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Abstract: With the growing number of people seeking medical advice due to low back pain (LBP),
individualised physiotherapeutic rehabilitation is becoming increasingly relevant. Thirty volunteers
were asked to perform three typical LBP rehabilitation exercises (Prone-Rocking, Bird-Dog and
Rowing) in two categories: clinically prescribed exercise (CPE) and typical compensatory move-
ment (TCM). Three inertial sensors were used to detect the movement of the back during exercise
performance and thus generate a dataset that is used to develop an algorithm that detects typical
compensatory movements in autonomously performed LBP exercises. The best feature combinations
out of 50 derived features displaying the highest capacity to differentiate between CPE and TCM in
each exercise were determined. For classifying exercise movements as CPE or TCM, a binary decision
tree was trained with the best performing features. The results showed that the trained classifier is
able to distinguish CPE from TCM in Bird-Dog, Prone-Rocking and Rowing with up to 97.7% (Head
Sensor, one feature), 98.9% (Upper back Sensor, one feature) and 80.5% (Upper back Sensor, two
features) using only one sensor. Thus, as a proof-of-concept, the introduced classification models can
be used to detect typical compensatory movements in autonomously performed LBP exercises.

Keywords: low back pain; rehabilitation; motion analysis; wearable sensors; accelerometer; biome-
chanics; feature extraction; pattern recognition

1. Introduction

Rehabilitation is usually performed in a hospital or outpatient environment. Exercising
for preventing physical disorders in contrast is mostly autonomously performed at home
or at a gym. Physiotherapy is the main path to follow when focusing on orthopaedic
disorders and especially low back pain (LBP). The global Years Lived with Disabilities
(YLDs) caused by LBP between 1990 and 2017 increased by 52.7% to 64.9 million. In the
case of LBP, Western Europe had the highest number of YLDs and LBP is a common reason
for a medical consultation [1–3]. It has been shown that exercise not only reduces pain and
increases function in patients with low back pain [4] but also generally increases individuals’
well-being [5]. Thus, it is highly desirable for patients with LBP to increase the hours spent
performing rehabilitation exercises. The exercises typically prescribed in rehabilitation are
designed to optimise muscle activation and coordination. Therefore, it is important that
patients closely adhere to instructions, especially when performing exercises autonomously
to reduce pain and restore the quality of a patients’ life, as much as possible. However, 70%
of patients do not conscientiously follow prescribed exercise plans [6], which reduces the
effectiveness of rehabilitation measures.
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In the absence of accompanying clinical guidance and control during autonomous
exercise, patients may face a higher risk of injury through compensatory movements, e.g.,
lumbar rotation [7]. Hence, methods to monitor the execution of rehabilitation exercises out-
side of clinical or rehabilitation environments are needed. These will minimise secondary
injury related to incorrect exercise performance.

Van Dijk et al. outlined that healthcare professionals recognise the importance of
a standardised way of observing movement quality, but a tool or assessment that could
offer this kind of functionality, does not exist yet [8]. With the miniaturization of wearable
technologies such as the development of microelectromechanical systems (MEMS), it has
become feasible to use such systems in clinical assessments and especially in home- or
gym- environments. Several researchers have examined the feasibility of using systems
based on inertial sensors to objectively study human movement and thus provide objective
tools to measure and assess exercise activity [9–14]. Most of the researchers concluded that
inertial sensor systems are sufficient for the detection of human movement and superior
when it comes to portability and usability, especially when compared to optoelectronic
marker-based or markerless systems [15–18].

Other research groups have contributed to the field of patient monitoring by applying
machine learning to monitoring several rehabilitation exercises and focusing on different
parts of the body [9–12,19–22]. Bavan et al. evaluated the feasibility of using a single
inertial sensor to recognise and classify shoulder rehabilitation activity using a support
vector machine (ten-fold cross validation: 97.2%) and random forests (leave-one-subject-
out-validation: 80.5%) [9]. Mannini et al. focused on the classification of human motion in
general using Hidden Markov Models [12]. While Dan Morris et al. focused on strength
training and repetitive exercises in general, using support vector machines to employ
segmenting, recognizing and counting with precision and recall greater than 95% in identi-
fying exercise periods, recognition of 99%, 98% and 96% on circuits of 4, 7 and 13 exercises
respectively [10].

