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Reflectance spectroscopy is a nondestructive, rapid, and easy-to-use technique which can be used to assess the composition of
rocks qualitatively or quantitatively. Although it is a powerful tool, it has its limitations especially when it comes to measurements
of rocks with a phaneritic texture. The external variability is reflected only in spectroscopy and not in the chemical-mineralogical
measurements that are performed on crushed rock in certified laboratories. Hence, the spectral variability of the surface of an
uncrushed rock will, in most cases, be higher than the internal chemical-mineralogical variability, which may impair statistical
models built on field measurements. For this reason, studying ore-bearing rocks and evaluating their spectral variability in
different scales is an important procedure to better understand the factors that may influence the qualitative and quantitative
analysis of the rocks. The objectives are to quantify the spectral variability of three types of altered granodiorite using well-
established statistical methods with an upscaling approach. With this approach, the samples were measured in the laboratory
under supervised ambient conditions and in the field under semisupervised conditions. This study further aims to conclude which
statistical method provides the best practical and accurate classification for use in future studies. Our results showed that all
statistical methods enable the separation of the rock types, although two types of rocks have exhibited almost identical spectra.
Furthermore, the statistical methods that supplied the most significant results for classification purposes were principal com-
ponent analysis combined with k-nearest neighbor with a classification accuracy for laboratory and field measurements of 68.1%
and 100%, respectively.

1. Introduction minerals present in igneous rocks using the visible light, near

and shortwave infrared (VNIR-SWIR) spectroscopy. This
Over the past few decades, many studies have investigated ~ spectral domain between 350-2500 nm has been proven to
the spectral properties of metal-bearing minerals and clay ~ be a reliable and rapid tool for detecting and identifying clay
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minerals [1, 2] or for predicting the concentrations of Cu in
waste dump material [3]. Reflectance spectroscopy was also
used to discriminate different grades of ore samples [4, 5], to
identify alteration zones associated with copper deposits [6]
and classification purposes [7-10].

The SWIR is considered to be the best spectral region to
identify various aspects of hydrothermal alteration zones
[11]. Hydroxyl-bearing minerals including clay and sulfate
groups and carbonates in the alteration assemblages show
spectral absorption features due to vibrational processes of
Al-OH at 2200 nm, Mg-OH at 2300 nm, and CO; groups at
2350nm [12, 13]. In addition, phyllosilicates, such as kao-
linite, montmorillonite, and chlorite which are Al-Si-(OH)
and Mg-Si-(OH)-bearing minerals and the Ca-Al-Si-(OH)-
bearing minerals such as the epidote group, can also be
identified using the SWIR region [2, 14-16].

One of the most important mineral groups that are as-
sociated with alteration zones and hydrothermal sulfide de-
posits over porphyry copper bodies are Fe-oxides [17-20],
which are spectrally active in the VNIR region (400-900 nm)
due to electronic transition (charge transfer) in the Fe cations
[21]. The mineral zoisite shows distinct absorptions both in the
VNIR and the SWIR [22] at 430, 530, and 800 nm due to the
presence of ferric iron and an unusual OH feature at 1680 nm
as well as features caused by combinations of OH with lattice or
bending modes of AI-OH at 2300, 2350, and 2480 nm [23].
Feldspar, quartz, and pyrite, on the other hand, do not exhibit
any spectral features in the VNIR-SWIR region, but their
presence may ‘mask’ other absorption features [24].

The spectral properties of rocks and minerals are affected
by particle size, which is related to two major scattering
processes: volume scattering at the surface of particles and
volume scattering that occurs within the particles [25-27]. In
the VNIR-SWIR range, lower particle sizes are usually as-
sociated with higher reflectance compared to the same
material of larger particle size [28]. In rocks as mineral
assemblages, factors such as texture and weathering effects
must be further considered to impact the spectral signatures.
Such factors might heavily impact the spectral properties of
rocks and might even mask the presence of specific mineral
features that are visible otherwise [29]. Genetically related
rocks can display systematic variations of spectral param-
eters as functions of systematic variations of petrographical
and geochemical parameters [10]. Thus, for classification
purposes as well as for quantification and geochemical
properties, it is important to study the rocks’ micro-
complexity which is affected by the mineral chemistry and
structure, grain size, and texture. Moreover, this micro-
complexity affects the spectral properties and spectral var-
iability at different observational scales [10].

