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Hyperelastic adhesive joints are used successfully in many areas of industry. Besides all their inherent advantages, materials
used for the construction of such bonds show a vast variety of non-linear effects in their response to mechanical loading, which
poses a challenge in modelling and predicting their material response. Recent experiments have shown a strong temporal
response when it comes to damage and failure within these materials. This contribution aims to propose a simple but yet
flexible formulation to predict time-dependent damage effects within polymeric adhesives. Besides the main aspects of the
thermodynamically consistent development, we also show numerical examples to demonstrate the capabilities of the model.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Introduction

Adhesives are widely used in the industrial context. Especially in the building industry, their use in the construction of glass
façade systems is becoming increasingly important [1]. To ensure safe application, the material behaviour under real load
conditions must be predicted with high accuracy. Computational models have proven their worth for this purpose. In addition
to the highly non-linear elastic material behaviour, such models must also be able to represent a wide range of inelastic,
temperature-dependent and rate-dependent effects. Just recently [2] and [3] found that such adhesives do show a pronounced
time-dependent behaviour when it comes to damage and failure. These effects can not be described by a classical rate-
independent viscoelastic damage model. Modelling time-dependent inelastic behaviour of solids is nothing new. In the field
of damage modelling, however, approaches are often used which assume small deformations. The so called creep damage
model developed by [4] and later modified by [5] lays the ground for a variety of models used e.g. in the modelling of damage
in rock or asphalt (see e.g. [6], [7] or [8]). Further approaches using viscous regularization as described in the work of [9] are
e.g. [10], [11] or [12]. The assumption of small deformations can no longer be assumed to be true for hyperelastic adhesives.
Within this contribution we therefore follow an approach similar to viscous regularization but extend it to describe material
responses at finite strains. The model proposed is simple yet powerful for modelling time-dependent isotropic damage. To
study the effects of this modelling approach, we solely focus on this single type of temporal inelastic effect. For this, we
derive a thermodynamically consistent material formulation based on the gradient extended micromorphic framework of [13]
and extend it with a Perzyna-type ansatz [9,14] to capture the temporal effects. We also show the algorithmic implementation
strategy as well as selected numerical examples to evaluate the capabilities of the given model.

2 Continuum mechanical modelling

As frequently done within the modelling of hyperelastic polymeric materials, we start with the well-established multiplicative
split of the deformation gradient F into volumetric and isochoric parts (see e.g. [15, 16]), i.e.

F = detF
1
3 IF∗ = J

1
3F∗. (1)

With this at hand, the isochoric right Cauchy-Green tensor can be defined as C∗ = J− 2
3FTF. To describe the damage

behaviour within hyperelastic polymeric adhesives an isotropic evolution of damage within the material is assumed. Therefore,
a scalar damage variable D ∈ [0, 1] can be defined. The state of this variable determines the amount of accumulated damage.
In this context, D = 0 describes the undamaged, virgin material whereas D = 1 means total failure of the material. Since
the focus of this work is the investigation of time-dependent damage phenomena within polymeric adhesives, we assume the
underlying basic material response to be hyperelastic. It is obvious that this is a strong assumption since polymers tend to show
a pronounced time-dependent material response even within the purely elastic loading regime. For the sake of investigating the
effects of time-dependent damage, it seems beneficial to isolate this modelling approach from further temporal dependencies
and focus merely on the effects shown by the damage model itself. Therefore, the Helmholtz free energy can be defined by
means of a damage degradation function fd(D) = (1−D)2 such that

ψ := fd(D)ψe(J,C
∗) + ψd(ξd) + ψd̄(D, D̄,∇D̄). (2)
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Here, ψe is the elastically stored strain energy which is defined in terms of the symmetric right Cauchy-Green tensor C = FTF
with F being the deformation gradient. To describe damage hardening, we furthermore introduce the hardening variable ξd
as well as the associated hardening energy ψd. It is well known that classical damage models tend to show pathological mesh
dependencies accompanied by strong localization effects [17]. To avoid such effects, we make use of a gradient-extended
ansatz as proposed by [13]. For this, the global damage variable D̄ is introduced together with its associated free energy ψd̄.

