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The conversion of biomass with high sugar yields is enabled by a process us-16

ing the solvent γ-valerolactone. There, the lactone dissolves the organic species,17

and a co-solvent is used to switch the solvent system’s number of phases for18

efficient separation of the sugars in the aqueous phase. However, selecting19

the right co-solvent, a key economic driver for this process, currently involves20

several material-intensive and labor-intensive steps, from selecting candidates21

by experts to extensive experimental evaluation, and can lead to suboptimal22

choices. Here, we report a cost-optimal solvent-based biorefinery by combining23

process-based co-solvent screening and experimental validation of the best co-24

solvent candidate found. Assisted by property predictions, the solvent system25

we propose results from screening a broad range of molecules while reducing26

the manual effort compared to conventional solvent selection. The integration27

of reduced-order models embedded in process optimization allows identifying28

a cost-optimal co-solvent systematically. Additionally, environmental, health,29

and safety (EHS) evaluations assist in excluding hazardous co-solvents. The30

best candidate is validated experimentally inside the co-solvent hydrolysis re-31

action. Our findings show that through process optimization and the use of32

ethylbenzene as a co-solvent, we can enable 15% savings in operating costs and33
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achieve a better EHS score than the reported benchmark toluene. Ethylbenzene1

shows lower performance than toluene in the analysis of phase partitioning and,2

therefore, would not be a leading co-solvent based on a laboratory-based eval-3

uation alone. Here, we demonstrate that we can improve the final co-solvent4

choice, and a process-based co-solvent selection is needed.5
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1 Introduction1

1.1 Biomass conversion using γ-valerolactone2

To achieve a carbon-neutral economy, the sustainable production of fuels and3

chemicals to replace their fossil counterparts is critical, and plant-based biomass4

as a feedstock is a prime candidate due to its abundance.1 A promising avenue5

for bio-based production of commodities is often seen in the selective conver-6

sion of biomass through the intermediate products xylose and glucose.2 The7

conversion reactions involve the cleavage of β-1,4 glycosidic bonds into hemicel-8

lulose and cellulose with either enzymes or acid catalysts. In the case of acids,9

high concentrations or high temperatures cause the rapid breakdown of sugars10

into undesirable side-products.3 Such high acid concentrations are no longer11

necessary when a solvent is introduced to decouple the residence times of solid12

biomass polymers and their soluble compounds. This can be achieved by flow-13

ing the solvent through a heated packed bed of biomass. In this way, low sugar14

degradation and high economic efficiency can be achieved.415

One solvent, γ-valerolactone (GVL), has been reported to promote this con-16

version reaction by preventing the re-precipitation of the by-product lignin on17

the reactive cellulose surface.3,5 GVL enhances reaction selectivity toward de-18

sired products6 compared to biomass conversion processes using only water as a19

solvent. The economic analysis of this process shows that the separation and re-20

cycling of the GVL solvent is essential for profitability.3 Efficient separation can21

be achieved by introducing a co-solvent, which allows for a temperature-induced22

change of the number of phases, forming a switchable miscible solvent system23

(SMSS). The co-solvent promotes the formation of two phases when cooled to24

ambient temperature, inducing an organic phase rich in GVL and co-solvent25

and a second one rich in water, dissolved sugars, and the acid catalyst.7 There-26

fore, selecting this co-solvent is a crucial step in designing the GVL separation27

process.28

The original attempt to select a suitable co-solvent for such a SMSS was an ex-29

perimental evaluation of known candidate co-solvents conducted by Motagamwala30

et al. 7 Their approach included manual testing of the ability for temperature-31

induced phase switching at reaction and separation temperatures. Of the 1632

candidates considered, 11 were then evaluated on their extraction efficiency and33

environmental, health, and safety (EHS) scores.8 Each candidate co-solvent was34

used inside the biomass conversion reaction, and its influence on the respective35

sugar yield was measured. Among the 16 well-known co-solvents tested, toluene36

was selected as it offered the best trade-off between extraction efficiency and37

EHS-score7 and was later assessed for its techno-economic performance in a38

bio-ethanol production process.939

However, the selection of co-solvents based on extraction efficiency can generally40

lead to sub-optimal process performance, as such performance indicators do not41

capture potential trade-offs in the process.10 These trade-offs are present inside42

the proposed recovery9 of the co-solvent. This includes the extraction of GVL43

from water in an extraction column and the regeneration of the co-solvent in a44

distillation column. A high affinity of the solvent to the solute is advantageous45

for efficient extraction, while a low affinity is preferred for solvent recovery by46

distillation. Capturing this trade-off motivates assessment at the process level47

instead of the co-solvent level. Moreover, manual screening of co-solvents in48
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an experimental setup has apparent disadvantages. First, the pre-selection of1