The identification and classification of rocks and min-
erals have been the focus in many studies either by using
their spectral characteristics [30] or by various spectral
processing methods such as spectral angle mapper (SAM)
[10, 31-33], support vector machines (SVM) [32, 34], and
principal component analysis (PCA) [35]. Recent studies
found an overall classification accuracy of 66% based on the
spectral data of various rocks [36] and an accuracy of 67.4%
and 69.7% based on SAM and spectral information
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divergence (SID), respectively [37]. In addition, using a
multilayer perceptron (MLP) and a convolutional neural
network (CNN) applied on SWIR reflectance spectra, it is
possible to identify alteration minerals with a test accuracy of
97.8% [38].

The quantification of the spectral variability is important
because it determines the ability to separate between dif-
ferent altered rocks for qualitative (classification) and
quantitative (statistical modelling) purposes. The outcome
may have a huge economic impact resulting from a more
accurate rocks classification and the exploitation of valuable
raw materials. In addition, it is a fundamental aspect to
ensure the reliability of statistical models for predicting the
physical, chemical, and mineralogical composition of rocks.
It should be clarified that although rocks are an aggregation
of minerals, this work is intended to examine the spectral
variability of the rocks and not of the rock components (i.e.,
the mineralogical composition). Yet, the mineralogical
composition is still used for providing an explanation to the
variability in the samples.

The main objective of this study is to examine and
quantify the spectral variability of three types of granodi-
orites to bridge the gap between laboratory measurements
and field data and enable a more precise classification of the
selected rock types. This is achieved by examining well-
established statistical methods: mean and spectral standard
deviation (SSD), SAM, average sum of deviation square
(ASDS) and by performing PCA followed by k-nearest
neighbors (kNN) algorithm for classification purposes.

2. Materials and Methods

2.1. The Rock Samples. The samples were collected from an
open pit mine located in the Erdenet porphyry copper-
molybdenum deposit south-east of the city Erdenet, Mon-
golia [39]. The area is part of the Central Asian Orogenic
Belt: The Selenge Intrusive Complex and is consisting
predominantly of late Permian granodiorite [40] and also
andesite, diorite, granite, and breccias [39]. The two most
abundant minerals in the rock samples are feldspar and
quartz. However, other minerals are also present in the
samples and through them it is possible to characterize the
different rock types: a rock type that contains feldspar,
quartz, and pyrite (M1), a rock type that contains mostly
feldspar and quartz (M2), and a rock type that, besides
feldspar and quartz, exhibits various contents of zoisite,
ferric oxide, and magnetite (M3). The rock samples, which
are shown in Figure 1, originated from the open pit mine and
were brought directly to the experimental site to create
semisupervised conditions for the spectral measurements.
We anticipate that this setup is an essential step for an ore
deposit exploration and mineral mapping using spectral
means in a more precise manner.

As shown in Table 1, the rocks contain four main
minerals: quartz, feldspar, zoisite, and pyrite which make up
between 96 and 99.9% of the rock samples. As each mineral
has its unique spectral signature, any variability in their
abundance in different rock pieces within the same rock type
will affect the SSD.
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FIGURE 1: Photos of selected pieces from each rock type were
measured in laboratory (a) and the rocks arrangement were
measured in the field (b) with an area of 1 squared meter.

2.2. Spectral Measurements. The acquisition of the spectral
information has been conducted using the portable Spectral
Evolution SR-3500 spectrometer and a Zenith Lite™ panel
which served as a white reference. The spectrometer has a
spectral range of 350-2500 nm which covers the VIS-NIR-
SWIR and it has spectral resolutions of 2.8, 8, and 6 nm at
700, 1500, and 2100 nm, respectively (Spectral Evolution).

