000849492 001__ 849492 000849492 005__ 20250915134248.0 000849492 0247_ $$2ISSN$$a0175-9418 000849492 0247_ $$2ISSN$$a0300-8428 000849492 0247_ $$2ISSN$$a1435-1803 000849492 0247_ $$2SCOPUS$$aSCOPUS:2-s2.0-85131726836 000849492 0247_ $$2WOS$$aWOS:000808336800001 000849492 0247_ $$2datacite_doi$$a10.18154/RWTH-2022-06842 000849492 0247_ $$2doi$$a10.1007/s00395-022-00937-4 000849492 0247_ $$2pmid$$apmid:35674847 000849492 037__ $$aRWTH-2022-06842 000849492 041__ $$aEnglish 000849492 082__ $$a610 000849492 1001_ $$aGencer, Selin$$b0 000849492 245__ $$aEndothelial ACKR3 drives atherosclerosis by promoting immune cell adhesion to vascular endothelium$$honline 000849492 260__ $$aBerlin$$bSpringer$$c2022 000849492 264_1 $$2Crossref$$3online$$bSpringer Science and Business Media LLC$$c2022-06-08 000849492 264_1 $$2Crossref$$3print$$bSpringer Science and Business Media LLC$$c2022-12-01 000849492 264_1 $$2Crossref$$3print$$bSpringer Science and Business Media LLC$$c2022-12-01 000849492 300__ $$a[1]-17 000849492 3367_ $$00$$2EndNote$$aJournal Article 000849492 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal 000849492 3367_ $$2BibTeX$$aARTICLE 000849492 3367_ $$2DRIVER$$aarticle 000849492 3367_ $$2DataCite$$aOutput Types/Journal article 000849492 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000849492 536__ $$0G:(DE-82)X021000-OA$$aOA - Open Access Publikation mit Unterstützung der Universitätsbibliothek der RWTH Aachen University (X021000-OA)$$cX021000-OA$$x0 000849492 536__ $$0G:(EU-Grant)692511$$aCell-specific vascular protection by CXCL12/CXCR4 (692511)$$c692511$$x1 000849492 536__ $$0G:(GEPRIS)260044391$$aSFB 1123 Z01 - Markierungsfreie mikroskopische und nanoskopische Darstellung der Atherosklerose (Z01) (260044391)$$c260044391$$x2 000849492 536__ $$0G:(GEPRIS)259988953$$aSFB 1123 A01 - Chemokinrezeptor CCR8-vermittelte Immunfunktionen in angeborenen lymphoiden Typ 2 Zellen im Kontext der Atherosklerose (A01) (259988953)$$c259988953$$x3 000849492 536__ $$0G:(GEPRIS)407394107$$aSFB 1123 A10 - Atypische Rolle der Erythrozyten bei Atherosklerose (A10) (407394107)$$c407394107$$x4 000849492 536__ $$0G:(GEPRIS)238187445$$aDFG project 238187445 - SFB 1123: Atherosklerose: Mechanismen und Netzwerke neuer therapeutischer Zielstrukturen (238187445)$$c238187445$$x5 000849492 542__ $$2Crossref$$i2022-06-08$$uhttps://creativecommons.org/licenses/by/4.0 000849492 542__ $$2Crossref$$i2022-06-08$$uhttps://creativecommons.org/licenses/by/4.0 000849492 588__ $$aDataset connected to CrossRef, Journals: publications.rwth-aachen.de 000849492 591__ $$aGermany 000849492 591__ $$aNetherlands 000849492 591__ $$aSweden 000849492 591__ $$aSwitzerland 000849492 7001_ $$aDöring, Yvonne$$b1$$eCorresponding author 000849492 7001_ $$aJansen, Yvonne$$b2 000849492 7001_ $$aBayasgalan, Soyolmaa$$b3 000849492 7001_ $$aYan, Yi$$b4 000849492 7001_ $$aBianchini, Mariaelvy$$b5 000849492 7001_ $$aCimen, Ismail$$b6 000849492 7001_ $$aMüller, Madeleine$$b7 000849492 7001_ $$0P:(DE-82)849559$$aPeters, Linsey J. F.$$b8$$urwth 000849492 7001_ $$aMegens, Remco T. A.$$b9 000849492 7001_ $$avon Hundelshausen, Philipp$$b10 000849492 7001_ $$aDuchene, Johan$$b11 000849492 7001_ $$aLemnitzer, Patricia$$b12 000849492 7001_ $$aSoehnlein, Oliver$$b13 000849492 7001_ $$aWeber, Christian$$b14 000849492 7001_ $$0P:(DE-82)IDM05842$$avan der Vorst, Emiel Petrus Carla$$b15$$eCorresponding author$$urwth 000849492 77318 $$2Crossref$$3journal-article$$a10.1007/s00395-022-00937-4$$bSpringer Science and Business Media LLC$$d2022-06-08$$n1$$p30$$tBasic Research in Cardiology$$v117$$x0300-8428$$y2022 000849492 773__ $$0PERI:(DE-600)1458470-0$$a10.1007/s00395-022-00937-4$$n1$$p30$$tBasic research in cardiology$$v117$$x0300-8428$$y2022 000849492 8564_ $$uhttps://publications.rwth-aachen.de/record/849492/files/849492.pdf$$yOpenAccess 000849492 8767_ $$8SN-2022-00918-c$$92024-03-27$$c1497.32$$d2022-07-07$$eHybrid-OA$$jDEAL$$lSpringerNature$$v272$$x021000- 000849492 909CO $$ooai:publications.rwth-aachen.de:849492$$pOpenAPC_DEAL$$pVDB$$pdnbdelivery$$pdriver$$pec_fundedresources$$popenCost$$popen_access$$popenaire 000849492 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-82)849559$$aRWTH Aachen$$b8$$kRWTH 000849492 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-82)IDM05842$$aRWTH Aachen$$b15$$kRWTH 000849492 9141_ $$y2022 000849492 9151_ $$0StatID:(DE-HGF)0031$$2StatID$$aPeer reviewed article$$x0 000849492 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000849492 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000849492 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBASIC RES CARDIOL : 2015 000849492 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000849492 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000849492 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000849492 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000849492 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000849492 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000849492 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000849492 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000849492 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000849492 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000849492 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000849492 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBASIC RES CARDIOL : 2015 000849492 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 000849492 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding 000849492 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten 000849492 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020 000849492 9201_ $$0I:(DE-82)531010-3_20140620$$k531010-3$$lInstitut und Lehrstuhl für Molekulare Herz-Kreislaufforschung$$x0 000849492 9201_ $$0I:(DE-82)531010-3_20140620$$k531010-3$$lInstitut und Lehrstuhl für Molekulare Herz-Kreislaufforschung$$x1 000849492 961__ $$c2022-07-07T16:21:00.188322$$x2022-07-07T16:21:00.188322$$z2022-07-07T16:21:00.188322 000849492 9801_ $$aFullTexts 000849492 980__ $$aAPC 000849492 980__ $$aI:(DE-82)531010-3_20140620 000849492 980__ $$aI:(DE-82)531010-3_20140620 000849492 980__ $$aUNRESTRICTED 000849492 980__ $$aVDB 000849492 980__ $$ajournal 000849492 999C5 $$1S Alampour-Rajabi$$2Crossref$$9-- missing cx lookup --$$a10.1096/fj.15-273904$$p4497 -$$tFaseb J$$uAlampour-Rajabi S, El Bounkari O, Rot A, Müller-Newen G, Bachelerie F, Gawaz M, Weber C, Schober A, Bernhagen J (2015) MIF interacts with CXCR7 to promote receptor internalization, ERK1/2 and ZAP-70 signaling, and lymphocyte chemotaxis. Faseb J 29:4497–4511. https://doi.org/10.1096/fj.15-273904$$v29$$y2015 000849492 999C5 $$1RW Alexander$$2Crossref$$9-- missing cx lookup --$$a10.1161/01.HYP.25.2.155$$p155 -$$tHypertension$$uAlexander RW (1995) Hypertension and the pathogenesis of atherosclerosis. Hypertension 25:155–161. https://doi.org/10.1161/01.HYP.25.2.155$$v25$$y1995 000849492 999C5 $$1R Altman$$2Crossref$$9-- missing cx lookup --$$a10.1186/1477-9560-1-4$$p4 -$$tThromb J$$uAltman R (2003) Risk factors in coronary atherosclerosis athero-inflammation: the meeting point. Thromb J 1:4. https://doi.org/10.1186/1477-9560-1-4$$v1$$y2003 000849492 999C5 $$1D Bai$$2Crossref$$9-- missing cx lookup --$$a10.1002/ijc.24748$$p2863 -$$tInt J Cancer$$uBai D, Ueno L, Vogt PK (2009) Akt-mediated regulation of NFkappaB and the essentialness of NFkappaB for the oncogenicity of PI3K and Akt. Int J Cancer 125:2863–2870. https://doi.org/10.1002/ijc.24748$$v125$$y2009 000849492 999C5 $$1RD Berahovich$$2Crossref$$9-- missing cx lookup --$$a10.1111/imm.12176$$p111 -$$tImmunology$$uBerahovich RD, Zabel BA, Lewén S, Walters MJ, Ebsworth K, Wang Y, Jaen JC, Schall TJ (2014) Endothelial expression of CXCR7 and the regulation of systemic CXCL12 levels. Immunology 141:111–122. https://doi.org/10.1111/imm.12176$$v141$$y2014 000849492 999C5 $$1B Boldajipour$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cell.2007.12.034$$p463 -$$tCell$$uBoldajipour B, Mahabaleshwar H, Kardash E, Reichman-Fried