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The future of artificial intelligence in digital pathology – results of a survey across stake-
holder groups

Aims: Artificial intelligence (AI) provides a powerful
tool to extract information from digitised histopathol-
ogy whole slide images. During the last 5 years, aca-
demic and commercial actors have developed new
technical solutions for a diverse set of tasks, including
tissue segmentation, cell detection, mutation predic-
tion, prognostication and prediction of treatment
response. In the light of limited overall resources, it is
presently unclear for researchers, practitioners and
policymakers which of these topics are stable enough
for clinical use in the near future and which topics
are still experimental, but worth investing time and
effort into.
Methods and results: To identify potentially promising
applications of AI in pathology, we performed an
anonymous online survey of 75 computational
pathology domain experts from academia and

industry. Participants enrolled in 2021 were queried
about their subjective opinion on promising and
appealing subfields of computational pathology with
a focus upon solid tumours. The results of this survey
indicate that the prediction of treatment response
directly from routine pathology slides is regarded as
the most promising future application. This item was
ranked highest in the overall analysis and in sub-
groups by age and professional background. Further-
more, prediction of genetic alterations, gene
expression and survival directly from routine pathol-
ogy images scored consistently high throughout
subgroups.
Conclusions: Together, these data demonstrate a pos-
sible direction for the development of computational
pathology systems in clinical, academic and industrial
research in the near future.
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Introduction

Digitisation of routine pathology workflows in itself
provides efficiency gains1,2 while maintaining the

quality of diagnosis.3 In addition, a benefit of digitis-
ing pathology workflows is that it could enable new
biomarkers, potentially expanding the information
that can be extracted from tissue slides,4,5
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particularly in cancer.6–8 Most of these analytical
approaches in computational pathology rely upon
artificial intelligence (AI),9 which can be applied for
three types of problems (Figure 1A).4 First, basic
applications aim to automate tasks which are usually
performed by pathologists, e.g. detection of tumour
tissue,10 subtyping11 or grading;12,13 secondly,
advanced applications, including the prediction of
mutations,14–16 expression17 and DNA repair defi-
ciency,18,19 as well as prediction of survival20,21 and
treatment response22,23 directly from haematoxylin
and eosin (H&E imagess and thirdly, ‘enabling tasks’
such as quality control,24 detection of cells (for the
purpose of subsequent quantification25,26) or quantifi-
cation of immunohistochemical (IHC) stains.27 How-
ever, it is currently unclear which of these
approaches are most likely to bring tangible benefits
in the near future.

Methods

E T H I C S S T A T E M E N T

We performed an anonymous online survey among
professionals in computational pathology who partici-
pated voluntarily. No benefit or disadvantage was
associated with participation or non-participation.

The identity of the participants was unknown to the
authors. No patient data were used.

S U R V E Y D E S I G N

Participants reported their demographic and profes-
sional background in six questions. For each applica-
tion category, a numerical rating scale was used to
indicate the priority participants assigned to a given
category. Finally, the survey included two optional
free-text questions (Supporting information,
Table S1).

I M P L E M E N T A T I O N A N D D I S T R I B U T I O N O F T H E

S U R V E Y

The survey was performed using Google Forms (Goo-
gle Inc., Mountain View, CA, USA) from 3 June to
20 July 2021. The survey was advertised during pro-
fessional symposia on digital pathology, including a
course about digital pathology run by the French
Society for Pathology (SFP), a presentation at the
European Congress of Pathology (ECP) and on the
social networks Twitter and LinkedIn via professional
accounts of the authors. The survey was closed when
75 responses were recorded (predefined stopping
criterion).

Figure 1. Applications of computational pathology and setup of this survey. A, Based on Echle et al.,4 applications of computational pathol-

ogy can be categorised as ‘basic’ or ‘advanced’. In this study, enabling technologies were introduced as an additional category. B, We per-

formed an online survey among 75 participants who are diverse stakeholders in the field. Participants were asked to report their subjective

experience or opinion.
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D A T A A N A L Y S I S

Responses on a numerical rating scale were analysed
by median and interquartile range (IQR). To visualise
differences between groups, the mean and standard
deviation (SD) was used. To compare responses
between categories, the Kruskal–Wallis U-test was
used. P-values below 0.01 were considered signifi-
cant. Correlation was assessed via Spearman’s analy-
sis. Statistical analyses were carried out using
Microsoft Excel and Python/SciPy. Analyses were per-
formed for predefined subgroups [older (born before
1980) versus younger participants and medical ver-
sus non-medical background].

