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Summary

Due to the steadily increasing computing power of modern computers, numerical simulation

is nowadays used in all engineering disciplines. For example, digital twins (i.e. the virtual

representation of physical objects) are employed in the conception and development phase

of products or processes to analyze, design and optimize them in advance. In particular, the

finite element method (FEM) has established itself as a well-proven tool for the simulation

of technical (coupled multiphysical) problems. However, the accuracy and reliability of the

predictions made in the course of finite element analyses are essentially dependent on the

underlying material models. Therefore, new models are still developed today, in order to

represent increasingly complex phenomena and effects and to achieve predictions that are as

close to reality as possible.

In particular, the modeling of the material behavior in the context of non-isothermal form-

ing processes (e.g. warm and hot sheet metal forming and thermoforming of thermoplastics

or glass) represents a complicated task. Here, the following challenges arise: In general, the

materials are formed under large irreversible deformations. Consequently, only finite strain

constitutive theories lead to reliable results. Furthermore, complex (time-dependent) inelas-

tic deformation mechanisms occur. For most materials (such as metals and polymers), these

irreversible processes lead to significant self-heating of the material, especially at higher form-

ing rates. In addition, the temperature-dependent mechanical properties and the formation of

residual stresses in the course of non-isothermal processes must be taken into account. More-

over, temperature dependent microstructural phase transformations occur in metals as well as

in polymers during the cooling process, which have a significant influence on the effective

properties of the manufactured components. Therefore, a complicated coupling of the me-

chanical quantities with the temperature and the corresponding phase transformations arises.

If damage and crack propagation are to be considered in the course of modeling, the compli-

cating necessity to integrate non-local damage approaches arises, in order to exclude undesired

mesh-dependent results. For gradient-extended damage concepts, this leads to the introduction

of additional balance equations, which have to be solved in addition to the classical balances

of energy and linear momentum.

The coupled modeling of these multiple physical phenomena is a challenging and relevant

task, which still requires fundamental research. This cumulative dissertation aims to make

a valuable contribution in this regards. The overarching objective of the current work is the

development of coupled multiphysics modeling approaches for polymers and metals in order

to enable more realistic simulations of the above-mentioned processes in the future.



Essentially, this work comprises a collection of published research articles by the author

(and his co-authors), in the context of the aforementioned topic. In the introduction, the

research-relevant questions are elaborated in detail. In addition, an up-to-date literature re-

view is provided. The subsequent first two publications deal with the experimental investi-

gation and modeling of semi-crystalline polymers. In the first paper, extensive experimental

data regarding the mechanical behavior of semi-crystalline polyamide 6 is collected. Based

on this data, a new isothermal continuum mechanical material model is developed. The under-

lying formulation is based on a coupled visco-hyperelastic, elasto-plastic approach in which

nonlinear relaxation and strain hardening effects are considered. The temperature as well as

the degree of crystallinity serve as constant input parameters, which significantly influence the

effective material behavior.

In the second paper, a thermo-mechanically coupled extension of the former model is pro-

posed. The degree of crystallinity is now treated as a non-constant internal variable, which is

dependent on the temperature history. Thus, the processing induced microstructural crystal-

lization kinetics and the corresponding (locally varying) changes in the macroscopic behavior

can be represented. In addition, the heat generation due to irreversible deformation processes

and exothermic crystal growth is derived from the energy balance. The predicted mechanical

behavior, the heat of crystallization, as well as the self-heating due to large irreversible de-

formations show qualitatively and quantitatively a good agreement with experiments in three-

dimensional structural examples.

The third and last article in this dissertation deals with the complex interplay between plastic

deformations, damage processes and temperature, which occurs in metals during e.g. forming

processes. To this end, a gradient-extended thermo-mechanically coupled constitutive frame-

work is developed. The modeling of the mechanical behavior is based on the work of Brepols

et al. [2020], where a two-surface damage plasticity approach is proposed. The heat genera-

tion of these dissipative processes are derived from the energy balance in a consistent manner.

A fully implicit and monolithic algorithm is presented and discussed in detail for solving the

three global solution fields (i.e. displacement, temperature, and nonlocal damage variable). In

this way, mesh-objective descriptions of the complex interactions between the aforementioned

phenomena can be resolved.



Zusammenfassung

Aufgrund der stetig wachsenden Rechenleistung moderner Computer werden numerische

Simulationsmodelle heutzutage in allen Ingenieurdisziplinen eingesetzt. Digitale Zwillinge

(d.h. die virtuelle Replikation physikalischer Objekte) werden beispielsweise in der Entwurfs-

und Entwicklungsphase von Produkten oder Prozessen eingesetzt und ermöglichen diese im

Vorfeld zu analysieren, auszulegen und zu optimieren. Zur Simulation technischer (gekoppel-

ter multiphysikalischer) Probleme hat sich insbesondere die Finite-Elemente-Methode (FEM)

etabliert. Die Güte von FEM-Analysen ist jedoch im Wesentlichen von den zugrundeliegenden

Materialmodellen bestimmt. Bis heute werden daher neue konstitutive Modelle entwickelt, die

immer komplexere Phänomene und Effekte abbilden, um möglichst realitätsnahe Vorhersagen

zu erzielen.

So stellt die Simulation nicht-isothermer Umformprozesse (z.B. Warm- und Heißblechum-

formung, Thermoformen von thermoplastischen Kunststoffen oder Glas) bis heute eine

anspruchsvolle Aufgabe dar. Dies lässt sich insbesondere auf die folgenden Herausforderun-

gen bei der Werkstoffmodellierung zurückführen: Das eingesetzte Material erfährt im Zuge

der Umformung große irreversible Verformungen, weshalb nur konstitutive Ansätze unter der

Berücksichtigung großer Deformationen zu zuverlässigen Ergebnissen führen. Darüber hinaus

treten komplexe (zeitabhängige) inelastische Deformationsmechanismen auf. Bei den meis-

ten Werkstoffen (wie z.B. Metallen und Polymeren) führen diese irreversiblen Prozesse, ins-

besondere bei höheren Umformgeschwindigkeiten, zu einer signifikanten Eigenerwärmung

des Materials. Außerdem müssen die temperaturabhängigen mechanischen Eigenschaften

und die Ausbildung von Eigenspannungen berücksichtigt werden. Zudem treten sowohl bei

Metallen als auch bei Polymeren mikrostrukturelle Phasenumwandlungen im Zuge der nicht-

isothermen Prozessführung auf, welche die effektiven Eigenschaften des resultierenden Bau-

teils maßgeblich beeinflussen. Insgesamt ergibt sich deshalb eine komplexe wechselseitige

Kopplung der mechanischen Größen mit der Temperatur und den entsprechenden Phasen-

transformationen. Zur Modellierung von Materialschädigung und der Ausbreitung von Rissen

müssen des Weiteren nicht-lokale Schädigungsansätze integriert werden, um netzunabhängige

Ergebnisse zu gewährleisten. Dies führt bei gradientenerweiterten Schädigungsansätzen zu

zusätzlichen Bilanzgleichungen, welche neben der klassischen Energie- und Impulsbilanz

gelöst werden müssen.

Die gekoppelte Modellierung dieser vielfältigen physikalischen Phänomene ist ein heraus-

forderndes und wichtiges Thema, für das weiterhin ein dringender Forschungsbedarf besteht.

Die vorliegende kumulative Dissertation soll einen wertvollen Beitrag dazu leisten. Ziel dieser



Dissertation ist die Entwicklung multiphysikalischer Modellierungsansätze für Polymere und

Metalle, um in Zukunft eine möglichst realitätsnahe Simulation der oben genannten Prozesse

zu ermöglichen.

Im Wesentlichen umfasst diese Arbeit eine Zusammenstellung veröffentlichter Publika-

tionen des Autors (und seiner Koautorinnen) im Kontext der genannten Thematik. In einer

Einleitung erfolgt zu Beginn die detaillierte Ausführung der betrachteten Forschungsfragen.

Außerdem wird ein aktueller Literaturüberblick gegeben. Die darauffolgenden ersten beiden

Veröffentlichungen befassen sich in erster Linie mit der experimentellen Untersuchung und

Modellierung teilkristalliner Polymere. In der ersten Arbeit werden zunächst umfängliche

experimentelle Daten bezüglich des mechanischen Verhaltens von Polyamid 6 erhoben. Auf-

bauend auf diesen Erkenntnissen erfolgt die Entwicklung eines isothermen kontinuumsmech-

anischen Materialmodells. Die zugrundeliegende Formulierung basiert auf einem gekoppel-

ten visko-hyperelastischen, elasto-plastischen Ansatz, bei dem nichtlineare Relaxations- und

Verfestigungsprozesse berücksichtigt werden. Die Temperatur sowie der Kristallinitätsgrad

dienen als konstante Eingangsparameter, die das effektive Materialverhalten beeinflussen.

In der zweiten Arbeit wird das Modell zu einer thermo-mechanisch gekoppelten Formu-

lierung weiterentwickelt. Hierin dient der Kristallinitätsgrad nun als eine von der Temperatur-

geschichte abhängige interne Variable. Der prozessabhängige Kristallisationsprozess und die

korrespondierenden (lokal variierenden) Veränderungen des makroskopischen Verhaltens kön-

nen somit abgebildet werden. Darüber hinaus wird aus der Energiebilanz die Wärmeentwick-

lung infolge irreversibler Deformationsprozesse und infolge des exothermen Kristallwachs-

tums abgeleitet. Das vorhergesagte mechanische Verhalten, die Kristallisations- wärme sowie

die Eigenerwärmung infolge großer Deformationen zeigen qualitativ und quantitativ eine gute

Übereinstimmung mit den Experimenten.

Die dritte Arbeit befasst sich mit dem komplexen Zusammenspiel aus plastischen Verfor-

mungen, Schädigungsprozessen und der Temperatur, die im Zuge von Umformprozessen in

Metallen auftreten. Dazu wird ein gradientenerweitertes, thermo-mechanisch gekoppeltes

Konstitutivgesetz entwickelt. Das mechanische Verhalten wird basierend auf der Arbeit von

Brepols et al. [2020] über einen „Zwei-Flächen“ Schädigungs-Plastizitätsansatz beschrieben.

Die entsprechenden Rückkopplungen dieser dissipativen Prozesse auf das Temperaturfeld

werden aus der Energiebilanz hergeleitet. Zur Lösung der drei globalen Lösungsfelder (Ver-

schiebung, Temperatur und nicht-lokale Schädigungsvariable) wird ein impliziter und mono-

lithischer Algorithmus implementiert und im Detail diskutiert. Auf diese Weise können die

komplexen Wechselwirkungen zwischen den zuvor genannten Phänomenen netzunabhängig

abgebildet werden.
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1 Introduction

1.1 Motivation and research-relevant questions

With increasing computational resources, the integration of numerical simulation tools within

all engineering disciplines is standard, nowadays. For example, during the design and de-

velopment stage, digital twin prototypes are employed to optimize and refine the product be-

fore it is manufactured. The possibility to simulate the products’ behavior, functionality and

quality under every relevant aspect naturally reduces the number of physical prototypes and

leads to lower costs, in addition. Regarding the simulation and analysis, the finite element

method (FEM) is a well-established tool, which offers the ability to solve large-scale technical

(coupled, multi-physics) problems in the fields of automotive, civil, medical, mechanical and

aerospace engineering. Ultimately, the quality and significance of the prediction in the course

of a FEM analysis depends essentially on the incorporated material models. Thus, to represent

complex processes and materials under increasingly realistic conditions, a strong demand for

sophisticated material models has emerged, which continues to drive the need for fundamental

research until today.

In particular the modeling of non-isothermal forming processes (e.g. warm and hot sheet

metal forming, thermoforming of thermoplastic polymers or glass) is a challenging task, un-

til today. Independent of the employed material, the actual forming process usually follows

the same sequence: To improve the formability of the material before processing, the work-

piece (often in the form of a sheet) is heated to a specific temperature. Subsequently, the final

shape of the part is imprinted by e.g. vacuum-forming, pressure-forming, or deep drawing.

This offers the potential of components with complex geometries and a cost-effective mass

production. However, process stability is often difficult to ensure. Thermal gradients, phase

transformations, and resulting residual stresses can lead to component distortion or even de-

fects. To avoid this, process parameters such as heating and cooling rates, mold geometry and

positioning of the component usually have to be laboriously adjusted by trial and error. This

often negates potential time and cost advantages. Thus, accurate process simulation tools are

highly desirable.
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From a modeling perspective, (non-isothermal) forming processes are in particular chal-

lenging for the following reasons. Typically, the material undergoes large strains and large

rotations. Consequently, only finite strain constitutive theories lead to reliable results. In ad-

dition, complex (time-dependent) inelastic deformation mechanisms occur and must be cap-

tured during the forming stage. For most materials (especially metals and polymers) these

irreversible processes induce material self-heating, leading to a change in the temperature,

in particular at higher forming rates. Furthermore, the change in the mechanical properties

and the formation of residual stresses due to thermal-contraction during supercooling must be

addressed. Consequently, it must be accounted for strong thermo-mechanical coupling effects.

Next, to these advanced model requirements, which are far from being trivial, phase trans-

formation must be considered in some cases. For example, during hot forming of metallic

materials, the blank is austenitized at high temperatures above 900 ◦C prior to processing.

Subsequently, deep drawing and quenching is performed simultaneously, which leads to a

non diffusional martensitic transformation (see e.g. Merklein and Lechler [2006], Cui et al.

[2012]). Equivalently, in the case of thermoforming of semi-crystalline polymers (SCP), the

material is initially heated above the softening point, where the polymer is in a purely amor-

phous state. Due to the contact of the blank with the colder dies, supercooling of the amor-

phous phase triggers the formation of crystalline regimes during the solidification and forming

process. Naturally, in both cases the resulting morphology of the underlying microstructure

strongly influences the effective properties of the resulting part. Noteworthy, the aforemen-

tioned processes are driven by the temperature evolution and are in general cooling rate depen-

dent. However, due to the exothermic nature of both transformation processes, back-coupling

and a change in temperature is triggered, additionally. Conclusively, these interactions in-

crease the complexity to a fully-coupled multiphysics problem, which requires sophisticated

coupled multi-field modeling schemes.

Despite numerous phenomenological or physically based models in the literature, which de-

scribe for example the crystallization kinetics in SCP, the thermodynamically consistent incor-

poration of these theories into thermo-mechanically coupled frameworks is a challenging task.

Furthermore, it remains the question on how to incorporate the information of the current state

of the morphology into continuum mechanical models. For example, is it sufficient to con-

sider only the crystal volume fraction as an additional (evolving) internal variable? Moreover,

a general problem in this context is the systematic acquisition of comprehensive experimen-

tal data, in which both the influence of temperature and the properties of the microstructure

(e.g. austenite / martensite volume fractions in metals or degree of crystallinity in SCP) on the

effective material properties must be investigated for large inelastic deformations. Even if this
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data were available, the question of how to systematically proceed with the material parameter

identification and corresponding optimization procedure arises. In particular, in the context of

SCP, these questions and problems seem to be worthwhile to be investigated, due to the very

limited amount of studies dealing with all of the aforementioned points (simultaneously).

An additional interesting modeling aspect is related to the complex interaction between in-

elastic (e.g. plastic) deformation mechanisms and thermo-mechanical coupling effects, which

eventually lead to crack initiation and propagation during forming. In fact, to predict and

understand these interactions plays an important role in most metal manufacturing processes,

where the formation of large quantities of plastic strain at relatively high strain rates can be

observed. As alluded above, these irreversible deformations lead locally to high temperatures

and thermal-softening, which accelerate strain localization and the onset and propagation of

damage. These mechanisms emphasize the need of coupled thermo-damage-plasticity model

formulations. While there are several established formulations available for thermo (visco-)

plasticity at finite strains and brittle damage, the modeling of coupled damage and plasticity

is the current subject in many ongoing studies.

Regarding damage, there exist many different approaches on how to capture the effects

of microscopic damage mechanisms on the macroscopic response. For example, in the con-

text of continuum damage mechanics, the nucleation, growth and coalescence of microvoids

is accounted for in an averaged sense only, by introducing scalar- or tensor-valued internal

variables. The stiffness, strength and other material properties are usually assumed to be func-

tions of the damage variable, such that material softening can be modeled. However, today

it is well-known that conventional local damage models lead in general to mesh-dependent,

physically unreasonable results (shrinking damage zones and decreasing energy dissipation

with increasing mesh sizes). Thus, different concepts were developed in the recent years to

solve the aforementioned problem. In particular nonlocal integral-type or gradient-type for-

mulations seem promising, to overcome the problematic mesh dependency by introducing

internal material length scales. In most of the latter type of approaches, an additional nonlocal

variable is introduced on the global level, whose evolution is governed by an additional partial

differential equation and a set of boundary conditions. In this way, the evolution of damage

on the integration point level is made dependent on the nonlocal damage variable and thus on

the damage state of surrounding points, which is essentially the key to resolve the issue.

Only a very limited number of works are concerned with incorporating such advanced regu-

larization techniques into thermo-mechanically coupled damage-plasticity formulations. Due

to the gradient-extension, an additional balance equation must be solved next to the classical

balance of linear momentum and the balance of energy, which rises several questions: From a
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theoretical point of view, it is not clear how the complex interplay between displacement, tem-

perature, and nonlocal damage field should be incorporated into the constitutive framework,

such that thermodynamic consistency as well as the damage growth criterion (Wulfinghoff

et al. [2017]) are always fulfilled. From a computational point of view it is also difficult to im-

plement such a fully coupled multiphysical formulation in an efficient, yet accurate and fully

implicit manner.

Conclusively, the considerations above reveal several open questions in the context of mod-

eling non-isothermal forming processes, which still provide the need for fundamental research.

Therefore, the aim of this dissertation is to develop thermo-mechanically coupled constitutive

frameworks at finite strains for polymers and metals, in order to enable the simulation of pro-

cessing under increasingly realistic conditions in the future.

This work is first of all concerned with the modeling of semi-crystalline polymers. In par-

ticular, the evolution and influence of the degree of crystallinity on the mechanical properties

during forming and supercooling is experimentally and numerically investigated. The mod-

els underlying formulation is based on a coupled visco-hyperelastic elasto-plastic scheme, in

which nonlinear relaxation and hardening processes are accounted for. In this way, new ex-

perimental insights and modeling approaches regarding the influence of both the temperature

and the degree of crystallinity on the overall material response are generated.

Related to the issues and raised questions in the last part of the above section, this work is

furthermore concerned with the derivation and implementation of a gradient-extended thermo-

damage-plasticity theory at finite strains, in order to model metallic materials. This framework

can be understood as the thermo-mechanical extension of the two-surface damage-plasticity

approach by Brepols et al. [2020], in which both mechanisms are treated as distinct but coupled

dissipative phenomena. In this way, complex interactions of e.g. material self-heating due to

damage and plasticity, strain localization and accompanied thermal-softening can be captured.

Furthermore, crack propagation and back-coupling effects on the material properties and the

temperature field can be resolved mesh-insensitively.

1.2 State-of-the-art

To bring the aforementioned questions and issues in the context of previously published stud-

ies and to motivate this dissertation further, a review of the relevant literature is provided be-

low. The focus is primarily on continuum mechanical approaches, which serve as the starting

point for the solution schemes developed in this work. An overview of important contributions

related to the modeling of polymeric and metallic materials is presented separately.
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1.2.1 Modeling semi-crystalline polymers and the impact of

temperature and temperature history

Semi-crystalline polymers (SCP) are a specific class of thermoplastic polymers. During cool-

ing from the (unordered) amorphous melt, the polymer chains fold partly together and form

ordered regions referred to as lamellae, which form quasi-spherical structures (spherulites).

Thus, the microstructure of the solidified polymer is typically decomposed into three different

phases, namely the crystalline phase as well as the soft and rigid amorphous phases (Wun-

derlich [2003]). Furthermore, in some SCP (for example Polyamide 6), the polymer chains

within the crystalline phase arrange either in a fully extended (monoclinic) configuration, or in

a twisted (hexagonal/ pseudohexagonal) configuration, referred to as α- and γ-form, respec-

tively (see e.g. Fornes and Paul [2003]). The resulting crystal structure is in general dependent

on the temperature history, applied stress, and presence of moisture (see e.g. Kyotani and Mit-

suhashi [1972], Illers et al. [1972] and Gurato et al. [1974]). In general, the γ-form was found

to be produced from rapid cooling (θ̇ < 8 ◦C s−1), whereas processes with low cooling rates

lead to the formation of the α-form (Cavallo et al. [2011]).

From experimental studies regarding the mechanical behavior of SCP (see e.g. Ayoub et al.

[2010], Barriere et al. [2019], and Qi et al. [2019]), it can be concluded that this class of

material shows in general a complex inelastic behavior. The latter is characterized by large

loading-rate dependent plastic deformations, strain hardening, as well as strain recovery, stress

relaxation, and loading-unloading hysteresis loops. Molecular dynamic simulations (cf. e.g.

Rottler [2009], Jatin et al. [2014], and Jabbari-Farouji et al. [2017]) helped to understand

the microscopic mechanisms, which lead to visco-plastic behavior and the nonlinearity upon

unloading. It was concluded that strain hardening is in general related to a limited number of

possible network conformations upon loading. In addition, SCP (as most polymers) exhibit

a significant Bauschinger-like effect upon unloading (cf. e.g. Anand et al. [2009], Krairi and

Doghri [2014]). The microscopic nature of this phenomenon was discussed in the work of

Chevalier et al. [2018], where it was concluded that the formation of back stresses during

loading eventually lead to an early activation of Shear Transformation Zones (STZ) upon

unloading.

During the last decades, numerous scientific contributions were concerned with the mod-

eling of SCP. Many continuum mechanical frameworks for amorphous and semi-crystalline

polymers are based on the approach for glassy polymers of Haward et al. [1968], who proposed

an additive combination of the intermolecular and molecular network resistance, in order to

obtain the total resistance to deformation. Based on this idea and the considerations of Boyce
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et al. [2000], several phenomenological approaches followed: For amorphous polymers, see

e.g. Anand et al. [2009] and Srivastava et al. [2010] and for semi-crystalline polymers e.g. van

Dommelen et al. [2003], Ayoub et al. [2010], and Barriere et al. [2019]).

In earlier works, either (nonlinear) visco-elastic modeling strategies (cf. e.g. Lai et al. [2005]

and Khan et al. [2006])) or visco-plastic formulations, mainly incorporating the concept of

over-stress, were proposed (e.g Zeng et al. [2010], Drozdov [2011], Khan and Yeakle [2011],

and Kästner et al. [2012]). However, more recent investigations (cf. Miled et al. [2011],

Yu et al. [2016], Gudimetla and Doghri [2017], Praud et al. [2017], Qi et al. [2019], and

Wang et al. [2019]) showed that coupled visco-elastic, visco-plastic models are crucial to ac-

curately predict the complex deformation phenomena within amorphous and semi-crystalline

polymers discussed above. Kinematic hardening approaches were proposed by e.g. Hasan and

Boyce [1995], Anand et al. [2009], Krairi and Doghri [2014] and validated for cyclic-loading

behavior (see e.g. Qi et al. [2019] for high density polyethylene).

Besides continuum mechanical modeling schemes on the macroscopic level, models at the

micro-scale were employed, to obtain the effective material response of polymeric materials

by either analytical or FE-based homogenization schemes (see e.g. Gueguen et al. [2010], Li

and Shojaei [2012], Uchida and Tada [2013], Popa et al. [2014], and Alisafaei et al. [2016], to

name a few). Other authors integrated microstructural aspects into their mathematical formula-

tions, for example by considering the molecular chains network reorganization (Maurel-Pantel

et al. [2015]). These approaches are typically characterized by a small number of parameters

and less complex model formulations. However, the characterization of the microstructural

constituents and the identification of the required physical data is in general rather difficult.

This is in particular the case for semi-crystalline polymers, where the microstructure is de-

composed into three different molecular arrangements (crystalline, soft and rigid amorphous

phases). Consequently, employing multi-scale approaches inevitably leads to difficult choices

regarding the geometry, the size, and the distribution of the aforementioned characteristic

phases. Furthermore, assumptions regarding the individual mechanical behavior and proper-

ties of the distinct phases must be made, which are experimentally hardly accessible. This is in

contrast to phenomenological models, where the (usually larger number of) required material

parameters can be identified from conventional mechanical tests at the macro-scale.

As alluded in the motivation, the mechanical behavior of most polymers is highly depen-

dent on thermal conditions. Early works related to the non-isothermal modeling of polymeric

materials are Holzapfel and Simo [1996], Lion [1997a,b], where the latter two employed a

multiplicative decomposition (cf. Kröner [1959] and Lee [1969]) of the deformation gradient

to account for visco-elastic material behavior. Reese and Govindjee [1998a] followed this ap-
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proach and proposed a thermo-mechanically coupled theory, where the free Helmholtz energy

suggested by Chadwick and Hill [1974], Chadwick and Creasy [1984] was enhanced in order

to account for a non-linear dependence of the material parameters on the temperature. In the

work of Arruda et al. [1995], the influence of the loading-rate and adiabatic heating on the re-

sponse of glassy polymers was studied. Reese [2003a] derived a continuum mechanical model

of finite viscoelasticity from micro-mechanical considerations based on the transient network

concept. In Lion et al. [2010, 2011], a concept was developed to describe the glass transition of

semi-crystalline polymers. Later on, the same group developed a hybrid modeling approach

for the specific free energy to capture the mechanical and caloric material properties under

given pressure (Lion et al. [2014]). Ames et al. [2009] and Srivastava et al. [2010] suggested

thermo-mechanically coupled formulations to capture the material self-heating of amorphous

polymers under finite deformations.

Despite numerous contributions related to the isothermal modeling of semi-crystalline poly-

mers, only a limited number of thermo-mechanically coupled works were proposed. In the

more recent publications of Maurel-Pantel et al. [2015], Garcia-Gonzalez et al. [2018], and Li

et al. [2019] the thermo-mechanical behavior of Polyamide 66 (PA66), Polyether ether ke-

tone (PEEK), ultra-high-molecular-weight Polyethylene (UHMWPE), and HDPE, was inves-

tigated, respectively. In addition, a thermo-elastic-viscoplastic-damage model was introduced

by Shen et al. [2019] for Polyamide 6. The impact and importance of the self-heating phe-

nomenon was among others revealed by the works of Şerban et al. [2013] and El-Qoubaa and

Othman [2016]. The same phenomena were investigated in the context of lifetime prediction

of polymeric materials by Shojaei and Volgers [2017] and Katunin [2019]. In the work of

Krairi et al. [2019] a non-isothermal, visco-elastic, visco-plastic theory was applied for PA 66

and Polypropylene, in the context of small strains. Furthermore, Lei et al. [2021] focused on

the thermo-mechanical behavior of stretch-induced anisotropy within PEEK.

As alluded above, the effective thermo-mechanical behavior of SCP is strongly affected

by the (process dependent) morphology of the underlying micro-structure (e.g. the degree of

crystallinity, crystal configuration, and lamellae thickness etc.), see e.g. Jenkins [1992] and

Ayoub et al. [2011]. In order to predict the evolution of the crystalline phase during pro-

cessing (e.g. during cooling from the amorphous melt), several approaches were proposed

over the past decades. The isothermal Avrami equation (Avrami [1939]) served as a starting

point for numerous non-isothermal models (see e.g. Ozawa [1971], Nakamura et al. [1973],

and Mubarak et al. [2001]), where non-isothermal crystallization and isothermal induction

time were accounted for. Based on the enthalpy of fusion measured in differential scan-

ning calorimetry (DSC) experiments, Goff et al. [2005], Zinet et al. [2010], and Kugele et al.
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[2017] applied similar concepts, in order to account for the heat generation associated with the

exothermic crystallization process. Lion and Johlitz [2016] developed a thermodynamically

consistent model for describing the pressure- and temperature history-dependent melting and

crystallization process, which takes into account the characteristic three phases within semi-

crystalline thermoplastics. Noteworthy, in most of these works, the crystallization process

and corresponding heat of fusion is modeled in the context of thermal problems only, where

supercooling is considered as the main driving force and back-coupling effects on the thermo-

mechanical behavior are not considered.

Only a limited number of constitutive models incorporate the effect of degree of crystallinity

on the mechanical response. Different rules of mixture of the amorphous and crystalline

regimes were studied by Dusunceli and Colak [2008] in a phenomenological approach. Ay-

oub et al. [2011] and Abdul-Hameed et al. [2014] suggested a two-phase representation of

the microstructure. More recently, the significant dependence of ultra-high-molecular-weight

polyethylene (UHMWPE) on the degree of crystallinity was investigated by Chen et al. [2019]

at small strains. However, in all these works, the influence of varying constant degrees of

crystallinity was investigated for only one specific temperature. More recently, the process-

dependent behavior of semi-crystalline polymers under thermal and volumetric loads was in-

vestigated experimentally and modeled on a phenomenological and micromechanical basis in

Mittermeier and Lion [2020]. Herein, a simplified small strain viscoelastic generalization of

Hooke’s law was employed.

From the above review, a considerable large progress regarding the experimental and nu-

merical investigation of semi-crystalline polymers becomes apparent. However, most models

are either limited by accounting for the impact of the temperature (e.g. Krairi et al. [2019],

Shen et al. [2019]) or the process induced degree of crystallinity (e.g. Dusunceli and Colak

[2008], Ayoub et al. [2011]) on the macroscopic response only. Furthermore, the published

experimental data of the mechanical behavior is typically also limited to the investigation of

the influence of the temperature or the underlying degree of crystallinity. In particular for

Polyamide 6, there is no comprehensive experimental study (including cyclic loading and

relaxation tests for large deformations) available, where both effects are investigated simul-

taneously over a large range of temperatures (spanning the glass transition temperature), at

least to the author’s knowledge. Clearly, investigating and modeling the coupling effects be-

tween degree of crystallinity and temperatures simultaneously is crucial, since the impact of

varying crystal volume fractions on the overall mechanical response is strongly temperature

dependent. Furthermore, in the context of forming processes, the morphology of the material’s

internal microstructure is not a material constant but dependent on the preceding processing
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conditions and, in particular, the temperature history. Thus, the evolution of the degree of

crystallinity should be incorporated, in addition. However, to the author’s knowledge, there is

no model available in the literature, which comprises all of the aforementioned features in a

fully thermo-mechanically coupled constitutive framework at large strains.

1.2.2 Modeling the interplay between temperature, plasticity, and

damage within metals

In contrast to polymeric materials, the microstructure of metals is characterized by a long-

ranged ordered arrangement of the metal atoms into crystal structures. The three most com-

mon crystal structures are referred to as the body-centered cubic (bcc), face-centered cubic

(fcc), and hexagonal close-packed (hcp) configuration. Noteworthy, phase transformations

between different crystal arrangements occur in some metals depending on temperature and

applied stresses.

As alluded above, in most metal forming processes, the material is shaped under the forma-

tion of large plastic strains at relatively high strain rates. The plastic deformations are related

to two distinct deformation modes in the crystal lattice: dislocation movement on certain crys-

tallographic planes (slip) as well as twinning (see e.g. Hirth and Lothe [1982] and Pokharel

et al. [2014]). These irreversible processes lead to significant local heat accumulation (Miller

et al. [1986]), accompanied by temperature-induced softening and additional plastic strain

localization. Furthermore, plastic deformations are known to be the precursor to damage initi-

ation, which is related to the nucleation, growth and coalescence of microvoids (cf. Hosokawa

et al. [2013], Landron et al. [2013], Tekoğlu et al. [2015]). These complex coupling effects

between dissipative deformation mechanisms (such as damage and plasticity) and the temper-

ature were investigated and confirmed in different experimental studies for various metals at

ambient temperatures (see among others Rusinek and Klepaczko [2009], Knysh and Korkolis

[2015] and Bragov et al. [2019]) and motivated numerous modeling approaches over the last

decades.

In the following, a brief overview of some fundamental thermo-mechanically coupled plas-

ticity theories for metals is presented. These frameworks serve as the foundation for many

modeling schemes, until today.Argyris and Doltsinis [1981] and Argyris et al. [1982] pro-

posed models, which were restricted to adiabatic conditions. First, fully coupled finite strain

formulations for metallic materials were, for example, proposed by Simo and Miehe [1992]

and Wriggers et al. [1992], who investigated classical von Mises thermo-plasticity. Rosakis

et al. [2000] numerically and experimentally assessed the rate of plastic work converted into
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heating. Based on the proposed variational theory of Yang et al. [2006] and Stainier and Ortiz

[2010], Canadija and Mosler [2011] developed a thermo-mechanically coupled framework,

including kinematic hardening at finite strains.

Nowadays, it is well known that conventional ‘local’plasticity theories lead to a pathological

mesh dependency, in the context of finite element simulations, if localized inelastic deforma-

tions and structural softening occur. This non-physical behavior can be cured by incorporating

internal length scales. The models are enhanced by nonlocal counterparts to the internal vari-

ables, which loosely speaking leads to a coupling between the local quantity and the associated

spatial neighborhood. This can be e.g. achieved by gradient-extended models (for isothermal

gradient crystal plasticity, see e.g. Gurtin [2008], Svendsen and Bargmann [2010], Wulfinghoff

and Böhlke [2012], Klusemann and Yalçinkaya [2013], and Miehe [2014]) where the plastic

length scale is associated with the microscopic lattice spacing. Alternatively, phenomenologi-

cal gradient plasticity models determine the plastic length scale from experimental studies on

the macroscale, see for example Gudmundson [2004], Reddy et al. [2008], Fleck and Willis

[2009], Polizzotto [2009], Voyiadjis et al. [2010], Polizzotto [2014], and Miehe et al. [2014].

To capture plastic deformations in non-isothermal settings, regularized thermo-plasticity

theories were introduced, more recently (cf. Forest and Aifantis [2010], Voyiadjis and Faghihi

[2012]), where finite strains (Wcislo and Pamin [2017]) as well as micro-structure based size

effects (Aldakheel and Miehe [2017]) were incorporated. For a detailed review paper on this

topic, the interested reader is referred to Voyiadjis and Song [2019].

Besides plasticity, the modeling of damage has been of interest for many decades already.

For most engineering purposes, a continuum mechanical approach is sufficient enough to pre-

dict the influence of damage on the material response.

Coupled damage models, which incorporate damage effects into the constitutive formula-

tion can be subdivided into two groups: Micro-mechanically motivated models, which in-

troduce the volume fraction of microvoids within the material through one or more internal

variables. The material behavior is affected by the growth of the microvoids. Comprehen-

sive knowledge of the earlier mentioned microstructural phenomena (nucleation, growth and

coalescence of microvoids) is the basis for deriving the respective evolution equations. This

class of models is based on the pioneering work of Gurson [1977] and the Gurson-Tvergaard-

Needleman (GTN) model (Needleman and Tvergaard [1984]). Recent improvements incor-

porate e.g. the void size and the void shearing effect (among others, see Malcher and Mamiya

[2014], Zhou et al. [2014], Jiang et al. [2016], Wu et al. [2019]).

Models related to the second group rely on the continuum damage mechanics (CDM) ap-

proach, where the material’s microstructural behavior is approximated by internal variables
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(scalar- or tensor-valued), which decrease the stiffness and / or the strength of the material.

The earlier CDM models were based on a single-surface formulation (cf. Lemaitre [1984,

1985a,b]), allowing damage to develop only alongside evolving plastic deformations. This ap-

proach is widely employed until today and was further developed to capture e.g. crack-closure

(Desmorat and Cantournet [2008]), finite strains (e.g. Badreddine et al. [2010, 2017]) or the

influence of the Lode angle (e.g. Malcher and Mamiya [2014], Yue et al. [2019]). In con-

trast, two-surface approaches were introduced in the early works of e.g. Hansen and Schreyer

[1994] and Zhu and Cescotto [1995], formulating damage and plasticity as two fully indepen-

dent dissipative yet strongly interacting mechanisms. This conceptually very different method

was applied in more recent works, in the context of small (Voyiadjis et al. [2011, 2012], Zhu

et al. [2016]) and finite deformation theories (e.g. Vignjevic et al. [2012], Balieu and Kringos

[2015], Brünig et al. [2014, 2018]).

Analogously to ‘local’plasticity models, ‘local’damage models (micromechanical and CDM

based) lead to strong mesh-dependent results in simulations where material softening occurs

(see e.g. Bažant et al. [1984], Cervera and Chiumenti [2006], Jirásek and Grassl [2008],

de Borst et al. [2012]). Not only does the damage zone and corresponding energy dissipation

shrink with finer meshes (see Bažant et al. [1984], de Borst et al. [1993]), but the location

and the direction of propagation of the damage zone are also dependent on the mesh struc-

ture and element types (cf. Cervera and Chiumenti [2006] and Jirásek and Grassl [2008]).

Thus, to acquire reliable, mesh-independent results, one possible solution is to introduce an

additional ‘nonlocal’damage variable into the formulation, similarly as in the context of ‘non-

local’plasticity models. This can be achieved e.g. through integral-type formulations (Bažant

and Jirásek [2002]), explicit (Comi [1999]) or implicit gradient-type formulations. The present

work focuses on the latter, in which the evolution of the global ‘nonlocal’variable is governed

by an additional partial differential equation and a set of boundary conditions. A modified

Gurson-type coupled plasticity-damage model was proposed by Miehe, Kienle, Aldakheel and

Teichtmeister [2016] and Aldakheel et al. [2018], where damage is captured by employing the

conceptually very similar phase field of fracture approach.

In the context of CDM approaches, Papadioti et al. [2019] developed a theory where the fail-

ure criterion by Bai and Wierzbicki [2008] was combined with the implicit gradient damage-

plasticity model by Engelen et al. [2002]. A fundamental contribution was made by Forest

[2009, 2016], who introduced the so-called micromorphic approach, which can be considered

as a very general blueprint for deriving implicit gradient-type formulations (see e.g. Saanouni

and Hamed [2013]). Based on the work of Forest, Brepols et al. [2017, 2018, 2020] published

gradient-extended two-surface damage-plasticity theories. A conceptually similar regularized
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multi-surface formulation was developed by Kiefer et al. [2018]. Furthermore, coupled crystal

plasticity and micromorphic gradient-extended damage models were proposed by e.g. Aslan,

Cordero, Gaubert and Forest [2011] and Aslan, Quilici and Forest [2011]. Ultimately, recent

models combine gradient damage with gradient plasticity, see e.g. Dimitrijevic and Hackl

[2011] and Lodygowski et al. [2011], or the works of Miehe, Aldakheel and Raina [2016],

Miehe, Teichtmeister and Aldakheel [2016], and Dittmann et al. [2018], where the phase field

of fracture method is employed.

Despite the aforementioned strong coupling phenomena between plasticity, damage, and

temperature, most of the above gradient-extended damage-plasticity theories were derived

under the assumption of isothermal conditions only. Regarding regularized thermo-brittle

theories, Sicsic et al. [2014] suggested the first phase field based method, which was ex-

tended by Miehe et al. [2015]. However, the number of regularized models capturing thermo-

mechanically coupled damage and plasticity is very limited, until today. A thermo-

mechanically coupled gradient-damage constitutive framework was proposed by Sarkar et al.

[2020] in the context of small strains. One of the few contributions with the aforementioned

characteristics in the context of finite deformations was proposed by Dittmann et al. [2020],

which is based on the isothermal phase field theory by Dittmann et al. [2019]. Conclusively,

due to this lack in regularized thermo-damage-plasticity models, an ongoing demand for fur-

ther developments arises.

