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Abstract

Landslides are common natural hazards occurring around the world. They pose
an ongoing threat to lives, properties, and environment. Driven by the practical
need to predict hazards of future landslides and design mitigation strategies, various
physics-based landslide run-out models have been developed in the past decades.
To achieve reliable and transparent simulation-based risk assessment and mitiga-
tion design, comprehensive understanding of the various uncertainties associated
with these models is required. However, advanced statistical methods that are ca-
pable of properly addressing the uncertainties are often not applicable due to the
computational bottleneck resulting from the relatively long run time of a single sim-
ulation and the large number of necessary simulations. To address the research gap,
new methodologies are developed and studied in this thesis. They make up a uni-
fied framework that allows us to systematically, routinely, and efficiently investigate
both forward and inverse problems resulting from the various uncertainties.
Chapter 1 introduces the background, frames the research gap, and motivates
this study. Chapter 2 and 3 present theories of the two essential components of
the unified framework, namely physics-based landslide run-out models and data-
driven Gaussian process emulators. Chapter 4 presents a new methodology for ef-
ficient variance-based global sensitivity analyses of landslide run-out models. The
methodology couples depth-averaged landslide run-out models, variance-based sen-
sitivity analyses, robust multivariate Gaussian process emulation techniques, and an
algorithm accounting for the emulator-uncertainty. Its feasibility and efficiency are
validated by a case study based on the 2017 Bondo landslide event. The results
show that it can recover common findings in the literature and provides further
information on interactions between input variables along the full flow path. Chap-
ter 5 presents a new methodology for efficient parameter calibration of landslide
run-out models. It is developed by integrating depth-averaged landslide run-out
models, Bayesian inference, Gaussian process emulation, and active learning. A
case study using the new method is conducted based on the 2017 Bondo landslide
event with synthetic observed data. The results show that the method is capable of
correctly calibrating the rheological parameters and greatly improving the compu-
tational efficiency. Chapter 6 is devoted to uncertainty quantification of landslide
run-out models. The focus is put on topographic uncertainty which is mostly over-
looked in current practice. Two types of geostatistical methods are used to study
the impact of topographic uncertainty on landslide run-out modeling based on the
2008 Yu Tung landslide event. It is found that topographic uncertainty significantly
affects landslide run-out modeling, depending on how well the underlying flow
path is represented. In addition, the close relation between the two geostatistical
methods and Gaussian processes is revealed. Based on it, a new method that em-
ploys Karhunen-Loeve expansion to reduce the dimensionality of topographic un-
certainty is proposed. It has great potentials to make Gaussian process emulation
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also applicable for high-dimensional topographic uncertainty and therefore allows
us to treat topographic uncertainty within the unified framework. Chapter 7 pro-

vides concluding remarks and recommendations for future work.



Zusammenfassung

Erdrutsche sind eine weltweit hdufig auftretende Naturgefahr. Sie stellen eine stan-
dige Bedrohung fiir Leben, Eigentum und Umwelt dar. Aufgrund der Notwendig-
keit, die Gefahren zukiinftiger Erdrutsche vorherzusagen und Strategien zur Scha-
densbegrenzung zu entwickeln, wurden in den letzten Jahrzehnten verschiedene
physikbasierte Auslaufmodelle fiir Rutschungen entwickelt. Um eine zuverldssige
und transparente simulationsbasierte Risikobewertung und Schadeneinddmmung
zu erreichen, ist ein umfassendes Verstindnis der verschiedenen mit diesen Model-
len verbundenen Unsicherheiten erforderlich. Fortgeschrittene statistische Metho-
den, welche in der Lage sind, die Unsicherheiten angemessen zu beriicksichtigen,
sind jedoch aufgrund des Rechenengpasses, der sich aus der relativ langen Lauf-
zeit einer einzelnen Simulation und der grofsen Anzahl notwendiger Simulationen
ergibt, hdufig nicht anwendbar. Um die hieraus resultierende Forschungsliicke zu
schlieflen, werden in dieser Arbeit neue Methoden entwickelt und untersucht. Sie
bilden einen einheitlichen Rahmen, der es ermoglicht, sowohl Vorwértsprobleme
als auch inverse Probleme, die sich aus den verschiedenen Unsicherheiten ergeben,
systematisch, routineméfsig und effizient zu untersuchen.

Kapitel 1 beschreibt den Hintergrund, erldutert die Forschungsliicke und moti-
viert diese Arbeit. In den Kaiteln 2 und 3 werden die Theorien der beiden wesent-
lichen Komponenten des vereinheitlichten Frameworks vorgestellt, namlich phy-
sikbasierte Auslaufmodelle fiir Rutschungen und datengesteuerte Gaufssche Pro-
zessemulatoren. Kapitel 4 prasentiert eine neue Methodik fiir effiziente varianzba-
sierte globale Sensitivitdtsanalysen von Rutschungsmodellen. Die Methodik kop-
pelt tiefengemittelte Rutschungsmodelle, varianzbasierte Sensitivitdtsanalysen, ro-
buste multivariate Gaufische Prozessemulationstechniken und einen Algorithmus,
der die Emulatorunsicherheit bertiicksichtigt. Die Realisierbarkeit und Effizienz wird
durch eine Fallstudie validiert, die auf dem Bondo-Erdrutschereignis 2017 basiert.
Die Ergebnisse zeigen, dass die Methodik allgemeine Erkenntnisse aus der Lite-
ratur reproduzieren kann und weitere Informationen zu Wechselwirkungen zwi-
schen Eingangsvariablen entlang des gesamten Rutschwegs liefert. In Kapitel 5 wird
eine neue Methodik zur effizienten Parameterkalibrierung von Rutschungsmodel-
len vorgestellt. Die Methode wird durch die Integration von tiefengemittelten Rut-
schungsmodellen, bayessche Inferenz, Gaufsscher Prozessemulation und aktivem
Lernen entwickelt. Eine Fallstudie zur Anwendung der neuen Methode wird an-
hand des Bondo-Erdrutsches von 2017 mit synthetischen beobachteten Daten durch-
gefiihrt. Die Ergebnisse zeigen, dass die Methode in der Lage ist, die rheologischen
Parameter korrekt zu kalibrieren und die Recheneffizienz erheblich zu verbessern.
Kapitel 6 ist der Unsicherheitsquantifizierung von Rutschungsmodellen gewidmet.

Der Fokus liegt auf der topografischen Unsicherheit, die in der aktuellen Praxis
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meist {ibersehen wird. Es werden zwei Arten von geostatistischen Methoden ver-
wendet, um die Auswirkungen der topografischen Unsicherheit auf die Modellie-
rung des Erdrutschauslaufs basierend auf dem Yu Tung-Erdrutschereignis 2008 zu
untersuchen. Es wird festgestellt, dass die topografische Unsicherheit die Model-
lierung des Erdrutschauslaufs erheblich beeinflusst, je nachdem, wie gut der zu-
grunde liegende Rutschweg dargestellt wird. Dariiber hinaus wird der enge Zu-
sammenhang zwischen den beiden geostatistischen Methoden und den Gaufsschen
Prozessen deutlich. Darauf aufbauend wird eine neue Methode vorgeschlagen, wel-
che die Karhunen-Loeve-Expan-sion verwendet, um die Dimensionalitdt der topo-
graphischen Unsicherheit zu reduzieren. Diese Methode hat grofles Potenzial, die
Gaufssche Prozessemulation auch fiir hochdimensionale topografische Unsicherhei-
ten anwendbar zu machen und erlaubt daher, topografische Unsicherheit in einem
einheitlichen Rahmen zu behandeln. Kapitel 7 enthélt abschlieffende Bemerkungen
und Empfehlungen fiir zukiinftige Arbeiten.
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ensemble with those of the CSSy—500 ensemble). . . . .. ... ... ..
Consolidated results of all ensembles. The left, middle, and right
columns correspond to ensembles USSy—s500{RMSE = 0.5,1.5,2.5,3.3,
d = 180}, ensembles USSyn—_500{RMSE = 3.3,d = 0,90, 180,270}, and
the ensemble CSSy_so, respectively. The first row shows stacked bar
plots of the potential hazard area’s magnitude based on the proba-
bilistic hazard map for each ensemble (see figures 6.8a and 6.8c). The
second row shows apparent friction angle distribution. The last two
rows show statistics of maximum height and maximum velocity at
channel bottom locations (see figures 6.9c-f). . . ... ... ... ...,
A schematic representation of the emulator-based Monte Carlo-type
uncertainty quantification method (see figure 6.1) extended to high-
dimensional topographic uncertainty. The dashed box and arrows in-
dicate that the Karhunen-Loéve expansion is proposed yet not imple-
mented and applied in thisthesis.. . . ... ................

A schematic illustration of the unified framework developed in this
thesis. It enables us to systematically, routinely, and efficiently inves-
tigate various uncertainties associated with landslide run-out models.
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Chapter 1

Introduction

1.1 Background and motivation

As one of the most common natural hazards, landslides occur frequently around
the world and pose an ongoing threat to lives, properties, and environment. Ac-
cording to the 2005 World Bank report (Dilley et al., 2005), a total of about 3.7 mil-
lion square kilometers land and 5 percent of total world population are subject to
landslide hazards. A report on economic losses, poverty and disasters in 1998-2017
shows that 378 recorded landslides affected 4.8 million people and caused 18414 ca-
sualties and several billion US dollars of economic losses (Wallemacq, 2018). Froude
and Petley (2018) reported that 4862 fatal non-seismic landslides in 2004-2016 killed
in total 55997 people. The left panel of figure 1.1 shows a destructive earthquake-
induced landslide in Las Colinas, Santa Tecla, 2001, which claimed 585 lives (Garcia-
Rodriguez and Malpica, 2010). Moreover, landslide occurrence and risk are expected
to increase as a result of human activities, such as road construction and deforesta-
tion (Skilodimou et al., 2018; Li et al., 2020), and global warming that leads to in-
crease of intensive precipitation events and permafrost melting (Stoffel et al., 2014;
Shan et al., 2015; Gariano and Guzzetti, 2016).

Flow-like landslides that can move at high speeds and travel long distances have
particularly high hazard potentials. The sketch shown in the right panel of figure 1.1
illustrates a typical flow-like landslide run-out process. Certain amount of flow mass
is first initialized by for example an intensive precipitation event or an earthquake.
The flow mass then flows over the topography driven by the gravity and finally
stops and deposits due to friction. In order to assess the hazards and manage the
risk, landslide run-out analyses are commonly conducted to obtain quantities of in-
terest such as run-out distances, impact areas, impact pressures, deposit areas and
volumes, flow heights and velocities, etc. Various models for run-out analyses have
been developed by the geohazard community in past decades, including statistics-
based empirical models and physics-based models.

Statistics-based empirical models are developed by applying statistical regres-
sion analyses to extensive historical data. The aim of this type method is to find cor-
relations between interested quantities for hazard assessment (e.g. run-out distance,

deposit area, etc.) and landslide types, release volumes, topographic characteristics,
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release zone

transit zone

deposit zone

FIGURE 1.1: Left: An earthquake-induced landslide in Las Colinas, Santa Tecla, 2001 (Garcia-
Rodriguez and Malpica, 2010; reproduced under the CC Attribution 3.0 License). Right:
Schematic illustration of a landslide run-out process.

etc. The correlation between the angle of reach and the release volume and the cor-
relation between the deposit area and the release volume are two well-established
examples (McDougall, 2017). This type of method is simple and practical, and is
particularly appealing for rough overviews of landslide hazards at a regional scale
(Pastor et al., 2012; Mergili et al., 2012). They however cannot provide detailed in-
formation on flow dynamics such as spatio-temporally resolved flow heights, flow
velocities, impact pressures, etc. Such information is greatly useful for site-specific
landslide hazard assessment and development of mitigation strategies.

In contrast, physics-based models allow assessing detailed flow dynamics. Due
to the extremely complex nature of landslides, purely physics-based models are rare.
Indeed, the majority of physics-based models used in both academia and practice
are based on depth-averaged shallow flow equations (Pastor et al., 2012; McDougall,
2017; Rauter et al., 2018), also known as equivalent fluid models (Hungr, 1995; Aaron
et al., 2019). More specifically, the heterogeneous flow material is treated as a hypo-
thetical "equivalent fluid” which is governed by simplified rheological relationships
(Hungr, 2009). Such models are on the one hand physics-based, since they are usu-
ally derived based on soil and/or fluid mechanics. On the other hand, they are
semi-empirical since the rheological parameters are more conceptual than physical
(Fischer et al., 2015), which can only be obtained by back-analyzing past landslide
events.

As systematically presented in section 2.3, these physics-based semi-empirical
run-out models require various inputs, including the initial distribution of the flow
mass, topographic data, and rheological parameters. All of them are subject to un-
certainties. It is therefore desirable to develop a unified framework, which allows
systematically and routinely accounting for the uncertainties in these run-out mod-
els. It is an important step towards reliable and efficient model-based landslide haz-
ard mapping and risk management. Advanced techniques that are capable of ad-
dressing the uncertainties should be integrated with the run-out models in the uni-
fied framework, such as global sensitivity analyses (chapter 4), Bayesian inference
(chapter 5), and Monte Carlo-type uncertainty quantification (chapter 6). However,
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the usage of these advanced techniques is greatly hindered by the relatively long
run time of the run-out models, since each of the techniques would require running
a run-out model many (thousands of) times.

A straightforward approach to address the computational bottleneck is parallel
computing and high performance computing. While greatly reducing the total com-
putational time, it usually requires a large amount of computational resources. An
alternative approach is surrogate modeling, also known as metamodeling or emula-
tion. The essential idea of surrogate modeling is to approximate an expensive-to-run
high-fidelity simulation model (also referred to as a simulator) by a cheap-to-run
surrogate model (also known as a metamodel or an emulator). A wide variety of
surrogate modeling methods have been developed in the past decades and been in-
creasingly used by many scientific communities in recent years. Based on how the
high-fidelity simulation model is treated, these methods can be broadly classified
into two families, namely physics-based lower-fidelity modeling and data-driven
response surface modeling (Razavi et al., 2012).

A physics-based lower-fidelity surrogate model is essentially a simplified (cheap-
to-run) model of the original high-fidelity (expensive-to-run) simulation model. It
can be obtained by for example projecting the governing equations of the original
simulation model to a reduced dimension subspace (model order reduction meth-
ods), simplifying the underlying physics modeled by the original model, or simply
reducing the numerical accuracy (Razavi et al., 2012; Asher et al., 2015). This type
of surrogate modeling has great potentials but typically requires modifying codes of
the original simulation model. It therefore does not fit to the purpose of develop-
ing a unified framework for various run-out models and corresponding solvers. In
contrast, data-driven response surface modeling treats the high-fidelity simulation
model as a black box and allows using existing run-out model solvers in a non-
intrusive way. More specifically, a statistical surrogate model is built to mimic the
relationships between inputs of the simulation model and interested outputs (re-
sponses) of the simulation model, solely based on input-output data from a limited
number of simulation model runs. Gaussian process (GP) emulation, a well-known
data-driven approach, is used in this thesis as a key building block of the unified
framework due to its rich theoretical background and its ability to rigorously ac-
count for emulation-induced uncertainty.

In addition to emulating simulation models, GP regression has also been widely
used to study spatial data such as the topographic data involved in this thesis (chap-
ter 6). It is often known as kriging in the field of geostatistics. Detailed theories of
Gaussian processes are presented in chapter 3.

1.2 Research objectives

The various uncertainties need to be comprehensively understood in order to achieve

reliable model-based landslide hazard mapping and risk management. However,
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data-driven Gaussian process emulators

physics-based
landslide run-out models

}

variance-based Bayesian inference Monte Carlo-type
global sensitivity analysis with active learning uncertainty quantification

FIGURE 1.2: A schematic representation of the unified framework (a detailed version is
shown in figure 7.1 in chapter 7).

they are often not properly addressed in current practice. For example, sensitivity
analyses of landslide run-out models are commonly conducted using local one-at-
a-time methods. These local methods cannot assess the interactions between dif-
ferent uncertain factors, which can be greatly helpful for us to better understand
the models. Parameter calibration of landslide run-out models are usually based on
deterministic trial-and-error methods, which overlook the uncertainty of calibrated
parameters. The impact of topographic uncertainty on landslide run-out modeling
has barely been studied in the literature.

To address the research gap, this thesis aims to develop a unified framework
that allows us to systematically, routinely, and efficiently investigate various uncer-
tainties associated with landslide run-out models. A schematic representation of
the framework is shown in figure 1.2. It shows that the unified framework is built
upon two essential components, namely physics-based landslide run-out models
and data-driven Gaussian process emulators. Advanced statistical tools including
the variance-based global sensitivity analysis, Bayesian inference with active learn-
ing, and Monte Carlo-type uncertainty quantification are integrated with the two
core components in order to solve the forward problems (sensitivity analyses and
uncertainty quantification) and inverse problems (parameter calibration) resulting
from the various uncertain factors. More specific objectives of this thesis are as fol-

lows:

e Develop a new methodology that enables efficient global sensitivity analy-
ses of landslide run-out models, by integrating landslide run-out modeling,
GP emulation, and variance-based global sensitivity analyses. Investigate the
model’s sensitivity to uncertain inputs based on a test case.

e Develop a new methodology that allows efficient parameter calibration of land-
slide run-out models, by integrating landslide run-out modeling, GP emula-
tion, Bayesian inference, and active learning. Study the impact of different
observed data on calibration results based on a test case.
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e Develop a new methodology that enables efficient uncertainty quantification
of landslide run-out models, by integrating landslide run-out modeling, Monte
Carlo-type simulation, GP emulation, and Karhunen-Loéve expansion. Quan-
tify the impact of topographic uncertainty on landslide run-out model outputs

based on a case study:.

1.3 Outline

Chapter 2 presents physics-based landslide run-out models. It begins with a liter-
ature review, followed by a detailed mathematical description of run-out models.
Based on the mathematical equations, the model inputs and outputs are presented.
Various uncertainties associated with the run-out models are discussed. This chapter
ends with an emphasis on the research gap regarding landslide run-out modeling.

Chapter 3 presents theories of Gaussian processes. A literature review is first
given, focusing on GP regression in the field of geostatistics and surrogate modeling.
Next, the theory of GP regression is introduced based on a function with a scalar
output, including how a GP posterior can be derived, how the hyperparameters can
be learned, and how to sample from Gaussian processes. Techniques that extend GP
regression to multi-output functions are discussed in the end.

Chapter 4 proposes a new methodology for efficient global sensitivity analyses
of landslide run-out models. It is a slightly modified version of the published paper:
Hu Zhao, Florian Amann, Julia Kowalski. Emulator-based global sensitivity analysis
for flow-like landslide run-out models, Landslides, 18, 3299-3314, 2021. Modifications
to the published paper have been made in this chapter to align it with the other
chapters and to avoid redundancies.

Chapter 4 starts with a literature review and points out the deficiency of com-
monly used one-at-a-time sensitivity analysis methods. Then the theory of Sobol’
sensitivity analysis and the new emulator-based methodology are presented, fol-
lowed by the implementation. After that, a case study based on the 2017 Bondo
landslide event is shown and results are discussed. Next, a short summary is given.
Contribution of each co-author, main modifications to the published paper, and per-
mission to reproduce the publication have been noted at the end of the chapter.

Chapter 5 proposes a new methodology for efficient parameter calibration of
landslide run-out models. The state-of-the-art is first provided and the motivation
is explained. Next, the theory of Bayesian inference and the new emulator-based
Bayesian active learning methodology are presented in detail, followed by the im-
plementation. Then a case study is conducted based on the 2017 Bondo landslide
event with synthetic observed data, and the results are discussed. Last, a short sum-
mary is presented. A manuscript based on the content of this chapter is currently
under review.

Chapter 6 is devoted to uncertainty quantification of landslide run-out models.
The focus is put on topographic uncertainty since it is often neglected in current
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practice and its high dimensionality poses a challenge to the emulation-based frame-
work. This chapter is a modified version of the published paper: Hu Zhao, Julia
Kowalski. Topographic uncertainty quantification for flow-like landslide models
via stochastic simulations, Natural Hazards and Earth System Sciences, 20, 1441-1461,
2020. Modifications to the published paper have been made in this chapter to avoid
redundancies, improve the coherence of this thesis as a whole, and include related
work after the publication.

Chapter 6 first provides a literature review on topographic uncertainty studies.
Next, two types of geostatistical methods are presented and used to study the im-
pact of topographic uncertainty based on the 2008 Yu Tung landslide event. After
that, a new methodology is presented. It uses Karhunen-Loeve expansion to re-
duce the dimensionality of topographic uncertainty and therefore allows addressing
topographic uncertainty in the unified emulation-based framework. Then, a short
summary is presented. Contribution of each co-author, main modifications to the
publication, and permission to reproduce the publication are noted in the end.

Chapter 7 summarizes the conclusions and gives recommendations for future
work.



Chapter 2

Physics-based landslide run-out
models

2.1 Literature review

Driven by the practical need to predict hazards of future landslides and design miti-
gation strategies, various physics-based run-out models have been developed in the
past decades. Aiming at reviewing the state-of-art in landslide run-out models and
assessing their commonality, two benchmarking exercises on landslide run-out anal-
yses have been held in Hong Kong during the 2007 International Forum on Land-
slide Disaster Management and the 2018 second JTC1 (Joint Technical Committee on
Natural Slopes and Landslides) Workshop on Triggering and Propagation of Rapid
Flow-like Landslides respectively. Seventeen different models from thirteen teams
worldwide have been compared during the fist benchmarking exercise and twelve
different models from nine teams have been compared in the second benchmarking
exercise. Detailed summaries of the benchmarking exercises have been published
in the proceedings of the two events (Hungr et al., 2007; Pastor et al., 2018). Other
review work, such as Pastor et al. (2012) and McDougall (2017), also provides an
overview of the various run-out models. Table 2.1 presents a list of selected land-
slide run-out models to date.

The various physics-based run-out models can be broadly classified into lumped
mass models, discontinuum models, and continuum models. In lumped mass mod-
els, the flow mass is assumed to be condensed to a single point. This assumption
greatly simplifies the computation and allows analytical solutions for simple to-
pographies (De Blasio, 2011). This type of model however does not account for
internal deformation of the flow material and spatial distribution of flow dynamics
(Chen and Lee, 2004; Mergili et al., 2012). Discontinuum models are based on dis-
continuum (granular) mechanics. They treat the flow mass as an assembly of parti-
cles and simulate the independent movement of each particle and their interactions.
While being able to directly simulate three-dimensional flow behaviours and impact
forces on structures (Teufelsbauer et al., 2011), discontinuum models are extremely
computationally intensive, especially in the case of complex topographies and large
scale landslide events.
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TABLE 2.1: Selected run-out models (partly based on McDougall, 2017).

Model Basic approach  Solution approach Reference
lumped mass  lumped mass analytical De Blasio (2011)
PFC3D discontinuum distinct element Poisel and Preh (2008)
Tochnog differential finite element Crosta et al. (2003)
3dDMM depth-averaged particle-in-cell Kwan and Sun (2007)
D-Claw depth-averaged finite volume Iverson and George (2014)
DAMPM depth-averaged material point Abe and Konagai (2016)
DAN3D depth-averaged i?gf;g;i;;ﬁftgm{) Hungr and McDougall (2009)
Ei?t\g%g AM depth-averaged finite area Rauter et al. (2018)
FLATModel depth-averaged finite volume Medina et al. (2008)
FLO-2D depth-averaged finite difference O’Brien et al. (1993)
GeoFlow-SPH  depth-averaged SPH Pastor et al. (2009)
GERRIS depth-averaged finite volume Hergarten and Robl (2015)
MADFLOW depth-averaged finite element Chen and Lee (2000)
Massflow-2D  depth-averaged finite difference Ouyang et al. (2013)
MassMov2D  depth-averaged finite difference Begueria et al. (2009)
r.avaflow depth-averaged finite difference Mergili et al. (2017)
r.avalanche depth-averaged finite difference Mergili et al. (2012)
RAMMS depth-averaged finite volume Christen et al. (2010)
RASH3D depth-averaged finite volume Pirulli and Mangeney (2008)
SHALTOP-2D  depth-averaged finite volume Mangeney-Castelnau et al. (2003)
TITAN2D depth-averaged finite volume Pitman et al. (2003)
Xia-Liang depth-averaged finite volume Xia and Liang (2018)

In contrast to discontinuum models, continuum models treat the flow mass as
continuum material rather than as discrete particles. Their governing systems are
derived from classical conservation laws of mass, momentum, and energy using
continuum mechanics. Depending on whether the depth-averaged technique is
employed, continuum models can be further divided into differential models and
depth-averaged models (Hungr et al., 2007). Differential models, such as Tochnog
(Crosta et al., 2003), focus on an element of the flow mass and are able of simulating
fully three-dimensional flow behaviours. They are however computationally inten-
sive and highly demanding on input data (Aaron and Hungr, 2016). Depth-averaged
models focus on a column of the flow mass above the sliding surface by integrating
the governing equations along the flow depth direction. By employing the shallow
flow assumption (namely the flow depth is much smaller than the flow length), the
depth-wise dimension is eliminated from the governing system. Depth-averaged
models are therefore more computationally efficient than differential models.

Depth-averaged models have been proven to be capable of simulating the bulk
behaviour of the flow mass. Validation of these models has been conducted in the
past decades based on analytical benchmarks (Mangeney et al., 2000; Mangeney-
Castelnau et al., 2003; Medina et al., 2008; Pastor et al., 2009; Xia and Liang, 2018),
laboratory and field experiments (Savage and Hutter, 1989; Hungr, 1995; Denlinger
and Iverson, 2001; Mangeney-Castelnau et al., 2003; Medina et al., 2008; Hungr
and McDougall, 2009; George and Iverson, 2014; Xia and Liang, 2018), and historic
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FIGURE 2.1: A sketch of a surface topography z(x, y) in a Cartesian coordinate system {x,y,z}
(based on Fischer et al., 2012). z axis points to the opposite direction of the gravitational
acceleration, namely g = (0,0, —¢)”. The surface induces a local non-orthogonal coordinate
system {T, Ty, Ty}, in which Ty and T, are surface tangent directions and T, denotes the
surface normal direction.

events (Begueria et al., 2009; Christen et al., 2010; Mergili et al., 2012; Mergili et al.,
2017; Rauter et al., 2018; Xia and Liang, 2018). Owing to their good compromise be-
tween computational efficiency and accuracy, depth-averaged models have gained
popularity both in practice and in academia (Rauter et al., 2018). Indeed, the ma-
jority of run-out models to date are depth-averaged models, as shown in table 2.1.
Some of them are available as commercial software, such as RAMMS (Christen et al.,
2010) and FLO-2D (O’Brien et al., 1993). Many others are published as open source
software such as D-Claw (Iverson and George, 2014), faSavageHutterFOAM (Rauter
et al., 2018), GERRIS (Hergarten and Robl, 2015), r.avaflow (Mergili et al., 2017), TI-
TAN2D (Pitman et al., 2003).