candidates relies on the intuition and experience of a small number of people.2

Second, it is not scalable-exhaustive laboratory automation would be necessary3

to test a co-solvent scope that covers a broad range of molecules. Third, the4

mentioned process trade-offs could only be captured in a plant setup. This work5

aims to find a cost-optimal co-solvent on the process level. Computer-aided6

solvent screening methods, using a wide range of molecules, allow defining a7

cost-optimal candidate for this process.118

1.2 Computer-aided solvent screening9

Although neglecting the process during solvent selection can cause suboptimal10

choices, the evaluation of performance indicators such as phase distribution11

coefficients12–17 is often used to estimate downstream process efficiency and,12

in some cases, also validated in rigorous simulations or experiments.18,19 Such13

performance indicators have been used to evaluate a large number of molecules14

using thermodynamic property predictions calculated with COSMO-RS.20 An15

overview of performance evaluation for predicted molecular properties is given in16

Gertig et al. 21 They differentiate between evaluation with simple performance17

indicators, in-silico assessment inside a process simulation, and additional pro-18

cess optimization. Only the latter two approaches can take trade-offs inside the19

process into account. To that end, simple shortcut models for the unit oper-20

ations can be used.10,22,23 But these models can cause inaccuracies, especially21

with nonideal separations.24 These inaccuracies are avoided by using sophisti-22

cated pinch-based reduced-order unit operation models.25,26 Previous studies23

have shown that the automated in-silico assessment of molecular properties24

based on COSMO-RS predictions inside such unit operation models is possible25

and improves the final solvent selection.11,27–29 Scheffczyk et al. 11 automatically26

select solvents from the COSMO-RS database for a process using reduced-order27

separation models. In more recent studies, Scheffczyk et al. 29 and Fleitmann28

et al. 27 perform process optimization for the reduced-order models. However,29

they do not apply heat integration for the process and lack the evaluation of30

EHS for the selected solvents. While these studies show how much effort has31

been placed toward automating the screening of solvent systems for separation32

processes, only a few articles have been published that perform solvent screen-33

ing for SMSSs.17,30,31 Despite the advances in solvent screening on the process34

level, these studies use performance indicators for their selection.35

We showed that the concept of computer-aided solvent selection had been de-36

ployed successfully on several applications. Still, existing computer-aided meth-37

ods are not applicable to the complexity of SMSS design for biomass conversion.38

The influence of a co-solvent on the sugar yield can only be evaluated experimen-39

tally. In contrast to the manual co-solvent selection for the biomass conversion40

using GVL7, our approach combines computational solvent screening, process41

optimization, and experimental biomass conversion to define a cost-optimal co-42

solvent. We demonstrate that we can engineer a solvent system that enhances43

biomass conversion due to the positive effects of using GVL as a solvent while44

being cost-optimal inside the process. Specifically, we report the following con-45

tributions: (1) an evaluation of over 2000 molecules in the COSMO-RS database46

within a process model using reduced-order unit operation models embedded in47

a process optimization; (2) an additional evaluation of calculated EHS scores48
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for the 30 best candidate co-solvents ranked on their operating costs; (3) the1

successful application of the best co-solvent found in an experimental setup to2

convert beechwood to sugars; (4) the comparison of the resulting phase com-3

positions from the conversion reaction with ternary model mixtures and the4

COSMO-RS predictions; (5) an experimental evaluation of the sugar concen-5

tration inside the residual biomass after the conversion reaction for the best6

candidate and the benchmark co-solvent. Our results show that process-based7

selection of co-solvents is required and that the reference toluene performs better8

when simple performance indicators such as partition coefficients are the basis9

for selection but would perform worse in the process than the best co-solvent10

found in this work.11

2 Methods12

We perform solvent selection in a series of discrete stages. We first present13

the process model for a given GVL separation, then the prediction of ther-14

modynamic properties in COSMO-RS, process optimization, and experimental15

validation. We perform an automated evaluation on the process level for a list of16

ą 2000 co-solvents from the COSMO-RS database and establish a ranking based17

on minimum operating costs. A summary of all important assumptions, vari-18

ables subject to optimization and parameters for the computer-aided co-solvent19

screening can be found in the ESI: (Table B.1, Section B).20

2.1 Process model: γ-valerolactone separation21

The process structure for the GVL recovery of the co-solvent hydrolysis is22

adapted from Won et al. 9 No structural changes compared to the original sepa-23

ration section are made, except that we do not depict solids removal for simplic-24

ity. Figure 1 illustrates the process, starting with reactor R1, which is operated25

at 453 K and 20.67 bar. R1 is fed with water, GVL, and the co-solvent toluene26

(zF = 0.578, 0.349, 0.074 on molar basis). This solvent system is single-phased27

at the reaction temperature. After the reaction at 453 K, the mixture is cooled28

below the mixture’s upper critical solution temperature. Inside the reactor, the29

biomass is converted to soluble carbohydrates by the catalyst sulfuric acid. Ad-30

