001 | 943063 | ||
005 | 20250515120738.0 | ||
024 | 7 | _ | |2 HSB |a eva519761 |
024 | 7 | _ | |2 ISSN |a 2291-9694 |
024 | 7 | _ | |2 SCOPUS |a SCOPUS:2-s2.0-85124177243 |
024 | 7 | _ | |2 WOS |a WOS:000767356300006 |
024 | 7 | _ | |2 datacite_doi |a 10.18154/RWTH-CONV-250610 |
024 | 7 | _ | |2 doi |a 10.2196/29978 |
024 | 7 | _ | |2 pmid |a pmid:35103612 |
037 | _ | _ | |a RWTH-CONV-250610 |
041 | _ | _ | |a English |
100 | 1 | _ | |0 P:(DE-588)1275758932 |a Schilling, Maximilian |b 0 |e Corresponding author |u rwth |
245 | _ | _ | |a Reduction of Platelet Outdating and Shortage by Forecasting Demand With Statistical Learning and Deep Neural Networks: Modeling Study |h online |
260 | _ | _ | |a Toronto |b [Verlag nicht ermittelbar] |c 2022 |
300 | _ | _ | |a 1-14 |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |
336 | 7 | _ | |0 PUB:(DE-HGF)7 |2 PUB:(DE-HGF) |a Contribution to a book |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 DRIVER |a article |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
591 | _ | _ | |a Germany |
700 | 1 | _ | |0 P:(DE-82)960953 |a Rickmann, Lennart |b 1 |u rwth |
700 | 1 | _ | |0 P:(DE-82)033493 |a Hutschenreuter, Gabriele |b 2 |u rwth |
700 | 1 | _ | |a Spreckelsen, Cord |b 3 |
770 | _ | _ | |a Decision Support for Health Professionals |
773 | _ | _ | |0 PERI:(DE-600)2798261-0 |a 10.2196/29978 |n 2 |p e29978 |t JMIR medical informatics |v 10 |x 2291-9694 |
856 | 4 | _ | |u https://publications.rwth-aachen.de/record/943063/files/943063.pdf |y OpenAccess |
909 | C | O | |o oai:publications.rwth-aachen.de:943063 |p VDB |p dnbdelivery |p driver |p open_access |p openaire |
910 | 1 | _ | |0 I:(DE-588b)36225-6 |6 P:(DE-588)1275758932 |a RWTH Aachen |b 0 |k RWTH |
910 | 1 | _ | |0 I:(DE-588b)36225-6 |6 P:(DE-82)960953 |a RWTH Aachen |b 1 |k RWTH |
910 | 1 | _ | |0 I:(DE-588b)36225-6 |6 P:(DE-82)033493 |a RWTH Aachen |b 2 |k RWTH |
914 | 1 | _ | |y 2022 |
915 | 1 | _ | |0 StatID:(DE-HGF)0031 |2 StatID |a Peer reviewed article |x 0 |
915 | _ | _ | |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |a Creative Commons Attribution CC BY 4.0 |
915 | _ | _ | |0 StatID:(DE-HGF)0030 |2 StatID |a Peer Review |b DOAJ : Peer review |d 2022-03-02T17:06:49Z |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |b JMIR MED INF : 2021 |d 2023-03-30 |
915 | _ | _ | |0 StatID:(DE-HGF)0113 |2 StatID |a WoS |b Science Citation Index Expanded |d 2023-03-30 |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |d 2023-03-30 |
915 | _ | _ | |0 StatID:(DE-HGF)0160 |2 StatID |a DBCoverage |b Essential Science Indicators |d 2023-03-30 |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Clarivate Analytics Master Journal List |d 2023-03-30 |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |d 2023-03-30 |
915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |d 2023-03-30 |
915 | _ | _ | |0 StatID:(DE-HGF)0500 |2 StatID |a DBCoverage |b DOAJ |d 2022-03-02T17:06:49Z |
915 | _ | _ | |0 StatID:(DE-HGF)0501 |2 StatID |a DBCoverage |b DOAJ Seal |d 2022-03-02T17:06:49Z |
915 | _ | _ | |0 StatID:(DE-HGF)0510 |2 StatID |a OpenAccess |
915 | _ | _ | |0 StatID:(DE-HGF)0561 |2 StatID |a Article Processing Charges |d 2023-03-30 |
915 | _ | _ | |0 StatID:(DE-HGF)0700 |2 StatID |a Fees |d 2023-03-30 |
915 | _ | _ | |0 StatID:(DE-HGF)9900 |2 StatID |a IF < 5 |d 2023-03-30 |
920 | 1 | _ | |0 I:(DE-82)526500-2_20140620 |k 526500-2 |l Institut und Lehrstuhl für Medizinische Informatik |x 0 |
920 | 1 | _ | |0 I:(DE-82)9670009_20140620 |k 9670009 |l Transfusionsmedizin |x 1 |
970 | _ | _ | |a eva519761 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a I:(DE-82)526500-2_20140620 |
980 | _ | _ | |a I:(DE-82)9670009_20140620 |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a VDB |
980 | _ | _ | |a contb |
980 | _ | _ | |a journal |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|