2.2 Mechanical and mathematical model

Pioneered by Savage and Hutter (1989), depth-averaged shallow flow type models
have been greatly developed and used for simulating landslide run-out behaviours
in recent decades. The governing system of the models is derived from the mass and
momentum balance of the flow material. It can be expressed in a surface-induced
coordinate system {Ty, Ty, T,; } (see figure 2.1) as follows:
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oth + oy (hut,) + ay(huTy) = Q(x, y, 1), (2.1)
hZ
at(huTx) + 0y <hM2TX +gT,1ka/p2> + ay (huTquy> =grh— Sfo, (2.2)

2

¢ (hut,) + dx(hur,ut,) + 9y <hu2Ty + gnka/p112> = gr,h — S¢1,,- (2.3)
Equation 2.1 represents the mass balance. Equation 2.2 and equation 2.3 represent
the momentum balance in the Ty and T, direction respectively. In the equations, ¢
denotes time; h represents flow height; ur, and ur, denote components of the depth-
averaged surface tangent flow velocity u := (ur,, uTy)T; 8T /8T, and gr, are compo-
nents of the gravitational acceleration g along the surface tangent directions T, and
Ty, and surface normal direction T, respectively.

The mass production source term Q(x, v, ) in equation 2.1 simulates the entrain-
ment process (Christen et al., 2010). Various approaches have been proposed to sim-
ulate the entrainment process including both empirical and process-based methods
(McDougall, 2017), such as Chen et al. (2006), Christen et al. (2010), Iverson (2012),
and Frank et al. (2015). In this thesis, the entrainment process is not taken into ac-
count for simplicity. The developed unified framework and methods in following
chapters can however be easily extended to account for it.

The active/passive earth pressure coefficient k;,, in equations 2.2-2.3 accounts
for the elongation/compression of the flow material in the direction parallel to the
surface. Savage and Hutter (1989) first introduced this concept into depth-averaged
models and defined k,,,, as

2
alp = o2 ¢ {1 F \/1 — (1+tan?d) cos? ¢ | — 1, (2.4)

where ¢ and 6 denote the internal friction angle and bed friction angle respectively.
Equation 2.4 has been implemented in the open source solver r.avaflow (see table 2.1)
which will be used in chapter 4 and chapter 5. Other forms of k,,, have also been
used in run-out models, such as the one based on the Rankine’s theory

ka/p = tan®(45° F %) (2.5)

Equation 2.5 has been implemented in the commercial solver RAMMS (Christen et
al., 2010) which will be used in chapter 6.

The friction terms Sy¢r, and Syr, in equations 2.2-2.3 describe the basal rheology.
A variety of flow resistance laws have been proposed and used in current practice in-
cluding frictional, Voellmy, Bingham, Pouliquen, quadratic, Coulomb-viscous mod-
els, etc., see Naef et al. (2006), Hungr and McDougall (2009), and Pirulli and Man-
geney (2008) for an overview. Among them, the Voellmy model has been widely



2.3. Model inputs and outputs 11

used especially in terms of flow-like landslides. It reads

Uty 82
5 = Ml h + Zlu ’ 2.6
1 = g M+ w7 (2.6)
_ Hny 8 2
Sny - ||u|| ("l/lng]’l + g”uH )I (27)

where p and ¢ denote the dry-Coulomb friction coefficient and turbulent friction
coefficient respectively. The Voellmy model will be used throughout this thesis. It
should be noted that the proposed unified framework can be extended to other rhe-
ological models without loss of generality.

2.3 Model inputs and outputs

The governing system defined in equations 2.1-2.3 describes the time evolution of

the state variables h and u := (ur,, uTy)T. Various input data are required, including:

e Initial distribution of the flow mass. A landslide run-out analysis focuses on the
post-failure motion of the flow mass. It means that the initial state of the state
variables h(x,y,ty) and u(x,y,ty) is needed. The initial velocity u(x,y, to) is
typically zero and the initial distribution of the flow mass h(x, y, ty) determines
the release area and volume. h(x, y, tp) can be given as a shape file (such as in

RAMMS) or a raster map of release heights (such as in r.avaflow).

o Topographic data. The boundary topography on which the released mass flows
is an important input since it determines the components of the gravitational
acceleration gr,, 8T, and gr, in the local surface-induced coordinate system. It
is commonly provided as a digital elevation model (DEM).

e Rheological parameters. The rheological parameters in the rheological models
determine the flow resistance behaviour. In terms of the Voellmy rheology,
they are the dry-Coulomb friction coefficient y and turbulent friction coefti-
cient ¢.

Given the above input data, the governing equations can be solved forward in
time using various numerical methods, such as the finite element method, finite
volume method, finite difference method, finite area method, smoothed particle hy-
drodynamics, material point method, etc., see table 2.1. The essential outputs are the
flow height h and flow velocity u at each space-time grid point. By post-processing
the spatio-temporally resolved h and u, other interested quantities for landslide haz-
ard assessment and mitigation can also be obtained, such as the run-out distance,
angle of reach, apparent friction angle, impact area, deposit area and volume, point-
wise impact pressure, etc. Detailed definitions of these derived outputs will be pro-
vided in the following chapters where these outputs are discussed.
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2.4 Uncertain factors and research gap

When used for assessing and mitigating landslide hazards in practice, these depth-
averaged shallow flow type run-out models involve a variety of uncertainties. The

sources of uncertainties are as flows:

o Uncertainty of the initial mass. The release area and volume of a future landslide
event is hardly predictable due to the complex geological pre-conditioning fac-
tors and a lack in the subsurface information. The estimation of the release
area and volume still largely depends on expert experience. Probability den-
sity functions based on statistical properties of landslide inventories have also
been proposed to approximate them (Quan Luna et al., 2013).

o Uncertainty of topographic data. Topographic data in the form of a digital eleva-
tion model are commonly based on remote sensing. Due to errors introduced
during source data acquisition and data processing, topographic data are also
subject to uncertainty.

o Uncertainty of rheological parameters. The rheological parameters used in the
run-out models are more conceptual than physical as mentioned in the intro-
duction. They can only be obtained by back-analyzing past events where field
observation data are available. Using the back-analyzed values of rheological

parameters for future landslide forecasting naturally involves uncertainty.

o Uncertainty of observed data. Observed data here refer to field data of past events
which are used to calibrate the rheological parameters. This type of uncer-
tainty is only concerned in the back-analyzing procedure but not in simulation-

based landslide run-out forecasting.

The uncertainties have not been properly addressed in current practice. For ex-
ample, the sensitivity of run-out models to the uncertain factors is commonly based
on one-at-a-time sensitivity analyses which cannot explore the whole input space
and account for interactions (see chapter 4). Rheological parameters are usually cal-
ibrated by trial-and-error calibration methods which ignore their uncertainty (see
chapter 5). The impact of topographic uncertainty on landslide run-out modeling
has barely been studied in the literature (see chapter 6). This may be partially due
to the computational bottleneck resulting from the large number of simulation runs
that are needed to properly address the uncertainties. To date, there is no unified
framework that can systematically account for the various uncertainties.

Understanding the impacts of the various uncertainties and the ability of con-
sidering the uncertainties in a systematical and routine way are desirable due to
the following reasons. First, understanding the impact of the uncertainties (like the
model’s sensitivity to the uncertain factors and their impact on simulation outputs)
is greatly helpful from the viewpoint of model developers. Second, being able to
systematically and routinely consider the uncertainties can significantly benefit the
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usage of the run-out models from the viewpoint of practitioners. Lastly but most im-
portantly, it is an important step towards reliable and transparent simulation-based
hazard mapping, risk assessment, and mitigation strategy design.

I address the above-mentioned research gap in this thesis. The computational
bottleneck is overcome by employing Gaussian process emulation. A unified frame-
work that allows systematically, routinely, and efficiently accounting for the various
uncertainties is developed. Forward problems like global sensitivity analyses and
uncertainty quantification and inverse problems like Bayesian inference of rheolog-
ical parameters can be solved under the unified framework. The open-source run-
out solver r.avaflow (running on LINUX operating systems; Mergili et al., 2017) and
the commercial run-out solver RAMMS (running on WINDOWS operating systems;
Christen et al., 2010) are integrated in the unified framework and used for the case
studies. The unified framework can be easily extended to other run-out models and
solvers as listed in table 2.1 without loss of generality.
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Chapter 3

Gaussian processes

3.1 Literature review

Gaussian processes are a generalization of multivariate Gaussian distributions to in-
finite dimensions. Regression with Gaussian processes has a long history. It dates
back at least to Wiener (1949) who employed Gaussian processes for time series anal-
yses. Later, GP regression has been developed and used in the context of geostatis-
tics, surrogate modeling, machine learning, etc., see Rasmussen and Williams (2006)
for a detailed overview.

In the geostatistics field, GP regression is known as kriging, named after the
South African statistician and mining engineer Danie Krige due to his pioneering
work (Krige, 1951). Kriging represents a family of generalized least-squares regres-
sion algorithms (Goovaerts, 1997). It was originally developed within the geostatis-
tical community from the frequentist perspective (Sacks et al., 1989), see for example
Matheron (1963). A Bayesian interpretation of kriging was later provided by for ex-
ample Omre (1987) and Handcock and Stein (1993). This kind of approach has been
widely used to interpolate spatial data (Cressie, 1993; Goovaerts, 1997; Stein, 1999)
and generate realizations of random fields for uncertainty quantification (Holmes
et al., 2000; Liu et al., 2019). In this thesis, it will be used to address topographic
uncertainty in chapter 6.

In the context of surrogate modeling, GP regression is often referred to as GP
emulation. Studies in this field are mainly driven by the fact that many computer
models (referred to as simulators) can be computationally expensive to run, such
as landslide run-out models described in chapter 2. The aim of GP emulation is to
build cheap-to-run emulators based on input-output data of simulators. This type
of approach has been developed from the Bayesian perspective since 1980s, see for
example Sacks et al. (1989), Currin et al. (1991), and O'Hagan (2006). Many research
efforts have been devoted to estimating the hyperparameters in GP emulators (see
section 3.3) and extending the approach to multi-output simulators (see section 3.6).
There also exists a body of literature regarding how to combine it with advanced sta-
tistical analysis methods such as global sensitivity analyses and Bayesian inference,
which will be discussed in detail in chapter 4 and chapter 5 respectively.
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Kriging and GP emulation are sometimes used interchangeably in the literature,
such as Ba and Joseph (2012) and Maatouk and Bay (2017). To avoid confusion, I
strictly distinguish the two terms. More specifically, kriging is used when it comes
to geostatistics (namely topographic uncertainty in chapter 6), and GP emulation
refers to build cheap-to-run emulators for simulators. The term Gaussian process
regression is used to refer to both kriging and GP emulation.

3.2 Gaussian process regression

Regression represents a family of statistical methods that are designed to estimate
unknown functions and make predictions. Traditional parametric regression meth-
ods, such as linear regression, specify a parametric form for the unknown function
and place priors over the parameters of the form. In contrast, nonparametric re-
gression methods do not predefine the form of the unknown function. Instead, they
place a prior distribution directly over functions (Gershman and Blei, 2012). The
level of complexity of the unknown function is directly determined by the training
data used to update the prior distribution (Schulz et al., 2018).

As a well-known nonparametric Bayesian method, Gaussian process regression
has been effectively used in many real-world applications (Mohammadi et al., 2019).
In this method, the prior distribution over functions is determined by a Gaussian
process. To understand a Gaussian process as a distribution over functions, one can
informally view a function as an infinitely long vector, in which each entry speci-
fies the function value at a specified input (Rasmussen and Williams, 2006). As a
multivariate Gaussian distribution defines a distribution over a vector consisting of
finite random variables, a Gaussian process which is a generalization of a multivari-
ate Gaussian distribution to infinite dimensions defines a distribution over a vector
consisting of infinite random variables. It can therefore be viewed as a distribution

over functions.

3.2.1 Gaussian process prior

Let f(-) denote an unknown function that one wants to estimate. It defines a map-
ping from a p-dimensional input x = (x1,...,x,)T € X C RP to a scalar output
y € R. In geostatistics, x usually consists of two- or three-dimensional spatial co-
ordinates and y represents a quantity of interest that depends on the spatial coor-
dinates such as the elevation error studied in chapter 6. In surrogate modeling of
landslide run-out models, x could consist of uncertain variables such as the rheo-
logical parameters and release volume, and y could be an aggregated scalar output
such as the impact area, see detailed examples in chapter 4. Here, an expensive-
to-run landslide run-out model is viewed as an unknown function since the output
corresponding to an input is unknown unless the run-out model has been run at that

input.
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From the Bayesian perspective, the prior belief of the unknown function f(-) is
modeled by a Gaussian process, namely

f() ~GP(m(-),C(,))- 3.1)
The Gaussian process is fully specified by its mean function m(-) and covariance
function C(-, -). The mean function is usually modeled by parametric regression

q
m(x) =h'(x)B = ;ht(x)ﬁh (3.2)

with g-dimensional vectors h(x) = (h1(x), ha(X), ..., hy(x)) Tand g = (B1, B2, - Bg) T
denoting the known basis functions and unknown regression parameters respec-
tively. The basis functions are commonly chosen as constant h(x) = 1 or some
prescribed polynomials like h(x) = (1,x1,...,x,)T, which correspond to ordinary
kriging and universal kriging respectively (Ba and Joseph, 2012).

The covariance function C(, -) is also known as the covariogram (closely related
to variogram or semivariogram, see section 6.2.2) in the geostatistics field (Cressie,
1993) and the kernel function in the machine learning field (Bishop, 2006). It can be
either stationary or non-stationary. Stationary covariance functions depend only on
the difference between inputs, namely C(x;,x;) = C(x; — X;). As a special case of
stationary covariance functions, isotropic covariance functions only depend on the
distance between inputs, namely C(x;, x;) = C(||x; — xj||). Rasmussen and Williams
(2006) have discussed various isotropic covariance functions in detail, such as ex-
ponential covariance functions, rational quadratic covariance functions, the Matérn
family, etc. New covariance functions can be constructed by modifying and/or com-
bining existing covariance functions, see Rasmussen and Williams (2006) and Bishop
(2006) for detailed techniques.

Isotropic covariance functions are often used in the geostatistics field such as
Holmes et al. (2000), Temme et al. (2009), and Aziz et al. (2012). In the context of
emulating complex simulators, the assumption of isotropy is often too strong (Gu et
al., 2018). Instead, the covariance function is assumed to be stationary and typically
has a separable form of

p
C (Xi,X]‘) = 0'2C (Xl‘,X]') = U'ZHCZ (xz-l, x]-l) ’ (33)
=1

where ¢ (x;, xj) is the correlation function, and ¢; (x;, xj;) corresponds to the correla-
tion between the /-th component of x; and the counterpart of x;. Various correlation
functions can be chosen for ¢ (xil, xﬂ). In what follows a specific correlation func-
tion from the Matérn family is chosen to illustrate the theory. It should be noted that
it can be replaced by any other correlation function without loss of generality. The
Matérn correlation function reads

5|[x; — x; 5|[x; — x;1]|? 5||x;; — x;
] (Xil/le) = <1+\[‘| Z’ ]]H + I ll3¢2 ]lH >exp (—\[H 1;} ﬂ”>, (3.4)
) 1 1

where 1 is the correlation length parameter in the I-th dimension. The unknowns
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in the covariance function C (x;, x;) are the variance 0? and the p correlation length
parameters ¢ = (1,...,¢p)".

3.2.2 Gaussian process posterior

Equations 3.1-3.4 encode prior knowledge of the unknown function f(-). From the
Bayesian viewpoint, this prior knowledge can be updated to a posterior based on a
limited number of training data. Training data here refer to n'” pairs of input-output
data of the function f(-). In terms of topographic uncertainty, the training data con-
sist of spatial coordinates of n'" locations (inputs) and n" elevation errors measured
at those locations (outputs). As for emulation of a landslide run-out model, the train-
ing data consist of n'” model input configurations and corresponding model outputs
by running the landslide run-out model at each input configuration.

Let X" := {x;}/, and y" := {f(x;)}}; denote the training inputs and outputs
respectively. Since any finite number of random variables from a Gaussian process
are jointly Gaussian distributed, the joint distribution of the n'" outputs y'" follow a

nt"-dimensional Gaussian distribution

p(y"|B, 0%, %) ~ Ny (HB,0°R), (3.5)
where H = [h(x1),...,h(x,)]" is the n'" x g basis design matrix and R is the
n'" x n'" correlation matrix with (7,) element c(x;, x;). Equation 3.5 is known as
the likelihood function.

Similarly, the joint distribution of the function output y* at any untried input x*

) (3.6)

where r(x*) = (c(x*,x1),...,c(x*, %)) According to the property of the multi-

and y' follows a (n'" + 1)-dimensional Gaussian distribution

T * - T "
p(y",y" | B,0% ) ~ Ny ([ i P<IX | ] B, [ C<rx(xx>> r i{X)

variate Gaussian distribution, the conditional distribution of y* conditioned on y'"

is again a Gaussian distribution, namely

p(y*ly", B,0% ) ~ N (', %), (3.7a)
m/ — hT(X*)ﬁ + rT(x*)R—l (ytr o Hﬁ), (37b)
¢ = c(x*,x*) — T (x* )R 1r(x*). (3.7¢)

Equations 3.7a-3.7c can be easily extended to any dimensionality since the joint
distribution of the function outputs at any number of untried inputs and y'" also fol-
lows a multivariate Gaussian distribution. Equations 3.7a-3.7c therefore essentially
define the posterior which is an updated Gaussian process, given the unknown re-
gression parameters f8, variance 02, and correlation length parameters 3. The un-
known parameters are also called hyperparameters.

For any new input x*, the output y* can be almost instantaneously predicted by
the mean m’ (equation 3.7b). Moreover, the uncertainty associated with the predic-
tion can be estimated by for example the variance oc’ or the 95% credible interval.
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Depending on how the hyperparameters are treated, the posterior can have various
forms different from equations 3.7a-3.7c which will be introduced in section 3.3.

3.3 Learning the hyperparameters

Learning the hyperparameters B, 0 and ¢ is a fundamental step in Gaussian pro-
cess regression. The most straightforward approach is to find point estimates of the
hyperparameters that maximize the likelihood defined in equation 3.5. The point
estimates are then treated as true values of the hyperparameters and plugged into
equation 3.7a. This is a typical non-Bayesian approach. In contrast, the hyperparam-
eters can be marginalized out from equation 3.7a using a fully Bayesian approach.
There are also approaches between non-Bayesian and fully Bayesian: some of the
hyperparameters are marginalized out and some are based on point estimation. De-

tails on above-mentioned approaches are presented as follows.

3.3.1 Maximum likelihood estimation

The likelihood function defined in equation 3.5 can be explicitly written as

Py 1B, ) = (2 T IR|Fep {50 (57~ H) R (5"~ HB) |
(3.8)
The point estimates 3 wis 03 and §,,; (the subscript ML denotes maximum like-
lihood) that maximize equation 3.8 are the maximum likelihood estimates, namely

Buus, F, Pyar = argmaxin{p(y” | B0, 9)}. 9)
By

Here, the log-likelihood is used to simplify the calculation. The point estimates of

the regression parameters 8,,; and the variance 0%;, can be obtained in close forms

by solving dIn{p(y" | B,c% ¢)}/9B = 0and dIn{p(y"" | B,02,¢)}/dc* = 0. They
are given by

By, = (H'RT'H) 'H'R™'y", (3.10a)
, 1 , B .
O = (v = HBy ) 'RT(y" = HByy ). (3.10b)

The correlation length parameters ¢, ,; do nothave a closed form expression and can
only be determined numerically, i.e. by maximizing equation 3.8 after plugging in
B a, and 0‘]2\/1 ; (Andrianakis and Challenor, 2009; Andrianakis and Challenor, 2011).

Given the maximum likelihood estimation B mps 0% and ¢, , the Gaussian pro-
cess posterior defined in equations 3.7a-3.7c turns to

p(y* | Ytr/ :BML/ &I%ALI lPML) ~N (mML/ &I%ALCML) ’ (3.11a)
mmr = hT(X*)BML + rT(X*)Rfl(Y” - HBML)I (3.11b)

e = c(x*, x*) — T (xR 1r(x*). (3.11¢)
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$ ;. appears in all terms that relate to the correlation function, including c(x*, x*),
r’(x*), and R. Equations 3.11a-3.11c indicate typical kriging equations.

3.3.2 Integrating out

To marginalize the regression parameters B from the GP posterior (equation 3.7a), a
weak prior for B needs to be assumed. It has the form of p(B) o« 1, which can also
be viewed as p(B | 2, ) « 1. The product of the weak prior and the likelihood
(equation 3.8) leads to the posterior of B, namely

p(Bly", 0% ) <p(y” | B.o*, ¢)p(B| > ). (3.12)

Then B can be integrated out from the GP posterior as follows:

P 1Yo 9) = [ o7 1y 8.7 9)p(Bl Y % p)dp. (13)

The marginalization results in a new GP posterior p(y* | y*,¢?, ), conditioned on
the training data, the variance ¢, and the correlation length parameters t.

The remaining hyperparameters o> and 3 in the new GP posterior can be approx-
imated by point estimates that maximize the following marginal likelihood (marginal-
izing B)

P 1% 9) = [Py | Bo% 9)p(B] &% 9)dp. (3.14)

Let 07, and §,,,,; denote the point estimates that maximize equation 3.14. The
subscript represents maximum marginal likelihood (marginalizing ). 63;,,, can be
obtained in a closed form by solving d In{p(y'" | 02, ¢)}/9¢* = 0 and reads

A 1 Ty — 5

O, = i, (V" —HB)'R™(y" ~Hp), (3.15)
where B = (HTR™'H) 'H'R™'y" has the same form as B,,, (equation 3.10a). It
should be noted that the regression parameters  have already been integrated out.

B is merely used to simplify the equations by convention. ¢ MM is not analytically
trackable and requires numerical approximation.

The new GP posterior is completed by plugging 63,,, and ,,,,, into equa-
tion 3.13, and reads

P 1y, 00mr, Painar) ~ N (mame, Oiampcmmi) (3.16a)
myme = h'(x*)B+ 1" (x* )R (y" — HP), (3.16b)
cmmr = c(x*, x*) — T (x*)R71r(x*) + (rT(x*)R_lH — hT(x*))

T (3.16¢)
x (HTR1H)! (rT(x*)R’lH - hT(x*)) .

P M is included in all terms that relate to the correlation function, including c(x*, x*),
T (x*), and R.
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3.3.3 Integrating out 8 and ¢

Similar as the marginalization of the regression parameters B, the variance 0 can

be further integrated out from equation 3.13 by assuming a weak prior for 02. The
weak prior is given by p(0?) « (¢?)~! and can be treated as p(¢? | ¢)  (02)~1. The
posterior of 02 is obtained by using the Bayes’ theorem, namely

p(a® | y", ) < p(y" | 0% )p(c® | ), (3.17)

where the first term on the right hand side is given by equation 3.14. Then ¢ can be

marginalized from equation 3.13 by

P 1Y) = [ 1y, p(e? |y, e (318)

The marginalization of 02 leads to a new GP posterior p(y* | y', %), which is no
longer a Gaussian process but a Student’s-t process.

The left hyperparameters ¢ in the Student’s-t process can be approximated by
maximum marginal likelihood estimates, namely point estimates that maximize the
following marginal likelihood (marginalizing both g and )

P 19) = [P | 2 9)p(? | p)do® (319)
Alternatively, ¢ can be approximated by maximum marginal posterior estimates,
namely point estimates that maximize the posterior of ¢ given by

p(¢ |y") < p(y” | )p(y). (3.20)

Here, p(1) is the chosen prior for 1. The maximum marginal posterior estimates
are argued to be more robust than the maximum marginal likelihood estimates (Gu
etal., 2018).

Let ¢ denote the point estimates that either maximize equation 3.19 or equa-
tion 3.20. The Student’s-t process is then completed by plugging ¥ into equation 3.18

and reads
p(y* | y", ¢) ~ St(m", 0", n"" —q), (3.21a)
m" =T (x")B+ 1" (x )R (y" — HB), (3.21b)
. 1 e
0t = —— s HB)'R™'(y" — HB), (3.21¢)

T (3.21d)
x (HTR1H)! (rT(x*)R*1H - hT(x*)>
It should be noted that B and o have been integrated out. § and 2 are only used to
simplify the equations. Also, equations 3.21a-3.21d show the univariate Student’s-t
distribution rather than the Student’s-t process defined in infinite dimensions. The
equations can however be easily extended to any dimension. In addition, all terms
that relate to the correlation function, including c(x*,x*), rT (x*), and R, depend on
. Therefore m" (equation 3.21b) and ¢” (equation 3.21d) are different from m iy
(equation 3.16b) and cppmr, (equation 3.16¢) even though they have the same forms.
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3.3.4 Integrating out 8, 0> and ¥

To integrate out ¢, one needs to solve the following integral

P 1y = [P 1y 9)p(g | ¥y, (322)

Unlike the marginalization of B (equation 3.13) and ¢? (equation 3.18), the integral
in equation 3.22 is not analytically trackable and can only be numerically approxi-
mated by for example Markov chain Monte Carlo methods. The resulted GP poste-
rior p(y* | y'") does not have a closed form.

Details on this type of approach, namely numerically marginalizing t, can be
found in Andrianakis and Challenor (2009) and Garbuno-Inigo et al. (2016) and the
references contained therein.

3.3.5 Short summary

Ideally, the fully Bayesian approach in which all the hyperparameters are marginal-
ized (section 3.3.4) is preferred since it can fully take hyperparameter uncertainty
into account. Numerically marginalizing the correlation length parameters ¢ is
however computationally difficult. It is therefore common in practice to treat the
regression parameters B and the variance ¢? from the Bayesian viewpoint and ap-
proximate @ by point estimates in a non-Bayesian way (section 3.3.3). This type of
approach will be used in chapter 4 where GP emulation is used to directly emulate
input-output relations of landslide run-out models.

The maximum likelihood estimation (section 3.3.1) or marginal likelihood es-
timation (marginalize B and approximate ¢? and ¥ by point estimates; see sec-
tion 3.3.2) leads to a GP posterior that is still a Gaussian process. In contrast, the
marginal likelihood estimation (marginalize B and ¢, and approximate ¢ by point
estimates; see section 3.3.3) results in a GP posterior that is no longer a Gaussian
process but a Student’s-t process. Due to good properties of Gaussian processes, the
maximum likelihood estimation and marginal likelihood estimation (only marginal-
ize PB) are also commonly used in practice, especially in the literature regarding

Bayesian active learning for parameter calibration (see chapter 5).

