, it should have been beneficial also during the algorithm,
contradicting its choice to remain on M1.

Claim 5.9. No job for which σi = M2 has a beneficial migration.

Proof. Assume by contradiction that the claim is false and let i be the first job on M2

(first with respect to π2) that may benefit from returning to M1. Recall that, σ̂ denotes
the schedule before job i migrates to M2—during the second step of the algorithm. Recall
that Ci(σ) is the completion time of job i on M2 and Ci(σ̂) is its completion time on M1

before its migration.
Since the jobs are activated according to π2 in the second step of the algorithm, no

jobs are added before job i on M2. Job i may be interested in returning to M1 only if
some jobs that were processed before it on M1, move to M2 after its migration. Denote by
∆ the set of these jobs, and let δ be their total processing time. Let i′ be the last job from
∆ to complete its processing in σ. Since job i′ performs its migration out of M1 after job
i, and jobs do not join M1 during step 2 of the algorithm, the completion time of i′ when
it performs the migration is at most Ci′(σ̂). The migration from M1 to M2 is beneficial
for i′, thus, Ci′(σ) < Ci′(σ̂).

The jobs in ∆ are all before job i in π1 and after job i in π2. Therefore, Ci′(σ̂) < Ci(σ̂),
and Ci′(σ) ≥ Ci(σ) + δ/s. Finally, we assume that σ is not stable and i would like to
return to M1. By returning, its completion time would be Ci(σ̂) − δ. Given that the
migration is beneficial for i, and that i is the first job who likes to return to M2, we have
that Ci(σ̂)− δ < Ci(σ).

Combining the above inequalities, we get

Ci(σ̂) < Ci(σ) + δ ≤ Ci′(σ)− (1/s− 1)δ

< Ci′(σ̂)− (1/s− 1)δ < Ci(σ̂)− (1/s− 1)δ,

which contradicts the fact that s ≤ 1 and δ ≥ 0.

By combining the Claims 5.8 and 5.9, we conclude that no player has a beneficial
deviation and σ is an NE.

Additionally, a class for which we show that an NE is guaranteed to exist is the class of
games with at most 3 jobs. Consider an instance consisting of m machines with arbitrary
priority lists, and 3 jobs a, b, and c. Let M1 be a machine with the highest speed. Assume
π1 = (a, b, c). Clearly, job a is on M1 in every NE. An NE can be computed by adding
jobs b and c greedily one after the other. If job b picks M1 then the resulting schedule is
an NE. If job b picks M2 and job c is then added before it on M2, then job b may migrate,
to get a final NE. The above characterization is tight, as there exists a game with only 4
jobs that has no NE.

73



5 Scheduling Games with Machine-Dependent Priority Lists

Example 5.10. Consider the game Ĝ with 4 jobs, N = {a, b, c, d}, and three machines,
M = {M1,M2,M3}, with π1 = (a, b, c, d), and π2 = π3 = (d, b, c, a). The speed of machine
j is sj = 1/j. The job processing times are pa = 5, pb = 4, pc =

13
3 ≈ 4.33 and pd = 9.25.

Job a is clearly on M1 in every NE. Since s2 > s3, job d is not on M3 in any NE. We
distinguish two different cases for job d.

1. Job d is on M1. Then as job b has the highest remaining priority among b and c
on all machines, job b picks the machine with the lowest completion time, which
is M2, and job c lastly is then on M1. As a result, d prefers M2 over M1 (since
18.5 < 18.58).

2. Job d is on M2. Then as job b has the highest remaining priority among b and c on
all machines, job b picks the machine with the lowest completion time, which is M1,
and job c lastly is then on M3 (since 13 < 13.33). As a result, d prefers M1 (since
18.25 < 18.5) over M2.

Thus, the game Ĝ has no pure Nash equilibrium.

A possible generalization of our setting considers unrelated machines, that is, for every
job i and machine j, pij is the processing time of job i if processed on machine j. We
conclude this section with an example demonstrating that an NE need not exist in this
environment already with only two unrelated machines.

Example 5.11. Consider a game G with 3 jobs, N = {a, b, c}, and two machines, M =
{M1,M2} with π1 = (a, b, c) and π2 = (c, a, b). The job processing times are pa1 = 5,
pa2 = 4, pb1 = 7, pb2 = 4, pc1 = 1 and pc2 = 7. We show that G has no NE. Specifically,
we show that no assignment of job c can be extended to a stable profile.

First, assume that job c is on M1. Then job a has the highest remaining priority on
the two machines and picks M2. Given that job a is on M2, job b prefers M1 over M2.
However, job c now prefers to pick M2 as its completion time there is 7, which is smaller
than 8.

Second, assume that job c is on M2. Then job a has the highest remaining priority on
the two machines and picks M1. Given that job a is on M1, job b prefers M2. However,
job c now prefers to pick M1 as its completion time there is 6, which is smaller than 7.

5.2.1 Convergence of Best-Response Dynamics

In this section we consider the question whether natural dynamics such as better-responses
are guaranteed to converge to an NE. Given a strategy profile σ, a strategy σ′

i for job i ∈ N
is a better-response if Ci(σ

′
i, σ−i) < Ci(σ).

We show that every sequence of best-response converge to an NE for every instance
G ∈ G1 ∪ G2 ∪ G3 ∪ G4.

Theorem 5.12. Let G be a game instance in G1∪G2∪G3∪G4. Any best-response sequence
in G converges to an NE.

Proof. The proof has the same structure for all four classes. Assume that best-response
dynamics (BRD) does not converge. Since the number of different profiles is finite, this
implies that the sequence of profiles contains a loop. That is, the sequence includes a
profile σ0, starting from which jobs migrate and eventually return to their strategy in σ0.
Let Γ denote the set of jobs that perform a migration during this loop. For each of the four
classes we identify a job i ∈ Γ such that once job i migrates, it cannot have an additional
beneficial move.
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Consider first the case G ∈ G1, that is, a game with unit jobs. Let Cmin be the lowest
cost of a job in Γ during the BR-cycle. Let M1 be a machine on which Cmin is achieved.
Let i be the job achieving cost Cmin on M1 with the highest priority on M1 among the
jobs in Γ. Once i achieves cost Cmin, its cost does not increase, as no job is added to
M1 before it. Job i cannot have an additional beneficial move, as this will contradict the
definition of Cmin.

We turn to consider games in G2, that is, G is played on two machines. W.l.o.g.,
assume s1 = 1 and s2 = s ≤ 1. Let i be the job in Γ with highest priority in π2. Given
that BRD loops and that i ∈ Γ, it holds that during the BR sequence i migrates from M1

to M2 and then back from M2 to M1.
We show that once i moves from M1 to M2, moving back to M1 cannot be beneficial

for it. Let σ′ denote the schedule before job i migrates from M1 to M2. Assume by
contradiction that i may benefit from returning to M1. Let L1 be the total processing
time of jobs on M1 that precede i on π1 in σ′. We have that Ci(σ

′) = L1 + pi. Let
L2 be the the total processing time of jobs in N \ Γ that precede i on π2. Since i has
the highest priority among Γ on M2, its cost while on M2 is (L2 + pi)/s, independent
of other jobs leaving and joining M2. The migration of i from M1 to M2 is beneficial,
thus, L1 + pi > (L2 + pi)/s. Migrating back to M1 may become beneficial only if the
total processing time of job that would precede it on M1 is less than L1, thus, at least
one job that precedes i on π1 migrates out of M1 when i is on M2. Let k be the last
job, for which π1(k) < π1(i) that have left M1 when i is on M2. Following k’s migration
the processing time of jobs on M1 that precede i in π1 is L′

1. Migrating back is beneficial
for i, thus, L′

i + pi < (L2 + pi)/s (additional jobs may join M1 after k leaves it, but this
only makes M1 less attractive for i). Since π2(k) > π2(i), the cost of k after its migrating
to M2 is at least (L2 + pi + pk)/s. k’s migration from M1 to M2 is beneficial, thus,
L′
1+ pk > (L2+ pi+ pk)/s. By combining the above inequalities we reach a contradiction.

Specifically, L′
i + pi < (L2 + pi)/s = (L2 + pi + pk)/s − pk/s < L′

i + pk − pk/s ≤ L′
i. We

conclude that job i cannot benefit from returning to M1 and thus, cannot be involved in
the BRD-cycle.

Assume next that G ∈ G3, that is, machines have identical speeds. Let t be the lowest
start time of a job in Γ during the BR-cycle. Let M1 be a machine on which t is achieved.
Let i be the job in Γ with highest priority on M1. Clearly, once i achieves start time, t, it
cannot have an additional beneficial move, as this will contradict its choice.

Finally, if G ∈ G4, that is, when machines share a global priority list, then once the
job in Γ with the highest priority migrates, it selects the machine with the lowest total
processing time of jobs in N \Γ that precedes it, and cannot have an additional beneficial
move later.

5.3 Equilibrium Inefficiency

Two common measures for evaluating the quality of a schedule are the makespan, given by
Cmax(σ) = maxi∈N Ci(σ), and the sum of completion times, given by

∑
i∈N Ci(σ). In this

section we analyze the equilibrium inefficiency with respect to each of the two objectives,
for each of the four classes for which an NE is guaranteed to exist.

We begin with G1, the class of instances with unit jobs. For this class we show that
allowing arbitrary priority lists does not hurt the social cost, even on machines with
different speeds.
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Theorem 5.13. PoA(G1) = PoS(G1) = 1 for both the min-makespan and the sum of
completion times objective.

Proof. Let σ be a schedule of unit jobs. The quality of σ is characterized by the vector
(n1(σ), n2(σ), . . . , nm(σ)) specifying the number of jobs on each machine. The makespan
of σ is given by maxj nj(σ)/sj , and the sum of completion times in σ is

∑
j
nj(σ)(nj(σ)+1)

2sj
.

Theorem 5.6 shows that assigning the jobs greedily, where on each step a job is added
on a machine on which the cost of the next job is minimized, yields an NE. Let σ? denote
the resulting schedule, and let C1(σ

?) ≤ C2(σ
?) ≤ . . . ≤ Cn(σ

?) be the sorted vector of
jobs’ completion times in σ?. The proof proceeds by showing that this vector corresponds
to schedules that minimize the makespan, as well as the sum of completion times. Also,
we show that every NE schedule induces the same cost vector as σ?.

First, we show that σ? achieves the minimum makespan. Assume that there exists a
schedule σ′ such that maxj nj(σ

′)/sj < maxj nj(σ
?)/sj . Let M1 = argmaxjnj(σ

?)/sj . It
must be that nM1(σ

′) < nM1(σ
?). Since

∑
j nj(σ

′) =
∑

j nj(σ
?) = n, there must be a

machine M2 such that nM2(σ
?) < nM2(σ

′). Thus, the last job on machine M1 in σ? can
benefit from migrating to machine M2, as its cost will be at most (nM2(σ

?) + 1)/sM2 ≤
nM2(σ

′)/sM2 ≤ maxj nj(σ
′)/sj < maxj nj(σ

?)/sj . This contradicts the assumption that
σ? is an NE.

Second, we analyze the sum of completion times objective. For a schedule σ, the sum of
completion times is

∑
j(1+ . . .+nj)/sj . Using similar arguments, if σ? is not optimal with

respect to the sum of completion times, there exists a beneficial migration from a machine
whose contribution to the sum is maximal, to a machine with a lower contribution.

Now, let σ be an NE schedule with sorted cost vector and let C1(σ) ≤ C2(σ) ≤ . . . ≤
Cn(σ), and assume by contradiction that it has a different cost vector than σ∗. Let i be
the minimal index such that Ci(σ

?) 6= Ci(σ). Since σ and σ? agree on the costs of the
first i− 1 jobs, and since σ? assigns the i-th job on a minimal-cost machine, it holds that
Ci(σ

?) < Ci(σ). We get a contradiction to the stability of σ, since some job can reduce
its cost to Ci(σ

?). The first and the second step concludes the proof of theorem.

In Theorem 5.7 it is shown that an NE exists for any instance on two related machines.
We now analyze the equilibrium inefficiency of this class. Let Gs2 denote the class of games
played on two machines with speeds s1 = 1 and s2 = s ≤ 1.

Theorem 5.14. For the min-makespan objective, PoA(Gs2) =PoS(Gs2) = s+1 if s ≤
√
5−1
2 ,

and PoA(Gs2) =PoS(Gs2) = s+2
s+1 if s >

√
5−1
2 .

Proof. Let G ∈ Gs2. Let W =
∑

i pi be the total processing time of all jobs. Assume first
that s ≤

√
5−1
2 . For the minimum makespan objective, OPT (G) ≥ W/(1 + s). Also, for

any NE σ, we have that Cmax(σ) ≤ W , since every job can migrate to be last on the fast
machine and have completion time at most W . Thus, PoA ≤ s+ 1.

Assume next that s >
√
5−1
2 . Let job a be a last job to complete in a worst Nash

equilibrium σ, p1 be the total processing time of all jobs different from a on machine 1,
and p2 be the total processing time of all jobs different from a on machine 2 in σ. Then
since σ is a Nash equilibrium, Cmax(σ) ≤ p1 + pa and Cmax(σ) ≤ (p2 + pa)/s. Combining
these two inequalities yields

Cmax(σ) ≤
W + pa
1 + s

≤ s+ 2

s+ 1
·OPT (G),

where for the inequality we use that OPT (G) ≥ W/(1 + s) and OPT (G) ≥ pa, and thus
PoA≤ s+2

s+1 .
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For the PoS lower bound, assume first that s < 2√
5+1

. Consider an instance consisting
of two jobs, a and b, where pa = 1 and pb = 1/s. The priority lists are π1 = π2 = (a, b).
The unique NE is that both jobs are on the fast machine. Ca(σ) = 1, Cb(σ) = 1+1/s. For
every s <

√
5−1
2 , it holds that 1 + 1/s < 1/s2, therefore, job b does not have a beneficial

migration. An optimal schedule assigns job a on the slow machine, and both jobs complete
at time 1/s. The corresponding PoS is s + 1. For s =

√
5−1
2 , by taking pb = 1/s + ε, the

PoS approaches (s+ 2)/(s+ 1) as ε→ 0.
Assume now that s >

√
5−1
2 . Consider an instance consisting of three jobs, x, y and z,

where px = 1, py = s2 + s − 1, and pz = s + 1. The priority lists are π1 = π2 = (x, y, z).
Note that py ≥ 0 for every s ≥

√
5−1
2 . In all NE, job x is on the fast machine, and job

y is on the slow machine. Indeed, job y prefers being alone on the slow machine since
s2 + s > s2+s−1

s . Job z is indifferent between joining x on the fast machine or y on the
slow machine, since 1 + pz = (py + pz)/s = s + 2. In an optimal schedule, job z is alone
on the fast machine, and jobs x and y are on the slow machine. Both machines have the
same completion time s+ 1. The PoS is s+2

s+1 .

Theorem 5.15. For the sum of completion times objective, PoA(Gs2) = Θ(n) and PoS(Gs2) =
Θ(n) for all s ≤ 1.

Proof. For the upper bound, note that OPT (G) ≥
∑

i pi and in every NE schedule σ,
Ci(σ) ≤

∑
i pi. This implies PoA = Θ(n). For the PoS lower bound, consider an instance

consisting of a set Z of n − 2 jobs with processing time ε, and two jobs, a and b, where
pa = 1 and pb = s. The priority lists are π1 = π2 = (a, b, Z). Note that pa + pb > pb/s,
therefore, in every NE, job a is first on M1 and job b is first on M2. Thus, every ε-job
has completion time at least 1. The sum of completion times is at least n + O(n2)ε. An
optimal schedule assigns a and b on M1 and all the ε-jobs on M2. The sum of completion
times is at most 3 +O(n2)ε/s. For small enough ε, we get that the PoS is Θ(n).

We turn to analyze the equilibrium inefficiency of the class G3, consisting of games
played on identical-speed machines, having machine-dependent priority lists. The proof
of the following theorem is based on the observation that every NE schedule is a possible
outcome of Graham’s List-scheduling (LS) algorithm [Gra66].

Theorem 5.16. For the min-makespan objective, PoA(G3) =PoS (G3) = 2− 1
m .

Proof. Let σ be an NE schedule. We claim that σ is a possible outcome of Graham’s
List-scheduling algorithm [Gra66]. Indeed, assume that List-scheduling is performed and
the jobs are considered according to their start time in σ. Every job selects its machine in
σ, as otherwise, we get a contradiction to the stability of σ. Since List-scheduling provides
a 2− 1

m approximation to the makespan, we get the upper bound of the PoA.
For the lower bound, given m > 1, the following is an instance for which PoS= 2− 1

m .
The instance consists of a single job with processing time m and m(m−1) unit jobs. In all
priority lists, the heavy job is last and the unit jobs are prioritized arbitrarily. It is easy
to verify that in every NE profile the unit jobs are partitioned in a balanced way among
the machines, and the heavy job is assigned as last on one of the machines. Thus, the
completion time of the heavy job is 2m − 1. On the other hand, an optimal assignment
assign the heavy job on a dedicated machine, and partition the unit job in a balanced way
among the remaining m− 1 machines. In this profile, all the machines have load m. The
corresponding PoS is 2m−1

m = 2− 1
m .

Theorem 5.17. For the sum of completion times objective, PoA(G3) ≤ n−1
m + 1, and for

every ε > 0, PoS(G3) ≥ n
m − ε.
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Proof. For the upper bound of the PoA, note that, independent of the number of machines,
the sum of completion times is at least

∑
i pi. Also, for every job a, if a is not assigned on

any machine, then there exists a machine with load at most
∑

i 6=a pi
m , therefore, in every

NE profile, the completion time of job a is at most
∑

i 6=a pi
m + pa. Summing this equation

for all the jobs, we get that the sum of completion times of any NE is at most

n
∑

i pi −
∑

i pi
m

+
∑
i

pi =
∑
i

pi
n− 1

m
+ 1.

We conclude that the PoA is at most n−1
m + 1.

For the PoS lower bound, given m, let ε → 0, and consider an instance with n = km
jobs, out of which, m jobs j1, . . . , jm have length 1 and the other (k−1)m jobs have length
ε. Assume that πi gives the highest priority to ji then to all the ε-jobs, and then to the
other m− 1 unit jobs.

In every NE, machine i processes first the unit-job ji, followed by k − 1 ε-jobs. Thus,
every job has completion time at least 1. The sum of completion times is n + O(mk2)ε.
On the other hand, an optimal solution assigns on machine i a set of k− 1 ε-jobs followed
by one unit-job jk for k 6= i, resulting in a sum of completion times of m+O(mk2)ε. The
PoS tends to n

m as ε decreases.

The last class of instances for which an NE is guaranteed to exist includes games with a
global priority list, and is denoted by G4. It is easy to verify that for this class, the only NE
profiles are those produced by List-Scheduling algorithm, where the jobs are considered
according to their order in the priority list. Different NE may be produced by different
tie-breaking rules. Thus, the equilibrium inefficiency is identical to the approximation
ratio of LS [CS80]. Since the analysis of LS is tight, this is also the PoS.

Theorem 5.18. For the min-makespan objective, PoS(G4) =PoA(G4) = Θ(m).

For the sum of completion times objective, we note that the proof of Theorem 5.15 for
two related machines uses a global priority list. The analysis of the PoA is independent
of the number and speeds of machines.

Theorem 5.19. For the sum of completion times objective, PoA(G4) = Θ(n) and PoS(G4) =
Θ(n).

5.4 Hardness of Computing an NE with Low Social Cost

Correa and Queyranne [CQ12] showed that if all the machines have the same speeds, but
arbitrary priority lists, then an NE is guaranteed to exist, and can be calculated by a
simple greedy algorithm.

In this section we discuss the complexity of computing a good NE in this setting. We
refer to both objectives of minimum makespan and minimum sum of completion times.
For both objectives, our results are negative. Specifically, not only that it is NP-hard to
compute the best NE, but it is also hard to approximate it, and to compute an NE whose
social cost is better than the one guaranteed by the PoA bound.

Starting with the minimum makespan, in Theorem 5.16, we have shown that the PoA
for this objective is at most 2− 1

m . We show that we cannot hope for a better algorithm than
the simple greedy algorithm. More formally, we prove that it is NP-hard to approximate
the best NE within a factor of 2− 1

m − ε for all ε > 0.
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Theorem 5.20. If for all machines sj = 1, then it is NP-hard to approximate the best
NE w.r.t. the makespan objective within a factor of 2− 1

m − ε for all ε > 0.

Proof. We show that for every ε > 0, there is an instance on m identical machines for
which it is NP-hard to decide whether the game has an NE profile with makespan at most
m+ 3ε or at least 2m− 1.

The hardness proof is by a reduction from Maximum Bounded 3-Dimensional
Matching (Max-3DM-3). Recall that the input of the Max-3DM-3 problem is a set
of triplets T ⊆ X × Y × Z, where |T | ≥ n and |X| = |Y | = |Z| = n, and the number of
occurrences of every element of X ∪Y ∪Z in T is at most 3. The goal is to decide whether
T has a 3-dimensional matching of size n.

Given an instance of Max-3DM-3 and ε > 0, consider the following game on m =
|T |+2 machines, M1,M2, . . . ,M|T |+2. The set of jobs includes job a with processing time
m, job b with processing time m− 1, a set D of |T | − n dummy jobs with processing time
3ε, two dummy jobs d1, d2 with processing time 2ε, a set U of (m− 1)2 unit jobs, and 3n
jobs with processing time ε—one for each element in X ∪ Y ∪ Z.

We turn to describe the priority lists. We remark that when the list includes a set,
it means that the set elements appear in arbitrary order. The symbol φ means that the
remaining jobs appear in arbitrary order. For the first machine, π1 = (d1, b, a, U, φ). For
the second machine, π2 = (d2, X, Y, Z, b, U, a, d1). The remaining m − 2 machines are
triplet-machines. For every t = (xi, yj , zk) ∈ T , the priority list of the triplet-machine
corresponding to t is (D,xi, yj , zk, U, φ).

The heart of the reduction lies in determining the priority lists. The idea is that if a
3D-matching exists, then job b would not prefer M1 over M2. This will enable job a to be
assigned early on M1. However, if a 3D-matching does not exist, then some job originated
from the elements in X ∪ Y ∪Z will precede job b on M2, and b’s best-response would be
on M1. The jobs in U have higher priority than job a on all the machines except for M1,
thus, unless job a is on M1, it is assigned after |U |/(m− 1) unit-jobs from U , inducing a
schedule with high makespan.

Observe that in any NE, the two dummy jobs with processing time 2ε are assigned as
the first jobs on M1 and M2. Also, the dummy jobs in D have the highest priority on the
triplet-machines, thus, in every NE, there are |D| = |T | −n triplet-machines on which the
first job is from D.

Figure 5.2 provides an example for m = 5.
In order to complete the gap reduction, we need the following two claims for the upper

and lower threshold. First, we show that if a perfect matching exists, then this guarantees
an NE in the associated scheduling problem instance with makespan at most m+ 3ε.

Claim 5.21. If a 3D-matching of size n exists, then there is an NE with makespan m+3ε.

Proof. Let T ′ be a matching of size n. Assign the jobs of X∪Y ∪Z on the triplet-machines
corresponding to T ′ and the jobs of D on the remaining triplet-machines. Also, assign
d1 and d2 on M1 and M2 respectively. M1 and M2 now have load 2ε while the triplet
machines have load 3ε. Next, assign job a on M1 and job b on M2. Finally, add the
unit-jobs as balanced as possible: m jobs on each triplet-machine and a single job after
job b on M2. It is easy to verify that the resulting assignment is an NE. Its makespan is
m+ 3ε.