2.2.1. Field Measurements. The area selected for the ex-
perimental site was a concrete basketball court in the city of
Erdenet, Mongolia (49.03°N/104.06425°E) which served as a
flat and homogeneous background for the experiment and it
is also described in [41]. The area was divided into squares
which contained the three piles of each rock type that were
placed on the surface. The spectral measurements in the field
were performed using a bare fiber optics with 25° FOV with
sunlight as the energy source where each rock type was
measured 30 times from 1 meter.

2.2.2. Laboratory Measurements. During the field mea-
surements, we have noticed differences within each rock
type (e.g., variations in colors). Therefore, to check whether
these differences are important, we collected several pieces of
rocks for each group. The final collection contains 41 rock
pieces that belong to one of the three rock types (M1, M2, or
M3), whereas each type was divided into 3-5 groups to check
whether any kind of spectral variability exists between the
groups of a certain rock type. The spectral measurements
were performed in the laboratory using a contact probe.
Each single rock piece was measured 10 times from all sides
for quantifying the variance of each rock piece at different
scales which then ended up to a total of 410 spectral
measurements out of which 90 for M1, 120 for M2, and 200
for M3.

2.3. The Multilevel Approach. The examination of the
spectral variability has been done using a multilevel ap-
proach. The multilevel approach was processed as follows:
Level 0 (LO) is the spectral data after preprocessing of 10
measurements for each rock piece (410 spectra). Level 1 (L1)
contains the average spectra of L0 which results in 9, 12, and
20 spectra for each rock piece of M1, M2, and M3, re-
spectively. Level 2 (L2) contains the average spectra of L0
which results in 3, 4, and 5 spectra for each group in M1, M2,
and M3, respectively. Level 3 (L3) contains the average
spectra of LO which results in one spectrum for each rock
type (Table 2). It is important to acknowledge that the
differences in the number of pieces is related to the large
visual variability of M3 compared to M1 when the rocks
were collected for the laboratory measurements. Level 0x
(LOx) is the raw spectral data of 30 measurements for each
rock type. Level 3x (L3x) contains the average spectra of LOx
which results in one spectrum for each rock type (M1-M3).

2.4. Preprocessing and Spectral Analysis. After the spectra
were collected, several corrections and calculations and
preprocessing procedures were applied. First the database
was corrected using the white reference correction factor to
covert the relative reflectance measurements to absolute
reflectance values. Then, the Savitzky-Golay (SG) smoothing
algorithm was applied using a polynomial order of 3 and
window size of 21 bands followed by the removal of the noisy
bands which resulted in 1633 bands for the statistical
analysis.

2.5. Statistical Analysis. The comparison between the
spectral data at all levels in both field and laboratory domains
was conducted using four statistical methods:

(1) The mean (x,) and the standard deviation (o,) were
calculated for each wavelength in each level of
processing. While the mean provides a summary of a
large dataset, the standard deviation evaluates the
degree of variation for each wavelength. The mean is
given by (1) and the standard deviation is given by
(2):

— 27:1 Xi (1)

(2)

where 7 is the number of spectra and x; is an ob-
served value.

(2) The SAM is used to assess the similarity between two
spectra using their vectors [42]. It is a rapid and easy
method, robust against changes in illumination, and
enables a comparison between field and laboratory
measurements. The SAM is given by

SAM = cos(Rr, Rm), (3)

error
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TaBLE 1: The main mineralogical compounds that were measured in laboratory. The standard deviation (sd) and the relative standard
deviation (rsd) were also included to examine the variance in the mineralogical measurements.

M1 M2 M3
Mineral/Element + T +
Mean SD* RSD Mean SD* RSD Mean SD* RSD
Magnetite (%) 0.00 0.00 N.D.} 0.00 0.00 N.D. 3.42 5.81 1.70
Martite (%) 0.00 0.00 N.D. 0.00 0.00 N.D.° 0.39 0.58 1.49
Zircon (%) 0.00 0.00 N.D.} 0.00 0.00 N.D.} 012 0.20 1.73
Pyrite (%) 8.33 5.05 0.61 0.02 0.02 1.00 0.24 0.40 1.70
Chalcopyrite (%) 0.10 0.11 1.05 0.00 0.00 N.D.} 0.00 0.00 N.D.}
Quartz (%) 41.01 30.84 0.75 14.97 4.98 0.33 27.52 31.72 1.15
Feldspar (%) 50.44 35.39 0.70 84.94 5.00 0.06 43.32 36.39 0.84
Epidote zoisite (%) 0.00 0.00 N.D.} 0.00 0.00 N.D.S 24.97 43.26 1.73
FeO (%) 1.00 0.77 0.77 0.3 0.06 0.16 0.7 0.17 0.24
Fe,O3 (%) 2.30 0.85 0.37 2.1 0.94 0.46 4.1 2.36 0.57
*Standard deviation. TRelative standard deviation. §No data.
TaBLE 2: The number of measurements conducted in the laboratory and in the field.
Laboratory Field