1.3 Outline of the dissertation

This cumulative dissertation is organized as follows. Chapter 2 and Chapter 3 are concerned

with the experimental and numerical investigation of semi-crystalline Polyamide 6, to resolve

some of the open questions discussed above. More precisely, in Chapter 2, a comprehensive

experimental study is performed to investigate both, the influence of the degree of crystallinity

and the temperature on the mechanical response of the polymer. To this end, various tensile

experiments under monotonic and cyclic loading conditions as well as relaxation tests are

conducted. This reveals new insights into the complex dependencies of the effective material

properties on the temperature and degree of crystallinity. Based on this data, a continuum

mechanical approach is proposed, which combines a nonlinear visco-elastic and elasto-plastic

theory, where nonlinear isotropic and kinematic hardening as well as nonlinear relaxation be-

havior are accounted for. In this isothermal framework, the temperature as well as the degree

of crystallinity serve as constant input parameters, which contribute to the overall constitutive

behavior. In this way, the effect of the aforementioned factors on the loading-rate depen-
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dent plastic deformations, strain hardening, strain recovery, stress relaxation, and loading-

unloading hysteresis loops can be accurately predicted.

In Chapter 3, this model is further developed towards a fully thermo-mechanically cou-

pled theory. The degree of crystallinity is now treated as a non-constant temperature history

dependent internal variable to account for the process dependent evolution of the underlying

microstructure and the corresponding variations in the mechanical behavior. To this end, the

crystallization kinetics are modeled by means of a non-isothermal representation of the Avrami

equation. The corresponding parameters are obtained from isothermal and non-isothermal dif-

ferential scanning calorimetry experiments. Furthermore, from the energy balance, the heat

release due to irreversible processes and exothermic crystal growth are derived. The predicted

heat of crystallization is qualitatively in good agreement with experimental findings. It is con-

cluded that the employed formulation is suitable to predict the crystallization process from a

static relaxed melt, in transient, three-dimensional heat transfer problems. Furthermore, com-

parisons with infrared thermography measurements reveal accurate predictions of the material

self-heating and accompanied thermal-softening during uniaxial tensile tests.

In the last Chapter 4, the above issues in the context of non-isothermal damage and plas-

ticity modeling in metals are addressed. Based on the isothermal theory of Brepols et al.

[2020], a thermo-mechanically coupled two-surface damage-plasticity theory is derived. The

framework is valid for large deformations, thermodynamically consistent, and fulfills the dam-

age growth criterion. To overcome the non-physical mesh-dependence of conventional ‘lo-

cal’theories discussed above, a gradient-extension based on the micromorphic approach of

Forest [2009, 2016] is incorporated. Due to the additional degree of freedom related to the

micromorphic extension, three fully coupled fields of global unknowns must be solved. To

this end, the implementation of a fully implicit and monolithic solution scheme is presented

and discussed in detail. The model’s predictions (regarding e.g. local heat accumulation due

to damage and plasticity, strain localization and thermal softening as well as crack propaga-

tion and back-coupling effects) are quantitatively and qualitatively in good agreement with

experimental observations.
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2.1 Abstract

In the current work, an extensive experimental study is performed, to investigate the influence

of both, the applied thermal conditions over a wide range of temperatures and the manufac-

turing process induced degree of crystallinity on the mechanical response of semi-crystalline

polymers. To this end, large-strain tensile experiments with different loading procedures (i.e.

monotonic, cyclic, and relaxation tests) are conducted on Polyamide 6 for different loading

rates. The experimental data base provides new insights into the complex dependencies of the

effective material properties on the aforementioned factors and serves as the foundation for

the development of a continuum mechanical constitutive framework.

The phenomenological, isothermal model is developed in a reasonably general, thermody-

namically consistent manner, to predict the strain rate, temperature and degree of crystallinity

dependent large-deformation response of semi-crystalline polymers. A coupled nonlinear

visco-elastic, elasto-plastic theory, incorporating nonlinear isotropic and kinematic harden-

ing, is proposed to capture the complex material behavior (e.g. strain recovery and hysteresis

loop after cyclic loading-unloading and nonlinear stress relaxation). A staggered character-

ization method is proposed, to identify a set of material parameters from the experimental

data. Finally, validation studies demonstrate the great capabilities of the novel constitutive

framework, to accurately predict the significant influence of the temperature and degree of

crystallinity on the material response.
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Nomenclature

a Scalar quantity
a First order tensor
A Second order tensor
A Fourth order tensor
˙(∗) Total derivative with respect to time
(∗)T Transpose of a quantity
(∗)−1 Inverse of a quantity
tr(∗) Trace of a quantity
det(∗) Determinant of a quantity
sym(∗) Symmetric part of a quantity
dev(∗) Deviatoric part of a quantity
A : B Scalar product of two tensors A and B

ω(∗) Eigenvalue of a quantity
|| ∗ || Frobenius norm of a tensor
|| ∗ ||s Second norm of a tensor
(∗)1 Intermolecular quantity
(∗)2 Network quantity
(∗)e1 Intermolecular elastic quantity
(∗)e2 Network elastic quantity
(∗)i Network inelastic quantity
(∗)n Quantity from last converged time step
(∗)p Intermolecular plastic quantity
(∗)pe Intermolecular plastic elastic quantity
(∗)pi Intermolecular plastic inelastic quantity

b and c Kinematic hardening parameters
B Left Cauchy-Green deformation tensor
C Right Cauchy-Green deformation tensor
C Material tangent modulus
cc Current configuration
D Symmetric part of velocity gradient
E Young’s modulus
F Deformation gradient
H Isotropic hardening modulus
I Second order identity tensor
ic1a Intermediate plastic configuration
ic1b Intermediate configuration

of kinematic hardening
ic2 Inelastic intermediate configuration
J Determinant of deformation gradient
K Bulk modulus
L Velocity gradient
M Mandel stress tensor
rc Reference configuration
R Driving force of isotropic hardening
S Second Piola-Kirchhoff stress tensor
u Displacement vector
U Right stretch tensor
W Antisymmetric part of velocity gradient
X Back stress tensor in ic1a

X̃ Back stress tensor in rc
Y Stress like quantity: Y = CS1 −CpX̃

Ykin Stress like quantity: Ykin = CpX̃

β Isotropic hardening parameter
δ Relaxation time function parameter
∆t Time increment
θ Temperature
κ Accumulated plastic strain
λi stretch in i-direction
Λ Lamé constant
γ̇ Plastic multiplier
µ Shear modulus
ν Poisson’s ratio
ξ Set of internal variables
ρ0 Density in rc
σ Cauchy stress tensor
σ∞ Isotropic hardening parameter
σy Initial yield stress
τ Relaxation time
τ0 Relaxation time function parameter
τ Kirchhoff stress tensor
ϕ Relaxation time function parameter
Φ Yield function
χ Absolute degree of crystallinity
ψ Specific Helmholtz free energy
Ψ Volumetric Helmholtz free energy
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2.2 Introduction

Semi-crystalline thermoplastics represent an important class of engineering materials in a large

range of industrial sectors, due to their potential of a cost-effective mass production and at-

tractive mechanical properties such as high strength to weight ratio. In contrast to amorphous

thermoplastics, semi-crystalline polymers (SCPs) partly crystallize during cooling from the

melt. Depending on the manufacturing process (e.g. forming processes of continuous fiber

reinforced SCPs, injection moulding etc.) and the preceding thermal treatment, applied stress,

and presence of moisture, the crystallization kinetics can substantially differ (cf. Fornes and

Paul [2003]). Naturally, the emerged morphology of the underlying microstructure (e.g. the

degree of crystallinity, crystal configuration, and lamellae thickness etc.) has a significant in-

fluence on the mechanical behavior of SCPs (e.g. Jenkins [1992] and Ayoub et al. [2011]).

Moreover, the material response is strongly affected by the temperature and the loading rate.

Due to the growing demand for this type of materials, it is of high interest to identify, analyze,

and predict the complex material and structural response of parts during and after processing.

Consequently, numerous computational models, aiming at reliably capturing the complex

nonlinear behaviour of SCPs or SCP-based composites, were published during the last decades.

In the pioneer modeling approach for glassy polymers of Haward et al. [1968], an additive

decomposition of the total resistance to deformation into an intermolecular and molecular net-

work resistance, was proposed. Based on the latter and the fundamental ideas of Boyce et al.

[2000], several phenomenological models were developed for amorphous (e.g. Anand et al.

[2009], Anand et al. [2009], and Srivastava et al. [2010]) and semi-crystalline polymers (e.g.

van Dommelen et al. [2003], Ayoub et al. [2010], and Barriere et al. [2019]).

Within the class of phenomenological modeling approaches, several authors (e.g. Lai et al.

[2005] and Khan et al. [2006]) proposed to govern the material deformation by reversible,

(nonlinear) visco-elastic modeling strategies. In contrast, in other works (e.g Zeng et al.

[2010], Drozdov [2011], Khan and Yeakle [2011], and Kästner et al. [2012] visco-plastic

formulations, mainly based on the over-stress concept, were suggested to capture rate depen-

dent irreversible deformations. However, to accurately predict the observed plastic behavior,

as well as the strain recovery, stress relaxation, and loading-unloading hysteresis loop of amor-

phous and semi-crystalline polymers, coupled visco-elastic, visco-plastic models are crucial

(cf. Miled et al. [2011], Yu et al. [2016], Gudimetla and Doghri [2017], Praud et al. [2017],

and Wang et al. [2019]). In addition, to account for the Bauschinger-like effect upon unload-

ing, kinematic hardening was incorporated in several constitutive frameworks (cf. e.g. Anand

and Ames [2006], Anand et al. [2009], and Krairi and Doghri [2014]). Recently, Qi et al.
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[2019] endeavored to improve these models and developed a small strain theory to capture the

complex cyclic behavior of semi-crystalline high density Polyethylene (HDPE), where a paral-

lel arrangement of elasto-plastic intermolecular and nonlinear visco-elastic network resistance

was proposed.

Besides the phenomenological modeling approaches, multi-scale strategies were employed,

by using either analytical or FE-based homogenization schemes, e.g. Gueguen et al. [2010],

Li and Shojaei [2012], Uchida and Tada [2013], Popa et al. [2014], and Alisafaei et al. [2016]

to name a few. In other physical approaches, aspects related to the microstructure were inte-

grated into the mathematical framework, such as the molecular chains network reorganization

(Maurel-Pantel et al. [2015]). Despite the usually small number of parameters and less com-

plex model formulations for this class of constitutive frameworks, it is in general rather dif-

ficult to obtain the required physical or microstructural data from experimental observations.

This is in contrast to phenomenological models, where the required material parameters can

be identified from conventional mechanical tests.

As alluded above, the nonlinear mechanical behavior of semi-crystalline polymers is signifi-

cantly depending on the thermal conditions. Despite the abundant literature on isothermal con-

stitutive frameworks, only a limited number of researchers focused on thermo-mechanically

coupled formulations. Recently, Maurel-Pantel et al. [2015], Garcia-Gonzalez et al. [2018],

and Li et al. [2019] studied the thermo-mechanical coupling effects for Polyamide 66 (PA66),

Polyether ether ketone (PEEK), ultra-high-molecular-weight Polyethylene (UHMWPE), and

HDPE, respectively. In addition, Shen et al. [2019] introduced a thermo-elastic-viscoplastic-

damage model for Polyamide 6. In the work of Shojaei and Volgers [2017], the significance

of the self-heating phenomenon in the context of lifetime prediction of polymeric materials

was revealed. Furthermore, Krairi et al. [2019] developed a non-isothermal, visco-elastic,

visco-plastic small strain theory and applied it for PA 66 and Polypropylene.

Despite the significant influence of the composition of the underlying amorphous and crys-

talline regimes on the macroscopic response of SCPs, only a limited number of constitutive

models account for this effect. Dusunceli and Colak [2008] investigated different rules of mix-

ture of the amorphous and crystalline regimes in a phenomenological approach. A two-phase

representation of the microstructure was chosen by Ayoub et al. [2011] and Abdul-Hameed

et al. [2014] and further contributions were made by Ponçot et al. [2013] and Rozanski and

Galeski [2013]. Recently, Chen et al. [2019] studied and modeled the significant dependence

of the ratcheting behavior of UHMWPE on the degree of crystallinity at small strains. In all

these works, the influence of the degree of crystallinity was investigated for only one specific

temperature.
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From the presented review above, a considerable large progress associated with the experi-

mental and numerical analysis of semi-crystalline polymers is evident. However, in all these

works, the impact of the temperature (e.g. Krairi et al. [2019], Shen et al. [2019]) and the

process induced degree of crystallinity (e.g. Dusunceli and Colak [2008], Ayoub et al. [2011])

on the mechanical response was assessed individually and the corresponding models account

for one of these quantities only. Consequently, the prediction of the material response for dif-

ferent process induced morphologies of the material’s internal microstructure (e.g. the degree

of crystallinity), in applications where the temperature varies over a wide range, remains a

challenge, until today. To assess and predict the interplay and coupling effects between degree

of crystallinity and temperatures is in particular crucial, since the influence of the crystalline

regimes on the material properties is strongly temperature dependent and changes significantly

above the glass transition temperature.

Thus, the ultimate objective of the current work is to study and evaluate the impact and

interplay of all the aforementioned influences (strain rate, degree of crystallinity, and tempera-

ture) collectively. To this end, a new phenomenological constitutive model with the following

features is developed:

• Thermodynamically consistent, 3D, finite strain theory (cf. Section 2.5).

• Including a coupled visco-elastic, plastic model formulation, comprising a nonlinear

relaxation function as well as nonlinear isotropic and kinematic hardening.

• Accounting for a processing induced variation of the degree of crystallinity.

• Accounting for a wide range of temperatures, spanning the glass transition.

To the authors’ knowledge, there is no model available for SCPs, which comprises all of theses

features.

This novel isothermal theory is applied to model Polyamide 6. Despite the numerous ex-

perimental data published over the last decades, no comprehensive (true) stress-stretch data is

available for Polyamide 6 over a wide range of temperatures, including large strains, differ-

ent loading rates, and accounting for different degrees of crystallinity. In order to investigate

the material behavior, different loading procedures (i.e. monotonic, cyclic, and relaxation

tests) must be considered, in addition. In this work, data with the aforementioned features is

generated, by conducting uniaxial tensile tests for Ultramid B40, kindly provided by BASF

SE (see Section 2.3 and 2.4). In order to identify a set of material parameters, based on the

experimental observations, a staggered calibration procedure is developed (cf. Section 2.6).
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The model is implemented as an user material subroutine UMAT into the commercial FEM

software ABAQUS/Standard (see Appendix 2.9). The capabilities of the model, to efficiently

and accurately predict the three-dimensional material behavior for large deformations, differ-

ent strain rates, temperatures, and degrees of crystallinity are verified in Section 2.7 and finally

conclusions are drawn in Section 2.8.

2.3 Experimental investigation

2.3.1 Specimen preparation

As alluded above, the objective of the experimental investigations was to obtain true stress-

stretch data for constant temperatures (under isothermal conditions), constant strain rates, and

constant degrees of crystallinity. The tested tensile specimens were produced by injection

moulding and the geometry and dimensions were in accordance with type 5A of ISO 527-

2:2012.

The crystalline regimes of Polyamide 6 are either characterized by a fully extended (mon-

oclinic) configuration of the polymer chains, referred to as α-form, or a twisted (hexagonal/

pseudohexagonal) configuration (γ-form) (see e.g. Fornes and Paul [2003]), which depend

on the thermal conditions, applied stress, and presence of moisture. To study the influence

of the crystallographic structure of the microstructure on the mechanical properties, two sets

of specimens were annealed after processing, to alter the degree of crystallinity. The result-

ing total degree of crystallinity χ was determined by differential scanning calorimetry (DSC)

analysis, utilizing the DSC 1 from Mettler Toledo. All samples were prepared by cutting the

polymer into pieces significantly smaller than 1 mg. Subsequently, 5 mg of the polymer were

filled in 40 µl tins for the DSC analysis, which was conducted under nitrogen atmosphere.

The samples were heated up from room temperature 23.5 ◦C way above the melting point to

245 ◦C with 10 ◦C/min. Each testing procedure was repeated three times.

The recorded curves of heat flow over temperature are displayed in Figure 2.1. Noteworthy,

the curves have been shifted vertically, in order to increase the readability. The heat absorption

during the endothermic melting of the crystalline regime i.e. the change in specific enthalpy

∆hm, was computed by integrating the obtained specific heat flow curves over time. As it is

common practice (cf. e.g. Zinet et al. [2010]), the absolute degree of crystallinity χ (based on

mass) of the samples was obtained by

χ =
∆hm
∆h100f

(2.1)
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where ∆h100f represents the specific fusion enthalpy of a hypothetical 100% crystalline mate-

rial. For Polyamide 6, Illers [1978] reported a heat of fusion of ∆h100f = 241 J/g and 239 J/g

corresponding to the monoclinic and hexagonal form, respectively. In line with Fornes and

Paul [2003], the average of these values, i.e. 240 J/g, was considered, in the current work.

100 150 200160 180 200 220

Figure 2.1: Experimental results of the DSC analysis. Left: Heat flow over temperature
for a virgin specimen and a specimen annealed at 160 ◦C for 1 hour, reveal-
ing no traceable change of the degree of crystallinity (χ = 0.229±0.008 vs.
χ = 0.228±0.005, respectively). Right: DSC trace for two specimens annealed
at 180 ◦C for 2 hours and 5 hours, resulting in a change of the total degree of
crystallinity (χ = 0.250±0.0057 and χ = 0.281±0.0006, respectively).

The DSC analysis for the virgin specimen resulted in a degree of crystallinity of χ =

0.229±0.008. In addition, specimens which were annealed at 160 ◦C for 1 hour were inves-

tigated and revealed no traceable effect of the preceding thermal treatment on the measured

degree of crystallinity (χ = 0.228±0.005). The corresponding heat flow curves over tem-

perature (provided on the left-hand side of Figure 2.1) exhibited a unique melting peak at

θpeak ≈ 122 ◦C in both cases. After Kyotani and Mitsuhashi [1972], this suggests the melt-

ing of a predominately α-crystal configuration. However, during injection molding, usually

a small amount of non-spherulitic pseudohexagonal γ-form is present, close to the surface,

according to Fornes and Paul [2003]. The faint exotherm pointing at 193 ◦C was also reported

by several other authors (e.g. Khanna and Kuhn [1997] and Xie et al. [2009]) and is related to

reorganization processes of unstable crystals. These experimental findings substantiated the

assumption that the degree of crystallinity remained constant during the mechanical testing,

especially at elevated temperatures above the glass transition, in the considered temperature

range (20 ◦C - 160 ◦C).
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To alter the degree of crystallinity, two sets of virgin specimens were annealed at 180 ◦C

for 2 and 5 hours, respectively. The corresponding heat flow over temperature relations are

provided on the right-hand side of Figure 2.1. In line with the results of Millot et al. [2015], a

double endotherm was present upon heating of the samples. With increasing annealing time,

the distance between the two endothermic peaks decreased (cf. Gurato et al. [1974]). This re-

sulted in a constant major endotherm at θpeak ≈ 121 ◦C, and minor once at θpeak ≈ 179 ◦C and

θpeak ≈ 185 ◦C, for annealing times of 2 hours and 5 hours, respectively. These results suggest

the melting of a small amount of γ-crystals followed by melting of the predominant α-form

(cf. Kyotani and Mitsuhashi [1972] and Millot et al. [2015]). This annealing procedure led

to a total degree of crystallinity of χ = 0.250±0.0057 and χ = 0.281±0.0006, for annealing

times of 2 and 5 hours, respectively.

In the course of the current work, no differentiation between either crystal configurations

(γ-phase and α-phase) nor morphology (lamella thickness) of the crystalline phase is made. In

this way, the biphasic nature of the underlying microstructure is accounted for by introducing

a single scalar variable χ, which represents the total crystal weight fraction. In summary, the

following sets of specimens were obtained:

1. No annealing: χ ≈ 0.23

2. Annealing under vacuum for 2 hours at 180 ◦C: χ ≈ 0.25

3. Annealing under vacuum for 5 hours at 180 ◦C: χ ≈ 0.28

Noteworthy, all experiments were conducted for the first and third set of specimens to char-

acterize the proposed constitutive framework (cf. Section 2.5), whereas the second set was

utilized for model validation only, see Section 2.7.

2.3.2 Mechanical testing and experimental setup

Polyamide 6 is hydrophilic and the significant influence of water absorption in a humid en-

vironment on the mechanical properties was reported by several authors e.g. Ishisaka and

Kawagoe [2004] and Miri et al. [2009]. In the context of thermoforming processes, the mate-

rial behavior in a dried state is of particular interest. Consequently, all tested specimens were

dried under vacuum at 100 ◦C for 48 hours, subsequently vacuum-sealed, and directly tested

after unpacking.

The experimental setup is depicted in Figure 2.2. Tensile experiments were conducted by

using a Zwick Z005 universal testing machine. For the experiments above room tempera-

ture, a temperature furnace was incorporated into the test set up. In preceding investigations,



24 2 Modeling the effect of temperature and degree of crystallinity on the mechanical response of PA 6

Figure 2.2: Experimental setup at room temperature: ARAMIS camera (1), Zwick Z005 testing
machine (2), VarioCAM HD infrared camera (3).

thermocouples within the specimens yielded the required heating time for an uniform tem-

perature distribution within the sample. To obtain non-tactile displacement measurements in

longitudinal and traversal direction at the surface of the specimen, a 2D ARAMIS 4M digital

image correlation (DIC) system was employed during all experiments. To increase the accu-

racy and precision of these measurements, major attention was paid to achieve a perpendicular

alignment of the camera to the specimen’s surface. Simultaneous infrared thermography (IR)

measurements were performed during the experiments at room temperature, by utilizing a

InfraTecVarioCAM HD device (see Figure 2.2).
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Figure 2.3: Representative DIC image and section concept (left). Evolution of stretch in lon-
gitudinal x-direction λx for different loading rates v and sections (right).

The loading rate was controlled by the cross head speed of the testing machine and two
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different velocities (vmin = 1 mm/min and vmax = 10 mm/min) were prescribed. At moderate

deformations, local necking occurred and a heterogeneous strain field, accompanied by non-

constant strain rates, arose (see Figure 2.3). Noteworthy, the necking area was almost always

located at the lower part of the specimen. To identify areas within the specimen exhibiting

constant strain rates, the mean stretch in longitudinal x-direction λx over time, for three dis-

tinct sections was investigated for both loading velocities, see Figure 2.3. An almost constant

stretch rate of λ̇x,min ≈ 0.0005 s−1 and λ̇x,max ≈ 0.0058 s−1 for vmin and vmax, respectively,

was observed for section 2. Moreover, strain induced crystallization was present in the local

necking regime, leading to an evolution of the crystallographic structure during the tests. Ac-

cordingly, evaluating section 2 was also favorable in order to investigate the material response

for constant degrees of crystallinity. Consequently, the true stress-stretch relation obtained

from the stretch field corresponding to this homogeneously deformed area was evaluated for

each experiment.

Noteworthy, injection molding usually leads, to a certain extend, to the orientation of the

molecular chains in the flow direction. This results in a material anisotropy, which was re-

ported by e.g. Fujiyama et al. [1977]. This effect was not further investigated, by e.g. evalu-

ating the tensile properties in transversal direction, in addition. However, additional measure-

ments of the out-of-plane stretch λz revealed that the stretch in transversal direction λy and λz

evolved equally. Thus a transversely isotropic material behavior was concluded.

Each loading procedure was conducted over a wide range of temperatures, below and above

the glass transition temperature (θg ≈ 80 ◦C) at 23 ± 1.0 ◦C, 50 ± 1.0 ◦C, 120 ± 1.0 ◦C,

and 160 ± 1.0 ◦C. Due to the small deviation of the material response for different specimens

(indicated by the error bars in the corresponding stress over stretch data in e.g. Figure 2.6),

each procedure was only repeated 3 times.

2.4 Experimental results

To obtain insights into the fundamental deformation processes during the tensile experiments,

cyclic loading-unloading-recovery experiments were performed. During this cyclic loading

procedure, the specimen was first subjected to displacement controlled loading and subse-

quently unloaded until the force equaled zero. In the last step, the force was held constant for

a sufficiently long time, to distinguish between time-independent and time-dependent remain-

ing deformations. In Figure 2.4, the true (Cauchy) stress over stretch and stretch over time

relation is presented for this loading procedure at room temperature for λ̇x,max and χ = 0.23.

The data revealed three distinct deformation regimes:
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1. In the elastic regime, no remaining stretch was present after unloading to zero force.

2. In the visco-hyperelastic regime, some remaining deformations were detected after un-

loading. However, in the recovery step, these were dissolved and the undeformed initial

configuration was obtained at the end (λx ≈ 1), as depicted in Figure 2.4 on the right

hand side.

3. In the visco-hyperelastic-plastic regime, the stretch value after unloading converged to-

wards an equilibrium, where some irreversible plastic deformations remained.

Furthermore, constant initial slopes upon loading ascertained an undamaged material, in the

considered deformation range. After the plastic regime was reached, the recovery step after

unloading was omitted and the specimen was directly subjected to loading, for the sake of a

less time-consuming experimental procedure.
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Figure 2.4: Cyclic loading-unloading-recovery experiments at room temperature for
λ̇x ≈ 0.0058 s−1 and χ = 0.23.

In this work, the initial yield stress was determined from the average of the maximum stress

of the first load cycle within the plastic regime and the maximum stress of the preceding

load cycle (results see Figure 2.5). Due to the small increase of the maximum stretch for

the load cycles within the visco-elastic regime, the difference between the maximum stresses

of consecutive load cycles was small as well. Consequently, this identification procedure

led to acceptable uncertainties in the determination of the yield stress (difference between

maximum stress of first load cycle in the plastic regime and maximum stress of preceding

load cycle), highlighted as error bars in Figure 2.5. It should be emphasized that this approach
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Figure 2.5: Yield stress σyield for the investigated temperatures and degrees of crystallinity.
The increase for a higher degree of crystallinity is highlighted, in addition. The
exponential trend line is of the form σyield = C1 exp(−C2 θ), where the parameters
C1 = 53.5247, 55.8121 and C2 = 0.0165, 0.0130 were fitted for χ = 0.23 and
χ = 0.28, respectively.

was in contrast to most identification procedures presented in the literature. It is common

practice to estimate the initial yield stress from monotonic tensile tests only. To this end, the

intersection of the initial slope of the stress stretch curve and the hardening slope (e.g Şerban

et al. [2013]) or the peak in the engineering stress-stretch relation (e.g. Rae et al. [2007])

are considered. Among others, El-Qoubaa and Othman [2016] determined the yield stress

for semi-crystalline PEEK at higher temperatures from cyclic loading procedures, without

introducing an additional recovery step. However, from the provided data for Polyamide 6 in

this study, it is obvious that these identification schemes would lead to less accurate values for

the onset of plastic flow.

Monotonic tensile tests were conducted until rupture of the specimen occurred or a max-

imum stretch of λx = 1.20 was reached. The true (Cauchy) stress σx over stretch relation

is presented in Figure 2.6 for various fixed temperatures, loading rates, and degrees of crys-

tallinity. The observed influence of the temperature on the material response is in line with

several studies (Shan et al. [2007], Maurel-Pantel et al. [2015], and Parodi et al. [2018] to

name a few). As the temperatures increased, the Young’s modulus of the material decreased

exponentially, as shown in Figure 2.7. Furthermore, at higher temperatures a more grad-

ual roll-over to yielding was observed, the yield strength decreased (nearly exponentially cf.

Figure 2.5), and the amount of strain-hardening diminished. Noteworthy, the displayed ex-

ponential regressions (cf. Figures 2.5 and 2.7) provide only a trend and must be treated with



28 2 Modeling the effect of temperature and degree of crystallinity on the mechanical response of PA 6

1 1.05 1.1 1.15 1.2

0

20

40

60

80

1 1.05 1.1 1.15 1.2

0

20

40

60

80

1 1.05 1.1 1.15 1.2

0

5

10

15

20

25

30

35

1 1.05 1.1 1.15 1.2

0

5

10

15

20

25

Figure 2.6: Monotonic tensile tests at various temperatures, degrees of crystallinityχ and load-
ing rates λ̇x.

care, since not enough data is provided close to the glass transition temperature θg ≈ 80 ◦C,

where sudden changes of the material properties might occur.

A clear dependency of the material properties on the morphology of the underlying mi-

crostructure was evident from the presented data. With increasing degree of crystallinity, an

increase of the initial stiffness, hardening, and yield stress was observed, which has been also

reported by Ayoub et al. [2011] above the glass transition temperature for polyethylene. The

influence of the degree of crystallinity was more pronounced at temperatures above the glass

transition regime and increased significantly at 160 ◦C, in particular for the yield stress (cf.

Figures 2.5 and 2.7). Above the glass transition, the chain mobility within the amorphous

phase increased significantly and the resistance to deformation, provided by the additional

crystalline structures, was thus more prominent. Interestingly, the influence of the degree of

crystallinity on the stiffness was the highest at 160 ◦C (cf. Figure 2.7), whereas the hardening

behavior was most effected at 120 ◦C.
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Figure 2.7: Young’s modulus E for the investigated temperatures and degrees of crystallinity.
The increase for a higher degree of crystallinity is highlighted, in addition. The
exponential trend line is of the form E = C1 exp(−C2 θ), where the parameters
C1 = 3334, 3670 and C2 = 0.0172, 0.0168 were fitted for χ = 0.23 and χ = 0.28,
respectively.

Concomitant with the observation of an initially elastic material response, the initial stiff-

ness appeared to be relatively strain rate independent (cf. Figure 2.6).Shan et al. [2007] re-

ported that the sensitivity of the yield stress with increasing loading rates was logarithmic for

Polyamide 6 and that the influence became more and more negligible at temperatures above

the glass transition temperature. These observations corresponded with the authors findings, in

particular since the considered strain rates were limited to one decade only. This is in contrast

to the shape of the stress stretch curves, in particular below the glass transition. For increasing

loading velocities, an increase of hardening accompanied by a loss in ductility was detected

(cf. Ayoub et al. [2011], Şerban et al. [2013], and El-Qoubaa and Othman [2016], for other

semi-crystalline polymers). In line with the results of e.g. Shan et al. [2007], the influence

of the strain rate on both the shape of the stress stretch curves and the yield stress decreased

at temperatures above the glass transition. This behavior can be attributed to the fact that at

higher temperatures, the material behavior was mostly dominated by the crystalline regimes,

as alluded above. Interestingly, at a temperature of 120 ◦C, the effect of the loading rate was

slightly less pronounced, compared to a temperature of 160 ◦C.

At higher loading speeds, the hardening behavior became more complicated. The slope

of the stress-stretch curves decreased for higher strain rates, after moderate stretch levels of

λx ≈ 1.05 (see Figure 2.6). At higher temperatures (e.g. 120 ◦C and 160 ◦C), this eventu-

ally led to an intersection of the curves for λ̇x,min and λ̇x,max. This behavior can be traced
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Figure 2.8: Investigation of material self-heating, indicating the change in temperature ∆θ for
an ambient temperature of 23 ◦C and χ = 0.23.

back to the self-heating of the material due to dissipative effects (cf. Maurel-Pantel et al.

[2015] and Mohagheghian et al. [2015]). At higher loading speeds, strain induced harden-

ing competed with self-heating induced thermal-softening. To investigate this effect in the

current experimental study, infrared thermography (IR) was employed. In Figure 2.8, the

average temperature of section 2 (cf. Figure 2.3) is plotted over the stretch in longitudinal

direction for λ̇x,min and λ̇x,max at room temperature. Noteworthy, the temperature resolution

of the employed infrared camera (InfraTec VarioCAM HD) is 0.08 ◦C, whereas the measure-

ment accuracy is ±2 ◦C. Consequently, comparatively large error bars arose for the measured

temperatures. Nevertheless, a clear trend was visible from the provided data, indicating a

temperature increase due to irreversible deformation processes at higher loading rates. For

the sake of a better comparison, the temperature curves were shifted vertically to the same

starting temperature. Interestingly, a small initial decrease of the temperature, referred to as

thermoelastic effect, was present. The latter phenomenon was already described by Moreau

et al. [2005] and Maurel-Pantel et al. [2015] in the context of amorphous (PMMA and PC)

and semi-crystalline (PA 66) polymers, respectively.

To provide additional insights into the time dependent material behavior, relaxation tests

were performed for all considered temperatures. The objective was to investigate the stress

relaxation under homogeneous states of tension, at different deformation stages, i.e. in the

visco-hyperelastic and visco-hyperelastic-plastic regime. Stepwise relaxation experiments

after loading with λ̇x,max were performed, to investigate the short-term relaxation behavior

(trelax ≈ 300 s) at different stretch levels. In addition, separate specimens were loaded with

λ̇x,min to investigate the long-term relaxation behavior (trelax ≈ 1200 s) at different stretch lev-

els. Exemplary results are provided for 120 ◦C for both loading procedures, in Figure 2.9.
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Figure 2.9: Exemplary results for stepwise (short-term) relaxation (left) and long-term relax-
ation (right) experiments at 120 ◦C and for χ = 0.23.
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Figure 2.10: Top: Zoom-in on normalized overstress over time curve for a stretch level of
λx = 1.01 at 120 ◦C, highlighting the identification procedure for the relaxation
time τ at the beginning of the relaxation step.
Bottom: Relaxation time τ for the investigated temperatures and degrees of crys-
tallinity. The increase for a higher degree of crystallinity is highlighted, in ad-
dition. The exponential trend line is of the form τ = C1 exp(−C2 θ), where the
parameters C1 = 192.6, 199.7 and C2 = 0.0143, 0.0152 were fitted for χ = 0.23
and χ = 0.28, respectively.
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To obtain first insights regarding the effect of temperature and degree of crystallinity on

the relaxation behavior, the long-term stress relaxation at the smallest stretch level (i.e. at

a stretch level of λx = 1.01) was investigated in more detail. To this end, the normalized

overstress σover(t) = (σ(t)− σend)/(σmax − σend), which is defined by the (maximum) stress

level σmax at the beginning of the relaxation step and the stress level at the termination point

of the relaxation step σend, was plotted over time. From the intersection of the tangent of

the normalized overstress curve at the beginning of the relaxation step and the horizontal

axis, the initial relaxation time τ was estimated. This procedure is illustrated exemplary for a

temperature of 120 ◦C, in the top of Figure 2.10. The values for τ for different temperatures

and varying degrees of crystallinity are provided in the bottom of Figure 2.10.

With increasing temperature the ability to relax stresses increased significantly correspond-

ing to a decrease of the relaxation time. With increasing degree of crystallinity, the relaxation

time increased and the impact of the degree of crystallinity was more significant at higher

temperatures, concomitant with the results for the Young’s modulus and yield stress. Fur-

thermore, with increasing stress and stretch level, the ability to relax stresses increased sig-

nificantly. This influence became more evident, by applying a post-processing scheme to the

experimental data, which was originally proposed by Amin et al. [2006]. The latter indicated

a complex, nonlinear dependency of the relaxation time based on the aforementioned factors

and will be discussed in detail in Section 2.6.

In summary, the experimental study revealed the following major findings regarding the

effect of crystallinity and temperature on the material response of Polyamide 6:

• In general, coupled visco-elastic, visco-plastic material behavior at large strains was

observed (cf. Figure 2.4).

• With increasing strain rates, an increase of the yield stress and hardening, accompanied

with self-heating induced thermal-softening, occurred (cf. Figure 2.6 and Figure 2.8).

• An increase of the initial stiffness (cf. Figure 2.7), hardening, yield stress (cf. Fig-

ure 2.5), and relaxation time (cf. Figure 2.9) was observed, with increasing degree of

crystallinity.

• With increasing temperature, the Young’s modulus (cf. Figure 2.7), yield strength (cf.

Figure 2.5) and relaxation time (cf. Figure 2.9) decreased nonlinearly, a more gradual

roll-over to yielding was observed, and the amount of strain-hardening diminished. Fur-

thermore, the effect of the degree of crystallinity on the mechanical response increased

nonlinearly.
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2.5 Material model formulation

The experimental findings imply that in general a finite strain, coupled visco-elastic, elasto-

plastic theory, which incorporates nonlinear relaxation behavior and strain hardening, is re-

quired to accurately predict the mechanical behavior of semi-crystalline Polyamide 6. Thus, a

suitable constitutive framework, which is able to capture the material response under isother-

mal conditions at various temperatures and different degrees of crystallinity, is derived in a

thermodynamically consistent manner. To this end, a continuum-mechanical, phenomenolog-

ical modeling approach is chosen. To provide a better understanding of the modeling strat-

egy, a schematic illustration by means of an one dimensional rheological model is shown in

Figure 2.11.

Figure 2.11: Schematic 1D representation of the constitutive model.

In line with the works of e.g. Boyce et al. [2000], Ahzi et al. [2003], Srivastava et al.

[2010], and Ayoub et al. [2011], a parallel arrangement of an intermolecular resistance and a

network resistance is chosen. In the following, properties associated with the intermolecular

and network resistance will be denoted by index 1 and 2, respectively. The network resistance

is captured by means of a Maxwell element with stiffness E2 and a nonlinear function of the

relaxation time τ , to account for the molecular orientation and relaxation. The intermolecular

resistance is an elasto-plastic model with stiffness E1 and yield stress σy. Several studies,

e.g. Hasan and Boyce [1995] and Anand et al. [2009], revealed a significant Bauschinger-like

effect for polymers upon unloading. Despite the lack of cyclic tension-compression data in

the current work, nonlinear kinematic hardening of Armstrong-Frederick type is already in-

corporated in the model formulation, to capture this phenomenon accordingly. To this end,
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the friction element of the plastic model is connected in parallel with an additional spring

with stiffness c and a dashpot. The ’pseudo’-viscosity parameter η∗ of the dashpot is given

by η∗ = c/γ̇b, where b is a dimensionless parameter and γ̇ the plastic multiplier. With this ar-

rangement, the elastic, visco-hyperelastic, and visco-hyperelastic-plastic deformation regimes,

observed in cyclic experiments (cf. chapter 2.4), can be captured accordingly.

In order to account for the dependence of the material properties on the temperature θ and

the degree of crystallinity χ, the material parameters are functions of both quantities. Isother-

mal conditions (θ̇ = 0) and no evolution of the crystalline phase (χ̇ = 0) are considered.

Consequently, the set of material parameters is determined beforehand from the prescribed

degree of crystallinity and temperature and remains constant throughout the computational

procedure. Based on the experimental results, the intermolecular resistance increases for a

higher degree of crystallinity, resulting in an increase of stiffness, hardening, and yield stress.

In contrast, the relaxation time τ is assumed to be independent of the degree of crystallinity.

Noteworthy, due to the lack of experimental tensile test data in transversal direction, isotropic

material behavior is assumed, despite the potential processing induced anisotropy, briefly ad-

dressed in Section 2.3.

2.5.1 Kinematics

For the 3D continuum mechanical extension of the presented rheological model to finite

strains, the kinematic relations are introduced. The classical multiplicative decomposition of

the total deformation gradient, F = Fe1Fp, into an elastic Fe1 and plastic part Fp is employed

for the elasto-plastic model (cf. Eckart [1948], Kröner [1959], and Lee [1969]). In order to

account for nonlinear kinematic hardening, the plastic deformation gradient, Fp = FpeFpi, is

multiplicatively decomposed in addition (cf. Dettmer and Reese [2004]), which is physically

motivated by Lion [2000]. Resulting from these splits, the intermediate plastic configuration

ic1a and the so-called intermediate configuration of kinematic hardening ic1b are introduced.

Analogously, the kinematic relations for the viscous model are based on a multiplicative

split of the total deformation gradient, F = Fe2Fi, into an elastic Fe2 and an inelastic part Fi.