Ranganathan et al. identified compensatory trunk movements during reaching tasks
in the upper extremity using three wearable sensors positioned on trunk (chest), upper
arm and forearm. To validate their results an 8-camera motion capture system was used
to determine ground truth. Using 10-fold cross validation their algorithms reached a
precision and recall of 88.6% and 91.2% respectively, using two features. These features
were the standard deviation of 1: the acceleration along the Z-axis (perpendicular to the
chest) in the trunk sensor and 2: the angular velocity along the Z-axis (dorsal direction)
in the forearm sensor. They were thus able to show that compensatory movements in the
trunk can be detected with acceleration sensors during reaching tasks. [23] Eizentals et al.
analysed 11 exercises with specific compensatory movements using textile stretch sensors
on a shirt. They were able to demonstrate the ability of the shirt to detect minor movement
differences. [24] Barth et al. conducted an analysis to characterize how accelerometer
variables reflect upper limb compensatory movement patterns after stroke. They confirmed
that accelerometry is a tool that can reflect the use of general compensatory movement
patterns of the upper limb in persons with chronic stroke. Moreover, they found that
out-of-clinic measurements had stronger relationships with compensatory movements
compared with in-clinic measurements. [25]

LBP specific rehabilitation and prevention exercises are predestined to be monitored
using inertial sensors due to their low performance speed and repetitive nature. Such
systems have already been employed by Peng et al. to quantitatively analyse spine angle
range during dynamic exercises to provide an objective reference of disability level of LBP
patients [26]. Matijevich et al. presented a wearable approach for monitoring low back
loading during manual material handling using pressure insoles and inertial measurement
units (IMUs) [27]. Furthermore, motion detection systems have been used to support the
rehabilitation of a variety of musculoskeletal diseases such as knee disorders and low back
pain [28,29]. For example, de Villa et al. were able to assess the performance of rehabilitation



Sensors 2022, 22, 111 3 of 15

exercises implementing a lower limb joint angle measurement system [30]. The most
frequently used technology for these motion detection systems are accelerometers [31,32].

Combined with state-of-the-art machine learning procedures, these low-cost systems
are the perfect choice for a system to guide and control LBP patients in their performance of
rehabilitation or prevention exercises. Therefore, the motivation for this work is to develop
a method to detect compensatory movements in rehabilitation and prevention exercises in
community settings that is easy to use for both patients and practitioners and thus prevent
patients from movements that lead to a deterioration of their condition.

2. Materials and Methods

The method to be introduced aims to automatically detect the most typical, critical
compensatory movements in autonomously performed rehabilitation and prevention exer-
cises. According to Table 1¬, experts were conducted to define the clinically prescribed
way of performing exercises and the corresponding typical compensatory movements. In ­

a dataset was generated, which was then processed to generate and validate a classification
model. For validation, it was important to use the leave-one-subject-out method to present
absolutely unknown data to the classification model. The summarised procedure in Table 1
is further explained in the following paragraphs.

Table 1. Overview of the process describing the subtasks of Generating Datasets, Data processing
and Classification Model.

¬ Preparation ­ Generating Datasets

• Conduct experts on typical compensatory
movements

• Define clinically prescribed exercise
performance (CPE)

• Define typical compensatory movements
(TCM)

• Performance of clinically prescribed
exercises (CPE)

• Performance of exercises involving
typical compensatory movements (TCM)

• Detecting movement using accelerometers

® Data Processing ¯ Classification Model

• Calculate parameter features
• Conduct feature selection algorithm
• Choose best performing sensor and

corresponding feature CPE <−> TCM

• Generate classification model with best
performing features, sensors and
explainability

• Test of the model

2.1. Preparation

In collaboration with physiotherapists and orthopaedic surgeons from the RWTH
Aachen University Clinic, Germany, a catalogue of 27 exercises typically prescribed to
patients for continuous rehabilitation after suffering acute low back pain was analysed.
The catalogue of exercises originates in a database that is used to foster a rehabilitation
plan for patients based on their diagnosis. The analysis included the discussion of the
feasibility and efficacy of these exercises for patients with different degrees of low back
pain. Focusing on quality of exercise performance to reach the best rehabilitation results,
the experts discussed the most typical compensatory movements, especially in autonomous
training where patients perform these exercises in community settings.