ditionally, GVL and water form two liquid phases due to the co-solvent. The31

resulting two phases are immediately separated in decanter D1, and 86.3% of32

the organic phase is recycled to R1 and contains most of the GVL. This value is33

maintained throughout the screening. The aqueous phase of decanter D1 con-34

tains the sugars resulting from the hydrolysis of the biomass and small amounts35

of GVL. However, this GVL concentration is too high for further fermentation36

of the sugars to fuels and chemicals. Most microorganisms tolerate up to about37

2 wt% of GVL in the fermentation medium.32 Therefore, the aqueous stream38

of D1 is further purified in an extraction column E1 to achieve this concentra-39

tion. The GVL concentration is reduced below 2 wt% of GVL by the co-solvent40

Xco-solvent inside extraction column E1. The raffinate of E1 constitutes the feed41

for the fermentation. The fermentation is not part of our model. The extract42

phase of the extraction, consisting of GVL and the co-solvent Xco-solvent, is trans-43

ferred to distillation column C1, where both are separated, and the co-solvent is44

reused for extraction. The heavy boiling product of C1 consists mainly of GVL45
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Figure 1: Process flowsheet consisting of a decanter D1 and a hybrid extraction-
distillation E1 and C1. Feed stream to reactor R1 contains the solute GVL,
carrier H2O and co-solvent Xco-solvent. R1 is not part of the model and is
therefore, illustrated in dashed lines. Biomass and the resulting sugars are
assumed to be inert substances. Bracketed components are solutes.

and the side product levulinic acid (LVA) from the hydrolysis reaction in R1.1

The LVA at the bottom of C1 is further hydrogenated to GVL (not considered2

in the model) and then recycled back to R1 to compensate for the GVL losses3

in the raffinate stream.4

5

2.2 Model assumptions and implementation6

The process model in this work aims to consider all the effects of a co-solvent7

on the operating costs of GVL separation. The biomass conversion reaction, in-8

cluding the acid catalyst, is neglected, and the resulting products are assumed9

to be inert.10

The process model consists of a liquid-liquid equilibrium (LLE) flash model D111

at constant temperature and pressure , pinch-based reduced-order models for12

extraction column E1 and distillation column C1, and all heat exchangers and13

pumps. Decanter D2 is assumed to be an ideal separation of co-solvent and14

water. The recycles from D1 and D2 to R1 are not closed to reduce computing15

time. Therefore both constitute exiting streams in the process model. Only the16

co-solvent lost in the aqueous stream, leaving extraction E1, is accounted for17

and priced as a solvent loss.18

We apply a pinch-based design method for heat integration.33 The specific en-19

ergy costs (e J ´1) are assumed to be piecewise-affine-linear functions of the20

temperature.34 The co-solvent price is kept constant for each candidate.35 This21

allows evaluating a large number of co-solvents, even the more uncommon ones,22

without causing a price disadvantage in this early stage of the process design.23

This is particularly important because the amount of co-solvent in the screening24

is variable to determine optimal compositions. Detailed information on the cost25

functions can be found in the ESI: (Section B).1
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2.3 Co-solvent screening methodology2

2.3.1 Thermodynamic property prediction3

We divide the screening process for co-solvent molecules into four explicit stages,4

including 1) property prediction (COSMO-RS database search, pure component5

and mixture prediction, regression of the pure and mixture property models), 2)6

evaluation at the process level (heat integration and optimization), 3) manual7

EHS and chemical stability evaluation (Figure 2A) and 4) experimental execu-8

tion (beechwood conversion, analysis of resulting liquid phases) (Figure 2B). We
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Figure 2: Workflow of (A) the computational solvent screening using COSMO-
RS on process level with EHS evaluation of the top 30 candidates and (B)
the experimental procedure of two-stage beechwood conversion and subsequent
phase composition analysis of the liquid product and residual sugar analysis of
the solid product. Stage 1: single-phased. Stage 2: single-phased at reaction
temperature and two-phased below 460 K.

9
choose a manual EHS evaluation for the 30 best candidates after process opti-1
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mization using a numerical procedure36 to reduce model complexity. However,2

this step can also be automated using predictive EHS models31, which would3

allow evaluating all candidates.4

The first stage in the co-solvent selection is to narrow down the available5

molecules (ą 4600) in the COSMO-RS database by setting bounds on the melt-6

ing and boiling points so that all molecules meet the requirement to be liquid7

at ambient conditions, with a safety margin of 15 K (313.15 K). The boiling8

point of the co-solvent candidate Xco-solvent needs to be lower than that of LVA9

(Tb= 519 K), since LVA is used for further GVL production and must, there-10

fore, form the bottom product of the distillation column. Next, we select a11

subset of molecules from the COSMO-RS database based on design constraints,12

i.e., we consider only organic molecules and exclude halogens, which results in13

