h1

h2

h3

h4

h5
h6


001     855034
005     20240313170105.0
024 7 _ |2 ISSN
|a 2041-1723
024 7 _ |2 SCOPUS
|a SCOPUS:2-s2.0-85138958807
024 7 _ |2 WOS
|a WOS:000862065400019
024 7 _ |2 datacite_doi
|a 10.18154/RWTH-2022-09944
024 7 _ |2 doi
|a 10.1038/s41467-022-33266-0
024 7 _ |2 pmid
|a pmid:36175413
037 _ _ |a RWTH-2022-09944
041 _ _ |a English
082 _ _ |a 500
100 1 _ |0 P:(DE-82)850339
|a Ghaffari Laleh, Narmin
|b 0
|u rwth
245 _ _ |a Adversarial attacks and adversarial robustness in computational pathology
|h online
260 _ _ |a [London]
|b Nature Publishing Group UK
|c 2022
300 _ _ |a 1-10
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
536 _ _ |0 G:(DE-82)X021000-OA
|a OA - Open Access Publikation mit Unterstützung der Universitätsbibliothek der RWTH Aachen University (X021000-OA)
|c X021000-OA
|x 0
536 _ _ |0 G:(DE-82)BMG-ZMVI1-2520DAT111
|a BMG-ZMVI1-2520DAT111 - Diagnosestellung und Risikostratifizierung von Lebererkrankungen mittels Deep Learning anhand von klinischen Routinedaten (DEEP LIVER) (BMG-ZMVI1-2520DAT111)
|c BMG-ZMVI1-2520DAT111
|x 1
536 _ _ |0 G:(GEPRIS)322900939
|a DFG project 322900939 - TRR 219: Mechanismen kardiovaskulärer Komplikationen bei chronischer Niereninsuffizienz (322900939)
|c 322900939
|x 2
536 _ _ |0 G:(GEPRIS)454024652
|a DFG project 454024652 - Translationale Nephropathologie (454024652)
|c 454024652
|x 3
536 _ _ |0 G:(GEPRIS)432698239
|a DFG project 432698239 - Die Rolle von epithelialen CD74 in Nierenerkrankungen (432698239)
|c 432698239
|x 4
536 _ _ |0 G:(GEPRIS)445703531
|a DFG project 445703531 - KFO 5011: Integration neuer Methoden zur Verbesserung von translationaler Nierenforschung (445703531)
|c 445703531
|x 5
536 _ _ |0 G:(EU-Grant)101001791
|a AIM.imaging.CKD - AI-augmented, Multiscale Image-based Diagnostics of Chronic Kidney Disease (101001791)
|c 101001791
|f ERC-2020-COG
|x 6
536 _ _ |0 G:(BMBF)01GM1901A
|a BMBF 01GM1901A - STOP-FSGS - Translationaler Forschungsverbund zur Verbesserung der Diagnostik und Therapie der FSGS, TP 1: Rolle des MIF-Signalwegs bei FSGS; TP 4: Pathogenese und neue therapeutische Ansätze (01GM1901A)
|c 01GM1901A
|x 7
536 _ _ |0 G:(BMWK)01MK2002A
|a Verbundprojekt: EMPAIA – Ecosystem for pathology diagnostics with AI assistance; Teilvorhaben: Koordination, Referenzzentren und Workflowintegragtion von KI-Lösungen (01MK2002A)
|c 01MK2002A
|x 8
588 _ _ |a Dataset connected to CrossRef, Journals: publications.rwth-aachen.de
591 _ _ |a Austria
591 _ _ |a Germany
591 _ _ |a Switzerland
591 _ _ |a UK
700 1 _ |a Truhn, Daniel
|0 P:(DE-82)IDM06179
|b 1
|u rwth
700 1 _ |a Veldhuizen, Gregory Patrick
|b 2
700 1 _ |a Han, Tianyu
|0 P:(DE-82)814103
|b 3
|u rwth
700 1 _ |a van Treeck, Marko
|0 P:(DE-82)856032
|b 4
|u rwth
700 1 _ |a Bülow, Roman David
|0 P:(DE-82)IDM06262
|b 5
|u rwth
700 1 _ |a Langer, Rupert
|b 6
700 1 _ |a Dislich, Bastian
|b 7
700 1 _ |a Boor, Peter
|0 P:(DE-82)IDM05840
|b 8
|u rwth
700 1 _ |a Schulz, Volkmar
|b 9
|u rwth
700 1 _ |a Kather, Jakob Nikolas
|0 P:(DE-82)855098
|b 10
|e Corresponding author
|u rwth
773 _ _ |0 PERI:(DE-600)2553671-0
|a 10.1038/s41467-022-33266-0
|p 5711
|t Nature Communications
|v 13
|x 2041-1723
|y 2022
856 4 _ |u https://publications.rwth-aachen.de/record/855034/files/855034.pdf
|y OpenAccess
876 7 _ |c 4688.55
|d 2022-10-28
|e APC
|j DEAL
909 C O |o oai:publications.rwth-aachen.de:855034
