h1

h2

h3

h4

h5
h6


001     953767
005     20231010104730.0
024 7 _ |2 ISSN
|a 0960-3174
024 7 _ |2 ISSN
|a 1573-1375
024 7 _ |2 SCOPUS
|a SCOPUS:2-s2.0-85147513320
024 7 _ |2 WOS
|a WOS:000926499800005
024 7 _ |2 datacite_doi
|a 10.18154/RWTH-2023-02687
024 7 _ |2 doi
|a 10.1007/s11222-023-10212-8
037 _ _ |a RWTH-2023-02687
041 _ _ |a English
082 _ _ |a 620
100 1 _ |0 P:(DE-82)854190
|a Rügamer, David
|b 0
|e Corresponding author
|u rwth
245 _ _ |a Probabilistic time series forecasts with autoregressive transformation models
|h online, print
260 _ _ |a Dordrecht [u.a.]
|b Springer Science + Business Media B.V
|c 2023
300 _ _ |a [1]-11
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
588 _ _ |a Dataset connected to Web of Science, Web of Science, , CrossRef, Journals: publications.rwth-aachen.de
591 _ _ |a Germany
591 _ _ |a Switzerland
700 1 _ |a Baumann, Philipp F. M.
|b 1
700 1 _ |a Kneib, Thomas
|b 2
700 1 _ |a Hothorn, Torsten
|b 3
773 _ _ |0 PERI:(DE-600)2017741-0
|a 10.1007/s11222-023-10212-8
|n 2
|p 37
|t Statistics and computing
|v 33
|x 0960-3174
|y 2023
856 4 _ |u https://publications.rwth-aachen.de/record/953767/files/953767.pdf
|y OpenAccess
909 C O |o oai:publications.rwth-aachen.de:953767
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)854190
|a RWTH Aachen
|b 0
|k RWTH
914 1 _ |y 2023
915 1 _ |0 StatID:(DE-HGF)0031
|2 StatID
|a Peer reviewed article
|x 0
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b STAT COMPUT : 2021
|d 2022-11-16
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2022-11-16
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2023-09-02
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2022-11-16
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2023-09-02
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2022-11-16
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2023-09-02
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2022-11-16
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2023-09-02
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2022-11-16
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2023-09-02
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2022-11-16
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2023-09-02
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
|d 2022-11-16
|w ger
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
|d 2023-09-02
|w ger
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)3002
|2 StatID
|a DEAL Springer
|d 2022-11-16
|w ger
915 _ _ |0 StatID:(DE-HGF)3002
|2 StatID
|a DEAL Springer
|d 2023-09-02
|w ger
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
|d 2022-11-16
920 1 _ |0 I:(DE-82)116400_20191118
|k 116400
|l Institut für Statistik und Wirtschaftsmathematik
|x 0
920 1 _ |0 I:(DE-82)110000_20140620
|k 110000
|l Fachgruppe Mathematik
|x 1
980 1 _ |a FullTexts
980 _ _ |a I:(DE-82)110000_20140620
980 _ _ |a I:(DE-82)116400_20191118
980 _ _ |a UNRESTRICTED
980 _ _ |a VDB
980 _ _ |a journal


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21