M, Blaser H, Minina S, Wilson D, Xu Q, Raz E (2008) Control of chemokine-guided cell migration by ligand sequestration. Cell 132:463–473. https://doi.org/10.1016/j.cell.2007.12.034$$v132$$y2008 000849492 999C5 $$1H-C Chang$$2Crossref$$9-- missing cx lookup --$$a10.1111/imm.12881$$p274 -$$tImmunology$$uChang H-C, Huang P-H, Syu F-S, Hsieh C-H, Chang SL-Y, Lu J, Chen H-C (2018) Critical involvement of atypical chemokine receptor CXCR7 in allergic airway inflammation. Immunology 154:274–284. https://doi.org/10.1111/imm.12881$$v154$$y2018 000849492 999C5 $$1M Chatterjee$$2Crossref$$9-- missing cx lookup --$$a10.1161/CIRCRESAHA.115.305171$$p939 -$$tCirc Res$$uChatterjee M, Borst O, Walker B, Fotinos A, Vogel S, Seizer P, Mack A, Alampour-Rajabi S, Rath D, Geisler T, Lang F, Langer HF, Bernhagen J, Gawaz M (2014) Macrophage migration inhibitory factor limits activation-induced apoptosis of platelets via CXCR7-dependent Akt signaling. Circ Res 115:939–949. https://doi.org/10.1161/CIRCRESAHA.115.305171$$v115$$y2014 000849492 999C5 $$1B Chen$$2Crossref$$9-- missing cx lookup --$$a10.1038/oncsis.2016.81$$pe279 -$$tOncogenesis$$uChen B, Liu J, Ho TT, Ding X, Mo YY (2016) ERK-mediated NF-κB activation through ASIC1 in response to acidosis. Oncogenesis 5:e279–e279. https://doi.org/10.1038/oncsis.2016.81$$v5$$y2016 000849492 999C5 $$1L Cruz-Orengo$$2Crossref$$9-- missing cx lookup --$$a10.1084/jem.20102010$$p327 -$$tJ Exp Med$$uCruz-Orengo L, Holman DW, Dorsey D, Zhou L, Zhang P, Wright M, McCandless EE, Patel JR, Luker GD, Littman DR, Russell JH, Klein RS (2011) CXCR7 influences leukocyte entry into the CNS parenchyma by controlling abluminal CXCL12 abundance during autoimmunity. J Exp Med 208:327–339. https://doi.org/10.1084/jem.20102010$$v208$$y2011 000849492 999C5 $$1X Dai$$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1582-4934.2011.01301.x$$p1299 -$$tJ Cell Mol Med$$uDai X, Tan Y, Cai S, Xiong X, Wang L, Ye Q, Yan X, Ma K, Cai L (2011) The role of CXCR7 on the adhesion, proliferation and angiogenesis of endothelial progenitor cells. J Cell Mol Med 15:1299–1309. https://doi.org/10.1111/j.1582-4934.2011.01301.x$$v15$$y2011 000849492 999C5 $$1Y Döring$$2Crossref$$9-- missing cx lookup --$$a10.1161/CIRCULATIONAHA.117.027646$$p388 -$$tCirculation$$uDöring Y, Noels H, van der Vorst EPC, Neideck C, Egea V, Drechsler M, Mandl M, Pawig L, Jansen Y, Schröder K, Bidzhekov K, Megens RTA, Theelen W, Klinkhammer BM, Boor P, Schurgers L, van Gorp R, Ries C, Kusters PJH, van der Wal A, Hackeng TM, Gäbel G, Brandes RP, Soehnlein O, Lutgens E, Vestweber D, Teupser D, Holdt LM, Rader DJ, Saleheen D, Weber C (2017) Vascular CXCR4 limits atherosclerosis by maintaining arterial integrity: evidence from mouse and human studies. Circulation 136:388–403. https://doi.org/10.1161/CIRCULATIONAHA.117.027646$$v136$$y2017 000849492 999C5 $$1Y Döring$$2Crossref$$9-- missing cx lookup --$$a10.3389/fphys.2014.00212$$p212 -$$tFront Physiol$$uDöring Y, Pawig L, Weber C, Noels H (2014) The CXCL12/CXCR4 chemokine ligand/receptor axis in cardiovascular disease. Front Physiol 5:212. https://doi.org/10.3389/fphys.2014.00212$$v5$$y2014 000849492 999C5 $$1Y Döring$$2Crossref$$9-- missing cx lookup --$$a10.1161/circulationaha.118.037953$$p1338 -$$tCirculation$$uDöring Y, van der Vorst EPC, Duchene J, Jansen Y, Gencer S, Bidzhekov K, Atzler D, Santovito D, Rader DJ, Saleheen D, Weber C (2019) CXCL12 derived from endothelial cells promotes atherosclerosis to drive coronary artery disease. Circulation 139:1338–1340. https://doi.org/10.1161/circulationaha.118.037953$$v139$$y2019 000849492 999C5 $$1MJ Duffy$$2Crossref$$9-- missing cx lookup --$$a10.1002/path.2282$$p283 -$$tJ Pathol$$uDuffy MJ, McGowan PM, Gallagher WM (2008) Cancer invasion and metastasis: changing views. J Pathol 214:283–293. https://doi.org/10.1002/path.2282$$v214$$y2008 000849492 999C5 $$1SS Farouk$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.tcm.2011.08.002$$p204 -$$tTrends Cardiovasc Med$$uFarouk SS, Rader DJ, Reilly MP, Mehta NN (2010) CXCL12: a new player in coronary disease identified through human genetics. Trends Cardiovasc Med 20:204–209. https://doi.org/10.1016/j.tcm.2011.08.002$$v20$$y2010 000849492 999C5 $$1J Frostegård$$2Crossref$$9-- missing cx lookup --$$a10.1186/1741-7015-11-117$$p117 -$$tBMC Med$$uFrostegård J (2013) Immunity, atherosclerosis and cardiovascular disease. BMC Med 11:117–117. https://doi.org/10.1186/1741-7015-11-117$$v11$$y2013 000849492 999C5 $$1S Gencer$$2Crossref$$9-- missing cx lookup --$$a10.3390/biomedicines9040394$$p394 -$$tBiomedicines$$uGencer S, Döring Y, Jansen Y, Bayasgalan S, Schengel O, Müller M, Peters LJF, Weber C, van der Vorst EPC (2021) Adipocyte-specific ACKR3 regulates lipid levels in adipose tissue. Biomedicines 9:394$$v9$$y2021 000849492 999C5 $$1S Gencer$$2Crossref$$9-- missing cx lookup --$$a10.3390/cells10020226$$tCells$$uGencer S, Evans BR, van der Vorst EPC, Döring Y, Weber C (2021) Inflammatory chemokines in atherosclerosis. Cells. https://doi.org/10.3390/cells10020226$$y2021 000849492 999C5 $$1S Gencer$$2Crossref$$9-- missing cx lookup --$$a10.1055/s-0038-1676988$$p534 -$$tThromb Haemost$$uGencer S, van der Vorst EPC, Aslani M, Weber C, Döring Y, Duchene J (2019) Atypical chemokine receptors in cardiovascular disease. Thromb Haemost 119:534–541. https://doi.org/10.1055/s-0038-1676988$$v119$$y2019 000849492 999C5 $$1A Gentilini$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.bbadis.2019.04.020$$p2246 -$$tBiochim Biophys Acta Mol Basis Dis$$uGentilini A, Caligiuri A, Raggi C, Rombouts K, Pinzani M, Lori G, Correnti M, Invernizzi P, Rovida E, Navari N, Di Matteo S, Alvaro D, Banales JM, Rodrigues P, Raschioni C, Donadon M, Di Tommaso L, Marra F (2019) CXCR7 contributes to the aggressive phenotype of cholangiocarcinoma cells. Biochim Biophys Acta Mol Basis Dis 1865:2246–2256. https://doi.org/10.1016/j.bbadis.2019.04.020$$v1865$$y2019 000849492 999C5 $$1H Gerrits$$2Crossref$$9-- missing cx lookup --$$a10.1002/dvg.20387$$p235 -$$tGenesis$$uGerrits H, van Ingen Schenau DS, Bakker NE, van Disseldorp AJ, Strik A, Hermens LS, Koenen TB, Krajnc-Franken MA, Gossen JA (2008) Early postnatal lethality and cardiovascular defects in CXCR7-deficient mice. Genesis 46:235–245. https://doi.org/10.1002/dvg.20387$$v46$$y2008 000849492 999C5 $$1MA Gimbrone$$2Crossref$$9-- missing cx lookup --$$a10.1161/CIRCRESAHA.115.306301$$p620 -$$tCirc Res$$uGimbrone MA, García-Cardeña G (2016) Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 118:620–636. https://doi.org/10.1161/CIRCRESAHA.115.306301$$v118$$y2016 000849492 999C5 $$1GK Hansson$$2Crossref$$9-- missing cx lookup --$$a10.1161/hq1201.100220$$p1876 -$$tArterioscler Thromb Vasc Biol$$uHansson GK (2001) Immune mechanisms in atherosclerosis. Arterioscler Thromb Vasc Biol 21:1876–1890. https://doi.org/10.1161/hq1201.100220$$v21$$y2001 000849492 999C5 $$1H Hao$$2Crossref$$9-- missing cx lookup --$$a10.1161/CIRCULATIONAHA.116.023027$$p1253 -$$tCirculation$$uHao H, Hu S, Chen H, Bu D, Zhu L, Xu C, Chu F, Huo X, Tang Y, Sun X, Ding B-S, Liu D-P, Hu S, Wang M (2017) Loss of endothelial CXCR7 impairs vascular homeostasis and cardiac remodeling after myocardial infarction. Circulation 135:1253–1264. https://doi.org/10.1161/CIRCULATIONAHA.116.023027$$v135$$y2017 000849492 999C5 $$1TN Hartmann$$2Crossref$$9-- missing cx lookup --$$a10.1189/jlb.0208088$$p1130 -$$tJ Leukoc Biol$$uHartmann TN, Grabovsky V, Pasvolsky R, Shulman Z, Buss EC, Spiegel A, Nagler A, Lapidot T, Thelen M, Alon R (2008) A crosstalk between intracellular CXCR7 and CXCR4 involved in rapid CXCL12-triggered integrin activation but not in chemokine-triggered motility of human T lymphocytes and CD34+ cells. J Leukoc Biol 84:1130–1140. https://doi.org/10.1189/jlb.0208088$$v84$$y2008 000849492 999C5 $$1M Ishizuka$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-021-83022-5$$p3426 -$$tSci Rep$$uIshizuka M, Harada M, Nomura S, Ko T, Ikeda Y, Guo J, Bujo S, Yanagisawa-Murakami H, Satoh M, Yamada S, Kumagai H, Motozawa Y, Hara H, Fujiwara T, Sato