For the presented study a set of three exercises out of this catalogue was chosen as a
representation for clinically prescribed exercises to patients after suffering acute low back
pain. These three exercises were: Prone-Rocking, Bird-Dog and Rowing.

2.2. Generating Datasets
2.2.1. Participants

Thirty healthy subjects (15 male/15 female) without a history of back pain participated
in this study. The age of the subjects ranged from 18 to 35 years with an average age of
27.4 ± 2.5 years. All participants regularly participated in exercise, this resulted in a good
body awareness and thus increased the likelihood that subjects were able to perform TCMs
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and CPEs as instructed. The risk of injury while performing the exercises in the study was
low at all times. The following inclusion and exclusion criteria (Table 2) were used as the
basis for the selection of subjects.

Table 2. Inclusion and exclusion criteria employed the selection of test subjects.

Inclusion Criteria Exclusion Criteria

• Subjects with affinity to movement
between the ages of 18 and 35 years

• The subject is able to understand and
perform the given exercises

• Functionally and anatomically fully
preserved lower and upper extremities

• BMI ≤ 35 for better palpation

• Pregnancy or lactation
• Epilepsy
• Diabetes
• Respiratory diseases
• Cardiovascular problems
• Low back pain
• Back related condition including trauma

and surgery within last 5 years
• Current use of medication that affects

coordination
• Existence of an allergic diathesis
• Physiotherapy within the last 3 months
• Hospital stay within the last three months

The study was approved by the Human Ethics Committee of RWTH Aachen Univer-
sity, and all subjects were fully informed about all possible occurrences prior to the study
(EK 134-19) and gave informed consent.

2.2.2. Data Acquisition

Three accelerometers (Bosch BMX055, 200 Hz sampling frequency, 12-bit resolution,
gyroscope and magnetometer turned off) were used to record accelerations associated with
movement of the back during exercise execution. According to Figure 1, the sensors were
placed at three sites along the spine; (1) between the fifth lumbar vertebra (L5) and the first
sacral vertebra (S1), (2) at the transition from thoracic to cervical-vertebra (Th1, C7) and
(3) on the back of the subjects’ head. Sensor 3 was mounted on an adjustable headband
so it could be securely positioned. The X-axis of the sensors was roughly aligned with the
longitudinal axis of the subject’s body heading from cranial to caudal. The Y-axis of the
sensors is aligned in a way that it is parallel to the transversal axis of the body (lateral to
medial). Finally, the Z-axis of the sensors is roughly aligned parallel to the sagittal axis of
the body which heads from ventral to dorsal.

Figure 1. Positioning of the sensors: (1) between the fifth lumbar-vertebra (L5) and the first sacral-
vertebra (S1), (2) at the transition from thoracic- to cervical-vertebra (Th1, C7) and (3) on the back of
the head. On the right, the axes of the sensors are depicted.

The volunteers were asked to perform the selected exercises in two categories: clini-
cally prescribed exercise (CPE) and a typical compensatory movement (TCM). CPEs were
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optimised to ensure proper form and the TCMs were designed to reflect typical compen-
satory movements. TCMs were according to the analysis in corporation with experienced
physiotherapists from the University Clinic in Aachen, Germany. Prior to the measure-
ments the order of the categories CPE, TCM and the exercises within each category were
randomised for each subject.

As indicated in Figure 2a, when performing Prone-Rocking, the subject started from a
quadruped stand and then moved the upper body backwards until the gluteus touched the
heels of the feet, following Voight et al. [33]. Hands, knees and feet remained in position on
the ground during exercise performance. Bird-Dog, Figure 2b also started in quadruped
stand, but out of the start position the subject then lifted one arm and the diagonally
opposed leg. Hand, arm and leg formed a straight line with spine and head following
Graham et al. [34]. Figure 2c depicts the exercise Bent-over Rowing. The subject started
slightly bent forward with the arms hanging downwards, as if holding an imaginary weight.
The imaginary weight was pulled towards the navel until both hands touched the sides of
the body. Hand and arm segments of both sides stayed parallel during execution. Standing
Bent-over rowing follows the instructions by Fenwick et al. in [35].