2.1 Thermodynamic considerations

In order to ensure physical correctness of the developed material model, the second law of thermodynamics must be fulfilled.
Taking the given micromorphic extension into account it can be written in terms of the isothermal Clausius-Duhem inequality
as

S :
1

2
Ċ− ψ̇ + a ˙̄D + b · ∇ ˙̄D︸ ︷︷ ︸

micromorphic ext.

≥ 0. (3)

Here, S denotes the second Piola-Kirchhoff stress tensor whereas a and b describe the generalized stresses related to the non-
local variable D̄ and its gradient, respectively. For a more detailed elaboration the interested reader is kindly referred to [18].
Inserting Equation (2) into Equation (3) and applying the standard Coleman-Noll procedure [19] yields the thermodynamically
consistent definition of the second Piola-Kirchhoff stress tensor

S = 2fd
∂ψe
∂C

(4)

together with the generalized stresses a = ∂ψd̄

∂D̄
and b = ∂ψd̄

∂∇D̄ . Defining the thermodynamically conjugated driving forces
for the damage variable D as well as the damage hardening variable ξd as Y = −(∂fd∂D ψe +

∂ψd̄

∂D ) and qd = ∂ψd

∂ξd
leads to the

reduced Clausius-Duhem inequality given by

Y Ḋ − qdξ̇d ≥ 0. (5)

In order to ensure thermodynamical consistency, evolution equations for D and ξd must be found that fulfil this reduced
inequality.

2.2 Evolution equations

In order to describe the onset of damage evolution within the material, we follow the standard approach of defining a scalar
damage function as

Φd = Y − (Y0 + qd), (6)

which includes the damage threshold parameter Y0. Next, we introduce the so-called damage multiplier λ̇d and postulate an
associative evolution law for both, the damage variable D as well as the hardening variable ξd, i.e.

Ḋ = λ̇d
∂Φd
∂Y

= λ̇d and ξ̇d = −λ̇d
∂Φd
∂qd

= λ̇d. (7)

This particular choice of the evolution equations has the effect that the evolution of D and ξd are equivalent. It is important to
notice that this is a rather simple assumption and by no means the only possible definition of associative evolution laws for D
or ξd. For classical rate-independent isotropic damage, the definition of Equations (6) and (7) is sufficient and could be solved
using Karush-Kuhn-Tucker conditions.

To introduce a temporal dependency into the damage model at hand, we adapt an ansatz made by e.g. [9,14] or [20] where
we explicitly define an extra evolution equation for the damage multiplier λ̇d such that

λ̇d =

{
ηd Φ

1
ϵd

d if Φd ≥ 0

0 if Φd < 0
(8)

Here, ηd describes a damage velocity and ϵd is the damage rate sensitivity.

2.3 Particular choice of the Helmhotz free energies

Depending on the material at hand, various hyperelastic ground models are applicable. For hyperelastic polymers which are
showing pronounced strain-stiffening effects models such as [21] or [22] seem to be a good choice. Since the focus of this
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study is merely the time-dependent damage behaviour and for the sake of simplicity, we make use of a classical Neo-Hookean
type energy to describe the underlying elastic material response, i.e.

ψe(J,C
∗) :=

µ

2
(trC∗ − 3) +

κ

4

(
J2 − 1− 2 lnJ

)
. (9)

To describe the energy density associated with damage hardening, a combination of linear and nonlinear, Voce-type hard-
ening [23] is used, i.e.