The next claim proves the other direction of the reduction. That is, any NE with
makespan less than 2m− 1 induces a perfect matching.
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Figure 5.2: Let n = 2 and T = {(x1, y1, z1), (x2, y2, z2), (x1, y2, z2)}. (a) an NE given the
matching T ′ = {(x1, y1, z1), (x2, y2, z2)}. The makespan is 5+3ε. (b) an NE if a matching
of size 2 is not found. Job z2 is stable on M2, thus, job b prefers M1 over M2. The
makespan is 9 + 2ε.

Claim 5.22. If there is an NE with makespan less than 2m − 1, then there exists a
3D-matching of size n.

Proof. Let σ be an NE whose makespan is less than 2m−1. Since pa = m and pb = m−1,
this implies that a is not assigned after b on M1 or on M2. Also, since jobs of U have
higher priority than a on all the machines except for M1, it holds that a is not assigned
after m− 1 unit-jobs. Thus, it must be that job a is processed on M1 and job b is not on
M1. Job b does not prefer M1 over M2, only if it starts its processing right after job d2
on M2. Since the jobs of X ∪ Y ∪ Z have higher priority than job b on M2, they are all
assigned on triplet-machines and starts their processing after jobs of total processing time
at most 2ε. Thus, every triplet machine processes at most three jobs of X ∪ Y ∪ Z—the
jobs corresponding to the triplet, whose priority is higher than the priority of the unit-
jobs of U . Moreover, since the jobs of D have higher priority on the triplet-machines,
there are |T | −n triplet-machines on which the jobs of D are first and exactly n machines
each processing exactly the three jobs corresponding to the machine’s triplet. Thus, the
assignment of the jobs from X ∪ Y ∪Z on the triplet-machines induces a matching of size
n.

Claims 5.21 and 5.22 conclude the proof of the theorem.

We turn to analyze the complexity of computing the best NE with respect to the
sum of completion times. Traditionally, this objective is simpler than minimizing the
makespan, as the problem can be solved efficiently by SPT-rule if there are no priorities.
We show that even in the simple case of identical machines, in which an NE is guaranteed
to exists [CQ12], it is NP-hard to approximate the solution’s value.

Theorem 5.23. If for all machines sj = 1, then for any r > 1, it is NP-hard to approxi-
mate the best NE w.r.t. the sum of completion times within factor r.

Proof. Given m, r, let k be a large integer such that m+k
m+1 > r. We show that for every

r > 1, there is an instance on m identical machines for which it is NP-hard to decide
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whether the game has an NE profile with sum of completion times at most m+1 or more
than m+ k.

The hardness proof is again by a reduction from Maximum Bounded 3-Dimensional
Matching (Max-3DM-3). Given an instance of Max-3DM-3 and r > 1, consider the
following game on m = |T | + 2 machines, M1,M2, . . . ,M|T |+2. Recall that k satisfies
m+k
m+1 > r. Let ε > 0 be a small constant, such that (k2 + 3k + 6m)ε < 1. The set of jobs
includes job a with processing time ε, job b with processing time 1, a set D of |T | − n
dummy jobs with processing time 3ε, two dummy jobs d1, d2 with processing time 2ε, a set
U of m− 1 unit jobs, 3n jobs with processing time ε—one for each element in X ∪ Y ∪Z,
and a set K of k jobs with processing time ε. Note that there are exactly m unit jobs (the
job b and the jobs of U), while all other jobs have O(ε) processing time.

We turn to describe the priority lists. Note that, when the list includes a set, it
means that the set elements appear in arbitrary order. The symbol φ means that the
remaining jobs appear in arbitrary order. For the first machine, π1 = (d1, b, a,K,U, φ).
For the second machine, π2 = (d2, X, Y, Z, b, U, a,K, φ). The remaining m − 2 machines
are triplet-machines. For every t = (xi, yj , zk) ∈ T , the priority list of the triplet-machine
corresponding to t is (D,xi, yj , zk, a, U,K, φ).

The heart of the reduction lies in determining the priority lists. The idea is that if a
3D-matching exists, then job b would not prefer M1 over M2. This will enable job a and
all the tiny jobs of K to be assigned early on M1 each having completion time at most
(k + 3)ε. However, if a 3D-matching does not exist, then some job originated from the
elements in X ∪ Y ∪ Z will precede job b on M2, and b’s best-response would be on M1.
The jobs in U have higher priority than a and K on M2, thus, on every machine there
would be at least one job of length 1 that precedes the jobs of K, implying that the sum
of completion times will be more than m+ k.

Observe that in any NE, the two dummy jobs with processing time 2ε are assigned as
the first jobs on M1 and M2. Also, the dummy jobs in D have the highest priority on the
triplet-machines, thus, in every NE, there are |D| = |T | −n triplet-machines on which the
first job is from D.

Figure 5.3 provides an example for m = 5.
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Figure 5.3: Let n = 2 and T = {(x1, y1, z1), (x2, y2, z2), (x1, y2, z2)}. (a) an NE given the
matching T ′ = {(x1, y1, z1), (x2, y2, z2)}. The jobs of K start their processing at time 3ε.
(b) an NE if a matching of size 2 does not exist. Job z2 selects M2, thus, job b prefers M1

over M2. The jobs of K start their processing at time at least 1 + 2ε.

The following claims prove the lower and the upper threshold in the gap instance of
the scheduling problem.
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Claim 5.24. If a 3D-matching of size n exists, then there is an NE with sum of completion
time at most m+ 1.

Proof. Let T ′ be a matching of size n. Assign the jobs of X∪Y ∪Z on the triplet-machines
corresponding to T ′ and the jobs of D on the remaining triplet-machines. Also, assign
d1 and d2 on M1 and M2 respectively. M1 and M2 now have load 2ε while the triplet
machines have load 3ε. Next, assign job a and the jobs of K on M1, and job b on M2.
Finally, add one unit-job on each triplet-machine and on M1. It is easy to verify that
the resulting assignment is an NE. The jobs of K are not delayed by unit jobs, so each
of them completes at time at most (k + 3)ε. The other jobs with processing time O(ε)
contributes at most 6ε to the sum of completion times on every machine, and every unit
job completes at time 1 + O(ε). Thus, the sum of completion times is m+ f(ε), where ε
was chosen such that f(ε) < 1.

Claim 5.25. If there is an NE with sum of completion times less than m+ k, then there
exists a 3D-matching of size n.

Proof. Let σ be an NE whose sum of completion times is less than m + k. There are m
unit jobs, and in any NE, each is processed on a different machine, as otherwise, some
machine has load f(ε), and the second unit job on a machine has a beneficial migration.
In order to have sum of completion times less than m+ k, at least one job from K is not
assigned after a unit job. The only machine on which jobs from K may precede a unit
job is M1, where jobs of K may precede a job from U . This is possible only if job b is
not processed on M1. Job b does not prefer M1 over M2, only if it starts its processing
right after job d2 on M2. Since the jobs of X ∪ Y ∪ Z have higher priority than job b
on M2, they are all assigned on triplet-machines and starts their processing after jobs of
total processing time at most 2ε. Thus, every triplet machine processes at most three jobs
of X ∪ Y ∪ Z—the jobs corresponding to the triplet, whose priority is higher than the
priority of the unit-jobs of U . Moreover, since the jobs of D have higher priority on the
triplet-machines, there are |T | − n triplet-machines on which the jobs of D are first, and
exactly n machines each processing exactly the three jobs corresponding to the machine’s
triplet. Thus, the assignment of the jobs from X ∪ Y ∪Z on the triplet-machines induces
a matching of size n.

Claims 5.24 and 5.25 conclude the proof of theorem.

Note that, given m, r, the game built in the reduction has n < (r+3)m jobs. That is,
r > n

m − 3. Also, as shown in Theorem 5.17, for the sum of completion times objective,
PoA(G3) ≤ n−1

m +1. Thus, the above analysis shows that up to a small additive constant,
it is NP-hard to compute an NE that approximates the optimal sum of completion time
better than the PoA.
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Chapter 6

Weighted Congestion Games with
Resource-Dependent Priority Lists

In the last chapter we studied scheduling games with machine-dependent priority lists and
analyzed the effect of fixed order scheduling on the corresponding job-scheduling game. We
analyzed algorithmic aspects such as existence of pure Nash equilibria, the complexity of
identifying whether an NE profile exists, the complexity of computing an NE, and bounded
the equilibrium inefficiency in these games. We now study a natural generalization of the
selfish scheduling game by allowing for arbitrary sized strategy sets to the users in the
game. We believe that our extension could succinctly model and allow for analyzing many
of the socio-economic problems arising in areas such as transportation networks.

6.1 Introduction
The recent past saw a rising demand on the road transportation networks across the world.
The steady increase in the production of motor vehicles due to the continuous demand for
logistics and mobility, necessitated well planned transportation networks. However, the
non-cooperative behavior among the users of the network resulted in sub-optimal traffic
flows and avoidable congestion. This selfish behavior led the scientific community to study
the problem from a game theoretic perspective. In particular, to represent the problem as a
strategic resource allocation game. Easley and Kleinberg [EK12] model the traffic network
as a congestion game [Ros73a]. Although, congestion games remain to be a common and
well studied model for traffic networks, it has no element of time dependency and assumes
that all users on a resource experience the same latency. In a road network, a vehicle can
only be delayed by the vehicles ahead of it. Farzad et al. [FOV08] introduced a simple
modification that allows to incorporate some element of time dependency. They proposed
a static model in which resources have priorities over the users, for example depending on
when a player arrives at that resource, so as to model that a user will only delay other
users on the resource that have a lower priority.

In Chapter 5, we studied selfish scheduling with machine-dependent priority list. We
now extend this model to allow for non-singleton strategy space. Recall that we introduced
weighted congestion games with resource-dependent priority lists in Chapter 1 as a natural
generalization to scheduling games with machine-dependent priority lists. Our extended
model is primarily motivated by its application to traffic networks. We assume that each
resource has a fixed priority list and then provide a detailed analysis in terms of the
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6 Weighted Congestion Games with Resource-Dependent Priority Lists

existence and inefficiency of NE. Let us begin by recollecting the model definition and
preliminaries. We remark that the readers may choose to skip the following subsection.

6.1.1 The Model

An instance of a weighted congestion game with resource-dependent priority lists in which
the strategy space of a player consists of subsets of resources is given by a tuple

G = (N , E, (Si)i∈N , (wi)i∈N , (ce)e∈E , (πe)e∈E) ,

where N := {1, . . . , N} is a finite set of players, E is a finite set of resources, Si ⊆ 2E is
the set of feasible strategies for player i ∈ N , wi ∈ R≥0 is the weight of player i ∈ N ,
ce ∈ R≥0 is the cost coefficient of resource e ∈ E, and πe : N 7→ {1, . . . , N} is the priority
list of resource E that defines its preference over the players using it.

Observe that scheduling games described in Chapter 5 are symmetric singleton con-
gestion games in which the strategy space of each player is the set of all resources. For
the general setting, the players’ costs are defined as follows.

Given a strategy profile s = (si)i∈N ∈ S := S1 × . . .× SN , for every player i ∈ N and
resource e ∈ si, let us denote by

Bie(s) = {i′ ∈ N | e ∈ si′ ∧ πe(i
′) ≤ πe(i)}

the set of players on resource e that delay player i ∈ N in the strategy profile s and define
wi
e(s) =

∑
i′∈Bie(s)

wi′ .

The cost of a player i ∈ N is given by

Ci(s) = wi ·
∑
e∈si

ce · wi
e(s).

Notice that here we assume that players’ costs are multiplied by their weight, whereas
we did not make such assumption for scheduling games in Chapter 5. However, we remark
that this has no implications for the existence of pure Nash equilibria, but only affects
the efficiency results. Each player chooses a strategy so as to minimize their cost. A
strategy profile s ∈ S is a pure Nash equilibrium if for all i ∈ N and all s′i ∈ Si, we have
Ci(s) ≤ Ci(s

′
i, s−i). For a strategy profile s, let C(s) denote the social cost of s and is

given by
C(s) =

∑
i∈N

Ci(s).

The inefficiency of equilibria arising due to the non-cooperative behavior of the players
is measured according to the price of anarchy (PoA) [KP99]. Recall that the PoA is the
worst-case inefficiency of a pure Nash equilibrium w.r.t. the social optimum.

6.1.2 Our Contribution

We generalize the model of scheduling games with machine dependent priority list to allow
for arbitrary strategy sets. In Section 6.2 we show that in general, even with unweighted
players, a pure Nash equilibrium need not exist by making use of the famous Condorcet
paradox [MdC85]. We then use this example to prove that the question whether a pure
Nash equilibrium exists is NP-hard, even with unit weight players. Additionally, we show
that it is NP-hard to determine if a (3/2−ε)-approximate pure Nash equilibrium exists for
any ε > 0. On the positive side, in Section 6.2.1 we show that matroid congestion games
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with unit weight players always possess a pure Nash equilibrium. Finally in Section 6.3
we study the price of anarchy with respect to the sum of weighted costs and show that
the upper bound of 4 proven by Cole et al. [CCG+15] for unrelated machine scheduling
with Smith’s rule also extends to congestion games with resource-dependent priority lists.
This ratio is smaller than the price of anarchy of the atomic game with priorities defined
by Farzad et al. [FOV08]. We then extend our analysis to games with polynomial cost
functions of some fixed degree d.

6.1.3 Related Work

Rosenthal [Ros73a] proved that congestion games are potential games and thus always
exhibit a pure Nash equilibrium. Awerbuch et al. [AAE13] and Christodoulou and Kout-
soupias [CK05b] proved a tight bound of 5/2 for affine congestion games, and 2.618 for
weighted affine congestion games. Fotakis et al. [FKS05] showed that weighted congestion
games need not have a pure Nash equilibrium, unless we restrict cost functions to be lin-
ear. Ackermann et al. [ARV09] proved that as long as strategy spaces are restricted to be
matroidal, then a Nash equilibrium always exists.

Ackermann et al. [AGM+08] were the first to study a congestion game with priorities.
They proposed a model in which users with higher priority on a resource displace users
with lower priorities such that the latter incur infinite cost. Closest to our model is
Farzad et al. [FOV08], who studied priority based selfish routing for non-atomic and
atomic users and analyzed the inefficiency of equilibria. Recently, Biló and Vinci [BV20]
studied a congestion game with a global priority classes that can contain multiple jobs
and characterize the price of anarchy as a function of the number of classes. Gourvès
et al. [GMMT15] studied capacitated congestion games to characterize the existence of
pure Nash equilibria and computation of an equilibrium when they exist. Piliouras et
al. [PNS16] assumed that the priority lists are unknown to the players a priori and consider
different risk attitudes towards having a uniform at random ordering.

In the following sections we investigate various algorithmic aspects of our generaliza-
tion. First, we show that a Nash equilibrium need not exist and in fact, the question
whether a Nash equilibrium exists is NP-complete, even for unit weight players. Recall
that in unit weight singleton games an NE is guaranteed to exist [FKK+09]. Second, we
prove that an NE is guaranteed to exist if we consider matroid congestion games with
unweighted players. Third, we show a tight bound on the price of anarchy for the sum of
weighted costs in case of affine cost functions. Finally, we bound the PoA for games with
non-decreasing cost functions that are polynomials of maximum degree d.

6.2 Equilibrium Existence
In this subsection, we restrict ourselves to congestion games with priority lists and unit
weights, i.e., wi = 1 for all i ∈ N . We first provide an example that shows that a Nash
equilibrium need not exist. Farzad et al. [FOV08] give a different example with two players
for which an NE need not exist. Our example describes a symmetric game.

Example 6.1. The game G? contains 3 players, wi = 1 for all i ∈ N , and 6 resources.
Each players i ∈ N has two pure strategies: {e1, e2, e3} and {e4, e5, e6}. The delays are
equal to 1 for all resources, and the priority lists are πj(i) = i + j − 1 (modulo 3) for
all j ∈ E and i ∈ N . Observe that there is no Nash equilibrium if all three players
choose the same three resources. Also, due to the Condorcet paradox [MdC85], there is
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6 Weighted Congestion Games with Resource-Dependent Priority Lists

no Nash equilibrium in which two players choose one subset of resources and the other
player chooses the other. Specifically, one of these two players has cost 5 and the other
has cost 4. By deviating to the other triplet of resources, the player whose cost is 5 can
reduce its cost to 4.

A natural question is to decide whether a game instance with unit weight players has an
NE profile. Our next result shows that this is an NP-hard problem. The hardness proof
is different from the one in Theorem 5.3, since this proof considers unit weight players
and multiple-resources strategies, while that proof is for weighted players and singleton
strategies.

Theorem 6.2. Given an instance of a congestion game with priority lists, it is NP-
complete to decide whether the game has an NE profile. This is valid also for unit weight
players.

Proof. Given a profile s, verifying that it is a NE can be done in polynomial time by
considering the players one after the other and checking for each player, whether its current
strategy is its best-response to the other players’ strategies in s.

The hardness proof is by a reduction from 4-exact cover. The input to the 4-exact
cover problem for a given n, is a set U = {a1, . . . , a4n} of elements, and a set Q of subsets
of U . Every element in Q is a set of 4 elements from U . The goal is to decide whether there
exists a subset Q′ ⊆ Q, such that |Q′| = n, and every element in U appears exactly once in
Q′. For example, let U = {a, b, c, d, e, f, g, h}, and Q = {{a, b, c, d}, {c, d, e, f}, {e, f, g, h}}.
Then the answer is positive for Q′ = {{a, b, c, d}, {e, f, g, h}}. 3-exact cover is one of Karp’s
21 NP-complete problems [Kar72]. By adding dummy elements to an instance of 3-exact
cover, it is easy to extend the hardness to cover by 4-sets.

Recall that G? is our no-NE game described above. The idea is to construct a game
consisting of n copies of G?, and additional resources and strategies. Recall that G? is a
3-player game. In the game we construct, if a matching of size n exists, then no copy of
G? attracts three players, while if the maximum matching has size less than n, then at
least one copy of G? attracts three players and no NE exists.

Given an instance of 4-exact cover, we construct a game with 3n players and 10n re-
sources as follows. First, for every element in U we have one resource. In addition, for every
1 ≤ k ≤ n, we have a copy of the 6 resources of G?, specifically, E?

k = {ek1, ek2, ek3, ek4, ek5, ek6}.
All the resources have the same cost function cj = 1.

For every 1 ≤ k ≤ n, we have three players. The first is denoted P k
1 , and its strategy

space consists of all sets of four resources from U that form an element in Q, and the
two strategies of player 1 in G?, played over the resources E?

k , that is, {ek1, ek2, ek3} and
{ek4, ek5, ek6}. The two additional players are denoted P 2

k and P 3
k , and their strategy space

consists of the two strategies of Players 2 and 3 in G?, played over the resources Ek, that
is, {ek1, ek2, ek3} and {ek4, ek5, ek6}.

We turn to specify the resources’ priority lists: The resources of E?
k have the same pri-

ority lists as in G?, where the players P 1
k , P

2
k , P

3
k correspond to players 1, 2, 3 respectively.

The priority lists of the resources in U are arbitrary.
We show that G has an NE if and only if an exact cover of size n exists. First, if an

exact cover Q′ of size n exists, then the following profile is an NE: For every 1 ≤ k ≤ n,
player P k

1 selects the four resources corresponding to subset k in Q′, player P k
2 selects

{ek1, ek2, ek3} and player P k
3 selects {ek4, ek5, ek6}. The cost of every player P k

1 is 4 - since it
is the only user of four resources. The cost of every player P k

2 or P k
3 is 3 - since each of

them is the only user of three resources. It is easy to verify that this profile is an NE.
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Assume that no exact cover of size n exists. Thus, in every profile, at least one
resource from U is used by at least two players P k1

1 and P k2
1 . The cost of one of these

players, say P k1
1 , is therefore at least 5, and deviating to a strategy in G?

k1
is beneficial for

it. Specifically, by deviating to {ek11 , ek13 , ek13 }, its cost reduces to 4. Thus, if no matching
of size n exists, then for at least one 1 ≤ k ≤ n, the player P k

1 is trapped in our no-NE
game G?

k and the whole game has no NE.

Inapproximability

We now extend the construction in Farzad et al. [FOV08] to show that it is NP-complete
to decide whether the game has a (3/2 − ε)-approximate pure Nash equilibrium for any
ε > 0.

Example 6.3. The game G? contains 2 unit weight players, and 4 resources {e1, . . . , e4}.
Player 1 has two pure strategies: {e1, e2} and {e3, e4}. Player 2 has two pure strategies:
{e1, e4} and {e2, e3}. The cost coefficient is equal to 8/9 for all resources, and the priority
lists are: e1 = e3 := 2 � 1 and e2 = e4 := 1 � 2. Observe that there is no exact pure Nash
equilibrium in this game. Since, one of these two players has cost 24/9 and the other has
cost 16/9. By deviating to the other pair of resources, the player whose cost is 24/9 can
reduce its cost to 16/9. Therefore, the game also does not have a (3/2 − ε)-approximate
PNE for any ε > 0.

Theorem 6.4. Given an instance of a congestion game with priority lists, it is NP-
complete to decide whether the game has a (3/2 − ε)-approximate pure Nash equilibrium
for any ε > 0.

Proof. Given a strategy profile, one can verify in polynomial time if it is an approximate
pure Nash equilibrium. The hardness proof is by a reduction from 3-exact cover. The
input to the 3-exact cover problem for a given n, is a set U = {a1, . . . , a3n} of elements,
and a set Q of subsets of U . Every element in Q is a set of 3 elements from U . The goal
is to decide whether there exists a subset Q′ ⊆ Q, such that |Q′| = n, and every element
in U appears exactly once in Q′.

Given an instance of 3-exact cover, we construct a game with 2n players and 7n
resources as follows. First, for every element in U we have one resource with cost coefficient
cj = 2.01/3. In addition, for every 1 ≤ k ≤ n, we have a copy of the 4 resources of G?

(Example 6.3), i.e, E?
k = {ek1, ek2, ek3, ek4}. All the resources in E?

k have the same cost
coefficient cj = 8/9.

For every 1 ≤ k ≤ n, we have two players. The first is denoted P k
1 , and its strategy

space consists of all sets of three resources from U that form an element in Q, and the two
strategies of player 1 in G?, played over the resources E?

k , that is, {ek1, ek2} and {ek3, ek4}.
The second players are denoted P k

2 , and their strategy space consists of the two strategies
of Players 2 in G?, played over the resources Ek, i.e, {ek1, ek4} and {ek2, ek3}. The resources
of E?

k have the same priority lists as in G?, where the players P k
1 , P

k
2 correspond to players

1, 2 respectively.
The priority lists of the resources in U are arbitrary.
We show that G has an NE if and only if an exact cover of size n exists. First, if an exact

cover Q′ of size n exists, then the following profile is an NE: For every 1 ≤ k ≤ n, player P k
1

selects the three resources corresponding to subset k in Q′. Player P k
2 selects arbitrarily

picks one of their strategy. It is easy to verify that this profile is a 3/2-approximate NE.
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Assume that no exact cover of size n exists. Thus, in every profile, at least one resource
from U is used by at least two players P k1

1 and P k2
1 . The cost of one of these players, say

P k1
1 , is therefore at least 8.04/3, and deviating to a strategy in G?

k1
can improve by a

factor greater than 3/2. Thus, if no matching of size n exists, then for at least one
1 ≤ k ≤ n, the player P k

1 is trapped in our no-NE game G?
k and the whole game has no

(3/2− ε)-approximate NE.

6.2.1 Matroid Congestion Games

If we restrict the class of allowable strategy sets to be bases of a matroid, we obtain some
positive results. A matroid is a tuple M = (E, I), where E is a finite set and I ⊆ 2E is a
non-empty family of subsets of E such that:

1. ∅ ∈ I,

2. if X ∈ I and Y ⊆ X, then Y ∈ I, and

3. if X,Y ∈ I with |X| > |Y |, then there exists an e ∈ X \ Y such that Y ∪ {e} ∈ I.