L0 L1 (piece) L2 (group) L3 (type) LOx L3x (Type)
M1 90 9 3 1 30 1
M2 120 12 4 1 30 1
M3 200 20 5 1 30 1
Sum 410 41 12 3 90 3

where Rr and Rm are the reference spectrum and the 3. Results

measured spectrum, respectively.

(3) The ASDS between two spectra [43] quantify the

differences along the entire spectrum, but, unlike
SAM, it is sensitive to illumination. Therefore, ASDS
provides a comparison regarding the degree of re-
flectance. The ASDS is given in

ASDSz%(i ((;:fn)—1>2>, (4)

where Rr, is the value obtained from a given
wavelength in the reference spectrum, Rm, is the
value obtained from the same wavelength in the
measured spectrum, and N is the number of
wavelengths (in our case, N=1633).

(4) The PCA algorithm is used to reduce dimen-

sionality while keeping as much variability in the
dataset [44]. Subsequently, the kNN algorithm is
used to perform a supervised learning machine for
classification purposes. The algorithm tries to find
the optimal number of points (k) to classify a
certain sample by its Euclidean distance to other
samples and is done by initially dividing the data
into 70% training and 30% test samples. As it is
impractical to provide a fixed value for k, the
optimal k value is determined by cross-validation
prior to the classification. The PCA and the kNN
were conducted using the SPSS statistical software
[45]. Figure 2 depicts a schematic representation of
the statistical analysis performed on each dataset.

3.1. Mean and Spectral Standard Deviation (SSD). The mean
spectra (L3 and L3x, for laboratory and field measurements,
respectively) were calculated and are presented in Figure 3.
Using the mean spectra as a reference, M1 appears to be
different from M2 and M3 by the overall shape of the
spectrum and due to the less significant absorption features
(excluding the O-H absorption at 1400 and 1900 nm). On
the other hand, the differences between M2 and M3 are
smaller which means it is more difficult to distinguish be-
tween these two rock types. Both M1 and M3 have almost the
same spectral features and reflectance and present the same
absorption bands.

The SSD was calculated for laboratory and field mea-
surements and results are presented in Figure 4. The average
SSD values for the laboratory are 7.4, 8.5, and 13.2 and in the
field are 2.1, 3.1, and 2.3 for M1, M2, and M3, respectively.
The high SSD values in the laboratory are caused by dif-
ferences in small mineral clusters and oxidation processes
within each rock piece, which are not observed in the field
measurements due to the large area covered by the mea-
surements. The presence and quantity of various minerals in
the rocks generate spectral absorptions to occur at different
wavelengths as discussed in 2.1. Therefore, due to the var-
iability in the quantity of minerals in the rocks, we can expect
high spectral variability at the same wavelengths. Hence, the
variability in the Fe-oxides content results in a high SSD in
the 400-900 nm spectral range, and the variability in zoisite
content results in high SSD in wavelengths where spectral
absorptions exist, mainly in the 430-800, 1680, and
2300-2450 nm ranges, whereas variability in the quartz and
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FIGURE 2: Schematic representation of the statistical analysis.
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teldspar contents results in changes in SSD across the entire
VNIR-SWIR range and not in specific wavelengths.