This decomposition results in the inelastic intermediate configuration ic2 and is in line with

the works of e.g. Sidoroff [1974], Lubliner [1985], and Reese and Govindjee [1998b].
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2.5.2 Helmholtz free energy

The specific Helmholtz free energy ψ is depending on the elastic right Cauchy-Green defor-

mation tensors Ce1, Ce2, and Cpe

Ce1 = F T
e1Fe1 = F−T

p CF−1
p , Ce2 = F T

e2Fe2 = F−T
i CF−1

i , Cpe = F T
peFpe = F−T

pi CpF
−1
pi

(2.2)

based on the principle of material frame invariance. Here, C = F TF is the right Cauchy-

Green tensor and Cp = F T
p Fp represents the plastic right Cauchy-Green tensor. Concomitant

with the proposed modeling strategy, the total specific Helmholtz free energy

ψ = ψ1(Ce1,Cpe, κ, χ, θ) + ψ2(Ce2, χ, θ)

ψ1 = ψe1(Ce1, χ, θ) + ψkin(Cpe, χ, θ) + ψiso(κ, χ, θ)
(2.3)

is additively decomposed. The contributions of the intermolecular and network resistance are

denoted by ψ1 and ψ2, respectively. In the above expression the energy associated with the

elasto-plastic model is the sum of the following contributions: an energy related to intermolec-

ular reactions ψe1, a defect-energy associated with plastic deformations ψkin, which allows to

phenomenological account for the Bauschinger-like phenomena, and the stored energy due to

isotropic hardening ψiso, which is depending on the accumulated plastic strain κ. Noteworthy,

it is assumed that ψe1, ψe2, and ψkin are isotropic functions of Ce1, Ce2, and Cpe, respectively.

2.5.3 Derivation based on the Clausius-Duhem inequality

The constitutive equations are derived in a thermodynamically consistent manner from the

second law of thermodynamics

S :
1

2
Ċ − ρ0 ψ̇ ≥ 0 (2.4)

which is expressed by means of the Clausius-Duhem inequality for isothermal processes, with

respect to the reference configuration. Here, the second Piola-Kirchhoff stress tensor S and

the density in the reference configuration ρ0 are introduced. This expression needs to be

fulfilled for arbitrary processes. The inequality (2.4) is reformulated by inserting the total time

derivative of the specific Helmholtz free energy (2.3). After several mathematical operations

this results in

(S − S1 − S2) :
1

2
Ċ +M2 : Di +

(
M1 − X̄

)
: Dp +Mkin : Dpi +R κ̇ ≥ 0 (2.5)
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wherein D(∗) = sym (L(∗)) refers to the symmetric part of the velocity gradient L(∗) =

Ḟ(∗)F
−1
(∗) , with (∗) = i, p, pi. In the inequality (2.5), the following stress quantities were

introduced: The second Piola-Kirchhoff stress tensors

S1 = 2 ρ0 F
−1
p

∂ψe1

∂Ce1
F−T

p , S2 = 2 ρ0 F
−1
i

∂ψ2

∂Ce2
F−T

i (2.6)

corresponding to the intermolecular and molecular network resistance, respectively. Further-

more, the symmetric stress tensors of Mandel-type

M1 = 2 ρ0Ce1
∂ψe1

∂Ce1

, Mkin = 2 ρ0Cpe
∂ψkin

∂Cpe

, M2 = 2 ρ0Ce2
∂ψ2

∂Ce2

(2.7)

as well as the back stress tensor X̄ and the stress-like driving force of isotropic hardening R

X̄ = 2 ρ0 Fpe
∂ψkin

∂Cpe

F T
pe, R = −ρ0

∂ψiso

∂κ
(2.8)

are defined.

Following the standard arguments of Coleman and Noll [1961], the total second Piola-

Kirchhoff stress tensor is defined by

S = S1 + S2 (2.9)

Based on the remaining inequality, a set of evolution equations, which ensures the

non-negativeness of the internal dissipation caused by plastic and viscous effects, is derived.

Due to the lack of experimental data, no pressure dependence, nor tension-compression

asymmetry of the onset of yielding is considered, in the current framework. Consequently, a

yield function of von Mises type

Φ = ||dev(M1)− dev(X̄)|| −
√

2

3
(σy − R) (2.10)

is assumed. Here, the deviatoric part of a quantity is denoted by dev(∗) and || ∗ || is the

Frobenius norm. As alluded in Section 2.4, the initial yield stress σy(θ, χ) is depending on the

total degree of crystallinity and temperature. A function for the latter quantity is discussed in

Section 2.6. The associative plastic flow rule and the evolution equations for kinematic and
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isotropic hardening read

Dp = γ̇
∂Φ

∂M1

= γ̇
dev(M1)− dev(X̄)

||dev(M1)− dev(X̄)|| (2.11)

Dpi = γ̇
b

c
dev(Mkin) (2.12)

κ̇ = γ̇
∂Φ

∂R
=

√

2

3
γ̇ (2.13)

in line with the proposed theories of Dettmer and Reese [2004] and Vladimirov et al. [2008].

In the latter expression the constants b(θ, χ) and c(θ, χ) are related to kinematic hardening

(cf. Armstrong and Frederick [1966]) and the plastic multiplier γ̇ is determined from the

Kuhn-Tucker conditions Φ ≤ 0, γ̇ ≥ 0, and Φ γ̇ = 0.

In accordance with the work of Reese and Govindjee [1998b], the evolution of the inelastic

deformation within the molecular network reads

Di =
1

2 τ µ2

(

M2 −
1

3
tr (M2) I

)

+
1

9 τ K2

tr (M2) I (2.14)

The bulk modulus and shear modulus, corresponding to the molecular network resistance, are

denoted by K2(θ, χ) and µ2(θ, χ), respectively. Furthermore, the relaxation time τ(S2,C, θ)

is introduced, which must be larger than zero. Based on the relaxation data discussed in

Section 2.4, τ is assumed to be a function of the overstress S2, the deformation, and the

temperature. The explicit function is proposed in Section 2.6.

This set of evolution equations fulfills the remaining inequality (2.5). For the elasto-plastic

model this was already shown by Vladimirov et al. [2008], and will not be further discussed

here. The thermodynamic consistency of the evolution equation of the inelastic deformation

is discussed in the work of Reese and Govindjee [1998b].

2.5.4 Model representation in the reference configuration

The derivation of the constitutive equations was performed with respect to the intermediate

configurations, for convenience. However, the numerical implementation of the constitutive

equations is carried out with respect to the reference configuration. Consequently, tensorial

pull back operation of the associated stress quantities M1, M2, X̄ , and Mkin are applied to

obtain the alternative model representation, provided in Table 2.1. To this end, the back stress

tensor in the reference configuration X̃ and the asymmetric stress like quantities Y and Ykin

are introduced. It should be emphasized that all tensor valued internal variables, i.e. Cp,Cpi
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and Ci, are symmetric, which reduces the computational costs. In addition, the plastic and

inelastic spins remain undetermined.

Intermolecular resistance Molecular network resistance

Stresses Stress

S1 = 2 ρ0F
−1
p

∂ψe1

∂Ce1

F −T
p ,

X̃ = 2 ρ0F
−1
pi

∂ψkin

∂Cpe
F −T

pi ,

Y = C S1 −CpX̃, Ykin = CpX̃

R = −ρ0
∂ψiso

∂κ

S2 = 2 ρ0 F
−1
i

∂ψ2

∂Ce2
F−T

i

Evolution equations Evolution equation

Ċp = 2 γ̇
dev(Y )Cp

√

dev(Y ) : dev(Y )T
,

Ċpi = 2 γ̇
b

c
dev (Ykin)Cpi, κ̇ =

√

2

3
γ̇

Ċi =

(
1

τ µ2

dev (CS2) +
2

9 τ K2

tr (CS2)I

)

Ci

Yield function

Φ =
√

dev(Y ) : dev(Y )T −
√

2

3
(σy − R)

Kuhn-Tucker conditions

Φ ≤ 0, γ̇ ≥ 0, and Φ γ̇ = 0

Second Piola-Kirchhoff stress

S = S1 + S2

Table 2.1: Constitutive equations with respect to the reference configuration.

2.5.5 Specific choices for energy terms

The relations for the thermodynamic driving forces are derived in a completely general man-

ner, up to now. In this way, the proposed framework offers great flexibility regarding the

particular choices of the volumetric energy terms Ψ, which are introduced in this section.

The energy contributions associated with the intermolecular resistance belong to a Neo-

Hookean material with combined linear and nonlinear isotropic hardening of Voce type (Voce
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[1955]) and nonlinear kinematic hardening of Armstrong-Frederick type:

Ψe1 =
µ1

2
(tr (Ce1)− 3)− µ1 ln(Je1) +

Λ1

4

(
J2
e1 − 1− 2 ln(Je1)

)
(2.15)

Ψkin =
c

2
(tr (Cpe)− 3)− c ln(Jpe) (2.16)

Ψiso =(σ∞ − σy)

(

κ+
exp (−β κ)

β

)

+
1

2
H κ2 (2.17)

Here, Je1 = det (Fe1) =
√

det (Ce1) and Jpe = det (Fpe) =
√

det (Cpe) holds. In the expres-

sion above, µ1(θ, χ), Λ1(θ, χ), σ∞(θ, χ), β(θ, χ), and H(θ, χ) represent the Lamé constants

and isotropic hardening parameters, respectively. Based on the chosen energy contributions,

S1, X̃ , and R are derived from the relations provided in Table 2.1

S1 = µ1

(
C−1

p −C−1
)
+

Λ1

2
(det (C) − 1)C−1 (2.18)

X̃ = c
(
C−1

pi −C−1
p

)
(2.19)

R = −(σ∞ − σy) (1− exp(−βκ))−H κ (2.20)

Noteworthy, the model’s plastic incompressibility (i.e. det(Cp) = 1) has been taken into ac-

count in Equation 2.18. The elastic energy contribution of the molecular network resistances

is of Neo-Hookean type

Ψ2 =
µ2

2
(tr (Ce2)− 3)− µ2 ln(Je2) +

Λ2

4

(
J2
e2 − 1− 2 ln(Je2)

)
(2.21)

Here, µ2(θ) and Λ2(θ) are the Lamé constants corresponding to the molecular network resis-

tance and Je2 = det (Fe2) =
√

det (Ce2) holds. Based on this choice of the energy, S2 is

defined by

S2 = µ2

(
C−1

i −C−1
)
+

Λ2

2

(
det (C)

det (Ci)
− 1

)

C−1 (2.22)

The material model is implemented as an user material subroutine UMAT into the commer-

cial FEM software ABAQUS/Standard. For details regarding the numerical implementation,

the reader is referred to the Appendix 2.9.

2.6 Characterization of model parameters

In the following section, the material parameter identification scheme, which is based on the

experimental data presented in Section 2.4, is discussed. Nonlinear optimization strategies are
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often accompanied by the uncertainty, whether the obtained solution corresponds to a local or

global minimum. In order to reduce this uncertainty, a staggered characterization method is

proposed. The latter was successively applied to obtain a set of material parameters for each

considered temperature.

2.6.1 Elastic constants

In the first identification step, the elastic parameters were identified based on the instantaneous,

elastic response of the material during monotonic loading. Since a parallel arrangement of the

intermolecular and molecular network resistances was chosen, the corresponding Poisson’s

ratio of both contributions were assumed to be equal, i.e. ν1 = ν2 holds. With the DIC data at

hand, the Poisson’s ratio of the uniformly deformed section 2 (cf. Figure 2.3) was calculated

from the negative ratio of the average transversal and longitudinal strain ν = −ln(λy)/ln(λx).

Noteworthy, the standard deviation for the computed strain fields was found to be the highest

in the elastic regime. In the small deformation regime, vibrations and noise have a more

significant impact on the strain accuracy and precision, and the results for the Poisson’s ratio

showed a significant variation (cf. Sutton et al. [2009]). From the experimental data no clear

trend of the Poisson’s ratio for different degrees of crystallinity and temperatures was evident,

and consequently a constant value was assumed. It should be emphasized that the predicted

lateral contraction was in good agreement with the experimental data for all considered cases

(cf. Section 2.7).

The experimentally determined Young’s modulus EExp(χ) was obtained from the initial

slope of the stress-stretch relation for different degrees of crystallinity. For simplicity, only

the stiffness of the intermolecular resistance was assumed to depend linearly on χ, i.e.

EExp(θ, χ) = E1(χ, θ) + E2(θ) (2.23)

holds. From the experimentally identified EExp(χ), E1,0 and E2 were obtained analytically in

a straight forward manner from equation (2.23).

2.6.2 Nonlinear relaxation function

With the governed elastic constants, the function of the relaxation time τ was determined

from the stepwise (short-) relaxation test data (cf. Section 2.4). The long-term relaxation test

data was used for model validation only (see Section 2.7). Based on the experimental results,

the relaxation time was assumed to be a function of the current overstress σ2, the deforma-
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tion, and the temperature. To identify the constitutive relation for the relaxation time from

the experimental relaxation test data, a modified version of the post processing scheme, pro-

posed by Amin et al. [2006], was applied. In the developed strategy by Amin et al. [2006],

one-dimensional stress and strain data was utilized, based on the assumption of material in-

compressibility, to identify the function for the viscosity parameter, which was subsequently

generalized for the three-dimensional case. In contrast, in the current work, the recorded three-

dimensional deformation data, in terms of the deformation gradientF and the true stress tensor

σ, served as the input data to obtain the evolution of the relaxation time. During the relaxation

steps within the experiments, a constant displacement was prescribed (F = const.) and the

stress relaxation was recorded over time, see Figure 2.12.
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Figure 2.12: Stress relaxation at λx = 1.01 and λx = 1.20 at 120 ◦C for χ = 0.23 and corre-
sponding equilibrium stress σ1,x.

At the termination point of the relaxation steps, stress equilibrium was assumed. Based on

the proposed constitutive model, the remaining recorded stress corresponded to the constant

contribution of the intermolecular resistance, as depicted in Figure 2.12. As a result, the stress

relaxation within the molecular network resistance was governed by σ2(t) = σ(t)−σ1. In the

case of uniaxial tension, the applied loading direction coincided with the direction of principal

stretch λx. Consequently, the coordinate system introduced in Figure 2.3 corresponded to the

eigensystem of F , σ, and σ2. The corresponding coefficient matrices read:

Fij =






λx 0 0

0 λy 0

0 0 λz




 , (σ2(t))ij =






σx(t)− σ1,x 0 0

0 0 0

0 0 0




 (2.24)

With this input data at hand, the evolution of the second Piola-Kirchhoff stress tensor
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S2(t) = J F−1σ2(t)F
−t was governed. Next, equation (2.22) was solved for the inelastic

right Cauchy-Green tensor Ci, for each experimental time step. Subsequently, the exponential

map algorithm was applied for the numerical time integration of the evolution equation of the

inelastic deformation (cf. Table 2.1).

Ci = exp

(

∆t

(
1

τ µ2

dev (CS2) +
2

9 τ K2

tr (CS2) I

))

Ci,n (2.25)

Noteworthy, in this special case, all tensor valued quantities in equation (2.25) commute and

the coefficient matrices with respect to the same set of eigenvectors were determined from

the preceding evaluation of the experimental data for each time step. Consequently, equation

(2.25) can be rewritten in terms of a system of three scalar-valued equations. Finally, the

evolution of the relaxation time τ(t) was determined by solving the first scalar-valued equation

for τ for each experimental time step.

In Figure 2.13, the results of this post processing procedure are depicted for some selected

relaxation tests at different relaxation stretch levels and temperatures. As already reported by

Amin et al. [2006], this treatment of the experimental data produced some scattering due to

noise, especially at time steps close to the equilibrium state (i.e. for small overstress values).

Despite this scatter, a linear trend for the relaxation time and overstress was evident at low

stretches λx ≈ 1.01. In contrast, at higher stretch levels, a non-linear relation emerged for

all considered temperatures. Furthermore, a significant decrease of the relaxation time with

increasing temperature was observed, due to the higher chain mobility within the amorphous

regime, in particular above the glass transition temperature. These findings suggested the

necessity of introducing a nonlinear dependence of the relaxation time on the relaxation stretch

level, the overstress, and the temperature.

Therefore, a slightly modified relation for the relaxation time

τ = τ0 ||C||ϕs exp (||σ2||s)−δ (2.26)

compared to the proposed power-law type constitutive equation for the viscosity, originally

proposed by Amin et al. [2006], was considered. Here, || ∗ ||s is the second norm of a tensor

(i.e. || ∗ ||s =
√
ωmax holds, where ωmax is the maximum eigenvalue of (∗)T (∗)). In expression

(2.26), the temperature dependent material parameters τ0(θ), ϕ(θ), and δ(θ) were introduced.

The latter were identified successively for each temperature, by simultaneously minimizing

the least-square residuals (defined as the difference between the observed experimental data

and fitted model response) for different stretch levels. To this end, the Trust-region algo-

rithm, provided as an intrinsic functions in the commercial software MATLAB, was employed.
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Figure 2.13: Relaxation time-overstress relation for different stretch levels and temperatures:
Post processed experimental data and corresponding fit.

The parameter τ0(θ) corresponds to the relaxation time at low stretch ||C||s ≈ 1.0 and over-

stress levels ||σ2||s ≈ 0. Consequently, good initial guesses were obtained for τ0(θ), from

the presented data in Figure 2.10 and the identified values for τ0(θ) were very close to this

experimental data. This was in contrast to the remaining parameters ϕ(θ) and δ(θ), which

do not allow for a physical interpretation. In order to minimize the uncertainty whether the

obtained solution of the optimization procedure corresponded to a global or local minimum,

different initial values were chosen successively for ϕ(θ) and δ(θ). The corresponding fit for

two selected temperatures is provided in Figure 2.13. The proposed function (2.26) led to ac-

curate fits for the nonlinear evolution at higher stretch levels. Only in the small strain regime

(λx ≈ 1.01), a comparatively weaker fit was achieved due to the linear trend in the experi-

mental data. To improve this fit, a more complex relation with additional parameters could

be introduced. However, it should be emphasized that the visco-elastic behavior and stress

relaxation was generally well captured (cg. Section 2.7) with the proposed function (2.26) and

the identified set of parameters.

2.6.3 Plastic parameters

In the final characterization step, the parameters related to the plastic deformation behavior

were identified. The initial yield stress was determined from the cyclic loading-unloading-

recovery test data and a linear dependency on the degree of crystallinity was presumed

σy = χσy,0(θ). Due to the lack of tension-compression data, the kinematic hardening re-

sponse of the model was neglected throughout the following computational examples. Thus,
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only the isotropic hardening parameters (i.e. β(θ, χ), σ∞(θ, χ), H(θ, χ)) were identified. To

this end, based on the monotonic tensile test data for different degrees of crystallinity, a non-

linear multiple curve fitting procedure, employing the Trust-region algorithm in MATLAB, was

performed.

2.6.4 Fitting results

Based on this staggered identification scheme, a set of material parameters was identified

successively for each temperature (see Table 2.2). It should be emphasized that no lower or

upper bounds were prescribed during the curve fitting procedures for the relaxation time or

hardening parameters. Nevertheless, most of the identified parameters followed a clear trend

(e.g. decreasing τ0, ϕ etc., for decreasing temperatures). However, as discussed in Section

2.4, at 120 ◦C a less pronounced rate dependency, compared to 50 ◦C and 160 ◦C, and a

more gradual roll-over to linear hardening at higher degrees of crystallinity was observed.

Concomitant with these experimental results, the corresponding identified parameters σ∞, α,

and δ exhibited a jump at this temperature cf. (Table 2.2).

Function Parameter at: 23 ◦C 50 ◦C 120 ◦C 160 ◦C

E1 = χE1,0(θ) E1,0 [MPa] 7610 4398 1051 901

E2 = E2(θ) E2 [MPa] 1210 703 201 103

ν1 = ν2 ν1 [-] 0.35 0.35 0.35 0.35

σy = χσy,0(θ) σy,0 [MPa] 71 49 30 14

β = χβ0(θ) β0 [-] 2317 1614 227 240

H = χH0(θ) H0 [MPa] 333 819 214 150

σ∞ = χα(θ) σ∞,0(θ) σ∞,0 [MPa] 68 57 1252 234
α [-] 0.188 0.575 3.061 2.088

τ = τ0 ||C||ϕs exp (||σ2||s)−δ τ0 [s] 156 71 48 31
ϕ [-] 4.80 2.50 2.38 2.24
δ [-] 0.211 0.221 0.714 0.517

Table 2.2: Set of mechanical parameters at different temperatures.

As alluded in Section 2.4, material self-heating (θ̇ ≫ 0) at higher loading rates lead to non-

isothermal conditions when stretch levels of λx ≈ 1.05 were exceeded. Consequently, the pro-

posed isothermal model was only fitted up to this stretch level for λ̇x,max. Naturally, the stress

prediction of the constitutive model at higher rates lead to an over-prediction of the experimen-

tal records, exceeding λx ≈ 1.05. It is important to emphasize that with this approach a set of
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Figure 2.14: Monotonic, uniaxial extension - Experimental data and corresponding model re-
sponse.

isothermal parameters was determined in a successive manner for each considered temperature

(see Table 2.2), which serves as a fundamental input for an upcoming thermo-mechanically

coupled model formulation. The corresponding model response for some monotonic tensile

tests at different loading rates and for varying temperatures and degrees of crystallinity is

depicted in Figure 2.14.

2.7 Model validation

In order to validate the proposed constitutive framework and the identified set of parameters,

experimental data, which was not used for the model calibration (cf. Section 2.6), was com-

pared to the corresponding model response.

2.7.1 Single element tests

In a first validation step, the model response for cyclic loading conditions was investigated

for different temperatures and degrees of crystallinity. During these uniaxial tensile exper-

iments, homogeneous stretch and stress fields arose in the considered sections (cf. Section

2.3). Consequently, a single element test was considered. To this end, the stress in longitudi-

nal x-direction, obtained from the experimental data as a function of time, was prescribed as

a traction boundary condition. Lateral contraction was unhindered and the predicted stretches

in longitudinal (λx) and transversal (λy) direction were compared with the experimental data

for all temperatures (see Figure 2.15).
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Figure 2.15: Cyclic loading at various temperatures for λ̇x,min ≈ 0.0005 s−1 and χ = 0.23.
Experimental data for the stretch in longitudinal λx and transversal direction λy
and corresponding model predictions.
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The complex deformation response of Polyamide 6 under cyclic loading conditions (e.g.

plastic flow, strain recovery and hysteresis loop, cf. Section 2.4) could be captured by the

proposed model for all considered temperatures. The model predictions were less accurate for

temperatures below the glass transition point (i.e. at 23 ◦C and 50 ◦C). Especially at stretch

levels in longitudinal direction exceeding 1.10, a significant mismatch between the predicted

λx upon unloading and the experimental data arose. From the close-ups on the recovery steps,

provided in Figure 2.15, it was evident that the predicted stretch values after unloading con-

verged too slowly towards an overestimated equilibrium stretch at 23 ◦C and 50 ◦C. Conse-

quently, the estimated relaxation time at small stretch levels seemed to be too high, while the

yield strength was underestimated. This was in strong contrast to the results at 120 ◦C and

160 ◦C, where the model predictions were in very good agreement with the experimental data

up to stretch levels of λx = 1.30. In addition, the transversal deformation was captured well,

emphasizing the model capabilities to predict the three dimensional material response.
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Figure 2.16: Cyclic loading response for different degrees of crystallinity χ for λ̇x ≈ 0.0005
s−1 at 120 ◦C - Experimental stress-stretch data and corresponding model predic-
tions.

Furthermore, the model response for cyclic loading conditions was assessed for χ = 0.28

at 120 ◦C (see Figure 2.16). The loading and unloading paths were captured accurately. How-

ever, exceeding higher stretch levels λx > 1.28, a mismatch between experimental data and

model prediction, regarding the loading and unloading paths, arose for χ = 0.28.

To confirm the capabilities of the proposed framework to predict the material behavior for

degrees of crystallinity in the range of 0.23 < χ < 0.28, a third set of specimens with a

crystal volume fraction of 25.5 % was tested. Since the influence of the crystalline regimes

on the material properties was more pronounced at temperatures above the glass transition (cf.

Section 2.4), monotonic tensile tests were conducted at 160 ◦C with this set of specimens. In
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the corresponding single element test, the stretch in longitudinal x-direction, obtained from

the experimental data as a function of time, was prescribed as a displacement boundary condi-

tion. The lateral contraction was unhindered. The model predictions regarding the yield onset,

hardening, rate dependency, and transversal deformation corresponded well to the experimen-

tal data, see Figure 2.17.
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Figure 2.17: Monotonic loading at 160 ◦C for different loading rates and χ = 0.255 - Experi-
mental stress-stretch data in longitudinal x-direction (left), evolution of transver-
sal stretch λy (right), and corresponding model predictions.
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Figure 2.18: Long-term stress-relaxation at different stretch levels and temperatures with a
preceding loading rate of λ̇x ≈ 0.0005 s−1 and χ = 0.23 - Experimental stress σx
over time data and corresponding model predictions.

Finally, the prediction of the stress-relaxation was investigated. To this end, the longi-

tudinal stretch-data λx, corresponding to the long-term relaxation experiments (cf. Section

2.4), served as a displacement boundary condition in the corresponding single element tests.

Subsequently, the predicted stresses were compared to the experimental data as depicted in
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Figure 2.18. It should be emphasized that the relaxation function was fitted to the post-

processed short-term, stepwise relaxation test data (cf. Section 2.6). In the latter experiments,

the specimens were loaded with λ̇x ≈ 0.0058 s−1 to stretch levels of λx = 1.01 and λx = 1.20.

Therefore, it is remarkable that the predicted long-term relaxation behavior, after a preceding

loading with λ̇x ≈ 0.0005 s−1 to stretch levels of λx = 1.09, 1.08 and 1.22 was in good agree-

ment with the experimental observation. Interestingly, the model predictions were in better

agreement at room temperature. This finding was in contrast to the conclusions drawn from

the cyclic-loading validation experiments, where the visco-elastic behavior was predicted less

accurately at 23 ◦C and 50 ◦C.

2.7.2 Structural validation example

To asses the capabilities of the proposed constitutive framework to capture the material re-

sponse in multi-axial stress-states, a structural validation experiment was conducted, in addi-

tion. To this end, Polyamide 6 (Ultramid B40) samples with a circular hole were investigated

under uniform tension. For this purpose, specimens (type 5A of ISO 527-2:2012) with a

degree of crystallinity of χ = 0.23 were modified by carefully drilling a circular hole with

a diameter of 1 mm in the center of the gauge area. The specimen geometry is shown in

Figure 2.19.

Prior to testing, the specimens were dried under vacuum at 100 ◦C for 48 hours. The loading

rate was controlled by the cross head speed of the Zwick Z005 universal testing machine and a

velocity of v = 5 mm/min was prescribed. During uniaxial extension of the specimens, a het-

erogeneous strain field arose close to the circular hole. The latter was detected by non-tactile

displacement measurements at the surface of the specimen, by employing a 2D ARAMIS 4M

digital image correlation (DIC) system. ARAMIS detects the deformation of the specimen

by subdividing the individual camera images into various rectangular facets. With decreasing

facet size the accuracy of the strain computation decreases. A compromise between accuracy

of the strain computation (large facet size) and approximation of the measurement area along

the circular hole (small facet size) was achieved by choosing a facet size of 14 x 14 pixel.

The resulting DIC measurement area is highlighted in light green in Figure 2.19. The exper-

iment was repeated 3 times. The small scatter of the recorded force data (cf. error bars in

Figure 2.19) and the symmetric strain fields (cf. Figures 2.20) indicated a precise specimen

preparation and reproducible measurement method.

Due to the symmetry of the considered problem, only one eighth of the specimen was

modeled. The model dimensions were obtained from accurate measurements (± 0.005 mm)

of the specimen prior to testing. The length in longitudinal x-direction corresponded to the
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Figure 2.19: Geometry of specimen with circular hole, DIC measurement area, and Finite
element model with boundary conditions (top). Recorded force data (bottom).

length of the ARAMIS measurement area. At the boundary of this area (x = 5.16 mm), a

homogeneous strain field arose (cf. Figure 2.20). Therefore, the evolution of the cross section

Ā(t) at the boundary of the measurement area (see. Figure 2.19) could be computed from the

initial cross section A0 and the measured mean stretch in transversal y-direction λ̄y(t) in this

section by Ā(t) = λ̄y(t)
2A0.

Consequently, the evolution of the true stress in longitudinal x-direction σ̄x(t) at the bound-

ary of the measurement area (see Figure 2.19) was computed from the measured force data

F (t) and the deformed cross section by

σ̄x(t) =
F (t)

λ̄y(t)2A0

(2.27)
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and served as a traction boundary condition for the finite element model. The latter was

discretized by eight-node solid elements (C3D8) available in ABAQUS/Standard. The corre-

sponding (converged) mesh is visualized in Figure 2.19.

Figure 2.20: Engineering strain contour plots for two different time steps - Experimental data
(Exp.) and corresponding model response (Sim.). Only the strain fields in the
area ADIC are compared (cf. Figure 2.19). The predicted strains in the light-gray
area close to the hole are not provided, since no experimental strain data was
accessible due to the chosen facet size (cf. discussion above).

In Figure 2.20, the engineering strain contours, obtained from both the finite element sim-

ulation and the DIC images are shown for the time steps A (t = 60 s) and B (t = 140 s),

which are highlighted in the force-time relation in Figure 2.19. For the sake of a perspicuous

comparison, only the strain fields in the DIC measurement area ADIC (see Figure 2.20) are

shown for the FEM model. The predicted strain fields in longitudinal and transversal direction

were in very good agreement with the experimental records. Considering the development of

a multi-axial strain field close to the hole, these results were in particular remarkable, since

the model parameters were obtained from uniaxial tensile tests only. It is instructive to point

out that the large variation of the corresponding strain rates was well captured by the model,

in addition.
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2.8 Conclusion

In this work, a phenomenological continuum model for semi-crystalline polymers was pro-

posed to analyze, predict, and optimize the material and structural response of semi-crystalline

polymers. To capture the complex mechanical response of this class of materials, a visco-

elastic, elasto-plastic material model was derived in a thermodynamically consistent manner.

A nonlinear relation for the relaxation time, as well as nonlinear isotropic and kinematic hard-

ening were incorporated in the constitutive framework. In this novel finite-strain theory, the

temperature and degree of crystallinity serve as input parameters, to predict the complex in-

terplay between the process induced biphasic nature of the underlying microstructure and the

applied thermal conditions on the overall material response.

An extensive experimental study was performed, to obtain a (true) stress-stretch data base

for Polyamide 6 over a wide range of temperatures, including large strains, different loading

rates, and degrees of crystallinity. It was accounted for three degrees of crystallinity in the

range of χ = 0.23 to χ = 0.28 and the considered strain rates were limited to one decade.

In order to investigate the visco-elastic, elasto-plastic behavior, different loading procedures

(i.e. monotonic, cyclic, and relaxation tests) were considered. The study provided impor-

tant insights into the complex dependencies of the effective material properties on the afore-

mentioned factors. In this way, the presented results will serve as a starting point for more

comprehensive experimental investigations in the future, where a wider range of loading rates

and degrees of crystallinity should be considered. The provided results, discussed in Section

2.4, will help to reduce the number of experiments, by indicating which influences must be

investigated more extensively in which temperature regime.

Based on the obtained experimental results, a staggered model parameter identification pro-

cedure was developed, to minimize the uncertainty during the applied nonlinear optimization

strategies. The latter was successively applied to obtain a set of material parameters for each

considered temperature.

Simultaneous infrared thermography measurements revealed significant material self-heating

at higher loading rates, already at moderate stretch levels. The corresponding temperature

increase lead to thermal softening and a reduction of the hardening slopes. An important con-

clusion was therefore to fit the isothermal model only in the range of constant temperatures.

Consequently, the model overestimated the stress response for higher loading rates at higher

stretch levels. To obtain accurate results in dynamic loading conditions, where dissipative ef-

fects lead to important local temperature increases, thermo-mechanical coupling must be taken

into account, in the future. To this end, the set of material parameters at different temperatures
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will provide an important foundation.

The performed validation studies demonstrated the great capabilities of the proposed frame-

work to accurately predict the significant influence of the temperature and degree of crys-

tallinity on the effective material properties. Particular attention was paid on investigating

the three dimensional model predictions regarding the cyclic loading-unloading behavior and

corresponding hysteresis loop, as well as the strain recovery, and the stress relaxation under

uniform deformation. Furthermore, a structural validation experiment revealed the promising

potential of the model to accurately predict the material response for multi-axial stress-states.

However, to improve the model predictions for more complex loading scenarios, additional ex-

periments should be conducted in the future. To this end, experimental studies regarding the

material response under shear-, compression- and combined loading procedures are required.

Based on these results, a yield criterion, accounting for the underlying microstructure and

tension compression asymmetry, can be proposed. Moreover, combined tension-compression

experiments are necessary to characterize the (nonlinear) kinematic hardening, which is al-

ready incorporated in the current constitutive framework. It is important to emphasize that

these modifications can be incorporated in a straight forward manner, without changing the al-

gorithmic solution scheme nor the implemented numerical approximation procedures for the

required tangent moduli.
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2.9 Appendix

The material model is implemented as an user material subroutine UMAT into the commercial

FEM software ABAQUS/Standard. During the numerical FE-solution scheme, the subroutine

is called at each Gaussian integration point. In the course of solving nonlinear boundary

value problem at large strains, the deformation gradient F and a vector containing all internal

variables ξn of the last converged time step serves as an input. As alluded above, the degree of

crystallinity χ and temperature θ serve as additional constant input parameters, to determine

the set of material parameters (cf. Table 2.2). The required output is the Cauchy stress tensor

σ (STRESS) and material tangent modulusCσ (DDSDDE), see equation 2.36. The algorithmic

implementation is discussed in the following section.

The algorithmic treatment of the constitutive equations, related to the elasto-plastic model,

is based on the proposed strategy of Vladimirov et al. [2008], which is revised briefly. The

starting point is an alternative representation of the evolution equations presented in Table 2.1:

Ċp = γ̇ 2
dev(Y )Cp

√

dev(Y ) : dev(Y )T
︸ ︷︷ ︸

T

= γ̇ T (C,Cp,Cpi)C
−1
p Cp (2.28)

Ċpi = γ̇ 2
b

c
dev (Ykin)Cpi

︸ ︷︷ ︸

Tkin

= γ̇ Tkin(C,Cp,Cpi)C
−1
pi Cpi (2.29)

The unconditional stable and first-order accurate exponential map algorithm, which maintains

the plastic incompressibility requirement, is applied

Cp = exp
(
∆γ T C−1

p

)
Cp,n (2.30)

Cpi = exp
(
∆γ TkinC

−1
pi

)
Cpi,n (2.31)

for the implicit numerical time integration of the set of evolution equations. The tensor val-

ued functions T and Tkin are symmetric, since Ċp and Ċpi are symmetric. However, the

quantities TC−1
p and TkinC

−1
pi are asymmetric. Thus, no closed-form expression for the ex-

ponential function of these arguments is available and a truncated series representation would

be required. To overcome this, Reese and Christ [2008] and Vladimirov et al. [2008] uti-

lized a modified ansatz originally proposed by Dettmer and Reese [2004]. In addition, this

method a priori guarantees the symmetry of the tensorial internal variables Cp and Cpi. To

this end, equation (2.30) and (2.31) are multiplied from the right by C−1
p,nCp and C−1

pi,nCpi, re-

spectively and the series representation of the subsequently performed exponential mapping is
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exploited. This leads to the final form of the discretized evolution equations, here summarized

in a residuum format

r1 = − (Up,nUp,n)
−1 +U−1

p exp
(
∆γU−1

p T U−1
p

)
U−1

p = 0 (2.32)

r2 = − (Upi,nUpi,n)
−1 +U−1

pi exp
(
∆γU−1

pi Tkin U
−1
pi

)
U−1

pi = 0 (2.33)

which need to be solved together with the yield function

r3 = Φ =
√

dev(Y ) : dev(Y )T −
√

2

3
(σy −R (κ)) = 0. (2.34)

In the expression above, the relations ∆γ = ∆t γ̇, Up =
√

Cp and Upi =
√

Cpi are in-

troduced. The scalar evolution equation for the accumulated plastic strain is discretized by

means of the classical backward Euler integration algorithm κ = κn +
√

(2/3)∆γ. The latter

is already incorporated into the expression of the yield function. Due to the symmetry of the

internal variables, a system of only 13 nonlinear scalar equations has to be solved by means

of the Newton-Raphson-scheme for U−1
p , U−1

pi and ∆γ. After convergence is achieved, the

required Cauchy stress corresponding to the intermolecular response σ1 = 1/J FS1F
T is

computed.

The evolution equation corresponding to the inelastic deformation is expressed in terms of

the elastic left deformation tensor Be2 = Fe2F
T
e2 and the Kirchhoff stress tensor τ2 = FS2F

T ,

cf. Reese and Govindjee [1998b]. Subsequently applying the exponential mapping yields

Be2 = exp

(

−∆t

(
1

τ µ2

dev (τ2) +
2

9 τ K2

tr (τ2) I

))

Be2,trial (2.35)

In the expression above, Be2,trial = F C−1
i,n F T results from an initial trial step, where the

inelastic deformation is assumed to be frozen in (Ċ−1
i,trial = 0). Since the argument within

the exponential function is a symmetric quantity, the exponential mapping can be evaluated in

closed form. Furthermore, equation (2.35) can be expressed with respect to the principal axes

(cf. Reese and Govindjee [1998b]). The resulting system of only three scalar-valued implicit

equations is solved by means of a local Newton-Raphson-scheme for the eigenvalues of Be2.

Conclusively, the total Cauchy stress σ = σ1+σ2 is computed from the contributions of both

models.

The material tangent modulus Cσ = 1/J Cτ (DDSDDE), is related to the tangent modulus

tensor Cτ for the Jaumann rate of the Kirchhoff stress τ (cf. Stein and Sagar [2008]). The
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linearized incremental form of the latter reads

∆τ −∆Wτ − τ∆W T = C
τ∆D (2.36)

where ∆D and ∆W are the incremental symmetric and antisymmetric parts of the incre-

mental spatial velocity gradient ∆L. In the course of the current work, Cτ is approximated

numerically. To reduce the computational costs, an algorithm proposed by Sun et al. [2008]

is applied, which is based on a more systematic treatment of the topic by Miehe [1996]. In

this procedure only 6 successive perturbations of the deformation gradient and thus only six

additional stress computations are required. For all considered nonlinear initial boundary-

value problems, this method resulted in a nearly quadratic rate of convergence of the global

Newton-Raphson procedure.
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3.1 Abstract

Thermoplastic polymers (TP) are well-suited for thermoforming and injection moulding pro-

cesses. Semi-crystalline polymers (SCP) are a specific class of TPs, which partly crystallize

after cooling from the melt. During thermoforming processes, SCPs are subjected to large

deformations and thermal loadings and show strong thermo-mechanical coupling effects. In

addition, the evolution of the crystalline phase influences the macroscopic material response

significantly. Due to these complex dependencies, a demand for computational models arises,

to analyze, predict, and optimize the complex material and structural behavior of parts during

these processes.

To this end, a finite strain, thermo-mechanically coupled constitutive framework is de-

rived in a thermodynamically consistent manner for SCPs. In the continuum model, a visco-

hyperelastic network resistance and an elasto-plastic intermolecular resistance are introduced,

where non-linear isotropic and kinematic hardening as well as non-linear relaxation behav-

ior are considered. To account for the dependence of the material response on the degree of

crystallinity, the crystallization kinetics during cooling from the melt are captured by means

of a non-isothermal representation of the Avrami equation. Furthermore, the heat generation,

associated with irreversible processes and exothermic crystal growth, is derived in a thermo-

dynamically consistent manner.