2000 molecules.14

The following stages are automatically repeated for each molecule (black box15

in Figure 2A): The existence of an LLE with water is checked using the binary16

LLE calculation in COSMOtherm.37 It is not clear from the COSMOtherm17

manual38 whether this check satisfies the necessary and sufficient condition of18

thermodynamic phase stability. Therefore it is not possible to state if there is19

a guarantee that the LLE check results in a correct phase split. This analysis20

should be performed in a later design stage. The compositions of the phases21

are not yet constrained at this point. For each resulting candidate co-solvent22

Xco-solvent, pure component properties (vapor pressure, enthalpy of vaporiza-23

tion, and molar volume) are predicted in COSMO-RS. Only for the calculation24

of heat capacities the group contribution method of Benson and Buss39 is used,25

which combines low computational time with reasonable accuracy compared to26

other methods for the estimation of heat capacities.40 The calculation of heat27

capacities in COSMO-RS is possible but computationally too demanding for28

this study.29

Isothermal activity coefficients are calculated directly in COSMO-RS for both30

the liquid-liquid and the vapor-liquid equilibrium. All predictions are performed31

in COSMOtherm 17 on the TZVPD-fine accuracy level. Nonrandom two-liquid32

(NRTL)41 parameters are fitted to the binary subsystems and used to predict33

ternary phase behavior. The NRTL activity coefficient model is well suited to34

represent highly nonideal mixtures. Still, for pressures above 10 bar, predictive35

equation-of-state models are preferable because they consider the pressure de-36

pendence of mutual solubility. Here we assume the pressure dependence to be37

negligible to reduce the computational cost at this stage. This effect should be38

analyzed in a later design stage. Furthermore, false miscibility gaps could poten-39

tially rise from the regression of NRTL parameters using COSMO-RS activity40

coefficients since only the necessary condition of phase stability is enforced.42 We41

choose not to enforce both necessary and sufficient conditions of phase stability,42

to reduce the computational effort when fitting a large number of molecules.43

The number of phases of the solvent systems must be switchable to recycle most44

of the organic stream exiting the reactor R1. This is checked for the following45

temperatures using an LLE flash routine: 453 K (conversion temperature, one46

phase required), ambient temperature (a surrogate for separation temperature,47

two phases desired). We discard non-switchable systems for the evaluation at48

the process level. The fraction of Xco-solvent in zF is variable at this stage, as49

it affects the ability and temperature range of phase switching. We first check50

the switchability for a feasible feed composition. Suppose the mixture forms1
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two phases at the reaction temperature. In that case, we lower xco-solvent while2

keeping the ratio of GVL and water constant to identify the lowest co-solvent3

concentration possible while ensuring switchability.4

2.3.2 Process optimization and EHS evaluation5

The decanter temperature TD1 is optimized separately from the remaining sep-6

aration process. This is because of the model simplification that the recycles7

from D1 and D2 to R1 in the original separation process9 are exiting streams in8

our process model. This decomposed approach can lead to suboptimal results9

compared to an optimization where all unit operations are subject to the same10

cost function. However, such a rigorous approach would require the inclusion of11

biomass conversion in the process model. The objective function for the flash12

optimization (cf. Section A, ESI:) aims to maximize the partition of GVL and13

water in the respective phases. The resulting temperatures are fixed for the14

flowsheet calculation and optimization.15

The process model consists of two reduced-order column models (extraction and16

distillation), heat exchangers, and pumps. We minimize the operating costs re-17

sulting from the reduced-order process model, considering heating, cooling, elec-18

tricity, and co-solvent loss. In addition, we use temperature-dependent NRTL19

parameters in the unit operation models and can thus perform process opti-20

mization. To determine the parameters in this work, we use an equally-spaced21

temperature grid in the range of 398.15 K to 473.15 K with ten temperature22

grid points. Overall we perform 11 evaluations of the activity coefficients on23

each of the temperature grid points.24

The reduced-order column models yield a pure product (sharp separation). Si-25

multaneously, they operate at minimum solvent (extraction) and energy (dis-26

tillation) demand, so there is no need to define purity requirements. We solve27

the optimization problem with the derivative-free solver Pattern Search 43 in28

MATLAB® V7.10, which proved to be an error-prone solver in this work. The29

resulting co-solvents with their respective cost-optimal process operating points30

are ranked toward minimum operating costs. Whereas pinch-based reduced-31

order models allow a systematic screening with rapid calculations of minimum32

energy and solvent demand while being thermodynamically accurate, they do33

not replace a rigorous distillation or extraction model. These models assume an34