We call a set X ∈ I an independent set. An inclusion-wise maximal independent set of I is
called a basis of matroid M . It is well-known that all bases have the same cardinality. We
denote this cardinality by the rank rk(M). We refer the readers to Korte and Vygen [KV12]
for a detailed discussion on matroids.

Matroid congestion games were introduced in Ackermann et al. [ARV08]. A matroid
congestion game with priority lists is a congestion game with priority lists denoted by a
tuple

G = (N , E, (Si)i∈N , (wi)i∈N , (ce)e∈E , (πe)e∈E) ,

if for all i ∈ N , Mi = (E, Ii) with Ii = {I ⊆ Σ | Σ ∈ Si} is a matroid and Si is the set of
bases of Mi.

Theorem 6.5. If wi = 1 for all i ∈ N in a matroid congestion game, then an NE exists
and can be calculated efficiently.

Proof. The following algorithm finds a pure Nash equilibrium. For all resources e ∈ E,
set a counter ne = 1, and for all players i ∈ N , assume their strategy set is empty. We
recursively add a resource to a strategy set of a player. Find a resource e ∈ E with
ce ·ne ≤ ce′ ·ne′ for all e′ ∈ E. Consider player i ∈ N with the highest priority on resource
e. If resource e is feasible for player i, add e to the strategy set of player i, delete i from
the priority list of e and increase the counter of resource e by 1. If resource e is not feasible
for player i, delete i from the priority list of e.

Since the game is a matroid congestion game, the above algorithm yields a basis and
thus a feasible strategy set for each player i ∈ N . Let s denote the induced strategy
sets. We show that s is a Nash equilibrium. Suppose not, then there is a player i ∈ N
and strategy sets si = {e1, . . . , er} and s′i = {e′1, . . . , e′r}, where resources are ordered in
increasing costs given s−i, so that Ci(si, s−i) > Ci(s

′
i, s−i). This implies that there exists

a smallest k > 1 such that cek · nek(si, s−i) > ce′k · ne′k
(s′i, s−i). Consider the two sets

{e1, . . . , ek−1} and {e′1, . . . , e′k−1, e
′
k}. Both sets are independent sets and thus by property

(3) of matroids, there is some e′j for 1 ≤ j ≤ k so that the set {e1, . . . , ek−1, e
′
j} is also an

independent set. Since ce′j · ne′j
(s′i, s−i) ≤ ce′k · ne′k

(s′i, s−i) < cek · nek(si, s−i), we obtain a
contradiction as the algorithm must have picked resource e′j instead of resource ek.
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6.3 Equilibrium Inefficiency
We consider the sum of weighted players’ costs as a measure of the quality of a strategy
profile, i.e.,

C(s) =
∑

Ci(s).

Our analysis below is for linear cost functions and can be trivially extended to affine
cost functions. As discussed in Section 2.2, a cost-minimization game G is said to be
(λ, µ)-smooth if for all strategy profiles s, s′ we have∑

i∈N
Ci(s

′
i, s−i) ≤ λ · C(s′) + µ · C(s).

It is well-known that if a game G is (λ, µ)-smooth with λ > 0 and µ < 1, then PoA(G) is
at most λ

1−µ . Moreover, these bounds are valid for mixed, correlated and coarse-correlated
equilibria [Rou15].

Theorem 6.6. Every congestion game with resource-dependent priority lists is
(
2, 12
)
-

smooth. Hence, the price of anarchy is at most 4.

Proof. Given a strategy profile s, define we(s) =
∑

i′∈N :e∈si′
wi′ . Then, for all s, s′,

∑
i∈N

Ci(s
′
i, s−i) ≤

∑
i∈N

∑
e∈s′i

wi · ce · (we(s) + wi)

=
∑
e∈E

ce ·

we(s
′) · we(s) +

∑
i∈N :e∈s′i

w2
i


≤
∑
e∈E

ce ·

we(s
′)2 +

1

4
· we(s)

2 +
∑

i∈N :e∈s′i

w2
i


≤ 2 · C(s′) +

1

2
· C(s),

where the second inequality follows from
(
we(s

′)− 1
2 · we(s)

)2 ≥ 0 and the third inequality
from C(s) =

∑
e∈E

1
2 · ce ·

(
we(s)

2 +
∑

i∈N :e∈si w
2
i

)
for all s.

Correa and Queyranne [CQ12] give an example that shows that the bound of 4 is tight
for restricted singleton congestion games with priority lists derived from Smith’s rule. In
fact, their example can be adjusted so that the equilibrium is unique and thus yields a
lower bound for the price of stability.

6.3.1 Polynomial Costs

Until now we considered games with affine cost functions and proved a tight bound on
the PoA. We now prove an asymptotically tight bound for polynomial costs function with
maximum degree d. The cost of a player i ∈ N is given by,

Ci(s) = wi ·
∑
e∈si

(wi
e(s))

d.

Theorem 6.7. Every congestion game with resource-dependent priority and cost functions
that are polynomials of maximum degree d has PoA ∈ Θ(d)d+1.
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Proof. We first prove an upper bound on the price of anarchy in weighted congestion games
with priority lists with non-decreasing cost functions that are polynomials of maximum
degree d. We then prove a lower bound using unweighted players.

We begin the proof with the following observation.

Observation 6.8. For all i ∈ [k] such that mi ≥ 1 and
∑k

j=1mj = d+ 1,

(
d+ 1

m1, . . . ,mi, . . . ,mk

) k∏
j=1

w
mj

j ≤ (d+1)·wi ·
(

d

m1, . . . ,mi − 1, . . . ,mk

) k∏
j=1,j 6=i

w
mj

j ·w
mi−1
i .

Claim 6.9. For all w1, w2, . . . , wk ∈ R≥0, and k ≥ 1,

(w1+w2+. . .+wk)
d+1 ≤ (d+1)·

(
w1 · wd

1 + w2 · (w1 + w2)
d + . . .+ wk(w1 + w2 + . . .+ wk)

d
)

Proof. The proof follows using the multinomial theorem and Observation 6.8, i.e.,

(w1 + w2 + . . .+ wk)
d+1 =

∑
m1+...+mk=d+1

(
d+ 1

m1, . . . ,mk

) k∏
j=1

w
mj

j

=

(
d+ 1

d+ 1

)
· wd+1

1 + . . .+
∑

m1+...+mk=d+1,mk≥1

(
d+ 1

m1, . . . ,mk

) k∏
j=1

w
mj

j

≤ (d+ 1) · w1 ·
(
d

d

)
· wd

1 + . . .+ (d+ 1) · wk ·
∑

m1+...+mk=d

(
d

m1, . . . ,mk

) k∏
j=1

w
mj

j

= (d+ 1) ·
(
w1 · wd

1 + . . .+ wk(w1 + . . .+ wk)
d
)
.

Theorem 6.10 (Hölder’s inequality). Let x1, x2, . . . , xn and y1, y2, . . . , yn be positive real
numbers and a, b > 1 be such that 1/a + 1/b = 1. Then,

n∑
i=1

xi · yi ≤

(
n∑

i=1

xai

)1/a

+

(
n∑

i=1

ybi

)1/b

.

Lemma 6.11. Every congestion game with resource-dependent priority and cost functions
that are polynomials of maximum degree d has a PoA of at most ϕd+1, where ϕ is the
unique solution to xd+1 = (d+ 1)(x+ 1)d.

Proof. Let s be a pure Nash equilibrium and s∗ a social optimum. Then, from the Nash
inequality we have,

C(s) ≤
∑
i∈N

Ci(s
∗
i , s−i)

≤
∑
i∈N

wi ·
∑
e∈s∗i

we(s
∗
i , s−i)

d =
∑
i∈N

wi ·
∑
e∈s∗i

(we(s−i) + wi)
d

≤
∑
i∈N

wi ·
∑
e∈s∗i

(we(s) + we(s
∗))d =

∑
e∈E

we(s
∗) · (we(s) + we(s

∗))d

for some 0 < γ < 1,
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≤
∑
e∈E

(1− γ)1−d · we(s
∗)d+1 + γ1−d · we(s

∗) · we(s)
d+1

≤ (1− γ)1−d ·
∑
e∈E

we(s
∗)d+1 + γ1−d ·

(∑
e∈E

we(s
∗)d+1

)1/(d+1)

·

(∑
e∈E

we(s)
d+1

)d/(d+1)

≤ (1− γ)1−d · (d+ 1) · C(s∗) + γ1−d · (d+ 1) · C(s∗)1/(d+1) · C(s)d/(d+1),

where the fourth inequality follows by convexity (c.f. Farzad et al. [FOV08]), the fifth
inequality from Hölder’s inequality and the last inequality follows from Claim 6.9.

In particular, define z =
(

C(s)
C(s∗)

)1/(d+1)
, we have

zd+1 ≤ (1− γ)1−d · (d+ 1) + γ1−d · (d+ 1) · zd.

Setting γ = ϕ
ϕ+1 , where ϕ solves zd+1 = (d+ 1)(z + 1)d, and z = ϕ, we have

zd+1 = (1− γ)1−d · (d+ 1) + γ1−d · (d+ 1) · zd,

and thus
C(s)

C(s∗)
≤ ϕd+1.

Lemma 6.12. The PoA of every congestion game with resource-dependent priority and
cost functions that are polynomials of maximum degree d is at least (d+ 1)d+1.

Proof. To prove a lower bound we construct the following game.
Let k ∈ Z. The game contains n = (d+ 2)k players and m = (d+ 2)k resources. Each

player i ∈ N has wi = 1. Each player i ∈ N has two pure strategies: {ei, . . . , ei+k−1} and
{ei+k, . . . , ei+(d+2)k−1} (all indices are modulo (d+2)k). The cost functions are ce(x) = xd

for all e ∈ E, and for all ej ∈ E and i ∈ N the priority lists are defined as

πej (i) := (j + (d+ 1)k + 1− i) mod n,

where πej (i) is priority of player i on resource ej . With a slight abuse of notation, if
πej (i) = 0 in the above expression, then set πej (i) = n.

Observe that, the strategy profile s with si = {ei+k, . . . , ei+(d+2)k−1} for all i ∈ N is a
pure Nash equilibrium, since the cost of each player i ∈ N is given by

(d+1)k∑
j=1

jd ≤ k · ((d+ 1)k + 1)d,

where the r.h.s. is the cost incurred by the player i if they unilaterally deviate.
Alternatively, the strategy profile s∗ such that, s∗i = {ei, . . . , ei+k−1} for all i ∈ N

yields a cost per player of
k∑

j=1

jd.

Hence,
C(s)

C(s∗)
≥
∑(d+1)k

j=1 jd∑k
j=1 j

d
→ (d+ 1)d+1 as k →∞.

Lemma 6.11 and 6.12 together conclude the proof of the theorem.
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Decentralized Overlay Networks

93





Chapter 7

Overlay Networks under
Adversarial Churn

In this chapter we study yet another interesting model, where its efficacy is influenced
by the uncertainty in the user behavior. This model is motivated by a communication
networking concept known as Peer-to-Peer (P2P) overlay network, which has become
increasingly popular over the past few decades. P2P overlay networks are highly dynamic
communication networks in which a relatively large number of users join or leave the
network over a period of time. A predominant problem in such a network with no admission
control is to ensure that the users in the network remain connected to each others at
any point in time. Moreover, the problem is quite challenging in the presence of peer
dynamics, i.e., users joining and leaving the network continuously in an uncoordinated
manner. In this chapter, we investigate the maintenance of such a dynamic network
to guarantee that the active users remain connected to one another. To that extend,
we present a robust overlay network called Linearized DeBruijn Swarm—a highly churn
resistant overlay topology.

7.1 Introduction
Peer-to-peer (P2P) networking has proven to be an useful technique to construct fault
resilient decentralized systems. Many applications such Bittorent, Gnutella, KaZaA, and
numerous other file sharing frameworks rely on such decentralized networking princi-
ples [ECP+05]. In a P2P architecture the users in the network are often referred to
as peers or nodes and are connected to each others over virtual overlay links built over
an underlay network, e.g., the Internet [Sch01]. Together, they form a logical network
topology also known as an overlay network [ECP+05, see, Figure 1]. Nodes provide com-
putational and storage infrastructure. Within the overlay, each node has a logical address
and logical links that allows it to search and store information in the network. P2P over-
lay networks are highly dynamic networks with nodes joining and leaving the network
continuously. This uncertainty in the network due to unpredictable churn (join/leave) of
nodes makes information storage and retrieval a challenging problem.

A key requirement for all applications that rely on P2P networks is reliable commu-
nication between all nodes, i.e., each node should be able to send a message to another
node at all times. This is complicated by the fact that in every large-scale system, errors
and attacks are considered as a rule rather than an exception. At the same time there
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is usually no or very little admission control for new participants. This implies a mas-
sive amount of churn, i.e., nodes joining and leaving the network at any given time. In
fact, empirical studies have shown that 50% of all nodes are subjected to churn over the
course of an hour [SR06]. This alludes for robust and distributed protocols that maintain
connected overlays in spite of heavy churn.

In this chapter we deal with the problem of maintaining a routable overlay under
adversarial churn. A overlay is routable, if each node in the network is able to send a
message to any given logical address in the network at any point in time. Note that it
is convenient to model unpredictability in the node dynamics using an adversary [AS21,
APR+15, DGS16]. The adversary picks a set of nodes that leave the network and proposes
a set nodes that join the network, continuously. The topology of the overlay plays a
crucial role in determining the severity of the problem. P2P overlay networks have been
mainly classified into three types: Structured, Unstructured and Hybrid [ECP+05, Dar05].
However, the strict structural requirements in the topology of structured P2P overlays
make them the most susceptible to faults due to unpredictable node dynamics [ECP+05].
Choosing the node set cleverly allows the adversary to destroy the structural properties
and disconnect the network. Therefore, we focus our attention to the interesting case of
structured P2P overlay networks.

Note that an adversary that knows all virtual links between the nodes can simply
partition the network by churning out the neighborhood of a node [GRS19]. Previous
literature therefore considered models with an additional restriction, where the adversary
has slightly outdated information about the nodes’ logical links [AS21, APR+15, DGS16].
In particular, the adversary could access all information that is at least O(log log n) rounds
old, where n ∈ Z+ is the minimal number of nodes in the network at any point in time.
This includes the nodes’ logical links, internal states, random decisions, the contents of
all messages, etc. Within these O(log log n) rounds the nodes in the network execute
a distributed algorithm that completely rearranges the network topology. However, we
remark that the techniques presented in [AS21, APR+15, DGS16] cannot be used if one
wants to grant the adversary access to even more recent information.

To overcome above mentioned restriction, we propose a trade-off in the form of a (a, b)-
late omniscient adversary that has an almost up-to-date information about the network
topology, but is more outdated with regard to all other aspects. In particular, it has full
knowledge of the topology such as logical links of the nodes, after a rounds and complete
knowledge of messages, internal states, etc., after b rounds. We believe that our trade-
off is quite a natural assumption and that in a real network, an adversary with similar
properties could e.g., be an agency eavesdropping on an Internet exchange point. Although
they monitor who communicate based on the involved Internet Protocol (IP) addresses,
but are unable to decrypt the content of the messages immediately.

7.1.1 The Model

We briefly introduced the overlay model in Chapter 1. We now present a detailed descrip-
tion of the model we consider. Recall that we assume time proceeds in synchronous rounds
and observe a dynamic set of nodes V :=

(
V0, V1, . . .

)
such that Vt is the set of nodes in

round t. We remark that synchronicity is a standard assumption in the literature to allow
for the nodes to react to the adversary’s actions periodically. Each node u is identified by
a unique and immutable identifier denoted by id(u) of size O(log n) bits. In a real-world
network these identifiers could e.g., be the nodes’ IP addresses. At the beginning of each
round t, a node u ∈ Vt may store the identifiers of other nodes in the node set Vt, as its
neighbors in round t. The choice of neighbors form the logical links in the overlay.
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For all u, v ∈ Vt, there exists a directed edge (u, v) in the network, if the node u knows
id(v). A node u ∈ Vt can send a message to a node v ∈ Vt, if and only if it knows the
identifier of v, i.e., id(v). Let us denote by Du

t the neighborhood of node u in round t, i.e.,

Du
t := {v ∈ Vt | u knows id(v) in round t},

then (Du
t )u∈Vt completely defines the logical links and therefore, the structure of the

overlay network in round t.
Exchange of messages in each round results in series of directed communication graphs

G :=
(
G0, G1, . . .

)
with Gt = (Vt, Et) and

Et := {(u, v) | v receives a message from u in round t}.

Creating an edge in the communication graph may be compared to sending a UDP (User
Datagram Protocol 1) message to the desired receiver or establishing a TCP (Transmission
Control Protocol 2) connection between two nodes. We assume that a node can send mes-
sages to O(log n) different nodes in each round with message length at most O(polylogn)
bits.

Our model assumes that the node set V is determined by an adversary. This implies,
in every round t the adversary can propose a set Ot ⊂ Vt−1 that leaves the network and a
set Jt ⊂ Vt that joins the network, i.e., Vt := {Vt−1 \Ot}∪ Jt. In particular, the adversary
has to comply to the following assumptions:

1. Lateness.
We consider the adversary to be (2, O(log n))-late omniscient, i.e., the adversary
has slightly outdated knowledge of the topology, i.e., the series of graphs G :=
(G0, G1, . . . ) created through the communication between nodes. In particular, in
round t the adversary only has full knowledge of all graphs until Gt−2. Furthermore,
it has no knowledge of the nodes’ internal states, the position of the node, virtual
links, contents of messages, etc., for O(log n) rounds, i.e., the adversary learns the
content of message sent in round t only in round t+O(log n).

2. Churn Rate.
For all Vt ∈ V it holds that |Vt| ∈ [n, κn], where κ ≥ 1 is a small constant. This
implies that the number of nodes in any round stays within Θ(n). For a suitable
value T ∈ O(log n), we assume that |Vt+T ∩ Vt| ≥ (1 − α)n, where α ∈ [0, 1) is a
fixed constant. This allows the churn to be O(n) in each round as long as there is a
stable set of size Θ(n) that remains in the network for at least T rounds.

3. Bootstrap Phase.
We assume that until a round B ∈ O(log2 n) the adversary is inactive and no churn
occurs, this phase is often referred to as the bootstrap phase. We would like to remark
that this is a standard assumption to prepare the network to allow for topological
reconfiguration (see, e.g. [AS21, APR+15, DGS16]). Only after the conclusion of the
bootstrap phase, is the adversary allowed to begin churning nodes in or out of the
network.

4. Restricted Join.
1https://tools.ietf.org/html/rfc768.
2https://tools.ietf.org/html/rfc793.
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We assume that a new node v ∈ Vt \ Vt−1 can only join the network via a node
w ∈ Vt ∩ Vt−2, i.e., the node v joins only via nodes that were in the network for at
least 2 rounds. Finally, we assume the number of nodes that join the network via
the same node v ∈ Vt in a round t is a fixed constant.

5. Uniform Hash Function.
We assume that each node is seeded with a fixed uniform hash function h : R2 7→ [0, 1)
prior to being administered into the network. The adversary always remains obliv-
ious to this hash function. The nodes use the function h to uniformly at random
pick position in the [0, 1)-interval. Seed knowledge is a standard assumption in the
literature [AS21].

We remark that our model incorporates observations from Stutzbach and Reza [SR06]
that new nodes join and leave very frequently, but there is a (relatively) stable set of
nodes that remain committed to the network for a longer period of time. To the best
of our knowledge, this is a significantly more flexible model compared to other related
work. Given the above mentioned constraints on the adversary, a round t consists of the
following four steps:

1. Active Node Set.
At the beginning of each round t, the adversary can select a set of nodes Ot ⊂ Vt−1

that leave the network in round t. These nodes are not allowed to send or receive
any messages and leave the network immediately. Furthermore, the adversary may
propose a set of nodes Jt that joins the network in round t. For each node v ∈ Jt the
adversary selects a bootstrap node w ∈ Vt \ Jt (satisfying the necessary conditions
for Restricted Join) that receives a reference to v. Recall that each node can only
bootstrap a constant number of new nodes into the network.

2. Receiving Messages.
All active nodes receive all messages sent to them in the previous round. Note that
this even holds for messages that were sent by nodes that were churned out in the
current round.

3. Local Processing.
After receiving all messages, a node can perform arbitrary calculations on its local
variables and the received messages. This is a standard assumption, since network
operations are considered to be significantly slower than local computation.

4. Sending Messages.
Finally, each node may send messages to other nodes. Recall that sending a message
to another node implicitly creates an edge in the graph Gt+1. Every message sent
in round t is received in the round t+1. Furthermore, due to the lateness condition
these edges can only be seen by the adversary at the beginning of the round t+ 3.

7.1.2 Our Contribution

We present a distributed overlay maintenance algorithm that can handle a (2, O(log n))-
late adversary by completely rearranging the structure of the network every 2 rounds. The
algorithm executes over a dynamic set of nodes V :=

(
V0, V1, . . .

)
chosen by a (2, O(log n))-

late adversary, to create a sequence of mutually independent overlays that allow for a series
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of communication graphs G :=
(
G0, G1, . . .

)
with Gi := (Vi, Ei). Furthermore, the algo-

rithm allows for routing a message to a logical address p ∈ [0, 1) within O(log n) rounds.
The overlay we consider in this work is an extension of the Linearized DeBruijn Graph
presented in Richa et al. [RS11a], which by itself is based on the De Bruijn Graph [de 46]
and draws ideas from Naor and Wieder [NW07] that uses quorums of logarithmic size
to send and receive messages. The latter is adapted from Fiat et al. [FSY05], where the
authors use this approach for the chord overlay [SMK+01]. Our approach uses several
structural properties of the overlay as well as a careful analysis of non-independent events
to ensure fast reconfiguration of the network.

In Section 7.2 we introduce a graph topology based on the Linearized DeBruijn Graph
called Linearized DeBruijn Swarm (LDS). In Section 7.3 we present Alg-Routing—a
routing algorithm that can route a message to any point in [0, 1)-interval in O(log n)
rounds with high probability. In Section 7.5 we presents 3 algorithms each of which are
executed concurrently by every node in the network. Algorithm Alg-LDS—rearranges
the graph topology such that it is completely rebuilt every 2 rounds, while ensuring efficient
routing, Algorithm Alg-Random—handles addition of new nodes into the overlay, and
Algorithm Alg-Sampling—enables a node in the overlay to pick a random node in the
overlay. The overall message complexity due to these algorithms is then at most O(log3 n)
messages per node and round with high probability.

7.1.3 Related Work

Table 7.1: Overview of different models in the literature.

Paper Lateness? Churn Rate† Immediate‡

[AS21] (O(log log n), O(log log n)) (αn,O(log log n)) Yes
[DGS16] (O(log log n), O(log log n)) (n− n

logn , O(log log n)) No∗

[APR+15] (O(log n), O(log n))
(
O
(

n
logn

)
, O(log n)

)
Yes

Our Results (2, O(log n)) (αn,O(log n)) Yes
? An adversary is (a, b)-late if it has full knowledge of the topology after a rounds

and complete knowledge after b rounds.
† The churn rate is (C, T ) if the adversary can perform C join/leaves in T

rounds.
‡ Churned out nodes leave the network immediately.
∗ Nodes remain in the network for additional O(log log n) rounds.