This shows that the lowest SSD values are occurring for
M1 in both laboratory and field spectra, which may indicate
a higher homogeneity of M1 compared to M2 and M3.
However, using the contact probe in the laboratory, M2
shows lower SSD values than M3, while using the bare fiber
in the field, M3 shows lower SSD values than M2. The reason
for this change is due to the high spectral heterogeneity of
M3 in the microscale measurements whereas in the field
data, the mineralogical diversity is not reflected.

3.2. Spectral Angle Mapper (SAM). The SAM algorithm was
used for analyzing the spectral similarity in a reference
spectrum to the entire dataset. For that purpose, both internal
and external reference spectra were used. The internal ref-
erence is a spectrum coming from within the dataset. In our
case, the internal reference spectra were the average spectra of
the three rock types, hence, L3 or L3x. L3 was used as a
reference for L0, L1, and L2, whereas L3x was used a reference
for LOx. However, to examine the spectral similarity between
all samples, a reference spectrum was used with a reflectance
equaling to unity across the desired spectral range. Using the
same external reference for all measurements allows the
examination of the differences between rock types in each
level. Moreover, it provides an answer to the question at what
stage of averaging a good distinction can be made between
endmembers while also adding L3 and L3x to results.

3.3. Internal Reference. In each level, the average SAM was
calculated for each rock type using L3 and L3x as the ref-
erence spectra. Results show that the lowest SAM values
were achieved using the same rock type as a reference.
However, the results for M2 and M3 were still close com-
pared to M1 which shows that even with this method, there
is difficulty in distinguishing between the two types of rocks.
Additionally, the SAM values decrease according to the level
of processing and especially between L0 and LOx, which
indicates a decrease in the spectral variability between
laboratory and field measurements and is observed for each
rock type when using the same rock type as a reference: for
M1 a decrease from 0.073 to 0.017, for M2 a decrease from
0.083 to 0.027, and for M3 a decrease from 0.115 to 0.022.
Results are summarized in Table 3 and the lowest values for
each level are given in Figure 5.

3.4. External Reference. The degree of similarity was also
examined using an external spectrum which provides a
comparison between the rock types while adding also L3 and
L3x in the analysis. Results shown in Table 4 are consistent
with the findings which were obtained using the internal
reference in which M1 shows the lowest SAM values both in
laboratory and in the field while M2 and M3 shows a rel-
atively similar value. However, despite the similarity be-
tween M2 and M3, they are still distinguishable from one
another in all levels.

Journal of Spectroscopy

TaBLE 3: Results of SAM using an internal reference which is the
average spectrum of each rock type either in laboratory (L3) or in
the field (L3x).

M1 reference M2 reference M3 reference

M1 0.073 0.270 0.212
Level 0 M2 0.274 0.083 0.107
M3 0.223 0.125 0.115
M1 0.062 0.265 0.206
Level 1 M2 0.266 0.054 0.091
M3 0.216 0.109 0.102
M1 0.058 0.264 0.204
Level 2 M2 0.264 0.041 0.083
M3 0.211 0.096 0.089
M1 0.017 0.289 0.228
Level 0x M2 0.290 0.027 0.079
M3 0.228 0.078 0.022
0.14
0.12
0.1
S 0.08
S 0.06
0.04
0.02 N
0
L0 L1 L2 LOx
Level
— M1
— M2
M3

FIGURE 5: The minimum SAM for each type in every level using an
internal reference.

TaBLE 4: Results of SAM using an external reference which is a
spectrum with a reflectance equaling to unity across the entire
spectral range.

External reference

M1 0.13

Level 0 M2 0.29

M3 0.25

M1 0.13

Level 1 M2 0.28

M3 0.25

Laboratory M1 013
Level 2 M2 0.28

M3 0.24

M1 0.11

Level 3 M2 0.28

M3 0.23

M1 0.10

Level 0x M2 0.31

. M3 0.26
Field M1 0.09
Level 3x M2 0.31

M3 0.26

3.5. Average Sum of Deviation Squared (ASDS). The ASDS
method was used to provide an additional insight about the
spectral variability compared to the same internal reference
spectra as in the SAM method (L3 for L0, L1, L2, and L3x for
L0x). The lowest ASDS values for each rock type were obtained
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TaBLE 5: Results of ASDS using an internal reference which is the
average spectrum of each rock type either in laboratory (L3) or in
the field (L3x).