infinite number of separation stages and therefore operate at a point of mini-35

mum reflux or minimum solvent demand. Therefore, the screening results can36

only be considered as a possible lower estimate on the operating costs of the37

actual process.38

Another important measure that must be considered while selecting a co-solvent39

is its impact on the environment and human life. Therefore, the top 30 candi-40

dates are evaluated further on their EHS scores. This step can also be auto-41

mated using predictive models.44 These models would then allow for complete42

automation of the computational selection procedure and would also enable43

evaluating molecules not listed in databases. However, in this work, we choose44

a manual selection to reduce model complexity. In particular, we apply the45

method CHEM21 36, which was introduced to evaluate less classical solvents by46

the Global Harmonized System and European regulations. This method allows47

us to classify all solvents in the categories recommended (solvents that can be48

tested in a first screening within processes), problematic (solvents whose im-1
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plementation on the pilot or production scale requires specific measures) and2

hazardous (scale-up constraints are significant and the substitution of these sol-3

vents during process development is a priority).36 We exclude problematic and4

hazardous co-solvents. The co-solvent candidate with the lowest operating costs5

and a recommended EHS status is manually chosen for experimental validation.6

2.3.3 Experimental validation7

Our approach to the automated screening of co-solvent candidates for co-solvent8

hydrolysis includes selection criteria that cannot be quantified on a model-based9

basis: First, the co-solvent candidate should not hinder the production of sug-10

ars from the biomass. It should also promote the formation of two phases upon11

cooling, such that one organic phase is rich in GVL and co-solvent and the12

other is rich in sugars and water. Finally, the co-solvent candidate should ren-13

der lignin insoluble in both phases.7 To consider these effects inside our process14

model, a detailed representation of the biomass conversion reaction would be15

needed, which would significantly increase the computational time. Therefore,16

we chose an experimental validation of the best co-solvent candidate after the17

computational screening.18

We convert beechwood into soluble carbohydrates using the best co-solvent19

found in a laboratory setup to ensure that we meet these criteria. The next best-20

ranked candidate is tested if the best-ranked co-solvent fails inside the validation21

experiments. The biomass is processed in a two-step approach,7,9 as outlined in22

Figure 2B. Besides impregnation and contacting the biomass with the catalyst,23

the mild conditions in the first step allow the release of lignin and hemicellulose24

fractions while further degradation of the resulting monosaccharides is avoided.25

The increased temperature in the second step enables complete biomass disin-26

tegration and cellulose hydrolysis. The separation of both temperature levels in27

a two-step approach, thus, supports the maximum release of monosaccharides28

from the biomass with avoidance of temperature-induced degradation reactions.29

We calculate partition coefficients for the resulting two liquid phases using IR30

spectroscopy for concentration measurement. The feasibility of sugar quantifi-31

cation within the solvent system by IR spectroscopy is evaluated. After the32

beechwood conversion reaction, the mixture is filtered, and the dried residue is33

weighted to close the mass balance. Differences in the solid content would indi-34

cate changes in the amount of lignin insoluble in the mixture. To determine the35

amount of unreacted sugars in the solid residues, washed and dried solid sam-36

ples from the first and second conversion stages are hydrolyzed with an aqueous37

sulfuric acid solution following the NREL protocol.45 The insoluble lignin con-38

tent is determined from the remaining solid fraction gravimetrically, whereas39

the resulting hydrolysate is analyzed with ion-exchange chromatography (IC)40

for C5- and C6-sugars. Details of the experimental procedure are summarized41

in the ESI: (Section C).42

3 Results43

3.1 Process optimization results44

We apply the proposed method to compile a list of the 30 best co-solvents45

ranked on minimal operating costs (cf. Table D.1, ESI:). Since the biomass1
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conversion reaction is not part of the model and the main resulting products2

are sugar molecules dissolved in the aqueous phase of the extraction column E1,3

we indicate operating costs in e per kmol water in raffinate (WIR) instead of4

kmol product. The majority of the 30 evaluated co-solvents are aromatic hy-5

drocarbons (cf. Table D.1, ESI:). Out of the top five molecules ranked on their6

operating costs (cf. Figure 3), ethylbenzene and toluene were already listed7

among 16 other co-solvents in the solvent selection of Motagamwala et al. 78

Toluene was selected on the basis of experimental extraction efficiency measure-9

ments and EHS assessment.10

In our analysis, the performance in the process significantly changes through11

process optimization (Figure 3A). Of the five best candidates, the most sig-
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Figure 3: (A) Operating costs of the five best performing co-solvent candidates
with heat integration, before (dark gray) and after optimization (light gray).
(B) Cost structure of co-solvent candidates after heat integration and process
optimization.