ψd(ξd) :=
1

2
k ξ2d

︸ ︷︷ ︸
lin. hardening

+ r

(
ξd +

1

s
[exp(−sξd)− 1]

)

︸ ︷︷ ︸
Voce-type hardening

. (10)

Here, r, s and k are material parameters controlling the damage hardening behaviour. Regarding the energy density of the
mircormorphic gradient extension, we define ψd̄ in accordance with [18] as

ψd̄(D, D̄,∇D̄) :=
H

2

(
D − D̄

)2
+
A

2
∇D̄ · ∇D̄, (11)

where the parameters H and A describe the coupling between local and non-local damage fields as well as the influence of
the gradient of D̄.

These choices of the individual parts of the Helmholtz free energy yield for the thermodynamically conjugated driving
forces the following expressions:

Y = −
(
2(1−D)ψe +H(D − D̄)

)
and qd = k ξd + r − exp(−sξd) (12)

3 Algorithmic implementation

The material formulation described above has been implemented into the multipurpose finite element program FEAP. For the
solution of evolution Equation (7) together with Equation (8) we apply an implicit Euler integration scheme with time step
size ∆t = tn+1 − tn, such that

r = Dn+1 −Dn − ηd Φ
1
ϵd

d ∆t
!
= 0. (13)

This non-linear residual equation can be solved using standard Newton-Raphson iteration, for which the local tangent operator
∂r
∂D must be computed. Within this contribution, we used the automatic differentiation framework AceGen (see [24, 25]) to
obtain this derivative. With this at hand the current value of the local damage variable D can be iteratively determined for the
kth iteration step via Dk+1 = Dk − ∂r

∂D

−1
rk.

The local material response is implicitly included within the global material tangent operator of the finite element simula-
tion. We therefore need to derive this tangent in a consistent manner in order to achieve quadratic convergence of the global
iteration scheme. Since the second Piola-Kirchhoff stress tensor is a function of the right Cauchy-Green tensor as well as the
internal variables, the tangent operator can be expressed as

C = 2

(
∂S

∂C

∣∣∣∣
D

+
∂S

∂D

∣∣∣∣
C

:
∂D

∂C

)
. (14)

For the given choices of the Helmholtz free energies from the last section, the partial derivative of the second Piola-Kirchhoff
stress tensor with respect to the right Cauchy-Green tensor can be computed easily using AceGen. For the partial derivative of
the local damage variable D with respect to the right Cauchy-Green tensor C we make use of the relation

∆D =
∂D

∂C
∆C = − ∂r

∂D

−1 ∂r

∂C
∆C, (15)

where we use the fully converged residual and jacobian from the local solution process.
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4 of 6 Section 6: Material modelling in solid mechanics

4 Numerical examples

In the following, we demonstrate the behaviour of the model described above showing some numerical studies conducted at
integration point level. For this, a uniaxial loading state is applied whilst the damage associated material parameters are varied.
For the elastic parameters we choose the shear modulus to be µ = 6.0 MPa whilst the bulk modulus is set to κ = 10000µ
which enforces nearly incompressible material behaviour. In order to avoid locking effects, we adapted a reduced integration
finite element formulation with adaptive hourglass stabilization as described in [26].

4.1 Linear displacement simulation

The first example given in Figure 1 shows the results from a uniaxially loaded single element simulation over time. Here, a
displacement u(t) is applied at a constant rate du

dt . Figures 1a and 1b clearly show the pronounced time dependency of the
damage response with respect to time. For small values of the relaxation velocity ηd the model shows nearly no damage at
all resulting in a response similar to classical Neo-Hookean elasticity. In case of high values of ηd we observe results similar
to what is expected from a rate-independent model. Values of ηd in between these two edge case are able to interpolate the
time-dependency nicely.
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(a) Evolution of damage variable D.
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(b) Evolution of sec. Piola-Kirchhoff stress S11 in loading direction.

Fig. 1: Results of linear displacement applied uniaxially to a single element. Showing the influence of the damage relaxation velocity ηd
with reference ηd,0 = 10−2. Reaction force normalized wrt. Fmax = 20.25 N.

