h1

h2

h3

h4

h5
h6


001     946026
005     20250428143254.0
024 7 _ |2 ISSN
|a 2041-1723
024 7 _ |2 SCOPUS
|a SCOPUS:2-s2.0-85147015685
024 7 _ |2 WOS
|a WOS:000955886200006
024 7 _ |2 datacite_doi
|a 10.18154/RWTH-2023-01537
024 7 _ |2 doi
|a 10.1038/s41467-023-36173-0
024 7 _ |2 pmid
|a pmid:36709324
037 _ _ |a RWTH-2023-01537
041 _ _ |a English
082 _ _ |a 500
100 1 _ |0 P:(DE-82)862859
|a Hölscher, David Laurin
|b 0
|u rwth
245 _ _ |a Next-Generation Morphometry for pathomics-data mining in histopathology
|h online
260 _ _ |a [London]
|b Nature Publishing Group UK
|c 2023
300 _ _ |a 1-14
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
536 _ _ |0 G:(DE-82)X021000-OA
|a OA - Open Access Publikation mit Unterstützung der Universitätsbibliothek der RWTH Aachen University (X021000-OA)
|c X021000-OA
|x 0
536 _ _ |0 G:(GEPRIS)322900939
|a DFG project 322900939 - TRR 219: Mechanismen kardiovaskulärer Komplikationen bei chronischer Niereninsuffizienz (322900939)
|c 322900939
|x 1
536 _ _ |0 G:(GEPRIS)454024652
|a DFG project 454024652 - Translationale Nephropathologie (454024652)
|c 454024652
|x 2
536 _ _ |0 G:(GEPRIS)432698239
|a DFG project 432698239 - Die Rolle von epithelialen CD74 in Nierenerkrankungen (432698239)
|c 432698239
|x 3
536 _ _ |0 G:(GEPRIS)445703531
|a DFG project 445703531 - KFO 5011: Integration neuer Methoden zur Verbesserung von translationaler Nierenforschung (445703531)
|c 445703531
|x 4
536 _ _ |0 G:(EU-Grant)101001791
|a AIM.imaging.CKD - AI-augmented, Multiscale Image-based Diagnostics of Chronic Kidney Disease (101001791)
|c 101001791
|f ERC-2020-COG
|x 5
536 _ _ |0 G:(BMBF)01GM1901A
|a BMBF 01GM1901A - STOP-FSGS - Translationaler Forschungsverbund zur Verbesserung der Diagnostik und Therapie der FSGS, TP 1: Rolle des MIF-Signalwegs bei FSGS; TP 4: Pathogenese und neue therapeutische Ansätze (01GM1901A)
|c 01GM1901A
|x 6
536 _ _ |0 G:(DE-82)BMG-ZMVI1-2520DAT111
|a BMG-ZMVI1-2520DAT111 - Diagnosestellung und Risikostratifizierung von Lebererkrankungen mittels Deep Learning anhand von klinischen Routinedaten (DEEP LIVER) (BMG-ZMVI1-2520DAT111)
|c BMG-ZMVI1-2520DAT111
|x 7
536 _ _ |0 G:(BMWK)01MK2002A
|a BMWK 01MK2002A - Verbundprojekt: EMPAIA – Ecosystem for pathology diagnostics with AI assistance; Teilvorhaben: Koordination, Referenzzentren und Workflowintegragtion von KI-Lösungen (01MK2002A)
|c 01MK2002A
|x 8
588 _ _ |a Dataset connected to CrossRef, Journals: publications.rwth-aachen.de
591 _ _ |a Czech Republic
591 _ _ |a Germany
591 _ _ |a Italy
591 _ _ |a UK
700 1 _ |0 P:(DE-588)1287724647
|a Bouteldja, Nassim
|b 1
|u rwth
700 1 _ |a Joodaki, Mehdi
|b 2
700 1 _ |a Russo, Maria L.
|b 3
700 1 _ |0 P:(DE-82)853251
|a Lan, Yu-Chia
|b 4
|u rwth
700 1 _ |0 P:(DE-82)959453
|a Sadr, Alireza Vafaei
|b 5
|u rwth
700 1 _ |a Cheng, Mingbo
|b 6
700 1 _ |0 0000-0001-6982-0689
|a Tesar, Vladimir
|b 7
700 1 _ |0 P:(DE-82)IDM06151
|a von Stillfried, Saskia
|b 8
|u rwth
700 1 _ |0 P:(DE-82)110032
|a Klinkhammer, Barbara Mara
|b 9
|u rwth
700 1 _ |a Barratt, Jonathan
|b 10
700 1 _ |0 P:(DE-82)IDM05844
|a Flöge, Jürgen
|b 11
|u rwth
700 1 _ |a Roberts, Ian S. D.
|b 12
700 1 _ |a Coppo, Rosanna
|b 13
700 1 _ |0 P:(DE-82)IDM00542
|a Costa, Ivan G.
|b 14
|u rwth
700 1 _ |0 P:(DE-82)IDM06262
|a Bülow, Roman David
|b 15
|u rwth
700 1 _ |0 P:(DE-82)IDM05840
|a Boor, Peter
|b 16
|e Corresponding author
|u rwth
773 _ _ |0 PERI:(DE-600)2553671-0
|a 10.1038/s41467-023-36173-0
|p 470
|t Nature Communications
|v 14
|x 2041-1723
|y 2023
787 0 _ |0 RWTH-CONV-250033
|i IsParent
856 4 _ |u https://publications.rwth-aachen.de/record/946026/files/946026.pdf
|y OpenAccess
876 7 _ |c 4852.64
|d 2023-02-17
|e APC
|j DEAL
909 C O |o oai:publications.rwth-aachen.de:946026
|p OpenAPC
|p VDB
|p dnbdelivery
|p driver
|p ec_fundedresources
|p openCost
|p open_access
|p openaire
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)862859
|a RWTH Aachen
|b 0
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-588)1287724647
|a RWTH Aachen
|b 1
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)853251
|a RWTH Aachen
|b 4
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)959453
|a RWTH Aachen
|b 5
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)IDM06151