M1 Reference M2 Reference M3 Reference

M1 0.039 0.310 0.172
Level 0 M2 0.138 0.076 0.082
M3 0.174 0.173 0.153
M1 0.016 0.280 0.145
Level 1 M2 0.100 0.033 0.040
M3 0.123 0.113 0.096
M1 0.006 0.263 0.131
Level 2 M2 0.085 0.018 0.025
M3 0.106 0.089 0.074
M1 0.005 0.368 0.132
Level 0x M2 0.077 0.014 0.040
M3 0.066 0.060 0.005
0.18
0.16
0.14
- 0.12
9) 0.1
< 0.08
0.06
0.02 x_
0
Lo L1 L2 Lox
Level
— M1
— M2
M3

F1GURE 6: The minimum ASDS for each type in every level using an
internal reference.

with its own reference type. For example, the lowest value for
M3 was achieved using M3 as a reference, regardless of the
level. Furthermore, the minimum value was achieved by M1 in
all levels of laboratory measurements; however, in LOx, the
minimum value was presented in both M1 and M3. The results
are summarized in Table 5 and Figure 6.

3.6. Principal Component Analysis (PCA) and k-Nearest
Neighbors (kNNs). The PCA and kNN algorithms were ap-
plied on each dataset separately. The PCA was performed on
the first three factors (components) which explain more than
97% of the cumulative variance in all levels. However, even
though the third component was always above 97% cumu-
lative variance, the main difference was observed in the
variance of the first factor. As shown in Table 6, the variances
of PC1 were 79.35, 75.58, 70.42, and 63.24% for L0, L1, L2,
and LOx, respectively. Although LOx obtained the lowest
variance in PCl1, it provided the highest variance in PC2
(34.04%) and hence also the highest cumulative variance in
PC2 (97.28%). Subsequently, KNN was applied on the PCA
results and a visual presentation is given in Figures 7(a)-7(d)).

Table 7 provides the kNN results for L0, L1, L2, and LOx
datasets. M1 obtained the highest prediction in LO and L1
with 97% and 100% success, respectively. M2 obtained the
second highest prediction in L0 with 63.6% success and the

7
TaBLE 6: Summary of the principal component analysis.
Initial eigenvalues
Component % of Cumulative
Total -

variance (%)

Lo 1 1295.7 79.35 79.35
(N=410) 2 260.8 15.97 95.32
3 34.6 212 97.44

1 1234.2 75.58 75.58

L1 (N=41) 2 329.2 20.16 95.74
3 32.2 1.97 97.71

1 1150 70.42 70.42

L2 (N=12) 2 416 25.47 95.89
3 36.6 2.24 98.13

LOx 1 1032.7 63.24 63.24
(N=90) 2 555.8 34.04 97.28
3 21.2 1.3 98.58

M3 obtained the second highest prediction in L1 with 71.4%
success. The poor results achieved in L2 are due to the small
number of samples in the PCA space accompanied with k=1
with prediction of 0%. The best overall prediction was ob-
tained in LOx with 100% success for all rock types. The
average predictions of the rock types in L0, L1, L2, and LOx
were 72.5%, 57%, 0%, and 100%, respectively.

4. Discussion

4.1. The Essence of the Spectral Variability. The spectral
variability is derived mostly from the mineralogical vari-
ability found on the rock surface. The assessment of vari-
ability is important for the classification of rocks, especially
rocks that are similar in their average mineralogical and
spectral composition but exhibit diverse spectral features on
their surface. Moreover, understanding the spectral vari-
ability is also important for assessing the uncertainty that
may be obtained when performing quantitative predictions.
Therefore, finding the most precise method for identifying
the variability is of immense importance for the purpose of
classifying the different types of ore-bearing granodiorite
and hence also a great economic impact associated with the
excavation and exploitation of natural resources.