12
nificant improvement in operating costs is achieved for diphenylether with 35%13

reduction, followed by 3-methylstyrene (25%), allylbenzene (21%), ethylbenzene14

(15%) and toluene (12%). Before process optimization, toluene is the leading15

candidate among the five. After optimization the co-solvent with the lowest16

operating costs is allylbenzene with e0.187 WIR ´1.17

The top 30 candidates differ in terms of their cost composition; they are, how-18

ever, very similar in their final optimal operating costs (Figure 3B). A high19

share of total operating costs is attributed to heating costs. Ethylbenzene and20

toluene have the lowest shares of 68% and 64%, respectively, indicating good21

performance of the molecule in the distillation. Similarly, a low share of costs22

caused by solvent loss indicates efficient extraction within the process. Solvent23

prices are assumed to be constant in our study. Therefore, the amount of sol-24

vent lost in the process can significantly impact the operating costs, particularly25

when market prices are used. The highest share in costs caused by solvent loss26

is observed for toluene (15%).1
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3.2 Ranking of best co-solvents and EHS results2

Our screening yields three Pareto dominant co-solvent candidates (see Figure 4,3

in black circles) in the considered set of molecules selected from the COSMO-RS4

database in the objectives operating costs and EHS scores. The EHS score is5

calculated by a numerical procedure36, and as such, is a metric. A low score6

indicates an environmentally favorable solvent. Two (ethylbenzene and 1,3-7

dimethylbenzene) out of the 30 best-ranked candidates achieve an EHS score low8

enough to be recommended. Among the top 30 molecules, 1,3-dimethylbenzene9

achieves the lowest EHS score of 9 but is only ranked 15th in operating costs.10

The co-solvent with the lowest operating costs (e0.187 kmol WIR ´1), allyl-11

benzene, is classified as problematic with an EHS score of 14. The third

economically &
environmentally
favorable solvent

#  Rank in Screening
O Pareto Dominant

(  
   

   
   

   
   

   
   

   
   

   
   

   
)  

  

1     allylbenzene
2     ethylbenzene
3     3-methylstyrene
4     diphenylether
5     toluene
6     alpha-methylstyrene
7     (ethenyloxy)-benzene
8     dibenzofuran
9     cis-1-propenylbenzene
10   4-methylstyrene

Figure 4: Operating costs per kmol water in raffinate with respect to environ-
ment, health and safety scores using the CHEM21 method. The economically
and environmentally most favorable co-solvent is located at the lower left cor-
ner. Pareto dominant points are highlighted in black circles (1 = allybenzene,
2 = ethylbenzene, 15 = 1,3-dimethylbenzene). Toluene and ethylbenzene were
already considered by Motagamwala et al. 7

12
Pareto dominant candidate, ethylbenzene, yields an EHS score of 10 and a13

recommended status. Furthermore, ethylbenzene is economically more favor-14

able than 1,3-dimethylbenzene, with operating costs of e0.19 kmol WIR ´1.15

Here, the benchmark co-solvent toluene is ranked fifth with operating costs of16

e0.195 kmol WIR ´1 and is classified problematic with a total EHS score of 14.17

It is important to note that the differences in operating costs among the top18

candidates after optimization are quite small, indicating that only a detailed19

comparison between the best co-solvents within the final process can give cer-20

tainty about the best candidate. However, the differences in the EHS scores21

among the 30 best-performing co-solvents is significant since the depicted range22

in Figure 4 can result in a co-solvent being recommended (lower end of the23

scale) or hazardous (upper end of the scale) according to the CHEM21 sys-24

tem. Ethylbenzene is the only co-solvent candidate that exceeds the benchmark25

toluene proposed by Won et al. 9 with about 15% improvement in operating26

costs achieved through solvent screening and process optimization in this work,1
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as well as in its EHS rating (from 14/problematic for toluene to 10/recom-2

mended for ethylbenzene). We, therefore, conclude that ethylbenzene is the3

most promising candidate for co-solvent hydrolysis. Recently, Teixeira et al. 464

showed that ethylbenzene could be obtained from biomass-derived furan using5

a zeolite catalyst with a high yield and selectivity under mild conditions. This6

additionally supports further investigation of ethylbenzene since unlike toluene,7

it can be sourced renewably.8

The optimization and heat integration results for the best candidate ethylben-9

zene are summarized in Figure 5. The reaction temperature and pressure are10

adapted from Won et al. 9 , while all other design variables such as temperature11

and pressure of the unit operations are optimization variables. In this SMSS,

to R1

R1

D1

C1

E1

1

4.11 MW

102 kW

Cooling
Heating
Electricity

1

T=  298.15 K
p = 1 bar

18.91 MW

2

3

8

1
2

3

6

0.48 MW

7.8 MW9
T = 453 K
p = 20.67 bar

4

0.22 MW 5

5

6

T = 310.15 K
p = 0.1 bar

0.012 MW

T = 310.52 K

5.62 MW

8
4.15 MW

4
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97

0.314 MW

T = 298.15 K
p = 1 bar

10
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0.358 MW0.857 kW

T = 298.15 K
p = 1 bar

T = 402.06 K

T = 310.15 K
p = 1 bar

TR = 453 K
pR = 20.67 bar

TD = 328.47 K
pD = 20.67 bar

TE = 310.15 K
pE = 1 bar 

7

pC = 0.1 bar

T=281.50 K

1.5 MW

0.095 MW

2.1 MW

0.373 MW

0.064 MW

Heat Integration

1

4

3

Figure 5: Flowsheet optimization and heat integration results for the co-solvent
ethylbenzene with 1 kmol s ´1 feed stream, optimization variables given in green
boxes and stream conditions in gray boxes. Utility streams are illustrated with
entering/exiting arrows; cooling (blue), heating (red) and electricity (green).
Both extraction and distillation columns are modeled using reduced-order mod-
els. A stream table can be found in the ESI: (Section D.2).