Figure 2. CPE: Exercises performed in clinically prescribed optimised form. (a) Prone-Rocking,
(b) Bird-Dog and (c) Bent-over Rowing.

For each of the two categories three sets of six repetitions of each exercise were
performed. The test subjects were carefully instructed by the test supervisor. As Bird-Dog
was performed on both sides, each subject performed a total of 24 sets (2 categories × 4
exercises × 3 sets).

Due to the design of this study both categories CPE and TCM had the same number
of data points after pre-processing.

2.2.3. Measurement Procedure

Three sensors were attached to each individual, using clinically-tested, double-sided,
adhesive tape (Typ T06, Nr. 65.2006.00, tyco Healthcare, 2007). Once the order of the
categories and exercises was randomly chosen, subjects were asked to get into the exercise’s
specific starting position. During Bird-Dog and Prone-Rocking the test subjects used an
exercise mat to reduce loading on knees and hands. To identify the start and end of each
set and after each repetition within a set, the test supervisor generated an analogue signal
by activating a push-button.

2.3. Data Processing
2.3.1. Signal Pre-Processing

As described above, each subject performed three sets of an exercise per category
(CPE/TCM) with six repetitions per set. Sets were subdivided into repetitions using the
analogue signals introduced by the investigator (via a push-button).

The data was normalised to the duration of a fully executed repetition for the respective
set in order to make fast and slow movements within a set comparable with each other.



Sensors 2022, 22, 111 6 of 15

Hence, the longest of all six repetitions in terms of time is taken as the reference with 100%
duration. Acceleration data was then averaged over the repetitions of one set to account
for outliers. This procedure resulted in 180 data points per exercise (30 test subjects × 2
categories × 3 sets).

2.3.2. Feature Extraction

Pattern recognition is most commonly performed on a representation of the data sets
using parameters as features instead of the raw data sets. Therefore, the pre-processed
accelerometer signals were used to calculate a series of features, based on each of the nine
signals arising from the X-, Y- and Z-axis of the three sensors. The features deduced from
the signals are the maximal angles between Sensor 1 and 2 as well as Sensor 2 and 3. First,
the orientation of the sensors i.e., the tilt angle, ϕ between the Z-axis of the sensor and its
gravity vector (Figure 3) was determined using Equation (1) [36]:

ϕ = cos−1

 AZ

2
√

A2
X + A2

Y + A2
Z

 (1)

where AX, AY and AZ represent the linear accelerations in the X-, Y- and Z-directions.
Having determined the tilt-angles for all of the three sensors, the difference between tilt
angles of Sensors 1 and 2 as well as Sensors 2 and 3 was calculated using subtraction.
Determining the maximum in angle deltas results in max(∆ϕ1,2) and max(∆ϕ2,3).

Figure 3. Angle of the sensor with respect to gravity in spherical coordinate system.

Furthermore, the statistical parameters that were used to evaluate the time-normalised
signals were root mean square of accelerations (aRMS) and tilt angles (ϕRMS), maxima
(max), skewness (s), kurtosis (k) and variance (σ2). As a standard and well established
feature the root mean square (RMS) is defined as follows:

aRMS = 2

√
1

Na
∑Na

1 a2
i , ϕRMS = 2

√
1

Nϕ
∑Nϕ

1 ϕ2
i (2)

where N is the number of instances (acceleration or tilt angles) and a or ϕ the value of
acceleration or tilt angle at index, i. The variance, σ2 is defined in Equation (3), where n is
the mean value of all accelerations.

σ2 =
∑N

1 (ni − n )2

N
(3)



Sensors 2022, 22, 111 7 of 15

σ denotes the standard deviation for the following equations. Skewness and kurtosis
are defined in Equations (4) and (5) respectively, where E (t) represents the expected value
of the quantity t.

s =
E(n− n)3

σ3 (4)

k =
E(n− n)4

σ4 (5)

All features calculated on each set were then tabulated for each exercise containing
subject-, CPE-/TCM- and set-identifiers. Each feature is normalised using the z-score
(Equation (6)).

z =
(n− n)
σ

(6)

The completed table is called the Feature Matrix and contains 50 features (5 Parameters
from 9 signals and max(∆ϕ1,2) and max(∆ϕ2,3), ( ϕRMS1, ϕRMS2 and ϕRMS3).