3.4 Sampling

A Gaussian process, either the prior defined in equation 3.1 or the posterior essen-
tially given by equations 3.11a-3.11c or equations 3.16a-3.16c, defines a distribu-
tion over functions. Once its mean function m(-) and covariance function C(,-)
are specified, the Gaussian process can be evaluated at a finite number s of in-
put points {x;};_;. The joint distribution of {y; = f(x;)};_, follows a s-variate
Gaussian distribution. A sample of the s-variate Gaussian distribution, denoted as
¥ := (1,...,7s)T, can be viewed as a sample of the Gaussian process. It is also
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called a realization of the Gaussian process. To generate ¥, the s X s covariance ma-
trix X needs to be decomposed into the product of a lower triangular matrix L and
its conjugate transpose LT using the Cholesky decomposition

C(x1,x1) C(x1,x2) ... C(x1,xs)
. C (x%, x;) C (x%, x2) C (x%, Xs) T (3.23)
C (xs,%1) cee C(xs,Xs)
Then a sample § can be obtained as follows:
¥ = (m(x;),...,m(xs))T + Lw, (3.24)
where w := (wy, .. .,wS)T denotes a s-dimensional random vector consisting of s

independent standard normal random variables w;,i € {1,...,s}.
Similarly, a sample § from a Student’s-t process with a mean function m(-), co-
variance function C(, -), and degree of freedom v, can be drawn as follows:

¥ = (m(x;),...,m(x))" +1/v/x2Lw, (3.25)

where x2 represents an independent random variable following a chi-squared distri-
bution with v degrees of freedom. Details on above-mentioned sampling techniques
can be found in Hofert (2013).

In the context of GP emulation, multiple samples (or realizations) are usually
drawn from the GP posterior (either a Gaussian process or Student’s-t process) by
matrix decomposition-based techniques. The samples are then used in any follow-
ing analysis to take the emulation uncertainty into account. In chapter 4, equa-
tion 3.25 will be used to generate multiple samples from GP emulators in order
to account for emulation uncertainty in emulator-based global sensitivity analy-
ses. Regarding generating realizations in geostatistical applications, the above ma-
trix decomposition-based sampling techniques may become problematic since s can
be very large there and the computational complexity of the Cholesky decomposi-
tion is O (s®). Many methods that reduce the computational complexity have been
proposed and widely used in geostatistical applications, see Liu et al. (2019) for a
comprehensive review. In chapter 6, one of these methods called sequential Gaus-
sian simulation will be discussed in detail in the context of topographic uncertainty

quantification.

3.5 A simple example

In order to give a direct impression on how GP regression works, a simple exam-
ple is shown in figure 3.1. Let’s assume that the one-dimensional function y =
x + 3sin(x/2) is expensive to query and we only know its values at five locations.
The task of GP regression is to approximate the (assumed unknown) function based
on the training data. As presented in section 3.2.1, we first need to determine the

structure of the mean function and covariance function. For this simple example,
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FIGURE 3.1: An example of using GP regression to approximate a simple one-dimensional
function y = x + 3sin(x/2) (O’'Hagan, 2006). The black dots represent the training data.
The hyperparameters are learned using the maximum marginal likelihood estimation as
introduced in section 3.3.3. The resulted GP posterior is a Student’s-t process. The inserted
plot in panel (a) shows the Student’s-t distribution at an untried input point x* = 4 (location
noted by the vertical green line); the mean is given by equation 3.21b and the 95% credible
interval can be computed based on equations 3.21a-3.21d. Panel (b) shows three samples
drawn from the Student’s-t process, based on equation 3.25.

the mean is simply modeled with a constant basis function. It means that the re-
gression parameter vector § only has one element. The covariance is assumed to be
stationary and modeled by equations 3.3-3.4. The next step is to learn the hyperpa-
rameters using the training data. All the techniques introduced in section 3.3 can be
applied. For the illustration purpose, the technique presented in section 3.3.3 is used
here. Namely, the hyperparameters § and ¢o? are integrated out and ¢ is estimated
by maximizing the marginal likelihood. The resulted GP posterior is a Student’s-
t process, as shown in figure 3.1a. The emulator prediction is given by the mean,
namely equation 3.21b. The uncertainty of the emulator prediction can be assessed
by for example the 95% credible interval, which can be computed based on equa-
tions 3.21a-3.21d. Figure 3.1b shows three samples from the GP posterior. They are
drawn from the Student’s-t process using equation 3.25.

3.6 Extension to multiple outputs

Till now, T have focused on GP regression for a function y = f(x) with a p-dimensional
input x and a scalar output y. However, there are also cases where a concerned func-
tion may have multiple outputs. For example, one may be interested in multiple
quantities at spatial locations in geostatistical applications. Also, many simulators
produce multiple outputs. Techniques for multi-output regression are often known
as cokriging in geostatistics (Alvarez and Lawrence, 2011) and multivariate emu-
lation in the context of surrogate modeling (Rougier et al., 2009). As multi-output

cases will only be encountered in the context of surrogate modeling in this thesis,
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techniques for multivariate GP emulation will be discussed. For cokriging, one can
refer to Cressie (1993).

Let f(x) denote a simulator with a p-dimensional input x = (x1,...,x,)T € X C
R? and a k-dimensional output y = (y1,...,yx)" € R¥. For instance, f(x) could be
a landslide run-out model with x consisting of its uncertain inputs (like the release
volume, rheological parameters, etc) and y being maximum flow velocity over time
at k locations. The most straightforward approach to emulate the multi-output sim-
ulator f(x) is to build an independent scalar GP emulator for each component of the
simulator y; = f;(x),j € {1,...,k}. This type of approach is sometimes called Many
Single emulator approach (Gu and Berger, 2016). Each independent emulator f](x)
has its own hyperparameters f8;, (7]-2, and %; which need to be learned using tech-
niques introduced in section 3.3. As a consequence, this type of approach may take
a lot of time for training the emulators when k is large.

Alternative multivariate GP emulators can be found in the literature, for exam-
ple the principal component emulator (Higdon et al., 2008), the outer-product em-
ulator (Rougier, 2008), the parallel partial GP emulator (Gu and Berger, 2016), etc.
In this thesis, the parallel partial GP emulator will be used for multi-output cases
(see chapter 4). This approach allows directly emulating the mapping from the p-
dimensional input to the k-dimensional output. It assumes that each component of
the simulator, namely y; = f]-(x), j € {1,...,k}, follows an independent Gaussian
process like in the Many Single emulator approach. The major difference is that it
further assumes all k emulators have different regression parameters f; and vari-
ances (T]-Z, j € {1,...,k}, but share the same correlation length parameters ¢ and
basis functions h(x). Since the regression parameters and variance can be analyti-
cally integrated out (see section 3.3.3), the emulator training reduces to estimate the
common correlation length parameters i, which can be estimated from the overall
likelihood (Gu and Berger, 2016). Plugging the estimation of the common ¢ into
each independent emulator leads to the trained parallel partial GP emulator. It con-
sists of k Student’s-t processes, denoted as { f](x)};‘:l This approach can greatly
reduce the time for emulator training.
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Chapter 4

Emulator-based global sensitivity
analysis of landslide run-out
models

4.1 Literature review and motivation

As introduced in sections 2.3-2.4, landslide run-out models require a variety of in-
put data, including initial distribution of the flow mass (a release polygon given as
a shape file or a raster map of release heights), topographic data (a digital elevation
model), and rheological parameters (dry-Coulomb friction and turbulent friction pa-
rameters for the Voellmy rheology). These input data often involve many uncertain-
ties. Itis therefore essential to study the model’s sensitivity to the uncertain inputs in
order to improve our understanding of the computational landslide run-out models
and provide guidelines for their future usage.

Sensitivity analyses on landslide run-out models are commonly based upon lo-
cal one-at-a-time approaches. This type of approach changes one input variable at
a time while keeping others at their baseline values to explore its isolated effect on
model outputs. For example, Borstad and McClung (2009) and Moretti et al. (2015)
studied the sensitivity of the run-out model employing the Coulomb-type rheolog-
ical model to the Coulomb friction coefficient and initial condition of the release
mass, based on a hypothetical parabolic slope and a real rockslide-debris flow event
respectively. Both found model outputs are more sensitive to the Coulomb friction
coefficient than initial condition of release mass. In terms of the Voellmy rheologi-
cal model, Barbolini et al. (2000) and Schraml et al. (2015) studied the sensitivity of
model outputs to the two Voellmy friction coefficients and initial condition of release
mass, while Hussin et al. (2012) studied the sensitivity of model outputs to the two
Voellmy friction coefficients and the entrainment coefficient. A common finding is
that the run-out distance is mainly influenced by the Coulomb friction coefficient;
Barbolini et al. (2000) reported that the release area generally has a lower influence
than the other parameters and Schraml et al. (2015) found the release volume causes
little variation of the output of RAMMS-DF; Hussin et al. (2012) found the turbulent
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friction coefficient has the strongest impact on the maximum flow velocity at con-
trol points. Similar one-at-a-time sensitivity analyses of run-out models employing
other friction laws, such as the Pouliquen or Mohr-Coulomb law, can be found in
Pirulli and Mangeney (2008) and Fathani et al. (2017).

While straightforward to implement, this type of local sensitivity analysis method
cannot assess potential interactions between input variables. Their results may highly
depend on chosen baseline values (Girard et al., 2016). In contrast, variance-based
global sensitivity analyses can fully explore the input space, quantify the contribu-
tion of each variable to the output variation, and identify interactions between dif-
ferent variables. The Sobol’ method, one typical variance-based method, has been
developed and widely used since 1990s (Sobol’, 1993; Sobol’, 2001; Saltelli, 2002;
Saltelli et al., 2010). The key idea of a Sobol” sensitivity analysis is that the variance
of a model output can be quantitatively decomposed into contributions due to the
independent effect of every single input factor and combined effects of input factors.
These are represented by first-order and higher-order Sobol” indices respectively.
The Sobol” indices can therefore be interpreted as measures of relative sensitivity.
They allow us to identify coupled effects between the various model inputs. The
calculation of Sobol” sensitivity indices usually requires Monte Carlo-based meth-
ods, leading to a large number of necessary model evaluations. For computationally
demanding models, the calculation may be prohibitively expensive. In that case, it
is rather promising to employ emulation techniques to overcome the computational
challenge.

Gaussian process emulation, as comprehensively introduced in chapter 3, has
been utilized for the purpose of global sensitivity analyses in different fields (Lee et
al., 2011; Rohmer and Foerster, 2011; Lee et al., 2012; Bounceur et al., 2015; Girard et
al., 2016; Aleksankina et al., 2019). These studies either focus on emulating the eval-
uation of a few scalar outputs (Lee et al., 2011; Rohmer and Foerster, 2011; Girard et
al., 2016), or build separate emulators for each of the many outputs using the Many
Single emulator approach (Lee et al., 2012; Aleksankina et al., 2019). One exception
among them is Bounceur et al. (2015), who combined emulation techniques with
the principal component analysis leading to emulation of a reduced-order model
(namely the principal component emulator). For a simulator with massive outputs
like a landslide run-out model, building separate emulators for each output can be
computationally intensive (Gu and Berger, 2016). In recent years, great improve-
ment has been made to enable simultaneous emulation for multi-output models, see
section 3.6.

The goal of this chapter is twofold. The first is a methodological goal, namely
to develop a new methodology that enables efficient global sensitivity analyses of
landslide run-out models, by integrating recent development of landslide run-out
models (Mergili et al., 2017), GP emulation techniques (Gu and Berger, 2016; Gu
et al., 2018; Gu et al., 2019), and global sensitivity analyses (Le Gratiet et al., 2014).
The second goal is application-oriented and aims at employing the methodology to
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assess the relative importance of different uncertain inputs, specifically rheological
parameters and the release volume, and their interactions in landslide run-out mod-
els based on the 2017 Bondo landslide event.

4.2 Methodology

4.2.1 Sobol’ sensitivity analysis

Let f(x) denote a simulator with a p-dimensional input x = (x1,...,x,)" € X C R?
and a scalar output y € R. Input uncertainties of x induce output uncertainty of y.
The essential idea of a Sobol” sensitivity analysis is to decompose the variance of y
into contributions caused by each x; and their interactions. In practice, p first-order
indices {S;}/_, and p total-effect indices {S;}/_, are usually computed. They are
defined as (Saltelli et al., 2010)
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where V and E represent the variance and expectation operator respectively, x_;
denotes the vector consisting of all input factors except x;. A first-order index S;
accounts for the contribution of the input factor x; to the variance of the output,
independent from other input factors x_;; a total-effect index St; indicates the total
contribution of x; to the output variation, i.e. the sum of its first-order contribution
and all high-order effects owing to interactions (Saltelli et al., 2008). The difference
Sti — S; thus indicates any interaction between x; and x_;. Employing this concept to
landslide run-out models will hence allow us to investigate combined effects of for
example the rheological parameters and the release volume on simulation outputs.

Computing the conditional variances in equations 4.1a-4.1b involves nested inte-
grals (Girard et al., 2016). This is analytically impractical for complex simulators like
landslide run-out models. Instead, Monte Carlo-based methods are commonly used
to estimate the Sobol” indices. The uncertainty introduced by Monte Carlo-based
integration can be taken into account using a bootstrap strategy (Archer et al., 1997).

In this chapter, the numerical procedure presented in Saltelli et al. (2010) is em-
ployed. The computational cost is N - (p + 2) evaluations of a simulator, where N
is the base sample size. More specifically, the denominator V(y) in equations 4.1a-
4.1b can be estimated using 2 - N simulation runs based on two independent sets of
input points. Each set consists of N input points for the simulator. Moreover, each
pair of numerators in equations 4.1a-4.1b requires additional N simulation runs cor-
responding to a new set of N input points, which is constructed from the two inde-
pendent sets. It leads to additional p - N simulation runs. For the detailed procedure,
please refer to Saltelli et al. (2010).
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Algorithm 1 Emulator-based Sobol” index evaluation

1: Choose input points x'" = {xl} ' |, usually using a Latin hypercube de51gn

2: Run the simulator f(x), e.g. the landslide run-out model, at each of n'" chosen
input points to obtain outputs y*’.

3: Build the emulator f(x) based on {x"", y''} (sections 3.2-3.3).

4: Set the base sample size N, realization sample size N,, and bootstrap sample size
Nj. Sample inputs {xi}fiip )
(2010) (section 4.2.1).

5. forn,=1,...,N, do

6:  Sample a reahzat1on at input points {xl}l gp ™2 from the emulator f(x), de-

noted as { ™ (x;) }; §p+ ) (sectlon 3.4).
7. Compute {SZ’-” 117 and {$%'}!_, based on {f”'(xl)} (pt2)
: forny,=2,...,Ny,do

from the input domain according to Saltelli et al.

N-(p+2) N-(p+2)

Sample w1th replacements {xi};.y" 7 from {x;},_;" """ and record the new
realization {f (%;)},._ ip 2,

10: Compute {SImyl and {S7™}_, based on the new realization
{Fr ) p .

11:  end for

12: end for

13: return {S”’”b}"’*l ANty =1 Ny 4104 {S%; ”b}”’_1 ANtp=1. Ny,

,,,,, P

14: Estimate S and St; defined in equations 4.1a-4.1b using S = ﬁ ZSA?””" and
St = NN, Nb ZS”’ ", with i=1,...,p. Quantify the overall uncertainty (i.e.
Monte Carlo-based sampling uncertainty and emulator uncertainty) of an es-
timated Sobol” index using its standard deviation or 95% credible interval.

As pointed out in Saltelli et al. (2010), N should be sufficiently large, e.g. 500 or
higher, which is critical in our case as the landslide run-out model itself is computa-
tionally intensive. If a single run of the landslide run-out model described in section
2.2 costs 32 minutes, which correspond to the average run time of the 200 simulation
runs in section 4.4.3, the sensitivity analysis for three input variables will cost at least
32 x 500 x (3 +2) = 80000 minutes, roughly 56 days on a single core. Therefore, it is
necessary to employ emulation techniques to improve the computational efficiency
in order to carry out this type of global sensitivity analysis.

4.2.2 Emulator-based Sobol’ sensitivity analysis

The idea of emulator-based Sobol’ sensitivity analysis is to train GP emulators for the
expensive-to-run landslide run-out model using a small number of model evalua-
tions. Then the cheap-to-run GP emulators are used to conduct the Sobol” sensitivity
analysis instead of the original simulator. However, the efficiency improvement by
using GP emulation comes at a cost, i.e. additional emulator uncertainty. This type
of uncertainty can be quantified as it can be evaluated from the emulator directly, see
section 3.2.2. Yet, methods to account for this uncertainty in the subsequent analysis
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FIGURE 4.1: A schematic representation of the emulator-based global sensitivity analysis
method.

are needed. Alongside the development of emulation techniques and global sensi-
tivity analysis methods, a number of methods have been developed in recent years
to address this issue in global sensitivity analyses, e.g. Oakley and O’'Hagan (2004),
Marrel et al. (2009), Janon et al. (2014), and Le Gratiet et al. (2014).

The method proposed by Le Gratiet et al. (2014) is used in this thesis. It combines
the work of Oakley and O’Hagan (2004) and Janon et al. (2014). This method can
simultaneously take the Monte Carlo-based sampling uncertainty (section 4.2.1) and
emulator uncertainty into account when calculating the Sobol” indices. In this thesis,
it is adapted to combine the sampling scheme presented in Saltelli et al. (2010) and
the GP emulators developed by Gu and Berger (2016) and Gu et al. (2018).

The adapted method for a simulator with a scalar output, namely f(x), is shown
in Algorithm 1. A schematic representation is illustrated in figure 4.1. For a simula-
tor with a k-dimensional output, i.e. f(x), the method is essentially similar. Minor

modifications are as follows.

e In steps 1-3, a parallel partial GP emulator {f;(x) ?:1 is built (section 3.6) in-

stead of a scalar GP emulator f(x).

e Steps 5-14 are repeated for each f](x) to evaluate the Sobol” indices at the j-th
element of the k-dimensional output, where j =1, ..., k.
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4.3 Implementation

The methodology proposed in section 4.2.2 consists of several components, includ-
ing the Voellmy-type landslide run-out model (section 2.2), multivariate GP emu-
lation (section 3.6), Sobol” sensitivity analysis (section 4.2.1), and an algorithm that
accounts for emulator uncertainty in Sobol” sensitivity analysis. The implementation
relies on open-source software and packages that have been recently developed for
each component. It should be noted that although these individual building blocks
exist to date, they do not interact seamlessly as of now. A software framework that
allows us to efficiently couple and leverage these building blocks together does not
exist. Our Python-based implementation provides such a framework. Its benefit is
that only one controlling Python script is required to automatically run simulations
at design points based on a Latin hypercube design (see section 4.4.3), construct
GP emulators, and conduct Sobol” sensitivity analysis. It coordinates the individual
building blocks which involve different programming languages and dependencies,
from within a single Python environment. It therefore automatizes the workflow, re-
duces the redundant manual and potentially error-prone data format transformation
between different software and packages, and minimizes the requirement of users’
knowledge on the dependent software and packages. The principal components of
the implementation are as follows:

e Simulator. Mergili et al. (2017) presented the open-source software r.avaflow
for simulation of a variety of mass flows, which relies on GRASS GIS 7. It em-
ploys a Voellmy-type model (section 2.2) and a multi-phase mass flow model
(Pudasaini and Mergili, 2019). Here, the former is the simulator under inves-
tigation. I implemented a Python-based wrapper to automatically prepare a
batch job, run simulations, and extract outputs given the selected values of
input variables x'", without explicitly starting GRASS and r.avaflow.

e Emulator. Gu et al. (2019) presented the R package RobustGaSP (Robust Gaus-
sian Stochastic Process Emulation), in which they implemented the maximum
likelihood estimation (section 3.3.1), maximum marginal likelihood estimation
(integrating out  and 0?; section 3.3.3), and the maximum marginal posterior
estimation (section 3.3.3) for learning the hyperparameters. They also imple-
mented the parallel partial GP emulator (section 3.6). I implemented a Python-
based wrapper based on rpy2 (the Python interface to the R language) to utilize
RobustGaSP within the unified Python-based framework.

e Emulator-based Sobol’ analysis. Herman and Usher (2017) presented the
Python package SALib (Sensitivity Analysis Library in Python), in which the
numerical procedure of calculating the Sobol” indices for a simulator is imple-
mented. I extended their codes to realize Algorithm 1 which enables emulator-
based Sobol” analysis for multi-output simulators.
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It should be noted that our Python-based framework is implemented in a modu-
lar way. The sensitivity of any other landslide run-out model can therefore be stud-
ied using our workflow by simply replacing the simulator.

4.4 Case study based on the 2017 Bondo landslide event

4.4.1 Case background

Pizzo Cengalo (see figure 4.2) located in the Swiss Alps, is subjected to rock fall
and landslide events since decades due to its geological pre-conditioning factors
(Walter et al., 2020). Two recent landslide events in that area are well-documented
and widely studied. The first event occurred on December 27th 2011. Around 1.5
million m3 of rock detached from the northeastern face of Pizzo Cengalo and evolved
into a rock avalanche traveling 2.7 km down the Bondasca valley. The second event
occurred on August 23th 2017. Approximately 3 millionm?® of rock were released
from the northeastern face of Pizzo Cengalo, leading to a rock avalanche traveling
3.2km down the Bondasca valley. A part of the rock avalanche turned into an initial
debris flow, followed by a series of additional debris flows within 48 hours, which
reached the village Bondo (Walter et al., 2020).

The case study in this chapter is based on the topography and release area of the
2017 landslide event. A pre-event digital elevation model (DEM) and a post-event
DEM are available, both with 1 m resolution. They are based on airborne laser scans
after the 2011 and after the 2017 events, as well as aerial images acquired by the
Swiss topographic services Swisstopo (Walter et al., 2020). Release area and initial
mass distribution of the event can be obtained from the height difference map of the
two DEMs. As the topographic input, we use a merged DEM based on the pre-event
and post-event DEMs. The merged DEM reflects the post-event topography in the
release area and pre-event topography in other areas. In addition, we use the same
release area as the 2017 landslide event, as shown in figure 4.2. The grid size of the
computational mesh for the simulator is set to be 10 m.

It should be noted that the intention of the case study is not to back-analyze
the 2017 landslide event. Other publications are devoted to that research ques-
tion (Mergili et al., 2020; Walter et al., 2020). The focus here is to apply the novel
emulator-based global sensitivity analysis to the Bondo event in order to assess the
model’s sensitivity to Voellmy rheological parameters y and ¢, and the release vol-
ume vg. Here, the quantities of interest obtained by post-processing landslide run-
out model outputs are:

e Angle of reach, the tangent of which equals to the ratio of the landslide fall
height and projected run-out distance, namely the Heim’s ratio (Lucas et al.,
2014). The angle of reach generally decreases as the run-out distance increases.

e Impact area, defined as the area of the region where maximum flow height
values exceed a threshold value, here 0.1 m.
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FIGURE 4.2: Pizzo Cengalo-Bondo topography. The colormap shows the distribution of the
release mass of the 2017 landslide event. The solid line and dashed line denote the major
and minor flow paths. The embedded plot in the bottom-left corner shows the profile of the
major flow path, on top of which locations A-F with respective angle of reach are noted for
later discussions in section 4.5.2.

e Maximum flow height at k locations, denoted as (h}’l"“x, ..., hﬁ“‘x)T.

e Maximum flow velocity at k locations, denoted as (||uy, [|™, ..., |ju, [[™)T.

4.4.2 Ranges of uncertain inputs

Sosio et al. (2008) summarized typical ranges for  and ¢ based on a variety of litera-
ture. For rock avalanches and debris flows, the range for y is 0.05-0.25 and that for ¢
is 200-1000 m/s?. Schraml et al. (2015) presented many back-analyzed u-¢ sets, con-
sisting of published values in the literature and their own case study. For most of the
rock avalanche and debris flow events, y lies within the range 0.02-0.25 and ¢ varies
between 100-2000m/s?>. Aaron and McDougall (2019) presented back-analyses re-
sults of a rock avalanche dataset consisting of 45 past rock avalanche events. Their
calibrated values of i vary between 0.025-0.29, except 4 cases in which the path ma-
terial is bedrock. The calibrated values of ¢ are in the range 200-2100 m /s>.

Based on the reference studies, the ranges 0.02-0.3 and 100-2200 m/s? are set for y
and ¢ respectively. The release volume v is assumed to vary between 1.5 million m?
and 4.5 millionm?, namely +50% based on the 3 million m?® release volume of the
2017 landslide event. This is achieved by multiplying the distribution of initial mass
of the 2017 landslide event with a value between 0.5 and 1.5. To sum up, the three
uncertain inputs result in a three dimensional input space, where y, ¢, and vy vary
independently within 0.02-0.3, 100-2200 m/s?, and 1.5-4.5 million m>.
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FIGURE 4.3: Two-dimensional projection of the 200 training samples (void circles) and 20
validation samples (solid diamonds) from two independent maximin Latin hypercube de-
signs. Left ¢-y, middle vy-y, right vg-¢. The 200 samples are used to build the emulators.
The 20 samples are used to validate the parallel partial GP emulators.

4.4.3 Emulator design and validation

To prepare the emulator training data, n"” = 200 samples are drawn from the three
dimensional input space using the maximin Latin hypercube design which max-
imizes the minimum distance between design points to achieve optimum space-
filling properties (Aleksankina et al., 2019), see figure 4.3. This results in x" =
{(mi, &i,v0:) T }2%. One run-out simulation takes 32 minutes on average on a laptop
with Intel Core i7-9750H CPU. For each simulation run, the angle of reach, impact
area, (h"™,... ,hi‘ax)T and (|luy, [|™,...,||u, [|[™)T at k = 47958 chosen locations are
extracted. At each of the 47958 locations, at least one of the 200 simulation runs has
a maximum flow height value larger than 0.1 m. Correspondingly, two scalar GP
emulators (section 3.3.3) and two parallel partial GP emulators (section 3.6) are built
based on x" and its respective simulation outputs. Each parallel partial GP emula-
tor takes about 0.05 seconds to predict maximum flow height or velocity at all 47958
locations for a new input point.

Before using the emulators for further sensitivity analyses, their performance
needs to be validated. The proportion of validation outputs that lie in emulator-
based 95% credible intervals is chosen as the diagnostic, denoted as Pcy(9se,). This is
commonly used in the literature (e.g. Lee et al., 2011; Spiller et al., 2014; Bounceur
et al., 2015; Gu and Berger, 2016). It is defined as

1 - * Flo*
Peyosw) = n 2 Hf(x) € f(xi )ciosw t (4.2)
i=1

where 7 is the number of input points for validation, f(x) and f (x})cr9s%) denote
the simulation output and the 95% credible interval of the emulator prediction at the
input x7 respectively. Pcyose,) would be close to 0.95 for an ideal emulator.

