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Next-Generation Morphometry for
pathomics-data mining in histopathology
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Pathology diagnostics relies on the assessment of morphology by trained
experts, which remains subjective and qualitative. Here we developed a fra-
mework for large-scale histomorphometry (FLASH) performing deep learning-
based semantic segmentation and subsequent large-scale extraction of inter-
pretable, quantitative, morphometric features in non-tumour kidney histol-
ogy. We use two internal and three external, multi-centre cohorts to analyse
over 1000 kidney biopsies and nephrectomies. By associating morphometric
features with clinical parameters, we confirm previous concepts and reveal
unexpected relations. We show that the extracted features are independent
predictors of long-term clinical outcomes in IgA-nephropathy. We introduce
single-structure morphometric analysis by applying techniques from single-
cell transcriptomics, identifying distinct glomerular populations and mor-
phometric phenotypes along a trajectory of disease progression. Our study
provides a concept for Next-generation Morphometry (NGM), enabling com-
prehensive quantitative pathology data mining, i.e., pathomics.

Pathology constitutes a cornerstone in the diagnosis and treatment
decisions of many diseases. It mainly relies on morphology-based
histopathological tissue analysis, which remains manual and requires
highly trained expert pathologists. The same is true for nephro-
pathology, a highly specialised area of pathology focusing on the
complex diagnostics of kidney diseases. Scoring systems applied by
pathologists, such as the Banff-Classification' of kidney transplant
pathology or the Oxford classification of IgA nephropathy (IZAN)?,
have improved standardisation in nephropathology. These scoring
systems provide clinically important readouts, e.g., regarding
response to therapy or assessing the likelihood of disease

progression®*. Despite such scoring systems, pathology diagnostics
still remain semi-quantitative, labour-intensive and subjective, some-
times with high inter-observer variability>°.

Progresses in digitisation of pathology enables workflows aug-
mented by advanced image analysis techniques, particularly using
deep learning (DL)"”°. End-to-end DL algorithms showed encouraging
performances in various tasks, mainly explored in oncologic pathol-
ogy, e.g., in tumour grading'®, subtyping of cancer variants" and pre-
diction of mutation status”’. These approaches, although promising,
provide only qualitative or semi-quantitative data and their explain-
ability is limited, mostly remaining a “black-box”. An approach to
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tackle these limitations and enable histopathology data mining is
based on extraction of understandable quantitative features of histo-
logical structures'™, This however requires precise and effective
segmentation of relevant histopathological structures, which can be
achieved using DL.

Here, we developed an automated framework for large scale his-
tomorphometry (FLASH) in nephropathology. FLASH extends an
existing DL-segmentation model" and is applicable to all morpholo-
gical injury patterns across major kidney diseases. FLASH-derived
quantitative morphometric features could be traced back directly to
histology and reflected morphological alterations associated with
different diseases, revealed associations of morphological alterations
with clinical parameters and provided independent prognostic factors
for disease progression in IgAN.

Results

Demographic and clinical characteristics of cohort

Two internal, single centre (Aachen Biopsy & Aachen Nephrectomy,
AC B & ACN), and three external, multi-centre cohorts (HubMAP,
KPMP, VALIGA) of kidney biopsies and nephrectomies were included

(Fig. 1a). Four cohorts (AC_B, AC_N, HuBMAP, KPMP) covering the
whole spectrum of native and transplant pathology were used for
development (AC_B & AC_N), testing (AC_B & AC_N) and external vali-
dation (KPMP & HuBMAP) of FLASH. The additional VALIGA cohort is a
multi-centre international cohort of IgAN patients, i.e.,, the most
common glomerulonephritis worldwide, which was used to analyse
the value of FLASH within a potential clinical setting. The two largest
cohorts in this study are AC_B and VALIGA, covering approximately
92% of total cases used. Demographic and clinical characteristics
between cohorts were comparable, apart from younger patients and
more males in the VALIGA cohort, as well as reduced kidney function
assessed by estimated glomerular filtration rate (eGFR), which was
more common in the AC_B cohort and a higher prevalence of hyper-
tension in the AC_N cohort. Patient characteristics of all cohorts are
provided in Supp. Table 1.

Pan-disease segmentation of kidney specimens

To enable quantitative data mining of kidney histology, the tissue
must be precisely separated into relevant histopathological
structures, such as glomeruli, tubules, vessels and interstitium.
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Fig. 1| Flowchart of the patient cohorts and the integration of our framework
for large-scale histomorphometry (FLASH) into a digital pathology workflow.
a Overview of the cohort refinement process. Cases and whole-slide images (WSIs)
were excluded based on predefined criteria on case- and slide-level. 1043 cases
from five cohorts and 1743 WSIs were included in this study. b Integration of FLASH
into the digital pathology workspace. FLASH combines deep learning-based

segmentation with bioinformatics analysis of quantitative morphometric features.
The framework consists of two convolutional neural networks (CNNs) for tissue and
structure segmentation, computational feature extraction and Next-Generation
Morphometry (NGM) analysis. IgAN IgA nephropathy, WSIs whole-slide images,
PAS periodic acid schiff.
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Table 1| Performance metrics for the tissue segmentation convolutional neural network (CNN) and structure

segmentation CNN

Tissue segmentation CNN

ACB ACN KPMP HuBMAP
Class DSC
Kidney Tissue 0.99 0.98 0.92 0.99
Structure segmentation CNN

ACB ACN KPMP HuBMAP

Class iDSC F1 PPV iDSC F1 PPV iDSC F1 PPV iDSC F1 PPV
Tubule 0.89 0.93 0.94 0.87 0.92 0.91 0.91 0.94 0.95 0.89 0.94 0.95
Glomerulus 0.93 0.97 0.99 0.91 0.92 0.95 0.94 0.97 0.98 0.92 0.95 0.94
Glomerular tuft 0.87 0.91 0.90 0.91 0.95 0.95 0.94 0.98 0.98 0.94 0.98 0.99
Non-tissue background 0.94 0.96 0.96 0.80 0.84 0.80 0.93 0.96 0.97 0.90 0.92 0.93
Artery 0.73 0.77 0.84 0.64 0.69 0.77 0.64 0.66 0.69 0.70 0.70 0.78
Arterial lumen 0.72 0.78 0.87 0.52 0.56 0.59 0.59 0.63 0.75 0.7 0.78 0.86

iDSC instance Dice-similarity-coefficient measuring the maximum overlapping area in pixels for each instance between model prediction and ground truth, F1 F1-Score, PPV positive predictive value.
Segmentation performance of the tissue segmentation CNN was evaluated by calculating Dice-similarity-coefficients (DSCs). Segmentation performance of the structure segmentation CNN was
evaluated by averaging all calculated metrics from each instance in all test/external validation images.