The last two decades has seen extensive amount of work in analyzing overlay networks
under high adversarial churn. As already mentioned in the introduction, these works had
a variety of different model assumptions. We refer the readers to [ECP+05, AS21] for a
comprehensive survey on previous results. In the following, we only concentrate on models
closely related to ours. The initial series of papers [Sch05, FSY05, AS07] assumed only
a subset of nodes are subjected to adversarial churn. However, these nodes could also
behave malicious and try to sabotage the overlay’s structure and the routing mechanism
by sending corrupted messages. A general assumption was that up to a constant fraction of
nodes would be malicious. Scheideler [Sch05] present a protocol that spreads these nodes
over the network such that, each connected subset of logarithmic size contains a constant
fraction of non-malicious nodes. Fiat et al. [FSY05] build upon this work and present a
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full overlay maintenance algorithm that provided a robust DHT. In their approach, each
virtual address p ∈ [0, 1) is maintained by a committee of O(log n) nodes. More recent
work [AMM+13, AS21, DGS16] considered all nodes to be susceptible to adversarial churn.
However, they usually do not consider malicious behavior. The adversaries in these papers
can be almost succinctly described using three properties that we mentioned earlier, i.e.,
the lateness, the churn rate, and if it is immediate. Recall that we say an adversary is
(a, b)-late if it has full knowledge of the topology after a rounds and complete knowledge
of all sent messages, internal states, etc. after b rounds, the churn rate is (C, T ) if the
adversary can perform C join/leaves in T rounds, and an adversary is immediate if churned
out nodes have to leave the network immediately and without the possibility to send and
receive more messages. Table 7.1 shows an overview over the different models. Note that
the table is only for comparison as it simplifies some of the models and does not depict
all of their respective nuances. However, we remark that these simplifications do not
weaken the adversary. Augustine et al. [APR+15] present an algorithm that builds and
maintains an overlay in the presence of a nearly completely oblivious adversary. Here,
the overlay no longer has a fixed structure, rather is an unstructured expander graph of
constant degree. Note that this overlay has no virtual addressing. However, in [AMM+13]
the authors present a scheme that allows to quickly search for data in these networks,
as long as only one look-up request arrives each round. Drees et al. [DGS16] build a
semi-structured expander called Hd-Graph, which is the union of d random rings. Their
adversary is not only O(log log n)-late with regard to communication, it also has access to
all nodes’ memory and all sent messages after O(log log n). Nodes that are churned out in
round t may remain in the network for an additional O(log log n) rounds, i.e., it does not
satisfy the property of immediateness. The SPARTAN framework presented in [AS21]
probably has the greatest resemblance with our work. In SPARTAN the nodes maintain a
logical overlay resembling a butterfly network. To ensure robustness each of the butterfly’s
virtual nodes is simulated by O(log n) nodes. The key difference between our work and
SPARTAN is the adversary’s lateness. Similar to [DGS16], the SPARTAN framework
assumes the adversary to be (O(log log n), O(log log n))-late, but in return allows the churn
to be as high as αn in O(log log n) rounds. However, unlike [DGS16], SPARTAN allows
the adversary to be immediate.

7.2 Definitions and Preliminaries
In this section we present definitions and results from probability theory that are used
extensively in the analysis of our algorithms.

Definition 7.1 (Negative Correlation [Sch00, p. 31]). A set of random variables (Xi)i∈[n]
are negatively correlated (NC), if for every S ⊆ [n] it holds that,

E
[∏
i∈S

Xi

]
≤
∏
i∈S

E[Xi].

Definition 7.2 (Negative Association [JDP83, Waj17]). A set of random variables (Xi)i∈[n]
are negatively associated (NA), if for any two functions f, g, both monotonically increasing
(or both monotonically decreasing) defined on disjoint subsets of X, it holds that,

E[f(X) · g(X)] ≤ E[f(X)] ·E[g(X)].

Note that all independent and (multivariate) hypergeometric random variables are
negatively associated [JDP83, DR98].
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Corollary 7.3 (NA implies NC [Waj17]). Let X1, X2, . . . , Xn be a set of NA random
variables. Then, it holds that for every S ⊆ [n],

E
[∏
i∈S

Xi

]
≤
∏
i∈S

E[Xi].

The following propositions from Joag-Dev and Proschan [JDP83] will be extensively
used in many of our proofs.

Proposition 7.4 ([JDP83, DR98]). If X := (X1, . . . , Xn) and Y := (Y1, . . . , Ym) are
negatively associated sets of random variables that are mutually independent, then the
vector (X,Y ) := (X1, . . . , Xn, Y1, . . . , Ym) are also negatively associated.

Proposition 7.5 ([JDP83, DR98]). Let (X1, . . . , Xn) be negatively associated random
variables. For some k ≤ n, let I1, . . . , Ik ⊆ [n] be disjoint index sets. For j ∈ [k], let
fj : R|Ij | 7→ R be functions that are all non-decreasing or all non-increasing. Define
Yj := fj(Xi : i ∈ Ij). Then the random variables (Y1, . . . , Yk) are negatively associated.

Lemma 7.6 (Zero-One Lemma [DR98]). If Y1, . . . , Yn are zero-one random variables such
that

∑
i Yi = 1, then Y1, . . . , Yn are negatively associated.

Furthermore, we make use of the following Chernoff bounds.

Lemma 7.7 (Chernoff-Hoeffding Bounds [DR98, MU05]). Let X :=
∑

i∈[n]Xi be the sum
of n negatively correlated random variables with Xi ∈ {0, 1} for each i ∈ [n]. Then, it
holds that for any 0 < γ < 1,

Pr[X ≥ (1 + γ)E[X]] ≤ exp

(
−γ2 ·E[X]

2

)
and

Pr[X ≤ (1− γ)E[X]] ≤ exp

(
−γ2 ·E[X]

3

)
.

Also, for any γ ≥ 1,

Pr[X ≥ (1 + γ)E[X]] ≤ exp

(
−γ ·E[X]

3

)
.

Throughout this chapter we assume that each node in the network is aware of n and
κ, i.e., the lower and upper bound on the number of nodes currently in the network. We
make this simplification due to Stutzbach and Reza [SR06], that the number of nodes stays
relatively stable. Furthermore, in order to simplify notations, we define λ := 2 log(κn).
For convenience we assume that λ is an integer. We would like to remark that all our
algorithms may be adapted to work with close estimates of λ and λ

n using approaches
presented in [RS11a, FSY05, KS04, KLSY07].

DeBruijn Swarm

We now present the Linearized DeBruijn Swarm (LDS), which is a combination of a
well-analyzed network overlay of low degree, i.e., the Linearized DeBruijn Graph (LDG)
presented in [RS11a, FS17] and techniques from robust overlays, i.e., the usage of loga-
rithmic sized quorums that simulate a single node [FSY05]. Note that the LDG is inspired
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Figure 7.1: A node v is connected each node in the dashed areas.

by, but not equivalent to the classical De Bruijn Graph. The notion of swarm was also
described in Fiat et al. [FSY05].

In the remainder of this section we present the LDS’s topology and show some of
its basic properties. Each node v ∈ V chooses a position pv ∈ [0, 1) uniformly and
independently at random. Note that for the sake of convenience, the position of a node
v ∈ V , we just write v instead of pv. It should always be clear from the context if we refer
to the node, its identifier, or its (current) position. However, we will make the context
sufficiently clear to avoid ambiguity, if necessary.

Nodes can calculate their distance to one another node using the distance function
d : V 2 → [0, 1). Given two nodes v, w ∈ V the distance function d returns the shortest
distance between v and w in the [0, 1)-torus.

Formally, the function d : V × V 7→ [0, 1) is defined as follows:

d(v, w) :=

{
|v − w| if |v − w| ≤ 1

2

1− |v − w| otherwise.
(7.1)

Furthermore, the distance function also satisfies the triangular inequality, i.e.,

d(v, w) ≤ d(v, z) + d(z, w) for all v, w, z ∈ V. (7.2)

For convenience we introduce the following notions for the relation between two nodes
u, v ∈ V . If |u − v| ≤ 1

2 , then u is left (clockwise) of v if u < v and right (clockwise)
otherwise. For |u − v| > 1

2 the relation is reversed. Furthermore, the set 〈u, v〉 ⊂ V
contains all nodes which are right of u and left of v. Given a node w, we say that a
node u is closer to w than v if and only if d(u,w) < d(v, w). Lastly, we call a node u
the closest neighbor of v if there exists no other node u′ ∈ V closer to v than u, i.e.,
u := argmin

k∈V
d(k, v).

In the LDG presented by Richa et al. [RS11a], each node v connects to exactly six
other nodes. Namely, the two closest nodes left and right of pv and the two closest node
left and right of the points pv

2 and pv+1
2 , respectively. We extend this structure such that,

each node connects to O(log n) closest neighbors. For a given point p ∈ [0, 1) we call
S(p) ⊂ V the swarm of p. It holds that a node v ∈ S(p) if and only if d(v, p) ≤ cλ

n .
Here, c > 1 is a robustness parameter which should be chosen as small as possible. These
swarms (and not the nodes) form the building blocks of LDS. Denote by |S(p)| the number
of nodes in the swarm S(p). We call the swarms S(p) adjacent to S(p′) if there is an edge
(v, w) between every node v ∈ S(p) and w ∈ S(p′). Note that each swarm S(p) spans an
interval of length 2cλ

n , as it consists of two intervals of length cλ
n to the left and right of p,

respectively. Sometimes it will be necessary to distinguish between the nodes in the left
and right interval of p, so we define

SL(p) := {v ∈ S(p) | v is left of p}
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and
SR(p) := {v ∈ S(p) | v is right of p}

as the left and right side of S(p). Given this notion of a swarm, we can now formally
define the LDS as follows:

Definition 7.8 (Linearized DeBruijn Swarm). Let V be a set of nodes with |V | ≥ n
positioned on the [0, 1)-interval and λ := 2 log(κn). Then, the LDS D := (V,EL ∪ EDB)
with parameter c ∈ N+ has the following properties:

• (v, w) ∈ EL ⇐⇒ w ∈ V and d(v, w) ≤ 2cλ
n .

• (v, w) ∈ EDB ⇐⇒ w ∈ V and d
(
v+i
2 , w

)
≤ 3cλ

2n with i ∈ {0, 1}.

A Linearized DeBruijn Swarm is illustrated in Figure 7.1. Over the course of this
chapter we will refer to the edges in EL as list edges, whereas the edges in EDB as
DeBruijn edges.

From Definition 7.8 we state the following lemma.

Lemma 7.9 (Swarm Property). Consider any point p ∈ [0, 1) and its swarm S(p) ⊆ V

in the LDS. Then, S(p) is adjacent to S
(p
2

)
and S

(
p+1
2

)
.

Proof. Let p ∈ [0, 1) be any point and v ∈ S(p) be a node in p’s swarm. From Definition 7.8
this implies that d(p, v) ≤ cλ

n . We now show that node v has a connection to every node
in S

(p
2

)
and S

(
p+1
2

)
. For the proof we only analyze adjacency to S

(p
2

)
, since the other

case is analogous. We distinguish between the following two scenarios.

1. If |p− v| ≤ 1
2 , then from (7.1) it holds that,

d
(p
2
,
v

2

)
:=
∣∣∣p
2
− v

2

∣∣∣ = 1

2
|p− v| ≤ 1

2

cλ

n
. (7.3)

Let u be any node in S(p2), then d
(
u, p2

)
≤ cλ

n . Then using (7.2) and (7.3) we get,

d
(
u,

v

2

)
≤ d

(
u,

p

2

)
+ d

(p
2
,
v

2

)
≤ cλ

n
+

cλ

2n

=
3cλ

2n
. (7.4)

From Definition 7.8, since node v has a DeBruijn edge to each node w ∈ V with
d
(
v
2 , w

)
≤ 3cλ

2n , then using (7.4) the lemma follows.

2. Otherwise, |p− v| > 1
2 .

Observe that this only occurs if either p ∈
[
0, cλn

]
or p ∈

[
1− cλ

n , 1
)
, i.e., the point

p is close to 0 or 1 and v lies on the opposite site of the interval. We distinguish
between the following two cases.

(a) If p ∈
[
0, cλn

]
, then it also holds that p

2 ∈ [0, p]. Implies,

d
(
v,

p

2

)
≤ d(v, p) ≤ cλ

n
. (7.5)

103



7 Overlay Networks under Adversarial Churn

Then, by the triangle inequality and inequality (7.5), it holds that for every
node u ∈ S

(p
2

)
,

d(u, v) ≤ d
(
u,

p

2

)
+ d

(p
2
, v
)
≤ 2cλ

n
.

From Definition 7.8, the node u is then a list neighbor of v and the lemma
follows.

(b) Otherwise, if p ∈
[
1− cλ

n , 1
)

then it holds that p
2 ∈

[
1
2 −

cλ
2n ,

1
2

)
. Now consider

the distance between p
2 and v+1

2 . Here, it holds that,

d

(
v + 1

2
,
p

2

)
:=
∣∣∣v + 1

2
− p

2

∣∣∣ = 1

2
|v + 1− p|.

Observe that since v < p and p < v+1, it holds that |(1 + v)− p| is equivalent
to 1− |v − p|. Therefore, the inequality simplifies to

d

(
v + 1

2
,
p

2

)
=

1

2
(1− |v − p|) = 1

2
d(v, p).

Since 1
2d(v, p) ≤

cλ
2n , applying the triangle inequality we get that for every node

u ∈ S(p2),

d

(
u,

v + 1

2

)
≤ d

(
u,

p

2

)
+ d

(
v + 1

2
,
p

2

)
≤ cλ

n
+

cλ

2n

=
3cλ

2n
. (7.6)

From Definition 7.8, since node v has a DeBruijn edge to each node w ∈ V with
d
(
v+1
2 , w

)
≤ 3cλ

2n , then using (7.6) the lemma follows.

The next lemma shows that if nodes are assigned to the [0, 1)-interval uniformly and
independently at random, then all swarms have roughly the same size w.h.p. Throughout
this chapter w.h.p. means with probability

(
1− 1

nk

)
, where n is the number of nodes and

k is a tunable constant.

Lemma 7.10 (Swarm Size). Let the swarm length to be cλ
n with c ≥ 12k and assume all

nodes pick their positions uniformly and independently at random. Then, for any point
p ∈ [0, 1) it holds that,

Pr
[
1

2
cλ < |S(p)| < 2cλ

]
≥ 1− 2

nk
,

where |S(p)| denotes the number nodes in S(p).

Proof. The proof is analogous to [RS11a, Lemma 3]. Given that each node picks its
position uniformly and independently at random in the [0, 1)-interval, the probability
that a node chooses a point in an interval of length cλ

n is exactly cλ
n . Note that since c is

a constant and λ ∈ O(log n), for big enough n, cλ
n ≤ 1.

Let X be a random variable that counts the number of nodes in S(p). For each v ∈ V ,
let Xv be a {0, 1} random variable such that, Xv = 1 if v picked a position in a swarm
S(p) and 0, otherwise. Thus, it holds that X :=

∑
v∈V Xv and cλ ≤ E[X] ≤ κcλ for every
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p. Furthermore, it holds that X :=
∑

v∈V Xv is the sum of independent random variables.
Hence, using Lemma 7.7 it holds that for c ≥ 12 · k,

Pr
[
X ≤ 1

2
cλ

]
≤ exp

(
−E[X]

12

)
≤ exp (−kλ) = n−k. (7.7)

Moreover, it holds that for c ≥ 8 · k,

Pr[X ≥ 2cλ] ≤ Pr
[
X ≥

(
1 + 1

2

)
κcλ

]
≤ exp

(
−E[X]

8

)
≤ exp (−kλ) = n−k. (7.8)

Then, using (7.7) and (7.8) the union bound yields the desired result.

Routing in a Linearized DeBruijn Graph

The LDS routing algorithm Alg-Routing we present in Section 7.3 is an adaptation
of the classical LDG’s routing algorithm presented in [RS11a, FS17]. Before we go into
the details of Alg-Routing, we will first recall the classical LDG’s routing algorithm.
Routing in the LDG works by a bitwise adaption of the target address. Recall that our
model assumes each node is aware of λ. Therefore, given any destination p ∈ [0, 1), a node
can calculate the first λ bits (p1, . . . , pλ) of p’s binary representation. Then, starting with
the least significant bit pλ, the node v sends the message to the node closest to x1 :=

v+pλ
2 .

For this it uses the corresponding DeBruijn edge. After that, the message is sent to the
node closest to x2 :=

x1+pλ−1

2 . This goes on until the first bit p1. Finally, as a consequence
of Lemma 7.10 there are w.h.p. only O(log n) hops over the list edges to p.

Definition 7.11 (Trajectory [RS11a]). Let v ∈ V be a node and p ∈ [0, 1) be an arbitrary
point. Furthermore, let (v1, . . . , vλ) ∈ {0, 1}λ and (p1, . . . , pλ) ∈ {0, 1}λ be the λ most
significant bits of v and p, respectively. Then, the trajectory τ(v, p) := x0, . . . , xλ+1 ∈
[0, 1)λ+2 is a series of points in the [0, 1)-interval defined as follows:

xi :=


v i = 0

(pλ−i+1, . . . , pλ, v1, . . . , vλ−i) i ≤ λ

p i = λ+ 1

For each point xi in the trajectory, the message is forwarded to the node closest to it.
Then, forward the message along list edges until it reaches the node closest to the target.

Impossibility Results

Götte et al. [GRS19] show that it is impossible to maintain a connected overlay network
under high adversarial churn in the presence of a (0,∞)-late omniscient adversary, i.e.,
the adversary has up-to-date information on the network topology each round, but is
completely oblivious to all other information stored in the nodes.

Lemma 7.12 (Götte et al. [GRS19]). A (0,∞)-late adversary with churn rate (αn,O(log n))
for some α ∈ (0, 1), can disconnect any overlay in O(log n) rounds.
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Furthermore, Götte et al. also show that an adversary that is both oblivious to the
topology and to the information stored in the nodes can disconnect an overlay network, if
the new nodes are allowed to join via nodes that have been in the network for at most 1
round.

Lemma 7.13 (Götte et al. [GRS19]). Let v ∈ V be a node that joined in round t. Now
assume a model where in round t+1 a new node w ∈ V can join the network via v. Then,
a (∞,∞)-late adversary with churn rate (αn,O(log n)) for some α ∈ (0, 1) can disconnect
any overlay after O(log n) rounds.

Lemma 7.13 proves that our model assumption on restricted join is justified. The
formal proofs of Lemmas 7.12 and 7.13 are to appear in the Ph.D. thesis of Thorsten
Götte [Gö21].

7.3 Routing in Overlay under Churn
In this section, we present a low-congestion routing algorithm Alg-Routing that routes
messages to logical positions in a dynamic overlay network using the structural properties
of the LDS. The algorithm delivers each message w.h.p. even in the presence of churn and
a changing communication structure.

Alg-Routing must perform routing over a dynamic series of overlays D := (Di)i≥0

where each Di is an LDS. However, there are two challenges to be addressed, i.e.,

1. the churn orchestrated by the adversary and

2. the dynamic reconfiguration of the overlays.

The obvious solution would be to send the message not only to the closest node of each
trajectory point, but to the whole swarm. However, observe that this trivial adaption
to the LDG routing algorithm fails in the presence of churn. Given that any node on a
message’s trajectory can be churned out, a fraction of routing requests may never reach
their destinations. In particular, if the adversary is aware of the topology, it could even
churn out the whole swarm for a given trajectory point. Therefore, we introduce the notion
of a good swarm adapted from Fiat et al. [FSY05]. In their work, a swarm is good if at
least a fixed constant fraction of its nodes take part in the next round and hence, refer to
such nodes as good.

Here, we need a slightly stronger notion as we require the good nodes to be relatively
well spread over the swarm to enable our fast construction. To be precise, we say the
left (right) side of a swarm is good if a constant fraction of its nodes is good and the full
swarm is good, if both its left and right side are good. Furthermore, an LDS Di is good
if all its swarms are good. This property implies that there is always at least a constant
fraction of good nodes in each swarm that can forward the message.

Besides the churn there is the problem of the dynamically rearranging overlay. In
particular, the main algorithm we later introduce in Section 7.5 will create a series of
overlays D1, D2, . . . which will persist for only 2 rounds each. That means a node changes
its position every 2 rounds. Now if every node would keep all its routing messages and
forward them from its new position, they would lose all the progress they made so far.
Therefore, we define a handover procedure using a helper (handover) graph Hi. For any
point p ∈ [0, 1), let Si(p) be the swarm of p in Di and Si+1(p) be the swarm of p in Di+1.
We assume that during the change from Di to Di+1, each node from Si(p) can send a
message to any set of nodes from Si+1(p), i.e., the nodes form a helper graph Hi, where
the swarms Si(p) and Si+1(p) are adjacent. Formally, it is defined as follows:
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Algorithm 4 Alg-Routing: Routing Algorithm.
Desc: This algorithm is executed on a series of routable graphs D := (Di,Hi)i≥0. The

algorithm routes a message m from any node u ∈ Vt to swarm S(p) in 2λ+ 2 rounds.
Note: The following code is executed by each node u ∈ Vt every round t. W.l.o.g. the

forwarding step is executed in even rounds and the handover step is executed in odd
rounds. The initial step is executed by the source node u. Messages initiated in
even/odd rounds are processed by nodes in their target swarms in even/odd rounds,
respectively.
Set r = 16, λ = 2 log(κn).

Initial Step
1: Sending a message m to p

(d1, . . . , dλ, )←− λ most significant bits of p
rnd := t
if t is even:

Send m :=
(
p, λ− 1, (d1, . . . , dλ),rnd

)
to all w ∈ S(x1) in Dt/2.

else:
Send m :=

(
p, λ, (d1, . . . , dλ),rnd

)
to all w ∈ S(x0) in Dbt/2c+1.

Forwarding Step
2: Upon receiving m :=

(
p, k, (d1, . . . , dλ),rnd

)
if k > 1:

x←− v+dk
2

(w1, . . . , wr)←− r nodes chosen u.i.r from S(x) in Dt/2

Forward m :=
(
p, k − 1, (d1, . . . , dλ),rnd

)
to all (wi)i∈[r].

else:
Deliver m to all nodes w ∈ S(x) in Dt/2.

Handover Step
3: Upon receiving m :=

(
p, k, (d1, . . . , dλ),rnd

)
if k > 1

(w1, . . . , wr)←− r nodes chosen u.i.r from S(x) in Dbt/2c+1.
Forward m to all (wi)i∈[r].

else:
Deliver m to all nodes w ∈ S(x) in Dbt/2c+1.

Definition 7.14 (Handover Graph). Let (Di)i≥0 be a series of LDS with Di = (V2i, Ei).
Then, the helper graph Hi := (V2i+1, E

H
i ) is defined as follows:

(v, w) ∈ EH
i ⇐⇒ exists p ∈ [0, 1) : v ∈ Si(p) ∧ w ∈ Si+1(p).

Given the definition of a handover graph, we state the following lemma.

Lemma 7.15 (Handover Property). Let p ∈ [0, 1) be an arbitrary point and let Si+1(p) be
its swarm in Di+1. Then, in Hi every node in SR

i (p) knows every other node in SR
i+1(p).

The same holds for the left side.

Proof. The property follows almost directly from the definition of swarms and the handover
graph. We will prove the lemma only for the right side as the proof for the left side is
completely analogous. Let v be any node in SR

i+1(p). By the definition of the Handover
graph every node in Si(pv) knows v, as clearly v ∈ Si+1(pv). Since v is right of p and
within distance cλ

n of p, as it is in S(p), it holds that SR
i (p) ⊂ Si(v). Thus, by combining

it with the definition of the Handover Graph, we get that every node SR
i (p) ⊂ Si(v) must

107



7 Overlay Networks under Adversarial Churn

know v. Since this holds for all nodes v ∈ SR
i+1(p), all nodes in SR

i (p) must know all nodes
in SR

i+1(p) and the lemma follows.

Later, in Section 7.5 we will see how to implement such a handover graph, whereas
here we just treat it as a property that is given. Note that we call a helper graph Hi good,
if for each p ∈ [0, 1) a 3/4-fraction of all nodes in Si+1(p) is not churned out in the next
round.

We summarize our observations in following definition for a routable series of graphs.