12
in which ethylbenzene constitutes the co-solvent, decanter D1 is optimal at13

328.47 K, while the extraction column is cost-optimal at 310.14 K. The heat-14

ing of the feed constitutes the second-highest power consumption of the heat15

exchanger after the recycle stream to R1. The optimum distillation pressure is16

0.1 bar. A stream table and the results of heat integration are summarized in1

the ESI: (Table D.2, Figure D.1).2
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3.3 Experimental results3

The method’s accuracy is tested by validating the SMSS, consisting of wa-4

ter, GVL, and the co-solvent, at the computationally determined optimal feed5

compositions and temperatures (cf. Table D.1, ESI:) for decanter D1 in the6

following. IR spectra of the organic (top) and aqueous (bottom) phases after7

phase separation at optimal split temperature for the co-solvents ethylbenzene8

and toluene are shown in Figure 6.9
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Figure 6: IR spectra of the pure chemical species GVL, toluene, and ethylben-
zene together with spectra of the upper (A, C) and lower (B, D) phases of
the ternary solvent systems after phase separation at optimum split tempera-
ture (toluene: 310 K, ethylbenzene: 328 K). Corresponding phase composition,
given in mole fractions, for the upper phases (E) and for the lower phases (F)
are compared to model results from COSMO-RS.

GVL dominates the spectra of the upper phases for both co-solvents. How-10

ever, toluene and ethylbenzene peaks can be also detected at wavenumber of11

1 450 cm´1, 1 496 cm´1, and ν̃ = 1604 cm´1 in the upper phase, respectively.1

No such peaks are found in the lower phase leading to the conclusion that2
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the toluene and ethylbenzene content is insignificant in the lower (aqueous)3

phase, and both species are only present in the upper phase, as expected (cf.4

Figure 6A,C). Quantitative analysis of the IR spectra for the upper and lower5

phases is done applying partial least squares regression (PLS). Calibration ac-6

curacies between 0.9¨10´3 to 5.2¨10´3 mol per mol for the respective chemical7

species are reached (cf. Table E.1, ESI:). Mole fractions for the upper and lower8

phase are shown in Figure 6E-F. The phase composition does not change sub-9

stantially by using ethylbenzene instead of toluene as a co-solvent, which is10

expected due to the strong similarity of both co-solvents’ molecular structures.11

Partition coefficients of GVL and water are calculated from experimental data12

as ratios of the respective species mole fraction in the upper phase divided by13

the species mole fraction in the lower phase, yielding RGVL = 6.75 for toluene14

and RGVL = 6.11 for ethylbenzene. Consequently, toluene yields slightly better15

results in GVL extraction compared to ethylbenzene, whereas H2O distributes16

equally for both co-solvents (RH2O = 0.35). The COSMO-RS model predictions17

in Figure 6E-F show good agreement with experimental data of both phases.18

We observe a systematic underestimation of the species water and a systematic19

overestimation of species GVL in both phases by COSMO-RS. The deviations20

(about 0.1 mol per mol) for the upper phase still support valid COSMO-RS21

model results that enable a permissible co-solvent ranking.22

In the next step, beechwood hydrolysis experiments are performed with both23

co-solvents according to Figure 2 (cf. Section C, ESI:). The total beechwood24

conversion is very high and reaches comparable values of 96% for toluene and25

98% for ethylbenzene, indicating no negative influence on the biomass conver-26

sion process for both co-solvents. Partition coefficients for GVL after biomass27

conversion decrease by 40-60% (cf. Figure E5, ESI:) compared to the artificial28

ternary mixtures (c.f. Figure 6A-D), which is attributed to sulfuric acid or dis-29

solved wood components that change the cross-solubility of the two phases. We30

use the resulting phase compositions of the ternary system inside our reduced-31

order process model to calculate how that would affect the process performance.32

The analysis indicates an increase in operating costs by a factor of 2.2-2.4.33

IR spectroscopy does not resolve the sugar species signals in the organic and34

aqueous phases due to the abundance of signals from the very IR-active GVL35

molecule. However, IC analysis of the hydrolysate from samples of the solid36

residues show that the residues after the second process step for both toluene37

and ethylbenzene consist of almost only lignin with only minor traces of sugar38

species in case of ethylbenzene (cf. Figure E.6, ESI:). Thus, the results indicate39

effective sugar extraction from the solid biomass for ethylbenzene and toluene.40