Two streamlined segmentation convolutional neural networks
(CNNs) were trained to automate segmentation inference. One CNN
was used for kidney tissue segmentation and another for instance-
level (e.g., one glomerulus is one instance) structure segmentation
of i) glomeruli, ii) their respective tufts, iii) tubules, iv) arteries, v)
their respective lumina and vi) non-tissue background (annotation
criteria are given in Supp. Table 2). Both segmentation CNNs showed
high accuracies in the internal cohorts (AC_B & AC_N) assessed by
Dice-similarity-coefficients (on class- and instance-level), Fl-score
and positive predictive value (Table 1, Supp. Fig. 1). The structure
segmentation CNN correctly segmented glomeruli and glomerular
tufts across all injury patterns, even in complex cases such as cres-
cents, segmental sclerosis or a membranoproliferative pattern
(Fig. 2a). High accuracy was also observed for tubules despite large
variations in size and shape, e.g., in tubular atrophy or light chain
casts (Fig. 3a). Arteries and especially their lumina were segmented
with lower precision (Table 1). Despite large differences in staining
protocols (Supp. Fig. 2), segmentation accuracy was comparable or
even better in the external, multi-centre cohorts used for validation
only (HuBMAP & KPMP), indicating broad generalisability (Table 1
and Supp. Fig. 3). Small segmentation errors were detected in all
classes (Supp. Fig. 4). Over 2000 additional examples of segmented
structures can be found at git-ce.rwth-aachen.de/labooratory-ai/
flash/-/tree/main/exemplary_CNN_segmentations.

Taken together, FLASH allowed a broad, “pan-disease” applic-
ability across all common diseases and morphological injury patterns
in multi-centre kidney datasets.

Glomerular morphometry is associated with specific diseases
and clinical readouts

Applying FLASH enabled the extraction of features of more than
11,000 glomeruli and glomerular tufts in the AC B cohort, the sub-
sequent large-scale comparisons of glomerular morphometric fea-
tures (Supp. Table 3) and their distributions in common native kidney
diseases (Fig. 2c and Supp. Fig. 5A, B). The median glomerular tuft area
was larger by 19.71% (95% CI [10.65, 28.83%]) in lupus nephritis, 18.9%
(95% CI [12.42, 25.91%]) in minimal change disease (MCD) and 40.54%
(95% CI [30.99, 51.5%]) in membranous glomerulonephritis (GN) all
with increased interquartile range (IQR) and significant changes in tuft
area distribution (all adjusted (adj.) p < 0.01) compared to the normal
baseline (Fig. 2c and Supp. Table 4). This effect could also be observed
for full glomeruli (i.e.,, tuft+Bowman’s space+capsule) in lupus
nephritis (7.41% increase, 95% CI [0.77, 15.94%]), MCD (7.91% increase,
95% Cl [0.33, 15.5%]) and membranous GN (25.21% increase, 95% ClI

[15.14, 34.92%]) and their respective distributions (all adj. p < 0.01). The
change of the full glomerular area was less prominent than that of the
tuft (Supp. Fig. 5A and Supp. Table 4). In diabetic (DN) or hypertensive
nephropathy (HTN) distributions of glomerular and tuft areas were
more variable with larger IQRs. This was especially pronounced in HTN
biopsies where the median glomerular tuft area was larger compared
to the normal baseline, while the percentage of glomeruli without a
tuft (e.g., globally sclerotic, or empty Bowman’s space) was con-
siderably higher as well (45.93% compared to 19.68%).

Next, the hypothesis that proteinuria is associated with glo-
merular hypertrophy was investigated®. The glomerular tuft areas in
native AC B cases with vs. without nephrotic range proteinuria (i.e., >
vs. <3.5 g/d) were larger (9.71%, 95% CI [2.81, 15.81%], Fig. 2d and Supp.
Table 5) with significant changes in their distribution (p <0.01). Ana-
lysis of diseases typically associated with proteinuria, i.e., MCD and
membranous GN confirmed these findings with significantly different
distributions (both p < 0.01) and an average increase of mean tuft area
by 10.69% (95% CI [1.1, 20.81%]) in MCD and median tuft area by 51.01%
(95% Cl [34.3, 77.62%]) in membranous GN (Fig. 2d’ and Supp. Table 5).
Interestingly, the median tuft area was slightly smaller in MCD. A
similar increase in glomerular tuft area by 18.7% (95% CI [-3.17, 35.6%])
was found in the KPMP cohort (Fig. 2d” and Supp. Table 5). While the
distributions between the two groups in the KPMP cohort were sig-
nificantly different (p <0.01), we could only observe a trend in the
glomerular tuft area increase. Tuft circularity in MCD did not sig-
nificantly change in nephrotic range proteinuria (2.5% decrease, 95% ClI
[-2.44, 7.32%], p=0.39). In contrast, distribution of tuft circularity
changed significantly (p < 0.01) and median tuft circularity decreased
by 19.57% (95% Cl [11.96, 28.26%]) in membranous GN with nephrotic
range proteinuria (Fig. 2e and Supp. Table 5).

In all native kidney biopsy cases from the AC B cohort, the tuft
circularity progressively decreased with kidney function loss (13.95%
overall decrease, 95% CI [11.63, 16.28%], in cases with eGFR >60 to eGFR
of 30-60 (6.98% decrease, 95% Cl [4.65, 9.3%]) to eGFR <30 ml/min/
1.73 m? (7.5% decrease, 95% CI [5.0, 10.0%], Fig. 2f and Supp. Table 6)
resulting in significantly different distributions between groups (all
adj. p <0.01). Furthermore, the tuft circularity decreased by 24.44%
(95% CI [17.78, 26.67%]) in DN, 18.89% (95% CI [13.33, 24.44%]) in HTN
and 20.0% (95% ClI [17.78, 22.22%]) in pauci-immune GN with significant
changes in their respective distributions (all adj. p < 0.01) compared to
normal biopsies (Supp. Fig. 5B and Supp. Table 4).

Taken together, FLASH allowed large scale quantitative analysis
of glomerular morphometry, revealing clinico-morphological
associations.
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Since the tubulointerstitium and vasculature are often damaged in  95% CI [3.96, 5.03%]) with significant changes in tubular diameter
kidney diseases, FLASH was used to extract features of over two million  distribution (all adj. p<0.01) compared to normal biopsies (Supp.
tubular instances. These were compared based on the reported diag-  Fig. 5C and Supp. Table 4). When grouping cases based on the inter-
nosis, histopathological scoring and kidney function estimated stitial fibrosis and tubular atrophy score (IFTA) taken from the
by eGFR. pathology reports, the tubular diameters continuously decreased from
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Fig. 2 | NGM-derived glomerular features reveal distinct morphometric pat-
terns in native kidney diseases and different clinical conditions, such as
nephrotic range proteinuria and reduced kidney function. a-a”” Segmentation
visualisations of glomeruli in major glomerular injury patterns (images stem from
the internal AC B cohort excluding training samples). b Visual representation for
calculation of glomerular tuft circularity as an example of one of the extracted
morphometric features. ¢ Comparison of glomerular tuft area [um?] on instance-
level with 11,077 instances in different native kidney diseases from the AC B cohort.
Glomeruli from biopsies without pathological findings were used as a control
(depicted in grey). d Feature analysis of glomerular tuft area on instance-level based
on nephrotic range proteinuria in all native biopsies from the AC B cohort, d’ for
glomeruli from biopsies diagnosed with minimal change disease (MCD) or

membranous glomerulonephritis (GN) and d” for glomeruli with large proteinuria
from the external KPMP cohort. Visualisations highlight the increase in glomerular
tuft area in cases with nephrotic range proteinuria. e Comparison of glomerular tuft
circularity on instance-level between cases of MCD and membranous GN with or
without nephrotic range proteinuria. f Analysis of glomerular tuft shape on
instance-level based on reported estimated glomerular filtration rate in all native
biopsies from our internal biopsy cohort including additional visualisation exam-
ples. Scale bar size is 100 um. Source data are provided as a Source Data file. GN
glomerulonephritis, Seg. segmental, HTN hypertensive nephropathy, DN diabetic
nephropathy, IgAN IgA nephropathy, MCD minimal change disease, lupus lupus
nephritis, membranous membranous glomerulonephritis, Pauci Pauci-immune
glomerulonephritis, eGFR estimated glomerular filtration rate.

