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Abstract

We introduce the notion of a Seshadri stratification on an embedded projective vari-
ety. Such a structure enables us to construct a Newton-Okounkov simplicial complex
and a flat degeneration of the projective variety into a union of toric varieties. We
show that the Seshadri stratification provides a geometric setup for a standard mono-
mial theory. In this framework, Lakshmibai-Seshadri paths for Schubert varieties get
a geometric interpretation as successive vanishing orders of regular functions.

1 Introduction

We fix throughout the article an algebraically closed field K.

The aim of the article is to develop a theory parallel to that of Newton-Okounkov
bodies, built on a web rather than a flag of subvarieties. The other ingredient making
our approach different from that in Newton-Okounkov theory is a finite collection of
functions with a prescribed set-theoretical vanishing behavior, leading to the notion
of a Seshadri stratification. Compared to the Newton-Okounkov theory: instead of a
valuation we have a quasi-valuation, but with values in the positive orthant; instead
of a single monoid we obtain a fan of monoids, but the monoids in this fan are al-
ways finitely generated; instead of a body in an Euclidean space we get a simplicial
complex with a rational structure.

As an example of this comparison, in the case of flag varieties, in the same way in
which the string cones and their associated monoids [5, 53] show up in the application
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of Newton-Okounkov theory [36], our setup leads to a polyhedral geometric version
of the Lakshmibai-Seshadri path model [51].

Before going into the details, we review a few aspects of the various versions of
standard monomial theory, which have been part of the motivating background for
this article.

1.1 Theories of standard monomials

One of the motivations for theories of standard monomials is the computation of the
Hilbert function of a graded finitely generated algebra R over a field K. As their name
suggests, there are two choices to make: what are the generators of the algebra R, and
which monomials in the generators are chosen to be “standard”.

1.1.1 Algebraic setting

To the best of our knowledge, the first work in this direction is by Macaulay [55].
He considered the case R = K[xy, ..., x,]/I where I is a homogeneous ideal. The
important idea of Macaulay is to mix the structure of an order into the algebraic
structure, transforming R to a “simpler” algebra sharing the same Hilbert function
as R.

The theory of Grobner basis, introduced by Buchberger [11], associates a unique
reduced Grobner basis GB(/Z, >) to the ideal I and a fixed monomial order >. Mono-
mials in x, ..., x,, which are not contained in the initial ideal in-. (/), are chosen to
be standard. The standard monomials form a basis of K[x1, ..., x,]/in= (1), which
share the same Hilbert polynomial as R. Determining the Hilbert function of R is
thus reduced to a purely combinatorial problem of counting standard monomials.

The reduced Grobner basis contains further information: each element in GB(Z, >)
has the form

a non-standard monomial + a linear combination of standard monomials.

Not only does it tell which monomials are standard, but also how to rewrite a non-
standard one as a linear combination of standard monomials. Elements in a reduced
Grobner basis are called straightening laws.

1.1.2 Algebro-geometric setting

Hodge [33] studied this problem when R is the homogeneous coordinate ring of a
Grassmann variety or a Schubert subvariety in the Pliicker embedding. The monomi-
als are those in Pliicker coordinates; a monomial is standard if the associated Young
tableau is standard. He proved that the standard monomials form a basis of R, which
allows him to deduce the postulation formula describing the Hilbert function. The
Pliicker relations have been used to write the non-standard monomials as linear com-
binations of standard ones.

The idea of Hodge is extracted in the work of De Concini, Eisenbud and Procesi
[23] (see also [26]), where they coined the name “Hodge algebra” (a.k.a. algebra
with straightening laws). Such an algebra R is defined with the following choices: a
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generating set of R indexed by a partially ordered set (poset), a linear basis consisting
of standard monomials, i.e. those supported on a maximal chain in the poset, and a
rule how to write non-standard monomials into a linear combination of standard ones.
Verifying several geometric properties (Gorenstein property, Cohen-Macaulayness,
etc) of the algebra R can be reduced to combinatorial problems. Later De Concini
and Lakshmibai [20] generalized Hodge algebras to doset algebras.

1.1.3 Geometric setting

Seshadri [65] generalizes the work of Hodge from Grassmann varieties to a partial
flag variety G/P with G a reductive algebraic group and P a minuscule maximal
parabolic subgroup in G. In this work he took a geometric approach to the standard
monomials in order to avoid applying the explicit straightening relations, and set up
the paradigm of deducing geometric properties, such as vanishing of higher cohomol-
ogy, normality and singular locus of Schubert varieties in G/ P from the existence of
a standard monomial theory. Motivated by the work of De Concini and Procesi [21],
in collaboration with Lakshmibai and Musili [44, 45, 47, 48], Seshadri succeeded in
generalizing the results in [65] to Schubert varieties in G/ Q, where Q is a parabolic
subgroup of classical type in G, by introducing the notion of admissible pairs. This
case corresponds to the doset algebras above.

Going beyond classical type, the definition of admissible pairs becomes involved.
Lakshmibai (see [46], or Appendix C of [68] for a reprint) made a conjecture on a
possible index system of a basis of HO(X (), £;) where T € W is an element in the
Weyl group W of G, X (t) € G/Q is the corresponding Schubert variety and £, is an
ample line bundle on G/Q associated to a dominant weight A. Such an index system
consists of a chain of elements in the Bruhat graph of W/Wg below 7, with Wy the
Weyl group of Q, together with a sequence of rational numbers. It was meanwhile
asked to associate an explicit global section to each element in the index system.

1.2 Path models and standard monomial bases

The conjecture of Lakshmibai on the indexing systems is established by the third
author in [51, 52] as a special path model consisting of Lakshmibai-Seshadri (LS)-
paths of shape A. The LS-paths are piece-wise linear paths starting from the origin
in the dual space of a fixed Cartan subalgebra in the Lie algebra of G, and their
endpoints coincide with the weights appearing in V (1), the Weyl module of G of
highest weight A, counted with multiplicities. This gives a type-free positive character
formula of V (1), i.e. without cancellations like in the Weyl character formula.

Later in [54], the third author solved the question about the construction of global
sections. For each LS-paths 7 of shape A, using the Frobenius map of Lusztig in
quantum groups at roots of unity, he constructed a path vector p, € H(G/Q, £5)
such that when 7 runs over all LS-paths of shape A, the path vectors p, form a basis
of the space of global sections. Such constructions are compatible with Schubert
varieties (in the sense of loc.cit).

The first author [13] introduced LS-algebras, which further generalized the above-
mentioned work on Hodge algebras and doset algebras, to establish an algebro-
geometric setting of the constructions in [51, 52, 54]. An LS-algebra can be degener-
ated to a much simpler LS-algebra (called discrete LS-algebra). Together with results
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in [54], this gives a proof of normality and Koszul property of the Schubert varieties
by transforming these properties to combinatorics of the discrete LS-algebra (see also
[14]).

The LS-paths were defined in a combinatorial way, and their geometric interpre-
tation was missing. We quote the following observation/question by Seshadri from
[66]:

“The character formula via paths or standard diagrams is a formula which
involves only the cellular decomposition and its topological properties. It leads
one to suspect that there could be a «cellular Riemann-Roch» which could also
explain the character formula.”

One of the goals of this article is to build up a framework to provide a geometric
interpretation of LS-paths, and at the same time, generalizing them from Schubert
varieties to projective varieties with a Seshadri stratification (see below). An algebraic
approach has been already taken in [16] by establishing a connection between LS-
algebras and valuation theory, generalizing results in [13].