Similar results were observed by Motagamwala et al. 7 , where co-solvents similar41

in molecular structure showed comparable influence on the sugar yield.42

4 Conclusions43

Solvent-enabled disintegration and conversion of biomass to produce biorenew-44

able fuels and chemicals require a cost-efficient process such that the production45

is competitive with their petroleum-derived equivalents. To achieve this target,46

the efficient separation of the solvent is seen as a key success indicator. Here we47

aimed to define a cost-optimal co-solvent for the GVL-based co-solvent hydrol-1

ysis. By combining computer-aided solvent screening with the insights gained2
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through experimental biomass conversion experiments, we could find an opti-3

mal co-solvent molecule for this process. We replaced the manual miscibility4

analysis and extraction experiments with computer-aided process evaluations5

to achieve this. We implemented a wide range of co-solvent candidates from the6

COSMO-RS database into a process model and optimized the operating costs7

while ensuring environmental compatibility in an EHS study. In combination8

with process optimization, process-level evaluation has proven necessary, as it9

is the only way to capture process trade-offs.10

We identify ethylbenzene as a promising co-solvent for the switchable GVL-11

based biomass hydrolysis process. Using ethylbenzene and considering only12

the solvent system, we reduced the operating costs of a process model using13

reduced-order unit operation models by about 15%, in contrast to the bench-14

mark co-solvent toluene in a non-optimal process. This result would not be15

expected based on the analysis of partition coefficients alone and underlines the16

process-based approach.17

By IR spectroscopy analysis of the phase compositions inside the ternary model18

mixture, the partition coefficients are determined and related to COSMO-RS19

predictions. We demonstrate that COSMO-RS predictions are reasonable es-20

timates of the experimental partition coefficients with a maximum deviation21

of about 0.1 mol per mol. We confirm that the co-solvent we recommend does22

not hinder the biomass dissolution and the formation of two phases. Follow-23

ing the NREL protocol, we hydrolyze the solid residues which result from the24

co-solvent-based biomass conversion for toluene and ethylbenzene to determine25

the amount of unconverted sugars. Through IC analysis of the hydrolysate, we26

show that the residues consist almost entirely of lignin and contain only minor27

traces of sugar species in the case of ethylbenzene. We perform the decanter28

step after the biomass conversion experimentally with ethylbenzene and toluene.29

Additional analysis of the partition inside the hydrolysate indicates a decrease30

in the partition coefficients by 40-60%, which would increase the operating costs31

in the final process by a factor of 2.2-2.4.32

Using our approach, we assessed a large number of molecules at the process33

level and defined a cost-optimal co-solvent for the GVL separation. Unlocking34

the full potential of such co-solvent-based biomass conversion processes will help35

to make biomass-derived fuels and chemicals competitive and environmentally36

friendly.37
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zation Projektträger Jülich (PtJ). We kindly thank Lisa Neidhardt (AVT.SVT)44

for great help in the simulation part. Moreover, we kindly thank Jörg Eberz45

(AVT.SVT) and Jule Blankenstein (AVT.SVT) for valuable assistance during46

the experiments and Thomas Fuchs (AVT.FVT) for excellent support with IC47

analysis. Furthermore we thank the Institute of Technical und Macromolecular1

Chemistry (RWTH Aachen University) for providing GVL for experiments.2

Page 17 of 21



Author Contributions3

KK: Conception and organization of the manuscript; Design of the compu-4

tational procedure; Computational modelling and optimization; Environ-5

ment, health and safety evaluation; Preparation of the computational part6

of the manuscript7

AE: Design of experimental procedure; Experimental evaluation of the par-8

tition coefficients and biomass hydrolysis; Calibration, application and9

evaluation of IR spectroscopy; Analysis of solid residues; Preparation of10

the experimental part of the manuscript11

CK: Assistance in the implementation of process models12

JS: Generation of COSMO-RS data; Estimation NRTL-parameters13

AB: Discussion of the COSMO-RS calculations14

JV: Design of the project; Definition of the work; Scientific support; Guid-15

ance and discussion on the experimental, analytical and computational16

method; Preparation of parts of the manuscript; Advice on structure and17

presentation of this work18

AM: Design of the project; Definition of the work; Scientific support; Prepara-19

tion of parts of the manuscript; Guidance and discussion on the compu-20

tational method; Advice on structure and presentation of this work21

All authors reviewed and edited the manuscript.22

Supporting information23

The Supporting Information is available free of charge on the xxx at DOI: xxx.24

Orchid ID’s25

• Kaan Karacasulu: 0000-0003-2901-874126

• Alexander Echtermeyer: 0000-0002-9382-222727

• Jan Scheffczyk: 0000-0001-6026-635128
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