2.3.3. Feature Selection

It is important to consider all combinations of features when checking features in
terms of their predictive power. Therefore, random subsets of feature combinations were
tested instead of every single feature by itself [37]. The maximum number of features per
subset has to be smaller or equal to 2

√
N, where N is the number of data points used for the

training of the classifier. This is general practice to avoid overfitting a classification model.
In general, there are three different approaches to selecting features; filter-, embedded-

and wrapper-methods. For the presented work, a wrapper method (forward feature
selection) was used to find the best performing subset of features. In wrapper methods, the
feature selection is wrapped around the classification model and the prediction accuracy of
the model is used to iteratively select or eliminate a subset of features [38]. This approach
starts with an empty subset of features and sequentially adds features to the subset until
there is no further improvement in prediction (see Figure 4). For each feature in a subset, the
split value is optimised using Gini’s index [39] to gain the maximum in purity for a node.
The corresponding decision tree is then built and the prediction accuracy is obtained using
a 5-fold-cross-validation. N, the number of observations used for each training process, is
36 and the maximum number of features per subset NSub < 6.

Figure 4. Forward Feature Selection Process. Sequentially adding features to the feature subset until
no further improvement in prediction accuracy is gained.

With the maximum number of 5 features there are 2,369,935 possible combinations:

∑5
k=1

(
N
k

)
= 2369935, N = 50
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A loss function to calculate the misclassifications of each decision tree is used as
the stop criterion. When there is no further improvement in loss generated by a tree,
the algorithm stops sequentially adding further features. That way, having to use all
combinations for building decision trees is avoided, which would be computationally very
inefficient and time consuming. In the end a maximum of 6, 8 and 15 different subset
combinations for Bird-Dog, Prone-Rocking and Rowing respectively had to be calculated,
until the minimum in loss was reached.

The prediction accuracy is the sum of correct classified observations, i.e., true CPE and
true TCM, divided by the total number of observations. Following the prediction accuracy,
the best performing subset of features is used to train the final classification model for
each exercise.

To analyse if it was possible to reduce the number of sensors while maintaining a
suitable prediction accuracy, all sensors were tested as single-sensor-systems. That reduced
the total number of features to 16 (5 parameters on 3 axes per sensor plus ϕRMS per sensor)
and thus a maximum number of 6884 possible combinations for feature subsets to be
tested. For this task, a maximum of 9, 10 and 20 different subset combinations for Bird-Dog,
Prone-Rocking and Rowing respectively had to be calculated, until the minimum in loss
was reached.

2.3.4. Classification Models

An algorithm for classification in supervised learning basically uses known (labelled)
data to learn about reality and from there predict unknown (unlabelled) data. Predictions
can only be made about classes that were present in the training dataset. So, the trained
algorithm that maps the new input to a specific class learned from the training data is
called classifier.

As the presented work aims to solve a binary decision problem, decision trees are the
first choice. Additionally, decision trees were used mainly because they are considered
easily comprehensible due to their graphical structure and because they contain a subset
of features rather than using overwhelmingly large numbers [40,41]. This is particularly
important because classification results in medical applications have to be explainable to
mostly medical staff.

To predict a response, one can follow the decisions in the tree from the root, the first
node, down to a leaf node. For these reasons, the use of decision trees to solve the binary
decision problem of distinguishing between CPE and TCM was chosen.

As mentioned in Section 2.3.3, the best performing set of features was used to train a
decision tree based classifier for each exercise. To create the decision tree for classification,
the standard CART algorithm [42] by Breiman et al. was used.

The root node, also called parent node, contains the whole training data. These are
then split at a determined value for the first feature. Thus, producing two child nodes
with each higher purity than the parent node in terms of contained classes. The purity of
a leaf node is representative for how mixed the training data assigned to that node is. To
optimise the purity the Gini index [39] was used. According to Equation (7), where G is the
Gini index over all classes and pk is the proportion of training instances of a certain class k
within the node of interest, G = 0 would be a perfect class purity and G = 0.5 would be an
equal distribution of classes (binary problem).