1.3 Newton-Okounkov theory

Newton-Okounkov bodies first appeared in the work of Okounkov [59]. His construc-
tion has been systemized by Kaveh-Khovanskii [37] and Lazarsfeld-Mustata [50] into
the theory of Newton-Okounkov bodies. These discrete geometric objects received
great attention in the past ten years.

To be more precise, the inputs of this machinery are an embedded projective
variety Y, aflag Yo := (Y =Y, D Y,_1 D --- D Yy = {pt}) of normal subvarieties
(we assume the normality only for simplicity), a collection of rational functions
Ur,...,u1 € K(Y) such that the restriction of uy to Y is a uniformizer in Oy, y, ,,
and a total order on Z". For a non-zero rational function f in K(Y), one first looks at
the vanishing order a, of f at Y,_1, then considers the function f, | := fu, " ly, ,
to eliminate the zero or pole, and repeats this procedure for f,_; and the flag starting
from Y,_;. The outcome is a point vy, (f) := (a,, ..., a1) € Z"; taking into account
the total order on Z”, one obtains a valuation vy, : K(Y) \ {0} = Z".

Extending the valuation to the homogeneous coordinate ring K[Y] of Y by sending
a homogeneous function f € K[Y] of degree m to (m, vy,(f)) yields a valuation
vy, : K[Y]\ {0} = Z x Z". The image of vy, is a monoid. One of the most important
questions in Newton-Okounkov theory is to determine when this monoid is finitely
generated. If it happens to be so, Anderson [3] obtains a toric degeneration! of Y to
the toric variety associated to this monoid.

Motivated by seeking for an interpretation of the LS-paths in the above setup as
vanishing order of functions, the second and the third author in [27] studied the case
of Grassmann varieties. Instead of a flag of subvarieties, a web of subvarieties con-
sisting of Schubert varieties is fixed. They constructed in loc.cit. a quasi-valuation
by choosing the minimum of all possible vanishing orders at each step. The graded
algebra associated to the filtration arising from this quasi-valuation coincides with

!n this article, toric varieties are irreducible but not necessarily normal.
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the discrete Hodge algebra in [23] (a.k.a. the Stanley-Reisner algebra of the poset
arising from the web). It was asked in [27, 28] how to generalize this construction to
Schubert varieties in a partial flag variety.

1.4 Seshadri stratification, Newton-Okounkov bodies and standard
monomial theory

In this article we introduce the notion of a Seshadri stratification. In such a framework
we construct a Newton-Okounkov simplicial complex and the associated semi-toric
degeneration: this enables us to prove a formula on the degree of X and to give a new
geometric setup for standard monomial theory.

1.4.1 Semi-toric degeneration from Seshadri stratification

The geometric setting in the entire article is encoded in the concept of a Seshadri
stratification (Definition 2.1) of an embedded projective variety X C P(V),%2 where
V is a finite dimensional vector space. Such a stratification consists of a collection
of subvarieties X, in X which are smooth in codimension one, together with homo-
geneous functions f), on V, both indexed by a finite set A, i.e. p € A. The set A is
naturally endowed with a poset structure from the inclusion of subvarieties, such that
covering relation ¢ < p> means that X ¢ 1sadivisor in X ;. The poset A is assumed to
have a maximal element pyax with X, . = X. These subvarieties and the functions
are compatible in the following sense:

— the vanishing set of the restriction of f), to X is the union of all divisors in X,
which are of form X;
— fp vanishes on X, for p £ r.

Typical examples of this setting are Schubert varieties in a flag variety and ex-
tremal weight functions (Sect. 16.6). More examples, varying from quadrics and el-
liptic curves to Grassmann varieties and group compactifications, will be discussed
in Sect. 16.

The requirements above seem to be restrictive. It is natural to ask for the existence
and the uniqueness of Seshadri stratifications on an embedded projective variety.

Concerning the existence: the definition of a Seshadri stratification demands the
variety to be smooth in codimension one, and this is in fact sufficient:

Proposition 1 (Proposition 2.11) Every embedded projective variety X < P(V),
smooth in codimension one, admits a Seshadri stratification.

The Seshadri stratification is far away from being unique: examples will be dis-
cussed in the article (Example 2.7, Remark 16.4).

2Such a setup is more suitable to Standard Monomial Theory, line bundles or linear systems will be dis-
cussed in a future work.

3 A relation g < pin A is called a covering relation, if there is no r € A satisfying ¢ <r < p.
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One of the purposes of this article is to prove the following theorem, constructing
semi-toric* degenerations of X from a Seshadri stratification on X.

Theorem 1 (Theorem 12.2) Let X CP(V) be a projective variety and X , f,, p € A
defines a Seshadri stratification on X. There exists a flat degeneration of X into a
reduced union of projective toric varieties Xo. Moreover, X is equidimensional, and
its irreducible components are in bijection with maximal chains in A.

Combining with Proposition 1 gives the following

Corollary 1 (Corollary 12.3) Every embedded projective variety, which is smooth in
codimension one, admits a flat degeneration into a reduced union of projective toric
varieties, the number of irreducible components coincides with its degree.

An important problem in the study of toric degenerations is to construct degener-
ations of projective varieties into projective toric varieties. The above theorem does
not go precisely in this direction: our aim is rather to seek for degenerations of a
projective variety which are compatible with a prescribed collection of subvarieties.
Generally speaking, such a degeneration can not be toric, as being pointed out by
Olivier Mathieu already for Schubert varieties (see the introduction of [12]). The
above theorem provides an answer to this problem if the projective variety admits a
Seshadri stratification. In other words, such a degeneration exists if there are regular
functions with prescribed set-theoretic vanishing locus. This condition is in the same
vein as the Riemann-Roch theorem: the geometry gets controlled by the existence of
certain functions.

The proof of the above theorem occupies a large part of the article. The general
idea is similar to the one in [3], as soon as an analogue of a Newton-Okounkov
polytope (not just a body) can be associated to the Seshadri stratification. In fact, we
will construct a Newton-Okounkov simplicial complex from a Seshadri stratification,
and the semi-toric variety X is determined by this simplicial complex together with
a lattice in each simplex.

This article is influenced by the idea of Allen Knutson [41] to use Rees valuations.
Later in the work of Alexeev and Knutson [1], they suggested to apply this idea to
recover the degenerations in [13] for Schubert varieties.

1.4.2 Newton-Okounkov simplicial complex

In a Seshadri stratification, all maximal chains in A have the same length, which is
dim X. We start with a naive idea. Fix a maximal chain €: p, > p,_1 > --- > p| >
po in A, we aim to produce a convex body as in [37, 50] from the flag of subvarieties

X=Xp,2Xpr,12"'2Xp12Xp0

and the functions f),, ..., fp,-

“4Different to the terminology in symplectic geometry, a semi-toric variety is a variety whose irreducible
components are toric varieties [12].
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We switch to the affine picture: let X pi be the affine cone over X, . The problem
is that the restriction of f}, to X, is not necessarily a uniformizer in the local ring
o 2, . As in the first step of the construction of a valuation associated to the

Pk—1""Pk
flag, for a rational function g € K(X), there i is no reason why there exists m € Z
such that the function g f)", when restricted to X pr_1» yields a well-defined and non-

zero rational function. One could think about choosing a uniformizer in O e %
Pg—1°"Pk

however, we will not concentrate on only one maximal chain € but take into account
all of them, there is no control of this uniformizer on the flag associated to other
maximal chains in A.