none/marginal (0-10% IFTA) to mild (11-25% IFTA) to moderate (26-50%
IFTA) to severe (>50% IFTA) and distributions of tubular diameters
were significantly different compared to none/marginal IFTA (all adj.
p<0.01, Fig. 3c and Supp. Table 7). Conversely, the tubular distance
increased in biopsies with mild, moderate and severe IFTA compared
to none/marginal IFTA (Fig. 3d and Supp. Table 7). Similar changes in
the distribution of tubular morphometry were observed when cases
were grouped based on stratified eGFR. The tubular diameter pro-
gressively decreased with kidney function loss (5.84% overall decrease,
95% Cl [5.64, 6.24%]), in cases with eGFR >60 to eGFR of 30-60 (2.63%
decrease, 95% CI [2.49, 2.99%]) to eGFR <30 ml/min/1.73 m? (3.3%
decrease, 95% CI [3.03, 3.54%], Fig. 3¢’ and Supp. Table 6) while the
tubular distance increased (86.42% overall increase, 95% Cl [58.36,
96.99%]) in cases with eGFR >60 to eGFR of 30-60 (39.81% increase,
95% ClI [26.28, 61.66%]) to eGFR <30 ml/min/1.73 m?2 (33.33% increase,
95% CI [8.89, 43.34%], Fig. 3d’ and Supp. Table 6).

Arteriosclerosis is a common chronic vascular injury pattern in
kidney diseases, currently only reported in gross grades. The dis-
tributions of artery wall diameter (i.e., wall thickness, Supp. Fig. 6C)
and artery lumen diameter were significantly different in cases with
none to moderate to severe reported arteriosclerosis (all adj. p < 0.01).
While the measured wall diameters increased, the lumen diameters
steadily decreased with severity of arteriosclerosis (Supp. Fig. 6 and
Supp. Table 8). The median wall diameters of arteries and arterioles
were larger by 8.59% (95% CI [5.67, 11.35%]) in the AC B, 10.77% (95% Cl
[7.43, 15.3%]) in the AC N and 20.33% (95% CI [13.37, 27.13%]) in the
HuBMAP cohort based on the presence of hypertension (Supp. Fig. 6D
and Supp. Table 8). Distributions of wall diameter significantly chan-
ged in the AC_B, AC_N and HuUBMAP cohorts (all p < 0.01) based on the
presence of hypertension while in the KPMP cohort the distributions
did not show significant differences (p = 0.15) and only an increase of
median wall diameter by 2.4% was observed (95% CI [-19.34, 11.55]).
Diameters of the arterial lumen decreased in all four cohorts (Supp.
Table 8). Taken together, vascular features reflect the pathologist’s
assessment of arteriosclerosis, are associated with the presence of
hypertension, and allow quantitative assessment of vascular
alterations.

Morphometric features are predictive of disease progression in
IgA nephropathy

To assess the utility of FLASH for outcome prediction in a clinical
setting, the multi-centre VALIGA cohort of IgAN patients was analysed.
Disease progression was defined as reaching the composite endpoint
of end-stage kidney disease (ESKD) and/or halving of the initial eGFR
assessed at the time of biopsy within fifteen years after biopsy. Median
follow-up time was 4.72 (IQR: 5.28) years. 17.86% of patients (n =115)
reached the composite endpoint (13.04% due to ESKD, 26.09% due to
eGFR halving and 60.87% due to both endpoints) within a median time
of 4.53 (IQR: 5.17) years. Comparison of biopsies of patients reaching
the composite endpoint vs. those who did not, revealed a decrease in
tuft circularity (by 12.87%, 95% CI [10.08, 17.15%]), tuft area (by 26.91%,
95% CI [20.12, 41.52%]), tubular diameter (by 5.51%, 95% CI [1.32,

6.97%]), and an increase in tubular distance (by 35.9%, 95% CI [25.94,
46.73%]) and tuft eccentricity (by 4.13%, 95% CI [2.48, 5.96%]) with
significant changes in respective feature distributions (p<0.01)
(Fig. 4a). Univariate Cox proportional hazards models for these five
features showed that patients with certain feature expressions at the
time of biopsy displayed a faster decline of disease progression-free
probability and a higher risk of reaching the composite endpoint
(Fig. 4b, c). Adjusted multivariate analysis for each predictive feature
as well as age, sex, MEST-C score and eGFR at the time of biopsy
confirmed tubular distance (HR 2.03, 95% CI [1.24-3.32], p<0.01),
tubular diameter (HR 1.73, 95% CI [1.12-2.68], p < 0.05), tuft area (HR
1.51, 95% CI [1.02-2.25], p<0.05), tuft circularity (HR 2.04, 95% ClI
[1.38-3.02], p < 0.01) and tuft eccentricity (HR 1.73, 95% CI [1.15-2.61],
p<0.01) as independent predictors for reaching the composite end-
point, being significantly associated with disease progression (Supp.
Table 9-12). To further compare the digitally derived morphometric
biomarkers with traditional histopathology scoring for IgAN, two Cox
proportional hazards models were fitted, i) Digital Biomarkers
(including all five digital features, age, sex and initial eGFR) and ii)
MEST-C (including M, E, S, T, C, age, sex and initial eGFR; Supp.
Table 11). The fitted Digital Biomarkers model (C-statistic =0.79 + 0.03,
AIC=1195, BIC=1217) was equivalent to the MEST-C model (C-statis-
tic=0.79 £ 0.02, AIC=1204, BIC =1226). Combining the Digital Bio-
markers and MEST-C model into a third, hybrid model resulted in a
slight improvement (C-statistic=0.82 + 0.02, AIC =1189, BIC =1224).