Definition 7.16 (Routable Graphs). Let D := (Di,Hi)i≥0 be series of graphs defined on
nodes V := (V0, V1, . . . ), such that, each Di consists of nodes in V2i and each Hi consists
of nodes in V2i+1. Then, we call D routable, if

1. each Di is an LDS,

2. each Hi enables a handover from each Di to Di+1,

3. each Di is good, i.e., it holds |Si(p) ∩ V2i+1| ≥ 3/4 · |Si(p)| for all p ∈ [0, 1),

4. each Hi is good, i.e., it holds that for each p ∈ [0, 1) there exists a set of nodes
U(p) ⊂ V2i+1 such that, Si+1(p) ⊆ U(p) and

|Si+1(p)| ≥ 3/4 · |U(p)|.

7.3.1 The Routing Algorithm

We now present the routing algorithm Alg-Routing for a dynamic series of routable
graphs D := (Di,Hi)i≥0. A trivial extension of the LDG routing algorithm would send
each message to the whole swarm of each trajectory point. However, forwarding a message
to a whole swarm would require O(log2 n) messages to be sent in each step. In order to
limit this to O(log n) messages 3, we adapt the approach as follows. Assume a node v ∈ Vt

wants to route a message m to target in [0, 1)-interval. We first forward m to all nodes
in S(v). Then, each node in S(v) picks r ∈ Θ(1) nodes uniformly and independently at
random from the next swarm S(x1) in the trajectory and forwards m to them. Then, each
node that received m at least once, forwards it to r nodes in S(x2) and so on. Only in
the last step, the message is forwarded to all nodes of the target swarm to ensure that the
whole swarm receives the message. We present Alg-Routing as Algorithm 4. Observe
that in each even round 2i, the message is forwarded along the trajectory step, i.e., from
the swarm Si(xj) to Si(xj+1) for some j ∈ [λ]0, whereas in every odd round 2i + 1, the
message is handed over from swarm Si(xj) to Si+1(xj) at some trajectory step j ∈ [λ]0.
Recall that for p ∈ [0, 1), Si(p) is the swarm of p in LDS Di.

Analysis

In this section, we analyze Alg-Routing. In particular, we prove that w.h.p. all messages
reach their target and further analyze the dilation, i.e., the number of steps until a message
reaches its target and the congestion, i.e., the number of messages handled by each node
in a round. Note that the latter depends on how many messages are sent each round and
how their destinations are chosen. We would like to remark that we assume that each node
sends exactly the same number of messages and chooses their destinations independently
and uniformly at random.

3Given that αn nodes may fail in single round and we want to route each message on the first try, it is
reasonable that one needs O(logn) copies of a message each round to ensure the survival of at least one
w.h.p.
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Theorem 7.17. Let D be a routable series of LDS defined on nodes V := (V0, V1, . . . ).
Furthermore, let each node v ∈ V start ϕ ∈ Z+ messages to random targets p ∈ [0, 1).
Then Alg-Routing delivers each message with dilation exactly 2λ + 2 and congestion
O(ϕ log n) w.h.p.

Proof. We begin the proof with the following lemma where we show that each message
reaches its target swarm after exactly 2λ+ 2 rounds.

Lemma 7.18. Let v be any node in V2t ∈ V with t ≥ 0, which sends a message to point
p ∈ [0, 1) along the trajectory τ(v, p) using Alg-Routing. Then, it holds that the message
arrives at a node in St+λ+1(p) in exactly 2λ+ 2 rounds.

Proof. The proof follows by an induction over the trajectory steps i = 0, . . . , λ and due
to the fact that S(xλ) and S(p) are adjacent. W.l.o.g. assume the message is initiated in
round 2t = 0. The proof follows analogously for message initiated in round 2t+ 1.

For the induction, observe that in round 2i the message is forwarded along the tra-
jectory and therefore, moves from Si(xi) to Si(xi+1), whereas in each round 2i + 1 the
message is handed over and therefore, moves from Si(xi+1) to Si+1(xi+1). Lemma 7.9 and
the handover property imply that the nodes have necessary connections for each step but
the last. We now prove by induction that for each i ∈ [λ]0, that each copy of the message
is stored at a node u ∈ Si(xi) in round 2i.

(IB) Consider step i = 0, i.e., the round in which the message is started. In this round,
the message is at v = x0 and therefore, is known by v ∈ S0(x0).

(IS) Now suppose that the induction hypothesis holds for any arbitrary step i ∈ [λ− 1]0
along the trajectory. Implying that in round 2i any copy of the message is at a
node in Si(xi). Now since rounds 2i are even rounds, Alg-Routing performs a
forwarding step in Di along the trajectory, i.e., every copy of the message is sent
to some node in Si(xi+1). Observe that, the swarm property in Lemma 7.9 ensures
that each node in Si(xi) has a connection to Si(

xi
2 ) and Si(

xi+1
2 ). Now since xi+1

is either xi
2 or xi+1

2 , it holds that each node in Si(xi) has an edge to each node in
Si(xi+1).
Next, in round 2i+ 1, Alg-Routing performs a handover operation on every copy
of the message in Si(xi+1) (overlay Hi). Now, we use the Handover Property and
observe that each node in Si(xi+1) has by the definition of Hi, an edge to each
node in Si+1(xi+1). Therefore, every copy of the message can successfully be sent
to a node in Si+1(xi+1) and therefore, available in round 2i+ 2. This concludes the
induction.

Particularly, for i = λ− 1, i.e., in round 2λ− 2 the message transits from Sλ−1(xλ−1)
to nodes in Sλ−1(xλ). Now since xλ is either xλ−1

2 or xλ−1+1
2 , it holds that each node

Sλ−1(xλ−1) has an edge to each node in Sλ−1(xλ). Therefore, every copy of the message can
be successfully forwarded to each node in Sλ−1(xλ). Next, in round 2λ−1, Alg-Routing
performs a handover operation on every copy of the message in Sλ−1(xλ) (overlay Hλ−1).
Using the Handover Property and the observation that each node in Sλ−1(xλ) has by the
definition of Hλ−1, an edge to each node in Sλ(xλ), the message can be successfully sent to
a node in Sλ(xλ). The induction above implies that the message is known by all nodes in
Sλ(xλ) in round 2λ. Now recall that xλ and p are equal in their first λ bits. This implies
that the distance between xλ and p is then at most

d(xλ, p) ≤
1

2λ
,
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using λ := 2 log(κn) we get,

=
1

elog(2)λ
=

1

(eλ)
log(2)

=
1

(κn)2 log(2)

≤ 1

κn
≤ 1

n
.

Therefore, the swarms Sλ(xλ) and Sλ(p) are adjacent and the message can be forwarded
and handed over to nodes in Sλ+1(p) in round 2λ+ 2 as described in the induction step.
This proves the lemma.

Notice that in the proof of Lemma 7.18, we assumed that each intermediate node along
the trajectory forwarded the received message and omitted the fact that not all nodes in
a swarm forward the message, as they may be churned out. Observe that, if an entire
swarm is churned out, the message is discarded. However, as stated in Definition 7.16, we
assume that all swarms are good, i.e., only a constant fraction of each swarm is malicious
and does not forward the message. In the following lemma we show that there exists a
good fraction of nodes in every swarm that are not churned out.

Lemma 7.19. Consider a set of nodes S with |S| ≥ cλ
2 picked at random from the set of

all nodes in any given round. Let G ⊆ S be the set of good nodes in S, then for churn
parameters α = 1

16 and κ =
(
1 + 1

16

)
with c ≥ 510k it holds that,

Pr
[
|G| ≤ 14

17
|S|
]
≤ 1

nk
.

Proof. Observe that by definition, for a churn rate of α, there are at least (1− α)n nodes
that would survive into the next round. Therefore, there are at least 15

16n good nodes in
any given round. Also, since there could be at most κn nodes, there are at most 17

16n
nodes in any given round. Therefore, the fraction of good nodes in the [0, 1)-interval in
any given round is then at least 15

17 . Furthermore, nodes pick their position uniformly and
independently at random in the [0, 1)-interval.

Let S ⊂ Vt be a set of nodes in round t picked at random from the [0, 1)-interval such
that, |S| ≥ cλ

2 . Let the random variables (Xv)v∈S be such that Xv = 1 if the node v is
good and 0, otherwise. The random variables (Xv)v∈S observe random sampling without
replacement and therefore, are negatively associated [JDP83]. Then, the random variable
XS :=

∑
v∈S Xv denotes the number of good nodes in the set S. Moreover, observe that

XS is hypergeometrically distributed in |Vt|, the number of good nodes in Vt i.e., (at least)
15
16n, and |S| [Sch00, p. 44]. This implies,

E[XS ] ≥ |S|
15

17
.

Then applying the Chernoff bound on NA random variables with c ≥ 510 · k we get,

Pr
[
XS ≤

14

17
|S|
]
≤ Pr

[
XS ≤

(
1− 1

15

)
E[XS ]

]
≤ exp

(
− |S|
255

)
≤ exp

(
− cλ

510

)
≤ exp (−kλ) = n−k.
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Thus, as long as we observe only o(nk) swarms and each side of each swarm has more
than cλ

2 nodes w.h.p., a simple union bound implies that in all swarms both the left and
right side are good w.h.p.

Using Lemma 7.19 we can now show that the messages reach their destination w.h.p.

Lemma 7.20. Let m be a message initiated in round 2q that is routed along τ(v, p) :=
x0, . . . , xλ, p using Alg-Routing. Then, it holds that all nodes in Sq+λ+1(p) receive m
w.h.p after exactly 2λ+ 2 rounds.

Proof. W.l.o.g. we assume the message was initiated in an even round and q = 0. We
prove by induction that, for each t ∈ [2λ + 2]0, it holds that if t is an even round then,
at least half of all nodes in St/2(xt/2) receive the message m and forward them w.h.p.
Otherwise, if t is an odd round, at least half of all nodes in Sbt/2c(xbt/2c+1) receive the
message m and forward them w.h.p.

(IB) Consider round t = 0, i.e., the round in which the message is initiated. If this is an
even round, then observe that Alg-Routing forwards message m from node v, i.e.,
x0, to all nodes in S0(x1). Using Lemma 7.10 and 7.19 we can conclude that at least
half of all good nodes in the swarm S0(x1) received the message m and survive until
the next round. Therefore, the induction hypothesis holds.

(IS) Now assume the induction hypothesis holds for any arbitrary t ∈ [2λ+1]0. Consider
round 2b + 2 for b ∈ [λ]0, we show that at least half of all nodes in the swarm
Sb+1(xb+1) receive the message m w.h.p. from nodes in Sb(xb+1).

By the induction’s hypothesis, at least half of all nodes in Sb(xb+1) received message
m w.h.p. and therefore, each of these nodes forward r copies of the message m to
nodes picked uniformly and independently at random from the swarm Sb+1(xb+1).
We now show that at least half of all nodes in the swarm Sb+1(xb+1) receive the
message w.h.p. in the round 2b+ 2.

From Lemma 7.10, it holds that |Sb+1(xb+1)| ≤ 4|Sb(xb+1)| w.h.p. Furthermore, by
the induction hypothesis we know that at least half of all nodes in Sb(xb+1) received m
and therefore, forward r copies of m. Thus, in total there are at least r/8·|Sb+1(xb+1)|
copies of m sent to Sb+1(xb+1). The probability that any of these messages is sent
to a given node v′ ∈ Sb+1(xb+1) is 1

|Sb+1(xb+1)| , since the destinations are chosen
uniformly at random. Observe that one can view the forwarding of messages from
Sb(xb+1) to uniformly and independently picked nodes in Sb+1(xb+1) as a balls-into-
bins experiment, where (at least) r/8 · |Sb+1(xb+1)| balls are thrown into |Sb+1(xb+1)|
bins. Using Propositions 7.4 and 7.5 one can show that the number of nodes in
Sb+1(xb+1) that receive at least one ball is NA [DR98]. For i ∈ {1, . . . , |Sb+1(xb+1)|}
and j ∈ {1, . . . , r/8 · |Sb+1(xb+1)|}, let Xi,j be an indicator random variable such
that, Xi,j = 1 if message j is sent to node i (picked uniformly and independently at
random) by Alg-Routing in round 2b+ 1, and Xi,j = 0 otherwise.

For any fixed j ∈ {1, . . . , r/8·|Sb+1(xb+1)|}, let Yi := Xi,j for all i ∈ {1, . . . , |Sb+1(xb+1)|.
Then, from Lemma 7.6 we know that the random variables Y1, . . . , Y|Sb+1(xb+1)| are
NA. Since each message j ∈ {1, . . . , r/8 · |Sb+1(xb+1)|} is destined to a node that is
picked uniformly and independently at random, using Proposition 7.4, we can con-
clude that the set of random variables (Xi,j)i∈{1,...,|Sb+1(xb+1)|},j∈{1,...,r/8·|Sb+1(xb+1)|}
are NA.
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For each i ∈ {1, . . . , |Sb+1(xb+1)|} consider a non-decreasing function as follows,

Xi =

{
1
∑

j∈{1,...,r/8·|Sb+1(xb+1)|Xij > 0

0 otherwise.

Therefore, for each i ∈ {1, . . . , |Sb+1(xb+1)|},

Pr[Xi = 1] = 1−
(
1− 1

| Sb+1(xb+1) |

)|Sb+1(xb+1)|·r/8

≥ 1−
(
1

e

) r
8

.

From Proposition 7.5, we know that the random variables X1, . . . , X|Sb+1(xb+1)| are
NA.

Let Gb+1(xb+1) ⊆ Sb+1(xb+1) denote the set of good nodes in Sb+1(xb+1). For each
v ∈ Gb+1(xb+1), let Gv be a {0, 1} random variable such that, Gv = 1 if node v
received at least one copy of m from some node in Sb+1(xb) and Gv = 0, otherwise.
Observe that Xi denotes if a node in Sb+1(xb+1) received at least one message in
round 2b+2 when exactly |Sb+1(xb+1)|·r/8 messages are sent to Sb+1(xb+1) uniformly
and independently at random. Since |Sb+1(xb+1)|·r/8 is a lower bound on the number
of message being sent, for each v ∈ Gb+1(xb + 1) we have that,

Pr[Gv = 1] ≥ Pr[Xv = 1].

Moreover, the random variables (Gv)v∈Gb+1(xb+1) are also NA as they can be seen
as a subset of (Xv)v∈Sb+1(xb+1). To see this, first recall that the random variables
(Xi)i∈{1,...,|Sb+1(xb+1)|} are NA. In particular, this fact is independent of the number
of messages and nodes in Sb+1(xb+1). Now observe that for each v ∈ Gb+1(xb+1), the
random variable Gv is a non-decreasing function of its associated random variable
Xv. Therefore, we can conclude that the random variables (Gv)v∈Gb+1(xb+1) are also
NA.
Let G :=

∑
v∈Gb+1(xb+1)

Gv be a random variable that counts the number of good
nodes in Sb+1(xb+1) that received at least one copy of m in round 2b + 2. From
Lemma 7.19, we know that there are 14/17 fraction of good nodes in Sb+1(xb+1)
w.h.p. Therefore, the expected number of good nodes that receive at least one
message is given by,

E[G] =
∑

v∈Gb+1(xb+1)

E[Gv]

≥
∑

v∈Gb+1(xb+1)

(
1− 1

er/8

)

=

(
1− 1

er/8

)
14

17
|Sb+1(xb+1)|.

To complete the induction it suffices to show that,

Pr
[
G ≤ 1

2
|Sb+1(xb+1)|

]
≤ 1

nk
.
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Using γ = 2
7 in Lemma 7.7 with r = 16 we get,

Pr
[
G ≤ 5

7

(
1− 1

e2

)
14
17 |Sb+1(xb+1)

]
≤ exp

(
− 4

49·3

(
1− 1

e2

)
14
17 |Sb+1(xb+1)|

)
.

Lemma 7.10 then implies,

≤ exp

(
− 4

49·3

(
1− 1

e2

)
14

17

cλ

2

)
= exp

(
− 4

357

(
1− 1

e2

)
cλ

)
for c ≥ 510 · k we get,

≤ n−k.

Particularly, setting b = λ gives us that at least half of all nodes in Sλ(xλ+1) forward the
message in round 2λ + 1 and therefore, at least half of all nodes in swarm Sλ+1(xλ+1)
receive the message in round 2λ+ 2.

We conclude our analysis by observing each node’s congestion. The following lemma
bounds the expected number of trajectories that cross an interval in each round. Recall
that a trajectory is defined on points in [0, 1) and not on actual nodes (except the source
and destination).

Lemma 7.21. Assume η nodes choose their position independently and uniformly at
random in the [0, 1)-interval. Moreover, let each node send ϕ ∈ Z+ messages to targets
picked independently and uniformly at random from the [0, 1)-interval. Then, for every
I ⊂ [0, 1) it holds that,

1. Xj
I is the sum of independent {0, 1} random variables,

2. E
[
Xj

I

]
= ϕη|I|,

where Xj
I is a random variable that counts the number of trajectories that have their jth

step in the interval I and |I| denotes the size of the interval I.

Proof. W.l.o.g. assume that I := [a, b] with 0 ≤ a ≤ b < 1.

1. Let Xj
I:(v,i) be a {0, 1} random variable such that, Xj

I:(v,i) = 1 if the trajectory of a
message i ∈ [ϕ] started by a node v crosses the interval I in its jth step and Xj

I:(v,i) = 0,
otherwise. Then the number of messages with their jth step in the interval I is given by,

Xj
I =

∑
v∈V

∑
i≤ϕ

Xj
I:(v,i).

Observe that a message’s trajectory is uniquely defined by the starting node v and the end
point p. Since for each message the target node is chosen uniformly and independently at
random from [0, 1)-interval, we conclude that the set of random variables

(
Xj

I:(v,i)

)
v∈V,i∈[ϕ]

are independent.
2. We prove by induction that for each step j ∈ [λ+ 1]0 along the trajectory, it holds

that,
E
[
Xj

I

]
= ϕη|I|.
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(IB) Consider step j = 0 i.e., the step where the messages are at their starting node at
x0. For each v ∈ V , let Xv be a {0, 1} random variable such that, Xv = 1 if node
v ∈ I and Xv = 0, otherwise. Observe that the nodes pick their positions uniformly
and independently at random in the [0, 1)-interval. Therefore,

Pr[Xv = 1] = |I|.

This implies,

E
[∑
v∈V

Xv

]
=
∑
v∈V

Pr[Xv = 1] = η|I|.

Since each node initiates ϕ ∈ Z+ messages to randomly picked targets in the [0, 1)-
interval,

E
[
X0

I

]
= E

[∑
v∈V

ϕ ·Xv

]
= ηϕ|I|.

(IS) Now assume the induction hypothesis holds for every j ∈ [λ]0, this implies,

E
[
Xj

I

]
= ϕη|I|.

Let I0 := I ∩ [0, 1/2) and I1 := I ∩ [1/2, 1) be the parts of I that lie in the first and
second half of [0, 1)-interval, respectively. Then, for all k ∈ [λ+ 1]0,

E
[
Xk

I

]
= E

[
Xk

I0

]
+ E

[
Xk

I1

]
.

Observe that for each i ∈ {0, 1}, the bit representation of each point on Ii begins
with i. Therefore, for any message m destined to a uniformly and independently
picked target p ∈ [0, 1)-interval, it’s trajectory crosses interval Ii in the jth step of
the trajectory if and only if pj = i, where pj is the jth most significant bit of p in
the binary representation. W.l.o.g. we only analyze I0 to show that,

E
[
Xj+1

I0

]
= ϕη|I0|.

The proof for E
[
Xj+1

I1

]
= ϕη|I1| is analogous and follows using similar arguments.

Consider an arbitrary trajectory τ := x0, . . . , xλ+1 ∈ [0, 1)λ+2 with xj+1 ∈ I0 := [a, b0]
for some j ∈ [λ]0. From Definition 7.11 it must then hold that xj = 2xj+1. There-
fore, for all trajectories that cross the interval I0 ∈ [0, 1/2) it holds that xj = 2xj+1

and hence, the jth step must be in the interval J := [2a, 2b0]. The size of the interval
is then,

|J | = 2|I0|.

By the induction hypothesis we know that,

E
[
Xj

J

]
= ϕn|J | = 2ϕn|I0|.

Note that since for every message it’s target is picked uniformly and independently
at random from the [0, 1)-interval, this is equivalent to the thought experiment of
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flipping a fair coin for each bit of the target address. Therefore, the probability that
a trajectory τ in interval J points towards the interval I0 in it’s (j+1)th step is then,

Pr[τj+1 ∈ I0] =
1

2
,

where τj+1 denotes the position of the trajectory τ in step j + 1.
Then, the expected number of trajectories that point from the interval J to the
interval I0 is given by,

E
[
Xj+1

I0

]
=

∞∑
`=0

E
[
Xj+1

I0
|Xj

J = `
]
·Pr

[
Xj

J = `
]

(Law of Total Expectation)

=

∞∑
`=0

∑
τ∈[1,...,`]

Pr[τj+1 ∈ I0] ·Pr
[
Xj

J = `
]

=
∞∑
`=0

`

2
·Pr

[
Xj

J = `
]

=
1

2

∞∑
`=0

` ·Pr
[
Xj

J = `
]

=
1

2
E
[
Xj

J

]
= ϕη|I0|.

Since |I| = |I0|+ |I1| we get,

E
[
Xj+1

I

]
= ϕη|I0|+ ϕη|I1| = ϕη|I|.

This completes the induction. In particular, for j = λ,

E
[
Xλ+1

I

]
= ϕη|I0|+ ϕη|I1| = ϕη|I|.

Using Lemma 7.21 we can bound from above the congestion for Alg-Routing as
O(ϕ log n).

Lemma 7.22. If each node picks its position and the ϕ ∈ Z+ target nodes uniformly and
independently at random, then Alg-Routing has congestion at most 27rϕκcλ w.h.p.

Proof. Let v ∈ V be any node and let
[
v ± cλ

n

]
=: Iv ⊂ [0, 1) be an interval that contains

all points p with v ∈ S(p). Observe that a message may be routed via v only if its
trajectory passes the interval Iv. From Lemma 7.21 we know that for any given round j
the expected number of trajectories that cross the interval Iv is then,

2ϕcλ ≤ E
[
Xj

Iv

]
≤ 2ϕκcλ,

where Xj
Iv

is a random variable that counts the number of trajectories that have their jth

step in the interval Iv. Using the Chernoff bound we get,

Pr
[
Xj

Iv
≥ 3ϕκcλ

]
≤ exp

(
−1

4
ϕcλ

)
,

115



7 Overlay Networks under Adversarial Churn

for c ≥ 510 · k,
≤ n−k.

Therefore, the total number of trajectories that pass interval Iv in any round j is at
most 3ϕκcλ w.h.p. We know from Definition 7.11, that a trajectory passing interval Iv
in step j, had it’s step j − 1 in either interval J0 :=

[
2
(
v ± cλ

n

)]
with pj = 0, or in

the interval J1 :=
[
2
(
v ± cλ

n

)
− 1
]

with pj = 1. Observe that the size of these intervals
i.e., |J0| = |J1| = 2|Iv|. From Lemma 7.10 we know that the number of nodes in each
of these interval i.e., J0 and J1, are at most 8cλ w.h.p. Therefore, the total number of
messages that will be forwarded to the interval Iv in any given round is then at most
M = (r · 8cλ) · (3ϕκcλ) w.h.p.

Let (Xv
i )i∈[M ] be a set of {0, 1} random variables such that, Xv

i = 1 if message mi is
sent to node v and Xv

i = 0, otherwise. From Lemma 7.10 we know that, any interval of
size 2cλ

n has at least cλ nodes w.h.p. Then,

Pr[Xv
i = 1] ≤ 1

cλ
.

Let (X̃v
i )i∈[M ] be a set of {0, 1} random variables such that,

Pr
[
X̃v

i = 1
]
=

1

cλ
.

Then,

E

∑
i∈[M ]

X̃v
i

 =
1

cλ
(r · 8cλ) · (3ϕκcλ) = 24rϕκcλ.

