h1

h2

h3

h4

h5
h6


001     861032
005     20240619082519.0
037 _ _ |a RWTH-2022-11586
041 _ _ |a English
100 1 _ |0 P:(DE-82)IDM05168
|a Brumand-Poor, Faras
|b 0
|e Corresponding author
|u rwth
111 2 _ |a Global Fluid Power Symposium
|c Neapel
|d 2022-10-12 - 2022-10-14
|g GFPS
|w Germany
245 _ _ |a Implementation of Variational Autoencoder for Dimension Reduction of a Hydraulic System
|h online
260 _ _ |c 2022
295 1 0 |a [Global Fluid Power Symposium, GFPS, 2022-10-12 - 2022-10-14, Neapel, Germany]
336 7 _ |0 33
|2 EndNote
|a Conference Paper
336 7 _ |0 PUB:(DE-HGF)8
|2 PUB:(DE-HGF)
|a Contribution to a conference proceedings
|b contrib
|m contrib
|s 1671441116_31138
336 7 _ |2 BibTeX
|a INPROCEEDINGS
336 7 _ |2 DRIVER
|a conferenceObject
336 7 _ |2 DataCite
|a Output Types/Conference Paper
336 7 _ |2 ORCID
|a CONFERENCE_PAPER
653 _ 7 |a Digitalisierung; Data-based Condition Monitoring; Deep Unsupervised Learning; Variational Autoencoder; Dimension Reduction; Long Short-Term Memory; Neuronale Netze
700 1 _ |0 P:(DE-82)IDM04695
|a Makansi, Faried
|b 1
|u rwth
700 1 _ |0 P:(DE-82)IDM02480
|a Schmitz, Katharina
|b 2
|u rwth
700 1 _ |0 P:(DE-HGF)0
|a Jiakun, Liao
|b 3
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)IDM05168
|a RWTH Aachen
|b 0
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)IDM04695
|a RWTH Aachen
|b 1
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)IDM02480
|a RWTH Aachen
|b 2
|k RWTH
915 1 _ |0 StatID:(DE-HGF)0031
|2 StatID
|a Peer reviewed article
|x 0
920 1 _ |0 I:(DE-82)412810_20180620
|k 412810
|l Lehrstuhl und Institut für fluidtechnische Antriebe und Systeme
|x 0
980 _ _ |a I:(DE-82)412810_20180620
980 _ _ |a UNRESTRICTED
980 _ _ |a VDBINPRINT
980 _ _ |a contrib


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21