%0 Journal Article %A Muti, Hannah Sophie %A Heij, Lara Rosaline %A Keller, Gisela %A Kohlruss, Meike %A Langer, Rupert %A Dislich, Bastian %A Cheong, Jae-Ho %A Kim, Young-Woo %A Kim, Hyunki %A Kook, Myeong-Cherl %A Cunningham, David %A Allum, William H. %A Langley, Ruth E. %A Nankivell, Matthew G. %A Quirke, Philip %A Hayden, Jeremy D. %A West, Nicholas P. %A Irvine, Andrew J. %A Yoshikawa, Takaki %A Oshima, Takashi %A Huss, Ralf %A Grosser, Bianca %A Roviello, Franco %A d'Ignazio, Alessia %A Quaas, Alexander %A Alakus, Hakan %A Tan, Xiuxiang %A Pearson, Alexander T. %A Luedde, Tom %A Ebert, Matthias P. %A Jäger, Dirk %A Trautwein, Christian %A Gaisa, Nadine Therese %A Grabsch, Heike I. %A Kather, Jakob Nikolas %T Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer : a retrospective multicentre cohort study %J The lancet / Digital health %V 3 %N 10 %@ 2589-7500 %C London %I The Lancet %M RWTH-CONV-247332 %P e654-e664 %D 2021 %F PUB:(DE-HGF)16 %9 Journal Article %U <Go to ISI:>//WOS:000704394700010 %$ pmid:34417147 %R 10.1016/S2589-7500(21)00133-3 %U https://publications.rwth-aachen.de/record/845917