We adjust the construction of the Newton-Okounkov body by keeping track of the
vanishing multiplicities of the functions f, along a divisor. We consider the Hasse
graph of the poset A and colour an edge arising from the covering relation g < p by
the vanishing order of f), on X, (see Sect. 2.3). These colours are called bonds.

We fix N to be the l.c.m. of all bonds appearing in the coloured Hasse graph.

For a non-zero rational function g, := g € K(X) with vanishing order a, along the
divisor X _,in X=X p,» We define a rational function

where b, is the vanishing order of f, along X pr_;- The restriction of 4 to X Prei»
denoted by g,_1, gives rise to a well-defined non-zero rational function in K()? pr—t)
(Lemma 4.1). This procedure can be henceforth iterated, yielding a sequence of ratio-
nal functions g¢ := (g, &—1, ..., go) With g € K()A(pk) \ {0}. The vanishing order
of gi (resp. fp,) on }A(pk_l will be denoted by ay (resp. by).

Similar to the Newton-Okounkov theory, the vanishing orders will be collected to
define a valuation. In view of the N-th powers appearing in the sequence of rational
functions, we define a map Ve : K[X 1\ {0} - Q¢ in the following way:

a 1 a1 1 ag

r
b_repr+Nb epr l+.“+mb_06po’

g
where e, is the coordinate function in QY corresponding to pi € €. Such a map is
indeed a valuation (Proposition 6.10) having at most one-dimensional leaves (Theo-
rem 6.16). As in the situation of Sect. 1.3, we do not know whether the image of V¢ is
a finitely generated monoid. In general, the finite generation property is not expected
in general as the flag of subvarieties reveals rather the local geometry.

In order to pass from local to global, we define a quasi-valuation (Definition 3.1)
V: K[)A( 1\ {0} = QA by taking the minimum over all maximal chains in A. For this
we choose a total order >’ on A refining the partial order (Equation (17)), extend
lexicographically to Q4, and define

V(g) :=min{V¢(g) | € is a maximal chain in A},

where QY is naturally embedded into Q4.
The first nice property of this quasi-valuation is its positivity: the image of V is
contained in ng (Proposition 8.6). Such a property is guaranteed by the Valuation
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Theorem of Rees (Theorem 3.8), whose spirit is already incorporated as part of the
Seshadri stratification, as well as the valuation V¢ . This positivity encodes in fact the
regularity: for a non-zero regular function g € K[X] and a maximal chain ¢ on which
the minimum of V(g) is attained, the function g in the sequence of rational functions
ge is regular in the normalization of )A(pk forallk=0,1,...,r.

For such a function g € ]K[)A( ], there could be many maximal chains on which the
minimum V(g) is attained. We will prove (Proposition 8.7) that these maximal chains
are precisely those containing the support of V(g), defined as the set of elements in
A on which V(g) takes non-zero (hence positive) value. As a consequence of this
characterization via supports, we are able to decompose the image I" of the quasi-
valuation V into a finite union of (finitely generated) monoids I'¢ (Corollary 9.1)
where € runs over all maximal chains in A and ['e¢ consists of elements in I" sup-
ported on €.

The set I encodes rather the global aspects of X: first, for a given regular function,
it tells how to smooth out its zeros using the functions f, and keeping the regularity
simultaneously; secondly, the quasi-valuation ) has at most one-dimensional leaves
(Lemma 10.2), hence K[)A( ] and I" have the same “size”’; moreover, the monoids I'¢
are finitely generated (Lemma 9.6).

The finite generation of I'¢ allows us to investigate the geometry of I". We will
define a fan algebra K[I'] by gluing different I'¢ in a Stanley-Reisner way (Defini-
tion 9.3). The affine variety Spec(K[I']) associated to the fan algebra is an irredundant
union of affine toric varieties Spec(K[I"¢]) where € runs over all maximal chains in
A, each of dimension dim X (Proposition 9.8).

In order to prove Theorem 1, we need to construct a flat family over Al with
special fibre Proj(K[I']). The quasi-valuation ) induces an algebra filtration on
R := K[X]. The associated graded algebra gry,R is finitely generated and reduced
(Corollary 10.6). Different to the toric case as in [3], some work is needed in prov-
ing that the fan algebra K[I'] and the associated graded algebra gr\,R are indeed
isomorphic as algebras (Theorem 11.1). Once this isomorphism is established, the
machinery of the Rees algebra associated to a filtration can be applied to construct
the flat family in Theorem 1.

As an application to Theorem 1, we show that if the poset A is Cohen-Macaulay
over K and the monoids ['¢ are saturated, then the embedded projective variety is
projectively normal (Theorem 14.1).

Out of the set I" we define the associated Newton-Okounkov simplicial complex
Ay (Definition 13.1), where each monoid I'¢ for a maximal chain € in A contributes
a simplex. Different to the Newton-Okounkov theory [37, 50], where the collection
of rational functions are uniformizers, to each simplex we associate a natural lattice
L% from the quasi-valuation. The degree deg(X) of the embedded projective variety
X — P(V) can be computed as a sum of volumes of simplexes:

Theorem 2 (Theorem 13.6) For each maximal chain €, we provide an r-dimensional
simplex with rational vertices D¢ such that

deg(X) =r!y_vol(De),

where the sum runs over all maximal chains € in A.
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For Schubert varieties, such a formula was obtained by Knutson [40] in the sym-
plectic geometric setting, and the first author [13] in the algebro-geometric setting.

When the monoids I'¢ are saturated, the Hilbert function can be calculated in the
same way as Ehrhart functions of simplexes (Corollary 13.8).

1.4.3 The case of a totally ordered poset

In order to help the reader compare our approach with the usual Netwon-Okounkov
context, we want to shortly discuss the case of a Seshadri stratification with a totally
ordered poset A = {p, > p,—1 > -+ > p1 > po}. The quasi-valuation ) coincides
with the valuation V4 for the unique maximal chain A.

Further, the zero locus of the extremal function f; in X pi 1s the divisor X piop - It

is then clear that fi|; is the by—th power of a uniformizer ux in Oy 4 . Inpar-
Pk P> Pk—1

ticular the first » components of V(g) € Q"*!, for homogeneous g € K[X] \ {0},
are just renormalizations of the components of the usual valuation vy, (g) € Z"
associated to the flag of subvarieties X = (X = X, 2 X, _, 2 --- 2 X)) and
uniformizer uy, k =1, ..., r, in the Newton-Okounkov theory. More precisely: if
vx,(g) = (1, ...,ny) then

ny nNy—1 no
V()Z(_a a"'a_)a
O U SR

where ng is such that 3, deg f; Z—// =degg.

Finally, the Newton-Okounkov simplicial complex of V is just a simplex in this
case.

If such a setup arises from a generic hyperplane stratification (see Sect. 2.4), the
finite generation result in this article is closely related to [4, Proposition 14]. Indeed,
the assumptions in that proposition allow to construct a Seshadri stratification with a
linear poset, which is exactly the proof in loc.cit.

1.4.4 Standard monomial theory

Seshadri stratifications provide geometric setups for standard monomial theories on
R =K[X].

In view of the calculation of Hilbert functions (Proposition 13.8), in order to have
a standard monomial theory, the monoids I'¢ should be assumed to be saturated.
Under this assumption, each element a € I'¢ can be uniquely decomposed into a sum
of indecomposable elements (Definition 15.2) in '¢ (Proposition 15.4).

