001 | 861032 | ||
005 | 20240619082519.0 | ||
037 | _ | _ | |a RWTH-2022-11586 |
041 | _ | _ | |a English |
100 | 1 | _ | |0 P:(DE-82)IDM05168 |a Brumand-Poor, Faras |b 0 |e Corresponding author |u rwth |
111 | 2 | _ | |a Global Fluid Power Symposium |c Neapel |d 2022-10-12 - 2022-10-14 |g GFPS |w Germany |
245 | _ | _ | |a Implementation of Variational Autoencoder for Dimension Reduction of a Hydraulic System |h online |
260 | _ | _ | |c 2022 |
295 | 1 | 0 | |a [Global Fluid Power Symposium, GFPS, 2022-10-12 - 2022-10-14, Neapel, Germany] |
336 | 7 | _ | |0 33 |2 EndNote |a Conference Paper |
336 | 7 | _ | |0 PUB:(DE-HGF)8 |2 PUB:(DE-HGF) |a Contribution to a conference proceedings |b contrib |m contrib |s 1671441116_31138 |
336 | 7 | _ | |2 BibTeX |a INPROCEEDINGS |
336 | 7 | _ | |2 DRIVER |a conferenceObject |
336 | 7 | _ | |2 DataCite |a Output Types/Conference Paper |
336 | 7 | _ | |2 ORCID |a CONFERENCE_PAPER |
653 | _ | 7 | |a Digitalisierung; Data-based Condition Monitoring; Deep Unsupervised Learning; Variational Autoencoder; Dimension Reduction; Long Short-Term Memory; Neuronale Netze |
700 | 1 | _ | |0 P:(DE-82)IDM04695 |a Makansi, Faried |b 1 |u rwth |
700 | 1 | _ | |0 P:(DE-82)IDM02480 |a Schmitz, Katharina |b 2 |u rwth |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Jiakun, Liao |b 3 |
910 | 1 | _ | |0 I:(DE-588b)36225-6 |6 P:(DE-82)IDM05168 |a RWTH Aachen |b 0 |k RWTH |
910 | 1 | _ | |0 I:(DE-588b)36225-6 |6 P:(DE-82)IDM04695 |a RWTH Aachen |b 1 |k RWTH |
910 | 1 | _ | |0 I:(DE-588b)36225-6 |6 P:(DE-82)IDM02480 |a RWTH Aachen |b 2 |k RWTH |
915 | 1 | _ | |0 StatID:(DE-HGF)0031 |2 StatID |a Peer reviewed article |x 0 |
920 | 1 | _ | |0 I:(DE-82)412810_20180620 |k 412810 |l Lehrstuhl und Institut für fluidtechnische Antriebe und Systeme |x 0 |
980 | _ | _ | |a I:(DE-82)412810_20180620 |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a VDBINPRINT |
980 | _ | _ | |a contrib |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|