T, Takeda N, Takeda N, Otsu K, Morita H, Toko H, Komuro I (2021) CXCR7 ameliorates myocardial infarction as a β-arrestin-biased receptor. Sci Rep 11:3426. https://doi.org/10.1038/s41598-021-83022-5$$v11$$y2021 000849492 999C5 $$1C Jiang$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jdiacomp.2020.107654$$tJ Diabetes Complicat$$uJiang C, Li R, Ma X, Hu H, Wei L, Zhao J (2020) Plerixafor stimulates adhesive activity and endothelial regeneration of endothelial progenitor cells via elevating CXCR7 expression. J Diabetes Complicat 34:107654. https://doi.org/10.1016/j.jdiacomp.2020.107654$$v34$$y2020 000849492 999C5 $$1HC Ledebur$$2Crossref$$9-- missing cx lookup --$$a10.1074/jbc.270.2.933$$p933 -$$tJ Biol Chem$$uLedebur HC, Parks TP (1995) Transcriptional regulation of the intercellular adhesion molecule-1 gene by inflammatory cytokines in human endothelial cells. Essential roles of a variant NF-kappa B site and p65 homodimers. J Biol Chem 270:933–943. https://doi.org/10.1074/jbc.270.2.933$$v270$$y1995 000849492 999C5 $$1RJ Lefkowitz$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1109237$$p512 -$$tScience$$uLefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by beta-arrestins. Science 308:512–517. https://doi.org/10.1126/science.1109237$$v308$$y2005 000849492 999C5 $$1S Li$$2Crossref$$9-- missing cx lookup --$$a10.1158/0008-5472.Can-18-2812$$p2580 -$$tCancer Res$$uLi S, Fong KW, Gritsina G, Zhang A, Zhao JC, Kim J, Sharp A, Yuan W, Aversa C, Yang XJ, Nelson PS, Feng FY, Chinnaiyan AM, de Bono JS, Morrissey C, Rettig MB, Yu J (2019) Activation of MAPK Signaling by CXCR7 leads to enzalutamide resistance in prostate cancer. Cancer Res 79:2580–2592. https://doi.org/10.1158/0008-5472.Can-18-2812$$v79$$y2019 000849492 999C5 $$1X Li$$2Crossref$$9-- missing cx lookup --$$a10.1161/circulationaha.113.006840$$p1244 -$$tCirculation$$uLi X, Zhu M, Penfold ME, Koenen RR, Thiemann A, Heyll K, Akhtar S, Koyadan S, Wu Z, Gremse F, Kiessling F, van Zandvoort M, Schall TJ, Weber C, Schober A (2014) Activation of CXCR7 limits atherosclerosis and improves hyperlipidemia by increasing cholesterol uptake in adipose tissue. Circulation 129:1244–1253. https://doi.org/10.1161/circulationaha.113.006840$$v129$$y2014 000849492 999C5 $$1L Lin$$2Crossref$$9-- missing cx lookup --$$a10.1038/cddis.2014.392$$pe1488 -$$tCell Death Dis$$uLin L, Han MM, Wang F, Xu LL, Yu HX, Yang PY (2014) CXCR7 stimulates MAPK signaling to regulate hepatocellular carcinoma progression. Cell Death Dis 5:e1488–e1488. https://doi.org/10.1038/cddis.2014.392$$v5$$y2014 000849492 999C5 $$1T Liu$$2Crossref$$9-- missing cx lookup --$$a10.1038/sigtrans.2017.23$$p17023 -$$tSignal Transduct Target Ther$$uLiu T, Zhang L, Joo D, Sun S-C (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2:17023. https://doi.org/10.1038/sigtrans.2017.23$$v2$$y2017 000849492 999C5 $$1Y Liu$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0103938$$tPLoS ONE$$uLiu Y, Carson-Walter E, Walter KA (2014) Chemokine receptor CXCR7 is a functional receptor for CXCL12 in brain endothelial cells. PLoS ONE 9:e103938. https://doi.org/10.1371/journal.pone.0103938$$v9$$y2014 000849492 999C5 $$1KE Luker$$2Crossref$$9-- missing cx lookup --$$a10.1038/onc.2010.212$$p4599 -$$tOncogene$$uLuker KE, Steele JM, Mihalko LA, Ray P, Luker GD (2010) Constitutive and chemokine-dependent internalization and recycling of CXCR7 in breast cancer cells to degrade chemokine ligands. Oncogene 29:4599–4610. https://doi.org/10.1038/onc.2010.212$$v29$$y2010 000849492 999C5 $$1DM Ma$$2Crossref$$9-- missing cx lookup --$$a10.1186/s12957-016-1009-z$$p256 -$$tWorld J Surg Oncol$$uMa DM, Luo DX, Zhang J (2016) SDF-1/CXCR7 axis regulates the proliferation, invasion, adhesion, and angiogenesis of gastric cancer cells. World J Surg Oncol 14:256. https://doi.org/10.1186/s12957-016-1009-z$$v14$$y2016 000849492 999C5 $$1W Ma$$2Crossref$$9-- missing cx lookup --$$a10.1074/jbc.M112.445510$$p15481 -$$tJ Biol Chem$$uMa W, Liu Y, Ellison N, Shen J (2013) Induction of C-X-C chemokine receptor