Uniaxial tensile test data for different temperatures, loading rates, and degrees of crys-

tallinity, as well as isothermal and non-isothermal differential scanning calorimetry (DSC)

data for Polyamide 6 is utilized to calibrate the model in a stepwise parameter identification

scheme. The model response is discussed and reveals the promising potential of this new

approach to efficiently and accurately predict this class of materials in the future.
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Nomenclature

a Scalar quantity
a First order tensor
A Second order tensor
A Fourth order tensor
˙(∗) Total derivative with respect to time
(∗)T Transpose of a quantity
(∗)−1 Inverse of a quantity
tr(∗) Trace of a quantity
det(∗) Determinant of a quantity
sym(∗) Symmetric part of a quantity
dev(∗) Deviatoric part of a quantity
grad(∗) Gradient of a quantity with respect to cc
Grad(∗) Gradient of a quantity with respect to rc
¯(∗) Isochoric part of a quantity
A : B Scalar product of two tensors A and B

(∗)1 Intermolecular quantity
(∗)2 Network quantity
(∗)e1 Intermolecular elastic quantity
(∗)e2 Network elastic quantity
(∗)i Network inelastic quantity
(∗)j Quantity from last converged time step
(∗)p Intermolecular plastic quantity
(∗)pe Intermolecular plastic elastic quantity
(∗)pi Intermolecular plastic inelastic quantity

b and c Kinematic hardening parameters
B Left Cauchy-Green deformation tensor
cT Specific heat capacity
C Right Cauchy-Green deformation tensor
cc Current configuration
D Nakamura-Ziabicki parameter
D Symmetric part of velocity gradient
e Specific internal energy
E Young’s modulus
F Deformation gradient
H Isotropic hardening modulus
I Second order identity tensor
ic1a Intermediate plastic configuration
ic1b Intermediate configuration

of kinematic hardening
ic2 Inelastic intermediate configuration
J Determinant of deformation gradient
K Bulk modulus
Kc Non-isothermal crystal growth rate
Kmax Nakamura-Ziabicki parameter
L Velocity gradient
M Mandel stress tensor
n Avrami exponent
q0 Heat flux in rc
qt Heat flux in cc

rc Reference configuration
r Heat generation with respect to rc
rt Heat generation with respect to cc
R Driving force of isotropic hardening
S Second Piola-Kirchhoff stress tensor
tend Time at the end of crystallisation
ton Time at the crystallisation onset
u Displacement vector
U Right stretch tensor
X Back stress tensor in ic1a
X̃ Back stress tensor in rc
Y Stress like quantity: Y = CS1 −CpX̃

Ykin Stress like quantity: Ykin = CpX̃

αT Coefficient of thermal expansion
β Isotropic hardening parameter
γ̇ Plastic multiplier
δ Relaxation time function parameter
∆h100f Fusion enthalpy of a

100% crystalline material
∆hm Fusion enthalpy
∆t Time increment
η Specific entropy
θ Temperature
θ0 Reference temperature
θmax Nakamura-Ziabicki parameter
θon Crystallisation onset temperature
κ Accumulated plastic strain
λi stretch in i-direction
λm Locking stretch parameter
λT Heat conductivity
Λ Lamé constant
µ Shear modulus
ν Poisson’s ratio
ξ Set of internal variables
ρ0 Density in rc
σ Cauchy stress tensor
σ∞ Isotropic hardening parameter
σy Initial yield stress
τ Relaxation time
τ0 Relaxation time function parameter
τ Kirchhoff stress tensor
ϕ Relaxation time function parameter
Φ Yield function
χ Absolute degree of crystallinity
χc Relative degree of crystallinity
ψ Specific Helmholtz free energy
Ψ Volumetric Helmholtz free energy
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3.2 Introduction

Thermoplastic polymers (TP) are an important class of engineering materials for many tech-

nically relevant applications. They are widely used in the automotive industry, due to their

high strength to weight ratio and potential of a cost-effective mass production. In contrast to

thermosets, TPs can be repeatedly reshaped after heating above the melting point and are thus

well-suited for forming processes of continuous fiber reinforced TPs and injection moulding.

A specific class of thermoplastics are semi-crystalline polymers (SCP), where the amorphous

phase partly crystallizes after cooling from the melt. During this process, the polymer chains

fold together and form ordered regions referred to as lamellae, which grow radially (under

isotropic temperature distribution) and form quasi-spherical structures (spherulites). In the

course of this work, semi-crystalline Polyamide 6 (PA6) is considered.

Over the past decades, multiple models were proposed to describe the crystallization ki-

netics in SCPs, which can substantially differ for different polymers. Based on the isother-

mal Avrami equation (Avrami [1939]), several non-isothermal models were developed, by

e.g. Ozawa [1971], Nakamura et al. [1973], and Mubarak et al. [2001] to account for non-

isothermal crystallization and isothermal induction time. To estimate the heat generation dur-

ing the exothermic crystallization process Goff et al. [2005], Zinet et al. [2010] and Kugele

et al. [2017] used similar approaches, based on the enthalpy of fusion measured in DSC exper-

iments. However, in all these works the crystallization process and associated heat generation

is studied in the context of (1D) thermal problems and thermo-mechanical coupling is not

accounted for.

Naturally, the morphology of the underlying microstructure (i.e. the degree of crystallinity,

crystal configuration, and lamellae thickness etc.) has a significant influence on the mechanical

behavior of SCPs (Jenkins [1992] and Ayoub et al. [2011]). Furthermore, the mechanical

response of semi-crystalline polymers is characterized by nonlinear, visco-plastic behavior,

depending on the thermal conditions. In addition, thermo-mechanical coupling effects, i.e.

significant material self-heating and associated thermal softening, are present at higher loading

rates (cf. e.g. Şerban et al. [2013], El-Qoubaa and Othman [2016], and Krairi et al. [2019]).

Due to the complex, nonlinear deformation behavior of SCPs, it is of high interest to iden-

tify, analyze, and predict the complex material and structural response of parts during and

after thermoforming processes. Accordingly, multiple computational models were proposed

at the lamellae, the spherulite and the continuum level, over the past decades. Based on the

work of Boyce et al. [2000], where the elementary deformation mechanisms are described

by two parallel resistances, several phenomenological models were proposed (e.g. Srivas-
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tava et al. [2010], Ayoub et al. [2010], and to name only a few). Drozdov and Gupta [2003]

and van Dommelen et al. [2003] developed visco-plastic material models for different vari-

ants of polyethylene. The latter describe the plastic effects by means of a crystallographic

slip (dislocation) within the crystalline phase. The J2 -plasticity model, is used by Bergström

et al. [2003] for ultra-high molecular weight polyethylene. Gudimetla and Doghri [2017],

Wang et al. [2019] and Praud et al. [2017] developed coupled visco-elastic and visco-plastic

models in the context of amorphous and semi-crystalline polymers, respectively. Already at

moderate stress levels, polymers exhibit a significant Bauschinger-like effect upon unloading.

Consequently, some authors (e.g. Hasan and Boyce [1995], Anand et al. [2009]) incorpo-

rated kinematic hardening into the constitutive framework and Qi et al. [2019] investigated

the cyclic-loading behavior of high density polyethylene.

Besides the phenomenological approaches, different modeling schemes were presented in

the past, to model the microstructural constituents separately by employing either analytical

or FE-based homogenization schemes, e.g. Li and Shojaei [2012], Uchida and Tada [2013],

Popa et al. [2014], and Alisafaei et al. [2016] to name a few. These approaches are usually

characterized by a smaller number of parameters and less complex model formulations. How-

ever, it is in general rather difficult to obtain the required physical or microstructural data from

experimental observations. In particular, for semi-crystalline Polyamide 6 this is a challenging

task, since the complex microstructure is characterized by different molecular arrangements.

Depending on the thermal conditions, applied stress, and presence of moisture, the crystalline

phases of PA6 are either characterized by a fully extended (monoclinic) configuration of the

polymer chains, referred to as α-form, or a twisted (hexagonal/ pseudohexagonal) configura-

tion (γ-form) (see e.g. Fornes and Paul [2003]). Furthermore, the crystallization process is

accompanied by the creation of a so-called rigid amorphous phase, introduced by Wunderlich

[2003]. When multi-scale approaches are employed, the choices regarding the geometry and

the size of the representative microstructure as well as the distribution of the characteristic

microstructural elements play a crucial role, in addition. These difficulties do not arise by em-

ploying phenomenological models, where the (usually larger number of) material parameters

can be identified from conventional mechanical tests at the macroscopic scale.

Despite the numerous studies dealing with the prediction of the material behavior under

isothermal conditions, only a limited number of works focus on thermo-mechanical cou-

pling. In the context of amorphous polymers, Ames et al. [2009] and Srivastava et al. [2010]

proposed thermo-mechanically coupled formulations to capture the material self-heating un-

der large deformation. Contributions regarding the thermo-mechanically coupled modeling

of SCPs where made by Maurel-Pantel et al. [2015], and Garcia-Gonzalez et al. [2018] for
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PA66, PEEK, UHMWPE, and HDPE, respectively. In addition, Shen et al. [2019] introduced

a thermo-elastic-viscoplastic-damage model for Polyamide 6.

Furthermore, only a limited number of works account for the influence of the material inter-

nal microstructure (such as crystal volume fraction) on the macroscopic response (e.g. Ponçot

et al. [2013] and Rozanski and Galeski [2013]). In a phenomenological approach, different

rules of mixture of the amorphous and crystalline phases were investigated by Dusunceli and

Colak [2008] . Ayoub et al. [2011] and Abdul-Hameed et al. [2014] suggested a two-phase

representation of the microstructure. In these models, the degree of crystallinity serves as a

constant input parameter.

However, to accurately predict the mechanical behavior of SCPs in the context of forming

processes, it is crucial to account for the morphology of the material internal microstructure

based on the preceding thermal treatment. To the authors’ knowledge, there is no model

available in the literature, where crystallization kinetics are incorporated into a fully thermo-

mechanically coupled constitutive framework at large strains. In this work, a reasonably gen-

eral material model with these features is derived in a thermodynamically consistent man-

ner (cf. chapter 3.4). A visco-hyperelastic model (based on the work of Reese and Govind-

jee [1998b]), where a nonlinear relation for the relaxation time is incorporated (Amin et al.

[2006]), represents the network resistance of the polymer. Furthermore, an elasto-plastic in-

termolecular resistance is assumed. To capture the Bauschinger-like phenomena after unload-

ing, nonlinear kinematic hardening of Frederick-Armstrong type is incorporated, in line with

the work of Vladimirov et al. [2008]. In order to account for the underlying microstructure,

the total degree of crystallinity χ is treated as an additional internal variable. Crystalliza-

tion from a relaxed, static melt is assumed and the evolution of χ is modeled by means of a

non-isothermal representation of the Avrami equation. The internal heat sources, due to the

exothermic crystallization process as well as due to viscous and plastic effects are derived in

a thermodynamically consistent manner as well.

Finally, this new theory is applied to model Polyamide 6 (Ultramid B40 kindly provided by

BASF). To this end, both, the crystallization kinetics and the (thermo-)mechanical response for

different degrees of crystallinity, strain rates and temperatures, are investigated experimentally

(cf. Section 3.3). Noteworthy, despite the numerous studies regarding the material properties

of PA6, no such comprehensive experimental data base was available in the literature. The

capabilities of the model, to accurately predict self-heating and accompanied thermal softening

is verified in Section 3.8 based on infrared thermography measurements. A more complex

structural example is discussed in the last paragraph and finally conclusions are drawn in

Section 3.9.
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3.3 Experimental observations

The proposed constitutive framework was motivated by experimental studies for Polyamide

6 (Ultramid B40 kindly provided by BASF). The experimental procedures and results are

discussed briefly in the following.

3.3.1 Crystallization kinetics

In order to investigate the crystallization kinetics of PA6 under isothermal and non-isothermal

conditions, several differential scanning calorimetry (DSC) experiments were conducted. To

this end, the DSC 1 from Mettler Toledo was utilized and all specimens were prepared by

cutting polymer granulate into pieces significantly smaller than 1 mg. The DSC analyses were

performed for 5 mg samples filled in 40 µl tins and conducted under nitrogen atmosphere.

Noteworthy, each testing procedure was repeated three times. For the isothermal crystalliza-

tion analysis, the polymer was heated up from room temperature 23.5 ◦C way above the melt-

ing point to 245 ◦C with 10 ◦C/min and subsequently rapidly cooled down with 100 ◦C/min

to the target crystallization temperature (i.e. 192 ◦C, 194 ◦C, 196 ◦C, and 198 ◦C), where

the temperature was held constant for 30 minutes. During the non-isothermal crystalliza-

tion experiments, the samples were heated up in the same way and afterwards cooled down

with constant cooling rates of 5 ◦C/min, 10 ◦C/min, 20 ◦C/min, 40 ◦C/min, 60 ◦C/min, and

100 ◦C/min. The recorded exothermic curves of heat flow over time and temperature for the

non-isothermal experiments are displayed in Figure 3.1. Noteworthy, the curves have been

shifted vertically, in order to increase the readability.

Integrating the obtained specific heat flow curves ḣ(t) from the crystallization onset time

ton to the end time tend, yielded the heat release during the exothermic reaction i.e. the change

in specific enthalpy ∆hm during the whole crystallization process (see Figure 3.1). As it is

common practice (cf. e.g. Zinet et al. [2010] and Kugele et al. [2017]), the absolute degree of

crystallinity χ at the end of the crystallization process was calculated by

χ(tend) =

∫ tend

ton

ḣ(t) dt

∆h100f

=
∆hm
∆h100f

(3.1)

where the specific fusion enthalpy of a hypothetical 100% crystalline material ∆h100f was

introduced. For Polyamide 6, Wunderlich [1976] suggested a value of ∆h100f = 230 J/g,

which is widely accepted until today. However, Illers [1978] reported a heat of fusion of 241

J/g and 239 J/g corresponding to the monoclinic and hexagonal form, respectively. In line
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Figure 3.1: Representative example of the recorded heat flow ḣ over time for 40 ◦C/min and
corresponding ton, tend, and ∆hm (left). Non-isothermal DSC data for all consid-
ered cooling rates (right).

with Fornes and Paul [2003] the average of these values, i.e. 240 J/g, was considered, in the

current work.

Based on these relations, the relative degree of crystallinity χc

χc(t) =

∫ t

ton

ḣ(t) dt

∆hm
(3.2)

for arbitrary time steps was defined in the standard manner and lied consequently between

zero (100% amorphous) and one (at the end of the crystallization process). From the latter

expression and (3.1) the absolute degree of crystallinity as a function of time was defined by

χ(t) =

∫ t

ton

ḣ(t) dt

∆h100f

= χc(t)
∆hm
∆h100f

(3.3)

The experimental data revealed the typical crystallization kinetics characteristics for differ-

ent thermal treatments. With increasing cooling rates, ∆hm and consequently also the total

degree of crystallinity decreased. Furthermore, the onset temperature and the peak crystalliza-

tion temperature were shifted to lower temperatures and the crystallization exotherm became

wider, in line with the reported findings of e.g. Liu and Yang [2010].
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3.3.2 Mechanical testing

To obtain insights into the complex material behavior at different temperatures and to study

the effect of varying degrees of crystallinity tensile experiments were conducted. Monotonic,

cyclic, and relaxation experiments were performed by a Zwick Z005 universal testing machine

with different loading rates at varying temperatures below and above the glass transition tem-

perature (θg ≈ 80 ◦C) at 23 ◦C, 50 ◦C, 120 ◦C, and 160 ◦C. Dried specimens (type 5A in

accordance with ISO 527-2:2012), which were produced by injection moulding were tested.

To investigate the material response for different degrees of crystallinity, specimens with an

initial degree of crystallinity of χI = 23 % were annealed under vacuum for 5 hours at 180 ◦C.

In this way, a second set of specimens with a higher degree of crystallinity (χII = 28 %) was

obtained. The loading procedure was controlled by the cross head speed and two different ve-

locities (vmin = 1 mm/min and vmax = 10 mm/min) were prescribed. A heterogeneous strain

distribution and non-constant strain rates arose at large strains, when necking of the speci-

men occurred. To evaluate the material response under constant loading rates, an ARAMIS

4M digital image correlation (DIC) system, which provides accurate non-tactile displacement

measurements at the surface of the specimen, was utilized. With the DIC data at hand, regions

of the specimen with a homogeneous strain field and an approximately constant stretch rate

in longitudinal x-direction of λ̇x,min = 0.03 min−1 and λ̇x,max = 0.35 min−1 were evaluated

to obtain the true stress (Cauchy stress σx) over stretch λx relation. Simultaneous infrared

thermography (IR) (VarioCAM HD by textitInfraTec) measurements were performed during

the monotonic tensile tests at room temperature. The average temperature of the considered

section with approximately constant stretch rate was evaluated.

The true stress σx over stretch λx data from uniaxial tensile experiments at different temper-

atures and for varying loading rates λ̇ and degrees of crystallinity χ, is depicted in Figure 3.2.

With increasing degree of crystallinity, an increase of the initial stiffness, hardening, and yield

stress was observed, which was also reported by several authors (e.g. Jenkins [1992] and

Ayoub et al. [2011]).

Furthermore, for increasing strain rates, a loss in ductility and increase of yield stress and

hardening was detected in line with the works of Rae et al. [2007], Şerban et al. [2013] and

El-Qoubaa and Othman [2016]. This behavior becomes more complicated at higher load-

ing speeds (vmax), where a significant temperature increase on the surface of the specimen,

related to material self-heating, was observed, as depicted in Figure 3.3. At stretch levels

exceeding λx ≈ 1.05, the strain induced hardening competed with the self-heating induced

thermal-softening (cf. Maurel-Pantel et al. [2015], Parodi et al. [2018]). In conjunction with

these phenomena, the slopes of the stress-stretch relations, depicted in Figure 3.2 on the left
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hand side, decrease for higher loading rates after moderate stretch levels of λx ≈ 1.05.

In addition, uniaxial cyclic-loading-unloading-recovery tests revealed three distinct defor-

mation stages of the considered PA6 (see Figure 3.4). In this cyclic experimental procedure,

the specimen was first subjected to displacement controlled loading and afterwards unloaded

until the force equaled zero. Subsequently, the force was held constant at zero for a suf-

ficiently long time period, to allow for the remaining stretch to converge towards an equilib-

rium stage. In the elastic regime, the recorded stretch directly equaled 1 after unloading to zero

force. In the visco-hyperelastic regime, some remaining stretch was detected after unloading,

which converged towards 1 in the recovery step (see Figure 3.4 on the right hand side). In the

visco-hyperelastic-plastic regime, the initial stretch value after unloading converged to some

remaining plastic deformation in the recovery step.
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Figure 3.4: Cyclic-loading-unloading-recovery test at room temperature.

From this experimental data and the numerous preceding studies (referred to above), it is ev-

ident that SCPs show in general a complex inelastic behavior, especially under non-monotonic

loading, characterized by strain recovery, stress relaxation, and loading-unloading hysteresis

loop. Over the last decade, the nature of the underlying microscopic mechanisms related to the

visco-plastic behavior and the large nonlinearity upon unloading were revealed e.g. through-

out molecular dynamic simulations (e.g. Rottler [2009], Jatin et al. [2014], and Jabbari-Farouji

et al. [2017]). It was concluded that strain hardening in polymeric materials is in general re-

lated to a limited number of possible network conformations upon loading. In the work of

Chevalier et al. [2018], the physical origin of the prominent Bauschinger-like effect upon un-

loading (cf. e.g. Anand et al. [2009] and Krairi and Doghri [2014]) was explained by the
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evolution of back stresses during the loading phase, which eventually lead to an early activa-

tion of Shear Transformation Zones (STZ) upon unloading.

3.4 Material model formulation

The objective of this work is the derivation of a constitutive theory, which allows for the

prediction of the material behavior of semi-crystalline polymers under thermo-mechanical

loading conditions. In addition, it is accounted for varying microstructural compositions of

amorphous and crystalline phases, arising from different cooling conditions of the polymer

melt. To this end, two decoupled processes are considered for simplicity:

I Supercooling of the polymer melt - crystallization from static relaxed melt: Thermo-

chemically coupled problem (χ̇ ≥ 0 and σ = 0).

II Thermo-mechanical behavior of solidified polymer: Thermo-mechanically coupled prob-

lem (χ̇ = 0 and arbitrary σ).

This split is based on the following considerations: Temperature induced, non-isothermal crys-

tallization from a relaxed, static melt is assumed and consequently no initial orientation and

stretching of the polymer molecules is present. Concomitant with these assumptions, the crys-

tallization process is assumed to proceed under no volume constraints and stress-free condi-

tions σ = 0. The biphasic nature of the underlying microstructure is modeled in a continuum

mechanical fashion, where the total degree of crystallinity is captured by introducing a single

scalar internal variable χ. In this way, no differentiation between either crystal configura-

tions (γ-phase and α-phase) nor morphology (lamella thickness) is made. Furthermore, the

creation of the so-called rigid amorphous phase (cf. e.g. Wunderlich [2003] and Chen and

Cebe [2007]), is not resolved either, for simplicity. In Section 3.4.5, a suitable evolution equa-

tion for the total degree of crystallinity is proposed. Solving the thermo-chemically coupled

problem leads to an accurate prediction of the distribution and amount of crystalline phase

for arbitrary thermal processing conditions and part geometries. To account for the influence

of the emerged solidified microstructure on the macroscopic material properties, the resulting

total degree of crystallinity χ serves as a constant input parameter (χ̇ = 0) for the thermo-

mechanically coupled model formulation.

To provide a better understanding of the thermo-mechanically coupled framework and the

proposed Helmholtz free energy, a schematic illustration by means of a rheological model is

shown in Figure 3.5. A decomposition into an intermolecular resistance and a network re-

sistance, which is in line with the fundamental ideas described in the works of e.g. Boyce
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et al. [2000], Ahzi et al. [2003], Srivastava et al. [2010] and Ayoub et al. [2011], is proposed.

In the following, properties associated with the intermolecular and network resistance will

be denoted by index 1 and 2, respectively. The network resistance is a visco-hyperelastic

Intermolecular resistance (1)

(Elasto-plastic model)

Molecular network resistance (2)

(Viscous model)

ψe1(Ce1, χ, θ)

ψkin(Cpe, χ, θ)

ψiso(κ, χ, θ)

ψ2(Ce2, χ, θ)

Figure 3.5: Schematic of the constitutive model.

model, to account for the molecular orientation and relaxation. The intermolecular resistance,

an elasto-plastic model, is connected in parallel. In the latter, nonlinear kinematic hardening

of Armstrong-Frederick type and nonlinear isotropic hardening are incorporated. With this

modeling approach, the elastic, visco-hyperelastic, and visco-hyperelastic-plastic material re-

sponse, observed in cyclic experiments (cf. chapter 3.3) can be captured accordingly.

3.4.1 Kinematics

For the continuum mechanical extension of the presented rheological model to finite strains,

the kinematic relations are introduced first. These are based on several multiplicative de-

compositions of the total deformation gradient F , which are shown in Figure 3.6. For the

elasto-plastic model, the classical split of the deformation gradient, F = Fe1Fp, into its elas-

tic part Fe1 and plastic part Fp is performed (cf. Eckart [1948], Kröner [1959], Lee [1969]).

To account for nonlinear kinematic hardening, an additional split of the plastic deformation

gradient Fp = FpeFpi is presented (see Dettmer and Reese [2004]), which is physically moti-

vated (Lion [2000]). These decompositions result in the intermediate plastic configuration ic1a

and the so-called intermediate configuration of kinematic hardening ic1b, depicted in Figure

3.6. For the viscous model the deformation gradient is decomposed into elastic and inelastic

parts, F = Fe2Fi, and the additional inelastic intermediate configuration ic2 is introduced, in

line with the work of e.g. Sidoroff [1974], Lubliner [1985], and Reese and Govindjee [1998b].



70 3 Incorporating crystallinity distributions into a thermo-mechanically coupled constitutive model for SCP

rc

FFF pi

ic1b

FFF p

FFF pe

ic1a
FFF e1

FFF
cc

FFF e2

ic2
FFF i

Elasto-plastic model

Viscous model

Figure 3.6: Multiplicative splits of the deformation gradient.

3.4.2 Helmholtz free energy

Concomitant with the preceding assumptions of two decoupled processes (I. Supercooling of

the polymer melt and II. Thermo-mechanical behavior of solidified polymer) the total specific

Helmholtz free energy is considered separately in an analogous fashion:

I. ψ = ψχ(χ, θ) + ψc(θ) (3.4)

II. ψ = ψ1(Ce1,Cpe, κ, χ, θ) + ψ2(Ce2, χ, θ) + ψc(θ),

with ψ1 = ψe1(Ce1, χ, θ) + ψkin(Cpe, χ, θ) + ψiso(κ, χ, θ)
(3.5)

Here the specific free energy of crystallization, or chemical potential, is denoted by ψχ. In

line with the fundamental thermodynamic considerations of Turnbull and Fisher [1949] and

Mandelkern et al. [1954], phase transformation is initiated as soon as the corresponding free

energy becomes negative. The specific form of this energy is discussed in Section 3.4.7.

Furthermore, ψc is a caloric contribution related to the temperature-dependent specific heat of

the material.

The free Helmholtz energy associated with the solidified polymer is additively decomposed

into the contribution of the intermolecularψ1 and network resistanceψ2 (see Figure 3.5). Here,

ψe1 represents an energy associated with intermolecular reactions and ψkin corresponds to a

defect-energy associated with plastic deformations and allows to phenomenologically account

for the Bauschinger-like phenomena. With increasing plastic deformations, an increasing re-

sistance to plastic flow arises, due to the limited chain extensibility between entanglements and

frictional interaction between the pendant side-groups (cf. Srivastava et al. [2010]). The stored
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energy related to this phenomena is denoted by ψiso, which is a function of the accumulated

plastic strain κ and allows to phenomenologically account for isotropic hardening.

To incorporate the influence of the temperature and the morphology of the microstructure

on the material response, the energy contributions associated with the solidified polymer are

functions of the temperature θ and total degree of crystallinity χ. The intermolecular resis-

tance is assumed to increase for a higher degree of crystallinity, resulting in an increase of

stiffness, hardening and yield stress, whereas all energy contributions decrease with an in-

crease of temperature (cf. Section 3.3).

Based on the principle of material frame invariance, the Helmholtz free energy depends on

the deformation only through the elastic right Cauchy-Green deformation tensors

Ce1 = F T
e1Fe1 = F−T

p CF−1
p (3.6)

Cpe = F T
peFpe = F−T

pi CpF
−1
pi (3.7)

Ce2 = F T
e2Fe2 = F−T

i CF−1
i (3.8)

where C = F TF is the right Cauchy-Green tensor, Cp = F T
p Fp the plastic right Cauchy-

Green tensor and ψe1, ψe2, and ψkin are isotropic functions of Ce1, Ce2, and Cpe, respectively.

3.4.3 Derivation based on the Clausius-Duhem inequality

In order to derive the constitutive equations in a thermodynamically consistent manner the

Clausius-Duhem form of the entropy inequalities w.r.t. the reference configuration

I − ρ0(ψ̇ + ηθ̇)− 1

θ
q0 · Grad(θ) ≥ 0 (3.9)

II S :
1

2
Ċ − ρ0(ψ̇ + ηθ̇)− 1

θ
q0 · Grad(θ) ≥ 0 (3.10)

are evaluated separately for both considered processes. In the inequalities, the specific entropy

is defined as η. The density and the heat flux w.r.t. the reference configuration are denoted with

ρ0 and q0, respectively. Furthermore, S is the second Piola-Kirchhoff stress. Differentiating

the Helmholtz free energy (3.4) and (3.5) with respect to time and inserting it into (3.9) and
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(3.10), respectively, yields

I − 1

θ
q0 · Grad(θ) − ρ0

(
∂ψ

∂θ
+ η

)

θ̇ − ρ0
∂ψ

∂χ
χ̇ ≥ 0

II S :
1

2
Ċ − 1

θ
q0 · Grad(θ) − ρ0

(
∂ψ

∂θ
+ η

)

θ̇

− ρ0

(
∂ψ

∂Ce1
: Ċe1 +

∂ψ

∂Cpe
: Ċpe +

∂ψ

∂κ
κ̇ +

∂ψ

∂Ce2
: Ċe2

)

≥ 0

(3.11)

To reformulate the Clausius-Duhem inequality associated with the thermo-mechanically cou-

pled process II, several stress quantities are introduced, in line with the works of e.g.

Reese and Govindjee [1998b] and Vladimirov et al. [2008]. The second Piola-Kirchhoff stress

tensor S1 and Mandel stress tensor M1 corresponding to the elasto-plastic model

S1 = 2 ρ0 F
−1
p

∂ψe1

∂Ce1
F−T

p , M1 = 2 ρ0 Ce1
∂ψe1

∂Ce1
(3.12)

are formulated w.r.t. the reference configuration and the plastic intermediate configuration

ic1a, respectively. Similarly,

S2 = 2 ρ0 F
−1
i

∂ψ2

∂Ce2
F−T

i , M2 = 2 ρ0 Ce2
∂ψ2

∂Ce2
(3.13)

are the second Piola-Kirchhoff stress tensor and Mandel stress tensor corresponding to the

molecular network resistance, which are defined w.r.t. the reference and the inelastic interme-

diate state ic2, respectively. In addition, the back stress X in the intermediate state ic1a, the

Mandel stress corresponding to kinematic hardening Mkin w.r.t. the intermediate configura-

tion ic1b, and the stress-like driving force of isotropic hardening R are defined as

X = 2 ρ0 Fpe
∂ψkin

∂Cpe

F T
pe, Mkin = 2 ρ0 Cpe

∂ψkin

∂Cpe

, R = −ρ0
∂ψiso

∂κ
(3.14)

After several mathematical transformations, the final forms of the Clausius-Duhem inequali-

ties

I − 1

θ
q0 · Grad(θ) − ρ0

(
∂ψ

∂θ
+ η

)

θ̇ − ρ0
∂ψ

∂χ
χ̇ ≥ 0 (3.15)

II (S − S1 − S2) :
1

2
Ċ − 1

θ
q0 · Grad(θ) − ρ0

(
∂ψ

∂θ
+ η

)

θ̇

+M2 : Di + (M1 −X) : Dp +Mkin : Dpi +R κ̇ ≥ 0

(3.16)
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are derived, where D(∗) = sym(L(∗)) denotes the symmetric part of the corresponding veloc-

ity gradient L(∗) = Ḟ(∗)F
−1
(∗) , with (∗) = i, p, pi. The above inequalities need to be fulfilled

for arbitrary processes. By the standard arguments of Coleman and Noll [1961], the following

relations for the total second Piola-Kirchhoff stress and entropy are given

S = S1 + S2, η = −∂ψ
∂θ

(3.17)

Both, the latter definition for the specific entropy and Fourier’s law for the heat flux in isotropic

materials

q0 = −J λT C−1 Grad(θ) (3.18)

w.r.t. the reference configuration, fulfill the thermodynamic restrictions for both processes I

and II. In the expression above, J = detF and λT (θ) denotes the temperature dependent heat

conductivity.

3.4.4 Evolution Equations

To ensure the non-negativeness of the internal dissipation due to the recrystallization process

from the melt (I) and caused by plastic and viscous effects (II), a set of evolution equations is

presented, which fulfills the remaining parts of the inequalities (3.15) and (3.16).

3.4.4.1 Non-isothermal crystallization kinetics

In the current work, a non-isothermal representation of the well established isothermal Avrami

equation (cf. Avrami [1939] and Avrami [1940]) is employed, to describe the crystallization

process. As it is common practice, the validity of the Avrami approach was first examined by

considering the classical double logarithmic form ln(−(ln(1−χc)) of the experimentally deter-

mined relative degree of crystallinity χc(t) (cf. equation (3.2)). For all considered isothermal

experiments, the plots of ln(−(ln(1− χc)) over ln(t) yielded a straight line with slope n (see

Appendix 3.10.2). Consequently, the applicability of the Avrami method for Polyamide 6 was

confirmed, as already reported by e.g. Weng et al. [2003] and Sierra et al. [2006]. Noteworthy,

n is referred to as the Avrami exponent and represents the nucleation mechanism and growth

dimension, which is assumed to be temperature independent.

During supercooling of the melt, non-isothermal conditions arise in general and thus the

isothermal Avrami equation is not valid to predict the relative degree of crystallinity χc.

Among several works (Ozawa [1971], Jeziorny [1978], and Vázquez et al. [2000]), the non-
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isothermal representation of the Avrami equation by means of the modified Nakamura-Ziabicki

model (Nakamura et al. [1973]) was found to be the best suited model to capture the experi-

mentally observed behavior for the considered Polyamide 6 (cf. chapter 3.7). Here, the model

is represented by means of the evolution equation of the total degree of crystallinity

χ̇ = n Kc (1− χc)

(∫ t

ton

Kc dt

)n−1
∆hm
∆h100f

(3.19)

where non-isothermal conditions are taken into account, by integrating the temperature and

cooling rate dependent crystal growth rate parameter Kc in time space. Consequently, χ̇ is a

function of the temperature history. An empirical function for Kc, which is motivated by a

Gaussian function

Kc = Kmax exp

(

−4 ln(2)(θ − θmax)
2

D2

)

(3.20)

was proposed by Ziabicki [1976]. The Nakamura-Ziabicki crystallization parameters Kmax,

θmax and D are in general dependent on the cooling rate θ̇ (Sierra et al. [2006]) and are gov-

erned from the non-isothermal DSC data, see Section 3.7.

Noteworthy, with this modified version of the Avrami theory, the influence of the pressure

on the crystallization process is neglected, in line with the assumptions stated at the beginning

of Section 3.4. For a more general but also more complex theory, the reader is referred to the

work of e.g. Lion and Johlitz [2016], where the degree of crystallinity and the configuration

of the amorphous phase are dependent on pressure and temperature. Furthermore, the impact

of the degree of crystallinity on the shape of the glass-transition in DSC curves is not captured

either. However, due the experimental data regarding the mechanical behavior of the material

above and below the glass transition point (cf. Section 3.3), the identified set of mechanical

parameters (see Section 3.7) accounts for the drastic change in the material properties during

the glass transition.

3.4.4.2 Elasto-plastic model

In this work, neither tension-compression asymmetry nor pressure dependence is considered.

A yield function of von Mises type

Φ = ||dev(M1)− dev(X)|| −
√

2

3
(σy −R) (3.21)

is assumed, where dev(∗) denotes the deviatoric part of a quantity (i.e. dev(A) := A −
1
3

tr(A)I for A being a second-order tensor). The initial yield stress σy(θ, χ) is in general
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a function of the total degree of crystallinity and temperature and is provided in chapter 3.7.

The plastic flow rule and the evolution equations for kinematic and isotropic hardening are

Dp = γ̇
∂Φ

∂M1

= γ̇
dev(M1)− dev(X)

||dev(M1)− dev(X)|| (3.22)

Dpi = γ̇
b

c
dev(Mkin) (3.23)

κ̇ = γ̇
∂Φ

∂R
=

√

2

3
γ̇ (3.24)

respectively (see Dettmer and Reese [2004] and Vladimirov et al. [2008]). The constants b

and c are related to kinematic hardening in accordance with Armstrong and Frederick [1966].

In equation (3.22) - (3.24), γ̇ represents the plastic multiplier and the usual Kuhn-Tucker

conditions Φ ≤ 0, γ̇ ≥ 0, and Φ γ̇ = 0 complete the set of constitutive equations of the

elasto-plastic model.

3.4.4.3 Viscous model

The evolution of the inelastic deformation within the network resistance is chosen in line with

the work of Reese and Govindjee [1998b] and is given with respect to the inelastic intermediate

configuration ic2

Di =
1

2τµ2

dev (M2) +
1

9τK2

tr (M2) I (3.25)

Here the bulk modulus K2(θ) and shear modulus µ2(θ) corresponding to the molecular net-

work resistance are introduced. The relaxation time τ(S2,C, θ, χ) must be larger than zero

and is in general a function of the overstress S2, the deformation, the temperature, and the de-

gree of crystallinity. The explicit function is given in chapter 3.7. Noteworthy, this evolution

equation is valid for large deformations and large perturbations away from thermodynamic

equilibrium.

3.4.5 Thermodynamic consistency

It remains to show, that the chosen evolution equations fulfill in fact the inequalities (3.15)

and (3.16). The inequality (3.15) reduces for the governed relations for the entropy (3.17)

and heat flux (3.18) to −ρ0(∂ψχ/∂χ)χ̇ ≥ 0. Since χ̇ ≥ 0 and the derivative of the energy

term associated with transformation ψχ (cf. equation (3.26)) with respect to χ is negative, if

θ < θon (see Section 3.4.7), the remaining inequality is non-negative.

For the proof regarding the thermodynamic consistency of the the chosen evolution equa-
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tions, corresponding to the elasto-plastic model, the reader is referred to Vladimirov et al.

[2008]. Furthermore, the thermodynamic consistency of the evolution equation of the inelas-

tic deformation can be shown in a straight forward way (cf. Reese and Govindjee [1998b])

and will not be further discussed here.

3.4.6 Representation in the reference configuration

For convenience the derivation of the material model was carried out in the intermediate con-

figurations. For the numerical implementation, however, the constitutive framework is rep-

resented in the reference configuration. To this end, the tensorial pull back operation of the

associated stress quantities M1, M2, X , and Mkin as well as the relations Ċp = 2 F T
p DpFp

and Ċi = 2 F T
i DiFi are applied, to obtain the alternative model representation, which is sum-

marized in Table 3.1. Here, the back stress tensor in the reference configuration X̃ and the

stress-like quantities Y and Ykin are introduced (cf. Vladimirov et al. [2008]). Noteworthy,

Y and Ykin are asymmetric tensors. The presented model includes only symmetric tensor-

valued internal variables, i.e. Cp, Cpi, and Ci, which is important from a computational point

of view. The plastic and inelastic spins as well as the corresponding deformation gradients

remain undetermined.

Table 3.1: Constitutive equations in reference configuration
Intermolecular resistance Molecular network resistance

Stresses Stress

S1 = 2 ρ0 F
−1
p

∂ψe1

∂Ce1

F−T
p ,

X̃ = 2 ρ0 F
−1
pi

∂ψkin

∂Cpe

F−T
pi ,

R = −ρ0
∂ψiso

∂κ
,

Y = CS1 −CpX̃, Ykin = CpX̃

S2 = 2 ρ0 F
−1
i

∂ψe2

∂Ce2
F−T

i

Evolution equations Evolution equation

Ċp = 2 γ̇
dev(Y )Cp

√

dev(Y ) : dev(Y )T
,

Ċpi = 2 γ̇
b

c
dev(Ykin)Cpi, κ̇ =

√

2

3
γ̇

Ċi =

(
1

τµ2

dev(CS2) +
2

9τK2

tr (CS2)I

)

Ci

Yield function

Φ =
√

dev(Y ) : dev(Y )T −
√

2

3
(σy − R)
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3.4.7 Specific choices for free Helmholtz energy terms

3.4.7.1 Free energy of crystallization

The free energy associated with crystallization, or chemical potential

ψχ = ∆h100f

θ − θon
θon

χ (3.26)

is chosen in line with the proposed function of Kelly et al. [2016] in the context of marten-

sitic phase transformation. It determines the relative stability of the amorphous and crystalline

phases. During the supercooling of the polymer melt, the crystallization process starts below

the cooling rate dependent onset temperature θon. Consequently, phase transformation is initi-

ated as soon as the corresponding free energy becomes negative, in line with the fundamental

thermodynamic considerations of Turnbull and Fisher [1949] and Mandelkern et al. [1954].

Noteworthy, with this particular form, the non-negativeness of the remaining Clausius-Duhem

inequality (3.15) is guaranteed, as alluded above. Furthermore, ψχ contributes in an important

manner to the heat release due to crystallization in the balance of energy (cf. chapter 3.5).