Morphometric phenotypes along a disease progression
trajectory

Animal models and experience from kidney biopsy diagnostics allow
generating hypotheses on the course of morphological alterations
during disease progression, however, an approach to quantitatively
analyse this was missing. To tackle this, an unsupervised analysis
using diffusion maps was performed to find major axes of glomerular
morphometric changes in IgAN, revealing clusters of glomerular
instances attributed to the overall kidney function measured by eGFR
(Fig. 5a-a”). Based on this, a trajectory and an estimated pseudotime
score were determined, where glomeruli progress from a healthy to a
diseased morphometric phenotype (Fig. 5b). Histologic examples of
glomeruli along the pseudotime supported morphological changes
progressing from normal to increasingly diseased phenotypes with
higher pseudotime scores, e.g., with increasing mesangial expansion
and sclerosis (Fig. 5b” and Supp. Fig. 7).

A feature expression heatmap along the pseudotime revealed
glomerular morphometric alterations associated with IgAN disease
progression, e.g., decreasing tuft area and tuft circularity, and
increasing tuft eccentricity and elongation, resulting in smaller and
more deformed glomerular tufts (Fig. 5c). The fraction of glomerular
instances at the beginning of the pseudotime trajectory that belong to
patients with preserved kidney function (>60 ml/min/1.73 m?) con-
tinuously decreased along the pseudotime (Fig. 5d). On the other
hand, the fraction of glomeruli from patients with considerably
reduced kidney function (<30 ml/min/1.73 m?) constantly increased
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Fig. 3 | NGM-derived features of tubules and arteries are associated with
pathologist derived scoring. a-a”” Segmentation visualisations of tubules with
large variation in size and shape in various diseases and morphological injury
patterns present in the patch. Visualisations stem from the internal AC B cohort
excluding training samples. b Visual representation of feature calculation of tubular
diameter and tubular distance. ¢ Feature analysis of tubular diameter on instance-
level based on the quantified amount of interstitial fibrosis and tubular atrophy
(IFTA) of all biopsies with reported IFTA from the AC B cohort. ¢’ Analysis of tubular
diameter on instance-level based on the measured estimated glomerular filtration

(Patient-level)

rate (eGFR) of all native biopsies from our internal biopsy cohort. d Feature analysis
of tubular distance summarised on patient-level based on the quantified IFTA of all
biopsies with reported IFTA from the internal biopsy cohort. d’ Analysis of tubular
distance summarised on patient-level based on the measured eGFR of all native
biopsies from our internal biopsy cohort. Scale bar size is 100 um. Source data are
provided as a Source Data file. DN diabetic nephropathy, ABMR antibody-mediated
rejection, dpax maximum instance diameter, dist,,;, minimum instance distance,
IFTA interstitial fibrosis and tubular atrophy, eGFR estimated glomerular
filtration rate.

along the pseudotime trajectory, indicating that the pseudotime
represents the disease progression of IgAN towards ESKD in glo-
merular populations (Fig. 5d). A similar trajectory from healthy to
disease along the pseudotime could be observed using patient level
aggregated glomerular and tubular features in the VALIGA trial
(Supp. Fig. 9).

Automated visualisation of image patches enabled displaying
morphometric outliers of glomeruli and tubules in a single, repre-
sentative case of IgAN from the AC_B cohort. Morphometric outliers of
structures of interest were displaying various pathological lesions i.e.,

crescents, segmental sclerosis or tubular atrophy (Supp. Fig. 9) which
could enable fast-track assessment of kidney histopathology.

Discussion

Our study presents a proof-of-concept for large-scale automated
extraction of large-scale quantitative morphometric data from histo-
pathology, i.e., Next-Generation Morphometry (NGM). For this, a deep
learning-based instance segmentation and quantification framework
(FLASH) was implemented. FLASH was developed and validated in
heterogeneous multi-centre datasets using both kidney biopsies and
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Fig. 4 NGM-derived quantitative features are predictive of disease progression
in IgA nephropathy (IgAN). a Comparison of five predictive digital biomarkers
summarised at patient-level based on reaching the defined composite endpoint,
i.e., end-stage kidney disease and/or halving of initial estimated glomerular filtra-
tion rate (eGFR) within 15 years after biopsy. b Univariate Cox proportional hazards
models for 644 patients of the five predictive features summarised at patient-level
including 95% confidence intervals. In three cases no glomerular tuft was

Time [Years]

HR [95% CI]

segmented, and no shape features were calculated. Cumulative events for each
group in the univariate Cox proportional hazard models are provided in Supp.
Table 9. ¢ Hazard ratios (centre) and their 95% confidence interval (error bars) from
the univariate Cox proportional hazard models of the respective features. Source
data are provided as a Source Data file. ESKD end-stage kidney disease, eGFR
estimated glomerular filtration rate, HR hazard ratio, CI confidence interval.

nephrectomies and a large variety of diseases. The segmentation
accuracy of FLASH was high across cohorts, indicating broad gen-
eralisability. We focused on nephropathology, since the kidney is one
of the most complex organs in pathology diagnostics, requiring a high
level of specialisation, and representing a challenging use case. NGM
provides the basis for histopathology morphometry, an “omics”
approach we propose to term “pathomics”.

Omics technologies comprehensively quantify biomolecules in an
automated manner and on a large scale, e.g., DNA in genomics, RNA in
transcriptomics and proteins in proteomics®. These approaches are

increasingly performed in a comprehensive, multi-omics fashion* and
with spatial resolution??*. Although morphological alterations in dis-
eases are very well recognised and have been used for diagnostics for
over a century, approaches for omics-based analysis of histopathology
were missing. NGM and pathomics could serve as a complementary
approach to the molecular omics techniques, providing objective,
tissue-based, quantitative (geometrical) information on histological
structures. Compared to established omics techniques, which are
continuously improved, NGM is currently in its infancy. It is expected
that NGM will undergo prominent development, particularly given
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along their progression from healthy to diseased. b’ Visualisation of glomerular
phenotypes along the pseudotime. ¢ Scaled feature expression heatmap including
eGFR along the pseudotime trajectory. d Morphometric progression of glomerular
instances in clinical subgroups based on the overall reported eGFR. Scale bar size is
100 um. Source data are provided as a Source Data file. eGFR estimated glomerular
filtration rate, Dim diffusion map, IgAN IgA nephropathy.

that the technological prerequisites are largely met, i.e., the instru-
ments for high-throughput digitisation of histology slides, graphics
processing units (GPUs) and storage are increasingly available and
affordable. E.g., in this study we were able to analyse 7,382,198
instances of histological structures with 6,742,314 tubules, 89,160
glomeruli and 550,724 arteries, showing that NGM can be used to
provide data on histology at an unprecedented scale.

Similar to Next-generation Sequencing and genomics, which have
revolutionised research and diagnostics by comprehensive genetic
molecular characterisation, NGM opens new frontiers in quantitative
assessment of morphology. As a first proof-of-concept we have shown
the potential utility of NGM and pathomics for quantitative kidney
histopathology data mining, providing clinically relevant and com-
plementary readouts that can constitute an important step towards
precision medicine.