type 7 (CXCR7) switches stromal cell-derived factor-1 (SDF-1) signaling and phagocytic activity in macrophages linked to atherosclerosis. J Biol Chem 288:15481–15494. https://doi.org/10.1074/jbc.M112.445510$$v288$$y2013 000849492 999C5 $$1WA Muller$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ajpath.2013.12.033$$p886 -$$tAm J Pathol$$uMuller WA (2014) How endothelial cells regulate transmigration of leukocytes in the inflammatory response. Am J Pathol 184:886–896. https://doi.org/10.1016/j.ajpath.2013.12.033$$v184$$y2014 000849492 999C5 $$1U Naumann$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0009175$$tPLoS ONE$$uNaumann U, Cameroni E, Pruenster M, Mahabaleshwar H, Raz E, Zerwes HG, Rot A, Thelen M (2010) CXCR7 functions as a scavenger for CXCL12 and CXCL11. PLoS ONE 5:e9175. https://doi.org/10.1371/journal.pone.0009175$$v5$$y2010 000849492 999C5 $$1K-C Ngamsri$$2Crossref$$9-- missing cx lookup --$$a10.3389/fimmu.2020.00407$$tFront Immunol$$uNgamsri K-C, Jans C, Putri RA, Schindler K, Gamper-Tsigaras J, Eggstein C, Köhler D, Konrad FM (2020) Inhibition of CXCR4 and CXCR7 is protective in acute peritoneal inflammation. Front Immunol. https://doi.org/10.3389/fimmu.2020.00407$$y2020 000849492 999C5 $$1K-C Ngamsri$$2Crossref$$9-- missing cx lookup --$$a10.4049/jimmunol.1601682$$p2403 -$$tJ Immunol$$uNgamsri K-C, Müller A, Bösmüller H, Gamper-Tsigaras J, Reutershan J, Konrad FM (2017) The pivotal role of CXCR7 in stabilization of the pulmonary epithelial barrier in acute pulmonary inflammation. J Immunol 198:2403–2413. https://doi.org/10.4049/jimmunol.1601682$$v198$$y2017 000849492 999C5 $$1V Pasceri$$2Crossref$$9-- missing cx lookup --$$a10.1161/01.CIR.101.3.235$$p235 -$$tCirculation$$uPasceri V, Wu HD, Willerson JT, Yeh ETH (2000) Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator–activated receptor-γ activators. Circulation 101:235–238. https://doi.org/10.1161/01.CIR.101.3.235$$v101$$y2000 000849492 999C5 $$1S Rafiei$$2Crossref$$9-- missing cx lookup --$$a10.1158/1541-7786.MCR-18-0412$$p263 -$$tMol Cancer Res$$uRafiei S, Gui B, Wu J, Liu XS, Kibel AS, Jia L (2019) Targeting the MIF/CXCR7/AKT signaling pathway in castration-resistant prostate cancer. Mol Cancer Res 17:263–276. https://doi.org/10.1158/1541-7786.MCR-18-0412$$v17$$y2019 000849492 999C5 $$1AH Remels$$2Crossref$$9-- missing cx lookup --$$a10.1152/ajpendo.90632.2008$$pE174 -$$tAm J Physiol Endocrinol Metab$$uRemels AH, Langen RC, Gosker HR, Russell AP, Spaapen F, Voncken JW, Schrauwen P, Schols AM (2009) PPARgamma inhibits NF-kappaB-dependent transcriptional activation in skeletal muscle. Am J Physiol Endocrinol Metab 297:E174-183. https://doi.org/10.1152/ajpendo.90632.2008$$v297$$y2009 000849492 999C5 $$1PM Ridker$$2Crossref$$9-- missing cx lookup --$$a10.1056/NEJMoa1707914$$p1119 -$$tN Engl J Med$$uRidker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, Kastelein JJP, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Kobalava Z, Vida-Simiti L, Flather M, Shimokawa H, Ogawa H, Dellborg M, Rossi PRF, Troquay RPT, Libby P, Glynn RJ (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377:1119–1131. https://doi.org/10.1056/NEJMoa1707914$$v377$$y2017 000849492 999C5 $$1AK Rohlfing$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-022-29341-1$$p1823 -$$tNat Commun$$uRohlfing AK, Kolb K, Sigle M, Ziegler M, Bild A, Münzer P, Sudmann J, Dicenta V, Harm T, Manke MC, Geue S, Kremser M, Chatterjee M, Liang C, von Eysmondt H, Dandekar T, Heinzmann D, Günter M, von Ungern-Sternberg S, Büttcher M, Castor T, Mencl S, Langhauser F, Sies K, Ashour D, Beker MC, Lämmerhofer M, Autenrieth SE, Schäffer TE, Laufer S, Szklanna P, Maguire P, Heikenwalder M, Müller KAL, Hermann DM, Kilic E, Stumm R, Ramos G, Kleinschnitz C, Borst O, Langer HF, Rath D, Gawaz M (2022) ACKR3 regulates platelet activation and ischemia-reperfusion tissue injury. Nat Commun 13:1823. https://doi.org/10.1038/s41467-022-29341-1$$v13$$y2022 000849492 999C5 $$1N Salazar$$2Crossref$$9-- missing cx lookup --$$a10.1186/1476-4598-13-198$$p198 -$$tMol Cancer$$uSalazar N, Muñoz D, Kallifatidis G, Singh RK, Jordà M, Lokeshwar BL (2014) The chemokine receptor CXCR7 interacts with EGFR to promote breast cancer cell proliferation. Mol Cancer 13:198. https://doi.org/10.1186/1476-4598-13-198$$v13$$y2014 000849492 999C5 $$1M Sasaki$$2Crossref$$9-- missing cx lookup --$$a10.1186/1472-6793-5-3$$p3 -$$tBMC Physiol$$uSasaki M, Jordan P, Welbourne T, Minagar A, Joh T, Itoh M, Elrod JW, Alexander JS (2005) Troglitazone, a PPAR-γ activator prevents endothelial cell adhesion molecule expression and lymphocyte adhesion mediated by TNF-α. BMC Physiol 5:3. https://doi.org/10.1186/1472-6793-5-3$$v5$$y2005 000849492 999C5 $$1R Scirpo$$2Crossref$$9-- missing cx lookup --$$a10.1002/hep.28000$$p1551 -$$tHepatology$$uScirpo R, Fiorotto R, Villani A, Amenduni M, Spirli C, Strazzabosco M (2015) Stimulation of nuclear receptor peroxisome proliferator-activated receptor-γ limits NF-κB-dependent inflammation in mouse cystic fibrosis biliary epithelium. Hepatology 62:1551–1562. https://doi.org/10.1002/hep.28000$$v62$$y2015 000849492 999C5 $$1S Shi$$2Crossref$$9-- missing cx lookup --$$a10.1155/2020/2510951$$p2510951 -$$tPPAR Res$$uShi S, Yu G, Huang B, Mi Y, Kang Y, Simon JP (2020) PPARG could work as a valid therapeutic strategy for the treatment of lung squamous cell carcinoma. PPAR Res 2020:2510951. https://doi.org/10.1155/2020/2510951$$v2020$$y2020 000849492 999C5 $$1HB Shu$$2Crossref$$9-- missing cx lookup --$$a10.1128/mcb.13.10.6283-6289.1993$$p6283 -$$tMol Cell Biol$$uShu HB, Agranoff AB, Nabel EG, Leung K, Duckett CS, Neish AS, Collins T, Nabel GJ (1993) Differential regulation of vascular cell adhesion molecule 1 gene expression by specific NF-kappa B subunits in endothelial and epithelial cells. Mol Cell Biol 13:6283–6289. https://doi.org/10.1128/mcb.13.10.6283-6289.1993$$v13$$y1993 000849492 999C5 $$1F Sierro$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.0702229104$$p14759 -$$tProc Natl Acad Sci U S A$$uSierro F, Biben C, Martínez-Muñoz L, Mellado M, Ransohoff RM, Li M, Woehl B, Leung H, Groom J, Batten M, Harvey RP, Martínez AC, Mackay CR, Mackay F (2007) Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. Proc Natl Acad Sci U S A 104:14759–14764. https://doi.org/10.1073/pnas.0702229104$$v104$$y2007 000849492 999C5 $$1B Sung$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.exger.2006.04.005$$p590 -$$tExp Gerontol$$uSung B, Park S, Yu BP, Chung HY (2006) Amelioration of age-related inflammation and oxidative stress by PPARgamma activator: suppression of NF-kappaB by 2,4-thiazolidinedione. Exp Gerontol 41:590–599. https://doi.org/10.1016/j.exger.2006.04.005$$v41$$y2006 000849492 999C5 $$1M Tarnowski$$2Crossref$$9-- missing cx lookup --$$a10.1158/1541-7786.Mcr-09-0259$$p1 -$$tMol Cancer Res$$uTarnowski M, Grymula K, Reca R, Jankowski K, Maksym R, Tarnowska J, Przybylski G, Barr FG, Kucia M, Ratajczak MZ (2010) Regulation of expression of stromal-derived factor-1 receptors: CXCR4 and CXCR7 in human rhabdomyosarcomas. Mol Cancer Res 8:1–14. https://doi.org/10.1158/1541-7786.Mcr-09-0259$$v8$$y2010 000849492 999C5 $$1M Tarnowski$$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1600-0609.2010.01531.x$$p472 -$$tEur J Haematol$$uTarnowski M, Liu R, Wysoczynski M, Ratajczak J, Kucia M, Ratajczak MZ (2010) CXCR7: a new SDF-1-binding receptor in contrast to normal CD34+ progenitors is functional and is expressed at higher level in human malignant hematopoietic cells. Eur J Haematol 85:472–483. https://doi.org/10.1111/j.1600-0609.2010.01531.x$$v85$$y2010 000849492 999C5 $$1M Thelen$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jneuroim.2008.04.020$$p9 -$$tJ Neuroimmunol$$uThelen M, Thelen S (2008) CXCR7, CXCR4 and CXCL12: an eccentric trio? J Neuroimmunol 198:9–13. https://doi.org/10.1016/j.jneuroim.2008.04.020$$v198$$y2008 000849492 999C5 $$1EPC van der Vorst$$2Crossref$$9-- missing cx lookup --$$a10.21769/BioProtoc.2344$$p2344 -$$tBio Protoc$$uvan der Vorst EPC, Maas SL, Ortega-Gomez