4.2. The Feasibility of Classifying the Rocks Samples. Any
approach of classifying rocks, especially those with similar
chemical compositions, involves some uncertainty. More-
over, in some cases the spectra of one type may match closely
to spectra of another, presenting the possibility of faulty
identification [46]. Longhi et al. [47] concluded that the
spectral classification and the petrographic rock classifica-
tions do not necessarily match with each other and Sgavetti
et al. [10] found that only limited number of basalt spectral
classes which were measured in laboratory were comparable
to field spectral classes. They also added that the usefulness of
laboratory spectra was more related to absorption features
assignment than endmembers for classification purposes.
The spectral variability of similar rocks types was examined
by Mierczyk et al. [31] which found an overall accuracy of
63.5% using SAM. Schneider et al. [48] compared laboratory



30—
2.0 -
1.0_.v
N
o 004 - :
A

-1.04

o W20l T — 0.0
C
7 3.0 2.0 PC3
Target: Type
O M1
O M2
@ M3

Type
@ Training
A Holdout

(a)

2.0 5

1.5 4

1.0 4 -

05—

PC2

PCI : . 10 0.0
2.02.0 PC3
Type Target: Type
@ Training O M1
A Holdout O M2
@ M3

(c)

Journal of Spectroscopy

20 - :
= N .
.0 .o 0 ;]
1.0 4 " : : ‘...: o) :.
: ‘ . 0
A
o~ [} .
O 00 A L
a ° ' °
L@ . .
40 0@ o
1.0 - ; :
o ° f?‘.»‘ A
3.0
2.0

-3.0

-2.0

-1.0

1.0
“, 2 10 00
3030 20 pPC3
Type Target: Type
@ Training O M1
A Holdout @ M2
@ M3
(b)
20— - ‘ :
. /.; : L
1.0 + - @Eg% :
A . :
. f L
o 00—+ . : :
A : . A
A &g’ a4 i
@® Aﬁ;. ) N
-1.0 4 ) Y ]
KOS e
) Q - LA -
“e. -
2.0 v
-3.0
-2.0

0.0

3.04.0 »C3
Type Target: Type
@ Training O M1
A Holdout @ M2
@ M3
(d)

FIGURE 7: (a—d) kNN results for levels: L0 using k=5 (a), L1 using k=4 (b), L2 using k=1 (c), and LOx using k=3 (d), on a PCA space.

and field spectral images using several classification methods
and found differences in the performance due to illumination
conditions, calibration approach, and the presence of dust
deposits. In addition, they conclude that the small-scale spatial
variability in rock type/mineralogy within each geographical
area affects the spectral variability. Pan et al. [49] claimed that

the influence of spectral variability inhibits an appropriate
quantitative assessment. Accordingly, the variations in the
overall accuracies between L0 (68.1%) and LOx (100%) given in
Table 7 complement their findings by demonstrating that
spectral variability also prevents efficient classification, as
shown in this study.
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TaBLE 7: The prediction results using the kNN method for each
level.

Predicted
Observed Cogrect
M1 M2 M3 (%)
Ml 50 1 6 87.7
M2 1 71 15 81.6
Training M3 5 34 89 69.5
Overall )6 300 404 772
L0 (%)
M1 32 0 1 97.0
(N=410) M2 0 21 12 63.6
Test M3 3 28 41 56.9
Missing 0 0 0 N.D.*
Overall
%) 254 355 39.1 68.1
M1 2 0 4 33.3
M2 5 5 50.0
Training M3 1 2 10 76.9
Overall
%) 10.3 241 65.5 58.6
L1 (N=41) M1 30 0 100
M2 0o 0 2 0
Test M3 0 2 5 71.4
Missing 0 0 0 N.D.S
Overall
%) 25.0 16.7 58.3 66.7
M1 11 0
M2 1 1 1 33.3
Training M3 1 1 0 0
Overall
%) 28.6 429 286 14.3
L2 (N=12) M1 0 0 1 0
M2 0 0 1 0
Test M3 0 3 0 0
Missing 0 0 0 N.D.S
Overall
%) 0.0 60.0 40.0 0
M1 20 0 0 100
M2 0 21 1 95.5
Training M3 0 0 19 100
OZ’;r)aH 328 344 32.8 984
(1]
(ngx_ %) M1 10 0 0 100
- M2 0 8 0 100
Test M3 0 0 11 100
Missing 0 0 0 N.D.S
Overall
%) 345 27.6 379  100.0
§No data.