Results

B A S I C D E M O G R A P H I C A N D P R O F E S S I O N A L

B A C K G R O U N D O F P A R T I C I P A N T S

We report the results of an anonymous survey (Fig-
ure 1B, Supporting information, Table S2). Fifty-six
(75%) participants were born before and 19 (25%)
after 1990 (Supporting information, Figure S1A,
Table S3). Thirty-six (48%) participants had a medi-
cal while 39 (52%) had a technical background (Sup-
porting information, Figure S1B). Forty-three (57%)
participants accessed the survey through social media
(Supporting information, Figure S1C). Forty-nine
(65%) participants had hands-on-experience in pro-
gramming (Figure S1D), 42 (56%) participants
reported having trained a neural network previ-
ously (Supporting information, Figure S1E) and 58
(77%) participants reported having been involved in
image analysis projects (Supporting information, Fig-
ure S1F).

W H I C H A P P L I C A T I O N S A R E M O S T P R O M I S I N G

O V E R A L L ?

Participants were asked to rank different applications
of AI, where 1 represents the least important and 10
the most interesting and/or promising application in
their subjective opinion. Accordingly, the most
promising application for AI in digital pathology was
predicting treatment response directly from H&E
images of solid tumours, reaching an overall arith-
metic mean of 9.09 (median = 10, Figure 2A). In a
pairwise comparison of categories, prediction of treat-
ment response was scored significantly (P < 0.01)
higher than all items in ‘enabling’ or ‘basic’ cate-
gories (Supporting information, Figure S2A). Also,
predicting genetic mutations as well as gene

expression directly from H&E images were considered
second and third most interesting with an almost
equal score of mean 8.64 (median = 10) and mean
8.63 (median = 10), respectively (Figure 2A). Taken
together, these data show that ‘advanced’ tasks
according to Echle et al.4 (Figure 1A) reached the
highest scores. In contrast, ‘enabling’ technologies
scored lower: with an arithmetic mean of 6.83 (me-
dian = 8), AI for detection of large structures was
considered to be the overall least promising applica-
tion of AI in digital pathology and the scores were
significantly (P < 0.01) lower than all scores of items
in the ‘advanced’ category (Figure 2). In addition, we
analysed the correlation between responses and found
that individual items within the categories ‘enabling
technologies’, ‘automation’ and ‘advanced’ (Fig-
ure 1A) generally clustered together, i.e. were often
rated similarly by the participants (Supporting infor-
mation, Figure S2B).

S U B G R O U P A N A L Y S I S B Y P R O F E S S I O N A L A N D

D E M O G R A P H I C B A C K G R O U N D

Among participants with a professional background in
medicine and from a non-medical field (Supporting
information, Figure S1B), as well as for younger and
older participants (Supporting information, Table S3),
prediction of treatment response was consistently
ranked highest. Detection of large structures in
histopathology images was consistently ranked lowest
or second-to-lowest. In all four subgroups, prediction
of survival was among the top 50% ranked targets
and prediction of molecular features was also consis-
tently ranked high. Interestingly, prediction of survival
was ranked higher by participants with a medical (Fig-
ure 2B) than with a non-medical (Figure 2C, Support-
ing information, Table S4) background. Another
interesting finding is related to the quantification of
immunostains, which was ranked second-highest by
the younger subgroup (Figure 2D, Supporting informa-
tion, Table S5). Apart from these observations, no
striking deviation from the overall ranking results (Fig-
ure 2A) was made for any of the subgroups.

A N A L Y S I S O F F R E E T E X T R E S P O N S E S

Participants were asked for free-text suggestions on
application of AI in computational pathology, and 32
answers were given to this question. Most partici-
pants (n = 8) suggested using AI for time-consuming
and laborious routine tasks in the pathological field
(e.g. virtual staining and automated measurement) to
integrate AI-based procedures into clinical practice
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and improve the efficiency of pathologists and medi-
cal researchers in their daily workflow (Supporting
information, Figure S3A, Table S6). Another com-
mon response (n = 6) was to use AI for quality

control purposes, especially quality of the tissue, qual-
ity of staining and quality of scans. Furthermore,
respondents showed their interest in using AI for
detection of subtle morphological features such as a

Figure 2. Ranking of responses in all participants and subgroups. A, Arithmetic mean and standard deviation for all participants. B, For par-

ticipants with a medical professional background. C, For participants with a non-medical professional background. D, Younger participants

born between 1980 and 1999. E, Older participants born between 1960 and 1979.
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more detailed cell and tissue characterisation (e.g. in
shape and structure) (n = 3). In addition, participants
were asked for suggestions of how AI could improve
medical research in general (Supporting information,
Figure S3B, Table S7) and 36 answers were given to
this question. Common suggestions were to reinforce
integration of AI into clinical real-life settings
(n = 13) to improve availability of large data sets,
clinical cohorts and open-source AI codes (n = 11).
The importance of comparing AI mined results
with the real existing clinical data, and thereby
increasing reproducibility, was another common sug-
gestion (n = 9). Six respondents suggested inter-
pretability of AI models for medical professionals as
an important area, arguing that this could create
stronger interconnections between technical and non-
technical fields. Equally represented was the imple-
mentation of prospective and multicentre studies.