3.4.7.2 Free energy of intermolecular resistance

Up to now, the relations for the thermodynamic driving forces are derived in a completely

general manner. In this way, the proposed framework offers large flexibility regarding the

particular choices of the energy terms. To conclude the constitutive framework, a set of energy

terms per volume Ψ is specified in the following.

The energy contributions associated with the intermolecular resistance belong to a Neo-

Hookean material with combined nonlinear isotropic hardening and nonlinear kinematic hard-

ening of Armstrong-Frederick type. In addition, an elastic thermal expansion term is included.

Ψe1 =
µ1

2
(tr(Ce1) − 3)− µ1 ln(Je1) +

Λ1

4
(det(Ce1) − 1− 2 ln(Je1))

− 3K1 αT1(θ − θ0) ln(Je1)
(3.27)

Ψkin =
c

2
(tr(Cpe) − 3)− c ln(Jpe) (3.28)

Ψiso =(σ∞ − σy)

(

κ+
exp(−β κ)

β

)

+
1

2
H κ2 (3.29)

Here, Je1 = detFe1 and Jpe = detFpe holds. The material parameters µ1(θ, χ), Λ1(θ, χ),

K1(θ, χ), αT1(θ, χ), σ∞(θ, χ), β(θ, χ) and H(θ, χ) corresponding to the elasto-plastic model

are the Lamé constants, bulk modulus, coefficient of thermal expansion and isotropic harden-
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ing parameters, respectively, and θ0 is a reference temperature. Note, that all parameters are

assumed to be functions of the temperature and total degree of crystallinity and are provided

in chapter 3.7. Finally, S1, X̃ and R can be derived accordingly

S1 = µ1

(
C−1

p −C−1
)
+

Λ1

2

(
det(C)

det(Cp)
− 1

)

C−1 − 3K1 αT1 (θ − θ0)C
−1 (3.30)

X̃ = c
(
C−1

pi −C−1
p

)
(3.31)

R = −(σ∞ − σy) (1− exp(−β κ))−H κ (3.32)

3.4.7.3 Free energy of molecular network resistance

For the elastic energy associated with the molecular network resistance a compressible version

of the widely used model of (Arruda and Boyce [1993])

Ψ2 =Ψvol(Je2, θ, χ) + Ψiso(C̄e2, θ)

Ψvol = K2

(
J2
e2 − 1

4
− ln(Je2)

(
1

2
+ 3αT2(θ − θ0)

))

Ψiso = µ∗
5∑

i=1

Ci

λ2i−2
m

(

tr(C̄e2)
i − 3i

)

(3.33)

is chosen. In the latter expression, the volumetric energy Ψvol, originally proposed by

Kaliske and Rothert [1997] is modified by a contribution associated with thermal expansion

suggested by e.g. Reese and Govindjee [1998a]. The isochoric energy part Ψiso is a function of

the isochoric (volume preserving) part C̄e2 = F̄ T
e2F̄e2 of the elastic right Cauchy-Green tensor,

where F̄e2 = J
− 1

3

e2 Fe2 (originally suggested by Flory [1961]) and Je2 = detFe2 =
√

detCe2

holds. The constant parameter λm relates to the locking stretch of a fully extended chain,

αT2(θ, χ) is the coefficient of thermal expansion corresponding to the network resistance and

θ0 is a reference temperature. In line with Arruda and Boyce [1993], the parameter µ∗ and the

tuple Ci are defined as

µ∗ = µ2

(

1 +
3

5λ2m
+

99

175λ4m
+

513

875λ6m
+

42039

67375λ8m

)−1

(3.34)

Ci =
(

1
2

1
20

11
1050

19
7000

519
67375

)

(3.35)
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Based on the decoupled strain energy function the second Piola-Kirchhoff stress S2, corre-

sponding to the molecular network resistance is calculated by

S2 =K2

(
1

2

(
J2
e2 − 1

)
− 3αT2(θ − θ0)

)

C−1

+ dev

(

2µ∗

5∑

i=1

i Ci

λ2i−2
m

tr(C̄e2)
i−1 J

− 2

3

e2 I

) (3.36)

3.5 Energy balance

Viscous and plastic effects are always accompanied by a loss of the potential energy. This

energy causes heat generation due to dissipation. Furthermore, the release of the heat of fu-

sion during crystallization must be accounted for. In order to derive the heat generation terms,

the local form of the energy balance with respect to the reference configuration is consid-

ered. Concomitant with the previous assumptions the energy balance is treated separately for

both considered processes (I. Supercooling of the polymer melt and II. Thermo-mechanical

behavior of solidified polymer)

I ρ0(ψ̇ + η̇ θ + η θ̇
︸ ︷︷ ︸

ė

) + Div(q0) = 0 (3.37)

II ρ0(ψ̇ + η̇ θ + η θ̇
︸ ︷︷ ︸

ė

) + Div(q0) − S :
1

2
Ċ = 0 (3.38)

Here, the differentiation of the specific internal energy, e := ψ + η θ, with respect to time

ė is already included. The total time derivative of the Helmholtz free energy (3.4 and 3.5)

is inserted in the above expression and equation (3.17) is recalled to formulated the specific

entropy time derivative η̇ = −∂ψ̇/∂θ. Subsequently, utilizing the mathematical operations,

introduced in Section 3.4.3, in an analogous fashion, it is possible to establish the partial
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differential equation for the temperature field with all dissipative terms.

I ρ0 ct θ̇ = ρ0

(

−∂ψ
∂χ

+
∂2ψ

∂χ∂θ

)

χ̇− Div(q0) (3.39)

II ρ0 ct θ̇ = θ
∂S

∂θ
:
1

2
Ċ +

(

M2 − θ
∂M2

∂θ

)

: Di +

(

M1 − θ
∂M1

∂θ

)

: Dp

−
(

X − θ
∂X

∂θ

)

: Dp +

(

Mkin − θ
∂Mkin

∂θ

)

: Dpi

+

(

R− θ
∂R

∂θ

)

κ̇− Div(q0)

(3.40)

Here, the specific heat capacity cT := −θ ∂2ψ/∂θ2 is defined equivalently for both processes.

In theory, cT = cT (χ,Ce1,Ce2,Cpe, κ, θ) is a complex function of all internal variables. In

order to derive a reasonably general constitutive framework and to imply additional flexibil-

ity regarding the nonlinear temperature dependence of the specific heat (cf. e.g. Wunderlich

[1960] and Biroli and Garrahan [2013]), a caloric part ψc was added to the specific energies

(3.4) and (3.5). If these parts were not considered, the specific heat would be already com-

pletely defined (via cT := −θ ∂2ψ/∂θ2), since the material parameters corresponding to the

remaining energy contributions are identified based on the thermo-mechanical response of the

material (cf. Section 3.7). In some special cases, for example in the constitutive theory de-

veloped by Lion et al. [2017], suitable terms for ψc are chosen and the specific heat can be

evaluated in closed form. However, in general, much work needs to be done to experimentally

characterize these functions. Consequently, in this work, the heat capacity is approximated to

depend only on the temperature and degree of crystallinity cT ≈ cT (χ, θ) and the influence of

the pressure is neglected, in line with e.g. Ames et al. [2009] and Engel et al. [2013]. Fur-

thermore, the dissipation due to thermo-elastic coupling θ(∂S/∂θ) : (1/2 Ċ) is assumed to

be negligibly small and will be omitted (Anand et al. [2009] and Ames et al. [2009]).

With the specific relation for ψχ at hand (cf. equation (3.26)), expression (3.39) is reformu-

lated

I ρ0 ct θ̇ =− Div(q0) + rχ

rχ =ρ0

(

−∂ψχ

∂χ
+ θ

∂2ψχ

∂χ ∂θ

)

χ̇ = ρ0 ∆h
100
f χ̇

(3.41)

by means of the explicit function of the heat release during crystallization rχ. Noteworthy, rχ

corresponds indeed to the heat generated by phase change per unit time and reference volume,

obtained in conventional DSC experiments rχ = ρ0 ∆h
100
f χ̇ = ρ0ḣ (cf. equations (3.2) and

(3.3)) and is in line with the works of e.g. Zinet et al. [2010] and Kugele et al. [2017].
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Table 3.2: Summary of the constitutive equations

Crystallization kinetics

Evolution equation Heat of fusion

χ̇ = n Kc (1− χc)

(∫ t

ton

Kc dt

)n−1
∆hm
∆h100f

rχ = ρ0 ∆h
100
f χ̇

Intermolecular resistance Molecular network resistance

Stresses Stress

S1 =µ1

(
C−1

p −C−1
)
+

Λ1

2

(
det(C)

det(Cp)
− 1

)

C−1

− 3K1 αT1 (θ − θ0)C
−1,

X̃ = c
(
C−1

pi −C−1
p

)
,

Y =CS1 −CpX̃, Ykin = CpX̃,

R =− (σ∞ − σy) (1− exp(−β κ))−H κ

S2 =K2

(
1

2

(
J2
e2 − 1

)
− 3 αT2 (θ − θ0)

)

C−1

+ dev

(

2 µ∗

5∑

i=1

i Ci

λ2i−2
m

tr (C̄e2)
i−1 J

− 2

3

e2 I

)

Evolution equations Evolution equation

Ċp = 2 γ̇
dev(Y ) Cp

√

dev(Y ) : dev(Y )T
,

Ċpi = 2 γ̇
b

c
dev(Ykin)Cpi, κ̇ =

√

2

3
γ̇

Ċi =

(
1

τ µ2

dev(CS2) +
2

9 τ K2

tr (CS2)I

)

Ci

Yield function

Φ =
√

dev(Y ) : dev(Y )T −
√

2

3
(σy − R)

Heat generation due to plastic dissipation Heat generation due to viscous dissipation

r1 =
1

2
C

(

S1 − θ
∂S1

∂θ

)

: C−1
p Ċp

− 1

2

(

X̃ − θ
∂X̃

∂θ

)

: Ċp

+
1

2
Cp

(

X̃ − θ
∂X̃

∂θ

)

: C−1
pi Ċpi

+

(

R− θ
∂R

∂θ

)

κ̇

r2 =
1

2
C

(

S2 − θ
∂S2

∂θ

)

: C−1
i Ċi

Second Piola-Kirchhoff stress

S = S1 + S2

Heat flux

q0 = −J λT C−1 Grad(θ)

Analogous pull-pack operations, as introduced in Section 3.4.6, are carried out to relate all
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stress quantities in equation (3.40) to the reference configuration

II ρ0 ct θ̇ =− Div(q0) + r1 + r2

r1 =
1

2
C

(

S1 − θ
∂S1

∂θ

)

: C−1
p Ċp −

1

2

(

X̃ − θ
∂X̃

∂θ

)

: Ċp

+
1

2
Cp

(

X̃ − θ
∂X̃

∂θ

)

: C−1
pi Ċpi +

(

R− θ
∂R

∂θ

)

κ̇

r2 =
1

2
C

(

S2 − θ
∂S2

∂θ

)

: C−1
i Ċi

(3.42)

where the heat generation due to plastic deformation, kinematic, and isotropic hardening is

denoted by r1 and the dissipation corresponding to viscous processes is defined as r2.

For convenience, a summary of the proposed constitutive equations is given in Table 3.2.

3.6 Numerical implementation

The presented constitutive framework is implemented as a user material subroutine UMAT into

the commercial FEM software ABAQUS/Standard. In the course of solving a fully thermo-

mechanically coupled boundary value problem at finite strains, the routine is called at each

Gaussian integration point. Thereby, the deformation gradient F , the temperature θ, and the

spatial temperature gradient grad(θ), as well as a vector containing all internal variables ξj of

the last converged time step is passed to the subroutine. At the end of the time increment, the

following set of quantities has to be defined within the UMAT:

• STRESS: Cauchy stress tensor σ.

• RPL: Volumetric heat generation rt cf. (3.51).

• FLUX: Spatial heat flux qt = −λT grad(θ).

• DDSDDE: Material tangent modulus cf. (3.52).

• DDSDDT: Variation of the stress increments with respect to the temperature cf. (3.53).

• DRPLDE: Variation of heat sources (RPL) with respect to the strain increments cf.

(3.55).

• DRPLDT: Variation of heat sources (RPL) with respect to the temperature cf. (3.54).
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The algorithmic implementation will be summarized in the following Section, where quanti-

ties from the last converged time step are denoted by index j.

3.6.1 Algorithmic implementation

The evolution equation of the total degree of crystallinity (3.19) is discretized by means of the

backward Euler method, which yields the following explicit relation for χ

χ = χj +∆t n Kc exp

((

−
∫ t

ton

Kc dt

)n)

︸ ︷︷ ︸

(1− χc)

(∫ t

ton

Kc dt

)n−1
∆hm
∆h100f

(3.43)

The trapezoidal rule is used to numerically approximate the integrals

∫ t

ton

Kc(θ) dt =

∫ tj

ton

Kc(θ) dt

︸ ︷︷ ︸

Ij

+

∫ t

tj

Kc(θ) dt ≈ Ij +
N∑

i=2

Kc(θi) +Kc(θi−1)

2
(ti − ti−1)

(3.44)

In order to achieve a sufficiently accurate approximation of the integrals, the time step ∆t is

subdivided into N substeps and the temperature is linearly interpolated in between. The ap-

proximated solution of the integral of the last converged time step Ij is stored as an additional

history variable. Furthermore, the beginning of crystallization has to be defined. Therefore, a

regression curve for the onset temperature θon as a function of the cooling rate is derived from

experimental data (see chapter 3.7). If the actual temperature at a Gaussian point is lower

than the corresponding onset temperature, crystallization is triggered and ton is determined.

With the absolute degree of crystallinity and temperature at hand, the material parameters are

updated (cf. Table 3.4) and the algorithm for solving the constitutive relations is initiated.

Based on the findings of Vladimirov et al. [2008] the exponential map algorithm is ap-

plied for the algorithmic treatment of the described constitutive model corresponding to the

intermolecular resistance. The starting point is an alternative representation of the evolution
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equations presented above (cf. Table 3.2):

Ċp = γ̇ 2
dev(Y )Cp

√

dev(Y ) : dev(Y )T
︸ ︷︷ ︸

T

= γ̇ T (C,Cp,Cpi) C
−1
p Cp (3.45)

Ċpi = γ̇ 2
b

c
dev(Ykin)Cpi

︸ ︷︷ ︸

Tkin

= γ̇ Tkin(C,Cp,Cpi) C
−1
pi Cpi (3.46)

Since Ċp and Ċpi are symmetric, the tensor valued functions T and Tkin are symmetric as

well. This does in general not hold for TC−1
p and TkinC

−1
pi . Consequently, a direct use of the

exponential map algorithm to solve the differential equations (3.45) and (3.46) would require

a truncated series representation. To overcome this Reese and Christ [2008], Vladimirov et al.

[2008], and Pietryga et al. [2012] utilized a modified ansatz originally proposed by Dettmer

and Reese [2004]. To this end, equation (3.45) and (3.46) are multiplied from the right by

C−1
p,jCp and C−1

pi,jCpi, respectively and the series representation of the subsequently performed

exponential mapping is exploited. This leads to the final form of the discretized evolution

equations, here summarized in a residuum format, which need to be solved together with the

yield function.

r1 = − (Up,j Up,j)
−1 +U−1

p exp
(
∆γ U−1

p T U−1
p

)
U−1

p = 0 (3.47)

r2 = − (Upi,j Upi,j)
−1 +U−1

pi exp
(
∆γ U−1

pi Tkin U−1
pi

)
U−1

pi = 0 (3.48)

r3 = Φ =
√

dev(Y ) : dev(Y )T −
√

2

3
(σy − R (κ)) = 0 (3.49)

Here, the relations ∆γ = ∆t γ̇, Up =
√
Cp and Upi =

√
Cpi are introduced. The scalar

evolution equation for the accumulated plastic strain is discretized by means of the classical

backward Euler integration algorithm κ = κj +
√

(2/3) ∆γ. The latter is already incorpo-

rated into the expression of the yield function. Due to the symmetry of the internal variables,

a system of only 13 nonlinear scalar equations has to be solved by means of the Newton-

Raphson-scheme for U−1
p , U−1

pi and ∆γ. After convergence is achieved, the accumulated

plastic strain κ is updated and the required Cauchy stress corresponding to the intermolecular

response σ1 = 1/JFS1F
T is computed.

In the case of isotropic elasto-plasticity without kinematic hardening (e.g. Simo [1992]) or

visco-elasticity (Reese and Govindjee [1998b]), the problem of asymmetric arguments during

the exponential mapping procedure does not occur and it can be evaluated in closed form. To

this end, one can transform the evolution equation of the inelastic deformation, correspond-
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ing to the network resistance, and express it in terms of the elastic left Cauchy-Green tensor

Be2 = Fe2F
T
e2 and the Kirchhoff stress tensor τ2 = FS2F

T (cf. Reese and Govindjee

[1998b])

Be2 = exp

(

−∆t

(
1

τ µ2

dev(τ2) +
2

9 τ K2

tr (τ2) I

))

Be2,trial (3.50)

where Be2,trial = F C−1
i,j F T results from an initially permitted evolution of the inelastic

deformation i.e. Ċ−1
i,trial = 0. As shown by Reese and Govindjee [1998b], expression (3.50)

can be formulated with respect to the principal axes. Consequently, only a system of three

scalar valued, implicit, nonlinear equations has to be solved for the eigenvalues of Be2, by

utilizing the Newton-Raphson-scheme.

Finally, the total Cauchy stress (STRESS) is obtained from the contribution of both models

σ = σ1 + σ2.

The heat generation (RPL) caused by plastic and viscous dissipation and the heat of fusion

is derived from the energy balance with respect to the reference configuration (see equations

(3.41) and (3.42)). Since ABAQUS requires the heat sources rt per current volume, the rela-

tions obtained from the energy balance are transformed by

rt =
1

J
(rχ + r1 + r2) (3.51)

The partial derivatives of the thermodynamic conjugated forces S1, S2, X̃ and R with respect

to the temperature are derived analytically (cf. Appendix 3.10.1).

3.6.2 Numerical approximation of tangent moduli

In ABAQUS, the material tangent modulus Cσ
D = 1/J Cτ

D (DDSDDE) is related to the tangent

modulus tensor Cτ
D for the Jaumann rate of the Kirchhoff stress τ (cf. Stein and Sagar [2008]).

The linearized incremental form of the latter can be expressed as

∆τ −∆Wτ − τ∆W T = C
τ
D∆D (3.52)

where ∆D and ∆W are the incremental symmetric and antisymmetric parts of the incremen-

tal spatial velocity gradient ∆L. In the course of the current work, Cτ
D is obtained by means of

an efficient numerical approximation algorithm proposed by Sun et al. [2008], which is based

on a more systematic treatment of the topic by Miehe [1996]. The merit of this method lies

in 6 successive perturbations of the deformation gradient and thus only six additional stress
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computations. The thermal tangent modulus Cσ
θ (DDSDDT)

∆σ = Cσ
θ ∆θ (3.53)

is defined by means of the temperature derivative of the total Cauchy stress and is approxi-

mated by a forward difference quotient. Obviously, from these perturbations (in total 7) and

subsequent evaluations of the constitutive model, the temperature derivative of the internal

heat source Cr
θ (DRPLDT)

∆rt = Cr
θ ∆θ (3.54)

and the derivative of the heat source with respect to the strain increment Cr
D (DRPLDE)

∆rt = Cr
D : ∆D (3.55)

can be approximated as well by means of a forward difference quotient. It should be empha-

sized that with this numerical approximation procedures, nearly quadratic convergence of the

global Newton-Raphson-scheme was obtained in all considered cases.

3.7 Characterization of material parameters

3.7.1 Crystallization kinetics

In line with e.g. Weng et al. [2003] and Liu and Yang [2010], the temperature independent

Avrami exponent n was determined by linear regression from the double logarithmic form of

the isothermal and non-isothermal experimental data. Since no large variation was observed,

the mean value of n = 2.375 was adopted as a constant material parameter (see Appendix

3.10.2).

Table 3.3: Parameters for modified Nakamura-Ziabicki model

θ̇ [K/min] Kmax [1/min] θmax [K] D [K] ∆hm [J/g]

5 9.51 348.22 102.27 56.89
10 13.73 348.46 100.48 54.57
20 9.28 351.10 109.52 54.16
40 7.77 355.17 116.97 50.48
60 5.54 362.99 128.31 48.24

100 4.80 359.49 125.64 43.92
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Subsequently, nonlinear optimization strategies were utilized to identify the remaining (tem-

perature rate dependent) parameters of the model, based on the non-isothermal DSC results.

In order to minimize the uncertainty whether the obtained solution corresponds to a global or

local minimum, a combination of the Genetic Algorithm and Levenberg-Marquardt Algorithm

was compared with the solution of the Interior-Point method. The procedure was performed

with the commercial software MATLAB, which provides all algorithms as intrinsic functions.

The resulting set of parameters is depicted in Table 3.3 and the non-isothermal experimental

data and the corresponding fit of the proposed model is shown in Figure 3.7.
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Figure 3.7: Non-isothermal DSC data and corresponding model response.

During the numerical solution procedure, cubic spline interpolation was applied to interpo-

late the set of parameters based on the actual cooling rate. In order to capture the cooling rate

dependent onset temperature of crystallization θon under non-isothermal conditions, a linear

regression was performed, which was based on the non-isothermal DSC data (cf. Appendix

3.10.2)

θon = −0.2741 θ̇ + 470.65 [K] (3.56)

3.7.2 Mechanical model parameters

In the recently submitted contribution of Felder, Vu, Reese and Simon [2020], the isothermal

version of the proposed model formulation was developed, characterized, and validated. Fur-

thermore, a staggered parameter characterization scheme was developed, to obtain a unique set

of mechanical parameters for each considered temperature. The latter is briefly summarized

in the following:
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1. The Poisson’s ratio ν was obtained from the negative ratio of the measured transverse

and longitudinal stretch in the elastic regime, where ν = ν1 = ν2 was assumed. The

Young’s moduli E1 and E2, corresponding to the intermolecular resistance and the

molecular network resistance, respectively, were obtained from the initial slopes of the

stress-stretch relations for different degrees of crystallinity.

2. From relaxation experiments at different stretch levels it is evident, that the relaxation

time τ is a nonlinear function of the overstress σ2 and the stretch level. In line with the

work of Amin et al. [2006], a post-processing scheme of the relaxation test data was

applied, to obtain the fundamental relation between the rate of inelastic deformation Ċi

and the overstress tensor. Based on these relations, a power-law-type function of the re-

laxation time was proposed τ = τ0‖B‖ϕexp(‖σ2‖)−δ, where the temperature dependent

parameters τ0(θ), ϕ(θ), and δ(θ) as well as the left Cauchy-Green deformation tensor

B = FF T were introduced. The latter were fitted by means of a nonlinear multiple

curve fitting procedure.

3. The initial yield stress σy was directly obtained from cyclic loading-unloading-recovery-

tests (cf. Section 3.2) for different degrees of crystallinity.

4. In the final characterization step, the parameters related to isotropic hardening were

governed by a nonlinear multiple curve fitting procedure, based on the monotonic tensile

test data for different degrees of crystallinity.

The obtained set of parameters is provided in Table 3.4. During the numerical solution pro-

cedure of a thermo-mechanically coupled problem, cubic spline interpolation is applied to

interpolate the set of parameters based on the actual temperature. The tests were terminated

after a stretch of λx = 1.20 was reached, to maintain a constant stretch rate. Thus, no signifi-

cant increase of strain-hardening was observed at large strains, due to the limited extensibility

of the polymer chains. Consequently, the constant locking stretch parameter λm, correspond-

ing to the elastic energy contribution of the molecular network resistance, had no influence

and was set to an arbitrary large value λm = 2.0.

As alluded above, the objective was to identify a set of material parameter for the consid-

ered constant temperatures. However, a significant temperature increase on the surface of the

specimen, related to material self-heating, was observed for higher loading rates at stretch

levels exceeding λx ≈ 1.05 (cf. Section 3.3). Due to this fact, the hardening parameters were

only calibrated in the isothermal regime (θ̇ ≈ 0) i.e. up to a stretch level of λx ≈ 1.05 for vmax.

Consequently, the isothermal model response overestimated the stress response, for λx > 1.05
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Table 3.4: Set of mechanical parameters at different temperatures.

Function Parameter at: 23 ◦C 50 ◦C 120 ◦C 160 ◦C

E1 = χE1,0(θ) E1,0 [MPa] 7610 4398 1051 901

E2 = E2(θ) E2 [MPa] 1210 703 201 103

ν1 = ν2 ν1 [-] 0.35 0.35 0.35 0.35

σy = χσy,0(θ) σy,0 [MPa] 71 49 30 14

β = χβ0(θ) β0 [-] 2317 1614 227 240

H = χH0(θ) H0 [MPa] 333 819 214 150

σ∞ = χα(θ) σ∞,0(θ) σ∞,0 [MPa] 68 57 1252 234
α [-] 0.188 0.575 3.061 2.088

τ = τ0 ||C||ϕs exp (||σ2||s)−δ τ0 [s] 156 71 48 31
ϕ [-] 4.80 2.50 2.38 2.24
δ [-] 0.211 0.221 0.714 0.517

and vmax, as depicted in Figure 3.10. To capture the phenomenon of material-self heating and

corresponding thermal-softening, the fully thermo-mechanically coupled model had to be ap-

plied, as discussed in Section 3.8. The experimental data for monotonic tensile test at different

loading rates and for varying temperatures and degrees of crystallinity is depicted in Figure

3.8, together with the corresponding model response.
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Figure 3.8: Monotonic, uniaxial extension: Experimental data and corresponding model re-
sponse for different degrees of crystallinity χ, loading rates (λ̇x,max = 0.35 min−1

(left) and λ̇x,min = 0.03 min−1 (right)), and for different temperatures.
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Noteworthy, difficulties arise in differentiating between isotropic and kinematic hardening

from unloading experiments to zero force only. Due to this fact, only the nonlinear isotropic

hardening response was fitted from the monotonic tests, due to the lack of tension-compression

data. Consequently, the parameters b and c were set to very small values close to zero. It

is important to emphasize that with this choice the nonlinearity upon unloading can be cap-

tured, due to the evolution of inelastic deformations within the molecular network branch upon

loading (see Figure 3.9). Noteworthy, Krairi and Doghri [2014] proceeded in a similar way

and were able to accurately predicted the cyclic loading response of HDPE by considering

also only nonlinear isotropic hardening, in a coupled visco-elastic, visco-plastic constitutive

framework.

In Figure 3.9, the capabilities of the model to accurately predict the nonlinearities upon

loading and unloading, as well as the strain recovery at zero force is shown exemplary for

120 ◦C and different degrees of crystallinity. These results were obtained, by considering a

single-element test where the stress in longitudinal x-direction, was prescribed as a traction

boundary condition.
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Figure 3.9: Isothermal model predicitions of the cyclic-loading behavior at 120 ◦C for
χ = 23 % and χ = 28 %, with a loading speed of vmin.

The remaining parameters (i.e. ρ0, λT , αT1/2, and cT ) were obtained from the literature.

From the data for the densities of the amorphous (ρa = 1.09 g/cm3) and crystalline phases

(ρc,α = 1.23 g/cm3, ρc,γ = 1.16 g/cm3) of Polyamide 6, provided by Fornes and Paul [2003],

the following function for the density is proposed

ρ0 =
ρc,α + ρc,γ

2
χ+ ρa(1− χ) = 0.001195χ+ 0.00109 (1− χ) g/mm3 (3.57)

The heat conductivity was set to λT = 0.27 W/Km (Li et al. [2013]) and was assumed to
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be constant over the temperature, based on experimental investigations for Polyamide 6 by

dos Santos et al. [2013]. For simplicity, the coefficient of thermal expansion was assumed to

be constant αT1 = αT2 = 0.876·10-4 1/K (cf. Jurkowski et al. [2002]). In addition, the relation

for the heat capacity cT = 4.502 θ+138.7 mJ/gK was assumed, which was proposed by Millot

et al. [2015] based on the data provided by Gaur et al. [1983].

3.8 Numerical results

3.8.1 Investigation of material self-heating

As briefly discussed in the previous section, material self-heating was detected for higher

loading rates at room temperature 23 ◦C. Consequently, the (isothermal) hardening parameters

were only fitted up to a stretch level of λx ≈ 1.05 for vmax, for the initial (room) temperature.

To investigate the model response regarding the self-heating phenomena, a single element test

was considered. The stretch in longitudinal x-direction obtained from the experimental data as

a function of time was prescribed as a displacement boundary condition. Lateral contraction

was unhindered and no temperature boundary conditions were applied, to account for adiabatic

conditions. First, the isothermal model was considered, by setting the heat generation term to

zero (rt = 0). Consequently, the temperature remained constant throughout the deformation

and the hardening behavior was overestimated for stretches exceeding λx > 1.05, compared

to the experimental stress data (see Figure 3.10).
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Figure 3.10: Isothermal and thermo-mechanically coupled model response at room tempera-
ture for χ = 23 % and vmax.

Subsequently, the response of the fully thermo-mechanically coupled constitutive frame-
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work was investigated. Due to dissipative processes, a temperature increase was present. The

slight, initial temperature drop, due to the thermoelastic effect was not resolved by the model.

The following increase of the temperature corresponded with the IR temperature records on

the surface of the specimen. With proceeding deformation, the temperature was overestimated

and exceeded the recorded data in the end by approximately 2 ◦C. However, adiabatic condi-

tions were prescribed in the simulation (no heat flux nor convection). This was in contrast

to the experimental conditions. Due to the heterogeneous strain field, temperature gradients

within the specimen arose and consequently some fraction of the generated heat was trans-

ferred within the specimen and to the surrounding environment. This leads to the conclusion,

that the simulated temperature increase should indeed be higher than the recorded temperature

data - although, the specific discrepancy remains undetermined.

It should be emphasized, that the heat generation due to dissipation (cf. equation (3.42)),

was solely derived from the chosen Helmholtz free energy and is consequently only dependent

on the set of mechanical parameters (cf. Table 3.4), which was identified from uniaxial tensile

tests (no additional parameters were introduced). With rising temperature, thermal softening

was reproduced by the model, since the set of parameters was successively interpolated. The

resulting stress-stretch response was in good agreement with the experimental data (see Figure

3.10).

To experimentally identify the adiabatic self-heating of the material, tests with higher load-

ing rates should be performed in the future, to minimize the heat flux within the specimen.

Based on these results, the model response could be adjusted if necessary. One possible way

is to assume that only some fraction ω of the dissipation causes heat (i.e. r∗t = ω rt). This

procedure is widely used in the context of polymers (see e.g. Anand et al. [2009] and Maurel-

Pantel et al. [2015]), where the so called Taylor-Quinney coefficient ω is modeled in different

ways (e.g. treated as a constant or a function of temperature, strain rate, etc.). However, this

approach contradicts the stringent, thermodynamically consistent derivation of the inelastic

dissipative terms (r1 and r2 see equation (3.42)) from the local form of the energy balance

(discussed in Section 3.5). Alternatively, the model could be enhanced by taking energy con-

version mechanisms into account which do not generate heat, for example the creation of

dislocations within the crystalline structures.

3.8.2 Structural Example

To further investigate the crystallization kinetics and structural response of the model, a thermo-

mechanically coupled boundary value problem was considered. To this end, a symmetric plate

with hole was subjected to a staggered loading procedure. Due to the symmetry of the consid-
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ered problem, only one eighth of the structure was modeled. The prescribed loading procedure

and boundary conditions, as well as the geometry of the plate with hole is provided in Figure

3.11. First, the edge of the specimen was cooled down from 200 ◦C to 120 ◦C as depicted

in Figure 3.11. In two separate computations, the cooling rate was varied between 20 K/min

and 80 K/min, by setting the cooling time tc to 240 s and 80 s, respectively. Subsequently,

the temperature boundary conditions were held constant for 180 s, to ensure a homogeneous

temperature distribution within the structure. Next, the temperature boundary conditions were

removed to investigate heat generation and heat conduction and a displacement was linearly

increased over time until a value of 1 mm was prescribed. In the last step, the displacement

was held constant for 60 s to allow for stress relaxation and heat transfer.
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Figure 3.11: Geometry, boundary conditions, and applied loading procedure.
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Figure 3.12: Evolution of total degree of crystallinity χ.

The distribution of the total degree of crystallinity χ at the end of the first holding step th is
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shown in Figure 3.12, for both cooling rates. During the cooling step, temperature gradients

and non-constant cooling rates arose, which resulted in locally varying crystallization condi-

tions and thus in a heterogeneous crystallinity of the structure. This variation was more pro-

nounced for the rapid cooling conditions, whereas for θ̇ = 20 K/min an almost homogeneous

distribution with a higher degree of crystallinity was observed. The depicted temperature and

degree of crystallinity over time relations for one Gauss point revealed the typical crystalliza-

tion kinetics characteristics for different thermal treatments (i.e. lower crystallization onset

temperature θOn and lower degree of crystallinity for higher cooling rates). Noteworthy, the

heat of fusion during the crystallization process can be detected from a small temperature rise

after the crystallization onset (for θ̇ = 20 K/min), which is qualitatively in good agreement

with the experimental data provided by e.g. Faraj et al. [2015] and Kugele et al. [2017].
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Figure 3.13: Reaction force time relation and temperature (θ) as well as equivalent von Mises
stress (σeq) for selected time steps.

The dependence of the macroscopic mechanical response on the underlying microstructure

is clearly visible from the reaction force time relation (i.e. increasing stiffness, hardening and

yield stress with increasing degree of crystallinity) in Figure 3.13. In addition, the temperature
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field and the distribution of the equivalent von Mises stress σeq are presented for selected

time steps during the deformation and relaxation stages for θ̇ = 20 K/min. A heterogeneous

temperature field, due to the locally varying (plastic and inelastic) deformation rates, arose. At

the end of the deformation step (t = th+200), stress concentrations were relaxed (leading to

a drop of the reaction force) and the temperature distribution strove towards a homogeneous

equilibrium state.

3.9 Conclusions

A thermo-mechanically coupled and thermodynamically consistent constitutive framework at

finite strains was proposed for analyzing, predicting and optimizing the material and struc-

tural response of semi-crystalline polymers during thermoforming processes. To account for

the crystallization process of this class of polymers during cooling from a relaxed melt, a

non-isothermal modification of the Avrami model was incorporated into the proposed frame-

work. In this new approach, the (evolving) total degree of crystallinity was introduced as

an additional internal variable which contributes in an important manner to the macroscopic

material properties. To capture the nonlinear material response in the observed elastic, visco-

hyperelastic and visco-hyperelastic-plastic deformation regimes, a breakdown of the resis-

tance to deformation into two separate parts was proposed. The intermolecular resistance was

modeled by means of an elasto-plastic model, incorporating nonlinear kinematic and isotropic

hardening. The molecular network resistance was captured by a visco-hyperelastic model, ac-

counting for nonlinear relaxation behavior. The mechanical material parameters were assumed

to be functions of the total degree of crystallinity and the temperature and were identified based

on uniaxial tensile tests, spanning a large temperature range, for Polyamide 6 (Ultramid B40).

DSC data was utilized to characterize the crystallization kinetics model.

The heat sources due to irreversible processes and exothermic crystal growth were derived

from the chosen Helmholtz free energy and the energy balance in a thermodynamically con-

sistent manner. In this way, no additional parameters were introduced to predict the material

self-heating and accompanied thermal-softening at high loading rates. Therefore it is remark-

able, that the model response, regarding adiabatic heating and thermal softening, is in good

agreement with the provided experimental data cf. Section 3.8.

Furthermore, the model response was demonstrated in a thermo-mechanically coupled

boundary value problem. The phenomenological approach allowed to account for the com-

plex crystallization phenomena on the micro-scale, in a structural example, with sufficient

accuracy. The predicted heat release due to the crystallization process is qualitatively in good
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agreement with the reported results of Faraj et al. [2015] and Kugele et al. [2017]. To the

authors’ knowledge, there is no comparable constitutive framework available in the literature,

which accounts for the thermal, mechanical and crystallization behavior and the correspond-

ing complex interactions for semi-crystalline polymers. Consequently, the proposed theory

provides a promising foundation for further investigations in the future.

However, work needs to be done to fully validate the models response in more complex

structural problems. Despite this fact, the validation and analysis of the individual model

parts, regarding the prediction of the mechanical (cf. Felder, Vu, Reese and Simon [2020] and

Section 3.7) and thermo-mechanical response (cf. Section 3.8), show the promising potential

of this new theory to efficiently and accurately predict the material behavior under thermo-

mechanical loading conditions. Furthermore, it should be emphasized that the employed mod-

ified Nakamura-Ziabicki model (Nakamura et al. [1973]), was successfully utilized in numer-

ous other contributions, to predict the crystallization kinetics of Polyamides on a material point

(e.g. Neugebauer et al. [2016] and Zhao et al. [2018]) and on a structural level (cf. Faraj et al.

[2015] and Kugele et al. [2017]. In the corresponding experiments, non-constant cooling rates

arose and the results in Section 3.8 were qualitatively in good agreement with the reported

behavior. Conclusively, it is expected that the employed formulation is suitable to predict the

crystallization process from a static relaxed melt, in three-dimensional settings. However, this

must be investigated in more detail in the future, on the basis of similar validation experiments.

Furthermore, for simulating real thermoforming processes, a much wider range of cooling

rates must be considered. To this end, flash DSC analysis can be applied and the proposed crys-

tallization kinetics model has to be adjusted accordingly. Furthermore, shear-, compression-

and combined loading procedures need to be conducted for different loading rates, degrees

of crystallinity and temperatures. Based on these results, the energy contributions can be ad-

justed and, more importantly, a yield criterion, accounting for the underlying microstructure

and tension compression asymmetry, can be proposed. To characterize the kinematic harden-

ing response, combined tension-compression experiments are required. Relaxation tests, for

different degrees of crystallinity, are needed to capture the dependence of the relaxation time

function on this quantity. In addition, the thermal parameters should be obtained from ex-

perimental procedures with varying degrees of crystallinity, to investigate and account for the

influence of the underlying microstructure. Furthermore, future investigations should focus

on the nonlinear thermal contraction behavior during the crystallization process, to accurately

capture the formation of residual stresses.

Due to the high flexibility of the proposed model, these modifications can be incorporated

in a straight forward manner, without changing the algorithmic solution scheme or the imple-
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mented numerical approximation procedures for the required tangent moduli.
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3.10 Appendix

3.10.1

Conversion formula for elastic material parameters:

Λ1 =
E1 ν1

(1 + ν1)(1− 2ν1)
, µ1/2 =

E1/2

2 (1 + ν
1/2)

, K1/2 =
E1/2

3 (1− 2ν
1/2)

(3.58)

Temperature derivatives of material parameters: Noteworthy, the derivatives of the param-

eters E1,0, ν1/2,0, σy,0, β0, H0, α, and σ∞,0 with respect to the temperature are directly obtained

from cubic spline interpolation.