*

4.2 Relaxation simulation
The next example considers a classical relaxation simulation where a constant displacement u(t) is applied at time t = 1s and
held constant for the remainder of the simulation. Figure 2 shows the influence of both, the relaxation velocity ηd as well as
the damage threshold Y0. As already discussed in the previous example, the relaxation velocity as shown in Figure 2a is able
to produces smooth interpolations between the pure elastic response for small values of ηd and the nearly rate-independent
damage response for large values. Figure 2b shows the influence of Y0 on the damage progression. Here it is obvious that
smaller values lead to a more pronounced damage behaviour whereas larger values result in a more subtle damage progression
and consequently in a higher residual reaction force. This behaviour is as expected, since the damage related driving force Y
decreases with increasing damage progression and consequently falls below Y0 faster for

4.3 Creep simulation
In the last example, we take a closer look at a classical creep simulation setup. For this, a constant force Fx is applied uniaxially
at time t = 1s and held constant over the rest of the simulation. Figure 3 shows the influence of the damage relaxation time
ηd as well as of the damage threshold Y0. Both evaluations shown in Figures 3a and 3b show the expected damage behaviour.
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(a) Influence of damage relaxation velocity ηd.
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(b) Influence of damage threshold Y0.

Fig. 2: Results of relaxation experiment applied uniaxially to a single element. Showing the influence of material parameters ηd and Y0

with reference ηd,0 = 10−3. Reaction force normalized wrt. Fmax = 20.25 N.
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(a) Influence of damage relaxation velocity ηd.
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(b) Influence of damage threshold Y0.

Fig. 3: Results of creep experiment applied uniaxially to a single element. Showing the influence of material parameters ηd and Y0 with
reference ηd,0 = 10−3. Displacement normalized wrt. u0 = 0.125 mm.
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6 of 6 Section 6: Material modelling in solid mechanics

For small relaxation velocities ηd, the quasi-elastic response is achieved, whereas for large ηd an exponential growth in the
displacement can be measured. This effect is even more pronounced when looking at the influence of the damage threshold
Y0. Since this measure describes the amount of energy that must be present in order to trigger damage effects, lower values of
Y0 lead to a faster and more pronounced damage progression. a higher threshold.

5 Conclusion and outlook
In this work, we have presented a simple yet felxible approach to modelling rate-dependent isotropic damage at finite defor-
mation. To account for the temporal dependence of the material, we used a Perzyna-type approach to describe the evolution
equations of damage. With this at hand, we were able to briefly demonstrate the reasonability of the material response for
three different use-cases. Besides uniaxial linear deformation, also relaxation and creep simulations were shown. From a qual-
itative point of view, these studies gave reasonable results. Nevertheless, the model must still be validated using experimental
data. Unfortunately, time-dependent damage is usually not observed as an isolated effect in real world materials but rather
coupled with other inelastic effects, such as viscoelasticity in polymeric materials. Therefore, an extension of the given model
to capture also viscoelasticity must be done before proceeding with the experimental validation of the model. Since polymers
are known for their strongly temperature-dependent material behaviour, an extension of the model into a thermomechanically
coupled formulation seems reasonable.
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[20] D. Perić, International Journal for Numerical Methods in Engineering 36, 1365-1393 (1993)
[21] E. M. Arruda, M. C. Boyce, Journal of the Mechanics and Physics of Solids 41, 389-412 (1993)
[22] R. W. Ogden, Proceeding of the Royal Society London A 326, 565-584 (1972)
[23] E. Voce, Journal of the Institute of Metals 74, 537-562 (1948)
[24] J. Korelc, Engineering with Computers 18, 312-327 (2002)
[25] J. Korelc, Computational Mechanics 44, 631 - 649 (2009)
[26] O. Barfusz, T. Brepols et al., Computer Methods in Applied Mechanics and Engineering 373, 113440 (2021)

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com

 16177061, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pam

m
.202200076 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [15/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