For r = 16 and c = 510k,

Pr

∑
i∈[M ]

Xv
i ≥ 27rϕκcλ

 ≤ Pr

∑
i∈[M ]

X̃v
i ≥

(
1 +

1

9

)
24rϕκcλ


≤ exp

(
−24rϕκcλ

92 · 2

)
≤ n−k.

Theorem 7.17 follows directly from Lemmas 7.18, 7.20 and 7.22.

7.4 The Random Sampling Algorithm

The algorithm Alg-Routing can also be extended to send a message to a node (and not
swarm) chosen uniformly at random. We call this algorithm Alg-Sampling presented as
Algorithm 5. The underlying approach is adapted from King and Saia [KS04] and King
et al. [KLSY07] and works as follows.

A node first picks a value p ∈ [0, 1) uniformly at random and routes the message to the
swarm S(p) using algorithm Alg-Routing. The message is then delivered to a randomly
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7.4 The Random Sampling Algorithm

Algorithm 5 Alg-Sampling: Random Sampling Algorithm.
Desc: This algorithm is executed on a routable graph D := (Di,Hi)i≥0. It routes a

message m from any node u ∈ V2t to a node v (almost) uniformly picked from V2t+2λ+2.
Round t

1: Send a message m to a random node in V2t+2λ+2

p←− Uniformly chosen from [0, 1)
∆←− Uniformly chosen from [0, 2cλ]
Route message (m, p,∆) to target S(p) using Alg-Routing

2: Upon receiving (m, p,∆) from Alg-Routing
P ←− {w ∈ S(p) | pw ∈ SR(p)}
Choose w such that |{u | u ∈ 〈p, w〉}| = ∆ mod |P |
Deliver m to w

chosen node w ∈ S(p) by including a uniformly random chosen number ∆ ∈ [0, 2cλ] in the
message. The message is then delivered to a node w for which it holds that,

|{u | u ∈ 〈p, w〉}| = ∆ mod |S(p)|.

Since all nodes in S(p) that received the message are aware of |S(p)| and ∆, this can
be checked locally without further messages. The following lemma bounds the sampling
probability.

Lemma 7.23. Let D be routable. Let node v ∈ Vt start a message mv using Alg-Sampling.
Then, for all u ∈ Vt+2λ+2,

Pr[u receives mv] ∈
[
1

4n
,
5

n

]
.

Furthermore, for any two nodes v, w ∈ Vt that start messages mv and mw, respectively, it
holds that for all u ∈ Vt+2λ+2,

Pr[u receives mv] = Pr[u receives mw].

Proof. Let Y (v, u) be a {0, 1} random variable such that Y (v, u) = 1 in the event that v
samples u i.e., the message mv is delivered to u. Furthermore, let p ∈ [0, 1) be the point
that v chooses in step 1 of Alg-Sampling. Let us denote by PL(u) all points in the
interval

[
pu − cλ

n , pu
]
, where pu is the position of node u in the [0, 1)-interval. Then, we

make the following observations:

1. As a necessary condition to sample the node u, node v must pick a point p ∈
[0, 1) such that, p ∈ PL(u). Otherwise, u will never be considered in step 2 of
Alg-Sampling. The probability that p ∈ PL(u) is then cλ

n .

2. Given that p ∈ PL(u), Alg-Sampling must pick u uniformly at random from all
nodes in SR(p). The probability for this depends only on |SR(p)| and ∆. By Lemma
7.10 we know that w.h.p. it contains at most 2cλ nodes and at least cλ/2 nodes.
Since ∆ ≤ 2cλ and c

2λ ≤ |S
R(p)| ≤ 2cλ, there are at least one and at most 4 choices

of ∆ that result in u being picked.

We now prove the first part of the lemma. For the lower bound we get that,

Pr[Y (v, u)] = Pr
[
p ∈ PL(u)

]
·Pr

[
u is picked from SR(p)

]
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≥ Pr
[
p ∈ PL(u)

]
·
(

Pr
[
|SR(p)| ≤ 2cλ

] 1

2cλ
+ Pr

[
|SR(p)| > 2cλ

] 1
n

)
=

cλ

n
·
((

1− 1

nk

)
1

2cλ
+

1

nk+1

)
≥ 1

2n
− 1

2nk+1

≥ 1

4n
.

The proof for the upper bound is analogous, we simply replace the upper bound on the
swarm size with its lower bound, i.e.,

Pr[Y (v, u)] = Pr
[
p ∈ PL(u)

]
·Pr

[
u is picked from SR(p)

]
≤ Pr

[
p ∈ PL(u)

]
·
(

Pr
[
|SR(p)| ≥ c

2
λ
] 1

cλ
+ Pr

[
|SR(p)| ≤ c

2
λ
]
· 1
)

=
2cλ

n
·
((

1− 1

nk

)
1

cλ
+

1

nk

)
≤ cλ

n
·
(

4

cλ
+

1

nc

)
=

4

n
+

2cλ

nk+1

since cλ ∈ O(log n),

≤ 5

n
.

This concludes the first part of the lemma.
It remains to show that Alg-Sampling delivers messages of nodes v and w, i.e.,

mv and mw, respectively to a node u ∈ Vt+2λ+2 with the same probability. Let pv and
pw ∈ [0, 1) be the points picked by these nodes for their respective messages. Furthermore,
let ∆v and ∆w ∈ [0, 2cλ] be random numbers picked by Alg-Sampling.

Let `(u, p) := |{w | w ∈ 〈p, u〉}| and U(u, p) be the number of possible choices of ∆
that lead to u being picked given that the message is routed to p in the first step. Note
that any point p ∈ [0, 1) and any ∆ ∈ [0, 2cλ] is picked with equal probability by v and w.
Then, it holds that,

Pr[Y (v, u)] = Pr
[
pv ∈ PL(u)

]
·Pr

[
u is picked from SR(pv)

]
= Pr

[
pv ∈ PL(u)

]
·

 ∑
p∗∈SL(u)

Pr[pv = p∗] ·Pr
[
`(u, p∗) = ∆v mod |SR(p∗)|

]
= Pr

[
pv ∈ PL(u)

]
·

 ∑
p∗∈SL(u)

Pr[pv = p∗]
U(p∗)
|SR(p∗)|


= Pr

[
pw ∈ PL(u)

]
·

 ∑
p∗∈SL(u)

Pr[pw = p∗]
U(p∗)
|SR(p∗)|


= Pr

[
pw ∈ PL(u)

]
·

 ∑
p∗∈SL(u)

Pr[pw = p∗] ·Pr
[
`(u, p∗) = ∆w mod |SR(p∗)|

]
= Pr

[
pw ∈ PL(u)

]
·Pr

[
u is picked from SR(pw)

]
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= Pr[Y (w, u)].

The fourth equality is due to the fact that,

Pr
[
pv ∈ PL(u)

]
= Pr

[
pw ∈ PL(u)

]
=

cλ

n
,

and for any p ∈ [0, 1),
Pr[pv = p] = Pr[pw = p],

since all nodes use the same random hash function h to compute the positions.
This concludes the second part of the lemma.

7.5 The Maintenance Algorithm
We now present algorithms for constructing an LDS every two rounds and handling addi-
tion of nodes to the overlay. Algorithms Alg-LDS and Alg-Random maintain a series
of routable dynamic overlays D = (Di,Hi)i≥0 with high probability. Before we present the
algorithms, we first give an overview of our assumptions and choice of churn parameters.

We assume a (2, 2λ + 7)-late adversary with a churn rate (n/16, 2λ + 7). This implies
that within 2λ + 7 (i.e., O(log n)) rounds, a constant fraction of nodes can be subjected
to churn. Furthermore, we assume that the number of nodes in any round is at most
(1 + 1/16)n. Note that the values α = 1/16 and κ = (1 + 1/16) are chosen for the sake
of convenience in analysis. We require a bootstrap phase of length B := 2λ + 7 at the
beginning of the algorithm. In this phase no churn occurs and this enables us to initialize
our algorithm. Recall that such a bootstrap phase is a standard assumption in the area
of churn-resistant overlays and is very likely necessary to construct a robust overlay.

We also assume that the system starts in an initial LDS D0 in round 0. This assumption
is made for convenience as the initial overlay can easily be constructed in the churn-free
bootstrap phase using algorithms from [GHSS17, GHSW20]. Using their techniques this
can be achieved in O(log2 n) rounds with a deterministic algorithm or in O(log n) rounds
w.h.p. with a randomized algorithm. Both these algorithms assume that the congestion
and degree of each node is polylogarithmic and therefore, fit well into our model. We would
like to remark that since our focus lies on fast reconfiguration and not on optimizing the
bootstrap phase we omit the algorithmic details and the corresponding analysis. For ease
of notation we will refer to round t+B as t.

Let Vt := Vt ∩ Vt−1 denote the set of all nodes except for the newly joined nodes in
any given round t. Over the course of this section we distinguish between three types of
nodes in each round t. Namely, the set of mature nodes Mt ⊆ V t, which are nodes that
are in the network for at least 2λ + 6 rounds (or 2λ + 7 if they joined in an odd round),
the set of fresh nodes Ft := V t \Mt which are nodes that are at least one round, but
less than 2λ+ 6 rounds old, and the set of newly joined nodes i.e., Vt \ V t. Observe that
V t := Mt ∪ Ft and due to our choice of churn parameters, it holds |Mt| ≥ n(1 − 1

16) and
|Ft| ≤ n/16. With a slight abuse of notation, for x, y ∈ [0, 1) and y ≤ x, [x± y] denotes the
interval [x− y, x+ y].

The algorithms Alg-LDS and Alg-Random are executed concurrently. Alg-LDS
ensures that all mature nodes build a routable overlay every even round and Alg-Random
makes sure that all fresh nodes (which are not part of the routable overlay) stay connected
to Θ(log n) mature nodes until they mature themselves. This ensures that the mature
nodes can route messages on behalf of the fresh nodes over the overlay. The main result
of this chapter is stated in the following theorem.
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Theorem 7.24. Algorithms Alg-LDS and Alg-Random maintain a series of overlays
D such that for o(nk) rounds w.h.p.,

1. the mature nodes form a routable series of graphs D := (D0,H0, D1, . . . ),

2. each fresh node is known by Θ(log n) mature nodes, and

3. the congestion is O(log3 n) per node and round.

We would like to remark that both Alg-LDS and Alg-Random are heavily random-
ized and can possibly fail to create a connected and routable overlay if they are executed for
too long. For example, the algorithm could fail if certain swarms are too small and/or too
many messages are dropped by the routing algorithm. In these cases, the algorithm can-
not construct the desired overlays and needs to be restarted along with another bootstrap
phase. Given that the algorithm runs correctly w.h.p. i.e., failure happens with probabil-
ity O(n−k) for a tunable constant k > 0, we can only guarantee that the algorithm runs
smoothly for o(nk) rounds w.h.p. until some failure happens. This follows by a simple
application of the union bound. Throughout this chapter we assume that k log(n)

n � 1, i.e.,
both k and log(n) are very small compared to n. Therefore, our algorithms only become
applicable for large values of n (say n > 106k). However, as our goal is to show that the
messages per node stays logarithmic in n even under heavy churn, we believe that it is
justified to only consider very high values of n. In particular, we do not claim that we
make the optimal choice of constants.

Alg-LDS and Alg-Random exchange four types of messages between the nodes to
build a series of overlay.

1. The message Connect(id(v)) is sent by a fresh node v to advertise itself to a mature
node in the overlay. It only contains v’s identifier, i.e., id(v).

2. The message Create(id(v), ptv) is used to introduce a node v to its neighbors in Dt.
The message contains the node’s identifier id(v) and its position ptv ∈ [0, 1) in the
overlay Dt.

3. The message Join(id(v), ptv) is used to introduce a node v to nodes in Dt−1. It is
routed from its origin to position ptv in overlay Dt−1. It contains the identifier of v
and its position ptv ∈ [0, 1) in Dt.

4. The message Token(id(v)) is sent by a mature node v to a point in the [0, 1)-interval
picked (almost) uniformly at random. It only contains v’s identifier.

Building a Routable Overlay

Alg-LDS is presented as Algorithm 6. After the bootstrap phase, the algorithm Alg-LDS
creates a series of overlays D = (Di,Hi)i≥0 that contain all mature nodes in any given
round. In particular, in every even round t = 2i, the algorithm creates an LDS Di which
consists of all mature nodes Mt. In each odd round t = 2i + 1, the algorithm creates
a handover graph Hi in which for each p ∈ [0, 1) it holds that, Si(p) and Si+1(p) are
adjacent (Lemma 7.9), where Si(p) and Si+1(p) are the swarms of point p in Di and Di+1,
respectively.

To construct a series of overlays, in every even round, mature nodes continuously
choose new positions pk, pk+1, . . . for the corresponding overlays Dk, Dk+1, . . . and use
Alg-Routing to find their neighbors. The nodes pick a random position in the [0, 1)-
interval using a uniform hash function h : V ×N→ [0, 1) known to all nodes. Recall that
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we assume that all nodes know h and the adversary does not have access to it. This hash
function takes the node’s id and the current round as an input and computes a random
value p. Although the hash function h excludes some points in [0, 1) from being picked as
all values need to be encoded in O(log n) bits, we remark that this does not impact the
correctness of our algorithms. We handle the values returned by h as continuous values,
as it is a standard assumption [KS04, KLSY07] for the usage in overlay networks. The
construction of Di begins in round 2i − (2λ + 2). Every node v ∈ V 2i−(2λ+2) picks a
position piv ∈ [0, 1) uniformly at random and routes its id to the targets piv, piv

2 , and piv+1
2

along their respective trajectories, e.g., (v, x1, · · · , xλ, piv). This message arrives 2λ rounds
later, i.e., in round 2i − 2 at the swarm Si−1(xλ). Then, within two rounds, Alg-LDS
first constructs the handover graph Hi−1 and then a new LDS Di based on these positions.
This ensures that in the even rounds Alg-Routing can perform the forwarding step and
the handover in the odd rounds. Thus, Alg-LDS maintains a routable overlay.

Algorithm 6 Alg-LDS: Overlay Maintenance Algorithm.
Desc: In every even round 2t the algorithm constructs an LDS Dt consisting of all nodes

that joined the network before round 2t − (2λ + 2). In every odd round 2t + 1 the
algorithm performs a handover from Dt to Dt+1 by constructing a helper graph Ht.

Note: The following code is executed by each node u ∈ Mt every even and odd round
respectively. The messages are handled in the given order. The last block of commands
in each phase is executed after all messages have been handled.

Round (2t)
1: Upon receiving Create(id(v), ptv) from u′

Du
t ←− Du

t ∪ {(v, ptv)} B u creates edges to these nodes.
2: Upon receiving Join(id(v), pt+1

v ) from Alg-Routing
Send Join(id(v), pt+1

v ) to all nodes w ∈ Du
t with

ptw ∈
[
pt+1
v − 2cλ

n , pt+1
v + 2cλ

n

]
3: Finally

Perform Forwarding Step from Alg-Routing using edges created from Dt.
F u ←− All fresh nodes known by u (provided by Alg-Random)
∀v ∈ F u ∪ {u} do:

pt+λ+1
v ←− h(v, t)

Route message Join(id(v), pt+λ+1
v ) to targets

{
pt+λ+1
v , p

t+λ+1
v
2 , p

t+λ+1
v +1

2

}
using Alg-Routing.

Round (2t+1)
4: Upon receiving Join(id(v), pt+1

v ) from a node u′

Hu
t ←− Hu

t ∪ {(v, pt+1
v )} B u creates edges to these nodes

5: Finally:
Perform Handover Step from Alg-Routing using edges created from Hu

t .
∀(v, pt+1

v ) ∈ Hu
t do:

Send Create(id(v), pt+1
v ) to all nodes w such that, (w, pt+1

w ) ∈ Hu
t with

pt+1
w ∈

[
pt+1
v − 2cλ

n , pt+1
v + 2cλ

n

]
.

We now describe Alg-LDS in detail. The algorithm proceeds in rounds. Each mature
node has two variables Du

t and Hu
t . Du

t stores u’s neighborhood in Dt, whereas Hu
t stores

the references for the handover. Both variables may be reset at the end of each round. In
every even round, nodes in V 2i−(2λ+2) pick a random position p ∈ [0, 1) and routes their
id using message Join(id, p) to the respective target points using Alg-Routing i.e., step
3 of Alg-LDS. This is the position the node will occupy in Di in round 2i. Particularly,
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it sends its id to the swarms Si−1(p), Si−1(p/2), and Si−1((p+1)/2), thereby creating the
handover graph Hi−1 in round 2i−1. Starting from the handover graph Hi−1, the overlay
Di can then be created in a single additional round through local introductions.

We will now describe the construction of the overlays Hi−1 and Di in detail given that
the algorithm worked correctly until that round. We assume the system is currently in
an even round t = 2i− 2 and in all previous rounds the mature nodes formed a routable
overlay D := D0,H0, . . . , Di−1. In other words, all messages of the form Join(id(v), piv),
where id(v) is an identifier and piv is its position in Di, are one trajectory step away from
reaching their target. Then, the construction of Hi−1 and Di is as follows:

1. In round 2i − 2 Alg-LDS executes step 2. This implies, all messages are routed
to their target location. In particular, each message with target point piv will be
received by all nodes in Si−1(p

i
v). Recall that this is ensured by the fact that the

message is sent to all nodes in Si−1(p
i
v) in the last step of the trajectory. Partic-

ularly, Alg-LDS additionally ensures that the message is delivered to all nodes in[
piv ± 2cλ

n

]
,
[
piv
2 ±

3cλ
2n

]
, and

[
piv +1

2 ± 3cλ
2n

]
in Di−1.

2. In round 2i − 1, each node w ∈
[
piv ± 2cλ

n

]
∪
[
piv
2 ±

3cλ
2n

]
∪
[
piv+1
2 ± 3cλ

2n

]
receives

messages of the form Join(v, piv). This implies, each node in u ∈ Si−1(p
i
v)∪Si−1(

piv
2 )∪

Si−1(
piv +1

2 ) knows every node u′ ∈ Si(p
i
v). Therefore, as consequence of step 4 of

Alg-LDS and using Definition 7.14, we claim that the construction of the handover
graph Hi−1 is complete. In the remainder of round 2i − 1, the algorithm initiates
construction of Di.

That is, all nodes must learn their neighbors in Di. For this, the nodes iterate over
all received messages of the form Join(v, piv) and introduces v to all its neighbors
at piv,

piv
2 , and piv +1

2 in Di. By introduction, we mean that the neighbor’s id and
position is sent to v, i.e, step 5 of Alg-LDS. These messages arrive in round 2i.

3. Finally, at the beginning of round 2i, each node knows all its neighbors in new
overlay Di, i.e., step 1 of Alg-LDS.

Observe that correctness of Alg-LDS implies, step 1 ensures all mature nodes form the
overlay Di and can perform the forwarding step for Alg-Routing and step 4 ensures
that for any p ∈ [0, 1), Alg-Routing can handover message from Di−1 to Di.

Note that after round 2i − 1 the nodes’ positions in Di−1 and Di are in no relation
with each other and the edges in Di−1 are independent of Di. Therefore, the adversary
stays oblivious of all nodes’ current positions.

Furthermore, observe that our approach requires that both fresh and mature nodes
send out the join requests and that all messages take exactly the same time to reach its
destination. The latter is ensured by Alg-Routing. For the former, we assume that each
fresh node v ∈ F2i is known by least one mature node which is part of Di. Recall that
the fresh nodes are not part of the overlay. Therefore, the mature nodes send out Join
requests on behalf of each fresh node u ∈ F2i known to them. Note that each node can
compute h(id(u), 2i), if it knows id(u). The ids of these nodes are stored in the variable
F u. However, this is ensured by Alg-Random and explained in the later part of the
section.
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7.5.1 Analysis of Alg-LDS

We now analyze the correctness of Alg-LDS. Throughout this section we assume that
Alg-Random works correctly and each fresh node is connected to Θ(log n) mature nodes
at any time. This enables each node in Vt to start a join request in every even round.

Lemma 7.25. Let Dt := (D0,H0 . . . , Di) be routable graph until round t = 2i. Then it
holds Dt+2 := (D0,H0 . . . , Di,Hi, Di+1) is a routable graph until round t+ 2 w.h.p.

Proof. W.l.o.g. we assume that the algorithm is currently in round t = 2i and the overlays
Dt := (D0,H0 . . . , Di) were routable. This implies that the mature nodes know all their
neighbors in Di, all join requests (v, pi+1

v ) started 2λ rounds ago are delivered to the
penultimate point in the trajectory, and the nodes are ready to perform the final forwarding
step of the messages. Due to Lemma 7.19 we know that Di is good, and at least 3/4-fraction
of each swarm in Di survives until 2i + 1. We will now show that Alg-LDS maintains
the following three properties:

1. Alg-LDS successfully constructs Hi in round 2i+ 1,

2. constructs a new LDS Di+1 in round 2i+ 2, and

3. overlay Hi and Di+1 are good w.h.p.

Together, these three properties imply that Dt+2 := (D0,H0 . . . , Di,Hi, Di+1) satisfy Def-
inition 7.16 and therefore, are series of routable overlays.

The following lemma shows that Alg-LDS constructs Hi in round 2i+1, i.e., we show
that for any p ∈ [0, 1), every node in Si(p) knows the id of every node in Si+1(p). The
proof essentially follows using correctness of Alg-Routing and Lemma 7.9.

Lemma 7.26 (Correctness of the Handover Construction). Let D := (D0,H0 . . . , Di) be
routable graph until round t = 2i. Then, in round 2i + 1, each node in

[
pi+1
v ± 2cλ

n

]
∪[

pi+1
v
2 ±

3cλ
2n

]
∪
[
pi+1
v +1
2 ± 3cλ

2n

]
receives Join(v, pi+1

v ) w.h.p. This implies that in round 2i+1

the nodes form the Handover graph Hi.

Proof. The proof follows directly from the correctness of Alg-Routing and the overlay’s
topology. Since D is routable until (and including) round 2i, all messages that were
started in round 2i − 2λ are correctly routed to nodes in the swarm corresponding to
the penultimate step i.e., xλ in it’s trajectory w.h.p. via Alg-Routing. This includes
all Join(v, pi+1) messages that were started in round 2i − 2λ. Due to Lemma 7.19 we
know that Di is good w.h.p. Moreover, Si(xλ) are Si(p

i+1
v ) are adjacent. Thus, in round

2i+1 every node in
[
pi+1
v ± 2cλ

n

]
∪
[
pi+1
v
2 ±

3cλ
2n

]
∪
[
pi+1
v +1
2 ± 3cλ

2n

]
received Join(v, pi+1) and

therefore, knows v w.h.p. Particularly, the following is true for every p ∈ [0, 1)

1. Each u ∈ SR
i (p) receives Join(v, p′) for every v ∈ Si+1(p)∪ Si+1(p+

cλ
n ). Therefore,

every u ∈ SR
i (p) knows v ∈ Si+1(p).

2. Each u ∈ SL
i (p) receives Join(v, p′) for every v ∈ Si+1(p) ∪ Si+1(p− cλ

n ). Therefore,
every u ∈ SL

i (p) knows v ∈ Si+1(p).

The proof then follows from the definition of the Handover graph Hi.

We continue with the construction of Di+1. In particular, we show that every mature
node v ∈ V2i+2 creates edge to:
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1. the list neighbors left and right of pi+1
v , and

2. the DeBruijn neighbors left and right of pi+1
v
2 and pi+1

v +1
2 .

The following lemma show that for neighbor v and w in Di+1, w.h.p. there exists at least
one node u that receives the messages Join(v, pt+1

v ) and Join(w, pt+1
w ) in round 2i+ 1.

Lemma 7.27. Let v, w be any two neighbors in Di+1, then w.h.p.

|{u ∈ G2i+1 | u receives (v, pi+1
v ) and (w, pi+1

w )}| ≥ 14

17
cλ,

where G2i+1 ⊆ V2i+1 are the set of good nodes in the round 2i+ 1.