From the one-dimensional leaf property of the quasi-valuation V, for each inde-
composable element a € I'¢ we choose a regular function x, € R with V(x,) =a.
The condition of being standard will be defined on monomials in these regular func-
tions: a monomial Xa, ' Xa, witha;,...,a; € lgisstandard if fori =1,...,k—1,
minsuppa; > maxsuppg; . This defines a standard monomial theory on R (Propo-
sition 15.6).

One of the tasks in Seshadri’s paradigm is to construct standard monomial bases
compatible with all strata X ,. We call a standard monomial x,, ---x,, standard on
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X, if the maximal element in suppa,,...,suppa; is < p. This compatibility re-
quires extra conditions on the independence to the choice of the total order > in the
definition of V. To eliminate this dependency, we introduce the balanced conditions
on Seshadri stratifications (Definition 15.7); this extra structure allows us to show:

Theorem 3 (Theorem 15.12) In the above situation, the following hold:

1) All standard monomials on X which are standard on X, form a basis ofK[)A(p].
ii) Standard monomials on X which are not standard on X, are precisely those
vanishing on X . They form a linear basis of the defining ideal of X, in X.
iii) For any p,q € A, the scheme-theoretic intersection X , N X is a reduced union
of strata contained in both.

1.4.5 L-S paths as vanishing orders

We explain to what extent the framework in this article answers Seshadri’s question
in Sect. 1.2.

Let G be a simple simply connected algebraic group, B a Borel subgroup, T a
maximal torus and W the Weyl group of G, viewed as a poset with the Bruhat or-
der. The assumption on G is made only to simplify the statements: the results will
be proved in [15] for Schubert varieties in a symmetrizable Kac-Moody group. The
Schubert varieties X (o), together with the extremal weight functions p, for o € W,
form a Seshadri stratification of the flag variety X := G /B, embedded in P(V (1)) for
a regular dominant weight A.

To describe the image of the associated quasi-valuation V, we introduce for each
maximal chain € an explicit lattice L¢3 (Equation (26)) and a fan of (saturated)
monoids Lj:, which is in an easy bijection with the Lakshmibai-Seshadri paths (LS-
paths) of shape A (Lemma 16.10).

Theorem 4 (Theorem 16.14, Sect. 16.6.5, Proposition 16.15)

i) The image of V coincides with L;f.
ii) The degree of X (o) is a sum of products of bonds.
iii) The Seshadri stratification is balanced, hence all statements in Sect. 1.4.4 hold
for Schubert varieties too.
iv) The Schubert varieties X (o) < P(V (L)) are projectively normal.

The difficult part is i), and the key point to the proof is Theorem 16.12: for any
element 7 in L;‘ (looked as an LS-path) we seek for a regular function p, with
V(pr) = . A candidate for p, has already been constructed by the third author in
[54], but to prove the desired vanishing properties requires results and techniques
from representation theory of algebraic groups and quantum groups at roots of unity.
The complete proof is given in a separate article [15].

As a consequence of the theorem, the LS-paths get interpreted as vanishing or-
ders of regular functions. This fits perfectly into Seshadri’s expectation of “cellular
Riemann-Roch”.
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1.5 Outline of the article

In Sect. 2 we introduce the Seshadri stratifications of an embedded projective vari-
ety and the associated Hasse graph coloured by bonds. A few quick examples are
discussed therein as running examples for the article. In Sect. 3 we collect a few
standard facts about valuations and quasi-valuations, and, in particular, we recall the
homogenized quasi-valuation arising from ideal filtration, and the Rees valuation the-
orem investigating their structures. In Sect. 4 and 5 we prepare the procedure used
in Sect. 6 to define a valuation associated to a maximal chain in the poset A. Further
studies regarding these valuations are carried out in Sect. 7. In Sect. 8§ we introduce
the main point of this article: a quasi-valuation, defined as the minimum over the
collection of valuations introduced in Sect. 6.

We introduce in Sect. 9 the notion of fan monoids and fan algebras to describe the
associated graded algebra. In Sect. 10 we discuss some nice properties of this quasi-
valuation. Section 11 is devoted to proving that the associated graded algebra and the
fan algebra are isomorphic as algebras, which is the crucial step in the construction
of the semi-toric degeneration in Sect. 12.

In Sect. 13 we associate to the Seshadri stratification a Newton-Okounkov sim-
plicial complex to investigate the discrete geometry behind the semi-toric variety.
This complex, unlike the usual Newton-Okounkov setting, is not necessarily a con-
vex body. We compensate this difference by endowing the complex with a rational or
integral structure. As an application, we prove a criterion on the projective normal-
ity in Sect. 14. Under certain hypothesis on the Seshadri stratification, we define a
standard monomial theory for the homogeneous coordinate ring in Sect. 15.

Examples such as Schubert varieties in partial flag varieties, compactification of
torus and PSL,(C), quadrics and elliptic curves are discussed in Sect. 16.

The structure of the article is rather linear, the notations used throughout the article
are gathered in a list of notations after Sect. 16.

1.6 Recent development

The Seshadri stratification of a Schubert variety consisting of its Schubert subvarieties
is studied in [15], where results announced in Sect. 16.6 are proved with the help of
quantum groups at roots of unity. A different approach without using quantum groups
is given in [18]. The algebraic counterpart of this article is studied in [16] in the
framework of valuations on LS-algebras, the connection to the current article is made
clear in [17]. More results on normal Seshadri stratification, especially its connection
to Grobner theory, are topics of loc.cit.

2 Seshadri stratifications
2.1 Conventions

Let V be a finite dimensional K-vector space. For a homogeneous polynomial func-
tion f € Sym(V*), we denote its vanishing set H s := {[v] e P(V) | f(v) = 0}. For
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a partially ordered set (poset) (A, <) and p € A, we denote A, :={q € A|q < p}:
(Ap, <) is a poset. A relation ¢ < p in A is called a covering relation, if there is no
r € Asuchthatg <r < p.

In this article, varieties are assumed to be irreducible. Toric varieties are not nec-
essarily normal. When it is necessary to emphasize on the normality, we use the term
“normal toric variety”.

2.2 Definition and examples

Let X € P(V) be an embedded projective variety with graded homogeneous co-
ordinate ring R = K[X]. The degree k component of R will be denoted by R(k):
R=Dy>0RK).

Let {X, | p € A} be a collection of projective subvarieties X, in X indexed by a
finite set A. The set A is naturally endowed with a partial order < by: for p,q € A,
p < g ifandonlyif X, C X,. We assume that there exists a unique maximal element
Pmax € A with X, = X.

For each p € A, we fix a homogeneous function f,, on V of degree larger or equal
to 1.

Definition 2.1 The collection of subvarieties X, and homogeneous functions f, for
p € A is called a Seshadri stratification, if the following conditions are fulfilled:

(S1) the projective varieties X ,, p € A, are all smooth in codimension one; for each
covering relation ¢ < p in A, X, € X, is a codimension one subvariety;

(S2) forany p € A and any g £ p, f, vanishes on X p;

(S83) for p € A, it holds: set theoretically

Hp,nX,= |J X,
g covered by p

The subvarieties X, will be called strata, and the functions f, are called extremal
functions.

The following lemma will be used throughout the article often without mention.