A, Hameleers JMM, Bianchini M, Asare Y, Soehnlein O, Döring Y, Weber C, Megens RTA (2017) Functional ex-vivo Imaging of arterial cellular recruitment and lipid extravasation. Bio Protoc 7:2344. https://doi.org/10.21769/BioProtoc.2344$$v7$$y2017 000849492 999C5 $$1C Wang$$2Crossref$$9-- missing cx lookup --$$a10.3389/fphar.2018.00641$$tFront Pharmacol$$uWang C, Chen W, Shen J (2018) CXCR7 targeting and its major disease relevance. Front Pharmacol. https://doi.org/10.3389/fphar.2018.00641$$y2018 000849492 999C5 $$1H Wang$$2Crossref$$9-- missing cx lookup --$$a10.1182/blood-2011-03-343608$$p465 -$$tBlood$$uWang H, Beaty N, Chen S, Qi CF, Masiuk M, Shin DM, Morse HC 3rd (2012) The CXCR7 chemokine receptor promotes B-cell retention in the splenic marginal zone and serves as a sink for CXCL12. Blood 119:465–468. https://doi.org/10.1182/blood-2011-03-343608$$v119$$y2012 000849492 999C5 $$1C Winter$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cmet.2018.05.002$$p175 -$$tCell Metab$$uWinter C, Silvestre-Roig C, Ortega-Gomez A, Lemnitzer P, Poelman H, Schumski A, Winter J, Drechsler M, de Jong R, Immler R, Sperandio M, Hristov M, Zeller T, Nicolaes GAF, Weber C, Viola JR, Hidalgo A, Scheiermann C, Soehnlein O (2018) Chrono-pharmacological targeting of the CCL2-CCR2 axis ameliorates atherosclerosis. Cell Metab 28:175-182.e175. https://doi.org/10.1016/j.cmet.2018.05.002$$v28$$y2018 000849492 999C5 $$1K Wouters$$2Crossref$$9-- missing cx lookup --$$a10.1515/cclm.2005.085$$p470 -$$tClin Chem Lab Med$$uWouters K, Shiri-Sverdlov R, van Gorp PJ, van Bilsen M, Hofker MH (2005) Understanding hyperlipidemia and atherosclerosis: lessons from genetically modified apoe and ldlr mice. Clin Chem Lab Med 43:470–479. https://doi.org/10.1515/cclm.2005.085$$v43$$y2005 000849492 999C5 $$1F Zhang$$2Crossref$$9-- missing cx lookup --$$a10.3892/mmr.2014.2871$$p1246 -$$tMol Med Rep$$uZhang F, Sun D, Chen J, Guan N, Huo X, Xi H (2015) Simvastatin attenuates angiotensin II-induced inflammation and oxidative stress in human mesangial cells. Mol Med Rep 11:1246–1251. https://doi.org/10.3892/mmr.2014.2871$$v11$$y2015 000849492 999C5 $$1J Zhang$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00011-020-01335-z$$p523 -$$tInflamm Res$$uZhang J, Zhang Y, Xin S, Wu M, Zhang Y, Sun L (2020) CXCR7 suppression modulates macrophage phenotype and function to ameliorate post-myocardial infarction injury. Inflamm Res 69:523–532. https://doi.org/10.1007/s00011-020-01335-z$$v69$$y2020 000849492 999C5 $$1D Zhao$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.biochem.5b00847$$p6806 -$$tBiochemistry$$uZhao D, Zhu Z, Li D, Xu R, Wang T, Liu K (2015) Pioglitazone suppresses CXCR7 expression to inhibit human macrophage chemotaxis through peroxisome proliferator-activated receptor γ. Biochemistry 54:6806–6814. https://doi.org/10.1021/acs.biochem.5b00847$$v54$$y2015 000849492 999C5 $$1K Zhao$$2Crossref$$9-- missing cx lookup --$$a10.1093/carcin/bgy007$$p588 -$$tCarcinogenesis$$uZhao K, Yao Y, Luo X, Lin B, Huang Y, Zhou Y, Li Z, Guo Q, Lu N (2018) LYG-202 inhibits activation of endothelial cells and angiogenesis through CXCL12/CXCR7 pathway in breast cancer. Carcinogenesis 39:588–600. https://doi.org/10.1093/carcin/bgy007$$v39$$y2018 000849492 999C5 $$1X Zhong$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.bbrc.2012.07.110$$p401 -$$tBiochem Biophys Res Commun$$uZhong X, Li X, Liu F, Tan H, Shang D (2012) Omentin inhibits TNF-α-induced expression of adhesion molecules in endothelial cells via ERK/NF-κB pathway. Biochem Biophys Res Commun 425:401–406. https://doi.org/10.1016/j.bbrc.2012.07.110$$v425$$y2012 000849492 999C5 $$1H Zhou$$2Crossref$$9-- missing cx lookup --$$a10.1186/s12872-020-01681-0$$p403 -$$tBMC Cardiovasc Disord$$uZhou H, Tu Q, Zhang Y, Xie HQ, Shuai QY, Huang XC, Fu J, Cao Z (2020) Shear stress improves the endothelial progenitor cell function via the CXCR7/ERK pathway axis in the coronary artery disease cases. BMC Cardiovasc Disord 20:403. https://doi.org/10.1186/s12872-020-01681-0$$v20$$y2020