∂E1

∂θ
= χ

∂E1,0

∂θ
(3.59)

∂Λ1

∂θ
=

ν1
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∂E1
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2
1
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(ν1 + 1)2(2 ν1 − 1)2
∂ν1
∂θ

(3.60)
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∂K1/2

∂θ
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3 (1− 2 ν
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∂θ
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2E1/2

3 (2 ν
1/2 − 1)2
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1
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∂µ2
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∂σy
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= χ
∂σy,0
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(3.64)

∂β
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∂β0
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(3.65)

∂H
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(3.66)

∂σ∞
∂θ

= χα ln(χ)
∂α

∂θ
σ∞,0 + χα ∂σ∞,0

∂θ
(3.67)

Temperature derivatives of driving forces:
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∂R
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3.10.2

Crystallisation kinetics model characterisation
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Figure 3.14: Logarithmic plot of isothermal DSC data and linear regression

Table 3.5: Avrami Exponent n from linear regression of the DSC data

Isothermal [◦C] Non-isothermal [K/min]
192 194 196 198 5 10 20 40 60 100

1.973 2.236 2.230 2.068 2.335 2.847 2.650 2.487 2.391 2.535
Mean Value: 2.3752
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Figure 3.15: Crystallisation onset temperatures for different cooling rates and linear regression
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4.1 Abstract

For various engineering applications, the analysis and prediction of damage onset and prop-

agation within ductile materials under thermo-mechanical loading conditions play a crucial

role. However, finite element modeling of the influence of the temperature on plastic flow

and damage evolution and the back-coupling of theses dissipative processes on the tempera-

ture field remains a challenging task, until today. To this end, a thermo-mechanically coupled

two-surface damage-plasticity theory is derived in a thermodynamically consistent manner for

large deformations. It can be considered as the thermo-mechanically coupled extension of a

corresponding isothermal model, which was proposed recently by Brepols et al. [2020]. In this

novel theory, the heat generation associated with thermo-elastic coupling and irreversible pro-

cesses (i.e. damage and plasticity) is derived from the first law of thermodynamics. To over-

come the mesh-dependence of conventional local damage models, a gradient-extension based

on the micromorphic approach of Forest [2009, 2016] is employed. Besides the theoretical

development, the algorithmic implementation into finite elements is discussed, including the

computation of the required tangent operators via automatic differentiation. Finally, the fully

coupled multi-physical formulation is verified regarding mesh-insensitive predictions of e.g.

strain localization, local heat accumulation, material and thermal-softening, as well as crack

propagation and back-coupling effects on the temperature field. Quantitative and qualitative

comparisons of the model’s predictions to experimental data reveal the promising potential of

the numerically robust and flexible theory.

4.2 Introduction

In various engineering applications, metallic materials are subjected to both, large deforma-

tions and thermal loadings, e.g. during hot forming processes, where a complex interplay be-

tween plastic deformation mechanisms and thermo-mechanical coupling effects arises. De-

pending on the process parameters, these deformation mechanisms eventually lead to unde-

sired distortions or even crack initiation and propagation. Thus, the influence of the tem-

perature on plastic flow and damage evolution and the back-coupling of theses dissipative

processes on the temperature field play a crucial role, in the material and structural behavior.

Due to these complex dependencies, a demand for computational models arises to analyze,

predict, and optimize the processing of this class of materials.

The cause of damage in ductile materials lies in various physical phenomena, i.e. nucle-

ation, growth and coalescence of microvoids, which are observable on the microlevel (cf.
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Hosokawa et al. [2013], Landron et al. [2013], Tekoğlu et al. [2015]). To describe these phe-

nomena, numerous micro-mechanically motivated models (based on the pioneering work of

Gurson [1977] and the Gurson-Tvergaard-Needleman (GTN) model (Needleman and Tver-

gaard [1984])) and models based on the continuum damage mechanics (CDM) concept (cf.

Kachanov [1958], Rabotnov [1963, 1969], and Chaboche [1978]) were proposed. Recent im-

provements of the former group of models incorporate e.g. the void size and the void shearing

effect (among others see Malcher and Mamiya [2014], Zhou et al. [2014], Jiang et al. [2016],

Wu et al. [2019]). In the class of CDM models, the Lemaitre type (cf. Lemaitre [1984,

1985a,b]) approach is widely employed until today and was further developed to capture e.g.

crack-closure (Desmorat and Cantournet [2008]), finite strains (e.g. Badreddine et al. [2010,

2017]) or the influence of the Lode angle (e.g. Malcher and Mamiya [2014], Yue et al. [2019]).

In contrast, in two-surface approaches damage and plasticity are treated as two fully indepen-

dent dissipative yet strongly interacting mechanisms. This conceptually very different method

was applied in more recent works, in the context of small (Voyiadjis et al. [2011, 2012], Zhu

et al. [2016]) and finite deformation theories(e.g. Vignjevic et al. [2012], Balieu and Kringos

[2015], Brünig et al. [2014, 2018]).

An inherent problem of ‘local’damage models (micromechanical and CDM based), imple-

mented into a finite element framework, are strong mesh-dependent results in structural simu-

lations where material softening occurs (see e.g. Bažant et al. [1984], Cervera and Chiumenti

[2006], Jirásek and Grassl [2008], de Borst et al. [2012]). In order to solve the aforemen-

tioned problems and acquire reliable, mesh-independent results, the local damage variable, at

the integration point level, is made dependent on ‘nonlocal’quantities, which provide informa-

tion on the (damage) state of the surrounding points. This can be achieved e.g. through implicit

gradient-type formulations, in which the evolution of the global ‘nonlocal’variable is governed

by an additional partial differential equation and a set of boundary conditions. Based on the

CDM approach and previous contributions from Wu et al. [2017], Papadioti et al. [2019] estab-

lished a theory combining the uncoupled failure criterion by Bai and Wierzbicki [2008] with

the implicit gradient damage-plasticity model by Engelen et al. [2002]. The micromorphic

approach introduced by Forest [2009, 2016] allows a straight-forward derivation of implicit

gradient-type formulations (see e.g. Saanouni and Hamed [2013]). Following this approach,

gradient-extended two-surface damage-plasticity models were proposed for small (e.g. Bre-

pols et al. [2017, 2018], Kiefer et al. [2018]) and large Brepols et al. [2020] deformations.

More recent models are furthermore concerned with the combination of gradient damage with

gradient plasticity, see e.g. Dimitrijevic and Hackl [2011] and Lodygowski et al. [2011], or

the works of Miehe, Aldakheel and Raina [2016],Miehe, Teichtmeister and Aldakheel [2016],
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and Dittmann et al. [2018], where the phase field of fracture method is employed.

The change in temperature as a result of plastic deformation and corresponding thermal

softening motivated numerous scientific works related to the thermo-mechanically coupled

modeling of plasticity. In the early works of Simo and Miehe [1992] and Wriggers et al.

[1992], the modeling and numerical aspects of classical von Mises thermo-plasticity were in-

vestigated. Based on the proposed variational theory of Yang et al. [2006] and Stainier and

Ortiz [2010], Canadija and Mosler [2011] developed a thermo-mechanically coupled frame-

work, including kinematic hardening at finite strains. More recent works are concerned with

gradient-enhanced thermo-plasticity (cf. Forest and Aifantis [2010], Voyiadjis and Faghihi

[2012]), accounting for finite strains (cf. e.g. Wcislo and Pamin [2017]) and incorporating

micro-structure based size effects (Aldakheel and Miehe [2017]). A comprehensive review on

the latter topic was presented in Voyiadjis and Song [2019]. Furthermore, Russo et al. [2020]

proposed an adoption of the Cosserat model in the context of a thermo-elasto-visco-plastic

formulation, to obtain mesh-independent results.

When metals undergo large deformations, the local heat accumulation (in particular at high

loading rates) leads to temperature-induced softening and, thus, to additional plastic strain

localization, which eventually induces fracture. This is particularly the case in most metal

manufacturing processes, where the deformation of the material is enforced at relatively high

strain rates and is accompanied by the formation of large plastic strains. The correspond-

ing phenomenon of thermal softening was also revealed by several experimental investiga-

tions (see e.g. Rusinek and Klepaczko [2009] and Bragov et al. [2019]), where a significant

(local) increase in the temperature during mechanical testing at moderate and high deforma-

tion rates was reported, for various metals at ambient temperatures. Despite this fact, most

of the aforementioned regularized damage-plasticity frameworks were derived for isothermal

settings only. Some recent works are concerned with establishing regularized thermo-brittle

theories. In this regard, Sicsic et al. [2014] introduced the first phase field based method for

modeling thermal failure, which was extended by Miehe et al. [2015]. Sarkar et al. [2020] in-

troduced a thermo-mechanically coupled gradient-damage theory for small strains. However,

until today, only a very limited amount of works employ regularization techniques, in order to

obtain mesh-insensitive, thermo-mechanically coupled damage and plasticity models. In one

of these exclusive contributions by Dittmann et al. [2020], a framework with the aforemen-

tioned characteristics, which is based on the phase field method was developed, based on the

theory of Dittmann et al. [2019].

Thus, from the literature review above, an ongoing demand for further research regarding

regularized thermo-damage-plasticity models becomes evident. Consequently, the objective
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of the present study is the derivation of a theory, which allows to evaluate the impact and

interplay of all the aforementioned influences (plastic deformations, local heat accumulation,

thermal softening, heat conduction as well as damage onset and propagation) collectively.

To this end, a thermo-mechanically coupled extension of the isothermal theory presented by

Brepols et al. [2020] is proposed. In contrast to the aforementioned isothermal framework,

only linear kinematic hardening is considered in this work. To the authors’ knowledge, there is

no comparable model available in the literature, which comprises all of the following features

and novelties:

• Thermodynamically consistent derivation of thermo-mechanically coupled, two-surface

damage-plasticity theory at finite strains (see Section 4.3).

• Consistent derivation of the heat generation, associated with thermo-elastic coupling and

irreversible processes (i.e. damage and plasticity) from the first law of thermodynamics

(cf. Section 4.3.6).

• Employing an implicit gradient-type formulation, based on the micromorphic approach

(see Section 4.3).

• Presentation of both, the strong and weak forms and algorithmic solution scheme for the

three, fully coupled fields of global unknowns (i.e. displacement u, ‘nonlocal’damage

variable D̄, and temperature θ) in Section 4.4.1.

• Introduction of a fully implicit and monolithic approach and the computation of the

material tangent operators, required to obtain a quadratic rate of convergence in transient

heat transfer problems, via automatic differentiation (cf. Section 4.4.5).

The developed element and material routines are integrated into the finite element software

FEAP. Computational examples are carried out, to assess and demonstrate the models capabil-

ities regarding mesh-insensitive predictions of e.g. local heat accumulation due to dissipative

processes, strain localization and thermal softening, as well as crack propagation and back-

coupling effects on the heat conduction (see Section 4.5). Furthermore, the good convergence

behavior of the robust and flexible framework is demonstrated in fully-coupled 2D plane strain

and 3D transient heat transfer problems. In addition, first comparisons with experimental data

from the literature for different metals validate the presented approach.
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4.3 Material model formulation

Notational conventions. A direct tensor notation is preferred, where scalars, first-order ten-

sors, second-order tensors, and fourth order tensors are represented by a, a, A, and A, respec-

tively. The operators grad(∗), Grad(∗), div(∗), and Div(∗) denote the gradient and divergence

of a quantity (∗) with respect to the Eulerian and Lagrangian coordinates, respectively. tr(C),

sym(C), and dev(C) represent the trace, the symmetric and deviatoric part of a second order

tensor C, respectively. Single and double contraction between two tensors are written as A ·b
and A : B, respectively. To increase the readability, a single contraction of two second-order

tensors A and B is implied by AB, as an exception. The dyadic product of two first-order

tensors a and b is denoted by a ⊗ b. Furthermore, the norm of a second order tensor A is

defined by ||A|| =
√

tr(ATA).

4.3.1 Micromorphic approach and corresponding balance

equations

The constitutive framework, derived in this work, is based on the general micromorphic ap-

proach presented by Forest [2009]. In line with this concept, a single scalar micromorphic

damage variable D̄ is introduced to circumvent mesh-dependent results, as discussed in the

introduction. In the unified framework of Forest [2009], the generalized balance equations are

derived by applying the principle of virtual work. Assuming a non-isothermal, geometrically

nonlinear and quasi-static theory, this leads to the following set of balance equations in the

reference configuration of the body B0:

Balance of linear momentum

Div(FS) + f0 = 0 inB0

FS · n0 = t0 on ∂B0t

u = ũ on ∂B0u

(4.1)

Micromorphic balance

Div(b0i − b0e)− a0i + a0e = 0 inB0

(b0i − b0e) · n0 = a0c on ∂B0c

D̄ = ˜̄D on ∂B0D

(4.2)
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Balance of energy

−ė + S :
1

2
Ċ + a0i

˙̄D + b0i · Grad
(
˙̄D
)

− Div(q0) + rext = 0 inB0

q0 · n0 = −q0 on ∂B0q

θ = θ̃ on ∂B0θ

(4.3)

where the selected ‘microvariable’D̄ is an additional field variable and an additional micro-

morphic balance equations is introduced. In the equations above, u, F , C = F TF , and S are

the displacement vector, the deformation gradient, the right Cauchy-Green deformation tensor,

and the second Piola-Kirchhoff stress, respectively. Furthermore, the internal forces a0i and

b0i are related to the micromorphic variable and its gradient. Conventional body forces are

denoted by f0, generalized body forces by a0e and b0e , respectively. The internal energy per

reference volume is defined by e, θ is the absolute temperature, q0 the heat flux with respect to

the reference configuration and rext denotes external heat sources per reference volume. The

Neumann boundaries are defined at the outer surfaces of the body ∂B0, where n0 is the out-

ward unit normal vector. Conventional tractions and heat transfer defined on ∂B0t and ∂B0q

are denoted by t0 and q0, respectively, whereas a0c are ‘generalized’tractions defined on ∂B0c .

The Dirichlet boundary conditions are imposed on ∂B0u , ∂B0D , and ∂B0θ , where specific val-

ues of the displacement ũ, the micromorphic damage variable ˜̄D, and the temperature θ̃ are

prescribed, respectively.

4.3.2 Derivation based on the Clausius-Duhem inequality

For the thermo-mechanically coupled damage-plasticity framework, the following dependen-

cies of the free energy density ψ are assumed

ψ = ψ̌(C, (ζk, k = 1, ..., n), D̄, θ) (4.4)

where ζk denotes a set of n internal variables related to damage and plasticity, which shall be

specified in the next section.

In order to derive the constitutive equations in a thermodynamically consistent manner, the

second law of thermodynamics, expressed by means of the Clausius-Duhem inequality with

respect to the reference configuration

S :
1

2
Ċ − ψ̇ − ηθ̇ − 1

θ
q0 · Grad(θ) + a0i

˙̄D + b0i · Grad( ˙̄D)
︸ ︷︷ ︸

micromorphic extension

≥ 0 (4.5)
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must be fulfilled for arbitrary processes. Here, two additional terms are included, which follow

from the micromorphic extension (cf. Forest [2009], Forest [2016]). Furthermore, the entropy

defined per unit reference volume η is introduced. Next, the total derivative of the Helmholtz

free energy (4.4) is inserted into (4.5), which leads to

(

S − 2
∂ψ

∂C

)

:
1

2
Ċ −

n∑

k=1

∂ψ

∂ζk
: ζ̇k +

(

b0i −
∂ψd̄

∂ Grad(D̄)

)

Grad
(
˙̄D
)

+

(

a0i −
∂ψd̄

∂D̄

)

˙̄D −
(

η +
∂ψ

∂θ

)

θ̇ − 1

θ
q0 · Grad(θ) ≥ 0.

(4.6)

Following the standard arguments by Coleman and Noll [1961] and assuming zero dissipation

due to the micromorphic variable (cf. Forest [2016]), the second Piola-Kirchhoff stress as well

as the internal forces related to the micromorphic variable and its gradient are defined by

S = 2
∂ψ

∂C
, b0i =

∂ψ

∂ Grad(D̄)
, a0i =

∂ψ

∂D̄
(4.7)

Analogously, the entropy and heat flux w.r.t. the reference configuration are defined

η = −∂ψ
∂θ
, q0 = −KGrad(θ) (4.8)

In Equation (4.8), K(ζk) denotes the positive semi-definite conductivity tensor, which is also

assumed to be affected by the internal state and is defined later (see Equation (4.40)). The

remaining inequality −
∑n

k=1(∂ψ/∂ζk) : ζ̇k ≥ 0 must be satisfied by appropriate evolution

equations ζ̇k, which will be discussed later.

4.3.3 Thermodynamic state potential in terms of the Helmholtz

free energy

The material behavior is mainly determined by the Helmholtz free energy. In the past, different

choices for state potentials were postulated, in order to derive thermo-mechanically coupled

constitutive frameworks. In the following, two very common approaches (I. and II.) are briefly

discussed.

I. One reasonable starting point is the function for the Helmholtz free energy proposed by

Chadwick and Hill [1974]

ψ = ψ0(C, ζk, θ0)
θ

θ0
+ e0(C, ζk, θ0)(1−

θ

θ0
) +

∫ θ

θ0

c (C, ζk, θ)(1−
θ

θ̃
)dθ̃ (4.9)
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which is obtained by integrating the fundamental relation for the volumetric heat capacity

c := −θ∂
2ψ

∂θ2
(4.10)

twice and employing the relation for the internal energy e = ψ − θ η. In Equation (4.9), ψ0

and e0 denote the free energy and internal energy at a reference temperature θ0. By assuming

a heat capacity, which is only dependent on the temperature, this approach furnishes a linear

dependence of the stress on the temperature. This motivated e.g. Reese and Govindjee [1998a]

to consider a deformation and temperature dependent relation for c, which naturally leads to

a non-linear stress-temperature relation. In practice, this approach is in particular convenient,

if a set of material parameters at one reference temperature θ0 and the dependencies of c on

deformation and temperature are known from experiments.

II. An alternative starting point is to consider a state potential of the format

ψ = ψm(C, ζk, θ) + ψθ(θ) (4.11)

where ψm is related to the mechanical response (i.e. elastic energy, stored energy due to

hardening, etc.) and contains material parameters which are (non-linear) functions of the

temperature, in general. The caloric energy ψθ is necessary to imply additional flexibility

regarding the particular function of the volumetric heat capacity (cf. Equation 4.10)

c = −θ∂
2ψm

∂θ2
− θ

∂2ψθ

∂θ2
(4.12)

which would otherwise only be defined by the mechanical energy contributions ψm. Thus,

in general, c is a complex function of all internal variables. In some special cases, appropri-

ate terms for ψθ can be specified (see e.g. the constitutive theory by Lion et al. [2017] for

polymeric materials) and, thus, the heat capacity is evaluated in closed form. However, for

inelastic material behavior, it is in general quite difficult to experimentally assess the heat ca-

pacity for different internal states (cf. e.g. Anand et al. [2009] and Ames et al. [2009]). Thus,

often a constant heat capacity (c := const.) is assumed as an approximation and ψθ is not fur-

ther specified. For most metals this leads to sufficiently accurate results (among numerous

other contributions see e.g. Canadija and Mosler [2011], Aldakheel and Miehe [2017], and

Dittmann et al. [2020]). In this work, the second approach (II.) is followed and an energy of

the form (4.11) is considered, which allows the choice of individual functions for the temper-

ature dependent material parameters. In line with the cited literature, a constant heat capacity

(c := const.) is considered for simplicity.
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4.3.4 Thermal expansion in the context of CDM

There are different ways to account for thermal expansion of the material within a thermo-

mechanically coupled constitutive framework. One possible way is to introduce a multiplica-

tive split of the deformation gradient F = FmFθ, into the isothermal deformation gradient

Fm and the thermal deformation gradient Fθ (cf. Stojanović et al. [1964]). In the context of

damage modeling, this approach turns out to be in particular convenient, since the damage

growth criterion (see Wulfinghoff et al. [2017])

ψ(C∗, θ∗, D + dD) ≤ ψ(C∗, θ∗, D), ∀C∗, θ∗ (4.13)

here stated in the context of a thermo-mechanically coupled problem, is a priori fulfilled (for

appropriate degradation functions and isotropic damage).

This can be easily demonstrated by considering the simple example of thermo-mechanically

coupled brittle damage. When thermal expansion is captured by employing the multiplicative

split of F , an appropriate choice for the Helmholtz free energy of the second form (II.) (cf.

Equation (4.11)) is

ψ = fd(D) (ψe(Cm)) + ψθ (4.14)

where Cm = F T
mFm = F−T

θ CF−1
θ holds. Noteworthy, in this particular case ψm introduced

in Equation (4.11) takes the more special form ψm = fd(D)ψe, where ψe denotes the elastic

energy. Damage is assumed to affect ψe only, by introducing a twice-differentiable positive

and monotonically decreasing scalar-valued function fd(D). Here, fd(D) = 1 holds for an

undamaged material, whereas fd(D) takes on the value 0, if the material is fully damaged. If

ψe is a convex function and Cm positive-definite, which are natural requirements, the damage

growth criterion (cf. Equation (4.13)), here equivalently expressed as

∂ψ

∂D
=
∂fd(D)

∂D
︸ ︷︷ ︸

≤0

ψe(Cm)
︸ ︷︷ ︸

≥0

≤ 0 (4.15)

is fulfilled (noteworthy, dD ≥ 0 always holds).

Conclusively, if the thermo-mechanical extension of an isothermal CDM (satisfying con-

dition (4.13)) is desired, introducing the multiplicative split of F is straight forward. In this

way, the damage growth criterion remains fulfilled and the form of the term ψm within the

Helmholtz free energy can be taken over from the mechanical contribution in a purely isother-

mal case (except for introducing temperature dependent material parameters, if desired).
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4.3.5 Constitutive framework

For the discussed reasons above, a multiplicative split of the deformation gradient F = FmFθ,

into the isothermal deformation gradient Fm and the thermal deformation gradient Fθ (cf.

Stojanović et al. [1964]) is introduced. Depending on the type of material anisotropy, the

latter can be specified uniquely as a function of the temperature (cf. e.g. Vujošević and

Lubarda [2002], Lubarda [2004]). In the current work, isotropic material behavior and, thus,

isotropic thermal expansion is considered. Consequently,

Fθ = ϑ(θ) I (4.16)

holds. Here ϑ(θ) = exp(α(θ − θ0)) is the thermal stretch ratio, where a temperature inde-

pendent coefficient of thermal expansion α is assumed. Consequently, Fθ is proportional to

I . Thus, no additional intermediate configuration is introduced and F = ϑ(θ)Fm holds. To

model elasto-plastic material behavior, it is assumed that Fm = FeFp can be multiplicatively

decomposed into an elastic (Fe) and plastic (Fp) part, in addition (cf. e.g. Eckart [1948],

Kröner [1959], and Lee [1969]). Conclusively, F = ϑ(θ)FeFp holds. In this way, Fp maps

from the reference configuration rc to the intermediate configuration (ic) and Fe maps from

ic to the current configuration (cc), respectively.

Noteworthy, in the anisotropic case, decompositions of the type F = FeFpFθ (and pos-

sibly other permutations) can be found in the literature. However, in the authors’ opinion,

employing such decompositions ought to be well deliberated, since a clear physical justifica-

tion remains open. Other approaches, for instance the one suggested by Bertram [2003] based

on a combined thermoelastic deformation, seem to be more appropriate.

The state potential is formulated as a function of the elastic and plastic right Cauchy-Green

deformation tensors Ce and Cp, respectively, which are defined as

Ce = F T
e Fe =

1

ϑ2
F−T

p CF−1
p , Cp = F T

p Fp (4.17)

As alluded above, an additive decomposition of the Helmholtz free energy per unit reference

volume

ψ̂ = fd(D)(ψe(Ce, θ) + ψp(Cp, ξp, θ)) + ψd(ξd, θ) + ψd̄(D, D̄,Grad(D̄), θ) + ψθ(θ) (4.18)

is assumed (in line with approach II.). Here, ψe denotes the elastic energy. The plastic energy

stored due to kinematic and isotropic hardening ψp is a function of Cp and the accumulated

plastic strain ξp. The stored energy due to damage hardening is represented by ψd and depends
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on the damage hardening variable ξd. Furthermore, the energy related to the micromorphic ex-

tension (ψd̄) introduces a strong coupling between the localD and micromorphic damage vari-

ables D̄ and depends on the gradient of D̄. To account for a temperature-dependent specific

heat of the material, the caloric energy ψθ is introduced, in addition. All energy contribu-

tions are assumed to be functions of the temperature θ, in order to incorporate the influence of

the temperature on the material parameters (cf. discussion above). In line with e.g. Brepols

et al. [2020], both the elastic and plastic energies are assumed to be affected by damage, by

introducing the scalar valued function fd(D).

Noteworthy, the invariants of Ce can equivalently be expressed in terms of C,Cp, and θ

(see Appendix 4.7.1). Thus, ψ̂(Ce,Cp, ξp, D, ξd, D̄, θ) = ψ̌(C,Cp, ξp, D, ξd, D̄, θ) holds and

the internal variables (i.e. ζk introduced in Equation (4.4)) are Cp, ξp, D, and ξd, accordingly.

With the Helmholtz free energy at hand, the second law of thermodynamics is exploited

to derive the constitutive equations, as alluded above (cf. Section 4.3.2). This longer but

otherwise standard derivation (see Appendix 4.7.2) leads to the following expression for the

stress

S = 2 fd(D)
1

ϑ2
F−1

p

∂ψe

∂Ce

F−T
p (4.19)

and the remaining inequality

(M − χ) : Dp − qp ξ̇p − qd ξ̇d + Y Ḋ ≥ 0 (4.20)

Here, Dp := sym(Lp) denotes the symmetric part of the plastic velocity gradient

Lp := ḞpF
−1
p . Furthermore, the Mandel-like stress tensor (M ) and the back-stress tensor (χ)

M := fd(D) 2Ce
∂ψe

∂Ce
, χ := fd(D) 2Fp

∂ψp

∂Cp
F T

p (4.21)

in the intermediate configuration ic are introduced. In addition, the thermodynamic conjugated

driving forces to damage Y , isotropic hardening qp, and damage hardening qd are defined by

Y := −
(

dfd
dD

(ψe + ψp) +
∂ψd̄

∂D

)

, qp := fd(D)
∂ψp

∂ξp
, qd :=

∂ψd

∂ξd
(4.22)

4.3.5.1 Evolution equations

The choice of suitable plastic and damage evolution equations, which fulfill condition (4.20),

is in line with the isothermal two-surface framework by Brepols et al. [2020].
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Plasticity: Without loss of generality, a von Mises-type yield criterion incorporating isotropic

and kinematic hardening

Φp =

√

3

2
||dev(M̃ )− dev(χ̃)|| − (σy + q̃p) ≤ 0 (4.23)

is chosen to determine the onset of plasticity, where σy (θ) is the temperature dependent initial

yield stress. The yield function is expressed in terms of effective (i.e. undamaged) quantities

(∗̃) := (∗)|D=0 only, since plastic deformations are assumed to arise on the intact regions of

the material only. Associative evolution equations are chosen

Dp = λ̇p
∂Φp

∂M
= λ̇p

√

3/2

fd(D)

dev(M̃)− dev(χ̃)

||dev(M̃)− dev(χ̃)||
(4.24)

ξ̇p = −λ̇p
∂Φp

∂qp
=

λ̇p
fd (D)

(4.25)

where λ̇p is the plastic multiplier. The standard Karush-Kuhn-Tucker conditions Φp ≤ 0,

λ̇p ≥ 0, and Φp λ̇p = 0 complete the set of plastic evolution equations.

Damage: Due to the two-surface character of the presented damage-plasticity framework,

the damage behavior is captured by a separate damage criterion

Φd = Y − (Y0 + qd) ≤ 0. (4.26)

In the equation above, Y0 (θ) is the temperature dependent damage onset parameter. Analo-

gously to plasticity, associative damage evolution equations are considered, viz.

Ḋ = λ̇d
∂Φd

∂Y
= λ̇d, ξ̇d = −λ̇d

∂Φd

∂qd
= λ̇d (4.27)

where the damage multiplier λ̇d can be determined from the Karush-Kuhn-Tucker conditions

Φd ≤ 0, λ̇d ≥ 0, and Φd λ̇d = 0.

For this set of evolution equations, it can be shown that the remaining parts of the inequality

condition (4.74) are fulfilled and, thus, thermodynamic consistency is guaranteed for arbitrary

processes. For a detailed proof, the interested reader is referred to the works of Vladimirov

et al. [2008] and Brepols et al. [2020].

Up to now, the constitutive equations were derived w.r.t. different configurations, for con-

venience. However, it has several advantages to represent the tensor valued plastic evolution

equation w.r.t the reference configuration. Firstly, an efficient exponential map algorithm can



114 4 Thermo-mechanically coupled gradient-extended damage-plasticity modeling of metallic materials

be employed for the numerical time integration of the evolution equation. In this way, the

symmetry of the internal variable, as well as the plastic incompressibility will be preserved.

Secondly, in case of an isothermal setting, i.e. ϑ(θ) = 1 and Fθ = I , the resulting theoretical

framework is equivalent to the proposed theory by Brepols et al. [2020], except for the simpli-

fication of linear kinematic hardening, in the present work. Noteworthy, in this way, the plastic

spin remains undetermined (no assumption must be made) and the model will comprise one

symmetric tensorial internal variable (i.e. Cp).

The pull-back operations can be equivalently performed as outlined in Brepols et al. [2020]

and the resulting constitutive equations with respect to the reference configuration are pro-

vided in Table 4.3.7, where the back stress tensor X and the stress-like second order tensor

Y := CS −CpX w.r.t. the reference configuration are introduced. It is instructive to point

out that Y is in general unsymmetric. However, the product Y Cp is symmetric.

4.3.6 Derivation of the internal heat generation from the energy

balance

In the following section, the heat generation due to thermo-elastic coupling and dissipation,

resulting from irreversible processes (i.e. plasticity and damage), is derived in a thermodynam-

ically consistent manner. Starting point is the micromorphic extension of the energy balance

(4.3)

− ψ̇ − η̇ θ − η θ̇ + S :
1

2
Ċ + a0i

˙̄D + b0i · Grad( ˙̄D)− Div(q0) = 0 (4.28)

where the total time derivative of the internal energy per reference volume ė = ψ̇ + η̇ θ + η θ̇

was already incorporated. Furthermore, external heat generation is neglected in this work and,

thus, rext vanishes in the balance law above. Subsequently, the total time derivative of the

Helmholtz free energy (4.18), as well as the total time derivative of the entropy (4.75) are

inserted in Equation (4.28). In this way, the partial differential equation for the temperature

field, including internal heat generation rint due to thermo-elastic coupling re, plasticity rp, as
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well as damage and the micromorphic extension rd

c θ̇ = re + rp + rd
︸ ︷︷ ︸

rint

−Div(q0)

where: re :=

(

θ
1

2

∂S

∂θ
− θ α

∂S

∂C
: C − θSα

)

: Ċ

rp :=

(

M − θ
∂M

∂θ
− χ+ θ

∂χ

∂θ

)

: Dp −
(

qp − θ
∂qp
∂θ

)

ξ̇p

rd :=

(

Y − θ
∂Y

∂θ

)

Ḋ −
(

qd − θ
∂qd
∂θ

)

ξ̇d +

(

θ
∂a0i
∂θ

− θ α
∂S

∂D̄
: C

)

˙̄D

+ θ
∂b0i
∂θ

· Grad( ˙̄D)

(4.29)

can be established, after several mathematical transformations. In the expression above, the

volumetric heat capacity is approximated as a constant (c := const.) for simplicity (see dis-

cussion in Section 4.3.3)

Analogous to the plastic constitutive equations, the heat generation due to plastic deforma-

tion rp is expressed in terms of quantities in the reference configuration (i.e. Cp, S, and X)

as well

rp =
1

2
C

(

S − θ
∂S

∂θ

)

: C−1
p Ċp −

1

2

(

X − θ
∂X

∂θ

)

: Ċp −
(

qp − θ
∂qp
∂θ

)

ξ̇p (4.30)

For the derivation of the expression above, the interested reader is referred to Appendix 4.7.3.

4.3.7 Summary of constitutive equations

The term F−1
p (∂ψe/∂Ce)F

−T
p can equivalently be expressed as a function of C and Cp.

Hence, it can be concluded that all constitutive equations introduced above can be expressed

in terms of the symmetric tensors C and Cp, the temperature θ, the micromorphic damage

variable D̄, the local damage variable D, as well as the plastic and damage multipliers λ̇p and

λ̇d. The internal variables are Cp, ξp, D, ξd, accordingly. For convenience, a summary of the

constitutive equations is presented below:
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• Constitutively dependent quantities:

S = 2 fd
1

ϑ2
F−1

p

∂ψe

∂Ce
F−T

p , b0i =
∂ψd̄

∂ Grad(D̄)
, a0i =

∂ψd̄

∂D̄
, X = 2 fd

∂ψp

∂Cp

• Referential heat flux:

q0 = −KGrad(θ)

• Thermodynamically conjugated forces:

qp = fd(D)
∂ψp

∂ξp
, Y = −

(
dfd
dD

(ψe + ψp) +
∂ψd̄

∂D

)

, qd =
∂ψd

∂ξd

• Plastic and damage onset criteria:

Φp =

√

3

2

√

dev(Ỹ ) : dev(Ỹ )T − (σy + q̃p), whereY = CS −CpX

Φd = Y − (Y0 + qd)

• Evolution equations:

Ċp = 2 λ̇p

√

3/2

fd(D)

dev(Ỹ )Cp
√

dev(Ỹ ) : dev(Ỹ )
, ξ̇p =

λ̇p
fd (D)

, Ḋ = λ̇d, ξ̇d = λ̇d

• Loading / unloading conditions:

Φp ≤ 0, λ̇p ≥ 0, Φp λ̇p = 0 and Φd ≤ 0, λ̇d ≥ 0, Φd λ̇d = 0

• Internal heat generation:

re =

(

θ
1

2

∂S

∂θ
− θ α

∂S

∂C
: C − θSα

)

: Ċ

rp =
1

2
C

(

S − θ
∂S

∂θ

)

: C−1
p Ċp −

1

2

(

X − θ
∂X

∂θ

)

: Ċp −
(

qp − θ
∂qp
∂θ

)

ξ̇p

rd =

(

Y − θ
∂Y

∂θ

)

Ḋ −
(

qd − θ
∂qd
∂θ

)

ξ̇d +

(

θ
∂a0i
∂θ

− θ α
∂S

∂D̄
: C

)

˙̄D

+θ
∂b0i
∂θ

· Grad( ˙̄D)

4.3.8 Specific choices for energy terms

In the previous sections, the constitutive framework was derived in a general manner, without

introducing a specific form of the Helmholtz free energy. However, for the numerical examples
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presented in this work, specific energy terms are chosen in the following. To capture the elastic

response of the material, a compressible Neo-Hookean-type energy is chosen

ψe =
µ

2
(tr(Ce) − 3− ln (det(Ce))) +

Λ

4
(det(Ce) − 1− ln (det(Ce))) (4.31)

where µ(θ) and Λ(θ) are the temperature dependent Lamé constants. Furthermore, the plastic

energy

ψp =
a

2
(tr(Cp) − 3− ln (det(Cp))) + ep

(

ξp +
exp(−fp ξp)− 1

fp

)

+
1

2
P ξ2p (4.32)

corresponds to linear kinematic hardening and nonlinear isotropic hardening of Voce-type

(Voce [1955]) plus an additional linear hardening term, with the corresponding temperature

dependent parameters a(θ), ep(θ), fp(θ), and P (θ), respectively. With these functions at hand,

the explicit forms of the second Piola-Kirchhoff stress S, the back-stress tensor X and the

driving force of isotropic hardening qp can be derived from the Equations provided in Section

4.3.7, accordingly, viz.

S = fd(D)

(

µ

(
1

ϑ2
C−1

p −C−1

)

+
Λ

2

(
det(C)

ϑ6 det(Cp)
− 1

)

C−1

)

(4.33)

X = fd(D) a
(
I −C−1

p

)
(4.34)

qp = fd(D) ( ep (1− exp(−fp ξp)) + P ξp) (4.35)

Noteworthy, it can be shown that the resulting function for S leads to physically reasonable

stress contributions, corresponding to constrained thermal expansion, which might not be ob-

vious from the presented equation above. This fact is discussed in detail in Appendix 4.7.4,

where the reduction of the constitutive law to a thermo-elastic theory is presented, which is a

natural requirement for any thermo-mechanically coupled framework.

Furthermore, nonlinear damage hardening is considered by choosing

ψd = ed

(

ξd +
exp(−fd ξd)− 1

fd

)

(4.36)

with the corresponding temperature dependent damage hardening parameter ed(θ) and fd(θ).

In addition, the energy related to the micromorphic extension of the model is introduced

ψd̄ =
H

2
(D − D̄)2 +

A

2
Grad(D̄) · Grad(D̄) (4.37)
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where H serves as a penalty parameter and couples the local and micromorphic damage vari-

ables by penalizing the difference between these two. The internal length parameterA controls

the influence of the gradient of the micromorphic variable in the formulation. Noteworthy, H

and A are assumed to be temperature independent in the present work. Based on these ad-

ditional energy terms, the remaining state laws as well as the driving forces for damage and

damage hardening are derived from Equation (4.7) and (4.22), respectively:

a0i = −H (D − D̄), b0i = AGrad(D̄) (4.38)

Y = −dfd
dD

(ψe + ψp)−H (D − D̄), qd = ed (1− exp(−fd ξd)) (4.39)

Noteworthy, since Y is a function of the micromorphic variable, a ‘nonlocal’character of the

damage loading function (4.26) at the constitutive level is introduced.

In line with Dittmann et al. [2020], the conductivity tensor K, introduced in Equation (4.8),

is chosen to be a function of the local damage variable, viz.

K = (fd(D)K0 + (1− fd(D))Kc)C
−1 (4.40)

Here, K0 is the heat conduction parameter in a virgin material (fd = 1), whereasKc represents

a significantly reduced heat conduction in the case of a fully damaged material (fd = 0).

4.4 Algorithmic implementation

4.4.1 Weak form of the problem and its linearization

Due to the presented, thermo-mechanically coupled and gradient extended constitutive theory,

three fields u, D̄, and θ are solved simultaneously. To this end, the strong forms of linear

momentum (4.1), the micromorphic balance equation (4.2), and the energy balance (4.29), are

transformed to the corresponding weak forms. Hence, in the usual way, the balance laws are

multiplied by appropriate test functions δu, δD̄, and δθ and are integrated over the domain

B0. At this point, it is assumed that generalized contact and external forces can be neglected

(i.e. a0c = a0e = 0 and b0e = 0) and only Neumann boundary conditions are considered for

the micromorphic damage (i.e., ∂B0c ≡ ∂B0, ∂B0D̄
≡ ∅). By considering the divergence

theorem and the boundary conditions, and inserting the relations for a0i and b0i (4.38) into the
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micromorphic balance law (4.2), the following weak forms can be established.

gu(u, D̄, θ, δu) =

∫

B0

S : δE dV −
∫

B0

f0 · δu dV −
∫

∂B0t

t0 · δu dA = 0 (4.41)

gd(u, D̄, θ, δD̄) =

∫

B0

(H (D − D̄)δD̄ − AGrad(D̄) ·Grad(δD̄)) dV = 0 (4.42)

g̃θ(u, D̄, θ, θ̇, δθ) =

∫

B0

c θ̇δθ dV −
∫

B0

q0 ·Grad(δθ) dV −
∫

B0

rint δθ dV

−
∫

∂B0q

q0 δθ dA = 0
(4.43)

At this point, the weak form corresponding to the energy balance gθ is discretized in time, by

subdividing the total time T into discrete time increments ∆tn, viz.

