% IMPORTANT: The following is UTF-8 encoded. This means that in the presence % of non-ASCII characters, it will not work with BibTeX 0.99 or older. % Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or % “biber”. @ARTICLE{Hlscher:946026, author = {Hölscher, David Laurin and Bouteldja, Nassim and Joodaki, Mehdi and Russo, Maria L. and Lan, Yu-Chia and Sadr, Alireza Vafaei and Cheng, Mingbo and Tesar, Vladimir and von Stillfried, Saskia and Klinkhammer, Barbara Mara and Barratt, Jonathan and Flöge, Jürgen and Roberts, Ian S. D. and Coppo, Rosanna and Costa, Ivan G. and Bülow, Roman David and Boor, Peter}, title = {{N}ext-{G}eneration {M}orphometry for pathomics-data mining in histopathology}, journal = {Nature Communications}, volume = {14}, issn = {2041-1723}, address = {[London]}, publisher = {Nature Publishing Group UK}, reportid = {RWTH-2023-01537}, pages = {470}, year = {2023}, cin = {528001-2 / 530000-5 / 531020-2}, ddc = {500}, cid = {$I:(DE-82)528001-2_20140620$ / $I:(DE-82)530000-5_20190109$ / $I:(DE-82)531020-2_20140620$}, pnm = {OA - Open Access Publikation mit Unterstützung der Universitätsbibliothek der RWTH Aachen University (X021000-OA) / DFG project 322900939 - TRR 219: Mechanismen kardiovaskulärer Komplikationen bei chronischer Niereninsuffizienz (322900939) / DFG project 454024652 - Translationale Nephropathologie (454024652) / DFG project 432698239 - Die Rolle von epithelialen CD74 in Nierenerkrankungen (432698239) / DFG project 445703531 - KFO 5011: Integration neuer Methoden zur Verbesserung von translationaler Nierenforschung (445703531) / AIM.imaging.CKD - AI-augmented, Multiscale Image-based Diagnostics of Chronic Kidney Disease (101001791) / BMBF 01GM1901A - STOP-FSGS - Translationaler Forschungsverbund zur Verbesserung der Diagnostik und Therapie der FSGS, TP 1: Rolle des MIF-Signalwegs bei FSGS; TP 4: Pathogenese und neue therapeutische Ansätze (01GM1901A) / BMG-ZMVI1-2520DAT111 - Diagnosestellung und Risikostratifizierung von Lebererkrankungen mittels Deep Learning anhand von klinischen Routinedaten (DEEP LIVER) (BMG-ZMVI1-2520DAT111) / BMWK 01MK2002A - Verbundprojekt: EMPAIA – Ecosystem for pathology diagnostics with AI assistance; Teilvorhaben: Koordination, Referenzzentren und Workflowintegragtion von KI-Lösungen (01MK2002A)}, pid = {G:(DE-82)X021000-OA / G:(GEPRIS)322900939 / G:(GEPRIS)454024652 / G:(GEPRIS)432698239 / G:(GEPRIS)445703531 / G:(EU-Grant)101001791 / G:(BMBF)01GM1901A / G:(DE-82)BMG-ZMVI1-2520DAT111 / G:(BMWK)01MK2002A}, typ = {PUB:(DE-HGF)16}, UT = {WOS:000955886200006}, pubmed = {pmid:36709324}, doi = {10.1038/s41467-023-36173-0}, url = {https://publications.rwth-aachen.de/record/946026}, }