Lemma 2.2

1) The function f), does not identically vanish on X .
ii) All maximal chains in A have the same length, which coincides with dim X. In
particular, the poset A is graded.
iii) The intersection of two strata is a union of strata; in particular for each p,q € A
we have

X,nx,=J X
1=p.q

Proof If X, is just a point, then (S3) implies the intersection Hy, N X, is empty,
which implies i) in this case. If X, is not just a point, then the intersection Hr, N X,
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is not empty, and (S1) and (S3) enforce the intersection to be a union of divisors. In
particular: X, & H s, which implies i), and there must exist elements ¢ in A covered
by p, which implies ii).

From the definition of the partial order on A it follows that Uz <pog X: S XpNXy.
We prove by induction on the length of a maximal chain joining p with a minimal
element in A that the intersection X, N X, is a union of strata. Such a length is
well-defined by the part ii).

When p = pg is a minimal element in A, it follows that either pp < g and X 5, N
Xy = Xp,,0r po £ ¢ and X, N X, = ¥; in both cases the claim is proved.

For an arbitrary p € A, if p < g then X, X, = X, so we can assume that p £ ¢;
hence f)|x, =0 by (S2). In particular f},|x,nx, = 0. But, for x € X, (S3) implies
that f,,(x) = 0 if and only if x € Up’fp X, which gives the inclusion X, N X, C
U p<p(Xpr N Xg). Since the reverse inclusion clearly holds, we have proved

X,nXx,=J&x,nx,.
p'<p

By induction, each intersection X ,» N X, is a union of strata, hence X, N X, is a
union of strata. O

Thanks to the part ii) of the lemma we can define the length of an element in A.

Definition 2.3 Let p € A. The length £(p) of p is the length of a (hence any) maximal
chain joining p with a minimal element in A.

Itis clear that £(p) = dim X .

Remark 2.4 For afixed p € A, by Lemma 2.2 (ii), the poset A, has a unique maximal
element, and all maximal chains have the same length. The collection of varieties X,
q € Ap, and the extremal functions f,, g € A, satisfy the conditions (S1)-(S3), and
hence defines a Seshadri stratification for X, < P(V).

Before going further we look at some examples of Seshadri stratifications. Further
examples will be given in Sect. 16.

Example 2.5 Let {ey, e2, €3, e4} be the standard basis of K*. The wedge products e; A
ej, 1 <i < j <4, form a basis of /\2 K*. Denote the indexing set of the basis by
I 4, it consists of pairs of positive numbers (i, j), strictly increasing, and smaller
or equal to 4. The corresponding elements {x; ; | (i, j) € I2.4} of the dual basis are
called Pliicker coordinates.

The set 1> 4 is endowed with a partial order: (i, j) < (k, £) if and only if i <k and
j<Z{ Let X := Gr2K4 - IP’(/\2 K4) be the Grassmann variety of 2-planes in K*,
emdedded into P( /\2 K*) via the Pliicker embedding. Set theoretically, the Schubert
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varieties X (i, j) € GrK* for (i, j) € I2,4 are defined by
X3, j):={v]e Gr2K4 | xk,¢([v]) =0 for all (k, £) € I 4 such that (k, £) ﬁ @, )}

The collection of subvarieties X (i, j), (i, j) € I»4, together with the functions
S,y :==xi j, ([, J) € I 4, define a Seshadri stratification on GrK*.

Below the Hasse diagram showing the inclusion relations between the Schubert
varieties, here X (i, j) — X (k, £) means X (i, j) is contained in X (k, £) of codimen-
sion one. It depicts meanwhile the Hasse diagram of the partial order on I 4.

X3,4) <— X299 X(1,3) <— X(1,2)

A Seshadri stratification of GroC* is not necessarily given by Schubert varieties,
see Remark 16.4.

Example 2.6 More generally, consider the Grassmann variety X := GryK" C
P( /\d K™) of d-dimensional subspaces in K", embedded into P( /\d K™) via the
Pliicker embedding. The Schubert varieties in GryK” are indexed by the set 17, :=
{i=2C(>1,...,ig) |1 <i1 <--- <ig <n} of strictly increasing sequences of length d.
Fori € I, let X (i) denote the corresponding Schubert variety in GryK”. The partial
order on I , induced by the inclusion of subvarieties coincides with the usual partial
order on Iy ,: i < jifand only if iy < ji,...,ig < ja. Fori € Iy, let fi :==x; be
the Pliicker coordinate. The collection of Schubert varieties X (), i € 14, and the
Pliicker coordinates x;, i € 14, define a Seshadri stratification on X.

Example 2.7 Even on simple varieties such as projective spaces, there may exist sev-
eral non-trivial Seshadri stratifications. One has been given in Example 2.6 as the
special case d = 1. We define now a different stratification.

We consider the projective space X := P(K>). By fixing the standard basis
{e1, ez, e3} of K3, the homogeneous coordinate ring K[X] can be identified with
K[x1, x2, x3].

As indexing set we take the power set A :=B({1, 2, 3}) \ ¥ by omitting the empty
set. As the collection of subvarieties we set for a subset p € A: X, :=P({e; | j €
p)k). The poset structure on A induced by the inclusion of subvarieties coincides
with that arising from inclusion of sets. For p € A, let f, =[], x; be the extremal
function.

We leave it to the reader to verify that the collection of subvarieties X, together
with the monomials f,, p € A, define a Seshadri stratification on X. Below the inclu-

Jep
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sion diagram of the varieties, and, in the same scheme, the functions f, correspond-
ing to the subvariety X .

X123 =P(K?) Si23 = x1x2%3
X12=P({e1,e2)) X13=P({e1,e3)) X3 =P((ez,e3)) Sr2=x1x2 S13 =x1x3 f23=1x2x3
=P({e1)) =P((e2)) =P({e3)) fi=xi fh=x f3=x3

2.3 A Hasse diagram with bonds

For a given Seshadri stratification of a projective variety X consisting of subvarieties
X, and extremal functions f), for p € A, we associate to it in this section an edge-
coloured directed graph.

Let G4 be the Hasse diagram of the poset A. The edges in G4 are covering relations
in A. If p covers g, then the affine cone )A(q of X is a prime divisor in the affine cone
X p of X,,. We denote by b, ; > 1 the vanishing multiplicity of f}, at the prime divisor

X 4 (see Sect. 3.1 for the definition of the vanishing multiplicity), it is called the bond
between p and q. The Hasse diagram with bonds is the diagram with edges coloured

by,
with the corresponding bonds: g =4 p.

Example 2.8 For X = Gr,K* C IF’(/\2 K*) as in Example 2.5, the corresponding
Hasse diagram with bonds is:

2,3

N

3,4 <— 2,9 (1,3) <=— (1,2

N

14
More generally, for the Grassmann variety GryK” in Example 2.6, all the bonds are 1.

As we will see in the following example, the bonds in a Seshadri stratification are
not necessarily one.

Example 2.9 To avoid technical details in small characteristics, we assume in this
example that the characteristic of K is zero or a large prime number.

Let SL3 be the group of 3 x 3 matrices over K having determinant 1. Its Lie
algebra sl3 consists of traceless 3 x 3 matrices over K. Let B € SL3 be the subgroup
consisting of upper triangular matrices.

The group SL3 acts linearly on its Lie algebra sl3 via the adjoint representation:
for g € SL3 and M € sl3, g - M := gMg~'. By choosing M to be a root vector for
the highest root, this action induces an embedding SL3/B — P(sl3).
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Let S3 be the Weyl group of SLj: it is the symmetric group acting on three letters.
By abuse of notation we identify o € S3 with an appropriately chosen representative
o € SL3; it is, up to the sign of the entries, the corresponding permutation matrix.