The two scalar emulators are validated using the leave-one-out cross validation
method as implemented in the RobustGaSP package (meaning n = 200), see fig-
ure 4.4. Both emulators perform well with emulator prediction values being close
to simulator outputs and Pcy9s9,) close to 0.95. As no cross validation scheme is im-
plemented in the RobustGaSP package for a parallel partial GP emulator, the two
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parallel partial GP emulators for (h"®,. ..,hi‘aX)T and (||uy ||™,...[[u |[|™®>)T are
validated using additional 20 simulation runs based on an independent maximin
Latin hypercube design, see figure 4.3. Figure 4.5a shows Pcy(9s¢,) values at each lo-
cation and their distribution in the form of a box plot based on the maximum flow
height emulator. Figure 4.5b shows the same evaluation based on the maximum flow
velocity emulator. The lowest Pcyos,) value of the maximum flow height/velocity
emulator is 0.6/0.65, and 95% of the Pcyose) values of both emulators are within
0.8-1. Both emulators show good performance with mean values of Pcyos9, over all

locations being 0.93 and 0.94 respectively.
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FIGURE 4.4: Leave-one-out cross validation of the GP emulators for scalar outputs (a) angle
of reach (in degree), and (b) impact area (in million m?). The error bars denote 95% credible
intervals of the emulator predictions.
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FIGURE 4.5: Validation of the parallel partial GP emulators for vector outputs (a)
(R, ,hﬂ‘ax)T and (b) ([luy,[|™,..., |luy, @) with k = 47958, using 20 validation runs
based on an independent maximin Latin hypercube design. In each panel, the colormap
shows the Pcyos,) values at each location; the box plot presents the distribution of Pcy(ose,)
values. In the box plot, the whiskers denote the 2.5th and 97.5th percentiles; the blue dashed
line denotes the mean; the number of outliers for each outlier value is noted due to overlap-
ping. The mean of Pcy(9s0,) over all locations for maximum flow height/velocity is 0.93/0.94.
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FIGURE 4.6: First-order (first row) and total-effect Sobol” indices (second row) based on the
Gaussian process emulator for the angle of reach, with N, = N = 50 and N increasing from
200 to 10000 with a step size 200. Sy, S¢, and Sy, denote estimated first-order Sobol” indices

of u, ¢, and vy; SATV, S}g, and gTvo denote estimated total-effect Sobol” indices of y, ¢, and vy
(see step 14 in Algorithm 1 and equations 4.1a-4.1b). In each panel, the dashed line and solid
line show the change of the estimated Sobol” index and its 95% credible interval respectively;
the estimated Sobol” index tends to converge for N > 4000 and the length of its 95% credible
interval hardly decreases for N > 6000.

44.4 Preliminary convergence analysis

The base sample size N, realization sample size N,, and bootstrap sample size N,
need to be determined before using the validated emulators for the Sobol” sensitivity
analysis (see Algorithm 1). Here, the results of a convergence analysis based on the
validated emulator for the angle of reach are presented in order to determine values
for these sample sizes. Figure 4.6 shows how the estimated Sobol” indices and their
95% credible interval values change with N increasing from 200 to 10000 with a step
size 200, while keeping N, = N, = 50. It can be seen that the estimated Sobol’
indices tend to converge when N is larger than 4000, and their 95% credible interval
lengths almost do not decrease for N > 6000. The same analysis with N, = N, = 100
and N, = N, = 200 is also conducted. The results are similar to the findings with
N, = N, = 50, indicating little impact of N, and N;. Therefore, N = 6000 and N, =
N, = 50 are set for the following sensitivity study. It leadsto N - (p +2) = 6000 (3 +
2) = 30000 samples from the three dimensional input space to estimate the Sobol’
indices, namely {(p;, &;, vo,) T }3%9%. Among them, 2 - N = 12000 samples are used to
estimate the overall variance term V(y) in equations 4.1a-4.1b, see section 4.2.1.

4.5 Results and discussions

4.5.1 Angle of reach and impact area

The box plot in figure 4.7a shows the distribution of emulator predicted angle of
reach values corresponding to the 12000 samples used to estimate the variance of the
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FIGURE 4.7: Sobol’ indices for aggregated scalar outputs (a) angle of reach and (b) impact
area. The error bars of the bar plots indicate 95% credible intervals of estimated Sobol” in-
dices, which account for Monte Carlo-based sampling uncertainty and emulator uncertainty.
The box plots show the distribution of emulator-predicted angle of reach values (in degree)
and that of emulator-predicted impact area values (in millionm?). They visualize the vari-
ation of the angle of reach and impact area resulting from the uncertain input variables
respectively. In each box plot, the whiskers denote the 2.5th and 97.5th percentiles; the blue
dashed line denotes the mean; the red dotted dashed line denotes the median; the red crosses
denote the outliers.

angle of reach (see section 4.4.4). Due to input uncertainties, the angle of reach could
vary in a wide range, around 11.8°-25.7°. The mean is 17.9°. The standard deviation
is 3.1° which corresponds to the square root value of V(y) in equations 4.1a-4.1b.
The bar plots in figure 4.7a display the estimated first-order and total-effect Sobol’
indices, with the 95% credible interval denoting the Monte Carlo-based sampling
uncertainty and emulator uncertainty. Each pair of bar plots corresponds to the first-
order and total-effect Sobol” indices of one input variable. It is evident that angle of
reach is dominated by the dry-Coulomb friction coefficient i1 of which the first-order
index is over 0.9, whereas both the turbulent friction coefficient ¢ and the release
volume vy show little influence on the angle of reach, with both first-order indices
being smaller than 0.05. This result is expected since y governs the slope angle on
which flow mass begins to deposit (McDougall, 2017). It is also consistent with the
common finding in former one-at-a-time sensitivity analyses on landslide run-out
models employing the Voellmy rheology, such as Barbolini et al. (2000), Hussin et
al. (2012), Schraml et al. (2015), and Frey et al. (2016). All of them found that the
run-out distance (indicated by the angle of reach) is predominantly affected by the
dry-Coulomb friction coefficient . In particular, Barbolini et al. (2000) found that
there is a difference about half an order of magnitude between the sensitivity of run-
out distance to y and to other parameters like ¢, release height, and release area.
Furthermore, it is noteworthy that the difference between the first-order and total-
effect indices is small, indicating weak interactions among the three input variables
regarding the angle of reach.

Similarly, the box plot in figure 4.7b shows the distribution of emulator predicted
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impact area values. Owing to input uncertainties, the impact area could vary be-

2. From the bar

tween 1.5-4.5 millionm? with a standard deviation 0.6 million m
plots, it can be seen that estimated first-order indices of y, ¢, and vj are around 0.67,
0.15, 0.18 respectively. It indicates that y contributes the most to the variance of the
impact area, followed by vy and ¢. Similar to the results on the angle of reach, the
small difference between the first-order and total-effect indices implies that the three
input variables barely interact with each other concerning the impact area. Com-
pared to the results of the angle of reach, the importance of y on the impact area
decreases and that of ¢ and v increases. A plausible explanation is that the angle of
reach only depends on the deposit (assuming that the release area remains the same)
where u plays the dominant role, whereas the impact area depends on all inundated

region where all three input variables may have impact.

4.5.2 Maximum flow height and velocity

Before discussing global sensitivity analysis results on maximum flow height and
maximum flow velocity, the statistics that are needed to interpret the results are
summarized. Figures 4.8a-c show the mean, standard deviation, and coefficient of
variation of emulator-predicted maximum flow height values at each location. Fig-
ures 4.8d-f show the counterparts of emulator-predicted maximum flow velocity val-
ues. The major and minor flow paths as well as locations A-F along the major flow
path are noted to facilitate the description of results. The profile of the major flow
path and the angle of reach values corresponding to locations A-F are shown in fig-
ure 4.2. Location A sits near the release area, where the slope is steep. From location
B to location D is the Bondasca valley. Location C corresponds to the mean loca-
tion of 12000 angle of reach values (17.9°), denoting the average run-out distance.
From location D to location E is the debris flow retention basin (Walter et al., 2020).
Location F is near the west boundary of the DEM.

It can be seen from figures 4.8a and 4.8d that in general, the mean of maximum
flow height gradually decreases along the flow path whereas the mean of maximum
flow velocity first increases then decreases reflecting the acceleration and deceler-
ation process. Along the path cross section direction, both the mean of maximum
flow height and that of maximum flow velocity generally decrease from the center
to the sides. In addition, the mean values in the upstream area of location B are on
average much larger than the mean values in the downstream area of location B,
possibly because the average slope from the release zone to location B is larger than
that beyond location B (see figure 4.2) and the corner around location B decelerates
the flow mass.

The standard deviation shown in figures 4.8b and 4.8e reflects the variation of
maximum flow height and velocity at each location resulting from uncertainties of
the three input variables. It corresponds to the square root of V() in equations 4.1a-
4.1b. In the Bondasca valley between location B and location D, where the channel is
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FIGURE 4.8: Statistics of emulator predicted maximum flow height (left column) and veloc-
ity (right column) at k = 47958 locations. For each location, the mean (first row), standard
deviation (second row), and coefficient of variation (third row) are calculated from 12000 em-
ulator predicted maximum flow height and velocity values at that location (see section 4.4.4).
The polygon at the bottom-right corner of each panel denotes the release area. The local
low /high values on the left side of location A in each panel result from the local ridges (see
figure 4.2).

well-defined, the standard deviation generally decreases from the center to the sides
in lateral direction, similar to the trend observed in figures 4.8a and 4.8d.

Figures 4.8c and 4.8f present the coefficient of variation defined as the ratio of
the standard deviation to the mean, representing the relative variation. Comparing
figures 4.8c and 4.8f with figures 4.8a and 4.8d, we find strong negative correlation
between the coefficient of variation and the mean. The coefficient of variation gener-
ally increases both along the longitudinal direction and from the center to the sides
in the lateral direction. A noteworthy feature is that figure 4.8b shows large differ-
ences to figure 4.8e, whereas figures 4.8c and 4.8f greatly resemble each other. It
indicates that for maximum flow height and velocity, their absolute variation rep-
resented by the standard deviation differs from each other, whereas their relative

variation represented by the coefficient of variation shows great similarities.
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FIGURE 4.9: First-order Sobol’ indices for (hf?ax,...,hg{‘ax)T (left column) and for

(Jay, |2, [, [|™@)T (right column). In each panel, values smaller than 0.1 are not shown
in the colormap; the box plot presents the distribution of respective first-order indices at all
locations (including values smaller than 0.1); the mean over all locations is notated in the
box plot.

Figures 4.9-4.10 present results of the Sobol” sensitivity analysis on maximum
flow height and velocity at each location. The uncertainties of estimated Sobol” in-
dices are found to be negligible and have little impact on the discussion (see fig-
ure 4.7). The 95% credible interval is therefore omitted here to avoid redundance.
In addition, values smaller than 0.1 are not shown in the colormaps to highlight the
trends that we will shortly discuss.

Figures 4.9a-c show the first-order contributions of y, ¢, and v to the variation
of maximum flow height at each location. The mean values of SAV, §g, and Svo over
the 47958 locations are 0.3, 0.17, and 0.27 respectively. A closer look shows that the
dry-Coulomb friction coefficient 4 dominates in the downstream area beyond loca-
tion B, whereas its impact in the upstream area of location B is limited; the turbulent
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friction coefficient ¢ is an influential factor in the upstream area of location B espe-
cially in areas around the major flow path, whereas it has negligible impact in the
downstream area of location B; the release volume vy contributes the most in areas
surrounding the release zone and has significant impact in areas near the minor flow
path as well as areas surrounding location B, whereas it shows little influence in the
downstream area similar as ¢.

Figures 4.9d-f present the first-order contributions of y, ¢, and v to the variation
of maximum flow velocity at each location. The mean values of S 1w S}, and §vo over
all the locations are 0.34, 0.31, and 0.11 respectively. A closer inspection shows that
the variation of maximum flow velocity in the downstream area beyond location
B is predominantly driven by p, while it has mild impact in the upstream area; ¢
contributes the most to the variation of maximum flow velocity in the upstream area
of location B, where the mean values of maximum flow velocity are large (comparing
figure 4.9e with figure 4.8d); vp only has mild impact in areas near the release zone
and near the minor flow path.

Comparing figures 4.9a-c with figures 4.9d-f, we find that the first-order contri-
bution of y to the variation of maximum flow height only slightly differs from its
contribution to the variation of maximum flow velocity, with the mean over all loca-
tions increasing from 0.3 to 0.34. ¢ has more impact on maximum flow velocity than
on maximum flow height, with a difference 0.14 on average. The influence of vy on
maximum flow height is more important than its influence on maximum flow ve-
locity, with a difference 0.16 on average. The dominant role of y in the downstream
area agrees with the finding in section 4.5.1 that y predominantly affects the an-
gle of reach. The observation can be well explained based on Mangeney-Castelnau
et al. (2003). More specifically, Mangeney-Castelnau et al. (2003) studied the forces
involved in the momentum equation for the Coulomb friction law and found that
the force caused by the dry-Coulomb friction is negligible in the early stage of the
flow event (corresponds to the upstream area) while it becomes dominant in the
later stage (corresponds to the downstream area). The importance of ¢ in the up-
stream area with large mean values of maximum flow velocity is therefore expected
since the turbulent friction term in equations 2.6-2.7 is proportional to the square of
flow velocity and the role of the dry-Coulomb friction term is not important in this
area. It should be noted that the turbulent term artificially limits the overestimated
early stage velocity which results from the hydrostatic hypothesis used in depth-
averaged shallow flow models, and therefore leads to more realistic early stage ve-
locity (Garres-Diaz et al., 2021).

Figures 4.10a-c show the difference between total-effect and first-order Sobol” in-
dices for maximum flow height at each location, which indicates the interactions
between different input variables. Taking S, — S, as an example, it accounts for all
high-order effects related to y, including the second-order interaction between p and
¢, the second-order interaction between y and vy, as well as the third-order interac-
tion among y, ¢, and vg. The mean values of SATH — SAV, §T§ — §§, and gTvo — §v0 over
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FIGURE 4.10: Difference between total-effect and first-order Sobol’ indices for (hﬁ‘ax,
e ,hi‘ax)T (left column) and for (||uy, [[™,...,|Ju;, [|™®)T (right column). In each panel, val-

ues smaller than 0.1 are not shown in the colormap; the scatter plot shows the difference
versus the standard deviation shown in figures 4.8b and 4.8e, where difference values larger
than 0.1 are plotted using the same colorbar as that used for the colormap, and difference
values smaller than 0.1 are plotted in black; the mean over all locations is notated in the
scatter plot.

all locations are 0.22, 0.21, and 0.16 respectively. The areas where SATV — SAV, §T(§ — SAQ,,
and St,, — Sy, have large values (see figures 4.10a-c) are generally in accord with the
areas where the mean and standard deviation of maximum flow height have small
values (see figures 4.8a-b), and the coefficient of variation of maximum flow height
has large values (see figure 4.8c). One exception is the area around the major flow
path between location A and location B. The value of Sty — Sy, in this exception area
is very small (see figure 4.10c). It means that all high-order effects related to vy in this
area are negligible, including the second-order vo- interaction, the second-order vg-
¢ interaction, and the third-order vp-u-¢ interaction. The large values of gTV - SAV

and Stz — S; in this area as shown in figures 4.10a-b are therefore mainly due to
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the second-order p-¢ interaction since contributions from vo-y, vg-G, and vo-u-¢ are
negligible. From the inserted scatter plots in figures 4.10a-c which show respective
difference versus the standard deviation, it is evident that the interactions generally
decrease with increasing standard deviation. It means that the larger the variation
of maximum flow height, the less the interactions between the three parameters.

Figures 4.10d-f show the difference between total-effect and first-order Sobol” in-
dices for maximum flow velocity at each location. The mean values of SATV — S},,
§T§ — SA(;, and §TU0 — §UO over all locations are 0.21, 0.2, and 0.15 respectively. Simi-
lar to the results on maximum flow height, the areas showing significant difference
greatly resemble the areas with low mean values, low standard deviation values,
and high coefficient of variation values of maximum flow velocity, see figures 4.8d-f.
Again the area around the major flow path between location A and location B is an
exception. It can be clearly seen from the scatter plots of respective difference ver-
sus the standard deviation, that the interactions generally decrease with increasing
standard deviation.

Comparing figures 4.10a-c with figures 4.10d-f, the following trends can be ob-
served for both maximum flow height and maximum flow velocity. First, most of the
significant interactions occur on the margins of the flow paths where mean values
and standard deviation values are relatively small, whereas values of coefficient of
variation are relatively large (see figure 4.8). This may be due to the fact that a loca-
tion on the margins is only reached by some of the forward simulations (hence some
of the three parameter combinations). Second, the interactions generally decrease
with increasing standard deviation. Third, there are stronger interactions between
the two friction coefficients y and ¢ than between the release volume vy and each
friction coefficient.

4.6 Summary

In this chapter, a computationally efficient approach which enables variance-based
global sensitivity analyses of computationally demanding landslide run-out models
has been presented. The methodology couples the novel open-source mass flow
simulation tool r.avaflow (Mergili et al., 2017), robust Gaussian process emulation
for multi-output models (Gu and Berger, 2016; Gu et al., 2018; Gu et al., 2019), and a
recent algorithm addressing the emulator uncertainty (Le Gratiet et al., 2014). I have
implemented a unified Python-based framework to seamlessly integrate r.avaflow,
RobustGaSP, and SALib. Based on the 2017 Bondo landslide event, the approach is
employed to study the global sensitivity of selected run-out model outputs to three
input variables, namely the release volume and the two friction coefficients. The

main findings are as follows.

e The proposed approach can be successfully used to study the relative impor-
tance and interactions of input variables in landslide run-out models, when



4.7. Moditications to the published paper 43

the trained Gaussian process emulators are validated and the base sample size
of a Sobol” analysis is properly chosen.

e The first-order effects of each input variable are broadly in line with results of
common one-at-a-time sensitivity analyses in the literature. The dry-Coulomb
friction coefficient dominates the angle of reach, as well as maximum flow
height and velocity in the downstream area. The turbulent friction coefficient
contributes the most to the variation of maximum flow velocity in the area
where maximum flow velocity values are expected to be large. The release
volume is found to have significant impact on maximum flow height in the
area surrounding the release zone whereas it shows little impact on maximum

flow velocity.

e Interactions between the input variables could be analyzed for the full flow
path, which cannot be assessed by commonly used one-at-a-time approaches.
Significant interactions between the input variables generally happen on the
margins of the flow path. The mean values and standard deviation values of
maximum flow height and velocity are small in those areas. The interactions
generally decrease with increasing variation of maximum flow height and ve-
locity. Furthermore, there are stronger interactions between the two friction
coefficients than between the release volume and each friction coefficient.

4.7 Modifications to the published paper

As mentioned in the outline (section 1.3), this chapter is a slightly modified ver-
sion of the published paper: Hu Zhao, Florian Amann, Julia Kowalski. Emulator-
based global sensitivity analysis for flow-like landslide run-out models, Landslides,
18, 3299-3314, 2021. HZ and JK conceived the idea. HZ developed the methodology,
performed the implementation, case study, and result analyses with contributions
from JK. FA provided data for the case study. HZ wrote the manuscript. JK and
FA reviewed and revised the manuscript. Two anonymous reviewers reviewed the
manuscript.

The paper is published under the Creative Commons Attribution 4.0 License and
is reproduced here with permission from the copyright holder, namely the authors.
The major modifications to the paper are listed below.

To avoid redundancies, following parts of the paper are left out in this chapter:

¢ The descriptions of landslide run-out models, uncertain factors, and surrogate
modeling in the introduction of the published paper. They have been intro-
duced in chapters 1-3 of this thesis.

* The mathematical details of landslide run-out modeling and Gaussian process
emulation in section 2 of the published paper. They have been presented in
chapter 2 and chapter 3 of this thesis.
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* The recommendations for future work in the conclusion section of the pub-
lished paper. They have been integrated with section 7.2 of this thesis.
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Chapter 5

Bayesian active learning for
parameter calibration of landslide

run-out models

5.1 Literature review and motivation

As introduced in chapter 2, the rheological parameters in depth-averaged shallow
flow type landslide run-out models mostly rely on calibration of past landslide events
where field data are available. This is a typical inverse problem. Various calibration
methods have been developed over past decades. They can be divided into two
groups, namely deterministic and probabilistic methods, according to the form of
calibration results. Deterministic methods aims to find the best-fit parameter con-
figuration that leads to simulation outputs as close as possible to observed data. It
is traditionally done by subjective trial-and-error calibration, such as in Hungr and
McDougall (2009), Frank et al. (2015), and Schraml et al. (2015). More objective meth-
ods have been recently proposed by for example Calvello et al. (2017) and Aaron et
al. (2019), where the best-fit parameter configuration is obtained by minimizing the
mismatch between simulation outputs and observed data using optimization theory.
There are two issues with deterministic methods: first, different parameter config-
urations may lead to similar simulation outputs, known as the non-uniqueness or
equifinality problem (McMillan and Clark, 2009; Aaron et al., 2019); second, deter-
ministic methods cannot account for measurement uncertainties.

Probabilistic methods, which avoid these two issues, aim to update prior knowl-
edge of the calibration parameters to a posterior distribution based on observed
data. They commonly require evaluating a run-out model at a large number of
parameter configurations and depend on certain updating/selection rules. For ex-
ample, Fischer et al. (2015) ran a depth-averaged flow model at 10000 rheological
parameter points from a Latin hypercube design, obtained reduced parameter com-
binations based on a user-defined selection rule, and approximated posteriors of
rheological parameters using a frequency analysis. Brezzi et al. (2016) obtained pos-
teriors of rheological parameters by running 2000 simulations based on a Monte
Carlo design and by applying the Kalman filter. Moretti et al. (2020) and Heredia et
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al. (2020) approximated posteriors using 8000 and 50000 Markov chain Monte Carlo
(MCMC) iterations within the Bayesian inference framework respectively. Aaron et
al. (2019) approximated posteriors of rheological parameters using a full grid search
within the Bayesian inference framework (Aaron, 2017). The main shortcoming of
probabilistic methods is the high computational costs resulting from the large num-
ber of required simulation runs, as pointed out by many researchers (Fischer et al.,
2015; Brezzi et al., 2016; Aaron, 2017; Heredia et al., 2020).

As a well-established surrogate modeling technique for reducing computational
costs, Gaussian process (GP) emulation has been extensively used for parameter cal-
ibration in the past decades. One type of GP emulation-based strategy, pioneered
by Kennedy and O’Hagan (2001), emulates input-output relations of the simulation
model; see Bayarri et al. (2007), Higdon et al. (2008), Gu and Wang (2018). This type
of method may need to emulate a simulation model with high-dimensional out-
puts if observed data are high-dimensional. An alternative type of GP emulation-
based technique directly emulates the loss/likelihood function that measures the
mismatch between simulation outputs and observed data. It avoids the high dimen-
sional problem since the loss/likelihood function only has a scalar output. Examples
are Oakley and Youngman (2017), Kandasamy et al. (2017), Fer et al. (2018), Wang
and Li (2018), and Jarvenpaa et al. (2021). As for parameter calibration of landslide
run-out models, Sun et al. (2021) built GP emulator for the landslide run-out model
Massflow focusing on a scalar output (the run-out distance), and used the emulator
for Bayesian inference of the model parameters. Navarro et al. (2018) used another
surrogate modeling method, the polynomial chaos expansion, to approximate the
landslide run-out model D-Claw, and used the surrogate for Bayesian inference of
the model parameters. To my knowledge, no attempt has been made to directly
emulate the loss/likelihood function regarding parameter calibration of landslide
run-out models.

Another powerful technique to reduce computational costs is active learning.
It has been recently used to improve inference quality. The essential idea is to it-
eratively run simulation at a new parameter point guided by all previous runs in
order to increase our knowledge of the posterior the most (Cranmer et al., 2020).
Various rules have been proposed regarding how a new parameter point may be
selected. For instance, Zhang et al. (2016) adaptively constructed separate GP emu-
lators for each model output, approximated the posterior using the MCMC method,
and picked new parameter points by sampling from the approximated posterior.
Kandasamy et al. (2017), Wang and Li (2018), and Jarvenpaa et al. (2021) sequentially
constructed GP emulators for certain variations of the likelihood function (such as
log-likelihood, log-unnormalized-posterior, etc.), and chose new parameter points
that reduce the posterior uncertainty the most. To date, no active learning technique
has been employed concerning parameter calibration of landslide run-out models.

As pointed out in the recent review by Cranmer et al. (2020), the rapidly ad-
vancing frontier of simulation-based inference driven by machine learning (here GP
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emulation), active learning and a few other factors, is expected to profoundly impact
many domains of science. Therefore, the main goal of this chapter is to develop an
efficient parameter calibration method for landslide run-out modeling by integrat-
ing Bayesian inference, GP emulation, and active learning. A second goal is to study
the effect of different observed data on calibration results using the new method.

5.2 Methodology

5.2.1 Bayesian inference framework

Bayesian inference of rheological parameters aims to derive a posterior probability
distribution of the rheological parameters in light of observed data. The posterior
distribution is computed using Bayes’ theorem

 Lix] dpx)
Pl = T p(odx: G

Here, x denotes the rheological parameters; x = (,&)T € R? for the Voellmy rhe-

ological model. d = (dy, ..., dk)T € R¥ denotes observed data, such as the impact
area, deposit area and volume, flow height and velocity at certain locations, etc. p(x)
denotes the prior distribution which encodes a priori knowledge about the rheolog-
ical parameters before seeing the observed data. L(x | d) = p(d | x) is known as
the likelihood, which is a function of x. It measures how likely x takes certain values
given the observed data. In the context of parameter calibration of a landslide run-
out model, the likelihood L(x | d) involves the observed data d and corresponding
outputs of the landslide run-out model, namely y = (y1,...,yx)T = f(x). The ex-
act form of the likelihood relies on the statistical ansatz used to model the residuals
e = (e1,...,6)7, where ¢; = d; —y;,i € {1,...,k}. The residuals are commonly
assumed to fulfill a k-variate Gaussian distribution with zero mean and a k x k co-
variance matrix X, which leads to

Lx|d) = (27r)*§\2|7% exp {—;(d —f(x))Tz"1(d - f(x))} . (5.2)

The residuals €;,i € {1,...,k} are often further assumed to be independent, see for
example Navarro et al. (2018), Aaron et al. (2019), and Moretti et al. (2020). In that
case, the covariance matrix X reduces to a diagonal matrix

o¢ 0 ... 0
0 2 ... 0

= . T (5.3)
0 ... ... ¢?