[0, T ] ≈
ntime⋃

n=1

∆tn (4.44)

The approximation θ̇ ≈ (θn+1− θn)/(∆t) is introduced, where θn+1 and θn denote the current

temperature and the temperature of the last converged time step, respectively. For brevity, the

index n + 1 is omitted in all following equations. Consequently, the following fully implicit

temporal discretization is obtained for gθ

gθ(u, D̄, θ, δθ) =

∫

B0

c
θ − θn
∆t

δθ dV −
∫

B0

q0 ·Grad(δθ) dV −
∫

B0

rint δθ dV

−
∫

∂B0q

q0 δθ dA = 0
(4.45)

The nonlinearity of the problem, stemming from the kinematics and constitutive relations,

requires an incremental approach in finding the final solution. To this end, the weak forms

above are linearized, with respect to the unknowns ∆u, ∆D̄ and ∆θ, by utilizing the Gâteaux

derivative

∆gu =

∫

B0

Grad(δu) : (Grad(∆u)S) dV +

∫

B0

δE : ∆S dV (4.46)

∆gd =

∫

B0

H(∆D −∆D̄) δD̄ dV −
∫

B0

AGrad(∆D̄) ·Grad(δD̄) dV (4.47)

∆gθ = −
∫

B0

∆q0 ·Grad(δθ) dV −
∫

B0

∆rint δθ dV +

∫

B0

c
∆θ

∆t
δθ dV (4.48)

Here, it was assumed that the body force f0, the surface traction t0, and surface heat transfer
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q0 are independent of the field variables. For a detailed derivation of the increments ∆gu, ∆gd,

and ∆gθ, the interested reader is referred to Appendix 4.7.5.

The increments of the constitutive relations in Equations (4.46)-(4.48)

∆S =
∂S

∂E

∣
∣
∣
∣
D̄
θ

[∆E] +
∂S

∂D̄

∣
∣
∣
∣
u
θ

∆D̄ +
∂S

∂θ

∣
∣
∣
∣
u
D̄

∆θ (4.49)

∆D =
∂D

∂E

∣
∣
∣
∣
D̄
θ

: ∆E +
∂D

∂D̄

∣
∣
∣
∣
u
θ

∆D̄ +
∂D

∂θ

∣
∣
∣
∣
u
D̄

∆θ (4.50)

∆q0 =
∂q0

∂E

∣
∣
∣
∣
D̄
θ

: ∆E +
∂q0

∂D̄

∣
∣
∣
∣
u
θ

∆D̄ +
∂q0

∂θ

∣
∣
∣
∣
u
D̄

∆θ (4.51)

∆rint =
∂rint

∂E

∣
∣
∣
∣
D̄
θ

: ∆E +
∂rint

∂D̄

∣
∣
∣
∣
u
θ

∆D̄ +
∂rint

∂θ

∣
∣
∣
∣
u
D̄

∆θ (4.52)

are expressed in terms of the primary unknowns∆u, ∆D̄, and ∆θ, which are solved for during

the iterative solution scheme. In the relations above

∆E :=
1

2

(
F TGrad(∆u) + Grad(∆u)TF

)
(4.53)

holds. Noteworthy, the term within Equation (4.51) associated with the temperature derivative

of the heat flux can be reformulated, by recalling the chain rule of differentiation viz.

∆q0 =
∂q0

∂E

∣
∣
∣
∣
D̄
θ

: ∆E +
∂q0

∂D̄

∣
∣
∣
∣
u
θ

∆D̄ +
∂q0

∂θ

∣
∣
∣
∣ u

D̄
Grad(θ)

∆θ +
∂q0

∂Grad(θ)

∣
∣
∣
∣u
D̄
θ

· Grad(∆θ) (4.54)

where the relation (∂Grad(θ)/∂θ)∆θ = Grad(∆θ) was employed. This alternative repre-

sentation is beneficial in the finite element discretization, since the remaining derivatives (i.e.

∂q0/∂θ and ∂q0/∂Grad(θ)) can be calculated at the integration point level (cf. Section 4.4.2).

4.4.2 Finite element discretization

By employing the finite element method, the domain of the boundary value problem in the

reference configuration B0 is approximated by nel finite elements Be
0:

B0 ≈
nel⋃

e=1

Be
0. (4.55)
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Next, the solution fields (i.e. u(X), D̄(X), and θ(X)) and corresponding test functions in

each finite element are approximated

u(X) ≈ N e
u(X)ue, δu(X) ≈ N e

u(X)δue, ∆u(X) ≈ N e
u(X)∆ue,

D̄(X) ≈ N e
D̄(X)D̄e, δD̄(X) ≈ N e

D̄(X)δD̄e, ∆D̄(X) ≈ N e
D̄(X)∆D̄e,

θ(X) ≈ N e
θ (X)θe, δθ(X) ≈ N e

θ (X)δθe, ∆θ(X) ≈ N e
θ (X)∆θe

(4.56)

where the element nodal values (column vectors) are denoted by ue, D̄e, θe and the element

shape functions (matrices) by N e
u,N

e
D̄
,N e

θ , respectively. By taking the derivative of the shape

functions w.r.t. X , the B-operators (matrices) Be
0u(X),Be

0D̄
(X),Be

0θ(X) are defined:

Grad(u) ≈ Be
0u u

e, Grad(δu) ≈ Be
0u δu

e, Grad(∆u) ≈ Be
0u ∆ue,

Grad(D̄) ≈ Be
0D̄ D̄e, Grad(δD̄) ≈ Be

0D̄ δD̄
e, Grad(∆D̄) ≈ Be

0D̄ ∆D̄e,

Grad(θ) ≈ Be
0θ θ

e, Grad(δθ) ≈ Be
0θ δθ

e, Grad(∆θ) ≈ Be
0θ ∆θe

(4.57)

Subsequently, the Green-Lagrange strain tensor E, the test function δE, and the incremental

change of the Green-Lagrange strain tensor ∆E can be expressed as

E(X) ≈ Ge
0u(X)ue, δE(X) ≈ Ge

0u(X)δue, ∆E(X) ≈ Ge
0u(X)∆ue. (4.58)

using matrix Ge
0u, which is a function of the shape function derivatives and the deformation

gradient (details can be found e.g. in Belytschko et al. [2014]).

Next, by introducing the Voigt notation ˆ(∗), the weak forms of the governing Equations

(4.41), (4.42), and(4.45) as well as their linearizations (4.46)-(4.48) are expressed in terms of

the finite element approximations

gu ≈
nel⋃

e=1

δueT
{∫

Be
0

GeT

0u Ŝ
e dV −

∫

Be
0

N eT

u f e
0 dV −

∫

∂Be
0t

N eT

u te0 dA

︸ ︷︷ ︸

re
u

}

∆gu ≈
nel⋃

e=1

δueT
{(∫

Be
0

BeT

0u D
eBe

0u dV +

∫

Be
0

GeT

0u

∂Ŝe

∂Êe
Ge

0u dV

︸ ︷︷ ︸

ke
uu

)

∆ue

+

∫

Be
0

GeT

0u

∂Ŝe

∂D̄e
N e

D̄ dV

︸ ︷︷ ︸

ke
uD̄

∆D̄e +

∫

Be
0

GeT

0u

∂Ŝe

∂θe
N e

θ dV

︸ ︷︷ ︸

ke
uθ

∆θe

}

.

(4.59)
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In the expression above, the fourth-order tensor D can be expressed in index notation, in terms

of the Kronecker delta δik, as Dijkl = Sjlδik (see e.g. de Souza Neto et al. [2008]). Equiva-

lently, the finite element approximation of the weak form of the micromorphic balance equa-

tion

gd ≈
nel⋃

e=1

δD̄eT
{∫

Be
0

HN eT

D̄ (De −N e
D̄D̄

e) dV −
∫

Be
0

ABeT

0D̄ Be
0D̄ D̄e dV

︸ ︷︷ ︸

re
D̄

}

∆gd ≈
nel⋃

e=1

δD̄eT
{∫

Be
0

HN eT

D̄

∂De

∂Êe
Ge

0u dV

︸ ︷︷ ︸

ke
D̄u

∆ue

+

(∫

Be
0

H

(
∂De

∂D̄e
− 1

)

N eT

D̄ N e
D̄ dV −

∫

Be
0

ABeT

0D̄ Be
0D̄ dV

︸ ︷︷ ︸

ke
D̄D̄

)

∆D̄e

+

∫

Be
0

HN eT

D̄

∂De

∂θe
N e

θ dV

︸ ︷︷ ︸

ke
D̄θ

∆θe

}

(4.60)

as well as the approximation of the weak form corresponding to the energy balance

gθ ≈
nel⋃

e=1

δθeT
{

−
∫

Be
0

BeT

0θ qe
0 dV −

∫

Be
0

N eT

θ reint dV −
∫

∂Be
0q

N eT

θ qe0 dA

+

∫

Be
0

cN eT

θ N e
θ

1

∆t
(θe − θe

n) dV

}

∆gθ ≈
nel⋃

e=1

δθeT
{(

−
∫

Be
0

BeT

0θ

∂qe
0

∂Êe
Ge

0u dV −
∫

Be
0

N eT

θ

∂reint

∂Êe
Ge

0u dV

︸ ︷︷ ︸

ke
θu

)

∆ue

+

(

−
∫

Be
0

BeT

0θ

∂qe
0

∂D̄e
N e

D̄ dV −
∫

Be
0

N eT

θ

∂reint

∂D̄e
N e

D̄ dV

︸ ︷︷ ︸

ke
θD̄

)

∆D̄e

+

(∫

Be
0

cN eT

θ N e
θ

1

∆t
dV −

∫

Be
0

BeT

0θ

∂qe
0

∂θe
N e

θ +BeT

0θ

∂qe
0

∂Grad(θ)e
Be

0θ dV

︸ ︷︷ ︸

ke
θθ

−
∫

Be
0

N eT

θ

∂reint

∂θe
N e

θ dV

︸ ︷︷ ︸

ke
θθ

)

∆θe

}

(4.61)
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can be derived. In the latter expression, the nodal values of the temperature of the last con-

verged iteration are defined by θe
n. Furthermore, the element stiffness matrices ke

uu, ke
uD̄

, ke
uθ,

ke
D̄u

, ke
D̄D̄

, ke
D̄θ

, ke
θu, ke

θD̄
, and ke

θθ as well as the element residual vectors re
u, r

e
D̄
, and re

θ were

introduced.

Subsequently, the global stiffness matrices Kuu, KuD̄, Kuθ, KD̄u, KD̄D̄, KD̄θ, Kθu, KθD̄,

and Kθθ as well as the global residual vectors Ru,RD̄,Rθ are assembled from the individual

element contributions, in the usual way. Finally, by taking the boundary conditions and the

arbitrariness of the test functions into consideration, the following fully coupled set of global

nonlinear equations is obtained






Kuu KuD̄ Kuθ

KD̄u KD̄D̄ KD̄θ

Kθu KθD̄ Kθθ












∆u

∆D̄

∆θ







= −







Ru

RD̄

Rθ







(4.62)

which is simultaneously solved for the global nodal increments ∆u,∆D̄, and ∆θ, until con-

vergence is achieved.

4.4.3 Time integration of evolution equations

In the following, the time integration schemes for the evolution equations of the internal vari-

ables are discussed, where the index n corresponds to quantities of the last converged time

step at tn, whereas the index n+1 is omitted for brevity. For the numerical time integration of

the plastic evolution Equation (see Section 4.3.7), the exponential map algorithm is employed,

which is motivated by the findings of Vladimirov et al. [2008]. This integration scheme results

in improved performance, accuracy and robustness for increasing step size. Furthermore, the

plastic volume det(Cp) = 1 is preserved.

To circumvent a truncated series representation of the exponential function, due to an asym-

metric tensorial argument, Reese and Christ [2008], Vladimirov et al. [2008], and Pietryga

et al. [2012] utilized a modified ansatz, originally proposed by Dettmer and Reese [2004]. In

the current work, the same modification is employed, which leads to the following form of the

discretized evolution equation (for details, see the aforementioned contributions)

(Up,n Up,n)
−1 = U−1

p exp

(

λ̄p U
−1
p 2

√

3/2

fd(D)

dev(Ỹ )Cp
√

dev(Ỹ ) : dev(Ỹ )T
︸ ︷︷ ︸

=:Z

U−1
p

)

U−1
p (4.63)
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where λ̄p = ∆t λ̇p as well as the plastic stretch tensors Up =
√

Cp and Up,n =
√
Cp,n, cor-

responding to the current time step and last converged time step, are introduced, respectively.

Hence, C−1
p = U−1

p U−1
p holds and Equation (4.63) can be expressed in terms of the unknown

quantities U−1
p , λ̄p and D only, which must be solved for during the local solution procedure

on the integration point level.

For the time integration of the scalar evolution equations, the classical backward Euler

algorithm is utilized, viz.

ξp = ξp,n +
λ̄p

fd(D)
, D = Dn + λ̄d, ξd = ξd,n + λ̄d (4.64)

where λ̄d = ∆t λ̇d holds.

4.4.4 Numerical implementation at the integration point level

Based on the relations (4.23), (4.63), and (4.26), the following set of equations, here already

presented in a residuum format

R1(U
−1
p , λ̄p, λ̄d,C, θ) := Φp = 0 (4.65)

R2(U
−1
p , λ̄p, λ̄d,C, θ) := − (Up,n Up,n)

−1 +U−1
p exp

(
λ̄p U

−1
p Z U−1

p

)
U−1

p = 0 (4.66)

R3(U
−1
p , λ̄p, λ̄d,C, D̄, θ) := Φd = 0 (4.67)

must be solved for U−1
p , λ̄p, and λ̄d at each integration point. Noteworthy, ξp, ξd, and D

can be expressed in terms of λ̄p and λ̄d and the known values of the previous time step tn

(see Equation (4.64)) and are therefore not treated as additional unknowns, during the local

iteration.

Due to the employed two-surface framework and the corresponding separate loading / un-

loading conditions as well as onset criteria (cf. Equations (4.23), (4.26)), four exclusive cases,

summarized in Table 4.1, can occur at the integration point level.

Table 4.1: Possible loading scenarios at the integration point level

Loading case Multiplier Loading function Active residuals
plasticity damage plasticity damage

elastic loading/unloading λ̄p = 0 λ̄d = 0 Φp ≤ 0 Φd ≤ 0 none
elasto-plastic loading λ̄p > 0 λ̄d = 0 Φp = 0 Φd ≤ 0 R1, R2

elastic-damage loading λ̄p = 0 λ̄d > 0 Φp ≤ 0 Φd = 0 R3

elastoplastic-damage loading λ̄p > 0 λ̄d > 0 Φp = 0 Φd = 0 R1, R2, R3
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In this work, a predictor-corrector algorithm in connection with an active set search strategy

is utilized, in order to differentiate between the aforementioned cases and compute the actual

solution in a monolithic approach. For further details regarding the active set search strategy

and its implementation, which is similar to approaches applied in multisurface-plasticity, the

interested reader is referred to the work of Brepols et al. [2017].

As an example, the solution procedure for an elastoplastic-damage loading case is briefly

discussed, in the following. Due to the symmetry of the internal variables, in total a system of

eight nonlinear equations, corresponding to the local residual vector

rloc := (R1, R̂2, R3)
T = 0 must be solved for the solution vector xloc := (λ̄p, Û

−1
p , λ̄d)

T . To

this end, Newton’s method is employed, which requires an additional linearization of the resid-

uals (for constant C, D̄, and θ) and the calculation of the Jacobian matrix J1 := ∂rloc/∂xloc.

The latter is obtained by implementing the residuum as an individual subroutine in Mathemat-

ica. In this way, the software AceGen (cf. Korelc [2002] and Korelc and Wriggers [2016]) can

be employed for the automatic differentiation of rloc w.r.t. xloc and generating the correspond-

ing Fortran routine, comprising the latter.

After the residual is converged, the internal heat generation rint is computed. At this point,

two observations are made: First, due to the chosen specific energy ψd̄ (see Equation (4.37))

and the reasonable assumption of temperature independent internal length parameter A and

penalty parameter H , the partial derivatives ∂a0i/∂θ and ∂b0i/∂θ in Equation (4.29) vanish

(cf. Equation (4.38)). Secondly, computational examples (see Section 4.5.1) show that the

terms in Equation (4.29) multiplied by the thermal expansion coefficient α, which is of the or-

der of 10−5 for most metals, are negligibly small compared to the other contributions and can,

thus, be neglected. Consequently, the dissipation caused by thermoelastic coupling, plasticity

and damage (viz. Equations (4.29) and (4.30)) considered in this work reduces to

rint =

(
1

2
θ
∂S

∂θ

)

: Ċ +
1

2
C

(

S − θ
∂S

∂θ

)

: C−1
p Ċp −

1

2

(

X − θ
∂X

∂θ

)

: Ċp

−
(

qp − θ
∂qp
∂θ

)

ξ̇p +

(

Y − θ
∂Y

∂θ

)

Ḋ −
(

qd − θ
∂qd
∂θ

)

ξ̇d

(4.68)

Noteworthy, the rate terms Ċp, ξ̇p, Ḋ, and ξ̇d required to compute the internal dissipation are

obtained from Equations provided in Section 4.3.7, where the plastic multiplier λ̇p = λ̄p/∆t

and λ̇d = λ̄d/∆t are computed from the solution of the local iteration and the corresponding

time step size ∆t, respectively. The rate of the right Cauchy-Green deformation tensor Ċ is

approximated by Ċ ≈ (Cn+1 −Cn)/∆t.
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4.4.5 Consistent tangent operators

Finally, the 12 material sensitivities, introduced in Equation (4.49)-(4.52) must be imple-

mented consistently with the employed numerical time integration scheme (see e.g. Wriggers

[2008]). To this end, a sequential computation is proposed, where segments of the material

routine (i.e. the functions for the residuum, the stress and the heat generation) are coded in

Mathematica. Hence, the software Acegen can be used in order to determine the correspond-

ing partial derivatives by means of automatic differentiation and to provide the corresponding

computations in separate Fortran routines. This approach guarantees a quadratic rate of con-

vergence for the local and global Newton-Raphson schemes, for fully coupled problems (see

Section 4.5.2.2). For a more detailed explanation and the derivation of the tangent operators,

the interested reader is referred to Appendix 4.7.6.

4.5 Numerical examples

In this section, the model’s capabilities to capture the coupling effects between temperature,

plasticity, and damage are assessed in both, academic settings as well as in comparison to

experimental results for different metals from the literature. In Section 4.5.1, the material

self-heating is investigated in single element computations. Subsequently, Section 4.5.2 ad-

dresses the model’s mesh-insensitivity and convergence behavior in fully-coupled 2D and 3D

structural examples.

For all computations, a damage weakening function of fd(D) = (1−D)2 was considered.

The elastic constants were assumed to be independent of the temperature, whereas the plastic

parameters were chosen to degrade linearly with increasing temperature, for simplicity. The

saturation-type function fθ(θ) = (1 − ω(θ − θ0)) was chosen, in line with Dittmann et al.

[2020], to capture the temperature dependency of the plastic parameters (∗) = fθ(θ)(∗)0.

Here, ω is the softening parameter, as outlined in Simo and Miehe [1992]. Clearly, this choice

is only valid for fθ(θ) > 0. Some further limitations regarding this thermal softening function

are discussed in Appendix 4.7.7. Due to the lack of experimental data, all damage parameters

were assumed to be temperature independent, for the time being. Furthermore, the heat con-

ductivity was assumed to be significantly larger in a virgin material than in the fully damaged

state and Kc was therefore set to zero, for all computations.

The particular identification procedures or literature sources for the material parameters are

discussed for each example separately, in the corresponding sections. An overview is provided

in Table 4.2.
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Table 4.2: Material parameter sets
Numerical Example: 4.5.1 4.5.1.1 4.5.2.1 4.5.2.2

Symbol Material parameter Set 1 Set 2 Set 3 Set 4 Unit

Elastic parameters

Λ Lamé parameter 50 58.69 101.16 25 GPa
µ Shear modulus 75 25.15 73.255 55 GPa

Plastic parameters

σ0 Yield stress 200 135.7 340 100 MPa
a0 Kinematic hardening modulus 125 0 0 62.5 MPa
P0 Isotropic hardening modulus 0 240.3 520 0 MPa
ep,0 1st Voce hardening 125 123.41 296 125 MPa
fp,0 2nd Voce hardening 8.5 17.1 18.9 5 -

Damage and gradient extension

Y0 Damage threshold 10 104 750 2.5 MPa
ed 1st damage hardening 2 - 100 5.0 MPa
fd 2nd damage hardening 2 - 100 100 -
A Internal length parameter - - 50 75 MPa mm2

H Penalty parameter - - 104 106 MPa
Thermal parameters

c Volumetric heat capacity 3.59 3.10 3.59 3.59 mJ/(mm3 K)
α Thermal expansion coefficient 1.1 2.5 1.1 1.1 10−5/K
K0 Conductivity 50.2 91.19 50.2 50.2 mW/(mm K)
θ0 Reference temperature 273.15 293.15 273.15 273.15 K
ω Thermal softening parameter 0.002 0 0.0005 0.002 1/K

4.5.1 Material self-heating

To study the internal heat generation and material self-heating, a single 3D finite element with

unit length was subjected to uniaxial extension, with a loading rate of Ḟ11 = 0.01 s−1 under

adiabatic conditions q0 = 0 at room temperature θ0 =293 K. The arbitrarily chosen parame-

ters for this academic example are listed in Table 4.2 as Set 1. It should be emphasized that

in this example, the micromorphic extension had no influence, due to the homogeneous (i.e.

‘gradient-free’) deformation state. Noteworthy, a parameter study of the mechanical parame-

ters is not performed in the current manuscript. For a detailed investigation of the influence of

the model’s plastic parameters, the interested reader is referred to the work of Vladimirov et al.

[2008]. The influence of the parameters related to damage onset and hardening are studied in

detail in the isothermal finite strain version of the constitutive theory by Brepols et al. [2020].

In Figure 4.1, the corresponding Cauchy stress (top) and the heat generation (middle) are de-

picted. In the elastic regime, thermo-elastic cooling (with almost constant and negative re, see

zoom-in in Figure 4.1) arose, leading to a drop in the temperature (see bottom of Figure 4.1).
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Figure 4.1: Single element subjected to uniaxial extension under adiabatic conditions. Top:
Cauchy stress σ11 over stretch F11 in longitudinal direction. Middle: Correspond-
ing total heat generation rint and decomposition into elastic re, plastic rp, and dam-
age rd parts. Bottom: Comparison of computation with (w.) and without (wo.)
α-terms (cf. Equation (4.29)). Corresponding influence on the heat generation and
resulting change in temperature ∆θ.

Once the initial yield stress was reached, plastic flow occurred, resulting in positive heat gen-

eration due to plastic dissipation rp and a significant decrease in the elastic cooling re to almost

zero. With increasing deformation, damage occurred, which was accompanied by additional

heat generation rd due to the additional dissipation.

The bottom of Figure 4.1 is concerned with the influence of the terms within the heat gener-

ation function (4.29), which are multiplied by the thermal expansion coefficient α. It becomes

evident that neglecting these terms, for common thermal expansion coefficients of metals (of
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the order of 10−5), leads to a negligibly small deviation in both, the heat generation as well as

the corresponding change in temperature. Concomitant with the discussion in Section 4.4.4,

these terms are, thus, neglected throughout the following computational examples.

4.5.1.1 Comparison of heat generation with experimental data

Next, the model predictions for the heat generation due to dissipation were quantitatively com-

pared to the experimental findings of Rose and Menzel [2020]. In the aforementioned publica-

tion, digital image correlation (DIC) and infrared thermography were employed, to simultane-

ously measure the temperature and displacement fields of an aluminum alloy (AW6016) under

uniaxial extension at room temperature. In this way, the engineering stress-stretch relation in

longitudinal 1-direction (First Piola-Kirchhoff P11 vs. F11) as well as the temperature rise ∆θ

in the center of a flat dog bone specimen were obtained (see Figure 4.2). To assess the models’

predictions of the heat generation, a single element with dimensions 1 mm x 1 mm x 1.2 mm

(capturing the thickness of 1.2 mm of the dogbone specimen) was subjected to uniaxial exten-

sion with the same loading rate of Ḟ11 = 0.00114 s−1 as in the experiment.

The experimentally observed temperature field revealed an almost homogeneous tempera-

ture distribution in the center of the gauge length. Thus, by considering a small section of 1

mm x 1 mm in this region of the specimen, it was assumed that the heat conduction within

the material to neighboring regions was negligible, due to the small temperature gradient.

However, a fraction of the released heat was transferred to the environment via the specimen

surface by thermal convection. To account for this heat exchange in the course of the simpli-

fied single element model, a corresponding convective heat flux on the two outward surfaces

of the element was considered, viz.

q̇c = Ks A (θ − θ0). (4.69)

In the equation above, Ks is the surface convection coefficient towards air and A = 1 mm2

is the considered surface area. As concluded by Rose and Menzel [2020], the literature (e.g.

Incropera et al. [2007]) suggests values forKs between 2 and 25 W/(m2K). Due to the lack of a

specific value for the considered experimental setting, 12.5 W/(m2K) was chosen for simplicity

in this example. The elastic and thermal parameters were taken from Rose and Menzel [2020],

whereas the plastic parameters were fitted to govern the stress-stretch response after the onset

of plastic flow (see Figure 4.2 on the top). Noteworthy, since no damage occurred during

testing, as stated by Rose and Menzel [2020], the damage onset Y0 was set to 104 MPa. The

corresponding parameters are listed as Set 2 in Table 4.2.
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Figure 4.2: Top: Comparison of the engineering stress P11 over stretch F11 for the aluminium
alloy AW6016 under uniaxial tension (Rose and Menzel [2020]) and the model fit.
Bottom: Corresponding change in temperature ∆θ over stretch F11 due to mate-
rial self-heating. Comparison of experimental data (kindly provided by Rose and
Menzel [2020]) and model prediction.

It should be emphasized that with this fixed set of mechanical parameters, the heat gen-

eration was completely defined (cf. Equation (4.68)) and no additional parameters were in-

troduced. Consequently, the accurate model predictions of the initial drop in temperature,

due to elastic cooling, and subsequent rise in temperature due to plastic heating, depicted in

Figure 4.2, are remarkable. For deformations exceeding a stretch level of F11 ≈ 1.06, the

model slightly overestimated the rise in temperature. This might be due to the fact that no heat

conduction within the specimen was considered (see discussion above). Furthermore, with

increasing temperatures, the choice for Ks, in the provided range above, effects this result in

addition.

Conclusively, despite this simplified representation of the experiment, it became evident that

the thermodynamically consistent derivation of the heat generation, due to thermo-elastic and

thermo-plastic coupling effects, led to reliable results. Nevertheless, it must be emphasized
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that the investigation of the heat generation due to damage and fracture requires a separate

comparison with experimental data, in the future.

4.5.2 Structural examples

4.5.2.1 Flat I-shaped specimen

In this section, a flat I-shaped specimen (steel EN 1.0553) under uniaxial extension was con-

sidered, to verify the novel theory in a structural problem by experimental data taken from

Ambati et al. [2016]. Due to the symmetry of the considered problem and the evolution of

symmetric fields, reported in the aforementioned work, only one eighth of the specimen was

modeled, for simplicity. The dimension, boundary conditions and one mesh realization (43848

hexahedral elements with eight integration points) are shown in Figure 4.3. The lower part of

the specimen was fixed in y-direction, whereas the upper part was moved in vertical direction

with a loading speed of ˙̃uy = 0.5 mm min−1, in accordance with the experimental procedure.

0 5 10

0

5

10

15

20

25

Figure 4.3: Geometry of I-shaped specimen and considered boundary value problem with a
mesh realization of 43848 elements (left). Resulting force over displacement us for
isothermal analysis and comparison with experimental data extracted from Ambati
et al. [2016](right).

The elastic parameters were taken from Ambati et al. [2016], whereas the thermal parame-

ters were obtained from Dittmann et al. [2020]. In a first computation, an isothermal problem,
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i.e. no heat generation due to dissipation, was considered, in order to fit the remaining plastic

and damage parameters. An overview of all material parameters is listed as Set 3 in Table

4.2. The corresponding load displacement curve is depicted in Figure 4.3 and shows good

agreement with the experimental data, which was extracted from Ambati et al. [2016] (see

also Figure 4.5 and corresponding discussion). Noteworthy, therein and in the following, the

presented displacement us was measured between two points at ±25 mm from the center of

the specimen, in accordance with the experimental data.
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Figure 4.4: Mesh convergence study for a loading rate of 0.5 mm min−1. Force over displace-
ment for different mesh realizations (left) and damage contours for the modeled
one eighth of the specimen at us = 13.44 mm (right).

Subsequently, with the fixed set of material parameters the fully thermo-mechanically cou-

pled model response including internal heat generation was considered for different loading

rates. During these simulations, the specimen was assumed to be adiabatically isolated, such

that no heat in- nor outflow at the surfaces of the specimen was permitted, for simplicity. A

mesh convergence study was performed for the lowest loading speed ( ˙̃uy = 0.5 mm min−1)

and the corresponding reaction force over displacement is shown for different mesh realiza-

tions in Figure 4.4. From this study, it became evident that with increasing mesh density the

model predictions converged towards one solution with a finite amount of dissipated energy,

due to the gradient extension. This fact was deduced from the load displacement data (de-

picted in Figure 4.4) and the comparison of the contour plots of the damage variable D at the

end of the simulation for the three finest meshes (see Figure 4.4). The widths of the damage

zones remained finite and were comparable to each other.

The model response was in good agreement with the experimental observations. Plastic

strain localization drove the damage evolution within the center of the specimen, which was
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Figure 4.5: Accumulated plastic strain ξp, damage D, internal heat genera-
tion rint, and change in temperature ∆θ, at displacement levels of
us = {8.54, 11.23, 11.68, 12.14} (highlighted in Figure 4.4) for a loading
rate of 0.5 mm min−1.

followed by a crack propagation towards the edges of the specimen, until complete failure

occurred. Due to this localization, the heat generation accompanying plastic and damage

evolution led to an increase in the temperature in these very areas. The corresponding fields at

displacement levels of us = {8.54, 11.23, 11.68, 12.14} (highlighted in Figure 4.4), are shown

for the finest mesh (87090 elements) in Figure 4.5. It is instructive to point out that the heat

generation resulting from the crack propagation was one order of magnitude higher than due

to the preceding plastic deformations (note the different scales of the legends before and after

the damage onset for rint, in the bottom left in Figure 4.5). Therefore, the local heat generation
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after the damage onset clearly indicated the current positions of the crack tip and propagation

towards the edges, in addition.

With increasing loading speed, the local rise in temperature increased, due to the limited

time for heat conduction within the specimen. Consequently, thermal softening of the material

in these regions led to a decrease in yield stress and strain hardening. The latter became also

evident from a decrease in the reaction force in the load displacement relations (see Figure

4.6). In addition, with increasing loading rates, the amount of plastic deformations within the

center of the specimen increased and, thus, led to a shift of the crack initiation towards smaller

displacement levels.

Figure 4.6: Comparison of reaction force for different loading rates (left) and corresponding
accumulated plastic strain ξp as well as change in temperature ∆θ for a displace-
ment level of us = 10.88 (right).

4.5.2.2 Asymmetrically notched specimen

In this section, a rather academic example is discussed in order to investigate the model pre-

dictions regarding thermal expansion and the influence of the damage state on the heat con-

ductivity, in a fully coupled transient heat transfer problem. To this end, a double notched

tensile specimen was considered, where the dimensions were taken from Ambati et al. [2016],

scaled by a factor of two (cf. Figure 4.7). For simplicity, a 2D plane strain computation with

a thickness of 1 mm was conducted. The mechanical material parameter were chosen in line

with the proposed values by Brepols et al. [2020]. The latter are listed, along with the thermal

parameters (taken from Dittmann et al. [2020]), as Set 4 in Table 4.2.

In a first series of computations, a mesh convergence study was performed, by considering
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uniaxial extension of the specimen with a loading speed of ˙̃u =0.114 mm s−1. The bound-

ary conditions and the corresponding reaction force over displacement curves are depicted in

Figure 4.7, for different mesh realizations. In all computations, quadrilateral elements with

four integration points were employed. A clear convergence trend could be observed, i.e. the

amount of dissipated energy strove towards a finite value. Consequently, a mesh consisting of

13955 elements was assumed to be sufficient for the following considered problem.
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Figure 4.7: Geometry of asymmetrically notched specimen and first considered boundary
value problem for the mesh convergence study (left). Resulting force over dis-
placement for different mesh realizations (middle) and predicted deformation and
damage evolution (right).

A qualitative comparison with the experimental data published in Ambati et al. [2016]

showed good agreement, in terms of the emerging deformation processes and crack pattern

(see Figure 4.7). Plastic strain localizations close to the notches and the formation of a plastic

strain localization band was resolved. Furthermore, the model predictions regarding the ini-

tiation of two cracks at the notches, followed by a crack propagation within the localization

branch until their final merging and complete failure, were in agreement with the experimen-

tally observed behavior discussed in Ambati et al. [2016].

Subsequently, a more complex loading scenario was considered (see Figure 4.8). In a first

loading step, the specimen with an initial temperature of θ(t0) = 0 ◦C was heated up. To this

end, the temperature of the nodes at the bottom and top of the specimen were set to different,

constant values in time of θ̃ = 30 ◦C and 15 ◦C, respectively. This led to a heterogeneous

heating of the structure (see temperature field at t1 in Figure 4.9). When the steady-state

solution was reached (at t ≈ 400 s), a constant temperature gradient in vertical direction was
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Figure 4.8: Geometry and mesh (13955 elements) of asymmetrically notched specimen and
second considered boundary value problem (left). Prescribed displacement load-
ing condition ũ over time and resulting reaction force F (right).

present (see temperature field at t2 in Figure 4.9). During this heating phase, the elongation

in longitudinal direction was constrained (i.e. ũ = 0) for the first 500 seconds (see right hand

side of Figure 4.8). Consequently, the thermal expansion of the material in vertical direction

was hindered. This led to the evolution of compressive stresses in vertical direction (and a

corresponding negative reaction force), which reached a constant value once the steady state

solution was obtained (cf. Figure 4.8).

Next, the specimen was subjected to uniaxial extension with a prescribed loading speed of
˙̃u =0.114 mm s−1. Consequently, a complex interplay between different coupling phenomena

arose. First, the temperature field changed as a result of thermo-elastic coupling and plastic

deformations. The latter led to local heat sources in the areas with the highest plastic flow

rates (see t2-t3 in Figure 4.9). At the onset of damage, even more heat was released locally. In

addition to the degradation of the stiffness in the damaged regions, the thermal conductivity

was reduced (cf. Equation (4.40)). This led to a significant change in the heat flux and the

temperature gradient in these areas, due to the insulating effect of the emerging cracks (see

t4-t5 in Figure 4.9). After the structure had almost completely failed, the displacement was

held constant at ũ = 3 mm, for 370 seconds. In this way, the evolution of the temperature field

towards a new equilibrium state, resulting from the prescribed thermal boundary conditions

and the insulating diagonal crack pattern, was evident (see t6 in Figure 4.9).

Despite the emerging large gradients within all three solution fields (u, D̄, and θ) and ob-
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Figure 4.9: Contour plots for: Temperature θ, accumulated plastic strain ξp, dam-
age D, and internal heat generation rint for certain points in time
(ti = {20, 490, 511.9, 522, 526, 831}, highlighted in Figure 4.8).

served strong coupling phenomena, in particular at the end of the considered example, a sat-

isfactory rate of convergence was achieved during all local and global iterations. In Table 4.3,

the residual and normalized energy norms are shown for the three time steps t3-t5, highlighted

in Figure 4.8. A quadratic rate of convergence was observed for purely thermoplastic prob-

lems, which is not shown in Table 4.3. With the onset of material softening (t3-t5), the rate

of convergence was comparatively slow after the first iterations, resulting in a larger number

of iterations, which is in line with the reported findings of Brepols et al. [2020] for isothermal

computations. However, towards the last iterations a quadratic decrease was observed.
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Table 4.3: Global convergence rates for the three time steps t3-t5 = {511.9, 522, 526} high-
lighted in Figure 4.8

Time t3 Time t4 Time t5
Iteration Residual Energy Residual Energy Residual Energy

0 2.5079E+03 1.0000E+00 4.2461E+03 1.0000E+00 4.2472E+02 1.0000E+00
1 1.0810E+00 4.3104E-04 5.2005E-01 1.2248E-04 1.1104E-02 2.6145E-05
2 6.0611E-02 2.4168E-05 1.2268E-01 2.8893E-05 5.1682E-05 1.2168E-07
3 5.9653E-03 2.3786E-06 2.8108E-02 6.6197E-06 5.2792E-09 1.2430E-11
4 6.4653E-04 2.5779E-07 7.3160E-04 1.7230E-07
5 6.3801E-09 2.5440E-12 3.5218E-09 8.2943E-13

4.6 Conclusion

In this work, a novel geometrically nonlinear constitutive framework was proposed for (metal-

lic) materials, to analyze and predict (ductile) fracture and the corresponding thermal coupling

effects. The model can be considered as the thermo-mechanical extension of the work by Bre-

pols et al. [2020], with the simplification of a linear kinematic hardening law. This theory

was derived in a thermodynamically consistent manner and treats damage and plasticity as

truly distinct dissipative mechanisms by employing a two-surface ansatz with individual onset

and loading / unloading conditions. The influence of the temperature was considered by tem-

perature dependent material parameters within the Helmholtz free energy. The internal heat

generation, associated with thermo-elastic coupling and irreversible processes (i.e. damage

and plasticity), was derived from the first law of thermodynamics, in addition.

To ensure mesh-insensitive results, a gradient-extension of the damage variable on the basis

of the micromorphic approach by Forest [2009, 2016] was employed. Consequently, a fully

coupled problem was obtained, where the balance of linear momentum, the energy balance,

and an additional partial differential equation, related to the global ‘nonlocal ’damage variable

must be solved. The linearization of the corresponding weak forms and the computation of

the 12 material tangent operators via automatic differentiation was discussed. Conclusively,

this resulted in a flexible algorithmic framework that, together with the chosen two-surface

approach, allows for versatile use and adaptation of the model.

Computational examples were performed, in order to show the model’s mesh regularization

properties in fully-coupled transient heat transfer problems. Furthermore, the good conver-

gence behavior of the global Newton-Raphson scheme, in particular in situations where large

gradients as well as interactions within and between all physical (solution) fields arose, was

highlighted. The predicted local heat accumulation, corresponding to thermo-elastic cooling

and plastic deformations, was verified by the experimental data of Rose and Menzel [2020].
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From the computation of thermo-mechanically coupled structural problems, corresponding

to experimental data by Ambati et al. [2016], it became evident that the model could capture

temperature-induced softening as a source of additional plastic strain localization, which influ-

ences the onset of damage. Conclusively, the model allowed for a multi-physical analysis and

was in accordance with experimental results in terms of the observed phenomena (hardening,

necking, crack initiation and propagation).

Despite the demonstrated promising capabilities of the proposed framework, a more com-

prehensive experimental characterization and validation of the individual model parts is cru-

cial in the future. To this end, an extensive experimental study, investigating cyclic loading,

different loading rates and temperatures by employing digital image correlation and infrared

thermography (comparable to the setups presented in Felder, Vu, Reese and Simon [2020] and

Rose and Menzel [2020]), is planned.

The current model is restricted to rate-independent plasticity and damage, which is a sim-

plification for most metals, even at room temperature. However, the numerical example in

Section 4.5.2.1 demonstrates that different loading rates lead to the prediction of varying

degrees of thermal softening and thus to a rate-dependent stress response (see Figure 4.6).

From the results of the planned experimental study, it must be deduced whether the current

rate-independent plasticity and damage formulation, in combination with the modeled back-

coupling phenomena related to material self-heating, is suitable to represent the material re-

sponse for different loading rates. If it turns out that the current formulation is not sufficiently

accurate, incorporating rate-dependent plasticity into the model framework is straightforward

but leads of course to additional material parameters. Furthermore, related to the findings re-

garding gradient-enhanced (thermo-)plasticity (cf. Wcislo and Pamin [2017], Dittmann et al.