Proof. Consider two nodes v and w with d(pi+1
v , pi+1

w ) ≤ 2cλ
n , i.e., neighbors in Di+1.

W.l.o.g. we assume that pi+1
w is right of pi+1

v and d(pi+1
v , pi+1

w ) = 2cλ
n . We make these

simplifying assumptions since the proof is analogous for the left and right side and any
closer point can only have more nodes for the introduction.

Observe that the last step of the trajectory is traversed in round 2i. Particularly,
Alg-LDS ensures that the message Join(v, pi+1

v ) and Join(w, pi+1
w ) is forwarded to every

node in the interval
[
pi+1
v , pi+1

v + 2cλ
n

]
and

[
pi+1
w , pi+1

w − 2cλ
n

]
, respectively. This is possible

due to the topology of Di. This implies there is an interval I ∈ [0, 1) of length 2cλ
n such

that all nodes belonging to this interval receive both Join(v, pi+1
v ) and Join(w, pi+1

w ) in
round 2i + 1. The claim then follows using Lemma 7.10 that interval I has at least cλ
nodes w.h.p. and Lemma 7.19 that at least 14

17 of those nodes in the interval I are good
nodes and remain until round 2i+ 1 w.h.p.

Using similar arguments as in Lemma 7.27, one can guarantee that there are a good
fraction of nodes in the intervals[

pi+1
v

2
,
pi+1
v

2
+

3cλ

2n

]
,

[
pi+1
v

2
,
pi+1
v

2
− 3cλ

2n

]
,

[
pi+1
v + 1

2
,
pi+1
v + 1

2
+

3cλ

2n

]
, and

[
pi+1
v +1

2 , p
i+1
v +1

2 − 3cλ
2n

]
in Di that received Join(v, pi+1

v ). As a consequence of Lemma 7.27
and step 5 in Alg-LDS, Di+1 is constructed.

Let U(p) ⊂ V2i−2λ be the set of all nodes such that, for each v ∈ U(p), it holds that
pi+1
v ∈

[
p± cλ

n

]
. Now since nodes pick their position in Di+1 uniformly at random, using

Lemma 7.10 we know that |U(p)| ≥ cλ. Furthermore, due to our choice of churn rate,
i.e., (n/16, 2λ + 7) and using Lemma 7.19, at least 14

17 |U(p)| survive until round 2i + 2.
Therefore, both Hi and Di+1 are good.

The next lemma shows that a (2, 2λ+ 7)-late adversary effectively reduces the adver-
sarial churn to a randomized churn as the adversary is oblivious to which nodes belong to
which swarm in any given round.

Lemma 7.28. A (2, 2λ+5)-late adversary enables Alg-LDS construct Di+1 independent
of Di.

Proof. The proof follows from the correctness of Alg-Routing and Alg-LDS. Recall
that in every even round, each mature node in v ∈ M2i−(2λ+2) picks a position piv in Di

for itself and also for the fresh nodes that are connected to them. This is the position
the node v occupies in round 2i i.e., LDS Di. Join(v, piv) is routed using Alg-Routing
and arrives at piv in round 2i− 1 i.e., Hi−1 and then within a round Alg-LDS constructs
Di. Therefore, a (2, 2λ + 5)-late adversary is oblivious to the position of node v until
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round 2i + 2. However, observe that Alg-LDS ensures that the node is at the position
pi+1
v picked uniformly at random from [0, 1)-interval in round 2i+2 and not known to the

adversary. This implies that the position of node v in Di+1 is independent of Di.

Finally, Lemma 7.25 follows from Lemma 7.26, 7.27, and 7.28. This concludes the
analysis of the maintenance algorithm.

Handling New and Fresh Nodes

Algorithm 7 Alg-Random: Handling New & Fresh Nodes.
Desc: In each round t each fresh node connects to δ mature nodes that joined at least

t− (2λ+ 4) rounds ago.
Note: The following code is executed by each node u ∈ V t every round t.

Round t

1: Set δ = 60kλ, τ = 26000kλ.
2: Upon receiving Connect(v) from node v:

if ∃i ∈ [0, 2δ] with ci = ⊥
i←− number chosen uniformly from i ∈ [0, 2δ] with ci = ⊥
ci ←− v Baccept at most 2δ connections from fresh nodes.

3: Upon v joining:
(w1, . . . , wδ)←− δ distinct tokens chosen randomly from T

Send Connect(v) to all w1, . . . , wδ B u sends on behalf of v
(w1, . . . , wδ)←− δ distinct tokens chosen randomly from T

Send Token(w1), . . . ,Token(wδ) to v B Supply v with tokens.
4: Upon receiving Token(v):

if u is mature:
x←− uniformly chosen from {0, 1}
if x = 0:

ci ←− random element from ci, . . . , c2δ
Send Token(v) to ci (or discard if ci = ⊥) BSupply ci with token of v.

else:
T ←− T ∪ {v} B Tokens ready to be used

else if u is fresh:
T ←− T ∪ {v} B Tokens ready to be used.

5: Finally:
if u is fresh:

(w1, . . . , wδ)←− δ distinct tokens chosen randomly from T
Send Connect(u) to all w1, . . . , wδ

else if u is mature:
Send Token(v) to τ random nodes using Algorithm Alg-Sampling.

6: C := (c1, . . . , c2δ)←− (⊥, . . . ,⊥) B Reset ids.
7: T ←− ∅ B Drop unused tokens.

We now present Alg-Random as Algorithm 7. This algorithm ensures that each fresh
node is known by δ ∈ Θ(log n) randomly chosen good mature nodes each round w.h.p. It
uses two types of messages—Token(v) and Connect(v). Both messages only contain
a node’s id. The former is used to spread the mature nodes’ ids, the latter is used to
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7 Overlay Networks under Adversarial Churn

advertise a fresh node’s id to mature nodes. The algorithm is executed in rounds on nodes
set Ft and Mt corresponding to the fresh and mature nodes of round t, respectively. Recall
that every fresh node joins the network via a node which has been in the network for at
least two rounds. This enables the bootstrapping node to update the newly joined node
with ids of Ω(log n) mature nodes and also advertise the id of the newly joined node to
Ω(log n) mature nodes in the overlay in the subsequent round, i.e, line 3 of Alg-Random.
In line 5, each fresh node f ∈ Ft which is at least one round old, advertises its own id to
O(log n) mature nodes in the overlay. In line 2, every such unique advertisement a mature
node receives, is associated with a unique key in [0, O(log n)] and stored in its memory. In
line 5, each mature node m ∈ Mt, uniformly and independently at random samples, i.e.,
sends Token(id(m)) to O(log n) other mature nodes in the overlay using Alg-Sampling.
Each sample id of a matured node received, is either sent to a newly joined node (i.e. less
than a round old and bootstrapped via m) with probability p = 1/2 or is with probability
1 − p forwarded to the id of a fresh node, if available, whose key is picked uniformly at
random from [0, O(log n)], i.e., line 4. Nodes store the received tokens in the variable T .
Furthermore, the array (c1, . . . , c2δ) stores the assignment of tokens to ids of fresh nodes.
It holds ci = v if v’s id is assigned to i. If no id is assigned to i we set ci = ⊥. The set C
consists of all ci 6= ⊥.

Note that at the end of round t a node forgets all its incoming connections from fresh
nodes and the assignment of numbers to ids is reset.

7.5.2 Analysis of Alg-Random

In this section we show that every fresh node is able to send its id to δ mature nodes each
round w.h.p. and thus stays connected to the network. In particular, we set δ = 60kλ,
τ = 26000kλ and prove the following lemma.

Lemma 7.29. Assume that until round t− 1 each fresh node was connected to at least δ
2

good nodes each round. Then, it holds w.h.p. that each v ∈ Ft successfully connects to δ
2

good nodes.

We prove the lemma in several steps. First, we show that each node receives Ω(log n)
tokens w.h.p. Recall that each mature node starts τ tokens in round t − (2λ + 3) that
reach their random destination in round t.

Lemma 7.30. Assume Lemma 7.29 held until round t − 1. Furthermore, let X(θ, v)
denote the event that any token θ reaches v in round t. Then, the following statements
hold:

1. Any token reaches v ∈ Vt with the same probability, i.e.,

Pr[X(θ, v) = 1] = Pr
[
X(θ′, v) = 1

]
.

2. For each token θ, it holds

Pr[X(θ, v) = 1] ≥ 1

32n
.

Proof. We prove each of the statements separately.

1. We extend Lemma 7.23 to fresh nodes and show all token reach a node v ∈ Vt with
the same (but not necessarily uniform) probability. Consider a token θ independently
of its source node and let X(θ, u) indicate that θ reaches u. Furthermore, let Zt−1 ⊂
Mt−1 be the set of all nodes that know v’s id. If v receives θ in round t, then the
following two events must occur:
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(a) The token must be delivered to a mature node z ∈ Zt−1 using Alg-Sampling.
We denote this event as Y (θ, z).

(b) Given any z ∈ Zt−1 received θ, it must forward it to v in round t − 1. We
denote this event as Y z(θ, v).

From Lemma 7.23 we know that for any two tokens θ and θ′,

Pr[Y (θ, z) = 1] = Pr
[
Y (θ′, z) = 1

]
.

Note that for two different z, z′ ∈ Zt−1, the probabilities Pr[Y (θ, z)] and Pr[Y (θ, z′)]
may differ. Moreover, due to Alg-Random for any arbitrary token θ received by
z ∈ Zt−1,

Pr[Y z(θ, v) = 1 | Y (θ, z) = 1] =
1

4δ
.

To finalize the proof, consider two nodes u,w ∈ Vt−(2λ+3) and let θu and θw be tokens
sent by v and w, respectively. Then,

Pr[X(θu, v) = 1] =
∑

z∈Zt−1

Pr[Y (θu, z) = 1 ∩ Y z(θu, v) = 1]

=
∑

z∈Zt−1

Pr[Y (θu, z) = 1] ·Pr[Y z(θu, v) = 1 | Y (θu, z) = 1]

=
∑

z∈Zt−1

Pr[Y (θw, z) = 1] ·Pr[Y z(θw, v) = 1 | Y (θw, z) = 1]

= Pr[X(θw, v) = 1].

Here, the first equality is due to the law of total probability and second equality is
due to Lemma 7.23 and the fact that each mature node z forwards a token to a fresh
node with probability exactly 1

4δ .

2. The fact that Pr[X(v, w) = 1] ∈ Ω( 1n) then follows from three facts:

(a) A token reaches a given mature node with probability at least 1
4n . This follows

directly from Lemma 7.23.
(b) Each fresh node is connected to at least δ

2 mature nodes w.h.p. This follows
because we assume that Lemma 7.29 holds true in round t− 1.

(c) A mature node forwards a token to a connected node with probability 1
4δ . Recall

that a mature node picks a token from the set of available tokens in T with
probability 1

2δ and then forwards it to a newly connected node with probability
1
2 .

Combining these three facts yields the result. Formally:

Pr
[
X(θ, v) = 1 |

∣∣Zt−1

∣∣ ≥ δ/2
]
=

∑
z∈Zt−1

Pr[Y (θ, z) = 1] ·Pr[Y z(θ, v) = 1 | Y (θ, z) = 1]

≥
∑

z∈Zt−1

1

4n

1

4δ

≥ δ

2

1

4n

1

4δ

≥ 1

32n
.
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Lemma 7.31. Assume Lemma 7.29 held until round t − 1. Furthermore, let X(u, v)
denote the event that any token sent by u reaches v in round t. Then, for τ = 26000kλ
the following statements hold:

1. Each node sends at least one token to node v ∈ Vt with the same probability, i.e.,
∀u,w ∈ Vt−(2λ+3)

Pr[X(u, v) = 1] = Pr[X(w, v) = 1].

2. For each u ∈ Vt−(2λ+3) it holds

Pr[X(u, v) = 1] ≥ τ

33n
.

Proof. We prove the statements separately.

1. Recall that Alg-Random ensures both u and w send τ tokens. We denote these
tokens as θu1 , . . . , θ

u
τ and θw1 , . . . , θ

w
τ . Let X(θ, v) be defined as in Lemma 7.30. The

probability that any of these tokens reach v is given by:

Pr

 ⋃
i=1,...,τ

X(θui , v) = 1

 = 1−Pr

 ⋂
i=1,...,τ

X(θui , v) = 0

.
Since all these tokens are independent, it holds that:

Pr

 ⋂
i=1,...,τ

X(θui , v) = 0

 =
∏

i=1,...,τ

(1−Pr[X(θui , v) = 1]) .

The same holds respectively for Pr
[⋂

i=1,...,τ X(θwi , v) = 0
]
. Putting these observa-

tions together we get that,

Pr[X(u, v) = 1] = Pr

 ⋃
i=1,...,τ

X(θui , v) = 1

 = 1−Pr

 ⋂
i=1,...,τ

X(θui , v) = 0


= 1−

∏
i=1,...,τ

(1−Pr[X(θui , v) = 1])

= 1−
∏

i=1,...,τ

(1−Pr[X(θwi , v) = 1])

= 1−Pr

 ⋂
i=1,...,τ

X(θwi , v) = 0

 = Pr

 ⋃
i=1,...,τ

X(θwi , v) = 1


= Pr[X(w, v) = 1].

This was to be shown.

2. For any pair of v and u, the probability is lower bounded by

Pr[X(u, v) = 1] = 1−Pr[X(u, v) = 0]

= 1−
∏

i=1,...,τ

(1−Pr[X(θui , v) = 1])
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= 1−
(
1− 1

32n

)τ

≥ 1− exp
(
− τ

32n

)
≥ 1−

(
1− τ

32n
+
( τ

32n

)2)
≥ τ

32n
−
( τ

32n

)2
≥ τ

33n

where for the first inequality we use that for m ≥ 1 and |x| ≤ m,(
1 +

x

m

)m
≤ exp(x),

for the second inequality we use the fact that for all x ≤ 1,

exp(x) ≤ 1 + x+ x2,

which are standard exponential function inequalities, and the last inequality follows
from fact that τ ∈ O(log n) and thus τ

32n can be made arbitrarily small for a big
enough n.

Together with our assumptions on the churn rate, we state the following lemma.

Lemma 7.32. Let c ≥ 280k. Let each mature node start τ ≥ 20cλ token, then each fresh
node receives at least τ

100 distinct token with probability at least 1− 1
nk .

Proof. Recall that at least 15
16n mature nodes in round t−(2λ+3) that start τ tokens each.

Hence, the minimal number of nodes that start tokens is at least K := 15n
16 . Fix a node

v and let X1, . . . , XK be the indicator variables that a nodes has a token that reaches v.
Then the expected number of distinct tokens received by node v is given by,

E
[

K∑
i=1

Xi

]
≥

K∑
i=1

τ

33n
≥ 15τn

16 · 33 · n
≥ τ

50
,

where we use Pr[Xi = 1] ≥ τ
33n due to Lemma 7.31. Given that all mature nodes send

their tokens independent of one another, the Chernoff Bound is applicable and the lemma
follows for a big enough c. In particular, it holds for c ≥ 280k,

Pr
[
X ≤ τ

100

]
= Pr

[
X ≤ (1− 1/2)

τ

50

]
≤ exp

(
− τ

4 · 50 · 3

)
≤ exp (−kλ) = n−k.
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Therefore, choosing τ bigger than 20cλ ensures that each fresh node receives roughly
Ω(log n) distinct tokens w.h.p., which it can then use to advertise itself and the new
nodes connected to it. Observe that for each fresh node, Alg-Random connects to δ
many mature nodes. Lemma 7.32 then gives us an estimate on the appropriate number
of tokens τ that each mature node sends, so that each fresh node has sufficient number
of tokens. Then, in the following we can conveniently assume that each fresh node sends
a connection request to δ mature nodes. However, these requests can still fail for two
reasons:

1. First, the id of the token used for the connections belongs to a node that has already
been churned out.

2. Second, the target has received more than 2δ connection requests and refuses the
connection.

We begin by showing that only a small fraction of connection request are sent to
churned out nodes. In the following lemma we say a node v is θ-good in round t if and
only if v ∈ Vt−(2λ+3) ∩ Vt+2.

Lemma 7.33. Suppose that τ ≥ 26000kλ and δ ≥ 60kλ, then each fresh node has at least
δ
2 connections to good nodes with probability at least 1− 3

nk .

Proof. Fix a node v ∈ Vt that advertises (i.e., connects to a mature node from which
it received a token) itself or a newly joined node. Let the random variable Y denote
the number of all distinct tokens that v received. We have already established that the
number of distinct tokens that a node receives can be subjected to the Chernoff bound.
The same holds for the number of tokens sent by θ-good nodes. Due to its lateness the
adversary cannot anticipate where a node will send its tokens. Thus, the tokens of θ-good
are randomly spread to the fresh nodes. Let the random variable G denote the number
of θ-good nodes that sent its token to v. Then, G is the sum independent binary random
variables i.e., for each good node w ∈ Vt−(2λ+3)∩Vt+2

, let Gw ∈ {0, 1} be the indicator for
the event that w sends at least one token with its identifier to v. Then, it holds that
G :=

∑
w∈Vt−(2λ+3)∩Vt+2

Gw and all Gw’s are independent.
Recall that at least n

(
1− 1

16

)
and at most n

(
1 + 1

16

)
nodes started tokens 2λ + 3

rounds ago. Since at most n/16 nodes that started a token are churned out until round
t + 2, it holds that

(
15
16

)2
n is a lower bound on the number of θ-good nodes that started

tokens 2λ+ 3 rounds ago.
Fix a mature node w that sent a token 2λ+3 rounds ago. From Lemma 7.31 we know

that p ∈ [ τ
33n ,

τ
n ] is the probability that at least one token from w reaches v. Then,

E[G] ≥ p

(
15

16

)2

n.

Furthermore, let
(
Ỹi

)
i∈

[
17n
16

] be {0, 1} random variables such that,

Pr
[
Ỹi = 1

]
=

τ

n

and

Ỹ :=

n
(
1+ 1

16

)∑
i=1

Ỹi.
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Then,

E

n
(
1+ 1

16

)∑
i=1

Ỹi

 = τ

(
1 +

1

16

)
.

We bound from above and below Y and G, respectively. Assume pn ≥ 768kλ, the Chernoff
bound gives us that,

Pr
[
Y ≥ 9

8
pn

]
≤ Pr

[
Ỹ ≥ (1 + 1/17)(1 + 1/16)τ

]
≤ exp

(
− τ

2 · 17 · 16

)
≤ exp (−kλ)
≤ n−k. (7.9)

Pr
[
G ≤ 13

16
pn

]
≤ Pr

[
G ≤ (1− 1/15)

(
15

16

)2

pn

]

≤ exp

(
− 152 · pn
3 · 162 · 152

)
≤ exp (−kλ)
≤ n−k. (7.10)

Therefore, it remains to show that we can choose pn big enough for (7.9) and (7.10) to
hold. Recall that τ

n ≥ p ≥ τ
33n , then for τ ≥ 26000kλ, we have that pn ≥ 768kλ.

Now, we condition on (7.9) and (7.10) being false and denote this event as Z. Node
v picks δ′ = min{δ, Y } of the received tokens at random without replacement. Let
X1, . . . , Xδ′ be binary random variables such that Xj denotes if jth advertisement by v is
successful, i.e., its identifier is advertised to a good mature node. Moreover, (Xi)i∈{1,...,δ′}
are negatively associated [JDP83]. Then, the random variable X =

∑
iXi denotes the

number of tokens drawn corresponding to θ-good nodes. Observe that X is hypergeomet-
rically distributed in Y , G and δ′, i.e., the outcome of X depends on the overall number
of tokens that v received and the number of identifiers of θ-good nodes. Therefore,

E[X | Z] ≥
n
(
1+ 1

16

)∑
g= 13

16
pn

9
8
pn∑

y=0

Pr[G = g, Y = y | Z] · δ′ g
y

≥
n
(
1+ 1

16

)∑
g= 13

16
pn

9
8
pn∑

y=0

Pr[G = g, Y = y | Z] · δ′
13
16pn
9
8pn

= δ′
13
16pn
9
8pn

n
(
1+ 1

16

)∑
g= 13

16
pn

9
8
pn∑

y=0

Pr[G = g, Y = y | Z]

= δ′
13
16pn
9
8pn

= δ′
13

18
.
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The random variable X is negatively associated [JDP83]. Note that for our choice of τ ,
Lemma 7.32 implies that node v receive at least τ

100 distinct tokens. Then, choosing δ′

large enough, in particular, by choosing δ ≥ 60kλ we get,

Pr
[
X ≤ δ

2
| Z
]
≤ Pr

[
X ≤ (1− 5/18)

13

18
δ

]
≤ exp

(
−52 · 13δ

3 · 183

)
≤ exp

(
− δ

60

)
≤ exp (−kλ) = n−k.

Now since Z holds w.h.p., we get,

Pr
[
X ≤ δ

2

]
= Pr[Z] ·Pr

[
X ≤ δ

2
| Z
]
+ Pr[¬Z] ·Pr

[
X ≤ δ

2
| ¬Z

]
≤ Pr[Z] ·Pr

[
X ≤ δ

2
| Z
]
+ Pr[¬Z] · 1

= Pr[Z] ·Pr
[
X ≤ δ

2
| Z
]
+ Pr

[(
Y ≥ 9

8
pn

)
∪
(
G ≤ 13

16
pn

)]
≤
(
1− 1

nk

)
1

nk
+

2

nk
≤ 3

nk
.

The next lemma shows that for our lateness parameters, the adversary cannot antici-
pate the destination of a token.

Lemma 7.34. A (2, 2λ+7)-late adversary enables Alg-Random ensure that every fresh
node is connected to δ

2 mature nodes in each round.

Proof. The proof follows using the correctness of Alg-Routing and Alg-Random. Note
that the adversary is oblivious of the random edges, as they only persist for 2 rounds.
Each mature node disseminates tokens to random positions in the [0, 1) interval. The
tokens arrive at their target node for being sampled after 2λ + 2 rounds. The mature
nodes that receive the tokens forward them to fresh nodes which in turn connect to the
mature nodes to stay connected in the network until they mature themselves. The fresh
nodes then receive new tokens from these connections. The entire process takes 2λ + 5
rounds in total. Therefore, in any given round t, a (2, 2λ + 7)-late adversary is oblivious
to any communication between the fresh nodes and mature nodes, since all connections
established until round t are already defunct, i.e., the adversary is unable to anticipate
which tokens reach a given fresh node. This in turn enables Alg-Random maintain the
invariant every round.

Lemma 7.34 and the churn parameters ensure that there exists a constant size set of
good nodes Gt := Vt−(2λ+3) ∩ Vt+2 that send tokens in round t − (2λ + 3) and are not
churned out until round Vt+2. Therefore, if a node receives enough tokens of good nodes,
it can successfully advertise its identifier w.h.p.

It remains to show that at most 2δ fresh nodes connect to a mature node in any given
round. We first analyze the expected number of incoming connections.

Lemma 7.35. Let A(v, u) denote the event that v advertises itself to u. Then, ∀u,w ∈ Vt

whose respective tokens reach v it holds that,

Pr[A(v, u) = 1] = Pr[A(v, w) = 1].
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7.5 The Maintenance Algorithm

Proof. Fix a fresh node v. We analyze the process of node v advertising itself to a mature
node u in two stages:

1. The token from a mature node u must reach v.

2. v picks the token associated with u for the advertisement.

Let binary random variables Y (u, v) and Y (w, v) denote the event that tokens of u and
w reached v, respectively. By Lemma 7.30 we know that these events have the same
probability, i.e.,

Pr[Y (u, v) = 1] = Pr[Y (w, v) = 1].