|a RWTH Aachen
|b 8
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)110032
|a RWTH Aachen
|b 9
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)IDM05844
|a RWTH Aachen
|b 11
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)IDM00542
|a RWTH Aachen
|b 14
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)IDM06262
|a RWTH Aachen
|b 15
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)IDM05840
|a RWTH Aachen
|b 16
|k RWTH
914 1 _ |y 2023
915 1 _ |0 StatID:(DE-HGF)0031
|2 StatID
|a Peer reviewed article
|x 0
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b DOAJ : Peer review
|d 2021-10-13T14:44:21Z
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b DOAJ : Peer review
|d 2023-05-02T09:09:09Z
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b NAT COMMUN : 2021
|d 2022-11-11
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b NAT COMMUN : 2022
|d 2023-08-29
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2022-11-11
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2023-08-29
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2023-08-29
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2022-11-11
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2023-08-29
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2022-11-11
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2023-08-29
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2022-11-11
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2023-08-29
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2022-11-11
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2023-08-29
915 _ _ |0 StatID:(DE-HGF)0320
|2 StatID
|a DBCoverage
|b PubMed Central
|d 2023-08-29
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
|d 2021-10-13T14:44:21Z
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
|d 2023-05-02T09:09:09Z
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
|d 2021-10-13T14:44:21Z
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
|d 2023-05-02T09:09:09Z
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0561
|2 StatID
|a Article Processing Charges
|d 2022-11-11
915 _ _ |0 StatID:(DE-HGF)0561
|2 StatID
|a Article Processing Charges
|d 2023-08-29
915 _ _ |0 StatID:(DE-HGF)0700
|2 StatID
|a Fees
|d 2022-11-11
915 _ _ |0 StatID:(DE-HGF)0700
|2 StatID
|a Fees
|d 2023-08-29
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
|d 2022-11-11
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
|d 2023-08-29
915 _ _ |0 StatID:(DE-HGF)1040
|2 StatID
|a DBCoverage
|b Zoological Record
|d 2022-11-11
915 _ _ |0 StatID:(DE-HGF)1040
|2 StatID
|a DBCoverage
|b Zoological Record
|d 2023-08-29
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
|d 2022-11-11
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
|d 2023-08-29
915 _ _ |0 StatID:(DE-HGF)1060
|2 StatID
|a DBCoverage
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2022-11-11
915 _ _ |0 StatID:(DE-HGF)1060
|2 StatID
|a DBCoverage
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2023-08-29
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-11
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-29
915 _ _ |0 StatID:(DE-HGF)1190
|2 StatID
|a DBCoverage
|b Biological Abstracts
|d 2022-11-11
915 _ _ |0 StatID:(DE-HGF)1190
|2 StatID
|a DBCoverage
|b Biological Abstracts
|d 2023-08-29
915 _ _ |0 StatID:(DE-HGF)9915
|2 StatID
|a IF >= 15
|b NAT COMMUN : 2021
|d 2022-11-11
915 _ _ |0 StatID:(DE-HGF)9915
|2 StatID
|a IF >= 15
|b NAT COMMUN : 2022
|d 2023-08-29
915 p c |0 PC:(DE-HGF)0000
|2 APC
|a APC keys set
915 p c |0 PC:(DE-HGF)0003
|2 APC
|a DOAJ Journal
920 1 _ |0 I:(DE-82)528001-2_20140620
|k 528001-2
|l Institut und Lehrstuhl für Pathologie
|x 0
920 1 _ |0 I:(DE-82)530000-5_20190109
|k 530000-5
|l Institut und Lehr- und Forschungsgebiet Computational Genomics
|x 1
920 1 _ |0 I:(DE-82)531020-2_20140620
|k 531020-2
|l Klinik und Lehrstuhl für Innere Medizin (mit dem Schwerpunkt Nephrologie und Immunologie)
|x 2
980 1 _ |a FullTexts
980 _ _ |a APC
980 _ _ |a I:(DE-82)528001-2_20140620
980 _ _ |a I:(DE-82)530000-5_20190109
980 _ _ |a I:(DE-82)531020-2_20140620
980 _ _ |a UNRESTRICTED
980 _ _ |a VDB
980 _ _ |a journal


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21