€k
where o, denotes the standard deviation of the residual €;,7 € {1,...,k}. The diag-
onal covariance matrix is used throughout this chapter. The proposed methodology

can be easily extended to account for correlations without loss of generality.
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The posterior p(x | d) in equation 5.1 cannot be computed in a closed form since

a complicated landslide run-out model is involved in the likelihood. There exist var-

ious methods to approximate the posterior; see Gelman et al. (2013) for an overview.

One type of method approximates the integral (the denominator in equation 5.1) us-

ing numerical integration. The term L(x | d)p(x) needs to be evaluated at a large

number of points x;,i € {1,...,n}, which can be for example a set of evenly spaced
full grid points. In terms of grid approximation, the posterior is in the form of

~_ Lx]d)p(x)
P S T Tp i b 64
This type of method works well when x is low-dimensional, like two- or three-

dimensional. When x is high-dimensional, MCMC methods are often used to draw
a set of samples x;,i € {1,...,n} based on the unnormalized posterior

p(x|d) e Lix|d)p(x). (5.5)
The posterior can then be estimated based on the MCMC samples by for example
kernel density estimation.

No matter for which method, the unnormalized posterior L(x | d)p(x) needs to
be evaluated at a large number of input points x;,i € {1,...,n} in order to approx-
imate the posterior with reasonable accuracy. Each evaluation requires running the
landslide run-out model at x;. The computational cost can be prohibitively high if
a single simulation takes a relatively long time. Similar to what has been done in
chapter 4, one can build cheap-to-run emulator f(x) to replace the expensive-to-run
landslide run-out model f(x) in the likelihood function, and then perform Bayesian
inference based on the emulator. It requires multivariate emulation if the observed
data d are multi-dimensional (namely k > 1). An alternative approach is to directly
emulate the logarithm of the unnormalized posterior. The logarithm form is com-
monly employed to avoid computational overflows and underflows (Gelman et al.,
2013). Since the unnormalized posterior is a function of x with a scalar output, this
type of method avoids the multivariate issue.

5.2.2 Gaussian process emulation for Bayesian inference

Let g(x) denote the logarithm of the unnormalized posterior, namely

g(x) =In[L(x [ d)p(x)]. (5.6)

The idea here is to build a Gaussian process emulator ¢(x) for ¢(x) based on training

data {x;, g(x;) ?zl Each g(x;) requires running the landslide run-out model at input

point x;. Once the GP emulator ¢(x) is obtained, the computationally expensive g(x)
in equation 5.1 can be replaced by ¢(x), which results in

~ _&pE(Xx))

p(x|d)~ W- (5.7)

The posterior can then be estimated by applying the grid approximation or MCMC

methods to equation 5.7. It reduces the number of required landslide run-out model
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evaluations from n (usually thousands) to n'" (a few hundreds), and therefore greatly
improves the computational efficiency.

5.2.3 Active learning for training data design

The design of training data {x;, g(x;) }/; for emulator-based Bayesian inference de-
serves particular attention. Due to information gained from the observed data, the
posterior is often localized in a small portion of the input space where the likelihood
has large values, and is close to zero elsewhere. Since the aim of the inverse prob-
lem is to estimate the posterior reasonable well with limited computational cost, the
commonly used space-filling sampling techniques, like the Latin hypercube design
in section 4.4.3, are not efficient to determine training input points for the GP emula-
tor ¢(x). More specifically, many input points from a space-filling sampling scheme
will be located in areas where the posterior value is close to zero and therefore do
not provide much information on the posterior that we want to estimate.

Active learning, also known as sequential design, is a simple but very impactful
idea to wisely choose training input points at which the landslide run-out model
needs to be run (Cranmer et al., 2020). Instead of choosing all the training input
points a priori like in a space-filling sampling scheme, active learning iteratively
chooses new training input point that is expected to increase our knowledge about
the posterior the most. The selection of each new training input point is guided by
all previous simulation runs.

Assume that b input points {x;}?_, have been chosen and {g(x;)}’_, have been
correspondingly computed based on the b simulation runs and the observed data.
Given {x;, g(x;)}?_;, a GP emulator ¢,(x) can be built using any method introduced
in section 3.3. As for Bayesian inference with active learning, it is common to build
the GP emulator using the maximum likelihood estimation (section 3.3.1) or marginal
likelihood estimation (integrating out the regression parameters, section 3.3.2) in
which the built emulator §,(x) is still a Gaussian process; see for example Kan-
dasamy et al. (2017), Sinsbeck and Nowak (2017), Wang and Li (2018), and Jarvenpaa
et al. (2021). This choice is made mainly due to good properties of Gauss processes
which we will shortly see. At any input point x*, the logarithm of the unnormalized
posterior fulfills a Gaussian distribution, namely

Go(x) ~ N (my(x"), 03 (X)), (5.8)

where the mean m;,(x*) and variance o7

(x*) can be determined based on equa-
tions 3.11a-3.11c or equations 3.16a-3.16c.

The exponential term exp(g,(x)) gives an approximation of the unnormalized
posterior. It encodes our current knowledge about the posterior and can therefore
be used to determine the next input point that is expected to provide the most in-
formation on the posterior. A widely used strategy for active learning is to pick
the input point at which the approximate unnormalized posterior exp($,(x)) has

the largest uncertainty. By running a new simulation at that point, the uncertainty at
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Algorithm 2 Emulator-based Bayesian inference with active learning

1: Determine the number of total training input points n'” and the number of initial
training input points by.
2: Sample initial input points {xi}fil using a Latin hypercube sampling scheme.
3: Run the landslide run-out model at each x; and calculate g¢(x;) based on the ob-
served data and corresponding simulation outputs. Denote the training data as
D = {x;, 8(x:)}{",
forb =by,...,(n" —1) do
Build the GP emulator §,(x) based on D.
Determine the next input point x;,; by maximizing equation 5.9a or 5.9b.
Run the landslide run-out model at x; 1 and calculate g(xp1)-
Augment training data D = D U {xp41, §(Xp+1) }-
end for
10: Build the final GP emulator ¢, (x) based on D = {x;, g(x;) :iy]
11: Substitute ¢, (x) into equation 5.7 and estimate the posterior using grid approx-
imation or MCMC methods.

O PN A

that point will be eliminated and the gained information on the posterior is expected
to be the most. Various uncertainty indicators have been proposed in the literature,
such as the variance (Kandasamy et al., 2017) or entropy (Wang and Li, 2018) of the
approximate unnormalized posterior exp($;(x)). At any input point x*, exp($,(x*))
follows a log-normal distribution since §,(x*) follows a Gaussian (normal) distribu-
tion. Both the variance V},(x*) and entropy H;(x*) of the log-normal distribution can

be analytically computed, which have the forms of
Vi (x*) = exp(2my (x*) + o2 (x*)) (exp (a2 (x*)) — 1), (5.9a)
Hy(x*) = my(x") + %ln(Zneag(x*)). (5.9b)

The optimal input point x* for next simulation run is given by the input point that
maximizes equation 5.9a or equation 5.9b.

Algorithm 2 presents the proposed method for parameter calibration of landslide
run-out models, which combines landslide run-out modeling, Bayesian inference,
GP emulation, and active learning. A schematicillustration is given by figure 5.1. An
initial GP emulator for the log-unnormalized posterior is first built based on initial
by simulation runs. Then the greedy one-step look ahead active learning strategy is
employed to adaptively pick new input points, run simulations, and update training
data . Last, the posterior distribution of the rheological parameters can be estimated
based on the final GP emulator by using grid approximation or MCMC methods.

5.3 Implementation

The methodology proposed in section 5.2 consists of four components, including the
simulator (Voellmy-type landslide run-out model; section 2.2), the emulator (uni-
variate GP emulator; sections 3.2-3.3), the active learning strategy (section 5.2.3),
and Bayesian inference (section 5.2.1). For each individual component, there are
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FIGURE 5.1: A schematic illustration of the emulator-based Bayesian active learning method.

some open-source software and/or packages available. However, as already men-
tioned in section 4.3, a unified framework that allows us to efficiently couple and
leverage these building blocks is still lacking and therefore desirable. Our Python-
based implementation provides such a framework. Among the four components,
the simulator and emulator have already been implemented in a modular way based
on the open-source software r.avaflow and R package RobustGaSP respectively; see
section 4.3. They can be directly used in Algorithm 2. The rest two components are

implemented as follows:

o Active learning. The key part of the active learning strategy is to solve the
optimization problem at each iteration (Line 6 of Algorithm 2). It can be chal-
lenging if the uncertainty indicator has multiple local maxima (Wang and Li,
2018) and/or x is high-dimensional. As for rheological parameter calibration,
x is generally low-dimensional (two-dimensional in terms of the Voellmy rhe-
ology). In that case, x;;1 can be determined using complete enumeration on a
regular grid: first calculate the uncertainty indicator at each grid point x* and
then pick the grid point having the largest value of the uncertainty indicator as
Xp+1. This method has been used by for example Kandasamy et al. (2017) and
Sinsbeck and Nowak (2017). It has been implemented in our Python-based
framework without third-party software.
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e Bayesian inference. The key idea of Bayesian inference is to update our prior
knowledge of the calibration parameters to a posterior distribution given the
observed data. As introduced in section 5.2.1, the posterior can be estimated
using grid approximation or MCMC methods. The grid approximation is suit-
able for low-dimensional cases and MCMC methods can be used for both low-
and high-dimensional cases. The grid approximation method (equation 5.4)
is straightforward and has been implemented in our Python-based framework
without third-party software. An advanced MCMC method, namely the affine-
invariant ensemble sampler developed by Goodman and Weare (2010), is inte-
grated into our framework by leveraging the Python package emcee (Foreman-
Mackey et al., 2013).

5.4 Case study based on the 2017 Bondo landslide event

5.4.1 Types of observed data

Carrying out a parameter calibration requires the availability of observed data. Var-
ious types of observed data have been used in the literature, including the run-out
distance (Sun et al., 2021), impact area, deposit distribution, deposit depth at spe-
cific locations, maximum flow velocity at specific locations (Aaron et al., 2019), time
history of flow height at specific locations (Navarro et al., 2018), time history of the
force exerted by flow mass onto the ground (Moretti et al., 2020), time history of flow
velocity at the centre of flow mass (Heredia et al., 2020), etc. Among them, static
data like the run-out distance, impact area, deposit distribution, and deposit height
at specific locations can be obtained from pre- and post-event landscapes based on
remote sensing, or post-event field investigation. The maximum flow velocity at cer-
tain locations can be obtained by for example post-event super-elevation measure-
ments (Aaron et al., 2019). Dynamic data like time history of flow height or velocity
are usually only available in lab or field experiments; see for example Navarro et al.
(2018) and Heredia et al. (2020). The time history of the force exerted by flow mass
onto the ground may be obtained based on seismic signals, which require records at
seismic stations (Moretti et al., 2020).

While the methodology proposed in section 5.2 can be applied to any type of
observed data and their combinations, the focus of this case study is put on param-
eter calibration using static data that are mostly available for real-world landslide
events. More specifically, the impact area, deposit volume, deposit height at specific
locations, and maximum flow velocity at specific locations will be used to calibrate

the Voellmy rheological parameters based on a synthetic case.

5.4.2 Synthetic data generation

The case study in this chapter is based on the 2017 Bondo landslide event, which has
been introduced in detail in section 4.4.1. The topography and distribution of the
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FIGURE 5.2: Topography and release mass distribution of the 2017 Bondo landslide event.
The impact area and deposit distribution are simulation results with Voellmy rheological
parameters ¢ = 0.23 and ¢ = 1000 m/s?. The impact area and deposit area are determined
using a cutoff value of 0.5m.

release mass as shown in figure 4.2 are used here. In addition, the release volume
is set to be 3 million m3, which is equal to the release volume of the 2017 Bondo
landslide event.

It should be noted that the purpose of the case study is not to calibrate the 2017
Bondo landslide event. Instead, the intention here is to test the proposed methodol-
ogy and to study the impact of different types of observed data on calibration results.
To this end, synthetic observed data are derived from given rheological parameters.
Using these instead of field observations of the 2017 landslide event allows us to test
the feasibility of the calibration in detail. The given rheological parameters serve as
underlying truth which allows us to evaluate the proposed methodology.

The detailed procedure for generating synthetic observed data is as follows.
First, a set of Voellmy rheological parameters, # = 0.23 and & = 1000m/s?, are
picked from the ranges presented in section 4.4.2. Then the landslide run-out model
is run given the rheological parameters, topography, and distribution of release
mass. Next, the static data mentioned in section 5.4.1 are obtained by post-processing
the simulation outputs. The impact area, deposit distribution, and locations where
deposit height and /or maximum flow velocity are extracted, are noted in figure 5.2.
Corresponding simulation results are summarized in table 5.1. Last, synthetic ob-
served data are generated by adding random noises to the simulation results. For
each synthetic observed data (each row in table 5.1 except the last two rows), the
random noise is drawn from a Gaussian distribution with zero mean and an as-
sumed standard deviation that equals 10% of the simulation result. Two additional

synthetic observed data for the maximum flow velocity at L1 are generated using
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TABLE 5.1: Simulation results (4 = 0.23, & = 1000 m/s?) and synthetic observed data.

Quantity Simulation Assumed standard Random Synthetic
of interest result deviation (o) noise observed data
maximum velocity at L1 99.40 294 131 3071
(m/s)

maximum velocity at L3 12.33 123 0.39 1279
(m/s)

deposit height at L2 5.53 0.55 0.37 5.91

(m) . .

deposit height at L3 9.79 0.98 0.99 10.78

(m)

impact area 2.48 0.25 0.12 2.59
(million m*)

deposit volume 2.80 0.28 009 271
(million m~)

maximum velocity at L1  29.40 5.88 2.62 32.03
(m/s) 29.40 8.82 3.94 33.34

assumed standard deviations that equal to 20% and 30% of the simulation result re-
spectively, as shown in the last two rows of table 5.1. They are used to investigate
the impact of the uncertainty of observed data (section 2.4).

For future parameter calibration using real-world observed data, the standard
deviations (0, i € {1,...,k}; equation 5.3) can be determined by heuristics when
there are only coarse observed data (Aaron et al., 2019), or can be treated as calibra-
tion parameters in the Bayesian inference framework when there are rich observed
data (Heredia et al., 2020).

5.4.3 Parameter calibration setup

The prior of the Voellmy rheological parameters is assumed to be a uniform distri-
bution over the rectangular space defined by u € [0.02,0.3] and ¢ € [100,2200] m/s?.
It means that no information about the rheological parameters, except the limiting
values, is known before observing any data. This kind of prior is often used in the
literature, such as Navarro et al. (2018), Aaron et al. (2019), and Moretti et al. (2020).
More informative prior, such as the Gamma distribution, could also be used when
expert knowledge and well known reference values are available (Heredia et al,,
2020). A posterior obtained from previous calibration can also be used as the prior
for a new calibration task when new observed data are available.

Given the synthetic observed data generated in section 5.4.2, the following cases
are set up, as summarized in table 5.2. Note that L1, L2, and L3 refer to point loca-
tions as shown in figure 5.2. In cases 1-6, the Voellmy rheological parameters y and
¢ are calibrated based on a single synthetic observation using the proposed method-
ology. They are used to study the impact of different observed data on calibration
results. The impact of the standard deviation ce is investigated based on cases 1,
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TABLE 5.2: Cases for rheological parameter calibration.

Number Used synthetic observed data

1 maximum velocity at L1 (o = 2.94)

2 maximum velocity at L3

3 deposit height at L2

4 deposit height at L3

5 impact area

6 deposit volume

7 maximum velocity at L1 (¢ = 5.88)

8 maximum velocity at L1 (c. = 8.82)

9 maximum velocity at L1 (¢ = 2.94) + deposit volume
10 maximum velocity at L3 + deposit height at L3

7 and 8. Cases 9 and 10 are designed to investigate the impact of combinations of
observed data.

The number of initial training input points by (step 1 in algorithm 2) is set as 40.
Initial training input points { (y1;, &) }12, are chosen using the maximin Latin hyper-
cube design, as shown in figure 5.3. All the cases share the same 40 initial training
input points, meaning that the initial 40 simulation runs only need to be conducted
once. The number of total training input points 1" is set to be 120, meaning that 80
adaptive simulation runs are used to actively learn the corresponding posterior in
each case. Here, the active learning is performed based on equation 5.9b (step 6 of
algorithm 2). It should be noted that the 80 adaptive simulation runs are distinct for
each case since they are tailored to a specific observed data set in each case by active
learning. It leads to in total 800 adaptive simulation runs for all the cases. For each
case, the posterior is computed using grid approximation based on a 100 x 100 grid
(step 11 of algorithm 2).
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FIGURE 5.3: Initial training input points sampled using the maximin Latin hypercube de-
sign.
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FIGURE 5.4: Estimated posteriors based on synthetic maximum velocity at location L1: (a)-
(d) case 1 (0. = 2.94; see table 5.2) at 0, 20, 50, 80 adaptive simulation runs, respectively;
(e) case 7 (0 = 5.88) at 80 adaptive simulation runs; (f) case 8 (0. = 8.82) at 80 adaptive
simulation runs. In each panel, the black cross shows the underlying true values of y and ¢,
which are 0.23 and 1000 m/s?; the black circles denote the 40 initial training input points; the
red diamonds represent the input points that are adaptively determined by active learning;
the colormap shows the posterior of the rheological parameters which is estimated based on
the initial and adaptive training runs.

5.5 Results and discussions

5.5.1 Active learning process and the impact of o,

Figures 5.4a-d show the estimated posteriors at four different iteration numbers in
case 1 (see table 5.2). They provide a direct impression on how the active learning
works and the impact of the number of iteration steps on the calibration result. For
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each given iteration number i, a GP emulator $40.;(x) is built based on the simula-
tion runs up to the given iteration, namely 40 initial runs and i adaptive runs. Then
the posterior at that iteration number can be computed by substituting §4-;(x) into
equation 5.7 and applying grid approximation (see step 11 of algorithm 2). From
figures 5.4a-d, the following observations can be made:

e The quality of the estimated posterior is quite poor without any adaptive sim-
ulation run as expected. It gets gradually improved with increasing iteration
number, owing to the information gain from simulation runs at adaptively

chosen input points.

e The underlying truth of the rheological parameters locates very close to the
high probability regions of the final posterior (figure 5.4d). It implies that the
proposed methodology is capable of correctly calibrating the rheological pa-

rameters.

e The final posterior has high values not only in regions near the underlying
truth, but also in regions far from the underlying truth. It highlights the non-
uniqueness or equifinality problem associated with deterministic calibration
methods as introduced in section 5.1. Namely different configurations of the
rheological parameters may lead to similar simulation outputs. Probabilistic
calibration methods should be therefore used whenever possible.

e The final posterior occupies only a small portion of the parameter space and
has values close to zero elsewhere. In this case, the active learning scheme
which adaptively determines input points has great advantage, since it allo-
cates more computational resources for exploring the high probability regions.
In other words, the active learning scheme can provide better approximation
of the posterior than a pure space filling design scheme with the same compu-
tational budget.

Figures 5.4e and 5.4f show the final posteriors of case 7 and case 8 (based on syn-
thetic maximum velocity at location L1 with ¢ = 5.88 and 0. = 8.82 respectively).
Comparing them with figure 5.4d, it can be seen that the underlying truth of the
rheological parameters is still close to the high probability regions, but the shape of
the posterior becomes flat with the increase of the standard deviation c¢. This result
is expected and is similar to the findings of Aaron et al. (2019) and Sun et al. (2021).
More specifically, increasing 0. means increasing uncertainty of the observed data.
The information gained from the observed data (encoded in the likelihood function)
therefore decreases with increasing o.. The posterior accordingly relies more on the
prior information, here a uniform distribution.

In order to investigate the convergence behaviour of the active learning scheme,
the change of the total variation distance with respect to the number of iterations
for cases 1, 7, and 8 is plotted in figure 5.5. The total variation distance measures
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FIGURE 5.5: The change of the total variation distance with respect to the number of adap-
tive runs for cases 1, 7, and 8 (see table 5.2). After each 10 adaptive runs, the total variance
distance between p; and p;_1g is calculated, where p; and p;_1y denote the estimated poste-
rior based on simulation runs up to the i-th and (i — 10)-th iteration respectively.

the difference between two probability density distributions p(x) and p’(x), and is
defined as (Jarvenpad et al., 2021)

p) =5 [ 1960 — P (x)lax (5.10)

In each case, the total variation distance TV(p;, pi,lo) is iteratively calculated after
each 10 adaptive runs, where p; and p;_19 denote the estimated posterior based on
simulation runs up to the i-th and (i — 10)-th iteration respectively. It can be seen
from figure 5.5 that TV (p;, pi—10) for all three cases generally decreases with increas-
ing number of adaptive runs and remains at a relatively low value after certain num-
ber of adaptive runs. It implies that the estimated posterior for each case reaches a
stable stage. It should be noted that the total variation distance, or other quantities
that measure the difference between two probability distributions like the Kullback-
Leider divergence, can be used to design early stopping criteria for algorithm 2, see
for example Wang and Li (2018).

Based on above results, it can be concluded that the proposed emulator-based
Bayesian active learning method is able to correctly calibrate the rheological pa-
rameters. Compared to commonly used probabilistic methods without emulation
techniques as mentioned in section 5.1, the proposed method greatly improves the
computational efficiency by reducing the number of necessary simulation runs from
thousands (even tens of thousands) to a few hundreds. Compared to emulator-based
Bayesian inference without active learning, the proposed method can provide better
approximation of the posterior if the computational budget is the same by wisely
allocating computational resources.

5.5.2 Different observed data and their combinations

Figures 5.6a-f show the final posteriors for cases 1-6 respectively. The underlying
truth of the rheological parameters and 80 adaptively chosen input points are also
plotted in the figures. The following observations can be made:
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FIGURE 5.6: (a)-(f) estimated posteriors at 80 adaptive simulation runs for cases 1-6 (see
table 5.2). In each panel, the black cross shows the underlying true values of u and ¢; the
black circles denote the 40 initial training input points; the red diamonds represent the 80
input points that are adaptively determined by active learning; the colormap shows the
posterior of the rheological parameters which is estimated based on the 40 initial and 80
adaptive simulation runs.

e The underlying truth of the rheological parameters closely locates near the
high probability regions, no matter which synthetic observed data are used
for parameter calibration. It further validates that the proposed methodology
is able to correctly calibrate the rheological parameters.

e The posteriors obtained based on different synthetic observed data signifi-
cantly differ from one another. It means that the information of the rheological
parameters gained from different types of observed data can be greatly differ-

ent.
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FIGURE 5.7: Estimated posterior at 80 adaptive simulation runs for (a) case 9 and (b) case 10.

e Location-wise observed data, such as maximum velocity and deposit height at
specified locations, can better constrain the rheological parameters than aggre-
gated overall observed data, like the impact area and deposit volume.

e A single observation alone is not enough to constrain the rheological param-
eters. It implies that different types of observed data should be combined in

order to effectively calibrate the rheological parameters.

Based on the results shown in figures 5.6a-f, it can be presumed that in this case
the rheological parameters can be better constrained if the calibration relies on a
combination of complementary observed data, such as maximum velocity at L1 and
deposit volume or maximum velocity at L3 and deposit height at L3. In order to
validate the presumption, the rheological parameters are calibrated using the com-
bination of maximum velocity at L1 and deposit volume, and the combination of
maximum velocity and deposit height at L3, respectively. The results are shown in
figures 5.7a-b. It can be seen that the resulted posteriors are better constrained in
each case as expected. In the future, such an analysis can serve as a starting point to
optimize data acquisition, e.g. which sensors to use and where to place them, such
that we can maximize the knowledge return of field observations.

5.6 Summary

In this chapter, an efficient probabilistic parameter calibration method for landslide
run-out models is developed by integrating Bayesian inference, GP emulation, and
active learning. The methodology couples the novel open-source mass flow simula-
tion tool r.avaflow, R package RobustGaSP for robust Gaussian process emulation,
and an active learning scheme in the Bayesian inference framework. All these com-
ponents have been implemented in the unified Python-based framework. The feasi-
bility and efficiency of the proposed method are investigated based on a case study
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with synthetic observed data. The impact of different types of observed data is also
studied using the proposed method. The main findings are as follows:

e The proposed emulator-based Bayesian active learning method is able to cor-
rectly calibrate the rheological parameters. Compared to commonly used prob-
abilistic methods without emulation techniques, the proposed method greatly
improves the computational efficiency by reducing the number of necessary
simulation runs from thousands (even tens of thousands) to a few hundreds.
Compared to emulator-based Bayesian inference without active learning, the
proposed method can provide better approximation of the posterior if the com-
putational budget is the same.

e The information gained from different types of observed data can greatly differ
from one another. Location-wise observed data like maximum velocity and de-
posit height at specific locations provide better constraint for the Voellmy rhe-
ological parameters than aggregated overall observed data like the impact area
and deposit volume. In addition, a single observation alone cannot effectively
constrain the Voellmy rheological parameters. Different types of observed data
should be combined in order to improve the quality of the posterior.
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Chapter 6

Monte Carlo-type uncertainty
quantification of landslide run-out
models

Since the inputs of landslide run-out models involve large uncertainties (sections 2.3-
2.4), it is essential to quantity the impact of the uncertainties on model outputs.
Among the various uncertainties, the uncertainty of the initial mass and the un-
certainty of rheological parameters are low-dimensional. It means that their uncer-
tainties can be represented by a small number of random variables. For example,
the uncertainty of the initial mass can be parameterized as a random variable deter-
mining the release volume and a few random variables determining the coordinates
of vertexes of the release polygon. Monte Carlo-type uncertainty quantification of
these low-dimensional inputs is straightforward: first, a number of random input
points are drawn from the distributions of these input factors; then the landslide
run-out model is run at each of the random input point; last, the uncertainty of a
model output is evaluated by its low-order moments like the mean and variance, or
its complete probability distribution. A Gaussian process emulator can be straight-
forwardly built to replace the landslide run-out model in order to improve compu-
tational efficiency. Figure 6.1 shows a schematic workflow of emulator-based Monte
Carlo-type uncertainty quantification of those low-dimensional uncertain factors.
The results shown in figure 4.8 can be viewed as an emulator-based Monte Carlo-
type uncertainty quantification of the release volume and the Voellmy rheological
parameters (assumed to be uniformly distributed), where the concerned model out-
puts are point-wise maximum flow height and velocity.