G = 1−∑
k

pk
2 (7)

Basically, the Gini index is a variance estimate of the distribution of class values in a
node. In order to get the lowest Gini Index, all possible values for a split are being tested.
The so called recursive binary splitting procedure described above needs to know when to
stop splitting the training data and creating nodes. There are several methods to define
a stop of splitting, but in the presented work the only rule was to use each feature in the
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optimised feature set only once. This is due to the fact that overfitting on the training
dataset should be avoided.

3. Results
3.1. Typical Compensatory Movements

Figure 5 shows the most critical typical mistakes occurring during performance of
the three exercises as a result of the analysis that took place in collaboration with physio-
therapists and orthopaedic surgeons. Figure 5a; during Prone-Rocking, patients tend to
twist around the longitudinal axis of the spine in order to be able to touch the ground with
one elbow. Figure 5b; When performing Bird-Dog, patients very often tilt their head up-
wards which results in a rotation around the transversal axis of the neck. Finally, Figure 5c
illustrates the rounding of the lower back as the most common mistake when performing
Bent-over Rowing, which can as well be described as a rotation around the transversal axis
in the hip joint.

Figure 5. TCM: Exercises performed with a typical compensatory movement (a) Prone-Rocking,
(b) Bird-Dog and (c) Bent-over Rowing.

3.2. Feature Selection

The final feature combinations arising from the feature selection process for each
exercise are shown in Tables 3–6. Table 3 shows the best performing features for a single
sensor scenario and Tables 4–6 when all sensors are used for the feature selection process.
X, Y and Z each denote an axis and 1, 2 and 3 are the identifiers for the sensors (see
Figure 1) on which the calculation was performed. For Bird-Dog, a combination of two
features performed best in discriminating TCM from CPE. The first feature is the Root
Mean Square of the Angles over time in Sensor 1 with respect to the gravity vector, ϕRMS1.
The second feature is the Variance σ2 in the Z-axis of Sensor 3, called σ2Z3. For the exercise
Prone-Rocking the variance in the Y-axis of Sensor 2 produced the best results and is
called σ2Y2. In Rowing the best performing feature set consists of two features. First, the
maximum between the angles of Sensors 1 and 2 with respect to the sensors’ gravity vectors,
max(∆ϕ1,2). The second feature is the root mean square of the accelerations in the Z-axis of
Sensor 3, called aRMSZ3.

Since the ultimate goal of this work is the support of patients in autonomously per-
forming rehabilitation or prevention exercises, it might be useful to reduce the number of
necessary sensors and additionally to focus on the simplest way to mount them. To anal-
yse which sensor suits these needs best, Table 4 shows the accuracies and corresponding
features when only one sensor is used.

Following the results in Table 3, Sensors two and three provide the best data for
distinguishing between CPE and TCM in the three studied exercises. Furthermore, it seems
to be advisable to categorise exercises by the best sensor position or to determine the best
sensor position for each exercise separately.
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Table 3. Single sensor features and corresponding accuracies for binary decision trees.

Bird-Dog Prone-Rocking Rowing

Parameter Axis Parameter Axis Parameter Axis

Sensor 1 max
σ2

X
Z σ2 Y aRMS

ϕRMS X

Accuracy 67.0% 92.5% 69.0% Ø 76.2%
Parameter Axis Parameter Axis Parameter Axis

Sensor 2 ϕRMS
σ2 X σ2 Y aRMS

max
Z
X

Accuracy 94.3% 98.9% 80.5% Ø 91.2%
Parameter Axis Parameter Axis Parameter Axis

Sensor 3 σ2 Z σ2 Y aRMS
σ2

Z
X

Accuracy 97.7% 98.3% 76.4% Ø 90.8%

Table 4. Split Values, Accuracy, Sensitivity and Specificity for Bird-Dog Decision Tree calculated
according to [43].

Feature Split Value

Parameter Sensor Axis
σ2 3 Z −0.39

ϕRMS 1 −3.28
Accuracy Sensitivity Specificity

98.3% 98.3% 98.3%

Table 5. Split Values, Accuracy, Sensitivity and Specificity for Prone-Rocking Decision Tree calculated
according to [43].