Discussion

L I M I T A T I O N S

A limitation of our method is a possible non-response
bias. Participants in the survey were recruited by dis-
seminating invitations at professional conferences and
on social networks targeting a particular audience.
The decision of individuals in the target population to
participate in the survey could bias the results.28,29

Pathology experts not familiar with or even critical to
digital pathology and AI applications might have a
different opinion concerning what the research
should focus upon in this regard. Another limitation
is that this survey provides just a snapshot in time
and topics of subjective relevance could change over
time. In this sense, it may serve as a starting-point
for the follow-up studies over a certain time-period.
In particular, it would be interesting to perform a
similar survey in another population: pathologists
with no or very little experience from image analysis.

C O M P A R I S O N T O P R E V I O U S S T U D I E S

Unlike previous surveys about AI in digital pathol-
ogy,30–32 we aimed to identify research areas of inter-
est which could help stakeholders to sensibly allocate
resources in academic and industry settings. Based on
previous work,4 we divided the fields of application
into enabling technologies, automation of pathology
workflows and advanced tasks (Figure 1). We found
that advanced applications of AI were consistently
rated as most interesting across all subgroups of par-
ticipants (Figure 2). Responses in free-text questions

pointed out the need of using AI to automate time-
consuming diagnostic tasks and real-world validation,
which is in line with initiatives to increase the level
of evidence of computational pathology systems.33

Another prominent point was improvement of data
sharing, which is in line with approaches to stan-
dardise reporting of AI biomarker studies.34

O U T L O O K

The results of our survey could be used to guide
future research in academia and industry. Impor-
tantly, there are strong interdependencies of the dif-
ferent areas; e.g. AI-driven quality control is useful
for an AI-enhanced diagnosis and decision support.
Overall, our study shows the need for computational
pathology solutions which go beyond workflow
automation and provide true new biomarkers for out-
come and response prediction. We suggest that more
pathologists could be trained in AI to enable them to
devise and test their own ideas for new biomarkers.
Also, this could help overcome fears of AI, as it was
shown in radiology that the more a person knows
about AI, the less they fear it.35 Finally, beyond its
powers in image analysis, AI also excels at natural
language processing (NLP). Combining vision and
language AI models would open the possibility to
interact with AI through natural language, which
could further improve the integration into clinical
workflows.
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Table S4. Detailed overview of the professional

background subgroup analysis including the two sec-
ondary established subgroups .medical. and .non-
medical. and showing arithmetic mean, median and

interquartile range (IQR) for the top three ranked
applications respectively.
Table S5. Detailed overview of age subgroup analy-

sis including the two secondary established age sub-
groups .younger. and .older. and showing arithmetic
mean, median and interquartile range (IQR) for the
top three ranked applications respectively.
Table S6. Overview of respondents’ most frequently

given answers for open question number 1 (‘Which
other applications of AI in computational pathology
would you find promising or interesting?’). Different
answer categories were established during free text
question analysis and are listed in decreasing order.
Table S7. Overview of respondents’ most frequently

given answers for open question number 2 (‘In your
opinion, how can the use of AI in medical research
be further improved?’). Different answer categories
were established during free text question analysis
and are listed in decreasing order.
Figure S1. Basic demographics and previous experi-

ence of survey participants. (A) Self-reported age
among participants, (B) Professional background of
participants. (C) Distribution of the survey (D) Com-
puter programming experience among participants,
(E) Hands-on machine learning experience among
participants, (F) project experience of participants.
Figure S2. (A) Statistical significance of pairwise

differences between scores in categories (pairwise
Kruskal P value), (B) Correlation between scores in
categories (Spearman correlation coefficient) in N=75
participants.
Figure S3. Qualitative analysis of responses to free

text questions. (A) ‘Which other applications of AI in
computational pathology would you find promising
or interesting?’, (B) ‘In your opinion, how can the
use of AI in medical research be further improved?’
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