In the Bruhat decomposition SL3 =| |, s, Bo B of SL3, the class of the closure
of each cell in SL3/B

X(o):=BoB/B CSL3/B
is the Schubert variety associated to o € S3. We fix a basis of sl3 as follows:
va3) = E3.1, vas) = E32, va23) = E2,1, v23) := E12, va2) = E2 3, via= E1 3,
hy:=E11— Exn, hp:=Ez2— E33,

where E; ; stands for the matrix whose only non-zero entry is a 1 at the i-th row
and j-th column and the indexes of v are permutations. For o € Sz, let f; be the
dual basis of v,. Then the Schubert varieties X (o) and the extremal functions f,; for
o € S3 define a Seshadri stratification on the embedded projective variety SL3/B.

The bonds can be determined using the Pieri-Chevalley formula [9]. The Hasse
diagram with bonds for this Seshadri stratification is depicted below:

2
(132) <— (12)

d ><\
VAN

(123) <— (23)
2

For the example of a Seshadri stratification of a Schubert variety in a flag variety,
see Sect. 16.6.

Remark 2.10 Later in the article, we will mainly consider the affine cone X of X , SO
it is helpful to extend the stratification one step further.

For a minimal element py € A, the affine cone X po == Al is an affine line. Let
X p_; denote the origin of V': it is contained in the affine cone of X, for any minimal
element p € A. The bond by, ,_, is defined to be the vanishing multiplicity of f), at

A

Xp_,, which coincides with the degree of f,.

The set A := A U { p—1} admits a poset structure by requiring p_ to be the unique
minimal element. This poset structure is compatible with the containment relations
between the affine cones X p D E A. Similarly we have the Hasse diagram G ;, the
bonds on it are described as above.
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2.4 Generic hyperplane stratifications

According to the following proposition, the requirements in a Seshadri stratification
are not as restrictive as it looks.

Proposition 2.11 Every embedded projective variety X C P(V), smooth in codimen-
sion one, admits a Seshadri stratification.

Proof Let r be the dimension of X. For r > 2, applying the Bertini theorem [35,
Théoréme 6.3] to the smooth locus of X, := X, there (generically) exists f. € V*
such that X, ; := X NH, is an irreducible variety which is again smooth in codi-
mension one and has the same degree as X. Repeating this construction gives irre-
ducible varieties X, >,..., Xy and fr_1,..., f» € V* such that X} = X1 NH .,
is smooth in codimension one and the degree of X is the same as the degree of X for
k=1,...,r —2.Now X| is a smooth curve. A generic hyperplane H 7, for f; € V*

intersects X at finitely many points Xo | = {w1}, ..., Xo,s := {ws}. It suffices to
choose homogeneous functions fyx, | <k <s on V satisfying: fy x vanishes on @y
for £ # k, but fy x is non-zero at wy. 0

Since the hyperplanes are chosen generically (i.e. in an open set), the geometric
definition of the degree of an embedded variety implies deg X = s, the number of
points we get in the last intersection.

A Seshadri stratification arising from generic hyperplanes in this way will be
termed a generic hyperplane stratification. Let A={q,,...,q1,90,1, ..., qo,s} be the
indexing poset with X, := X and Xy, , := {o¢}.

Example 2.12 The functions fp  in the above proposition can be chosen in the fol-
lowing precise way. Let i; € V* be such that h;(w;) # 0 for 1 < j < s with j #i
and h; (w;) = 0. We define g; = ]_[i#k h;: it is homogeneous of degree s — 1. These
functions satisfy the requirement on fp  in the above proof. With this choice, the
extended Hasse diagram G ; with bonds is depicted below:

90,1

Remark 2.13 In [30] Hibi proved that every finitely generated positively graded ring
admits a Hodge algebra structure. The construction in Proposition 2.11 resembles a
geometric version of the algebraic approach in loc.cit. under the smooth in codimen-
sion one assumption. In our setup, this extra condition allows us to extract a convex
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geometric skeleton of X (see Corollary 12.3 and Sect. 13.5), and to deduce geometric
properties of X (see Corollary 16.2).

In [39] a similar Bertini-type argument is applied to construct flat degenerations
of embedded projective varieties into complexity-one T -varieties.

3 Generalities on valuations

From now on until Sect. 15, we fix a Seshadri stratification of X C IP(V') with subva-
rieties X, and extremal functions f, for p € A.

3.1 Definition and example
We recall the definition and some basic properties of valuations and quasi-valuations.

Definition 3.1 Let R be a K-algebra. A quasi-valuation on R with values in a totally
ordered abelian group G is a map v : R \ {0} — G satisfying the following condi-
tions:

(@) v(x +y) > min{v(x), v(y)} forall x,y € R\ {0} with x + y # 0;
(b) v(Ax) =v(x) forall x € R\ {0} and 1 € K*;
(©) v(xy) =v(x)+v(y) forall x,y € R\ {0} with xy #0.

The map v is called a valuation if the inequality in (c) can be replaced by an equality:

() v(xy) =v(x) +v(y) forall x, y € R\ {0} with xy # 0.

Remark 3.2 Quasi-valuations on R can be thought of as synonyms of algebra filtra-
tions on R (see Sect. 2.4 in [38]).

The following properties are well-known for valuations (see [56, Lemma 2.1.1]).
Since the proof uses only axioms (a) and (b) of a valuation, it holds also for quasi-
valuations.

Lemma3.3 Letv: R\ {0} = G be a quasi-valuation and x,y € R \ {0}.

) Ifv(x) #v(y), then v(x + y) = min{v(x), v(y)}.
i) If x +y#0and v(x +y) > v(x), then v(x) = v(y).

Lemma 3.4 ([27, Proposition 4.1]) Let vy, ..., vk : R\ {0} — G be a family of quasi-
valuations. The map v : R \ {0} — G defined by

g minfv;(g)|j=1,....k}
is a quasi-valuation on R.

In algebraic geometry, valuations usually arise from vanishing orders of rational
functions.
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We come back to the setup in Sect. 2.2. Let R, := K[X ] be the homogeneous co-
ordinate ring of X, with respect to the embedding X, € X € P(V). In the following

we consider R, often as the coordinate ring of the affine cone X p ©V over X,,.

If p covers g in A, then X, C X, iAs a prime divisor in X ,,. The local ring Offp»f(q
is a discrete valuation ring because X, is smooth in codimension one by (S1). Let
v, 4 be the associated valuation. We refer to Athe value vy, 4 (f) for f € R, \ {0} as
the vanishing multiplicity of f in the divisor X:

Vp.g: Ry \ {0} — Z. @))

The valuation v, , can be naturally extended to a valuation on K(X p) =QuotR,,
the quotient field of R, by the rule:

v (5 ) 7= Vp.a(®) = vp.g(h) for g.h € Ry \ {0).

Remark 3.5 As a continuation of Remark 2.10, for a minimal element pg € A, R po 18
a polynomial ring. We define v, ,_, to be the vanishing multiplicity of a polynomial
in R, in {0}.

3.2 Valuation under normalization

The following Lemma compares the prime divisors in the normalization X p of X P
with those in X ,. Note that X, is smooth in codimension one.

Lemma 3.6 The normalization map w : )N(p — )A(p induces a bijection wp : Z >
w(Z) between the set of prime divisors ZcC )?p and the set of prime divisors Z C )A(p.
In addition, for all non-zero f € K()A(p) = K(f(p) and all prime divisors Z C )N(p
holds: v;(f) = vw(z)(f).