Patients with MCD or membranous GN and nephrotic range pro-
teinuria showed a prominent increase in mean glomerular tuft area,
compared to those without. In MCD-patients, larger glomeruli identi-
fied by manual analysis were previously associated with an increased

risk for kidney function deterioration and development of glomerular
sclerosis®. With FLASH and NGM, such morphological biomarkers can
now be assessed automatically across all diseases. Importantly, FLASH
revealed a decrease in tuft circularity in membranous GN patients with
nephrotic range proteinuria, but not in MCD, indicating different
mechanisms of glomerular hypertrophy in these diseases. The tuft
circularity progressively decreased across all native diseases in
patients with decreased kidney function, indicating that this might be a
general feature of kidney function decline. Thereby, NGM can provide
novel findings and generate novel research questions based on
morphology.

NGM and FLASH enabled the identification of morphological
features that are independent predictors of kidney function decline in
IgAN, such as the smallest distance between tubular instances, the
glomerular tuft circularity, the glomerular tuft eccentricity or the
tubular diameter. While some of these were expected, and confirmed
previous concepts, e.g., the distance between tubules reflecting
interstitial fibrosis, others, such as tuft circularity and tuft eccentricity,
were unexpected. These features could be used as a set of digital
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biomarkers, potentially improving the predictive value and reprodu-
cibility of histopathology diagnostics. Accordingly, a combined model
of only a few of these digital biomarkers proved to be equivalent
compared to a validated standard histopathological scoring system,
i.e., the MEST-C score®. The advantage of using NGM over a
pathologist-derived score is that it is quantitative and fully automated.
Therefore, we expect that NGM is better reproducible, more precise,
faster and spares the time of pathologists.

Adapting techniques designed to analyse other omics data, such
as single cell sequencing data, we identified a trajectory of disease
progression in a low dimensional embedding of glomerular features in
IgAN. This allowed a granular analysis of progression of glomerular
phenotypes from healthy to diseased, which can be seen as an unsu-
pervised way of identifying histologic features relevant for disease
progression. This first proof of concept shows that NGM-based data
can be used to make histopathology analysis quantitative, capturing
more subtle changes which better reflect the biological reality of dis-
ease progression and modelling disease progression relevant
pathologies.

Some studies previously described the potential of morphometric
analysis of histology'®¥~*2, Although very specific, these scoring sys-
tems were applicable only in specific use cases and particular patho-
logical alterations. NGM and FLASH follow a holistic approach of
morphometric analysis, prioritising automated data mining, thus
enabling a wider variety of possible downstream analyses, i.e., an
exploratory approach comparable to other omics techniques.

Currently, a major focus in computational pathology is the
development of end-to-end DL solutions, which mostly provide qua-
litative results, e.g., a disease class or mutational status'>**, On the
contrary, NGM and FLASH use segmentation as a basis for subsequent
large-scale quantitative data mining. Compared to end-to-end pipe-
lines, NGM provides an alternative approach with several advantages.
The results are visually verifiable, can be easily checked by patholo-
gists, and are therefore interpretable. This is often not the case in end-
to-end DL solutions, which remain a black-box in terms of explain-
ability. Therefore, quantitative histology features remain comprehen-
sible, even if clustered in a lower dimensional space. This can help
reduce potential scepticism towards DL based systems that might
hinder clinical application.

In nephropathology, most diseases, including IgAN, are rare dis-
eases. Large data repositories allowing the effective and robust
development of end-to-end DL pipelines in nephropathology are
missing, making the development of such pipelines considerably more
difficult compared to oncological pathology. Only very few nephro-
pathology datasets with clinical information are publicly available, the
largest being KPMP and HuBMAP. We have included these in our study,
yet their WSIs represented only ~8.5% of the whole dataset. Addition-
ally, the format of the clinical data differed, not allowing to combine all
cohorts in all analyses. Current initiatives, such as the BIGPICTURE
project®, or grand challenges® might help to tackle this in the future.
We openly provide our pathomics datasets for KPMP and HuBMAP,
enriching these publicly available cohorts with complementary
pathomics data. In comparison, NGM and FLASH do not require large
datasets for development and can be applied to any type of disease,
including rare diseases such as in MCD, IgAN, etc.

This study has several important limitations. Currently, FLASH
only includes a few, easily explainable morphometric features, as we
focused on providing a proof-of-concept of the utility of NGM. We
have analysed these features in formalin-fixed and paraffin-embedded
(FFPE) material; therefore, they could potentially reflect changes from
fixation, which is an inherent limitation of histology-based studies.
Future research could investigate potential differences in the mor-
phometry of samples with different fixations. One of the challenges we
encountered was the large variability within the stainings. The preci-
sion of segmentation was consistently high despite this variability,

resulting in robust morphometric data. However, the colour variability
prohibited us from extracting additional, e.g., colour or texture-based
features. Further developments should focus on colour normalisation
approaches, a larger number of additional morphological features, and
inclusion of subvisual features such as texture to provide even more
comprehensive morphometric data.

Another limitation is that FLASH is not generic for any kind of
tissue, but specifically developed for the kidney. Particularly because
of the required tissue-specific segmentation and different stains used
in various organ histopathology analysis, it is currently unlikely to have
a pipeline applicable for every kind of tissue histology. In addition,
generating the ground truth for the segmentation algorithm requires
considerable effort and time-investment by expert pathologists, which
is a limitation in comparison to end-to-end approaches, which can be
trained in a weakly supervised way with very little manual overhead.
While segmentation accuracy was consistently high for other com-
partments, arteries and their lumina were difficult to segment, result-
ing in lower performance. This might be mitigated by performing
many more expert annotations. In another kidney segmentation study,
almost 20,000 annotations were necessary to allow segmentation of
peritubular capillaries in mostly normal appearing tubulointerstitium
of MCD patients®. In addition, the data on severity of arterial hyper-
tension were not available, making the analyses of arterial feature
distributions rather preliminary. We present data on multiple disease
entities. However, a sufficient number of patients and outcome data
were only available for IgA-Nephropathy in the VALIGA trial, limiting
outcome analyses and adjustments for potential confounders to this
cohort and disease entity. Future studies should investigate larger
cohorts to validate the differences found in feature distributions in
other diseases. Furthermore, the here used cohorts mainly included
patients with European and in part Asian ancestry, and anthropometric
data were largely not available. Another limitation is the retrospective
design of this study. However, this study should serve as the basis for
designing potential future prospective trials investigating the pre-
dictive potential of NGM.

In conclusion, our study lays the groundwork for introducing
NGM and pathomics for explainable, quantitative, histopathology
analysis and pathomics.

Methods

Ethics statement

Data collection and analysis in this study was performed in accordance
with the Declaration of Helsinki and was approved by the local ethics
committee of the RWTH Aachen University (EK-No. 315/19). All ana-
lyses were performed retrospectively in an anonymous fashion and the
need for informed consent was waived by the local ethics and privacy
committee for all datasets.