|p dnbdelivery
|p openCost
|p ec_fundedresources
|p VDB
|p driver
|p OpenAPC
|p open_access
|p openaire
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)850339
|a RWTH Aachen
|b 0
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)006426
|a RWTH Aachen
|b 1
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)814103
|a RWTH Aachen
|b 3
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)856032
|a RWTH Aachen
|b 4
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-588)1204027145
|a RWTH Aachen
|b 5
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)IDM05840
|a RWTH Aachen
|b 8
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)855098
|a RWTH Aachen
|b 10
|k RWTH
914 1 _ |y 2022
915 1 _ |0 StatID:(DE-HGF)0031
|2 StatID
|a Peer reviewed article
|x 0
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b DOAJ : Peer review
|d 2021-02-02
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b NAT COMMUN : 2019
|d 2021-02-02
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2021-02-02
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2021-02-02
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2021-02-02
915 _ _ |0 StatID:(DE-HGF)0320
|2 StatID
|a DBCoverage
|b PubMed Central
|d 2021-02-02
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
|d 2021-02-02
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
|d 2021-02-02
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0561
|2 StatID
|a Article Processing Charges
|d 2022-11-11
915 _ _ |0 StatID:(DE-HGF)0700
|2 StatID
|a Fees
|d 2022-11-11
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
|d 2021-02-02
915 _ _ |0 StatID:(DE-HGF)1040
|2 StatID
|a DBCoverage
|b Zoological Record
|d 2021-02-02
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
|d 2021-02-02
915 _ _ |0 StatID:(DE-HGF)1060
|2 StatID
|a DBCoverage
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-02-02
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-02
915 _ _ |0 StatID:(DE-HGF)1190
|2 StatID
|a DBCoverage
|b Biological Abstracts
|d 2021-02-02
915 _ _ |0 StatID:(DE-HGF)9910
|2 StatID
|a IF >= 10
|b NAT COMMUN : 2019
|d 2021-02-02
915 _ _ |0 StatID:(DE-HGF)9915
|2 StatID
|a IF >= 15
|b NAT COMMUN : 2021
|d 2022-11-11
920 1 _ |0 I:(DE-82)925620_20191118
|k 925620
|l Lehr- und Forschungsgebiet Translationale Nephropathologie
|x 0
920 1 _ |0 I:(DE-82)528001-2_20140620
|k 528001-2
|l Institut und Lehrstuhl für Pathologie
|x 1
920 1 _ |0 I:(DE-82)531030-2_20140620
|k 531030-2
|l Klinik und Lehrstuhl für Innere Medizin (mit dem Schwerpunkt Gastroenterologie und Stoffwechselkrankheiten)
|x 2
920 1 _ |0 I:(DE-82)532010-2_20140620
|k 532010-2
|l Klinik und Lehrstuhl für Diagnostische und Interventionelle Radiologie
|x 3
920 1 _ |0 I:(DE-82)811003-3_20140620
|k 811003-3
|l Institut und Lehrstuhl für Experimentelle Molekulare Bildgebung
|x 4
920 1 _ |0 I:(DE-82)811003-4_20140620
|k 811003-4
|l Lehr- und Forschungsgebiet für Physik der molekularen Bildgebungssysteme
|x 5
980 1 _ |a FullTexts
980 _ _ |a APC
980 _ _ |a I:(DE-82)528001-2_20140620
980 _ _ |a I:(DE-82)531030-2_20140620
980 _ _ |a I:(DE-82)532010-2_20140620
980 _ _ |a I:(DE-82)811003-3_20140620
980 _ _ |a I:(DE-82)811003-4_20140620
980 _ _ |a I:(DE-82)925620_20191118
980 _ _ |a UNRESTRICTED
980 _ _ |a VDB
980 _ _ |a journal


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21