h1

h2

h3

h4

h5
h6


001     958488
005     20231214155035.0
024 7 _ |2 ISSN
|a 2045-2322
024 7 _ |2 SCOPUS
|a SCOPUS:2-s2.0-85152380157
024 7 _ |2 WOS
|a WOS:000984454500080
024 7 _ |2 datacite_doi
|a 10.18154/RWTH-2023-05304
024 7 _ |2 doi
|a 10.1038/s41598-023-33303-y
037 _ _ |a RWTH-2023-05304
041 _ _ |a English
082 _ _ |a 600
100 1 _ |0 P:(DE-82)IDM05457
|a Tayebi Arasteh, Soroosh
|b 0
|u rwth
245 _ _ |a Collaborative training of medical artificial intelligence models with non-uniform labels
|h online
260 _ _ |a [London]
|b Macmillan Publishers Limited, part of Springer Nature
|c 2023
300 _ _ |a 9 Seiten
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
536 _ _ |0 G:(DE-82)X021000-OA
|a OA - Open Access Publikation mit Unterstützung der Universitätsbibliothek der RWTH Aachen University (X021000-OA)
|c X021000-OA
|x 0
536 _ _ |0 G:(DE-82)BMBF-01KX2021
|a Nationales Forschungsnetzwerk der Universitätsmedizin zu Covid-19 (01KX2021)
|c 01KX2021
|x 1
536 _ _ |0 G:(DE-82)BMG-ZMVI1-2520DAT111
|a BMG-ZMVI1-2520DAT111 - Diagnosestellung und Risikostratifizierung von Lebererkrankungen mittels Deep Learning anhand von klinischen Routinedaten (DEEP LIVER) (BMG-ZMVI1-2520DAT111)
|c BMG-ZMVI1-2520DAT111
|x 2
536 _ _ |0 G:(BMBF)01KD2104C
|a Verbund PEARL - Prävention von Darmkrebs im jungen und mittleren Erwachsenenalter - Standort Dresden (01KD2104C)
|c 01KD2104C
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: publications.rwth-aachen.de
591 _ _ |a Germany
591 _ _ |a UK
700 1 _ |a Isfort, Peter
|0 P:(DE-82)198352
|b 1
|u rwth
700 1 _ |a Sähn, Marwin-Jonathan
|0 P:(DE-82)852434
|b 2
|u rwth
700 1 _ |a Müller-Franzes, Gustav
|0 P:(DE-82)795898
|b 3
|u rwth
700 1 _ |a Khader, Firas
|0 P:(DE-82)861161
|b 4
|u rwth
700 1 _ |a Kather, Jakob Nikolas
|0 P:(DE-82)855098
|b 5
|u rwth
700 1 _ |a Kuhl, Christiane
|0 P:(DE-82)012075
|b 6
|u rwth
700 1 _ |a Nebelung, Sven
|0 P:(DE-82)030404
|b 7
|u rwth
700 1 _ |a Truhn, Daniel
|0 P:(DE-82)IDM06179
|b 8
|e Corresponding author
|u rwth
773 _ _ |0 PERI:(DE-600)2615211-3
|a 10.1038/s41598-023-33303-y
|p 6046
|t Scientific reports
|v 13
|x 2045-2322
|y 2023
856 4 _ |u https://publications.rwth-aachen.de/record/958488/files/958488.pdf
|y OpenAccess
876 7 _ |c 1740.68
|d 2023-05-19
|e APC
|j DEAL
909 C O |o oai:publications.rwth-aachen.de:958488
|p OpenAPC
|p VDB
|p dnbdelivery
|p driver
|p openCost
|p open_access
|p openaire
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)IDM05457
|a RWTH Aachen
|b 0
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)198352
|a RWTH Aachen
|b 1
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)852434
|a RWTH Aachen
|b 2
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)795898
|a RWTH Aachen
|b 3
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)861161
|a RWTH Aachen
|b 4
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)855098
|a RWTH Aachen
|b 5
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)012075
|a RWTH Aachen
|b 6
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)030404
|a RWTH Aachen
|b 7
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)006426
|a RWTH Aachen
|b 8
|k RWTH
914 1 _ |y 2023
915 1 _ |0 StatID:(DE-HGF)0031
|2 StatID
|a Peer reviewed article
|x 0
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
|d 2023-08-24
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b DOAJ : Anonymous peer review
|d 2023-04-12T15:11:06Z
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b DOAJ : Blind peer review
|d 2022-08-08T09:38:07Z
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b SCI REP-UK : 2021
|d 2023-03-30
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b SCI REP-UK : 2022
|d 2023-08-24
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2023-03-30
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2023-08-24
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2023-03-30
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2023-08-24
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2023-03-30
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2023-08-24
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2023-03-30
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2023-08-24
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2023-03-30
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2023-08-24
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2023-03-30
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2023-08-24
915 _ _ |0 StatID:(DE-HGF)0320
|2 StatID
|a DBCoverage
|b PubMed Central
|d 2023-08-24
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
|d 2022-08-08T09:38:07Z
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
|d 2023-04-12T15:11:06Z
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
|d 2022-08-08T09:38:07Z
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
|d 2023-04-12T15:11:06Z
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0561
|2 StatID
|a Article Processing Charges
|d 2023-03-30
915 _ _ |0 StatID:(DE-HGF)0561
|2 StatID
|a Article Processing Charges
|d 2023-08-24
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
|d 2023-03-30
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
|d 2023-08-24
915 _ _ |0 StatID:(DE-HGF)0700
|2 StatID
|a Fees
|d 2023-03-30
915 _ _ |0 StatID:(DE-HGF)0700
|2 StatID
|a Fees
|d 2023-08-24
915 _ _ |0 StatID:(DE-HGF)1040
|2 StatID
|a DBCoverage
|b Zoological Record
|d 2023-03-30
915 _ _ |0 StatID:(DE-HGF)1040
|2 StatID
|a DBCoverage
|b Zoological Record
|d 2023-08-24
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
|d 2023-03-30
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
|d 2023-08-24
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-03-30
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-24
915 _ _ |0 StatID:(DE-HGF)1190
|2 StatID
|a DBCoverage
|b Biological Abstracts
|d 2023-03-30
915 _ _ |0 StatID:(DE-HGF)1190
|2 StatID
|a DBCoverage
|b Biological Abstracts
|d 2023-08-24
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
|d 2023-03-30
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
|d 2023-08-24
915 p c |0 PC:(DE-HGF)0000
|2 APC
|a APC keys set
915 p c |0 PC:(DE-HGF)0003
|2 APC
|a DOAJ Journal
920 1 _ |0 I:(DE-82)532010-2_20140620
|k 532010-2
|l Klinik und Lehrstuhl für Diagnostische und Interventionelle Radiologie
|x 0
920 1 _ |0 I:(DE-82)531030-2_20140620
|k 531030-2
|l Klinik und Lehrstuhl für Innere Medizin (mit dem Schwerpunkt Gastroenterologie und Stoffwechselkrankheiten)
|x 1
980 1 _ |a FullTexts
980 _ _ |a APC
980 _ _ |a I:(DE-82)531030-2_20140620
980 _ _ |a I:(DE-82)532010-2_20140620
980 _ _ |a UNRESTRICTED
980 _ _ |a VDB
980 _ _ |a journal


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21