Cohort assembly and sample collection

For development, validation and application of FLASH, whole-slide
images (WSIs) and clinical data from five cohorts were gathered: two
internal, i.e. in-house cohorts from the Institute of Pathology in
Aachen, for development, i.e. Aachen Biopsy (AC_B) and Nephrectomy
(AC_N), and three external cohorts from other centres, two of which
were used for validation, i.e. Kidney Precision Medicine Project (KPMP,
NCT04334707)* and the Human BioMolecular Atlas Program
(HuBMAP)*°, and the third, the VALIGA trial, for a disease-specific
application use case (Fig. 1a). Following exclusion criteria were used in
all cohorts: (i) no kidney tissue in the specimen, (ii) no Periodic Acid
Schiff (PAS)-slide available, (iii) only cryosections available and (iv)
containing less than eight glomeruli, unless a definitive pathological
diagnosis could be made, (v) large artefacts present on the slide, (vi)
insufficient scan quality (e.g., major part of tissue being out of focus
and blurred), (vii) insufficient stain quality (e.g., unstained tissue) and
(viii) broken slides (Fig. 1a).
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Development cohorts

Aachen Biopsy cohort (AC_B). A database search identified 355 kidney
biopsy cases in the archive of the Institute of Pathology of the RWTH
Aachen university clinic within the inclusion period (January 1st 2017—
May 1st 2021). Biopsies were either native kidney or indication or
protocol transplant biopsies. Diagnoses for all cases are given in Supp.
Table 13.

In the Aachen Nephrectomy cohort (AC_N) 30 nephrectomy spe-
cimens (inclusion period: 2013 - 2021) were included, appreciating
that nephropathology is not limited to biopsy specimens and aiming at
applicability also in nephrectomy samples. The AC_N cohort consists
of 13 transplant nephrectomies due to severe complications and 17
tumour nephrectomies, including only non-tumour tissue away from
tumour borders. Both groups reflect a broad morphological spectrum
of histopathology. More tumour nephrectomies than transplant
nephrectomies were included since they are more common in routine
diagnostics.

For all cases from the AC_B & AC_N cohorts the diagnosis, histo-
pathological scores and clinical data were collected when available.
Final diagnoses and histopathological scores were gathered from the
pathology reports. Histopathological scoring and diagnosis were
based on the consensus of at least two trained nephropathologists.
The following information on histological structures were collected
from the reports when available: number of glomeruli, number of
globally sclerotic glomeruli, information regarding the presence and
severity of arteriosclerosis, and the extent of interstitial fibrosis and
tubular atrophy (IFTA). Furthermore, clinical data including laboratory
findings and ICD-10 coded diseases were collected if available within
the pathology laboratory information system (Supp. Table 13). Esti-
mated glomerular filtration rate (eGFR) derived by using the Chronic
Kidney Disease Epidemiology Collaboration (CKD-EPI) Equation* [ml/
min/1.73 m?] and proteinuria [mg/d], were gathered if available at the
time of biopsy. Presence of hypertension regardless of aetiology was
assessed based on ICD-10 codes. Non-availability of clinical or patho-
logical data did not automatically lead to exclusion (please see exclu-
sion criteria).

Before digitalisation of slides all patients were anonymised and
given a unique patient identifier. Overall, 320 biopsy cases from 297
patients (number of biopsies per patient—mean: 1.08, min: 1, max: 4)
were included in the AC_B cohort. There was a mean of 3.03 Periodic
Acid Schiff (PAS)-stained whole-slide images (WSls) per biopsy case
(min: 1, max: 7).

In both cohorts 1-3um thick formalin-fixed and paraffin-
embedded sections were used. All slides from the AC_B, ACN and
VALIGA cohorts were digitised using an Aperio AT2 whole-slide scan-
ner with a 40x objective (Leica Biosystems, Wetzlar, Germany).

External validation cohorts

Two external publicly available cohorts from independent consortia
were included to validate the generalisability of our CNNs. The cohort
from the KPMP (accessed on 15th March 2021) consists of 90 PAS-
stained WSIs from patients with either acute kidney injury (AKI),
chronic kidney disease (CKD) or healthy tumour nephrectomies. It
included 34 biopsy and two nephrectomy cases. After the exclusion
process, 85 PAS-stained WSIs were included in the analysis. The cohort
from HubMAP contains 22 nephrectomy specimens from 12 deceased
organ donors. In all, 13 cryo-sections were excluded since they were
out of distribution (we only trained on FFPE material), with the final
cohort consisting of nine nephrectomy WSIs from nine cases. Addi-
tionally, clinical data from both cohorts were gathered when available
(Supp. Table 13).

Specific application cohort
After development was finished, the FLASH architecture was applied to
the multi-centre VALIGA trial which represents one of the largest

biopsy cohorts of patients with IgAN. From the initial cohort, 768 cases
could be identified and digitised (scanned). The following problems
prevented more cases from being included: (a) it was not possible to
identify the slide label (e.g., because it faded, or fell off), or (b) slides
broke during transport. Overall, 106 cases were excluded, since they
met at least one of the above-mentioned exclusion criteria, most often
not available digital PAS-stained slides. An additional 14 cases were
excluded on slide level due to artefacts, with in total, 648 PAS-stained
WSIs of 648 cases being included (Fig. 1a).

Framework development

FLASH consists of an automated three-step approach: (i) a CNN that
automatically segments kidney tissue on a WSI discarding all non-
kidney tissues (e.g., adipose or muscle tissue), (i) another CNN that
segments histological structures of the kidney tissue segmented by the
first CNN and (iii) hand-crafted feature extraction for segmented
structures (Fig. 1b). The framework is applicable to the whole mor-
phological spectrum of non-neoplastic kidney diseases.

Generation of annotations

For the kidney tissue segmentation, we annotated kidney tissue on
slide-level. For the segmentation of histological structures, we anno-
tated patches of size 174 x174 um? using the following six classes
(Supp. Table 2): (1) full glomerulus (including the tuft), (2) glomerular
tuft, (3) tubule, (4) artery (including lumen, intima and media), (5)
arterial lumen and (6) non-tissue background (including veins with a
diameter of >30 um). We focused on these classes since they represent
the major kidney compartments and can be reproducibly annotated
even in severe diseases. Overall, we annotated 1056 WSiIs for the tissue
segmentation and 4031 patches and 27,287 structures for the structure
segmentation in the four development and validation cohorts (Supp.
Tables 15-16). Ground truth annotations of histological kidney struc-
tures were performed by an experienced nephropathologist and two
trained medical students using QuPath*?, which is the most widely used
open-source software for computational pathology applications. In a
second step the nephropathologist corrected all annotations. Anno-
tations of difficult/questionable structures were discussed in regular
meetings with another nephropathologist. All annotators were
instructed to follow a standard operating procedure with clear cut
definitions for all six classes (Supp. Table 2). Besides, the following
procedure was performed to accelerate the time-consuming manual
annotation process: First, a quarter of the training dataset was anno-
tated and used to train a prior segmentation model. Then additional
patches were selected for annotation, focusing on structures that were
insufficiently recognised by the prior model and loaded their model
predictions into QuPath to provide accurate starting points for anno-
tation. This procedure strongly reduced annotation efforts as it con-
verted the manual annotation into an annotation correction process.
However, it was only implemented for training data, meaning that all
data used to assess performance and validate the models was gener-
ated completely by experts. This cycle was repeated twice after two
and three quarters of data annotations. To ensure generalisability to
external cohorts and applicability in a broad spectrum of diseases,
specimens from our internal cohorts that reflect the diversity of kidney
histopathology for training and testing were selected (e.g., 21 cases of
IgA nephropathy (IgAN), 11 pauci-immune glomerulonephritides (GN),
afulllist of diagnoses included in training/testing/external validation is
provided in Supp. Table 17.