Proof Let U C X p be the open and dense subset of smooth points and denote by
UcX p the open and dense subset obtained as preimage o™ 1 O).

By axiom (S1), X 2\ U is of codimension greater or equal to 2. Since the normal-
ization map is finite, the same holds for X 2\ U. 1t follows that any prime divisor as
well as the induced valuation in )A( respectively X p is completely determined by its

intersection with U respectively U. The claim follows now since the normalization
map  : X — Xp induces an isomorphism o] : U—U. O

3.3 Rees quasi-valuations

For an element p € A let I, = (f| f(,,) be the principal ideal in R, generated by

the restriction of the extremal function f, (see Definition 2.1) to X p- By abuse of
notation we write in the following often just f, instead of f}|; . We define a map

R, \ {0} = Z= U {00} by:

| %,

for any g € R, \ {0}, vlp(g) ‘= max {m € Z>o U {00} ‘g € II’," ] . 2)

In our situation the value oo is never attained.
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Lemma 3.7 ([63, Sect. 2.2]) v, defines a quasi-valuation vy, : Rp \ {0} — Z.

Such a quasi-valuation is called homogeneous, if for any g € R, \ {0} and m € N,
VI, g™ = mvy, (). The quasi-valuation v I, is not necessarily homogeneous. Samuel
[64] introduced a limit procedure to homogenize such a quasi-valuation.

We denote by vy, the corresponding homogenized quasi-valuation ([63, Lem-
ma 2.11]): by definition, for g € R,\{0}, we set

vr, (g*)

vr,(8) = klglolo € Qzo U {oo}. 3

The limit exists and is a non-negative rational number (see [58, 62]). The ho-
mogenized quasi-valuation has an interpretation as the minimum function over some
rescaled discrete valuations:

Theorem 3.8 ([62, Valuation Theorem]) There exists a finite set of discrete, integer-
valued valuations 01, ..., nx on Ry, and integers ey, ..., ex such that for all g € R}, \

{0}:
71, (8) :=min{—"j(g) ‘jzl,...,k}.
ej

In our setting, the valuations 7 ; get an interpretation as vanishing multiplicities at
the prime divisors occurring in X, N Hy,. Let g1, ..., gk € A be such that

X,nHy, = |J Xq
i=l,...k

The affine cones )A(ql. are prime divisors in X p inducing valuations v, 4. : Rp \ {0} —
Z (see (1)). Let by 4, i =1,...,k, be the corresponding bonds, which are the van-

ishing multiplicities of f, at the prime divisors )A(ql. (see Sect. 2.3). The Valuation
Theorem gets the following interpretation:

Proposition 3.9 Let g € R), \ {0}. We have

EIP(g):min{vljb’qi"(g) i:l,...,k}. )
P.qi

Proof Let R p» be the normalization of R, (in Quot R ), I, » be the principal ideal in R »
generated by f), and set f’p := Spec R p» the normalization of X p- We can construct
the quasi-valuation v i’ R » \ {0} = Z and its homogenized version v i, in the same
way as in (2) and (3). The constructions are related by Lemma 2.2 in [62]: one has
forg € Rp \ {0}, v; (&) = V1, (8).

Let ¥ be the set of all valuations vz : Quot R » \{0} — Z induced by prime divisors
ZCyY p- Since R p is an integrally closed noetherian ring, this set of valuations makes

R, into a finite discrete principal order (a.k.a. Krull domain, see [8] Chapter VII,
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§1.3),s0 R p satisfies the assumptions for Lemma 2.3 in [62]. The proof of the lemma
identifies the valuations in Theorem 3.8 as the valuations vz such that vz (f,| f(,,) >
0. Keeping in mind the bijection in Lemma 3.6 and (S3) in Definition 2.1, we see
that in such a case w(Z) = Xy, is an irreducible component of the vanishing set of
Splg »and the scaling factor is b;’;i = p,g (fp))’1 (see the proof of Lemma 2.3 in
[62]). g

Remark 3.10 The appropriate reformulation of the proposition above holds for ele-
ments in the normalization too. The proof above together with Lemma 3.6 shows for

geR,\ {0}

D;p(g)=min{v’;q7"(g) i=1,...,k}. (5)

D.qi

4 Codimension one

In this section we modify the procedure in [37, 50] in codimension one to overcome
the difficulty mentioned in the introduction. In the next two sections we will link the
codimension one constructions to obtain a higher rank valuation.

Let p,q € A be such that p covers g and g € ]K()A(,,) \ {0} be a rational function.
Let by 4 = vp 4 (fp) be the bond between p and g (see Sect. 2.3). Let N be the least

common multiple of all bonds in G4, so the number N v"#(q‘@ € 7Z. We set

gN

= vp,q(8)
N e
f bPJI
14

e K(X)). (6)

Lemma 4.1 The restriction h|y, is a well-defined, non-zero rational function on )A(q.
q

Proof Note that

N
g Vp,q(8)
Vp.g(h) =Vp g o | =NVpg(8) =N b bp.q =0,
“Bpg P
fp P.q

so this rational function is an element of the local ring O %%, of the prime divisor
X - X But it is not in its maximal ideal my %,.%, and hence its restriction gives a
%%, /mX X, which is the field K(X ) of

rational functions on X q- O

non-zero element in the residue field Oy

Remark 4.2 Instead of taking the function 4 as above one could take h= = glra)

f,‘:” 4® 1 emma 4.1 holds for / with the same proof. In fact, h = hbl’ 7 . Since it is
later more convenient to work uniformly with the N-th power instead of the b, 4-th
power, we will stick to this construction. For the valuation which will be defined in
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Sect. 6.2 the choice makes no difference, one just has to rescale the values appropri-
ately, see Remark 6.5.

What can we say about 4 if the starting function g € R, is a regular function?

For the inductive procedure we will use later it is necessary to take a slightly
more general point of view. Consider again the setting in Proposition 3.9 respectively
Remark 3.10 and let g1, ...,qx € A be such that X, N Hy, = ;14 Xg- Let

g€ K(X ») \ {0} be arational function which is integral over K[X pl. By Lemma 3.6,

A

this property is equivalent to vz(g) > 0 for all prime divisors Z C X .

Proposition 4.3 Let g € K()A(p) \ {0} be a rational function which is integral over

A

K[)A(p]. We assume that the enumeration of the divisors )A(ql sy Xgp is such that

Vp.g1(8) < Vp.ai (8)

Vi=1....k ¥j(g)= N

bp,q1 bP,({i

_N Yp.qq [€3) R .
Seth=g"N f, P (a5 in (6)). Then h is integral over K[X ], andh|f(q e K(Xy,)
~ 1
is integral over K[ X, ].

Proof Given a prime divisor Z C X p» we have

h
vz(h) =N (vz<g) - vz(f,»M) .

bP"Il

By assumption we have vz(g) > 0 for all prime divisors Z C }A(p and vz (fp) =0 for
Z#Xg. j=1,... .k Itfollows: if Z # X, then vz (h) > 0.