Feature Split Value

Parameter Sensor Axis
σ2 2 Y −0.62

Accuracy Sensitivity Specificity
98.9% 100% 98.8%

Table 6. Split Values, Accuracy, Sensitivity and Specificity for Rowing Decision Tree calculated
according to [43].

Feature Split Value

Parameter Sensor Axis
max(∆ϕ) 1, 2 0.27

aRMS 3 Z 0.70
Accuracy Sensitivity Specificity

82.8% 82.8% 82.8%

3.3. Decision Trees

Figure 6 displays the distribution of observations with σ2Z3 and ϕRMS1 for bird dog
in a scatter plot. It can be seen that the split values are at −0.39 for σ2Z3 and −3.28 for
ϕRMS1. The sensitivity as well as the specificity are at 98.3% (see Table 4).
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Figure 6. Scatter Plot for Bird-Dog with observations of TCM and CPE. Dashed lines at σ2Z3 = −0.39
and ϕRMS1 = −3.28.

In Prone-Rocking for which the classifier only needs one feature for discriminating
CPE from TCM, the split criterion is at −0.62 as the value for the variance in Sensor 2’s
Y-axis. Figure 7 shows the corresponding one-dimensional scatter plot. In Table 5 the split
value, the sensitivity and specificity for this classifier are documented.

Figure 7. Scatter Plot for Prone-Rocking in one dimension. Dashed line at σ2Y2 = −0.62.

The classifier for Rowing performs best when using the split values in Table 6:
max(∆ϕ1,2) = 0.27, aRMSZ3 = 0.7. Figure 8 shows the corresponding scatter plot. With the
specified split values, sensitivity and specificity both are at 82.8%.

Figure 8. Scatter Plot for Rowing with observations of TCM and CPE. Dashed lines at
max(∆ϕ1,2) = 0.27 and aRMSZ3 = 0.7.
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4. Discussion

The aim of this work was to demonstrate the proof-of-concept of a method to detect
typical compensatory movement in autonomously performed rehabilitation and prevention
exercises aimed at LBP patients using three IMUs and thus facilitate guidance and control
in community settings. Based on an analysis of 27 exercises that are typically prescribed to
patients with LBP the three exercises Bird-Dog, Prone-Rocking and Rowing were used for
the presented study. The analysis took place in collaboration with physiotherapists and
orthopaedic surgeons to determine criteria for a clinically prescribed way of performing the
exercises (CPE) and criteria for performing the exercises involving the most typical compen-
satory movements (TCM). In this study, the correlation between compensatory movements
in rehabilitation or prevention exercises and accelerometer readings with a specified mount-
ing procedure for the sensors was investigated. Identifying a set of features from inertial
sensor data the method can distinguish CPE from TCM in the selected exercises. The study
was also able to show that only one sensor is necessary to detect TCM with accuracies of
97.7%, 98.9% and 80.5% for Bird-Dog, Prone-Rocking and Rowing respectively.

Analysing the exercises in terms of movement axes was of great help to find an
appropriate set of parameters. Bird-Dog for example, invokes a rotation around the
longitudinal axis of the spine when being performed without compensatory movements.
This movement may very well be impaired if a subject with limitations in hip mobility
performs this exercise [7]. When the head is lifted an additional transversal rotation
in the neck or extension of the cervical spine results in a hollow back which means an
extension of the lumbar spine and an extended hip flexion. These movements can be seen
in ϕRMS1. The transversal movement of the head is represented in σ2Z3. Furthermore,
a rotation around the transversal axis of the shoulders is present in both CPE and TCM,
but is not accounted for with the current sensor placement. In Prone-Rocking, the studied
compensatory movement induces a rotation around the longitudinal axis along the spine
which creates a rotational moment on the lumbar spine. Thus, it is intuitive that a feature
in the second sensor—on the upper back—would be able to detect the deviation from
the CPE best. However, the best performing feature here is based on the linear sideward
acceleration σ2Y2 and not ϕRMS2 which derives from the tilt angle of the sensor. The
studied TCM in Rowing (a round back through posterior pelvic tilt) can be observed by the
relation of tilt angles of upper and lower back for which max(∆ϕ1,2) accounts best. The fact
that aRMSZ3 contributes to the decision making might indicate that subjects tend to move
their heads more up and down when performing a TCM compared to performing the CPE.