In contrast, the uncertainty of topographic data is high-dimensional and more
difficult to deal with. Since topographic uncertainty is often neglected in current
practice, this chapter mainly focuses on topographic uncertainty quantification. Ex-

tension to other uncertain factors is however straightforward.
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FIGURE 6.1: A schematic representation of the emulator-based Monte Carlo-type uncer-
tainty quantification method. It can be directly applied to low-dimensional uncertain fac-
tors like the initial condition of flow mass and rheological parameters. Its extension to high-
dimensional topographic uncertainty will be discussed in section 6.6.

6.1 Literature review and motivation

Topographic data are an indispensable input to any of the computational landslide
run-out models introduced in section 2.1. They represent the terrain in which the
slide is likely to occur and determine the components of the gravitational accelera-
tion in the governing equations 2.1-2.3. Pioneered by Miller and Laflamme (1958),
digital elevation models (DEMs) have become the most popular form of represent-
ing topographies in the scientific community. Methods for generating DEMs have
evolved rapidly over decades from conventional approaches, like field surveying
and topographic-map digitizing, to passive and active remote sensing, such as stereo-
scopic photogrammetry, interferometric synthetic aperture radar (InSAR), and light
detection and ranging (lidar); see Wilson (2012) for a comprehensive review. Dif-
ferences between these methods exist in terms of their footprint, cost, resolution,
and accuracy of the resulting DEM. Whatever method used, however, the result-
ing DEM will inevitably contain errors that are introduced during source data ac-
quisition and/or during data processing. The so-called DEM error hence refers to
the difference between the true real-world elevations and their DEM representation.
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Typically, there is a lack of information on the DEM error, which has led to the notion
of “DEM uncertainty”. It refers to what we do not know about the error (Wechsler,
2007).

Nowadays, several global DEM databases, e.g., SRTM (Rodriguez et al., 2006),
AW3D30 (Courty et al., 2019), and TanDEM-X (Wessel et al., 2018), as well as some
regional DEM databases (Pakoksung and Takagi, 2016) are publicly available. Com-
mercial DEM databases that are associated with significant costs also exist (Hawker
et al., 2018). Online initiatives such as OpenTopography facilitate community ac-
cess and aim to democratize online availability of high-resolution topography data
acquired with lidar and other technologies (Krishnan et al., 2011). Despite a broad
variety of existing DEM sources, however, we are still facing (and will continue to
face in the near future) a very limited availability of high-accuracy DEMs for some
regions that are particularly prone to landslide hazards, e.g., in Asia (Froude and Pet-
ley, 2018). Whenever using DEM data for simulation-based landslide hazard analy-
sis, it is hence important to be aware of DEM error and uncertainty and to consider
their potential impact on computational run-out analyses and related computational
risk assessments.

DEM error has had the attention of researchers for a long time. Many efforts have
for instance been put into quantifying the error associated with specific DEM sources
based on data of higher accuracy, e.g., acquired by satellite measurements (Berry et
al., 2007; Mouratidis and Ampatzidis, 2019), medium-footprint lidar (Hofton et al.,
2006), or GPS survey (Rodriguez et al., 2006; Bolkas et al., 2016; Patel et al., 2016;
Wessel et al., 2018; Elkhrachy, 2018). Meanwhile, a variety of methods have been de-
vised to classify DEM error into various categories (Oksanen, 2003; Hengl et al., 2004;
Fisher and Tate, 2006). Due to the complexity of potential influencing factors (sensor
technology, retrieval algorithms, data processing, land cover and surface morphol-
ogy, terrain attributes; Wilson, 2012; Fisher and Tate, 2006; Gonga-Saholiariliva et
al., 2011), these methods can only constrain the DEM error and will not determinis-
tically correct for it at all grid points. Hence, DEM uncertainty remains and has to
be accounted for in any subsequent analysis that relies on the DEM data.

In this circumstance, a Monte Carlo-type stochastic simulation is an effective
computational approach to deal with the situation (Holmes et al., 2000). Instead of
considering a single (assumed as accurate) DEM, the fundamental idea of a stochas-
tic simulation in the context of DEM uncertainty propagation is to separate the DEM
into a known deterministic contribution and an unknown DEM error. DEM uncer-
tainty is then accounted for by treating the DEM error as a random field consisting
of a collection of random variables defined at selected grid points. An ensemble of
equiprobable realizations of the random field is then generated based on certain as-
sumptions and available information about DEM error. This could for instance be
the so-called root mean square error (RMSE), a minimalist indicator for the overall
error magnitude, or a semivariogram that provides information about the spatial
autocorrelation of the DEM error. Adding the DEM error realizations to the known
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deterministic DEM contribution results in an ensemble of equiprobable DEM real-
izations, which can finally be used for a DEM uncertainty propagation analysis.

Stochastic simulation methods for DEM uncertainty propagation analyses have
been developed since the 1990s and are by now widely applied in many fields, in-
cluding terrain analysis (Holmes et al., 2000; Raaflaub and Collins, 2006; Moawad
and EI Aziz, 2018), flood modeling (Watson et al., 2015; Hawker et al., 2018; Kiczko
and Miroslaw-Swiatek, 2018), soil erosion modeling (Aziz et al., 2012), landslide sus-
ceptibility mapping (Qin et al., 2013), and dry-block-and-ash-flow modeling (Ste-
fanescu et al., 2012). With respect to rapid, flow-like landslide run-out modeling,
very little work has been done to assess the potential impact of DEM uncertainty,
most likely due to the complexity, and hence level of sophistication, of the associated
process models. It is therefore desirable to consider the impact of DEM uncertainty
on landslide run-out models, as overlooking DEM uncertainty may lead to a bias in
risk management decisions.

The goal of this chapter is threefold. The first is to introduce two types of geo-
statistical methods (unconditional and conditional stochastic simulations) that allow
us to account for DEM uncertainty in landslide run-out analyses (sections 6.2-6.3).
The second goal is to study whether DEM uncertainty is critical to landslide run-out
modeling and affects the modeling’s results based on a case study using the two
approaches (sections 6.4-6.5). The last goal is to propose a new approach which en-
ables efficient uncertainty quantification (especially topographic uncertainty quan-
tification) of landslide run-out models (section 6.6).

6.2 Methodology

The topographic surface can be expressed as a function z(s) in the Cartesian coordi-
nate system {x,y,z} (see figure 2.1), where s = (s, sy)T denotes horizontal coordi-
nates of a location. In practice, the function z(s) is often constructed from discrete
gridded raster data. Discretizing a domain of interest D into the horizontal x and y
direction results in a spatial grid

Syn = {Sl‘]‘ = (Sxirsyj) ‘ (Sxi/ Sy]‘) eD;i=12,...,m ] =1,2,.. .,1’1}. (6.1)
The elevation data associated with each grid point s;; are

Zyn = {Zij = Z(Sij) ’ v Sij € Smn} (62)

The elevation Z,,, of a common DEM data product might be erroneous with respect

to the true values as discussed in section 6.1. Denoting the true elevation as
Z;m = {Z; = Z*<Si]') | A Sij € Smn}, (6.3)
the DEM error can be expressed as

Emn = {&;j = Z?} —zjj | V'8ij € Syn}- (6.4)
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If the error £,,, was known, the real-world topographic surface Z},,, would be re-
covered. The fact, however, that the error is unknown or only limited information
about it is available implies an uncertainty in the topographic input to the landslide
run-out models. Within this thesis, the uncertainty associated with the unknown
DEM error is referred to as DEM uncertainty. In this circumstance, each €ij is treated
as a random variable and £, is accordingly treated as a random field, which con-
sists of a collection of random variables ¢;;. By generating multiple realizations of
the random field £,,,, DEM uncertainty can be represented. This process is widely
known as stochastic simulation. It requires a suitable model to describe the jointed
uncertainty in all ¢;; based on limited available information about DEM error. The
task can be further divided into determining (1) the probability distribution func-
tion (pdf) of each ¢;; which quantifies local uncertainty at each grid point and (2) the
correlation between different ¢;; which is usually termed spatial autocorrelation of
DEM error.

According to available information on the DEM error, existing approaches that
could be used to solve the two issues can be generally classified into two groups:

e unconditional stochastic simulation (USS),
e conditional stochastic simulation (CSS).

More specifically, USS is only informed of properties of DEM error, e.g., the RMSE,
and thus does not honor any actual DEM error values. CSS is informed of a certain
number of actual DEM error values at reference locations within the DEM, e.g., ob-
tained from higher-accuracy reference data, and thus could directly honor the actual
DEM error values at reference locations (Fisher and Tate, 2006).

6.2.1 Unconditional stochastic simulation

Typically available information about the DEM error provided by DEM vendors is
the root mean square error (RMSE). For a set of k reference locations, it is defined as

RMSE = 1 i(zz* —z;)2. (6.5)

kS

Here, z7 := z*(s;) denotes a higher-accuracy elevation value at a reference location
s; € D and z; := z(s;) denotes the corresponding elevation value based on the DEM.
The higher-accuracy elevation values and corresponding elevation values based on
the DEM at k reference locations are collectively denoted as z; and z; respectively.

It should be noted that, while the RMSE is typically available, this is not true
for the reference elevation values z; themselves. As stated numerous times in the
literature, it is critical that the RMSE only provides a global indication of DEM error
magnitude without any information about its spatial autocorrelation. Still, it is by

far the most widely used DEM error indicator for many DEM databases and mostly
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the only available information that is included with DEM products. In this circum-
stance, USS could be used to represent DEM uncertainty and study its propagation
into landslide run-out analyses.

Modeling DEM uncertainty based on USS assumes that all local error values ¢;;
are independent and fulfill the same univariate Gaussian distribution with a mean
(pe) of zero and a standard deviation (c;) equivalent to the given RMSE. Under this
assumption, an ensemble of spatially uncorrelated realizations of the random field
& mn can be generated by randomly assigning error values to each ¢;; according to its
local Gaussian probability distribution.

In the next step, the (unknown) spatial autocorrelation of £,,, has to be taken into
account. Potential methods that could be applied are simulated annealing, spatial
autoregressive modeling, spatial moving averages, etc.; see Wechsler (2007). Simu-
lated annealing is generally computationally intensive, and spatial autoregressive
modeling becomes impractical for the simulation of large areas (Oksanen, 2006).
In this chapter, the spatial moving-averages method is used. It increases the spa-
tial autocorrelation by filtering spatially uncorrelated realizations with a distance-
weighted filter proposed by Wechsler and Kroll (2006). For ¢;; at one grid point of
an uncorrelated realization, its value is replaced by the weighted average of ¢;; at all
grid points within the filter kernel. The weight decreases with increasing distance to
the grid point, which is similar to semivariogram trends (Wechsler and Kroll, 2006).
The size of the filter denoted as d depends on the maximum autocorrelation length
of €, which again is unknown if the RMSE is the only available information. In
practice, d is often determined based on the maximum autocorrelation length of the
original DEM (Wechsler, 2007; Aziz et al., 2012).

By applying the spatial moving-averages technique, the ensemble of spatially
uncorrelated realizations of the random field £,,, turns into spatially correlated re-
alizations. Adding these DEM error realizations to the deterministic DEM leads to
an ensemble of equiprobable DEM realizations. Given each of the DEM realizations
as topographic input, the landslide run-out model can be run and interested out-
puts can be extracted. The impact of topographic uncertainty on interested outputs
can then be quantified by statistically analyzing the ensemble of interested outputs.
Algorithm 3 summarizes the steps of using unconditional stochastic simulation for
topographic uncertainty quantification.

Though it relies on some assumptions, such as an appropriate choice of correla-
tion length d, the sketched approach is generally applicable if the RMSE is the only
available information. It may become critical if a DEM contains a systematic bias
which means that the mean of z; — z; deviates largely from zero. More specifically,
if following Fisher and Tate (2006) and Wessel et al. (2018) in defining mean y, and
standard deviation o; as

1& 1 ¢
He = % Z(Zz* —zi), 0= k—1 Z((Zz* —zi) — pe)?, (6.6)

i=1 i=1
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Algorithm 3 USS for topographic uncertainty quantification

1: Determine the RMSE, correlation length d, and the number of realizations N.

2. forn=1,...,Ndo

3:  Sample a spatially uncorrelated realization of the random field €, by draw-
ing m x n points from a univariate Gaussian distribution with zero mean and
a standard deviation equivalent to the given RMSE.

4:  Obtain a spatially correlated realization of £€,, by applying the spatial
moving-averages technique with the correlation length d to the uncorrelated
realization.

5. Obtain a DEM realization by adding the spatially correlated realization of €,
to the deterministic DEM.

6:  Run the landslide run-out model given the DEM realization as topographic

input.
7. Extract interested model outputs.
8: end for

9: return Interested model outputs of the N landslide run-out model evaluations.
10: Perform statistical analysis on the model outputs to quantify the impact of topo-
graphic uncertainty.

the RMSE can be expressed in terms of y, and o as

RMSE = 1/ + k;lag. (6.7)

If the number of reference points k is relatively large, \/(k — 1) /k is close to 1. Equa-
tion 6.7 then indicates that the RMSE is larger than the standard deviation o if the
mean i, deviates from zero. The difference between the RMSE and ¢, increases with
increasing .. For example, the y,, 0, and RMSE of the global TanDEM-X DEM
based on about 3 million reference points are 0.17, 1.28, and 1.29m (Wessel et al.,
2018). Those of the EU-DEM of Central Macedonia based on 12 943 reference points
are 1.8, 3.6, and 4.0 m, while those of the ASTER GDEM of the same area based on
the same reference points are 6.8, 7.6, and 10.2 m (Mouratidis and Ampatzidis, 2019).
This means that assuming the standard deviation of the DEM error to be given as
the RMSE consequently overestimates the variability in the DEM error if the mean
deviates largely from zero.

The implications of both issues, namely the fact that the filter size 4 is unknown
and has to be subjectively chosen and that the RMSE provides an insufficient repre-
sentation of the DEM error, are investigated in the following study. For convenience,
the two issues are referred to as

¢ unrepresentative RMSE and
¢ subjective d.

The USS method greatly resembles the Gaussian process prior defined in equa-
tions 3.1-3.4. More specifically, the mean in the USS method is assumed to be zero
which can be achieved by setting the regression parameters in equation 3.2 to zero;

the square of the RMSE plays the same role as the variance ¢2 in equation 3.3;
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the spatial moving-averages technique has the same functionality as the correlation
function in equation 3.3 and the correlation length d is simply the correlation length
parameters 1 reduced to an isotropic case. The above two issues of USS can there-
fore be understood in the context of GP regression as follows: due to the lack of
training data (actual DEM error values at reference locations), the variance ¢? and
correlation length d of the DEM error can only be approximated by an unrepresen-
tative RMSE and a subjectively chosen value of d.

6.2.2 Conditional stochastic simulation

Higher-accuracy reference data at certain reference locations sy, . . ., s; are sometimes
available, e.g., from higher-accuracy DEM products or GPS surveys. Note that, al-
though these data might be subject to error themselves, it is fair to assume this error
to be much smaller. This justifies the use of the higher-accuracy reference data as true
elevation values z;. Given z;, the DEM error €7, . . ., €] at the k reference locations can
be obtained, which are collectively denoted as &;. In this case, conditional stochastic
simulation can be used to generate realizations of the random field £€,,,. Many geo-
statistical methods of conditional simulation could be applied, including sequential
simulation algorithms, the p-field approach, and simulated annealing (Goovaerts,
1997). In this chapter, the sequential Gaussian simulation method is employed. It is
the most attractive technique for stochastic spatial simulation according to Temme
et al. (2009) and has been widely utilized in DEM uncertainty propagation analysis
(Holmes et al., 2000; Aziz et al., 2012). The sequential Gaussian simulation method
can be viewed as a combination of kriging and a sequential sampling algorithm.
Kriging is the name of Gaussian process regression in geostatistics (section 3.1).
Typical kriging equations are given in equations 3.11a-3.11c. In the context of DEM
uncertainty, the training data y' in equations 3.11a-3.11c refer to the known DEM
error values at the reference locations &;; the output y* at an untried input x* refers to
the DEM error at an unobserved location. A realization of the random field £,,,, can
therefore be directly generated by sampling from the kriging equations (Gaussian
process posterior) using the matrix decomposition-based technique (equation 3.24).
As already mentioned in section 3.4, the main problem of the sampling tech-
nique based on matrix decomposition is its computational complexity. Regarding
generating realizations of £,,,, the computational complexity is O ((m x n)3). It
may cause problems when m x n is large (like hundreds of thousands), which is of-
ten the case for large scale DEMs. The sequential sampling algorithm is therefore
used to overcome this issue. Instead of directly sampling a realization of €, it se-
quentially samples each ¢;; along a random path which contains all grid points s;;,
ic{l,...,m},je{1,...,n}. According to the kriging equations 3.11a-3.11c, each ¢;;
fulfills a univariate Gaussian distribution denoted as N (j, i O'éj

now is that the mean i, and standard deviation ¢, are determined sequentially,

). The essential idea

namely not only conditioned on & but also on previously sampled ¢;;.
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Algorithm 4 CSS for topographic uncertainty quantification

1: Determine a semivariogram model to represent the spatial autocorrelation of
DEM error based on normal score transformed &, and determine the number of
realizations N.

2: forn=1,...,Ndo

3:  Define a random path visiting each location s;; once.

4. Sample each ¢;; sequentially along the random path; at each location, ¢;; is sam-
pled from the kriging equations that are based on the semivariogram model,
normal score transformed &5, and samples of ¢;; at previously visited locations.

5. Obtain a realization of £, by back-transforming all sampled ¢;; to the original
distribution of &j.

6:  Obtain a DEM realization by adding the realization of £€,,, to the deterministic

DEM.

7. Run the landslide run-out model given the DEM realization as topographic
input.

8:  Extract interested model outputs.

9: end for

10: return Interested model outputs of the N landslide run-out model evaluations.
11: Perform statistical analysis on the model outputs to quantify the impact of topo-
graphic uncertainty.

It is noteworthy that the variogram or semivariogram is often used in the kriging
procedure in the geostatistical literature, instead of the covariance function. The
covariance function C(+,-) is often known as the covariogram in geostatistics. In
the context of DEM uncertainty, the covariogram defines the covariance between
DEM error values at any two locations s; and s;. Under the assumption of stationary
(section 3.2.1), the covariogram is given by

C(e(si),e(sj)) = C(si —sj) = C(h), (6.8)

where h € R? denotes the difference between s; and s;. The variogram is related to
the covariogram as follows:

V(e(si),e(sj)) = V(h) = V(s;) + V(s;) —2C(h) = 2C(0) —2C(h).  (6.9)

The semivariogram is simple half the variogram, namely
7(e(si),e(sj)) = v(h) = C(0) = C(h). (6.10)
Algorithm 4 summarizes the steps of using sequential Gaussian simulation (condi-
tional stochastic simulation) for topographic uncertainty quantification. The normal

score transform of & (the known DEM error values at reference locations) is applied
to fulfill the format requirements of Gaussian simulation (Holmes et al., 2000).

6.3 Implementation

The methodology presented in section 6.2 implies the following implementation
work: first, the unconditional and conditional stochastic simulation methods need



6.3. Implementation 71

to be implemented in order to generate a number of DEM realizations to represent
DEM uncertainty. Second, a landslide run-out model solver is required to run sim-
ulations given the DEM realizations. Third, the extensive output data need to be
postprocessed. In addition, understanding how DEM uncertainty affects terrain at-
tributes may facilitate the interpretation of its impact on landslide run-out modeling.
This requires the ability to calculate terrain attributes, e.g., slope and roughness, of
the original DEM as well as of the generated DEM realizations. To solve these tasks,
a workflow that integrates my own Python implementation and existing software is
developed. The main modules of the workflow are as follows:

e DEM uncertainty representation. This module is used to generate an en-
semble of N equally probable DEM realizations to represent DEM uncertainty
based on available information about DEM error. USS as introduced in sec-
tion 6.2.1 is implemented without third-party software for cases in which only
the RMSE is available. For cases in which higher-accuracy reference data are
provided, CSS as introduced in section 6.2.2 is implemented by integrating the
sequential Gaussian simulation algorithm of the Stanford Geostatistical Mod-
eling Software (5GeMS; Remy et al., 2009) into the workflow.

e Simulator. This module is used to run landslide run-out simulations given
the DEM realizations. Christen et al. (2010) presented the proprietary mass
flow simulation platform RAMMS which provides a GIS-integrated imple-
mentation of the landslide run-out model employing the Voellmy rheology
(section 2.2). I implemented a Python-based wrapper for RAMMS to automat-
ically set up required simulation inputs, run simulations, and extract outputs
of interest.

e Statistical analysis and visualization. This module is used to conduct statisti-
cal analysis on the outputs of interest and visualize results. It is mainly based
on the Python NumPy and Matplotlib modules. For example, a probabilistic
hazard map can be produced to indicate potential hazard area.

e Terrain analysis. This module is used to analyze terrain characteristics of the
original DEM and DEM realizations, which may help us to interpret the out-
puts of interest. This is achieved by integrating several terrain analysis tools
from WhiteboxTools (Lindsay, 2018) like calculating slope, aspect, roughness
index, etc., into our workflow.

The above RAMMS-based simulator (running on WINDOWS operating systems)
can be simply replaced by the r.avaflow-based simulator (running on LINUX oper-
ating systems) that has been used in chapter 4 and chapter 5, and vice versa. The
implementation of both simulators therefore allows utilizing the unified framework
developed in this thesis on both WINDOWS and LINUX operating systems.

It should be noted that due to the high dimensionality of DEM uncertainty (each
¢;jis arandom variable), it is difficult to directly employ GP emulation to emulate the
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relations between DEM uncertainty and outputs of interest. For the small-scale case
studied in sections 6.4-6.5, it is not an issue since the simulation can be run relatively
fast (around one minute). For computationally expensive cases like the Bondo case
in chapter 4 and chapter 5, it may become an issue. In section 6.6, a new approach
based on dimensionality reduction of DEM uncertainty is proposed. It allows us to
represent DEM uncertainty by a limited number of random variables and therefore
makes GP emulation applicable.

6.4 Case study based on the 2008 Yu Tung landslide event

The case study is based upon a historic landslide and two DEM sources. For the
purpose of DEM uncertainty propagation analysis, one DEM source is assumed to
be more accurate than the other. Higher-accuracy reference data are then obtained
from the more accurate DEM source to assess elevation error in the less accurate
DEM source. A series of computational scenarios are designed based on the higher-
accuracy reference data to study the impact of DEM uncertainty on landslide run-out
simulation for both the case where only the RMSE is available and the case where
higher-accuracy reference data are available. Additional computational scenarios
are designed to study the unrepresentative RMSE and subjective d issues as detailed
in section 6.2.1.

6.4.1 Case background and DEM sources

A historic landslide happened on 7 June 2008 on the hillside above Yu Tung Road in
Hong Kong due to an intense rainfall event; see figure 6.2. It was the largest flow-
like landslide out of 19 landslides during that event. Around 3400 m® of material
was mobilized and traveled about 600 m until it was deposited. The landslide event
had a severe infrastructural impact, as it led to closure of the westbound lanes of Yu
Tung Road for more than 2 months (AECOM Asia Company Limited, 2012). The Yu

FIGURE 6.2: The 2008 Yu Tung Road landslide. Left: Google map of Hong Kong (map
data © 2019). Right: aerial photograph of Yu Tung Road site after the 2008 landslide. It
corresponds to the No. L25 landslide in the GEO Report (AECOM Asia Company Limited,
2012).
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Tung Road landslide also served as a benchmark case for predictive landslide run-
out analysis at the second JTC1 workshop on triggering and propagation of rapid
flow-like landslides in Hong Kong 2018 (Pastor et al., 2018). Two types of DEM data
of the Yu Tung Road area were the basis for this case study:

* A public 5m resolution digital terrain model covering the whole area of Hong
Kong (HK-DEM). It can be downloaded from the website of the Survey and
Mapping Office of Hong Kong. The HK-DEM is generated from a series of dig-
ital orthophotos, which are derived from aerial photographs taken in 2014 and
2015. The reported accuracy is £5 m at a 90% confidence level. (DATA.GOV.HK,
2019)

¢ A 2m resolution DEM (2m-DEM) covering the main area of the Yu Tung Road
landslide event. Its boundary is shown in figure 6.3a. It was provided for the
benchmark exercise during the second JTC1 workshop. It is produced based
on the field mapping after the 2008 Yu Tung Road landslide event and a pre-
event DEM. According to the “note to participants” of the second JTC1 work-
shop (which can be found under the link http:/ /www.hkges.org/JTC1_2nd/
be.html, last access: 18 May 2020), the 2m-DEM represents the rupture surface
in the release zone area and the pre-event slope surface in other areas. The rup-
ture surface is obtained based on the field mapping (AECOM Asia Company
Limited, 2012).

The 2m-DEM is assumed to be more accurate than the 5m resolution HK-DEM.
Similar to the consideration at the beginning of section 6.2.2, the 2m-DEM and 5m
resolution HK-DEM correspond to Z* and Z as defined in section 6.2. A set of
higher-accuracy reference data z; can hence be determined to provide information
to represent uncertainty in the 5m resolution HK-DEM. At the channel base, infor-
mation on vegetation in the 2m-DEM is not available. The 5m resolution HK-DEM
includes vegetation. Any vegetation present in the channel base in the 5 m resolution
HK-DEM is not explicitly accounted for in the sense of a modeled DEM correction.
Rather, it is subsumed as part of the DEM error.

It should be noted that, due to a different time of DEM data acquisition, there
are infrastructural factors present in the 5m resolution HK-DEM but not in the 2m-
DEM. After the time of data acquisition of the 2m-DEM, debris-resisting barriers and
aroad were built in the area within the red ellipse and blue rectangle, respectively, in
figure 6.3a. They are reflected in the HK-DEM but not in the 2m-DEM, which leads
to large inconsistency between the two DEMs in that area. Therefore, to avoid an
unrealistically large error in the HK-DEM, data from the 2m-DEM in that area are
excluded from higher-accuracy reference data z;.
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FIGURE 6.3: (a) Elevation error g;{k = 180} of the HK-DEM at 180 reference locations. The
background is the hillshade plot of the HK-DEM. Debris-resisting barriers and a road in the
area indicated by the red ellipse and blue rectangle constructed after the 2008 landslide event
are represented in the HK-DEM but not in the 2m-DEM. It causes inconsistency between the
two DEMs in that area. To avoid an unrealistically large error in the HK-DEM, data from
the 2m-DEM in that area are excluded from higher-accuracy reference data. (b) Histogram
of &;{k = 180}.

6.4.2 DEM realizations
6.4.2.1 Information on DEM error

As shown in Fig. 6.3a, 180 evenly spaced reference locations are picked from the HK-
DEM grid points within the boundary of the 2m-DEM. Higher-accuracy reference
data at these locations are obtained from the 2m-DEM using bilinear interpolation,
denoted as z;{k = 180}. By subtracting the corresponding elevation values of the
HK-DEM z;{k = 180} from z;{k = 180}, elevation error values of the HK-DEM at the
180 reference locations are obtained, denoted as &;{k = 180}.