[2018], Aldakheel and Miehe [2017])), the effect of introducing an additional gradient term,

related to plastic deformations, would be interesting. Very recently, studies of the authors

in the field of reduced integration with hourglass stabilization for gradient-extended damage

(Barfusz et al. [2021]), based on the well-established concepts by Reese [2002, 2003b, 2005],

were published. This special finite element technology cures potential locking effects, leads

to a higher efficiency, and should, thus, be also investigated in the context of the presented

framework in the future.
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4.7 Appendix

4.7.1

In the following it is shown that the invariants of Ce can be equivalently expressed in terms of

C, Cp, and θ. The three invariants of Ce are
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(4.70)

4.7.2

Starting point is the Clausius-Duhem inequality

S :
1

2
Ċ − ψ̇ − ηθ̇ − 1

θ
q0 · Grad(θ) + a0i

˙̄D + b0i · Grad( ˙̄D)
︸ ︷︷ ︸

micromorphic extension

≥ 0 (4.71)

which must be fulfilled for arbitrary processes. Next, the total derivative of the Helmholtz free

energy ψ = ψ̂(Ce,Cp, ξp, D, ξd, D̄, θ) (cf. Equation 4.18)) is inserted into (4.71)

S :
1
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(4.72)

To reformulate the relation above, the material time derivative

Ċe = −LT
pCe +

1

ϑ2
F−T

p ĊF−1
p −CeLp −

2

ϑ2
F−T

p CF−1
p α θ̇ (4.73)

is derived from (4.17), by employing the product rule of differentiation and considering the

identities Ḟ−1
p = −F−1

p ḞpF
−1
p , Ḟ−T

p = −F −T
p Ḟ T

p F−T
p , and ϑ̇ = d/dt (exp(α(θ − θ0))) =

ϑα θ̇. In addition, the plastic velocity gradient Lp = ḞpF
−1
p is defined. Inserting (4.73) into
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(4.72) and assuming that ψe and ψp are isotropic functions of Ce and Cp, respectively, yields

the following inequality

(
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(4.74)

Here, the relation Ċp = 2F T
p DpFp is employed and Dp := sym(Lp) holds.

Following the standard arguments by Coleman and Noll [1961] the following alternative

representations for the second Piola-Kirchhoff stress as well as the entropy

S = 2 fd(D)
1

ϑ2
F−1

p

∂ψe

∂Ce
F−T

p , η = −∂ψ̂
∂θ

+ tr(CS)α, (4.75)

can be established. Together with the relations for the internal forces related to the micro-

morphic variable and its gradient (4.7) and the heat flux (4.8), the first two lines of inequality

(4.74) are always larger than or equal to zero.

For the sake of a more compact format of the constitutive equations, the following quantities

are defined in addition

M := fd(D) 2Ce
∂ψe

∂Ce
, χ := fd(D) 2Fp

∂ψp

∂Cp
F T

p (4.76)

representing the Mandel-like stress tensor and the back-stress tensor in the intermediate con-

figuration ic, respectively. Furthermore, the thermodynamic conjugated driving forces to dam-

age Y , isotropic hardening qp, and damage hardening qd are defined by

Y := −
(

dfd
dD

(ψe + ψp) +
∂ψd̄

∂D

)

, qp := fd(D)
∂ψp

∂ξp
, qd :=

∂ψd

∂ξd
(4.77)

Hence, the remaining inequality can be rewritten as

(M − χ) : Dp − qp ξ̇p − qd ξ̇d + Y Ḋ ≥ 0 (4.78)
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4.7.3

To express the heat generation related to plasticity (4.30) in terms of Cp, S, and X , the relation

Dp =
1
2
F−T

p ĊpF
−1
p must be recalled. Furthermore, recall

M = 2 fdCe
∂ψ

∂Ce

= 2 fd
1

ϑ2
F−T

p CF−1
p

∂ψ

∂Ce

= F−T
p CSF T

p (4.79)

Thus,

M : Dp =
1

2
tr(F−T

p CSF T
p F−T

p ĊpF
−1
p )

=
1

2
CS : (ĊpC

−1
p )T =

1

2
CS : C−1

p Ċp

(4.80)

follows. Analogously,

θ
∂M

∂θ
: Dp =

1

2
θC

∂S

∂θ
: C−1

p Ċp (4.81)

holds. Conclusively, the following transformations are considered

χ : Dp =
1

2
tr(FpXF T

p F−T
p ĊpF

−1
p ) =

1

2
X : Ċp (4.82)

θ
∂χ

θ
: Dp =

1

2
θ
∂X

∂θ
: Ċp (4.83)

4.7.4

In the following the reduction of the derived relation for the stress to a thermo-elastic theory

is discussed. To this end, the Cauchy stress tensor σ = 1/(detF )FSF T is obtained by a

push-forward of the second Piola-Kirchhoff stress tensor, viz.

σ =
1

det(F )
fd(D)F

(

µ

(
1

ϑ2
C−1

p −C−1

)

+
Λ

2

(
det(C)

ϑ6 det(Cp)
− 1

)

C−1

)

F T

=
1

det(F )
fd(D)

(

µ (Be − I) +
Λ

2
(det(Be)− 1) I

) (4.84)

where the elastic left Cauchy-Green tensor Be = FeF
T
e = 1/ϑ2 FC−1

p F T was introduced.

Next, assuming no damage Ḋ = 0, nor plastic evolution Ċp = 0 and hence fd = 1 and

Cp = I , respectively, a thermo-elastic theory is obtained

σ =
1

det(F )

(

µ

(
1

ϑ2
B − I

)

+
Λ

2

(
1

ϑ6
det(B)− 1

)

I

)

(4.85)
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Finally, the resulting thermal stresses for a fully constrained thermal expansion (i.e. B = I)

are examined:

σ =

(

µ

(
1

ϑ2
− 1

)

I +
Λ

2

(
1

ϑ6
− 1

)

I

)

(4.86)

Subsequently, the first two terms of a Taylor-series approximation of 1/ϑ2 and 1/ϑ6 around

the point ∆θ = 0 are considered

1/ϑ2 = 1/(exp(2α∆θ)) ≈ 1− 2α∆θ

1/ϑ6 = 1/(exp(6α∆θ)) ≈ 1− 6α∆θ
(4.87)

By inserting these approximations into (4.86), the known thermal Cauchy stress tensor is

obtained

σ = −α (2µ+ 3Λ)∆θ I = −3αK∆θ I (4.88)

where the bulk modulus K = 2/3µ+ Λ was introduced.

4.7.5

In the following, the linearization of the weak forms (4.41)-(4.45) is discussed.

Linearization of gu:

The linearization of gu around a known state (u∗, D̄∗, θ∗) is defined as

Lgu(∆u,∆D̄,∆θ, δu) = gu(u
∗, D̄∗, θ∗, δu) +Dugu(u

∗, D̄∗, θ∗, δu)[∆u]

+DD̄gu(u
∗, D̄∗, θ∗, δu)[∆D̄] +Dθgu(u

∗, D̄∗, θ∗, δu)[∆θ]
(4.89)
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The first Gâteaux derivative Dugu(u
∗, D̄∗, θ∗, δu)[∆u] is given as

Dugu(u
∗, D̄∗, θ∗, δu)[∆u] =

d

dǫ

∣
∣
∣
∣
ǫ=0

gu(u
∗ + ǫ∆u, D̄∗, θ∗, δu)

=
d

dǫ

∣
∣
∣
∣
ǫ=0

(∫

B0

(
(F (ǫ)S(E(F (ǫ)), D̄∗, θ∗)

)
: Grad(δu)− f0 · δu) dV −

∫

∂B0t

t0 · δu dA

)

=
d

dǫ

∣
∣
∣
∣
ǫ=0

∫

B0

(
(F (ǫ)S(E(F (ǫ)), D̄∗, θ∗)

)
: Grad(δu)) dV

=

∫

B0

(
∂F

∂ǫ
S(E(F (ǫ)), D̄∗, θ∗) + F (ǫ)

(
∂S

∂E

[
∂E

∂F

[
∂F

∂ǫ

]]))∣
∣
∣
∣
ǫ=0

: Grad(δu)) dV

=

∫

B0

(
Grad(∆u)S(E(F ∗, D̄∗, θ∗)

︸ ︷︷ ︸

S∗

)
: Grad(δu) dV

+

∫

B0

F ∗

(
∂S

∂E

[
1

2

(

Grad(∆u)TF ∗ + F ∗TGrad(∆u)
)

︸ ︷︷ ︸

∆E∗

])

: Grad(δu) dV

=

∫

B0

(
Grad(∆u)S∗

)
: Grad(δu) dV +

∫

B0

∂S

∂E
[∆E∗] :

(
Grad(δu)TF ∗

)
dV

=

∫

B0

(
Grad(∆u)S∗

)
: Grad(δu) dV

+

∫

B0

∂S

∂E
[∆E∗] :

(
1

2

(

Grad(δu)TF ∗ + F ∗TGrad(δu)
)

︸ ︷︷ ︸

δE∗

)

dV

=

∫

B0

(
Grad(∆u)S∗

)
: Grad(δu) dV +

∫

B0

∂S

∂E
[∆E∗] : δE∗dV

(4.90)

where

F (ǫ) = I +Grad(u∗ + ǫ∆u) = F ∗ + ǫGrad(∆u) (4.91)
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The second Gâteaux derivative DD̄gu(u
∗, D̄∗, θ∗, δu)[∆D̄] is given as

DD̄gu(u
∗, D̄∗, θ∗, δu)[∆D̄] =

d

dǫ

∣
∣
∣
∣
ǫ=0

gu(u
∗, D̄∗ + ǫ∆D̄, θ∗, δu)

=
d

dǫ

∣
∣
∣
∣
ǫ=0

(∫

B0

(
F ∗S(F ∗, D̄(ǫ), θ∗) : Grad(δu)− f0 · δu

)
dV −

∫

∂B0t

t0 · δu dA

)

=
d

dǫ

∣
∣
∣
∣
ǫ=0

∫

B0

(
F ∗S(F ∗, D̄(ǫ), θ∗)

)
: Grad(δu)) dV

=

∫

B0

(

F ∗ ∂S

∂D̄

∂D̄

∂ǫ

)∣
∣
∣
∣
ǫ=0

: Grad(δu)) dV

=

∫

B0

(
∂S

∂D̄
∆D̄

)

:
(
Grad(δu)TF ∗

)
dV

=

∫

B0

(
∂S

∂D̄
∆D̄

)

:

(
1

2

(

Grad(δu)TF ∗ + F ∗TGrad(δu)
)

︸ ︷︷ ︸

δE∗

)

dV

=

∫

B0

(
∂S

∂D̄
∆D̄

)

: δE∗ dV

(4.92)

where

D̄(ǫ) = D̄∗ + ǫ∆D̄ (4.93)

The third Gâteaux derivative Dθgu(u
∗, D̄∗, θ∗, δu)[∆θ] is computed analogously viz.

Dθgu(u
∗, D̄∗, θ∗, δu)[∆θ] =

d

dǫ

∣
∣
∣
∣
ǫ=0

gu(u
∗, D̄∗, θ∗ + ǫ∆θ, δu)

=
d

dǫ

∣
∣
∣
∣
ǫ=0

(∫

B0

(
F ∗S(F ∗, D̄∗, θ(ǫ)) : Grad(δu)− f0 · δu

)
dV −

∫

∂B0t

t0 · δu dA

)

=

∫

B0

(
∂S

∂θ
∆θ

)

: δE∗ dV

(4.94)

where

θ(ǫ) = θ∗ + ǫ∆θ (4.95)
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The increment ∆gu is therefore defined as

∆gu = Dugu(u, D̄
∗, θ∗, δu)[∆u] +DD̄gu(u

∗, D̄∗, θ∗, δu)[∆D̄] +Dθgu(u
∗, D̄∗, θ∗, δu)[∆θ]

=

∫

B0

(
Grad(∆u)S∗

)
: Grad(δu) dV

+

∫

B0

(
∂S

∂E
[∆E∗] +

∂S

∂D̄
∆D̄ +

∂S

∂θ
∆θ

︸ ︷︷ ︸

∆S

)

: δE∗dV

=

∫

B0

(
Grad(∆u)S∗

)
: Grad(δu) dV +

∫

B0

∆S : δE∗dV

(4.96)

Linearization of gd:

The linearization of gd around a known state (u∗, D̄∗, θ∗) is defined in the same manner as

Lgd(∆u,∆D̄,∆θ, δD̄) = gd(u
∗, D̄∗, θ∗, δD̄) +Dugd(u

∗, D̄∗, θ∗, δD̄)[∆u]

+DD̄gd(u
∗, D̄∗, θ∗, δD̄)[∆D̄] +Dθgd(u

∗, D̄∗, θ∗, δD̄)[∆θ]
(4.97)

The first Gâteaux derivative Dugd(u
∗, D̄∗, θ∗, δD̄)[∆u] is given as

Dugd(u
∗, D̄∗, θ∗, δD̄)[∆u] =

d

dǫ

∣
∣
∣
∣
ǫ=0

gd(u
∗ + ǫ∆u, D̄∗, θ∗, δD̄)

=
d

dǫ

∣
∣
∣
∣
ǫ=0

(∫

B0

(
H (D(E(F (ǫ)), D̄∗, θ∗)− D̄∗) δD̄ −AGrad(D̄∗) ·Grad(δD̄)

)
dV

)

=
d

dǫ

∣
∣
∣
∣
ǫ=0

∫

B0

H D(E(F (ǫ)), D̄∗, θ∗) δD̄ dV

=

∫

B0

H

(
∂D

∂E
:
∂E

∂F

[
∂F

∂ǫ

])∣
∣
∣
∣
ǫ=0

δD̄ dV

=

∫

B0

H
∂D

∂E
:

(
1

2

(

Grad(∆u)TF ∗ + F ∗TGrad(∆u)
)

︸ ︷︷ ︸

∆E∗

)

δD̄ dV

=

∫

B0

H

(
∂D

∂E
: ∆E∗

)

δD̄ dV

(4.98)
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The second Gâteaux derivative DD̄gd(u
∗, D̄∗, θ∗, δD̄)[∆D̄] is given as

DD̄gd(u
∗, D̄∗, θ∗, δD̄)[∆D̄] =

d

dǫ

∣
∣
∣
∣
ǫ=0

gd(u
∗, D̄∗ + ǫ∆D̄, θ∗, δD̄)

=
d

dǫ

∣
∣
∣
∣
ǫ=0

(∫

B0

(
H (D(E∗, D̄(ǫ), θ∗)− D̄(ǫ)) δD̄ −AGrad(D̄(ǫ)) ·Grad(δD̄)

)
dV

)

=

∫

B0

(

H

(
∂D

∂D̄

∂D̄

∂ǫ
− ∂D̄

∂ǫ

)∣
∣
∣
∣
ǫ=0

δD̄ − A
∂Grad(D̄)

∂ǫ

∣
∣
∣
∣
ǫ=0

·Grad(δD̄)

)

dV

=

∫

B0

(

H

(
∂D

∂D̄
∆D̄ −∆D̄

)

δD̄ − AGrad(∆D̄) ·Grad(δD̄)

)

dV

(4.99)

The third Gâteaux derivative Dθgu(u, D̄
∗, θ∗, δu)[∆θ] is given as

Dθgd(u
∗, D̄∗, θ∗, δD̄)[∆θ] =

d

dǫ

∣
∣
∣
∣
ǫ=0

gd(u
∗, D̄∗, θ∗ + ǫ∆θ, δD̄)

=
d

dǫ

∣
∣
∣
∣
ǫ=0

(∫

B0

(
H (D(E∗, D̄∗, θ(ǫ))− D̄∗) δD̄ −AGrad(D̄∗) ·Grad(δD̄)

)
dV

)

=
d

dǫ

∣
∣
∣
∣
ǫ=0

∫

B0

HD(E∗, D̄∗, θ(ǫ)) δD̄ dV

=

∫

B0

H

(
∂D

∂θ

∂θ

∂ǫ

)∣
∣
∣
∣
ǫ=0

δD̄ dV

=

∫

B0

H

(
∂D

∂θ
∆θ

)

δD̄ dV

(4.100)

The increment ∆gd is therefore defined as follows

∆gd = Dugd(u
∗, D̄∗, θ∗, δD̄)[∆u] +DD̄gd(u

∗, D̄∗, θ∗, δD̄)[∆D̄] +Dθgd(u
∗, D̄∗, θ∗, δD̄)[∆θ]

=

∫

B0

H

(( ∂D

∂E
: ∆E∗ +

∂D

∂D̄
∆D̄ +

∂D

∂θ
∆θ

︸ ︷︷ ︸

∆D

)

−∆D̄

)

δD̄ dV

−
∫

B0

AGrad(∆D̄) ·Grad(δD̄)

)

dV

=

∫

B0

H (∆D −∆D̄) δD̄ dV −
∫

B0

AGrad(∆D̄) ·Grad(δD̄)

)

dV

(4.101)
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Linearization of gθ:

Lastly, the linearization of gθ around a known state (u∗, D̄∗, θ∗) is defined as

Lgθ(∆u,∆D̄,∆θ, δθ) = gθ(u
∗, D̄∗, θ∗, δθ) +Dugθ(u

∗, D̄∗, θ∗, δθ)[∆u]

+DD̄gθ(u
∗, D̄∗, θ∗, δθ)[∆D̄] +Dθgθ(u

∗, D̄∗, θ∗, δθ)[∆θ]
(4.102)

The first Gâteaux derivative Dugθ(u, D̄
∗, θ∗, δθ)[∆u] is given as

Dugθ(u, D̄
∗, θ∗, δθ)[∆u] =

d

dǫ

∣
∣
∣
∣
ǫ=0

gθ(u
∗ + ǫ∆u, D̄∗, θ∗, δθ)

=
d

dǫ

∣
∣
∣
∣
ǫ=0

(∫

B0

c
θ∗ − θn
∆t

δθ dV −
∫

B0

q0(E(F (ǫ)), D̄∗, θ∗) ·Grad(δθ) dV

−
∫

B0

rint(E(F (ǫ)), D̄∗, θ∗) δθ dV −
∫

∂B0q

q0 δθ dA

)

=
d

dǫ

∣
∣
∣
∣
ǫ=0

(

−
∫

B0

q0(E(F (ǫ)), D̄∗, θ∗) ·Grad(δθ) dV −
∫

B0

rint(E(F (ǫ)), D̄∗, θ∗) δθ dV

)

= −
∫

B0

∂q0

∂E
:
∂E

∂F

[
∂F

∂ǫ

]∣
∣
∣
∣
ǫ=0

·Grad(δθ) dV −
∫

B0

∂rint

∂E
:
∂E

∂F

[
∂F

∂ǫ

]∣
∣
∣
∣
ǫ=0

δθ dV

= −
∫

B0

∂q0

∂E
:

(
1

2

(

Grad(∆u)TF ∗ + F ∗TGrad(∆u)
)

︸ ︷︷ ︸

∆E∗

)

·Grad(δθ) dV

−
∫

B0

∂rint

∂E
:

(
1

2

(

Grad(∆u)TF ∗ + F ∗TGrad(∆u)
)

︸ ︷︷ ︸

∆E∗

)

δθ dV

= −
∫

B0

(
∂q0

∂E
: ∆E∗

)

·Grad(δθ) dV −
∫

B0

(
∂rint

∂E
: ∆E∗

)

δθ dV

(4.103)
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The second Gâteaux derivative DD̄gθ(u
∗, D̄∗, θ∗, δθ)[∆D̄] is given as

DD̄gθ(u
∗, D̄∗, θ∗, δθ)[∆D̄] =

d

dǫ

∣
∣
∣
∣
ǫ=0

gθ(u
∗, D̄∗ + ǫ∆D̄, θ∗, δθ)

=
d

dǫ

∣
∣
∣
∣
ǫ=0

(∫

B0

c
θ∗ − θn
∆t

δθ dV −
∫

B0

q0(E
∗, D̄(ǫ), θ∗) ·Grad(δθ) dV

−
∫

B0

rint(E
∗, D̄(ǫ), θ∗) δθ dV −

∫

∂B0q

q0 δθ dA

)

=
d

dǫ

∣
∣
∣
∣
ǫ=0

(

−
∫

B0

q0(E
∗, D̄(ǫ), θ∗) ·Grad(δθ) dV −

∫

B0

rint(E
∗, D̄(ǫ), θ∗) δθ dV

)

= −
∫

B0

∂q0

∂D̄

∂D̄

∂ǫ

∣
∣
∣
∣
ǫ=0

·Grad(δθ) dV −
∫

B0

∂rint

∂D̄

∂D̄

∂ǫ

∣
∣
∣
∣
ǫ=0

δθ dV

= −
∫

B0

(
∂q0

∂D̄
∆D̄

)

·Grad(δθ) dV −
∫

B0

(
∂rint

∂D̄
∆D̄

)

δθ dV

(4.104)

The third Gâteaux derivative Dθgθ(u
∗, D̄∗, θ∗, δθ)[∆θ] is given as

Dθgθ(u, D̄
∗, θ∗, δθ)[∆θ] =

d

dǫ

∣
∣
∣
∣
ǫ=0

gθ(u
∗, D̄∗, θ∗ + ǫ∆θ, δθ)

=
d

dǫ

∣
∣
∣
∣
ǫ=0

(∫

B0

c
θ(ǫ)− θn

∆t
δθ dV −

∫

B0

q0(E
∗, D̄∗, θ(ǫ)) ·Grad(δθ) dV

−
∫

B0

rint(E
∗, D̄∗, θ(ǫ)) δθ dV −

∫

∂B0q

q0 δθ dA

)

=
d

dǫ

∣
∣
∣
∣
ǫ=0

(∫

B0

c
θ(ǫ)− θn

∆t
δθ dV −

∫

B0

q0(E
∗, D̄∗, θ(ǫ)) ·Grad(δθ) dV

−
∫

B0

rint(E
∗, D̄∗, θ(ǫ)) δθ dV

)

=

∫

B0

c
∂θ

∂ǫ

1

∆t

∣
∣
∣
∣
ǫ=0

δθ dV −
∫

B0

∂q0

∂θ

∂θ

∂ǫ

∣
∣
∣
∣
ǫ=0

·Grad(δθ) dV −
∫

B0

∂rint

∂θ

∂θ

∂ǫ

∣
∣
∣
∣
ǫ=0

δθ dV

=

∫

B0

c
∆θ

∆t
δθ dV −

∫

B0

(
∂q0

∂θ
∆θ

)

·Grad(δθ) dV −
∫

B0

(
∂rint

∂θ
∆θ

)

δθ dV

(4.105)
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The increment ∆gθ is therefore defined as follows

∆gθ = Dugθ(u
∗, D̄∗, θ∗, δθ)[∆u] +DD̄gθ(u
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4.7.6

In this section, the sequential approach to compute the 12 material tangents, introduced in

(4.49)-(4.52) is discussed in more detail.

Since the stress is a function of C, U−1
p , D, and θ, the algorithmic tangents corresponding

to the stress increment ∆S (4.49) can be expressed by
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where the set Γ := {C, D̄, θ,U−1
p , D} was introduced, for the sake of brevity, to indicate

which variables are held constant in the partial derivatives.

In addition, the derivatives related to the increment of the internal heat generation ∆rint must

be computed (see Equation (4.52)). From Equation (4.68) and the corresponding discussion,

it can be deduced that rint can be expressed as a function of C, θ, D̄, U−1
p , λ̄p, and λ̄d. Thus,
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the following relations hold
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where the set Υ := {C, θ, D̄,U−1
p , λ̄p, λ̄d} was introduced, for a clearer representation of the

partial derivatives. In this context, it is instructive to point out that ∂λ̄d/∂(∗) = ∂D/∂(∗)
holds.

In order to determine these complex derivatives (4.107)-(4.112), a sequential approach is

developed. First, the functions for the stress as well as for the internal heat generation are im-

plemented in AceGen, where C, θ, D̄, U−1
p , λ̄p, and λ̄d, as well as the internal variables from

the last converged time step, serve as input variables. Consequently, the partial derivatives of

S and rint with respect to the aforementioned input quantities (see Equations (4.107)-(4.112))

can be computed by automatic differentiation via AceGen. Next, the remaining derivatives of

the solution vector xloc := (λ̄p, Û
−1
p , λ̄d)

T with respect to the ‘global unknowns ’, i.e. C, θ,

D̄ must be computed, such that all terms in (4.107)-(4.112) are known. To this end, an addi-

tional linearization of the converged local residual vector (i.e. rloc := (R1, R̂2, R3)
T = 0) is

considered, viz.

0 = rloc
︸︷︷︸

=0

+
∂rloc

∂xloc

∣
∣
∣
∣C
D̄
θ

·∆xloc +
∂rloc

∂Ĉ
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(4.113)

where xglo := (Ĉ, θ, D̄)T was introduced. From the relation above, it follows that the in-
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cremental change of the local variables ∆xloc with respect to an incremental change of the

global ones ∆xglo can be expressed by the matrix J∗ = −J−1
1 J2. As alluded above, the

residual function rloc is implemented in Mathematica and AceGen is employed to provide the

derivatives comprised in J2. The remaining derivatives (λ̄p, Û−1
p , λ̄d with respect to Ĉ, θ, D̄,

respectively) can, thus, be extracted from J∗. In this way, the tangent operators related to

the increment of the local damage variable ∆D (see Equation (4.50)) are directly obtained as

well.

Finally, the derivatives related to the increment of the heat flux vector ∆q0 (4.51), which is

expressed as a function of C, D, Grad(θ), and θ (cf. Equation (4.8)), can be derived:
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The derivatives of the local damage variable with respect to global ones, in the expressions

above, are extracted from J∗. Due to the much simpler functional dependencies, the partial

derivatives of the heat flux with respect to C, D, and θ are established analytically:

∂q0,i
∂Ckl

∣
∣
∣
∣D̄
θ
D

=− (fd(D)K0 + (1− fd(D))Kc)
1

2
(C−1

ik C
−1
lj + C−1

il C
−1
kj )Grad(θ)j (4.118)

∂q0

∂D

∣
∣
∣
∣C
D̄
θ

= −
(

dfd
dD

K0 −
dfd
dD

Kc

)

C−1 Grad(θ) (4.119)

∂q0

∂θ

∣
∣
∣
∣ C

D̄
D

Grad(θ)

=−
(

fd(D)
dK0

dθ
+ (1− fd(D))

dKc

dθ

)

C−1 Grad(θ) (4.120)

4.7.7

In the following, the constitutive framework is reduced, to discuss a simplified expression

for the heat generation due to plastic processes and the corresponding influence of the ther-
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mal softening function fθ. To this end, damage is suppressed (fd = 1), thermal expansion

is neglected (α = 0.0), no kinematic hardening (a = 0) and only linear isotropic hardening

(P0 > 0, ep = 0) are considered. Furthermore, thermal softening is assumed to affect the

hardening modulus (P = fθ(θ)P0) and the yield stress (σy = fθ(θ) σ0) only, where a linear

softening function (fθ = 1− ω(θ − θ0)) is chosen.

With the aforementioned choices, the heat generation (4.29) reduces to the following form

in the case of plastic flow, i.e. Φp = 0 and λ̇p > 0:

rint =M : Dp −
(
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)
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=M : λ̇p
√

3/2
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)
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=σy

+θ
∂qp
∂θ

)

=λ̇p

(

fθ σ0 + θ
∂fθ
∂θ

P0 ξp

)

= λ̇p(σ0 − σ0 ω (θ − θ0)− ω θ P0 ξp)

(4.121)

where the evolution equation for Dp (4.24) and ξ̇p (4.25) were incorporated. Thus, for this

simple choice of fθ, it becomes evident that negative heat generation occurs eventually for in-

creasing plastic deformation ξp and temperatures θ, depending on the chosen material parame-

ters ω, σ0, and P0. It must be emphasized that this a mere consequence of the chosen softening

function and the assumption that linear hardening and yield stress are affected equivalently by

the temperature. Noteworthy, the Clausius-Duhem inequality (4.74) is always fulfilled, as long

as the material parameters are positive, which is a natural requirement, in any case.

Clearly, in less academic settings, the procedure regarding the determination of appropriate

softening functions is fundamentally different. In this case, the temperature dependent pa-

rameters would be calibrated based on isothermal experiments at different temperatures and

individual softening functions for each parameter would be proposed, subsequently (see e.g.

Felder, Holthusen, Hesseler, Pohlkemper, Gries, Simon and Reese [2020]). Noteworthy, in

the present work, careful attention was paid, when choosing ω, to ensure positive plastic heat

generation only, in all considered numerical examples, where thermal softening is involved.



5 Conclusions and Outlook

The present cumulative dissertation was concerned with the development of multiphysics

modeling approaches for polymers and metals, in order to capture important coupling effects,

which arise e.g. during (non-isothermal) forming processes of these materials.

The first two articles within this dissertation dealt with the modeling of semi-crystalline

polymers. It was in particular aimed to investigate the temperature dependent effect of the

degree of the crystallinity on the macroscopic response and to incorporate this into continuum

mechanical models. To this end, in Chapter 2, an extensive experimental study was performed,

where various tensile experiments under monotonic and cyclic loading conditions as well as

relaxation tests were conducted for Polyamide 6. Three degrees of crystallinity (ranging from

χ = 0.23 to χ = 0.28) were investigated and the considered strain rates were limited to

one decade. To obtain ‘true’stress-stretch data and well defined loading rates, digital image

correlation (DIC) measurements were performed.

The experimental results provided important insights into the complex dependencies of the

effective material properties on the aforementioned factors. Based on these findings, a contin-

uum mechanical phenomenological approach was proposed, which relied on a combined non-

linear visco-elastic and elasto-plastic theory. The latter incorporated nonlinear isotropic and

kinematic hardening, as well as nonlinear relaxation behavior. In addition, infrared thermog-

raphy was employed during the tensile tests at room temperature, which revealed significant

material self-heating at higher loading rates. Conclusively, the isothermal model was only

fitted in the deformation range of approximately constant temperatures, which is an important

requirement for future characterization studies for this class of polymers. The material param-

eters were assumed to be functions of the temperature as well as the degree of crystallinity,

which served as constant input quantities. These individual functions were fitted during a

staggered identification procedure, in order to minimize the uncertainty during the employed

nonlinear optimization strategies.

Finally, the effect of the aforementioned factors on the loading-rate dependent plastic defor-

mations, strain hardening, strain recovery, stress relaxation, and loading-unloading hysteresis

loops were accurately predicted.
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In Chapter 3, the model was further developed towards a fully thermo-mechanically coupled

theory. To account for the microstructural formation of crystalline regimes during the solidifi-

cation of the melt during processing, a non-isothermal modification of the Avrami model was

included in the proposed framework. In this way, the (evolving) overall degree of crystallinity

served as an additional internal variable which influenced the macroscopic behavior, by ef-

fecting the material parameters, as discussed above. Differential scanning calorimetry (DSC)

experiments were utilized to characterize the corresponding crystallization kinetics parame-

ters.

The free energy storage was taken into account and the relations for the heat release due to

irreversible processes and exothermic crystal growth were derived from the energy balance.

This is in contrast to other approaches, where a Taylor-Quinney factor is frequently proposed

instead. Consequently, no additional parameters related to the material self-heating were pro-

posed. Despite this fact, the model predictions of adiabatic heating and thermal softening were

in good agreement with the experimental infrared thermography data.

Furthermore, academic thermo-mechanically coupled boundary value problems revealed

the capabilities of the model to account for the complex crystallization phenomena and back-

coupling effects on the temperature and mechanical behavior, in structural examples. Conclu-

sively, the proposed theory provided a promising foundation for further investigations in the

future.

Further research in this field is beyond doubt necessary. First of all, the experimental stud-

ies of the mechanical behavior must be extended to investigate different loading conditions

(e.g. shear-, compression- and combined loading procedures). Clearly, the studies in Chapter 2

will help to reduce the number of experiments, by indicating which effects (e.g. loading rate

and degree of crystallinity) have the highest impact at different temperatures (below and above

the glass transition). Based on these results, a more accurate formulation of the yield criterion,

accounting for the degree of crystallinity and temperature might be proposed.

Furthermore, in the current modification of the Avrami theory, the influence of the pressure

on the crystallization was neglected, which is a big assumption considering the predominant

processing conditions during thermoforming. Consequently, the model should be enhanced to

account for this, in the future. In addition, the creation of the so-called rigid amorphous phase

was not addressed at all (neither in the experimental study nor in the numerical modeling) and

would thus be of interest for future investigations as well. Most crucial, two decoupled pro-

cesses (I. supercooling of the polymer melt and II. thermo-mechanical behavior of solidified

polymer) were considered, up to now. The crystallinity field was computed in a preceding

step, where a purely thermo-chemically coupled problem was solved under the assumption of
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a relaxed static melt. Subsequently, the computed crystallinity distribution served as a con-

stant input parameter for the thermo-mechanically coupled model formulation, which was a

considerable simplification. Thus, the derivation of a thermodynamically consistent and fully

coupled theory remains an intriguingly challenging task, which the author (and his co-authors)

aim to tackle in the near future.

The second part of this dissertation was concerned with the modeling of the coupled inter-

play and evolution of plasticity, damage, and temperature within metals. Thus, in Chapter 3

a general nonlinear theory of elasto-plasticity and damage coupled with heat conduction and

heat generation was derived consistently from the second law of thermodynamics. To this

end, a previously developed two-surface damage-plasticity framework was combined with the

energy conservation law, including thermal dilatation, temperature dependent material param-

eters, thermal softening, and damage-dependent heat conduction. In order to obtain mesh-

insensitive results, a gradient-extension based on the micromorphic approach was included.

A monolithic finite element implementation was proposed, where the tangent operators were

obtained using automatic differentiation. Three numerical examples (material self-heating at

the material point level and two structural problems) confirmed the proposed theory. Mesh

independent localization of strain, damage, and temperature was demonstrated, which was

quantitatively and qualitatively in good agreement with experimental data from the literature.

Despite these promising capabilities of the proposed framework, a comprehensive exper-

imental study is necessary, in order to fully characterize and validate the individual model

parts. To this end, the author’s workgroup currently plans extensive experimental investiga-

tions, where cyclic loading, different loading rates, and temperatures will be considered. In

order to obtain ‘true’stress-strain data and to resolve the evolution of the temperature field,

due to material self-heating, digital image correlation and infrared thermography (compara-

ble to the setup presented in Chapter 2) will be incorporated. From the planned experimental

study, it must be judged whether the current simplification of a rate-independent plasticity and

damage formulation is sufficiently accurate or if rate-dependent plasticity ought to be incorpo-

rated. Noteworthy, such further developments are straightforward and should be, in principle,

‘easily’achievable.

It is instructive to point out that the onset and evolution of damage as well as plasticity

in most metal forming processes are in general strongly direction-dependent, which can be

traced back to the manufacturing process of the sheet metals. Consequently, the modeling of

anisotropic damage and plasticity, by introducing higher-order damage tensors and more so-

phisticated yield criteria are of particular interest for future works. Furthermore, an additional

gradient-enhancement of the plastic deformations, in line with the numerous contributions in
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the field of regularized plasticity, would be of interest. Thus, plastic size effects could be

captured due to a separate internal length scale, which might be a valuable improvement of

the current formulation. One other crucial aspect is related to the incorporation of finite ele-

ment technology, in order to circumvent potential locking effects during the evolution of large

deviatoric plastic strains. To this end, reduced integration with hourglass stabilization could

be employed. This would also lead to a higher efficiency, since the (computationally costly)

material model would need to be evaluated in a single integration point per element only.

Finally, the thermo-mechanically coupled modeling of damage and irreversible deforma-

tions within semi-crystalline polymers could be tackled in a straightforward manner, by com-

bining the contributions presented in this dissertation. To this end, the proposed theories

within Chapter 2 and 3 for Polyamide 6 could be extended by a conceptually similar two-

surface damage-plasticity ansatz and micromorphic extension, as presented in Chapter 4. In

this way, the complex interactions between irreversible deformations, damage, temperature,

and degree of crystallinity might be resolved, in the future. For example, the less ductile be-

havior for higher degrees of crystallinity (see Chapter 2) could be captured, by considering the

damage onset parameter as a function of degree of crystallinity and temperature.
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Stojanović, R., Djurić, S. and Vujošević, L. [1964], ‘On finite thermal deformations’, Archives

of Mechanics 16, 103 – 108.

Sun, W., Chaikof, E. L. and Levenston, M. E. [2008], ‘Numerical approximation of tangent

moduli for finite element implementations of nonlinear hyperelastic material models’, Jour-

nal of Biomechanical Engineering 130(6), 061003 – 061003 – 7.

Sutton, M. A., Orteu, J. and Schreier, H. W. [2009], Image correlation for shape, motion and

deformation measurements: Basic concepts, theory and applications, Springer, Boston,

MA.

Svendsen, B. and Bargmann, S. [2010], ‘On the continuum thermodynamic rate variational

formulation of models for extended crystal plasticity at large deformation’, Journal of the

Mechanics and Physics of Solids 58(9), 1253 – 1271.



Bibliography 185

Tekoğlu, C., Hutchinson, J. W. and Pardoen, T. [2015], ‘On localization and void coalescence

as a precursor to ductile fracture’, Philosophical Transactions of the Royal Society of Lon-

don A: Mathematical, Physical and Engineering Sciences 373(2038).

Turnbull, D. and Fisher, J. C. [1949], ‘Rate of nucleation in condensed systems’, The Journal

of Chemical Physics 17(1), 71–73.

Uchida, M. and Tada, N. [2013], ‘Micro-, meso- to macroscopic modeling of deformation

behavior of semi-crystalline polymer’, International Journal of Plasticity 49, 164 – 184.

van Dommelen, J. A. W., Parks, D. M., Boyce, M. C., Brekelmans, W. A. M. and Baaijens,

F. P. T. [2003], ‘Micromechanical modeling of the elasto-viscoplastic behavior of semi-

crystalline polymers’, Journal of the Mechanics and Physics of Solids 51(3), 519 – 541.

Vázquez, J., López-Alemany, P., Villares, P. and Jiménez-Garay, R. [2000], ‘Generalization of

the avrami equation for the analysis of non-isothermal transformation kinetics. application

to the crystallization of the cu0.20as0.30se0.50 alloy’, Journal of Physics and Chemistry of

Solids 61(4), 493 – 500.

Vignjevic, R., Djordjevic, N. and Panov, V. [2012], ‘Modelling of dynamic behaviour of or-

thotropic metals including damage and failure’, International Journal of Plasticity 38, 47 –

85.

Vladimirov, I. N., Pietryga, M. P. and Reese, S. [2008], ‘On the modelling of non-linear kine-

matic hardening at finite strains with application to springback – comparison of time inte-

gration algorithms’, International Journal for Numerical Methods in Engineering 75(1), 1

– 28.

Voce, E. [1955], ‘A practical strain-hardening function’, Metallurgia 51(307), 219 – 226.

Voyiadjis, G. Z. and Faghihi, D. [2012], ‘Thermo-mechanical strain gradient plasticity with

energetic and dissipative length scales’, International Journal of Plasticity 30-31, 218 –

247.

Voyiadjis, G. Z., Pekmezi, G. and Deliktas, B. [2010], ‘Nonlocal gradient-dependent modeling

of plasticity with anisotropic hardening’, International Journal of Plasticity 26(9), 1335 –

1356. Special Issue In Honor of David L. McDowell.

Voyiadjis, G. Z., Shojaei, A. and Li, G. [2011], ‘A thermodynamic consistent damage and

healing model for self healing materials’, International Journal of Plasticity 27(7), 1025 –

1044.



186 Bibliography

Voyiadjis, G. Z., Shojaei, A. and Li, G. [2012], ‘A generalized coupled viscoplastic-

viscodamage-viscohealing theory for glassy polymers’, International Journal of Plasticity

28(1), 21 – 45.

Voyiadjis, G. Z. and Song, Y. [2019], ‘Strain gradient continuum plasticity theories: Theoreti-

cal, numerical and experimental investigations’, International Journal of Plasticity 121, 21

– 75.
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