The exercise Rowing shows the limitations of the chosen sensor arrangement as TCM
and CPE can only be distinguished with a maximum prediction accuracy of 82.8% and
76.4% when using only one sensor. The sensors used need to be moved at non-constant
velocities to record accelerations. When assessing a subject while performing the exercise
Rowing, the subject focused on only moving the arms. As such, this exercise was very
likely to appear as static to the sensor system, which was on the not-moving back. An
accuracy of 82.8% might still be considered a success but in the case of autonomous training
scenarios, a user would not be effectively monitored. Additionally, the user would have to
wear all of the three sensors in order to attain the maximal possible prediction accuracy.

In contrast to Morris et al. [10] the manually generated analogue signals are used to
segment the recorded datasets into repetitions and no automated algorithms are imple-
mented. This is beyond the scope of this work. Accordingly, prediction accuracies need to
be treated on an exercise-specific basis.

As mentioned by Ranganathan et al. [23], movements exist on a continuum which
provides researchers with the challenge of finding boundaries to distinguish compen-
satory from non-compensatory movement. This problem is further complicated when
the movements are not known beforehand, which is likely happening in a community
setting. As well as Ranganathan et al. this paper focuses on detecting compensatory
movement in tasks that involve different combinations of movements using three wearable
sensors and a maximum of two features. In addition to the acceleration sensor in this work,
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Ranganathan et al. used gyroscopes to record the angular velocities and reached values for
precision and recall of 88.6% and 91.2% respectively. [23] The presented method reaches
higher values which is mainly explainable through the different movements analysed and
features used. Comparing both methods, the prediction accuracy is highly dependent of
the representation of the underlying movement through the chosen feature parameters.
However, it should be mentioned that the presented method only needs one acceleration
sensor for proper detection of compensatory movements with accuracies of up to 98.3%.

The low number of subjects/observations and the fact that mostly exercise-savvy
subjects were recruited might have resulted in insufficient amounts of data close to the
class boundaries. On the other hand, the developed method has already shown potential
to work properly for the case of preventing low back pain in healthy subjects who are
under the risk of suffering from LBP. Thus, future work should consider recruiting healthy
subjects who are not exercise-savvy to undermine the validation of the method that has
been developed in this work. It should also be mentioned, that despite of the accurate
instructions for performing each exercise the quality of exercise execution varied enough to
result in realistic classification models for each of the three exercises.

Future work should consider patients rehabilitating from low back pain to analyse the
accuracy of the method for detecting TCMs in this population.

It should be noted also that the training set in this study only trained for one TCM per
exercise, similar to Eizentals et al. who used textile stretch sensors to cover all regions of
the upper body in which strain was caused by the compensatory movements. This leads
to the necessity that future work should also consider creating an extendable database of
exercises and their corresponding typical compensatory movements that can be monitored.
Although Eizentals et al. [24] analysed more exercises, they only recruited one subject.

Finally, a comparison of different classification algorithms could be carried out, to
study the capabilities of classifying a wider range of different movements and thus combine
the results of different studies. As the decision trees in the presented work have shown to be
effective and easily explainable the presented method is interesting for clinical applications
in the future.

5. Conclusions

This study was able to show that the monitoring of rehabilitation and prevention
exercises is possible with only one sensor for two of the three test exercises. The accuracy in
classifying CPE and TCM for the selected exercises of 97.7%, 98.3% and 76.4% for Bird-Dog,
Prone-Rocking and Rowing respectively, using only sensor three (head) and a maximum of
two features, showed that it was possible to detect the specified TCMs. This opens up the
possibility of providing guidance and control for LBP related rehabilitation and prevention
in community settings and prevents patients from movements that lead to a deterioration
of their condition.

By being able to count the number of TCMs and determine the category of TCM
(overextension of the neck, etc.), the opportunity arises to give detailed feedback to the
patients. Additionally, this information enables therapists to advance patient-centred
exercise plans, adjust them according to the patients’ development over time and determine
physical stress due to the TCMs committed during exercise performance.

The presented method thus demonstrates an alternative to detect compensatory move-
ment without the need of producing patient-specific shirts and with a single sensor that is
easy to attach.
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