Tissue and structure segmentation CNNs

For the segmentation of kidney tissue, we used a nnU-Net, represent-
ing the state-of-the-art for biomedical image segmentation*’. For the
segmentation of histological structures, we have built on our previous
study on kidney structure segmentation in experimental nephro-
pathology by employing the same U-Net-like architecture and training
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routine as they were specifically developed and comprehensively
validated for this particular task”. Both CNNs were developed using
the internal AC_B and AC_N cohorts while the external held-out data
from the KPMP and HuBMAP cohorts were used for external
validation only.

Tissue segmentation

A nnU-Net was used for the kidney tissue segmentation task. The nnU-
Net has gained popularity due to its superiority in several international
biomedical segmentation competitions without the need for
application-specific manual intervention*, For training, regions of size
2500 x 2500 um? were extracted in a grid-like manner from the anno-
tated internal cohorts AC_B & AC_N and downsampled into patches of
size 512 x 512 pixels. Regions containing at least 90% white background
were ignored. A batch size of 12 was used. Soft Dice loss as well as
binary cross-entropy were used as equally weighted loss functions. The
initial learning rate of 0.01 was polynomially reduced using a power of
0.9 during a total amount of 1000 epochs. Colour and spatial trans-
formations including Gaussian noise, Gaussian blur, gamma contrast,
rotations and scaling were used for data augmentation. To further
increase the robustness of the model, a five-fold cross-validation on
the training data was performed to train an ensemble of five different
convolutional neural networks (CNNs). We then selected the model
providing the lowest internal validation loss as the final one in each
respective fold. Given an input image, the final prediction was then
obtained by averaging the predictions of all five models, followed by
filling holes and removing very small predictions. Overall, 12,034 pat-
ches from 1056 WSIs were extracted and used for the development,
testing and validation of the model. Training was conducted only on
the internal AC_B and AC_N cohorts using a random 80% data split on
patient level, respectively. The remaining 20% of data from both
internal cohorts were used for testing (Supp. Table 16).

Structure segmentation

A U-Net-like model** was trained on random minibatches of size six
using RAdam* as an optimiser for the kidney structure segmentation
task. The initial learning rate of 0.001 was divided by three in case the
internal validation loss did not drop for 15 epochs straight. Training
terminated once the learning rate fell below 4E-6. Then, the model
providing the lowest internal validation loss was chosen as the final
configuration. Soft Dice-loss as well as the weighted categorical cross-
entropy (WCE) were used as equally weighted loss functions as well. In
addition, affine, piecewise affine, elastic, 90-degree rotation, flipping,
hue and saturation shifting, and gamma contrast transformations were
used for data augmentation. This simulates variability in tissue staining
and morphology for improved generalisation. Stain normalisation
approaches have not shown improvement in performance*. This
result confirmed the CNN pipeline to effectively tackle colour varia-
bility across the external cohorts. Further, CNN predictions were post-
processed by first applying test-time augmentation to improve the
model’s robustness, second, removing border class predictions, third,
filling prediction holes, fourth, removing too small instance predic-
tions, and fifth, dilating tubular predictions. A border class comprising
border pixels of all structures to enable the separation of touching
instances from the same class, and thus instance-level analysis was
implemented. Border pixels were computed for tubules by dilation
using a ball-shape structuring element of radius three pixels. Full
borders of arteries and glomeruli were not included into the border
class as this would have prevented continuous class transitions, e.g.,
between tubules and glomeruli at their urinary pole. Instead, arteries
and glomeruli were dilated using a radius of seven pixels and only their
class-specific overlap was included into the border class. Conse-
quently, the border class mostly represented the tubular basement
membranes. Using the WCE, a ten times greater weight was assigned to
the border class for improved instance separation. Annotated data

from the internal cohorts (AC_B: 68 WSIs, 3,162 patches; AC_N: 17 WSiIs,
431 patches) was split into training (AC_B: 54 WSls, 2,621 patches; AC_N:
10 WSIs, 200 patches), internal validation (AC_B: 2 WSIs, 78 patches;
AC_N: 2 WSIs, 30 patches) and test set (AC_B: 12 WSIs, 463 patches;
AC_N: 5 WSiIs, 201 patches) on case level. External validation was per-
formed on the held-out data from the KPMP and HuBMAP cohorts on
240 and 198 patches from five WSIs, respectively (Supp. Table 16).
Here, external validation refers to CNN testing on external cohorts not
seen during training for assessment of generalisation, while internal
validation measures CNN performance on a dedicated training data
split during training to improve its generalisation.

Performance evaluation

Regular Dice-similarity-coefficients (DSCs) were used to measure per-
formance of the tissue segmentation CNN on WSI-level. Performance
of the structure segmentation CNN was assessed by instance Dice-
similarity-coefficients (iDSCs) to measure accuracy specifically on
instance-level. For each prediction instance, a Dice score measuring
the spatial overlap with its maximally overlapping ground-truth
instance was computed, which was repeated vice versa for each
ground truth instance. Thus, the iDSC quantifies the mean predicted
area coverage per instance, and ranges like the DSC from O (no single
ground-truth overlap) to 1 (perfect predictions). F1-Scores and positive
predictive values (PPVs) were computed by counting the true positives
(correctly segmented instances defined as an iDSC above the threshold
of 0.5), false positives and false negatives.

Feature extraction
FLASH enabled us to extract 7,382,198 instances of segmented histo-
logical structures (6,742,314 tubules, 89,160 glomeruli and 550,724
arteries) from the five cohorts. Each segmented instance represents a
geometrical object, enabling the quantitative assessment of 35 hand-
crafted morphometric histological. We focused only on easily
explainable features to facilitate interpretability. Also, due to very large
divergence in staining in the multi-centre cohorts, the extraction of
colour or texture-based features was not feasible. We computed the
area [um?] and diameter [um] of the cross-section of tubules, glo-
meruli, glomerular tufts, arteries and their corresponding lumina. To
encompass simultaneous changes in glomerular and glomerular tuft
area the Tuft-Area-Fraction was calculated by dividing glomerular tuft
area through glomerular area per instance as well as the Bowman’s area
by subtracting the glomerular tuft area from the glomerular area. The
area and diameter of whole arteries, the lumen and the wall consisting
of intima and media were calculated (adventitia was not segmented
and excluded). Small arterioles (full diameter <50 um) were excluded
due to lower segmentation accuracy to enable accurate morphometry
analysis. Distances [um] between glomeruli and their respective near-
est glomerular neighbour, as well as between tubules and their
respective nearest structure were also calculated. The circularity,
eccentricity, elongation and solidity which were calculated based on
common shape extraction techniques*, each taking values between O
and 1 were calculated for full glomeruli and glomerular tufts. Instance
counts and area percentages were extracted on WSI-level. Features
were calculated in all five cohorts on instance-level but were sum-
marised on patient-level as well. All instances inherited the diagnostic
or clinical label of their parent case, facilitating the comparison of
diseased cases to normal cases as well as the analysis of discrepancies
between different kidney diseases.