Figure 6.3b shows the histogram of &;{k = 180}. Of the elevation error values,
90% are within —5.84 m and —1.04 m, which is close to the reported accuracy (see
section 6.4.1). The ., 0¢, and RMSE according to equation 6.6 and equation 6.5 are
—3.0, 1.5, and 3.3 m, respectively. Here, it should be noted that the RMSE is larger
than the o, since the j, is not zero, which indicates a systematic bias. As discussed
in section 6.2.1, this also indicates that assuming the standard deviation of the HK-
DEM error to be equivalent to the RMSE in USS would overestimate the variability
in the HK-DEM error.

Based on & {k = 180}, an isotropic semivariogram model can be determined. It
describes the spatial autocorrelation of the HK-DEM error and has a form of

_ [Ih]] [
v(h) = 0.1 x Sph ( g0 ) TO9XExp (5o ). (6.11)

Here, Sph(-) and Exp(-) denote the basic spherical and exponential semivariogram
models (Goovaerts, 1997); ||h|| denotes the horizontal distance between any two
locations. A comparison between the experimental semivariance values based on
gi{k = 180} and the parameterized semivariogram model given by equation 6.11
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FIGURE 6.4: Experimental semivariances based on & {k = 180} and fitted parameterized

semivariogram model given by equation 6.11. The range of the semivariogram model is
180 m.

can be seen in figure 6.4. The continuous semivariogram model is fitted to the ex-
perimental semivariance values so as to deduce semivariance values for any possible
distance ||h|| required by simple kriging (Goovaerts, 1997). The range of the semi-
variogram model is 180 m. It indicates the maximum autocorrelation length of the
HK-DEM error, on which the size of the spatial moving filter d depends (see sec-
tion 6.2.1).

6.4.2.2 DEM uncertainty scenarios

As mentioned in section 6.2, DEM users are often restricted to DEM error informa-
tion in the form of a single RMSE value per data product. Rarely, they have higher-
accuracy reference data. In order to account for both situations, two corresponding

information levels are considered in the following study.

a. Rudimentary error information — the RMSE only. In this situation, the RMSE is
assumed to be the only available error information for the 5m resolution HK-
DEM. In order to compare results to (b), we employ the RMSE 3.3m as gen-
erated based on z;{k = 180} as well as the size of the spatial moving filter d
of 180m to match the range of the fitted semivariogram model in figure 6.4.
USS introduced in section 6.2.1 is used to generate N realizations of the HK-
DEM, denoted as USSN{RMSE = 3.3,d = 180}.

b. Highly informed — higher-accuracy reference data. In this situation, z;{k = 180} is
assumed to be available. That means the error s;{k = 180} at the reference lo-
cations are exactly known, as well as the fitted semivariogram model based on
g;{k = 180}. CSS introduced in section 6.2.2 is used to generate N realizations
of the HK-DEM, denoted as CSSy,.

Following the two nominal scenarios (a) and (b) that are based on specific error
g;{k = 180} at reference locations determined from the available data sources, it is
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also useful to analyze the impact of unrepresentative RMSE and subjective d issues
of USS (section 6.2.1). This could help to understand to what extent the results of USS
can be trusted, if only a single RMSE value per data product is available. Three addi-
tional values of the RMSE that are 0.5, 1.5, and 2.5 m with a fixed d of 180 m are used
as inputs for USS to study the unrepresentative RMSE issue. It should be noted that
the RMSE 1.5 m corresponds to the true standard deviation o, based on &;{k = 180}
(see figure 6.3b). Another three additional values of d that are 0, 90, and 270 m with
a fixed RMSE of 3.3 m are used to consider the subjective d issue. The correspond-
ing realizations of the HK-DEM are denoted as USSN{RMSE = 0.5,1.5,2.5,d = 180}
and USSN{RMSE = 3.3,d = 0,90,270}. To sum up, all the scenarios for stochastic
simulation are listed in table 6.1.

TABLE 6.1: Scenarios for stochastic simulation.

Method to generate Input to generate

DEM realizations DEM realizations
Scenario (a) uss RMSE = 3.3;d = 180
Scenario (b) CSS semivariogram; & {k = 180}
Scenarios for
unrepresentative RMSE UsSsS RMSE = 0.5,1.5,2.5;d = 180
Scenarios for
subject d

USS RMSE = 3.3;d = 0,90, 270

6.4.2.3 Number of DEM realizations

The integrity of a stochastic simulation requires a large number of DEM realizations,
and more realizations naturally require many computational resources. Thus one
has to find a reasonable compromise. Typically, this can be found through a rep-
resentative convergence study. Since the aim is to study the impact of topographic
uncertainty on landslide run-out simulation, the relative change in topographic at-
tributes with an increasing number of HK-DEM realizations is analyzed. Here, 1000
HK-DEM realizations are generated for the two information levels (a) and (b) as in-
troduced in section 6.4.2.2, namely USSn—1000{RMSE = 3.3,d = 180} and CSSy 1000,
respectively. Topographic attributes including slope, aspect, and roughness at all
HK-DEM grid points are calculated for each realization.

An indicator of the relative change that is similar to Raaflaub and Collins (2006)
is defined to investigate the converging behavior. Taking slope as an example, for
a given number N of HK-DEM realizations, the standard deviation of slope at each
HK-DEM grid point over the N realizations is calculated. The calculated standard
deviation values at all grid points constitute a grid of standard deviation values.
Then the standard deviation of the grid of standard deviation values is calculated,
which leads to a single standard deviation value for the given number N. For each
N from 1 to 1000, a standard deviation value can be correspondingly calculate. The
same procedure is applied to aspect, roughness, and elevation.
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FIGURE 6.5: The relative change in topographic attributes with respect to the number of
HK-DEM realizations. The realizations are generated with (a) USSy{RMSE = 3.3,d = 180};
(b) CSSy. Beyond N = 500, adding more realizations has little impact on topographic at-
tributes.

Figure 6.5 shows plots of normalized standard deviation of the grid of standard
deviation values with respect to the number of HK-DEM realizations for the two
situations (a) and (b). It can be seen that for situation (a), aspect levels out first,
followed by slope, roughness, and elevation. Beyond 500 realizations, there is little
change in normalized standard deviations. This indicates that adding more realiza-
tions has little impact on topographic attributes. For situation (b), aspect also levels
out first while the other three attributes show less difference. Compared to (a), (b)
converges faster, which indicates CSS requires fewer DEM realizations than USS
does. Nevertheless, N = 500 is set for the remainder of this chapter both for USS
and CSS. Namely, 500 HK-DEM realizations are generated for each scenario input
set as listed in table 6.1.

6.4.2.4 Statistics of DEM error realizations

In order to conduct a further quality check of the implementation of both USS and
CSS, corresponding DEM error realizations of the USSy—_500{RMSE = 3.3,d = 180}
and CSSn—s50p scenarios are investigated. The DEM error realizations are denoted
as USSK™%, {RMSE = 3.3,d = 180} and CSSK™,, respectively. Ideally, the local
mean ¢, and standard deviation o, of DEM error realizations at each grid point s;;
should match the underlying assumptions as introduced in section 6.2 if the number
of DEM error realizations is sufficiently large.

Figures 6.6a and 6.6¢c show the mean and standard deviation grid of the USSE™%,
{RMSE = 3.3,d = 180}. It can be seen that the mean values at all grid points are
centered around 0 m. The standard deviation values are centered around 3.3 m. This
corresponds to the assumption underlying USS that all ¢;; fulfill the same univariate
Gaussian distribution with a mean (y,) of zero and a standard deviation (c;) given

by the RMSE (see section 6.2.1).



78 Chapter 6. Monte Carlo-type uncertainty quantification

E E

(a) USSEne (RMSE=3.3, d=180} (b) CssBrer
816100 - e ] “ v o HRE, ATUNTE SRR 0

816050 - .+ . - 37 RS PN y,.7 b _
816000 —(A oS .\' 'A. X X jq,: A ; " SRR % 1 02 _ ' B L I0T LA 24
815950 1NN N Voo ror BT gt (VY 328
815000 % i 9: o 2 A -".f" L A 0.0 § o : g
815850 1hK g LU (LA A ":, ’: 37y, i -0.1 2 A ' $ : $ 1 48 &
s15800 f< e A e, iR 0.2 1 5.6

815750 - )

Northing (m)

815700 D Tk TR
T

()

816100 4

1
816050 o

m“‘

2O

ey

816000 -« 1 '

815950 o
815900 o %
815850 o |

815800 4 ?

Northing (m)

815750 o

815700 o .
T T T T T T T T T
811800 811900 812000 812100 812200 812300 812400 812500 812600 811800 811900 812000 812100 812200 812300 812400 812500 812600

Easting (m) Easting (m)

FIGURE 6.6: Statistics of HK-DEM error realizations. (a) Mean and (c) standard devia-
tion grid of USSE™,,(RMSE = 3.3,d = 180}. (b) Mean and (d) standard deviation grid
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Figures 6.6b and 6.6d show the mean and standard deviation grid of the CSSE™ ..
The mean values at grid points away from the reference locations are centered around
the mean (y;) —3.0m based on &{k = 180}. They become close to &{k = 180}
with the decrease in distance between grid points and the reference locations and
are equal to g{k = 180} at the reference locations. Similarly, the standard devia-
tion values at grid points away from the reference locations are centered around the
standard deviation (c¢) 1.5m based on g {k = 180}. They vanish at the reference lo-
cations. This also corresponds to the assumption underlying CSS that each ¢;; fulfills
a univariate Gaussian distribution with a mean y,; and standard deviation ¢, given

by the kriging mean and standard deviation at s;; (see section 6.2.2).

6.4.3 Landslide run-out simulation setup

As introduced in section 2.3, initial distribution of the flow mass, topographic data
(DEM), and rheological parameters are key inputs for performing a deterministic
landslide run-out simulation. For all scenarios, the release area as provided for
the benchmark exercise during the second JTC1 workshop is consistently used. It
matches the release area of the 2008 Yu Tung Road landslide (Pastor et al., 2018) as
shown in figure 6.7b. The release height is assumed to be 1.2 m, leading to a release
volume of around 2900 m?3, based on the 5 m resolution HK-DEM. The Voellmy rhe-
ological parameters y and ¢ are set to be 0.105 and 300 m/s?, respectively. They are
suggested in the GEO Report issued by the Civil Engineering and Development De-
partment of Hong Kong, which are obtained using back analysis with information
from a video capturing the lower portion of the landslide and detailed field map-
ping after the landslide (AECOM Asia Company Limited, 2012). The HK-DEM and
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all HK-DEM realizations generated in section 6.4.2 are used as topographic inputs.

Let’s call a deterministic landslide process simulation based on a DEM as a simu-
lation run and N deterministic landslide process simulations based on N DEM real-
izations as a simulation ensemble. The following deterministic simulation and sim-
ulation ensembles are conducted based on the original HK-DEM and the aforemen-
tioned computational scenarios (table 6.1). They are named after the corresponding
DEM and DEM realizations.

1. Deterministic simulation HK-DEM. One landslide process simulation run is
conducted based on the original HK-DEM. This one time simulation corre-
sponds to what is traditionally performed in a simulation-based hazard as-
sessment study. The results serve as the basis to assess the impact of DEM

uncertainty.

2. USSN=500{RMSE = 3.3,d = 180} ensemble. A total of 500 landslide process
simulations are conducted based on the USSy—500{RMSE = 3.3,d = 180} DEM
realizations. Each of them is referred to as USSy,_5,0{RMSE = 3.3,d = 180},
withn = 1,2,...,500. This ensemble allows us to assess the impact of DEM
uncertainty if only the RMSE is available.

3. CSSn=500 ensemble. A total of 500 landslide process simulations are conducted
based on the CSSy_5090 DEM realizations. Similar to (2), each of them is re-
ferred to as CSSy_5p9. This ensemble allows us to assess the impact of DEM
uncertainty if higher-accuracy reference data are available.

4. USSn—500{RMSE = 0.5,1.5,2.5,d = 180} ensembles. For each of the three dif-
ferent RMSE values, 500 landslide process simulations are conducted, while
keeping the maximum autocorrelation length d constant. They lead to 1500
process simulations. The results allow us to discuss the unrepresentative RMSE
issue as detailed in section 6.2.1. They can be also used to discuss the relation-
ship between the degree of DEM uncertainty and its impact.

5. USSn—500{RMSE = 3.3,d = 0,90,270} ensembles. For each of the three maxi-
mum autocorrelation length values, 500 landslide process simulations are con-
ducted, while keeping the RMSE constant. They lead to 1500 process simu-
lations. The results allow us to discuss the subjective d issue as detailed in
section 6.2.1.

All in all this adds up to one deterministic simulation run HK-DEM, two simulation
ensembles USSy_s500 {RMSE = 3.3,d = 180} and CSSy—500 which are constructed
from higher-accuracy reference data based on the 2m-DEM, and six additional en-
sembles USSn—500{RMSE = 0.5,1.5,2.5,d = 180} and USSn—5090 {(RMSE = 3.3,d =
0,90,270} to test sensitivities. Each ensemble consists of 500 process simulations.
Each process simulation takes around 1 minute on a laptop with Intel Core i7-9750H
CPU, adding up to around 67 hours of simulation time.
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6.5 Results and discussions

This section is organized according to the simulation ensembles introduced in sec-
tion 6.4.3. Section 6.5.1 presents the results of the deterministic simulation HK-DEM
which serves as the basis for all following discussions. Section 6.5.2 is devoted to an-
alyzing the impact of DEM uncertainty on landslide run-out simulation in the cases
of only the RMSE being available (USSn—500{RMSE = 3.3,d = 180} ensemble) and
higher-accuracy reference data being available (CSSy—509 ensemble). In section 6.5.3,
the unrepresentative RMSE and subjective d issues are discussed based on the en-
sembles described in section 6.4.3 (labeled 4 and 5).

6.5.1 Deterministic simulation

Figures 6.7a-b show maximum flow height and velocity as given by the deterministic
simulation HK-DEM. It should be noted that there is a relatively high elevation area
at the end part of the channel in the HK-DEM as denoted within the red circle in
tigure 6.7b. It corresponds to the construction of debris-resisting barriers after the
2008 Yu Tung Road landslide as introduced in section 6.4.1. The flow material is
decelerated and held back here. This point will be discussed later in section 6.5.2.1.
Besides maximum flow height and velocity, the apparent friction angle which is
often used to characterize landslide run-out distance is discussed. It is defined as
the angle of the line connecting the center of release mass and the center of deposit
mass (De Blasio, 2011). The apparent friction angle evaluated from the deterministic
simulation is 16.80°. This result is used as a reference to assess the impact of DEM

uncertainty in the following discussions.

6.5.2 Unconditional and conditional stochastic simulations

While it is straightforward to present the results of a deterministic simulation run, a
stochastic simulation-based ensemble of N simulation runs calls for tailored statis-
tics to manage and interpret the extensive output data. First, the hazard probability
Py at a location is defined as the frequency of maximum flow height at that location
exceeding a certain predefined height threshold value; hence

P — % i P, Pl — 1, if B"™" > threshold 6.12)
n=1 0, otherwise,

where """ denotes the maximum flow height at location [ for the n-th simulation
run of the corresponding ensemble. Hence P}' indicates whether location / is within
the hazard area of the n-th simulation run for a given threshold, and P; indicates the
resulting hazard probability at location / considering the complete ensemble. Here,
the threshold is set as 0.1 m, which matches the cutoff threshold of the deterministic
simulation HK-DEM in figure 6.7a. Evaluation of hazard probabilities at all locations
then gives rise to a probabilistic hazard map (Stefanescu et al., 2012), which provides
an overall view of the DEM uncertainty impact.
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FIGURE 6.7: Results of the deterministic simulation HK-DEM. (a) Maximum flow height
above a cutoff threshold of 0.1 m. The black outline is the 0.1 m contour of maximum flow
height. The area within this outline is regarded as the hazard area. Areas 1-3 are denoted for
later discussions (see section 6.5.2.1). (b) Maximum flow velocity above a cutoff threshold of
0.01m/s. The relatively high elevation area within the red circle decelerates and holds back
the flow material. The channel bottom and cross section are denoted for later discussions
(see section 6.5.2.2).

Besides assessing the overall impact of DEM uncertainty in terms of the proba-
bilistic hazard map, the local impact of DEM uncertainty on dynamic flow properties
is also discussed, focusing on maximum flow height and velocity at locations along

the channel bottom and the channel cross section denoted in figure 6.7b.

6.5.2.1 Probabilistic hazard maps

Figures 6.8a and 6.8c show the probabilistic hazard map for both the USSy—_509 {RMSE
= 3.3,d = 180} ensemble and the CSSy—s500 ensemble. It can be seen that the poten-
tial hazard area is much larger than the deterministic hazard area for both ensembles.
The difference between the deterministic and the ensemble-based hazard area is
most pronounced in areas 1-3 for the USSy—500 {RMSE = 3.3,d = 180} ensemble and
in area 3 for the CSSy—500 ensemble. Figures 6.8b and 6.8d show boxplots of the ap-
parent friction angle distribution for both ensembles. It is evident that the apparent
friction angle of both ensembles varies largely with respect to the apparent friction
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FIGURE 6.8: (a) Probabilistic hazard map and (b) corresponding apparent friction angle dis-
tribution of the USSn—500 {RMSE = 3.3,d = 180} ensemble; (c) probabilistic hazard map and
(d) corresponding apparent friction angle distribution of the CSSy—509 ensemble. The black
outline plotted on the hazard maps represents the deterministic hazard area (see figure 6.7a).
In the boxplots, the blue star denotes the apparent friction angle of the deterministic simu-
lation HK-DEM. The difference between the deterministic and the ensemble-based hazard
area is most pronounced in area 1-3 for the USSy_s500 {RMSE = 3.3,d = 180} ensemble and
in area 3 for the CSSy—509 ensemble.

angle of the deterministic simulation (16.80°). The CSSn—s509 ensemble-based appar-
ent friction angle (mean 15.39°) is smaller than the USSy—_500 {RMSE = 3.3,d = 180}
ensemble-based apparent friction angle (mean 16.76°).

As stated in section 6.3, analyzing terrain characteristics of the original DEM and
DEM realizations may contribute to the interpretation of simulation results. By a
preliminary analysis, no obvious relationships between landslide run-out simula-
tion results and terrain characteristics were found at a specific location (on the cell
level). One obvious reason for this is that a simulation result at one location is af-
fected not only by terrain characteristics at the specific location but also by the com-
plete upstream and surrounding terrain. Instead of discussing the effects of terrain
characteristics at the cell level, the focus here is put on several compound terrain
characteristics that contribute to understanding how DEM uncertainty may affect
simulation results. The compound terrain characteristics include banks of the chan-
nel, especially the north bank near area 1 and south bank near area 2; the relatively
high elevation area at the end part of the channel that holds back flow material as
shown in figure 6.7b; topographic roughness; and the relatively flat area of area 3
(namely area with a relatively small slope).
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Due to DEM uncertainty, topographic characteristics represented in DEM real-
izations vary from those represented in the original DEM. Specifically, firstly, to-
pographic details of the deterministic channel tend to be dampened out in DEM
realizations. The topographic details include banks of the channel as well as the
relatively high elevation area at the end part of the channel that holds back flow
material. Secondly, topographic roughness tends to increase.

Whether, where, and to what extent the topographic characteristics in DEM real-
izations would differ from the original DEM depend on (1) variability in DEM error
— intuitively, the larger the variability, the more likely that topographic details of
the deterministic channel would be dampened out and the larger the topographic
roughness in DEM realizations — and (2) topographic details of the original DEM.
If subject to the same DEM error, less well defined topographic characteristics in
the original DEM are more likely to be changed in DEM realizations. For example,
along the channel of the HK-DEM, the north bank of the channel near area 1 and
the south bank of the channel near area 2 are less well defined compared to other
parts of the channel banks. Flow material could be more easily diverted to area 1
and area 2 where elevations are relatively low and some local small channels exist.
Area 3 could also be regarded as less well defined since it is relatively flat and thus
is sensitive to DEM uncertainty (Temme et al., 2009).

The change in each topographic characteristic has a corresponding impact on
landslide run-out behavior. Specifically (1) if banks of the deterministic channel are
dampened out in DEM realizations, flow material tends to spread out along the
channel cross-section direction and travel distance is shorter; (2) if the relatively high
elevation area that holds back flow material is dampened out, flow material tends to
travel further; and (3) increasing topographic roughness leads to higher simulated
momentum losses and shorter travel distance as pointed out by McDougall (2017).

For the USSny—_500 {RMSE = 3.3,d = 180} ensemble, the variability in DEM error
is relatively large, i.e., around 3.3 m governed by the non-bias-corrected RMSE based
on g{k = 180} (see figure 6.6¢). In this situation, both the north bank near area 1
and south bank near area 2 as well as the relatively high elevation area at the end
part of the channel can be dampened out in HK-DEM realizations. For the CSSy—s09
ensemble, the variability in DEM error is relatively small, i.e., around 1.5 m governed
by the standard deviation (c¢) based on & {k = 180} (see figure 6.6d). In this situation,
the banks tend to remain well defined, while the relatively high elevation area can be
dampened out in HK-DEM realizations. Thus, area 1 and area 2 are possibly subject
to hazard in the USSy—500 {RMSE = 3.3,d = 180} ensemble but less likely to be so in
the CSSy—500 ensemble. As mentioned above, area 3 is a flat area which is sensitive
to DEM uncertainty. Furthermore, it is located near the deposition, around which
the impact of upstream DEM uncertainty seems to accumulate. Thus, it is highly
affected in both ensembles.

The apparent friction angle distribution is determined by a combined effect of
change in channel banks, change in the relatively high elevation area at the end part
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of the channel, and increasing topographic roughness. For the USSy_500 {RMSE =
3.3,d = 180} ensemble, a deteriorated channel bank representation and increasing
topographic roughness make flow material travel a shorter distance, i.e., larger ap-
parent friction angle, while a deteriorated relatively high elevation area represen-
tation allows flow material to travel further, i.e., smaller apparent friction angle.
For the CSSy—5090 ensemble, channel banks are likely to remain well defined and
the degree of topographic roughness increase is lower due to its relatively small
variability in DEM error compared to the USSy—500 {RMSE = 3.3,d = 180} en-
semble. Thus, flow material in the CSSy—509 ensemble tends to travel a longer
distance, i.e., smaller apparent friction angle, compared to the flow material in the
USSn=500 {IRMSE = 3.3,d = 180} ensemble.

In summary, it can be concluded from the probabilistic hazard maps and box-
plots of apparent friction angle distribution that (1) accounting for DEM uncertainty
may significantly increase the potential hazard area, (2) the potential hazard area is
highly related to the variability in DEM error and topographic characteristics of the
original DEM, and (3) USS based on the RMSE only may overestimate the spread of
potential hazard area and underestimate travel distance due to a non-bias-corrected
RMSE that overestimates the variability in DEM error.

It should be noted that the probabilistic hazard map here is constructed based
on maximum height and a predefined threshold. In simulation-based hazard as-
sessment practice, one may indicate potential hazard using other indicators, e.g., the
maximum momentum that reflects the impact pressure, and correspondingly mod-
ify the threshold value. In this case, the workflow is easily extendible to account for
other indicators.

6.5.2.2 Dynamic flow properties

Figures 6.9a, 6.9¢c, and 6.9e show elevation, maximum flow height, and maximum
flow velocity at locations along the channel bottom based on the USSy—500 {RMSE =
3.3,d = 180} ensemble. It is evident that both maximum height and maximum
velocity at these locations largely vary from those of the deterministic simulation.
Specifically, the mean of maximum height (maximum velocity) values at all the lo-
cations based on the deterministic simulation is 1.28 m (7.17 m/s). The mean of the
ensemble-based 90 % credible interval of maximum height (maximum velocity) is
[0.18m, 2.17m] ([0.99m/s, 7.89 m/s]; the range between the mean of the ensemble-
based 5th percentile and the mean of the ensemble-based 95th percentile). Another
observation is that the ensemble-based mean of flow dynamic properties is generally
smaller than the mean of flow dynamic properties of the deterministic simulation (as
seen by the dashed red line being generally under the black line in both figures 6.9¢
and 6.9e). The mean of the ensemble-based mean of maximum height (maximum
velocity) is 0.85m (4.57m/s), around 66% (64%) of the mean of the deterministic

simulation at 1.28 m (7.17 m/s; see figures 6.9c and 6.9¢).
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FIGURE 6.9: Elevation, maximum height, and maximum velocity at locations along the
channel bottom (see figure 6.7b). Panels (a), (c), and (e) correspond to the USSy—s0o
{RMSE = 3.3,d = 180} ensemble and panels (b), (d), and (f) to the CSSy—509 ensemble.
In each panel, dash-dotted blue lines represent ensemble-based 5th and 95th percentiles
of the quantity. The dashed red line represents the ensemble-based mean of the quantity.
The black line denotes corresponding results of the deterministic simulation. Annotated
mean values are an average of all the locations. Ensemble-based flow dynamic properties
largely vary from deterministic simulation results. The variation range of the USSy—50
{RMSE = 3.3,d = 180} ensemble is larger, while its ensemble-based mean is smaller, com-
pared to counterparts of the CSSy—s00 ensemble.

Figures 6.9b, 6.9d, and 6.9f show corresponding results based on the CSSy—s09
ensemble. Similar trends to those in the USSy—_500{RMSE = 3.3,d = 180} ensem-
ble can also be observed. Namely, both maximum height and maximum velocity at
these locations largely vary from those of the deterministic simulation; the ensemble-
based mean of flow dynamic properties is generally smaller than that of the de-
terministic results. The main differences are that the variation range of CSSy—s09
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FIGURE 6.10: Elevation, maximum height, and maximum velocity at locations along
the channel cross section (see figure 6.7b). Panels (a), (c), and (e) correspond to the
USSN=500{RMSE = 3.3,d = 180} ensemble and panels (b), (d), and (f) to the CSSy—_5p9 en-
semble. Due to DEM uncertainty, flow material of both ensembles tends to spread out along
the channel cross-section direction. The ensemble-based mean of flow dynamic properties
at the channel bottom location is smaller than flow dynamic properties at the channel bot-
tom location of the deterministic simulation (compare peak value of dashed red line with
peak value of black line). The more the flow material spreads out, the smaller the ensemble-
based mean of flow dynamic properties at the channel bottom location (compare results of
the USSy—500{RMSE = 3.3, d = 180} ensemble with those of the CSSy_509 ensemble).

ensemble-based flow dynamic properties is smaller and the CSSy—_509 ensemble-
based mean of flow dynamic properties is larger compared to those of the USSn—509
{RMSE = 3.3,d = 180} ensemble. More specifically, the mean of the CSSy—s500
ensemble-based 90% confidence interval of maximum height (maximum velocity)
is [0.5m, 2.03m] ([3.56 m /s, 7.99m/s]). The mean of the CSSy_5y ensemble-based



6.5. Results and discussions 87

mean of maximum height (maximum velocity) is 1.1 m (6.01 m/s), around 86% (84%)
of the mean of the deterministic simulation 1.28 m (7.17m/s; see figures 6.9d and
6.9f).