In this work, different methods for assessing the spectral
variability were utilized which included a calculation of the
mean and standard deviation spectra, SAM, ASDS, and PCA
followed by kNN. The best performance was obtained by
PCA combined with kNN for three principal reasons. (i) It is
an unsupervised classification method which means it does
not require any prior knowledge or a reference spectrum to
perform the analysis. (ii) The classification was sufficient for
the laboratory measurements (LO) with an overall accuracy
of 68.1% and excellent for the field measurements with an

overall accuracy of 100%. (iii) The power of kNN is reflected
not only in the spatial distribution of the points but also in
the value of the neighboring points; i.e., the classification
threshold of any point is not quantified to the distance to
another training point but to the average value of neigh-
boring k points. This reduces misclassification if any ab-
normal points existing in the training dataset.

5. Summary and Conclusions

For this study, several methods were used to assess the
spectral variability of three endmembers (M1-M3) both in
laboratory and field measurements. The results obtained
from the averaging method and the calculation of the
standard deviation show that M1 has a unique spectrum
which shows different spectral features than M2 and M3
such as weaker absorptions at 400-2300 nm and stronger
absorption at 2350-2450 nm. Additionally, M1 shows the
lowest SSD compared to M2 and M3 in both laboratory and
field data. Moreover, the overall albedo of the spectral data
measured in the laboratory was 30-40 percent higher than
the measurements performed in the field which results in
differences in the SSD. The differences in SSD in the field can
be due to either differences in mineralogy or the size of rocks
and shading and, with that saying, M2 and M3 show high
SSD (>3) between 1600-1750nm in the field. This is in
contrast with M1 which does not exceed SSD value of 2.6.

The SAM method was assessed using both an internal
reference (the average spectrum of each rock type) and an
external reference (a spectrum equaling 1 in all wave-
lengths). The internal reference was used to evaluate the
variability within each rock type as it uses the average
spectrum of the same type. On the contrary, the external
reference enables us to evaluate the variability in comparison
to the entire dataset, including the measurements of other
types.

The results of SAM using the internal reference show
that the lowest value for L0 and LOx was of M1 and the lowest
value for L1 and L2 was of M2. Moreover, the values for LOx
were comparable with 0.017, 0.027, and 0.022 for M1, M2,
and M3, respectively. Results of the external reference show
that in both laboratory and field, the lowest SAM values were
obtained for M1 in all levels while the highest was obtained
with M2. However, no significant changes were observed
with the levels. This indicates that the differences between
the external spectrum and the spectra in each level remain
the same.

The ASDS was assessed using the same internal reference
as in SAM. The main difference between SAM and ASDS
methods is the influence of the albedo. While in SAM, the
albedo has no effect on the results, in ASDS it is the most
significant factor.

From the PCA and kNN analyses, it can be concluded
that the explained variability of laboratory measurements
was high within the same type of rock. This allows an ex-
cellent prediction for M1 (97% accuracy) but lower pre-
diction accuracies for M2 (63.6%) and M3 (56.9%). In
contrast, the spectral variability in the field data between
measurements of the same rock type was low while the
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spectral variability between the different rock types was high
enough to allow a clear separation between the types which
resulted in a prediction with 100% accuracy.

This study reveals the heterogeneity of the selected rock
types by examining their spectral variability in six different
databases both in laboratory (L0, L1, L2, and L3) and in the
field (LOx and L3x) using several well-known statistical
methods. Since rocks are an accumulation of minerals, it can
be argued that as the spatial resolution increases, so does the
spectral variability, because in laboratory data the miner-
alogical component and its variation on the surface of the
rock are more strongly portrayed than in the field
measurements.

The results of this study will serve as a background in
tuture studies for the purpose of quantifying the chemical,
physical, and mineralogical parameters of rock samples.
Results can be utilized for choosing the wavelengths that
show the minimum spectral variance for future statistical
modelling and evaluate the proper method for a qualitative
assessment and characterization of the rocks. In addition, it
emphasizes the importance of field measurements for an
accurate prediction.
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