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Diagnostic performance of artificial
intelligence for histologic melanoma
recognition compared to 18
international expert pathologists
To the Editor: Currently, pathologic melanoma
classification is based on the—inevitably some-
what subjective—integration of several histologic
features.1 Thus, discordance between pathologists
classifying the same lesions can be substantial,
and objective assistance tools are needed. The
classification of dermoscopic skin lesion images
based on convolutional neural networks (CNNs)
works well.2 On a histologic level, our pilot
studies provided a proof regarding the principle
of CNN-based melanoma recognition using tiny
sections of hematoxylin-eosinestained digitized
slides.3,4

We compared the ability of CNNs with that of 18
international expert pathologists from eight different
countries to discriminate melanomas and nevi in a
less artificial setting using hematoxylin-eosine
stained whole-slide images. Ensembles of 3
individual CNNs were trained and tested using single
hematoxylin-eosinestained whole-slide images of
50 individual melanomas and 50 nevi labeled by a
panel of 2 experienced dermatopathologists
according to the standard practice to provide the
‘‘ground truth’’ (Supplementary Figs 1 and 2
available via Mendeley at https://data.mendeley.
com/datasets/j87c9jshxy/1, Supplementary Table I
available via Mendeley at https://data.mendeley.
com/datasets/j87c9jshxy/1). The same 100 digitized
slides were diagnosed using a web-based survey by
18 international dermatopathologists, each with at
least 5 years of experience.

With respect to the ground truth, the 18 individual
pathologists achieved a mean sensitivity, specificity,
and accuracy of 88.88% (SD ¼ 6.66%), 91.77%
(SD ¼ 3.99%), and 90.33% (SD ¼ 4.52%),
respectively. Ensemble CNNs trained using slides
with or without annotation of the tumor region as a
region of interest performed at par with the experts
(Fig 1) in terms of mean sensitivity, specificity, and
accuracy (unannotated: 88% [SD ¼ 0.0%], 88%
[SD ¼ 1.15%], and 88% [SD ¼ 0.58%], respectively,
and area under the curve [AUC] 0.95; annotated: 94%
[SD ¼ 0.0%], 90% [SD ¼ 2.31%], and 92%
[SD ¼ 1.15%], respectively), with an AUC of 0.97.
Majority of the votes of the expert panel yielded the
best accuracy (98%). A statistical analysis of the
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Fig 1. ROC curves of the ensemble CNNs trained on
unannotated and preannotated WSI. ROC AUC shows the
ratio of true-positive rate to false-positive rate of the
CNN-based classification at all classification thresholds.
The ROC curve for CNN trained on unannotated slides is
shown in orange and the one for CNN trained on anno-
tated slides in green. The dots represent the performance
of 18 expert pathologists. The blue and red dots represent
3 and 2 pathologists, respectively, with the same results.
Unique results of the pathologists are represented as a
black dot. The gray square represents the average
performance of all the pathologists, with the error bars
denoting the standard deviation. The true-positive rate
(sensitivity) is plotted on the y-axis and the false-positive
rate (1-specificity) on the x-axis. AUC, Area under the
curve; CNN, convolutional neural networks; ROC,
receiver-operating characteristic;WSI, whole-slide images.
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performance differences is shown in Supplementary
Table II (available via Mendeley at https://data.
mendeley.com/datasets/j87c9jshxy/1).

Only half (47%) of the diagnoses were
unanimous. Overall, the discordance was 13.45%.
Nine lesions were divergently classified by a third or
more pathologists. Two were classified divergently
based on majority (Fig 2, Supplementary Table I), of
which 1 was originally classified as severely
dysplastic acral nevus and the other as incompletely
excised desmoplastic acral Spitz nevus with the
melanocytic acral nevus with intraepidermal ascents
of cells phenomenon, both of which the ensemble
CNNs classified as melanoma.

The diagnoses by ensemble CNNs trained using
unannotated and annotated whole-slide images
differed from the ground truth in 12 and 8,
respectively, often pathologically unequivocal,
cases. An ensemble CNN, trained and tested using
an independent set of slides with the same
methodology to confirm its reproducibility, achieved
a mean sensitivity, specificity, and accuracy of 98%
(SD ¼ 0), 88% (SD ¼ 0), and 93% (SD ¼ 0),
respectively, with an AUC of 0.97.

Thus, a high-accuracy classifier can be generated
for a specific test environment with few images.
Although such classifiers may not yield similar
performances on slides from another institution,5

the practical application of environment-specific
assistance tools may be more realistic than an
attempt to achieve broad generalization across all
environments. Such systems might be the most
beneficial for less experienced pathologists. For
experienced pathologists, the systems could provide
a triage.5 Further studies are required to investigate
CNN-based classifiers in a real-life setting.

We thank Dr Kenneth S. Resnick for his participation in
the survey.
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Fig 2. Distribution of the number of divergent classifica-
tions by the expert pathologists. To illustrate how many
lesions were classified divergently and the frequency of
this occurrence, the number of lesions was plotted on the
y-axis and the number of divergent classifications per
lesion by expert pathologists on the x-axis. Melanomas are
shown in blue and nevi in orange.
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