The above observations result from similar factors to those discussed in sec-

tion 6.5.2.1. Due to DEM uncertainty, the following statements can be made:

* Ensemble-based flow dynamic properties are likely to vary from those of the
deterministic simulation. Larger variability in DEM error is likely to result in
more extreme results. As discussed in section 6.5.2.1, the variability in DEM
error for the USSy—500{RMSE = 3.3,d = 180} ensemble is larger than that for
the CSSn—s500 ensemble due to the unrepresentative RMSE issue. Thus the vari-
ation range of USSn—500{RMSE = 3.3,d = 180} ensemble-based flow dynamic
properties is generally larger than that of CSSy—509 ensemble-based flow dy-
namic properties, giving a larger mean of the ensemble-based 90% credible
interval (the trend would be more clear if we also consider outliers outside the
90% credible interval).

* Banks of the deterministic channel may be dampened out in DEM realizations.
Deteriorated channel bank representation makes flow material more spread
out along the channel cross-section direction. This could lead to a smaller
ensemble-based mean of flow dynamic properties at channel bottom locations
compared to flow dynamic properties of the deterministic simulation. This
can be directly seen in figure 6.10, which displays results of one channel cross
section. Also, due to larger variability in DEM error, flow material in the
USSN=500{RMSE = 3.3,d = 180} ensemble is more spread along the channel
cross-section direction, resulting in a smaller ensemble-based mean of flow dy-
namic properties at channel bottom locations compared to that of the CSSy—509
ensemble. This can also be seen in figure 6.10.

¢ Topographic roughness in DEM realizations tends to increase. As pointed out
in section 6.5.2.1, increasing topographic roughness results in higher simulated
momentum losses and thus smaller flow dynamic properties on average. The
higher the degree of topographic roughness increase, the higher the simulated
momentum losses and the smaller the flow dynamic properties. This also con-
tributes to a smaller ensemble-based mean of flow dynamic properties at chan-
nel bottom locations compared to flow dynamic properties of the deterministic
simulation, as well as to a smaller USSy—500{RMSE = 3.3,d = 180} ensemble-
based mean of flow dynamic properties at channel bottom locations compared
to the CSSy_509 ensemble.

Based on the ensembles” dynamic flow properties, it can be concluded that (1) ac-
counting for DEM uncertainty may significantly affect dynamic flow properties,
e.g., maximum height and maximum velocity, and hence any hazard assessment that
is based on landslide dynamics and (2) USS based only on the RMSE may overesti-
mate the range of dynamic flow properties and underestimate the ensemble-based
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mean of dynamic flow properties due to an unrepresentative RMSE that overesti-
mates the variability in DEM error.

6.5.3 Impact of RMSE and correlation length on USS

The unrepresentative RMSE and subjective d issues as introduced in section 6.2.1
are discussed here based the ensembles USSy_500{RMSE = 0.5,1.5,2.5,d = 180},
{RMSE = 3.3,d = 0,90,270}, and USSny—500{RMSE = 3.3,d = 180}. Results of the
CSSn=s500 ensemble are used as a reference since CSSy—s5qg incorporated more infor-
mation on the DEM error. It is thus reasonable to assume that its results reflect the
reality better.

Figure 6.11 shows the consolidated results of the ensembles. Focusing on the left
column, it can be seen that with increasing RMSE (1) low-probability (0-0.2) hazard
area significantly increases and high-probability (0.8-1) hazard area gradually de-
creases, leading to increase in overall potential hazard area (using the same thresh-
old value); (2) except for the RMSE = 0.5m ensemble, the apparent friction angle
steadily increases; and (3) the range of extreme values of maximum height (maxi-
mum velocity) at channel bottom locations increases while the average of maximum
height (maximum velocity) at channel bottom locations decreases.

For purely RMSE-based USS, the standard deviation of DEM error is assumed
to be determined by the RMSE. Hence larger RMSE indicates larger variability in
DEM error in DEM realizations. The larger the variability in DEM error, the more
likely topographic details of the deterministic channel would be dampened out and
the larger the topographic roughness in DEM realizations. As discussed in sec-
tion 6.5.2.1, this would make flow material more spread out along the channel cross-
section direction (namely larger potential hazard area) and travel a shorter distance
(namely larger apparent friction angle). As discussed in section 6.5.2.2, larger vari-
ability in DEM error is likely to result in more extreme values of flow dynamic
properties (namely larger range of extreme values), while spreading of flow mate-
rial along the channel cross-section direction and larger topographic roughness lead
to a smaller ensemble-based mean of flow dynamic properties at channel bottom
locations.

As discussed in section 6.5.2.1, the apparent friction angle distribution is deter-
mined by a combined effect of change in channel banks, change in the relatively high
elevation area at the end part of the channel, and increasing topographic roughness.
It naturally follows that for a small variability in DEM error (here RMSE = 0.5m),
all the changes are less significant in DEM realizations, and thus the apparent fric-
tion angle of the USSy—_500{RMSE = 0.5,d = 180} ensemble closely matches the
deterministic simulation result. For an intermediate variability in DEM error (here
RMSE = 1.5m), the relatively high elevation area at the end part of the channel is
subject to change, while channel banks tend to remain well defined in DEM realiza-
tions. This leads to a longer travel distance of the USSy—500{RMSE = 1.5,d = 180}
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FIGURE 6.11: Consolidated results of all ensembles. The left, middle, and right columns
correspond to ensembles USSy_s500{RMSE = 05,1.5,25,33, d = 180}, ensembles
USSN=500{RMSE = 3.3,d = 0,90,180,270}, and the ensemble CSSy—s50o, respectively. The
first row shows stacked bar plots of the potential hazard area’s magnitude based on the
probabilistic hazard map for each ensemble (see figures 6.8a and 6.8c). The second row
shows apparent friction angle distribution. The last two rows show statistics of maximum
height and maximum velocity at channel bottom locations (see figures 6.9c-f).

ensemble (namely smaller apparent friction angle) in comparison to that of the de-

terministic simulation result.
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From the middle column of figure 6.11, the results for a USS ensemble of vanish-
ing spatial autocorrelation USSn—500{RMSE = 3.3,d = 0} consistently differ signif-
icantly from USS ensembles that include spatial autocorrelation, namely USSy—s0o
{RMSE = 3.3,d = 90,180,270} ensembles. This indicates that whether spatial au-
tocorrelation is considered or not may make a difference but the extent of spatial
autocorrelation has less influence on simulation results. Since spatial autocorrela-
tion exists in topographic data but there is often a lack of information on its exact
autocorrelation length, this is actually good news for practical hazard assessment
studies.

Comparing the left column of figure 6.11 with the right column, it can further-
more be seen that the results of the USSy_500{RMSE = 1.5,d = 180} ensemble are
quite close to the results of the CSSy—_509 ensemble. The USSy—_500{RMSE = 1.5,d =
180} ensemble is informed of the bias-corrected RMSE (namely the true standard de-
viation, in our case 1.5m; see figure 6.3b). It indicates that if a bias-corrected RMSE is
given, USS is able to provide reasonable results considering that the extent of spatial
autocorrelation has less influence on simulation results.

All in all, it can be found that (1) the results of USS are in general more sensitive
to values of the RMSE and less sensitive to values of d; (2) an unrepresentative RMSE
that overestimates the variability in DEM error may overestimate the potential haz-
ard area and extreme values of dynamic flow properties; (3) whether or not spatial
autocorrelation of DEM error is considered can make a difference in ensemble-based
simulation results; and (4) if a bias-corrected RMSE is given, it is possible to obtain
reasonable ensemble-based simulation results using USS.

6.6 Dimensionality reduction of topographic uncertainty

In both geostatistical methods (USS and CSS) introduced in section 6.2, the DEM
error field &, is implicitly or explicitly modeled by Gaussian processes with two-

dimensional input s = (sx,s,) € R?, namely
g(-) ~GP(m(-),C(--)), (6.13)

where g(+) represents the unknown function that maps the two-dimensional spatial
input s to the scalar DEM error ¢ at s. Gaussian processes with two-dimensional
input are also known as Gaussian random fields (Bishop, 2006). In USS, due to the
lack of higher-accuracy reference data, the mean m(-) is simply assumed to be zero;
the variance in the covariance function C(-, -) is assumed to be given as the square of
RMSE and the correlation length parameter in the covariance function is subjectively
chosen. In CSS, the Gaussian process is updated to a Gaussian process posterior
based on higher-accuracy reference data. The hyperparameters can be learned using
the maximum likelihood estimation as presented in section 3.3.1.

Sampling realizations of the DEM error field &, in both USS and CSS involves
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m X n random variables. The sampling itself can be managed using the spatial mov-
ing averages technique (section 6.2.1) or the sequential sampling algorithm (sec-
tion 6.2.2). The high dimensionality (m x n) however hinders us from building
GP emulators (emulating relations between high-dimensional DEM uncertainty and
landslide run-out simulation outputs) in following uncertainty quantification anal-
yses, since GP emulation is not suitable for high-dimensional input functions. This
may cause two issues: first, computational cost of DEM uncertainty quantification
purely based on simulation runs can be expensive, especially when a single simu-
lation run takes relatively long time; second, it makes simultaneous quantification
of high-dimensional DEM uncertainty and other low-dimensional uncertain factors
(like initial distribution of the flow mass, rheological parameters) difficult in the uni-
tied framework. Here, I propose a new method that makes GP emulation applicable
also for DEM uncertainty by dimensionality reduction.

Given the Gaussian process modeling the DEM error field &,,, (equation 6.13),
any sample (realization) from it can be expressed using the Karhunen-Loéve expan-
sion as follows:

[ee]

g(s) =m(s) + Y wi/Ami(s), (6.14)

i=1

where w; ~ N(0,1),i = 1,...,00, are independent standard Gaussian random vari-
ables; A; and 7;(s) are eigenvalues and eigenfunctions of the covariance function
obtained from the Fredholm integral equation (Uribe et al., 2020)

[ s, 8mi(sds' = Aini(s) (6.15)
We can easily prove that equation 6.14 gives samples from the Gaussian process by
checking the mean and the covariance as follows (Liu et al., 2019):

E[g(s)] = m(s) + i V() Elwi] = m(s), (6.16)
El(5(s) — m(s))(g(s') — m(s"))] = E[i win/Aimi(s) iw] Ai(s))]
i= j=
— ii /\i/\jiyi(s)iyj(s’)E[wiw]-] (6.17)
i=1j=

The last step in equation 6.17 is based on the Mercer’s theorem (Uribe et al., 2020).
In order to reduce the dimensionality, the Karhunen-Loéve expansion (equa-
tion 6.14) needs to be truncated after a limited number (t) of terms, namely

ﬂﬂ%ﬂ@+im%ﬁ$) (6.18)
i=1

The number f can be determined for example by investigating the decay of eigenval-
ues (Liu et al., 2019). After the truncation, generating realizations of the DEM error
field &, reduces to sample the t independent standard Gaussian random variables
w;,i = 1,...,t. It means that the high-dimensional (m x n) DEM uncertainty can
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Algorithm 5 Emulator-based uncertainty quantification

1: Construct a Gaussian process to model the DEM error field &£,,,.

2: Apply the Karhunen-Loéve expansion to the Gaussian process.

3: Reduce the dimensionality of DEM uncertainty to a limited number of random
variables w;,i =1, ...,t, by truncating the Karhunen-Loeéve expansion series.

4: Choose training input points x/" = {xi}?zl using a Latin hypercube design. Each
input point represents a configuration of w;,i = 1,...,t, and other concerned
low-dimensional uncertain inputs like the release volume v, rheological param-
eters y, ¢, etc.

5. Run the simulator f(x), namely the landslide run-out model, at each chosen
input point to obtain y’.

6: Build the emulator f(x) based on x!"-y'".

7: Set the Monte Carlo sample size N and realization sample size N,. Sample
input points {x;}, from the input domain using Monte Carlo-type sampling
schemes.

8 forn,=1,...,N, do

9:  Sample a realization at input points {x;})¥, from the emulator f(x), denoted

as { " (xi) 1L
10: end for
11: return { f”'(xi)}?g}.’.‘,'z'\’]N’.
12: Quantify uncertainty of the concerned model output y by statistically analyzing
{fm (xi)}fgi’;']’\’,N’, like calculating the mean, standard deviation, or probability
distribution.

now be represented by a limited number of variables w;,i =1,...,t.

Armed with the Karhunen-Loeve expansion, DEM uncertainty can then be stud-
ied together with other low-dimensional uncertain factors in the unified emulator-
based framework. More specifically, a Gaussian process that models the DEM error
tield &,y is first constructed using USS or CSS depending on available information
on the DEM error. Then the Karhunen-Loeve expansion is applied, leading to a lim-
ited number of random variables w;,i = 1,...,t, representing the DEM uncertainty.
In the next step, n'" training input points are sampled from the input space consist-
ingof w;,i =1,...,t, and other low-dimensional uncertain factors (like y, ¢, v, etc.).
Corresponding 1" landslide run-out simulations are conducted and training outputs
are extracted. Based on the training data, GP emulators are built. Finally, uncertainty
quantification of all the uncertain factors can be performed based on trained GP em-
ulators. Algorithm 5 summarizes the proposed method and figure 6.12 provides a
schematic illustration.

The same concept can also be applied to the emulator-based global sensitivity
analysis method developed in chapter 4. Namely, by first reducing its dimensional-
ity using the Karhunen-Loeve expansion, DEM uncertainty can be treated the same
as other low-dimensional uncertain factors in an emulator-based global sensitivity
analysis. It should be noted that even the proposed Karhunen-Loeve expansion-
based method is attractive and promising, its implementation and application are
yet planned for future work.



6.7. Summary 93

model topographic uncertainty
via Gaussian processes

’
1apply Karhunen-Loéve expansion
i to reduce dimensionality

S T O -
1

uncertain
input space

h 4

Y
1
1
1
1

— training inputs

l

simulator

l

— training outputs

uncertainty
quantification inputs

—'[ GP emulator ]

uncertainty
quantification outputs

uncertainty indicators

FIGURE 6.12: A schematic representation of the emulator-based Monte Carlo-type uncer-
tainty quantification method (see figure 6.1) extended to high-dimensional topographic un-
certainty. The dashed box and arrows indicate that the Karhunen-Loeve expansion is pro-
posed yet not implemented and applied in this thesis.

6.7 Summary

In this chapter, two types of geostatistical methods, namely unconditional and con-
ditional stochastic simulations, have been introduced and employed to study the
impact of topographic uncertainty on landslide run-out analyses. The case study
is based upon a historic landslide event for which two DEM data sets of differ-
ent accuracy are available. The computational workflow including the stochastic
simulation to generate the DEM realizations, landslide run-out modeling, statistical
analysis and visualization, and terrain analysis has been implemented in the unified
framework in a modular way. How DEM uncertainty propagates in the results of
landslide run-out analyses is discussed in detail. In addition, the two major issues
of purely RMSE-based unconditional stochastic simulation (unrepresentative RMSE
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and subjective d) have been addressed. Furthermore, a new method based on the
Karhunen-Loéve expansion is proposed in order to make GP emulation also appli-
cable for high-dimensional DEM uncertainty. While being attractive and promising,
its implementation and application are yet planned for future work. The main find-

ings are as follows:

¢ DEM uncertainty significantly affects landslide run-out modeling depending
on how well the underlying flow path is represented, which is determined by
topographic characteristics of the original DEM and the variability in DEM er-
ror. For the same degree of variability in DEM error, the less well defined parts
of the flow path in the original DEM are more likely to be affected and thus
lead to change in flow behavior at these parts. Also, an increasing variability
in DEM error leads to an increased impact. More specifically, with increasing
variability in the DEM error, the potential hazard area and extreme values of
dynamic flow properties are likely to increase. This shows the importance of
considering topographic uncertainty for simulation-based landslide hazard as-
sessment rather than simply trusting the results of a deterministic simulation
if a high accuracy of the DEM source is not guaranteed. Also, a preliminary
terrain analysis may give some hints on areas that will potentially be affected
by a topographic uncertainty study.

¢ Both unconditional and conditional stochastic simulation methods can be ap-
plied to study DEM uncertainty propagation in landslide run-out modeling.
Their main difference is that unconditional stochastic simulation can be con-
ducted based on RMSE information only, while conditional stochastic simula-
tion requires the availability of higher-accuracy reference data and is thus more
accurate. The higher-accuracy reference data provide additional information
on the DEM error structure, i.e., its spatial autocorrelation. If the DEM does
not contain systematic bias or alternatively a bias-corrected RMSE is provided,
the unconditional stochastic simulation yields reasonable results. Otherwise,
the assumptions underlying the unconditional stochastic simulation lead to an
overestimation of the DEM error variability, which leads to an increased po-
tential impact of DEM uncertainty on the potential hazard area and to extreme
values of dynamic flow properties. In particular, the study shows that if no
higher-accuracy reference data are available or if computational costs of a con-
ditional stochastic simulation are too large, the results of a RMSE-based uncon-
ditional stochastic simulation can still be used to provide an upper bound on
the potential hazard area as well as extreme values of flow dynamic properties

for a hazard assessment to take topographic uncertainties into account.

® Results of an unconditional stochastic simulation are in general sensitive to
the RMSE value as well as sensitive to whether or not the DEM error’s spa-
tial autocorrelation is considered. If the latter is taken into account, results



6.8. Modifications to the published paper 95

are less sensitive to the actual value of the DEM error’s maximum autocorre-
lation length. This indicates that determining a representative RMSE may be
more important than finding a correct maximum autocorrelation length, while
the DEM error’s spatial autocorrelation should not be ignored for simulation-
based landslide hazard assessment.

6.8 Modifications to the published paper

As mentioned in the outline (section 1.3), this chapter is a modified version of the
published paper: Hu Zhao, Julia Kowalski. Topographic uncertainty quantifica-
tion for flow-like landslide models via stochastic simulations, Natural Hazards and
Earth System Sciences, 20, 1441-1461, 2020. Regarding the published paper, HZ and
JK conceived the idea and designed the case study. HZ performed the implemen-
tation, simulations, and result analyses with contributions from JK. HZ wrote the
manuscript. JK reviewed and revised the manuscript. Two anonymous reviewers
reviewed the manuscript. Paola Reichenbach edited the manuscript.

The paper is published under the Creative Commons Attribution 4.0 License and
is reproduced in this thesis with permission from the copyright holder, namely the
authors. The main modifications to the published paper are listed below.

To avoid redundancies, the following parts of the published paper are left out in
this chapter: (1) the descriptions of landslide hazards and landslide run-out models
in the introduction of the published paper. They have been introduced in chapter 1
and chapter 2 of this thesis; (2) the mathematical details of landslide run-out models
in section 2 of the published paper. They have been integrated with chapter 2 of this
thesis.

To improve the coherence of this thesis as a whole, the descriptions of the follow-
ing parts of the published paper are modified in this chapter: (1) the two geostatisti-
cal methods in section 3 of the published paper (corresponding to section 6.2); (2) the
implementation in section 4 of the published paper (corresponding to section 6.3).

To include extended work after the publication, the following parts which are not
included in the published paper are added in this chapter: (1) the introductory para-
graphs before section 6.1. They link the published paper (focusing on topographic
uncertainty quantification) to the overall uncertainty quantification of landslide run-

out models; (2) the content of section 6.6.
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Chapter 7

Concluding remarks and future
work

7.1 Concluding remarks

This thesis presented a unified framework that allows us to systematically, routinely,
and efficiently investigate various uncertainties associated with landslide run-out
models, as shown in figure 7.1. The framework was built upon two essential com-
ponents, namely physics-based landslide run-out models and data-driven Gaussian
process emulators. Theories of physics-based landslide run-out models and Gaus-
sian processes were introduced in detail in chapter 2 and chapter 3 respectively.
Advanced statistical tools including the Sobol” sensitivity analysis, Bayesian active
learning, and Monte Carlo-type uncertainty quantification, were integrated with the
two core components. Within the unified framework, both forward and inverse
problems resulting from the various uncertain factors can be comprehensively and
efficiently studied. While the framework could be potentially applied to any land-
slide run-out model owing to its data-driven nature, its implementation and appli-
cation in this thesis were focused on depth-averaged shallow flow type models with
the Voellmy rheology. More specifically, the open-source run-out solver r.avaflow
(running on LINUX operating systems) and the commercial run-out solver RAMMS
(running on WINDOWS operating systems) were integrated in the unified frame-
work and used for the case studies.

Chapter 4 presented a new methodology that enables efficient variance-based
global sensitivity analyses of computationally expensive landslide run-out models.
The methodology was developed by coupling depth-averaged shallow flow type
run-out models, Sobol” sensitivity analysis, robust multivariate Gaussian process
emulation techniques, and an algorithm accounting for the emulator-induced uncer-
tainty. A Python-based workflow was implemented in the unified framework to re-
alize the methodology. It allows us to efficiently leverage existing open-source soft-
ware and packages including the landslide run-out solver r.avaflow, robust Gaussian
process emulation package RobustGaSP, and the sensitivity analysis package SALib.
The proposed method was illustrated and validated by a case study based on the
2017 Bondo landslide event. In addition, the sensitivity of selected run-out model
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FIGURE 7.1: A schematic illustration of the unified framework developed in this thesis.
It enables us to systematically, routinely, and efficiently investigate various uncertainties

associated with landslide run-out models.

outputs to the release volume and the two Voellmy rheological parameters was stud-

ied in detail. The results show that the proposed emulator-based global sensitivity

analysis method can be successfully used to study the relative importance and inter-

actions of input variables in landslide run-out models. The first-order effects of each

input variable are found to be broadly in line with results of common one-at-a-time

sensitivity analyses in the literature. Moreover, the proposed method allows analyz-

ing interactions between input variables along the full flow path. Such information
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cannot be obtained by methods used in current practice.

In chapter 5, a new methodology for efficient parameter calibration of landslide
run-out models was presented. It was developed by integrating depth-averaged
landslide run-out models, Bayesian inference, Gaussian process emulation, and ac-
tive learning. The mass flow simulation tool r.avaflow, R package RobustGaSP for
robust Gaussian process emulation, and a self-implemented Bayesian active learning
scheme were coupled within the unified Python-based framework. The feasibility
and efficiency of the proposed method were investigated based on the 2017 Bondo
landslide event with synthetic observed data. Furthermore, the impact of different
types of observed data was studied using the proposed method. The results prove
that the proposed emulator-based Bayesian active learning method is capable of cor-
rectly calibrating the rheological parameters. Compared to commonly used proba-
bilistic methods without emulation techniques, the proposed method can greatly
improve the computational efficiency by reducing necessary simulation runs from
thousands or tens of thousands to a few hundreds. Compared to emulator-based
Bayesian inference without active learning, it can better approximate the posterior
of rheological parameters with the same computational budget. The results also
show that different types of observed data provide different information on rheo-
logical parameters and therefore should be combined in the calibration process in
order to improve the quality of calibration results.

Chapter 6 was devoted to uncertainty quantification of landslide run-out models.
The focus was put on topographic uncertainty which is often neglected in current
practice. Two types of geostatistical methods, namely unconditional and conditional
stochastic simulations, were introduced and used to study the impact of topographic
uncertainty on landslide run-out modeling. The computational workflow including
stochastic simulations to generate DEM realizations, landslide run-out modeling,
statistical analysis and visualization, and terrain analysis was implemented within
the unified framework in a modular way. Based on the 2008 Yu Tung landslide event,
a case study was designed and performed. How DEM uncertainty propagates in the
results of landslide run-out analyses was discussed in detail. The results show that
topographic uncertainty significantly affects landslide run-out modeling depending
on how well the underlying flow path is represented. Both the unconditional and
conditional stochastic simulation methods are proven to be capable of investigating
topographic uncertainty propagation in landslide run-out modeling. Their main dif-
ference is that unconditional stochastic simulation can be conducted based on RMSE
information only, while conditional stochastic simulation requires the availability of
higher-accuracy reference data and is thus more accurate. Moreover, the close rela-
tion between the two geostatistical methods and Gaussian processes was revealed,
based on which a new method was proposed in order to make Gaussian process
emulation also applicable for high-dimensional topographic uncertainty. The new
method employs Karhunen-Loeve expansion to reduce the dimensionality of topo-
graphic uncertainty. After the dimensionality reduction, topographic uncertainty
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can be represented by a small number of random variables and can therefore be
treated the same as other low-dimensional uncertainty factors within the unified
emulator-based framework, such as release areas and volumes, rheological parame-
ters, etc.

7.2 Recommendations for future work

New methodologies were developed in this thesis to better understand the impact of
various uncertainties associated with landslide run-out models. A unified Python-
based framework was implemented which provides systematical, routine, and effi-
cient tools to address both forward and inverse problems arising from the uncertain-
ties. Case studies were conducted to validate the new methodologies and investigate
the various uncertain factors. While the methods and framework have great poten-
tials, much work remains to be done in order to achieve reliable and transparent
simulation-based hazard mapping, risk assessment, and mitigation strategy design.

Some recommendations for future work are given as follows:

¢ The Karhunen-Loeve expansion-based method proposed in section 6.6 is at-
tractive and promising. It has the potential to reduce the high-dimensional
topographic uncertainty to a low-dimensional problem and make Gaussian
process emulation also applicable to topographic uncertainty. Its implemen-
tation and application are not addressed in this thesis and therefore require
future work.

* For simplicity, the depth-averaged landslide run-out model used in the case
studies is restricted to a simple form without taking topographic curve effects
and entrainment processes into account. Studies in the literature have shown
that these factors may impact simulation results and therefore may influence
the results of the global sensitivity analysis, Bayesian inference, and uncer-
tainty quantification. Work towards this direction should be conducted in the
future.

¢ The topography can greatly affect simulation results. Whether and to what
extent the conclusions drawn from the case studies based on the Bondo site
and Yu Tung site can be applied elsewhere should be studied in the future.
Case studies based on different types of topography are necessary to reach

common and transferable results.

¢ The methodologies developed in this thesis have only been applied to depth-
averaged landslide run-out model with the Voellmy rheology. It would be
useful to apply the methodologies also to other rheological models in the fu-
ture.

¢ The significant improvement of computational efficiency owing to emulation
techniques may also benefit simulation-based early warning systems. How to
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integrate emulation techniques with existing early warning systems can be an
interesting topic and deserves future study.
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