Next, observe that the actual choice of the nodes to which the advertisements are sent
to, only depends on the number of distinct tokens available with v. In particular, given
that a node received ` distinct tokens, the probability for one of these tokens to be used
is min

{
1, δ`
}

, i.e.,

Pr[A(v, u) | Y (u, v) = 1] = min

{
1,

δ

`

}
.

This follows from the fact that we draw (up to) δ tokens at random or all tokens if we
received less than δ. Thus, we draw without replacements and observe a multivariate
hypergeometric distribution [Sch00, p. 44].

Let the random variable Nv denote the number of distinct tokens received by v in
round t + (2λ + 3). Since all mature nodes send (at least) one token to v independently
and with same probability p := Pr[Y (u, v) = 1], the value of Nv only depends on the
number of nodes we observe, i.e.,

Pr[Nv = `] =
∑
S⊂Mt
|S|=`

Pr
[⋂
u∈S

Y (u, v) = 1

]
·Pr

 ⋂
u′ 6∈S

Y (u′, v) = 0


=
∑
S⊂Mt
|S|=`

∏
u∈S

Pr[Y (u, v) = 1] ·
∏
u′ 6∈S

Pr
[
Y (u′, v) = 0

]

=

(
|Mt|
`

)
p`(1− p)n−`.

Thus, if we condition on the fact that v already received a token of a certain node, the
probability that this node receives ` − 1 additional tokens from different nodes remains
the same, i.e.,

Pr[Nv = ` | Y (u, v) = 1] =
∑

S⊂Mt\{u}
|S|=`−1

Pr
[ ⋂
u′∈S

Y (u′, v) = 1

]
·Pr

 ⋂
u′′ 6∈S

Y (u′′, v) = 0


=

(
|Mt| − 1

`− 1

)
· p`−1 · (1− p)|Mt|−(`−1)

=
∑

S⊂Mt\{w}
|S|=`−1

Pr
[ ⋂
u′∈S

Y (u′, v) = 1

]
·Pr

 ⋂
u′′ 6∈S

Y (u′′, v) = 0


= Pr[Nv = ` | Y (w, v) = 1].
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Thus, considering all possible outcomes for Nv we get,

Pr[A(v, u) = 1] = Pr[Y (u, v) = 1] ·Pr[A(v, u) | Y (u, v) = 1]

= Pr[Y (u, v) = 1] ·

|Mt|∑
`=1

Pr[Nv = ` | Y (u, v) = 1] ·min

{
1,

δ

`

}
= Pr[Y (w, v) = 1] ·

|Mt|∑
`=1

Pr[Nv = ` | Y (w, v) = 1] ·min

{
1,

δ

`

}
= Pr[Y (w, v) = 1] ·Pr[A(v, w) | Y (w, v) = 1]

= Pr[A(v, w) = 1].

It remains to show that in any given round, a mature node does not receive too
many advertisements. The following lemma bounds the expected number of incoming
connections.

Lemma 7.36. Fix a mature node w that started tokens 2λ + 3 rounds ago. Let X be a
random variable that denotes the number of fresh nodes that advertise themselves to w. It
holds:

E[X] ≤ δ.

Proof. For a fixed node v ∈ Ft and w ∈ Mt, let A(v, w) be the binary random variable
that denotes if v connects to w. Let Av :=

∑
w∈Mt

A(v, w) be the random variable that
counts the total number of advertisements sent out by v. Since each node picks at most δ
tokens, it must hold that,

E[Av] ≤ δ.

Furthermore, linearity of expectation gives us that,

E[Av] =
∑
w∈V

E[A(v, w)] =
∑
w∈V

Pr[A(v, w) = 1].

Using Lemma 7.35 we also know that for all w, u ∈Mt,

Pr[A(v, w) = 1] = Pr[A(v, u) = 1].

Now we combine our observations to bound from above Pr[A(v, w) = 1].

δ ≥ E[Av] =
∑
w∈V

E[A(v, w)]

=
∑
w∈V

Pr[A(v, w) = 1]

= |Mt| ·Pr[A(v, w) = 1].

Therefore,

Pr[A(v, w) = 1] ≤ δ

|Mt|
.
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Let X be a random variable that counts the number of incoming connections to the node
w. Then, due to our choice of churn parameters α and κ,

E[X] =
∑
v∈Ft

E[A(v, w)] ≤ |Ft| ·
δ

|Mt|
≤ δ.

Using Lemma 7.36 the following lemma bounds from above the total number of adver-
tisements received by a mature node in any given round.

Lemma 7.37. Each mature node receives at most 2δ advertisements from fresh nodes
w.h.p.

Proof. Fix a mature node w ∈Mt and let the random variable Xv ∈ {0, 1} denote whether
v ∈ Ft sends an advertisement to w. Then, the random variable X :=

∑
v∈Ft

Xv denotes
the total number of fresh nodes that advertise themselves to w. Furthermore, let A,B ⊂ Ft

be two disjoint subsets of fresh nodes and define random variables XA :=
∏

v∈AXv and
XB :=

∏
v∈B Xv. We prove the following:

a) E[XA ·XB] ≤ E[XA] ·E[XB].

b) (Xv)v∈Ft are negatively correlated.

As a consequence of (b) and Lemma 7.36, we apply Chernoff bound on the random
variable X to prove the lemma.

To prove (a), observe that,

E[XA ·XB] ≤ E[XA] ·E[XB]

⇐⇒ E[XA ·XB]−E[XA] ·E[XB] ≤ 0

⇐⇒ Cov(XA, XB) ≤ 0.

Therefore, it is sufficient to prove that Cov(XA, XB) ≤ 0.

Consider the following scenario in which we denote all tokens sent by w as red tokens
and the tokens sent by all other nodes as blue tokens. Let Rv ∈ {0, 1} be the random
variable that indicates that v ∈ Ft received a red token. Furthermore, let Bv count the
number of distinct blue tokens not received by v. Thus, the set Y := (Rv ∪Bv)v∈Ft

completely characterizes the distribution of tokens to nodes.
Using the closure properties of NA, one can show that the set Y := (Rv ∪Bv)v∈Ft

is
NA.

For each red token θwi with i ∈ [τ ], define indicator random variables (Z(θwi , v))v∈Ft

such that, Z(θwi , v) = 1 if θwi reaches v, and 0 otherwise. Observe that for any fixed token
θw belonging to node w, there is at most one v ∈ Ft such that, X(θw, v) = 1 and all
others are 0, as a token is delivered to at most one node. Therefore, Lemma 7.6 gives us
that for each token θwi with i ∈ [τ ], the set (Z(θwi , v))v∈Vt

is negatively associated. Using
Proposition 7.4 we can conclude that the set of random variables (Z(θwi , v))v∈Vt,i∈[τ ] are
negatively associated. The variable Rv is now defined as follows:

Rv :=

{
1 if

∑τ
i=1 Z(θwi , v) > 0

0 else
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Since Rv is monotonically increasing in
∑τ

i=1 Z(θwi , v), using Proposition 7.5 we remark
that the random variables (Rv)v∈Ft

are negatively associated.
For the blue tokens, we adapt to the fact that we count the distinct identifiers that

were not delivered to a node v. Therefore, we define Z ′(θ, v) := 1−Z(θ, v) as a monotone
decreasing function. In particular, we set Z ′(θ, v) = 0 if θ reaches v, and 1 otherwise. Since
for any u ∈ Vt \ {w}, the random variables (Z(θui , v))v∈Vt,i∈[τ ] are negatively associated,
so are (Z ′(θui , v))v∈Vt,i∈[τ ],u∈Vt\{w}. For each node u ∈ Vt \ {w} define Bu

v to be binary
variable indicating if any token of u reached v. Thus, Bu

v equals 1 if all τ tokens of u
missed v. That is,

Bu
v :=

{
1 if

∑τ
i=1 Z

′(θui , v) = τ

0 else

Again, since Bu
v is an increasing function on

∑τ
i=1 Z

′(θui , v) and Bv :=
∑

u∈Vt
Bu

v , using
Proposition 7.4 and Proposition 7.5 we remark that the random variables (Bv)v∈Ft and
therefore, Y are negatively associated.

Furthermore, observe that for any fixed distribution of tokens to fresh nodes, i.e., for
any given realization of Y , the expected value E[Xv | Rv, Bv] of each Xv only depends on
the variables Rv and Bv. In particular, each E[Xv | Rv, Bv] monotonically rises in both
Rv and Bv and is given by,

E[Xv | Y = (Rv, Bv)] = Pr[Xv | Y = (Rv, Bv)]

=
Rv

Rv + (m−Bv)
,

where m is the total number of nodes in round t− (2λ+ 3) that sent blue tokens.
Now observe that the random variables (Xv)v∈Ft are mutually independent given Y .

Thus, given two disjoint subsets A,B ⊂ Ft, the functions f(YA) := E[XA|Y ] and g(YB) :=
E[XB|Y ] monotonically rise in disjoint subsets YA = (RA ∪ BA) and YB := (RB ∪ BB),
respectively. That is,

f(YA) := E[XA | Y ] = E
[∏
v∈A

Xv | Y

]
=
∏
v∈A

E[Xv | Y = (Rv, Bv)] =
∏
v∈A

Rv

Rv + (m−Bv)
.

By the law of total covariance (c.f. [Rud09]), it holds that,

Cov(XA, XB) = E[Cov(XA, XB) | Y ] + Cov(E[XA | Y ],E[XB | Y ])

Note that E[Cov(XA, XB) | Y ] = 0, since (Xv)v∈Ft are independent given Y [Par17].
Thus, it holds:

Cov(XA, XB) = Cov(E[XA | Y ],E[XB | Y ]).

It remains to show that this term is smaller than 0. Recall that f(YA) := E[XA|Y ]
and g(YB) := E[XB|Y ] are monotonically increasing function on disjoint subsets YA and
YB, respectively. Furthermore, we showed that the random variables Y are negatively
associated. Therefore, using Proposition 7.4 its holds that f(YA) and g(YB) are negatively
associated. Then, Definition 7.2 implies,

Cov(f(YA), g(YB)) ≤ 0.

Therefore,
Cov(E[XA|Y ],E[XB|Y ]) = Cov(f(YA), g(YB)) ≤ 0.
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The proof of (b) follows immediately from (a). Pick any set S ⊆ Vt. Given that (a) is
true for any disjoint subsets of Vt, using induction we get,

E
[∏
v∈S

Xv

]
≤
∏
v∈S

E[Xv].

This implies that (Xv)v∈Ft are negatively correlated [Sch00].

Using Lemma 7.36, we know that E[X] ≤ δ. Therefore,

Pr[X > 2δ] = Pr
[
X >

2δ

E[X]
E[X]

]
= Pr

[
X >

(
1 +

(
2δ

E[X]
− 1

))
E[X]

]
.

Note that δ
E[X] ≥ 1. Therefore, we use the third bound from Lemma 7.7 for parameters

bigger than 1. Thus, for our choice of δ, in particular for all δ ≥ 3kλ we get that,

Pr[X > 2δ] ≤ exp

−
(

2δ
E[X] − 1

)
E[X]

3


= exp

(
−(2δ −E[X])

3

)
≤ exp

(
−(2δ − δ)

3

)
= exp

(
−δ

3

)
≤ exp (−kλ)

=
1

nk
.

7.5.3 Congestion

We now bound the total congestion per node per round due to Alg-LDS and Alg-Random.

Lemma 7.38. Algorithms Alg-LDS and Alg-Random have congestion of O(log3 n) per
node and round w.h.p.

Proof. We observe the number of messages due to Alg-LDS and Alg-Random invoking
Alg-Routing. We observe the two subroutines Alg-LDS and Alg-Random separately.

1. In Alg-LDS each round every mature starts three routing requests for itself and
three routing requests on behalf of each fresh node connected to it. Since there are
at most 2δ fresh nodes connected to a mature node w.h.p., a given mature node
starts O(log n) routing requests.

2. In Alg-Random each round every mature starts O(log n) tokens per round. Each
token corresponds to one routing request.

Using Lemma 7.18 that each routing takes O(log n) rounds and Lemma 7.22 that for each
routing request Alg-Routing has a congestion of O(log n) per round, Alg-LDS and
Alg-Random together have congestion O(log3 n) per round.

Now we observe the remaining operations performed each round.
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1. Observe that each node in the swarm only receives message either from nodes in
its own swarm or its two neighboring swarms. For any given routing instance using
Alg-Routing, there are at most O(log n) trajectories that cross a node in any given
round. This implies that there are at most O(log3 n) messages that arrive at a node
per round.

2. Recall that each swarm is of size O(log n) w.h.p. Thus, during the introduction
step in Alg-LDS each mature node introduces O(log n) nodes to their O(log n)
neighbors. Resulting in a congestion of O(log2 n) additional messages per node.

3. In Alg-Random each node, w.h.p., receives O(log n) tokens through the sampling
algorithm and forwards them to fresh nodes. Additionally, each fresh node sends out
O(log n) advertisements. Thus, altogether each node exchanges O(log n) messages.

Theorem 7.24 now follows from lemmas 7.25, 7.29 and 7.38.

138



Chapter 8

Conclusion and Open Problems

We presented an algorithm that computes approximate pure Nash equilibria in conges-
tion games with significantly improved approximation guarantee. The most interesting
question which was the initial motivation for the algorithm we presented in Chapter 2 is
the complexity of approximate pure Nash equilibria. We find it very surprising that our
technique yields such a significant improvement, e.g., for linear congestion games from 2
to 1.61, by using essentially the same algorithm of Caragiannis et al. [CFGS11]. However,
the algorithmic technique is only limited by the lower bound for approximation factor of
the stretch implied in Roughgarden [Rou14]. Hence, further significant improvements may
need new algorithmic ideas. On the lower bound side, not much is known for linear or
polynomial congestion games. The only computational lower bound for approximate pure
Nash equilibria is from Skopalik and Vöcking [SV08] using unnatural and arbitrarily steep
cost functions.

In Chapter 3 we extended the technique discussed in Chapter 2 and proposed an elegant
and simple mechanism to compute robust load dependent cost functions that improve the
inefficiency of equilibria in congestion games. We believe that the technique of perturbing
the instance of an (optimization) problem such that a simple local search heuristic (or an
equilibrium) guarantees an improved approximation ratio, can be applied to other strategic
games as well. It would be interesting to see, whether one can achieve similar results for
variants and generalizations of congestion games such as weighted [AAE05], atomic- or
integer-splittable [Ros73b, RS11b] congestion games, scheduling games [CQ12, GLMM10,
CCG+15], etc. Considering other heuristics such as greedy or one-round walks [CMS12,
BFFM11, KST19, BV17] would be another natural direction.

To the best of our knowledge, the problem of computing the social optimum of an in-
stance of a scheduling problem with machine dependent priority discussed in Chapter 4 is
a relatively new variant of scheduling with precedence constraints, that has not been stud-
ied extensively. The main difference from classical scheduling with precedence constraints
is that a priority list determines the scheduling priority for jobs on a specific machine,
rather than for the entire schedule. Therefore, it is not possible to adopt known ideas
and techniques. We showed that for arbitrary priority list and identical parallel machines
the problem is both NP-hard and APX-hard. For global priority list we showed similar
hardness results for unrelated parallel machines. In case of identical machines, we proved
the existence of a QPTAS using a reduction to an instance of a fixed order scheduling
problem mentioned in Bosman et al. [BFO+19]. For the case of 2 machine scheduling with
global priority list, we showed that the problem can be solved optimally using a dynamic
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8 Conclusion and Open Problems

programming approach. This leaves us with many open questions, e.g., the hardness for
the case of identical machines and global priority list. Another interesting direction is to
study a constant factor approximation algorithm for these problems, especially when the
machines have arbitrary priority lists.

Traditional analysis of coordination mechanisms assumes that jobs assigned to some
machine are processed according to some policy, such as shortest or longest processing
time. In Chapter 5 we investigated the effects of having a different scheduling policy,
given by an arbitrary priority list, for every machine. We showed that in general, a pure
Nash equilibrium schedule may not exist, and it is NP-hard to identify whether a given
game has a pure Nash equilibrium. On the other hand, for several important classes of
instances, we showed that a pure Nash equilibrium exists and can be computed efficiently,
and we bounded the equilibrium inefficiency with respect to the common measures of
minimum makespan and sum of completion times. We also showed that natural dynamics
converge to a pure Nash equilibrium for all these classes. In terms of computational
complexity, we proved that even for the simple class of identical machines, for which a
pure Nash equilibrium can be computed efficiently, it is NP-hard to compute a pure Nash
equilibrium whose quality is better than the quality of the worst pure Nash equilibrium.
Our work leaves open several interesting directions for future work. Particularly, since our
game may not have a pure Nash equilibrium, it is natural to consider weaker notions of
stability. The existence and complexity of an approximate pure Nash equilibrium profiles
is still open. We also studied the natural generalization of scheduling games with priority
list, i.e., weighted congestion games with priority list in which players have an arbitrary
strategy space and the cost of a player is the sum of the cost for the resources used, where
each resource has its own priority list. Rosenthal [Ros73a] proved using a potential function
argument that traditional congestion games always exhibit a pure Nash equilibrium. In
Chapter 6 we showed that with the inclusion of priority lists, the game does not posses
a potential function. In fact, it is NP-complete to decide if an instance has a pure Nash
equilibrium. An interesting future direction would then be to investigate existence of an
approximate potential function.

When designing large scale distributed networks, it is imperative to consider the un-
predictable user/node dynamics. Strategic users of the system may join and leave the
network in a manner that could potentially disconnect the network. In Chapter 7 we
modeled the unpredictable strategic situation using an adversary. We presented an al-
gorithm that maintains a structured overlay in presence of a (2, O(log n))-late adversary
with high churn rate. We believe that there is a strong connection between an adversaries
lateness with regard to the topology and the churn rate. This leaves many interesting
future directions for research. For instance, one could consider finding an algorithm that
tolerates a (1, O(log n))-late adversary. Also, one could consider a hybrid model where
the adversary has almost up-to-date information about some nodes, but is more outdated
with regard to others.
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Appendix A

Source Code

1 from gurobipy import *
2

3 N2=10
4 ZMAX=101
5

6

7 for Z in range(100,ZMAX): #set subset size range Z
8 for N in range (200,201): #set number of players N
9 for d in range(3,4): #set polynomial degree range ((d-1),d)

10 f = {}
11 primal=Model('Primal');
12 g = primal.addVar(obj=1, vtype=GRB.CONTINUOUS , name="Gamma")
13 c = primal.addVar(obj=0, vtype=GRB.CONTINUOUS , name="C")
14 for n in range(0,N+1+N2+Z+1000):
15 f[n] = primal.addVar(obj=0, vtype=GRB.CONTINUOUS , name="f[%s]"%n)
16

17 primal.setParam('OutputFlag', 0)
18 primal.setParam('NumericFocus',3)
19 primal.update()
20

21 primal.addConstr(g - f[1] >= 0)
22

23 for n in range(0,N+1):
24 for m in range(0,N+1):
25 for z in range(0,Z+1):
26 if(d==2):
27 primal.addConstr((((m+z) * ((m+z)+1)*0.5) - (z * (z+1)*0.5))
28 * g - m * f[n + z + 1] + n * f[n + z] >= (((n+z) * ((n+z)+1)*0.5)
29 - (z * (z+1)*0.5)))
30 if(d==3):
31 primal.addConstr((((m+z) * ((m+z) + 1)*(2*(m+z)+1)/6)
32 - (z * (z + 1)*(2*z+1)/6)) * g - m * f[n + z + 1] + n * f[n + z]
33 >= (((n+z) * ((n+z) + 1)*(2*(n+z)+1)/6)
34 - (z * (z + 1)*(2*z+1)/6)))
35

36 if(d==4):
37 primal.addConstr((g * (((m+z) **2 * ((m+z) + 1)**2 / 4)
38 - (z **2 * (z + 1)**2 / 4))) - (m * f[n + z+ 1]) + (n * f[n+ z])
39 >= (((n+z) **2 * ((n+z) + 1)**2 / 4)
40 - (z **2 * (z + 1)**2 / 4)))
41 if(d==5):
42 primal.addConstr ((g * ((((m+z)*((m+z)+1)*(2*(m+z)+1)
43 *(3*((m+z)**2) + 3*(m+z) -1))/30)
44 - ((z*(z+1)*(2*z+1)*(3*(z**2) + 3*z -1))/30)))
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45 - (m * f[n + z+1]) + (n * f[n+z])
46 >= ((((n+z)*((n+z)+1)*(2*(n+z)+1)*(3*((n+z)**2)
47 + 3*(n+z) -1))/30)-((z*(z+1)*(2*z+1)*(3*(z**2) + 3*z -1))/30)))
48 if(d==6):
49 primal.addConstr((g * ((((m+z)**2*(((m+z)+1)**2)*(2*((m+z)**2)
50 + 2*(m+z) -1))/12)-((z**2*((z+1)**2)*(2*(z**2) + 2*z -1))/12))
51 - (m * f[n + z +1]) + (n * f[n+z])
52 >= ((((n+z)**2*(((n+z)+1)**2)*(2*((n+z)**2) + 2*(n+z) -1))/12)
53 - ((z**2*((z+1)**2)*(2*(z**2) + 2*z -1))/12))))
54 if(d==7):
55 primal.addConstr((g * ((((m+z) * (1 + (m+z)) * (1 + 2*(m+z))
56 * (1 - 3*(m+z) + 6*(m+z)**3 + 3*(m+z)**4))/42)-((z * (1 + z)
57 * (1 + 2*z) * (1 - 3*z + 6*(z**3) + 3*(z)**4))/42))
58 - (m * c* (n + z +1)**6) + (n * c*(n+z)**6)
59 >= ((((n+z) * (1 + (n+z))* (1 + 2*(n+z))* (1 - 3*(n+z)
60 + 6*(n+z)**3 + 3*(n+z)**4))/42) - ((z * (1 + z) *(1 + 2*z)
61 * (1 - 3*z + 6*(z**3) + 3*(z)**4))/42))))
62

63 for n in range(0,N+N2+1+Z+500):
64 primal.addConstr(f[n+1] - f[n] >= 0)
65

66 for n in range(N+1,N+N2+1+Z+600):
67 primal.addConstr(f[n] - c*(n**(d-1)) >= 0)
68 primal.addConstr(f[n] - c*(n**(d-1)) <= 0)
69

70 primal.presolve()
71 primal.optimize()
72

73 print('d:', (d-1), 'Primal objective:', primal.objVal)

Listing A.1: Python source code to compute strong smooth cost functions.
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1 from gurobipy import *
2

3 N2=100
4 for N in range(200, 201): #set number of players N
5 for d in range(2, 7): #set polynomial degree range
6 f = {}
7 primal = Model('Primal')
8 g = primal.addVar(obj=1, vtype=GRB.CONTINUOUS , name="Gamma")
9 c = primal.addVar(obj=0, vtype=GRB.CONTINUOUS , name="C")

10 for n in range(0, N + 1 + N2 + 1):
11 f[n] = primal.addVar(obj=0, vtype=GRB.CONTINUOUS , name="f[%s]" % n)
12

13 primal.setParam('OutputFlag', 0)
14 primal.setParam('NumericFocus', 0)
15 primal.update()
16

17 primal.addConstr(g - f[1] >= 0)
18

19 for n in range(0, N + 1):
20 for m in range(0, N+N2 + 1):
21 primal.addConstr((m ** d) * g - m * f[n + 1] + n * f[n] >= (n ** d))
22

23 for n in range(0, N + N2 + 1):
24 primal.addConstr(f[n + 1] - f[n] >= 0)
25

26 for n in range(N + 1, N + N2 + 1):
27 primal.addConstr(f[n] - c * (n ** (d - 1)) >= 0)
28 primal.addConstr(f[n] - c * (n ** (d - 1)) <= 0)
29

30 primal.presolve()
31 primal.optimize()
32

33

34 print('d:', (d-1), 'Primal objective:', primal.objVal)

Listing A.2: Python source code to compute robust load dependent tax functions.
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