Additional information regarding the computation of morpho-
metrical features is given in Supp. Table 3.

Cox proportional hazards models

Time from kidney biopsy to the composite endpoint up to 15 years
(end-stage kidney disease (ESKD) and/or halving of initial eGFR
assessed at time of biopsy) was analysed in the VALIGA cohort by
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implementing Cox proportional hazards models. 4 cases had to be
excluded due to missing data (initial eGFR). eGFR and age were
grouped by steps of 10. The proportional hazard assumption was
assessed graphically using Schoenfeld residuals. Five features (tubular
distance, tubular diameter, tuft area, tuft circularity and tuft eccen-
tricity) which were descriptive of disease morphology or kidney
function based on eGFR in our internal biopsy cohort were selected as
digital biomarkers. Optimal cut-offs for all five features were deter-
mined by computing the maximally selected log-rank statistic*®. No
model based on the continuous distribution of features was computed
because of the large variation in effect sizes due to different scaling
(e.g., 0-10r 0-60,000 um?). Normalisation of feature distributions was
not performed due to the lacking explainability of the actual changes
in histopathology. The five features were then used to fit initial unad-
justed models. Next, each model was adjusted for age, sex, initial eGFR
and MEST-C score (each component of the score respectively). Addi-
tionally, a Digital Biomarkers model was constructed, using all five
features as predictors which was adjusted for age, sex and eGFR at the
time of biopsy. In addition, a MEST-C model with the M, E, S, T and C
components of the score as covariates was constructed and adjusted
for age, sex and initial eGFR. A third, hybrid model combined both
previously described cox proportional hazards models. Models were
compared to each other based on C-Statistic, Akaike information cri-
terion (AIC) and Bayesian information criterion (BIC).

Single structure trajectory analysis

We used Seurat (4.1.0 version)*’ to perform a single structure trajec-
tory analysis. We considered structures as samples and structure fea-
tures as columns. This analysis was done independently for tubules
and glomeruli due to distinct features. Next, we ran NormalizeData
with the parameter normalisation.method =‘RC’ (Relative counts) to
normalise each structure. We used the Corral package (version 1.4.0)*°
to perform dimension reduction using Pearson Residuals based cor-
respondence analysis. Next, we produced a diffusion map using the
destiny package (3.8.1)"" with default parameters. We performed Lou-
vain clustering with the first two components of diffusion embeddings
by calling FindNeighbors and FindClusters from the Seurat package.
Finally, we found trajectories using ArchR (version 1.0.1)*%. Specifically,
we first defined a backbone by selecting a list of clusters from healthy
to disease and using their function addTrajectory to detect a pseudo-
time scale from O to 100. For line plots, we distributed all patients to 20
buckets from 0 to 100 and calculated the fractions in each bucket of
each condition. We next fitted smoothed lines using method loess
(locally estimated scatterplot smoothing). Additionally, we explored
concepts of the Wasserstein distance to obtain a patient specific
pseudotime. In short, we encoded clusterings of patient’s glomeruli
and tubules as probability distributions, which are compared with the
Wasserstein distance (similar as in ref. **). We combined the distance
matrices for computing a patient specific trajectory similar to instance
level data.

Statistics and reproducibility

All statistical calculations were performed within the computing
environment R (v4.0.3). We performed two-sample Anderson-Darling
tests® for comparison between different feature distributions. We
further calculated 5000-times bootstrapped 95%-confidence intervals
of difference in feature medians for group comparisons. Comparing
groups with smaller sample sizes, e.g., specimen-level comparison of
histopathology, we performed a Kruskal-Wallis test and two-sided
pairwise Wilcoxon rank-sum tests. For multiple comparisons, e.g.,
across diseases, we corrected for multiple testing by Bonferroni-type
adjustment of p-values in each group individually. Probabilities of
progression-free survival for VALIGA biopsies were assessed by cal-
culating Cox proportional hazards models with hazard ratios (HR) and
95% confidence intervals (see above). Categorical variables were

interpreted as absolute (n) and relative (%) frequencies while
descriptive continuous features were described as mean/median +
IQR. Values of p < 0.05 were considered significant.

CNN-based segmentation and feature extraction were repro-
ducible, and multiple different runs of the single structure trajectory
analysis pipeline produced similar embedding, clustering and trajec-
tory results.

Data analysis with R
Quantitative feature analyses for each WSI were imported as data-
frames into the R Environment and data transformation was per-
formed using the following publicly available packages: tidyverse v1.3.1
(cran.r-project.org/web/packages/tidyverse), dplyr v1.0.8 (cran.r-pro-
ject.org/web/packages/dplyr), gdata v2.18.0 (cran.r-project.org/web/
packages/gdata), and broom v0.7.12 (cran.r-project.org/web/packa-
ges/broom). Statistics were calculated using the kSamples v1.2-9
(cran.r-project.org/web/packages/kSamples), PMCMRplus v1.9.3
(cran.rstudio.com/web/packages/PMCMRplus), simpleboot v1.1-7
(https://cran.r-project.org/web/packages/simpleboot) and boot v1.3-
28 (https://cran.r-project.org/web/packages/boot) packages. Survival
analysis was performed with the survival v3.3-0 (cran.rstudio.com/
web/packages/survival), survminer v0.4.9 (cran.r-project.org/web/
packages/survminer) and maxstat v0.7-25 (cran.rstudio.com/web/
packages/maxstat) packages.

Plots were created by using the packages: ggplot2 v3.3.3 (cran.r-
project.org/web/packages/ggplot2) and cowplot vl.1.1 (cran.r-pro-
ject.org/web/packages/cowplot).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The pathomics data, associated clinical data and many segmentation
images (>2000 paired image patches (PAS plus segmentation)) gen-
erated in this study have been deposited in our github repository:
https://git-ce.rwth-aachen.de/labooratory-ai/flash. The raw whole slide
image data are available under restricted access for privacy protection
reasons, access can be obtained by directly contacting Peter Boor,
Institute of Pathology, RWTH Aachen University Clinic, Aachen, Ger-
many, pboor@ukaachen.de (for the ACB and AC_N datasets) or
Rosanna Coppo, Fondazione Ricerca Molinette, Torino, Italy, rosan-
na.coppo@unito.it (for the VALIGA dataset). In general, the requests
will be evaluated within 4 weeks based on institutional and trial poli-
cies. Data can only be shared for non-commercial research purposes
and requires a data transfer agreement.

The aggregated data and raw data used to create figure panels
generated in this study are provided in the Supplementary Informa-
tion/Source Data files. The public external image and clinical data used
in this study are available in the KPMP (atlas.kpmp.org/repository) and
HubMAP (portal.hubmapconsortium.org) databases. Source data are
provided with this paper.

Code availability
The source code for FLASH and instructions on how to use it are are
freely available at: git-ce.rwth-aachen.de/labooratory-ai/flash.
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