For the prime divisors qu, j=1,...,k, and the associated valuations Vp.q; We
obtain:
N Vp.g; (8)
_ g _ _ Yrgy
Vp.q; (h) =Vp.g; @ | = NWp.g; (&) = 5, = Vp.q; (fp)
bp.qq

.q; (8)
= N"P,q/'(fp) (VI u® _ UIZQI(g)) >0

bpq; P.q1

by the choice of g1 (see (7)). Hence vz (k) > 0 for all prime divisors Z C )A(p, so h
is integral in K()A( p) over K[)A( pl- By Lemma 4.1, h|;  is a well-defined, non-zero
A q1 A~
rational function, and hence 4| %, € K(X4,) is also integral over K[X, ]. O
1

5 Maximal chains and sequences of rational functions
We fix a maximal chain in A joining pmax With a minimal element pg:

C: pmax = pr >+ > p2 > p1 > po. 8)
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In particular, r is the length of every maximal chain. To avoid double indexes as
much as possible, we use abbreviations. Since we have fixed a maximal chain, an
element p € € is either the minimal element, or there is a unique element in €, say ¢,
covered by p. It makes sense to omit the second index and write v, and b, instead of
Vp.4 and b, 4. Moreover, when p = p; we will simplify the notation further by just
writing

v; (resp. b;, fi, X;) instead of vy, p,_, (esp. bp; p;_i» fpir Xp;)- )]

We use the procedure in (6) to attach to a non-zero function g € R inductively
a sequence (g, ..., go) of non-zero rational functions g; € K()A(j), j=0,1,...,r.
Foreach j=0,1,...,r, the function g; will depend on g and fj41, ..., f,. Starting
with a regular function g € R \ {0}, the following inductive procedure is well defined
by Lemma 4.1: we set

Vr(8r
g =g and D, =)
by

and then inductively for j =r —1,...,1,0:

N

8j+1 vi(g;)

8= NJDM and D; = ’b.f (10)
T Iy, !

Remark 5.1 We can provide a nearly closed formula for g;: forr > j > i +1let D;
be as defined above in (10), then

N'=i ,—N'=ip, ,—N"7"D,_ —NDjyy
gi=g f "1 e fi g (11)

It is only nearly closed because the valuations v;(g;), j > i, show up in the formula
for the numbers D ;. But for our purpose this will be good enough.

We give this sequence of functions a name:

Definition 5.2 The tuple g¢ := (g, ..., &1, go) associated to g € R \ {0} is called the
sequence of rational functions associated to g along €.

Before going further to define a higher rank valuation from this sequence of ratio-
nal functions, we look at some concrete examples.

Example 5.3 The constant function a, a € K*, vanishes nowhere, so v;(a| f{_) =0
N J

for all j =1,...,r, and the sequence associated to the constant function is ag¢ =
(a@,av,....aV r). Note that this holds independent of the choice of the maximal
chain €.
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Example 5.4 We consider the case when g is the extremal function f; for some 0 <
i <r.ByLemma 2.2, f; does not vanish identically on X ; for j > i, one determines
inductively:

¢ =fi,D,=0,andg_y = f",D,_1 =0, and ..., and
r—i—1

giv1=fN " Diy1=0.

Next consider the function g; = fiN "' This function vanishes on the divisor X;_|

(pNTTE ;
and we have D; = %,) = N"7" by the definition of b;. It follows
N Nr—i+1
o8& _ i _ o
8i—1= (fi)NDi = fiNrf"“ =1and D,_l =0.

The procedure implies now g; = 1 for all j < i. Summarizing the above computation
gives

Fe= i N YN L.

This holds for all choices of a maximal chain € as long as p; € €. If p ¢ €, then
(fp)e looks rather different, as the following example shows.

Example 5.5 Let X = Gr,K* with the Seshadri stratification defined in Example 2.5
and 2.8. The bonds are all equal to 1 and hence N = 1. We fix as maximal chain

C:3,4) > 2,4 >2,3)>(1,3)> (1,2).

For the Pliicker coordinates we get as sequences of rational functions:

(x34)e = (x34,1,1,1,1), (x24)e = (x24,x24,1,1,1),

X X X
(x23)e = (x23,x23,x23,1,1), (x14)e = (a4, x14 55 Tt D,
x13)e = (x1,3,%13,X1,3,X1,3, 1), (x12)e = (x1,2,X1,2,%1,2,X1,2, X1,2)-

The Pliicker coordinate x| 4 is the only extremal function whose index is not in €.

By Example 5.4, the sequence (x1,4)¢ = (g4, - .-, go) is the only one which needs an
explanation.
Recall that for the sequence (g4, ..., go) of rational functions associated to xj 4

along €, we denote D; =v;(g;)/b; for j =0, 1,...,4.In this example all bonds are
equal to 1, hence D; =v;(g;).

The restriction of xj 4 to X (2,4) does not vanish identically and hence D4 = 0;
this gives g4 = g3 = X1 4.

In order to compute the vanishing order, we introduce coordinates on an open
subset of X(2,4). For this we choose a maximal torus and a Borel subgroup for
SL4(K) as in Example 2.9. We use the standard enumeration of the simple roots, i.e.
a1 =€ — €, ar =€y — €3 and o3 = €3 — €4.
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For a root «, let U, C SL4(K) be the corresponding root subgroup. The root sub-

group associated to the a (negative) simple root is given by
U_ot)=1+1tEiy1,;, i=123.

We consider in }A((Z, 4) the open subset U_q,(d)U_q, (c)U_q, (D) (ae) A e2), it is
equal to

{ae; A ex + abey A e3 + abcey A ez + abdey A eq+ abcedey Neq|a,b,c,d eK}.
(12)
This open subset is compatible with the other Schubert varieties in the maximal chain
¢ contained in X (2,4),1.e. we get open subsets in the affine cones over these Schubert
varieties by setting some of the coordinates equal to 0. For instance, by setting d =0
we obtain an open subset in the affine cone X (2, 3).

The restricted Pliicker coordinate g3 = x4 % 2.4) vanishes on the divisor X 2,3)
with multiplicity 1, so D3 = 1. To get g> in the sequence (x,4)¢ we have to divide g3
by x2.4l % 2.4) and get go = ;—:: | R(2.3) The rational function 2—:: takes on the open set
in (12) the value %, SO % |>?(2,3) has a pole of order 1 at the divisor )A((l, 3)C )A((Z, 3),
which implies Dy = —1. Hence, for the term g in the sequence (x1 4)¢, one has to
multiply g2 by x2 3 and obtains g; = xlng,3 | %(1,3)- This rational function takes on the
open set in (12) the same values as the Pliicker coordinate x1,3, and hence vanishes
with multiplicity 1 on the divisor X (1,2) C X (1, 3), so we have D; = 1. We have
hence to divide g; by x; 3 to get go, which is the constant function 1.

The calculations may be simplified by using the Pliicker relation xj2x34 +
X2,3X1,4 — X1,3x2,4 =0.

Even if one starts with a regular function g € R \ {0}, for a fixed maximal chain
¢ there is no reason why a function g; occurring in the sequence g¢ = (g, .-, £0)
should be a regular function on the respective subvariety X p;» see Example 5.5 with
g = x1.4. Nevertheless, Proposition 4.3 shows that for a fixed function, poles can be
avoided if one chooses the maximal chain carefully:

Corollary 5.6 For every regular function g € R \ {0} there exists a maximal chain
€ so that the associated tuple g¢ = (g, ..., g0) consists of rational functions g; €

K()A(pj) suchthatvj(g;j) >0 forall j=1,...,r.

6 Valuations from maximal chains
Throughout this section, we will work with a fixed maximal chain in A:

Q::pmaxzpr>pr71 > > Po.

As in the previous section, to avoid the usage of double indexes as much as pos-
sible, we keep the conventions in (9). Moreover, if not mentioned otherwise, we will
write ¢; instead of e, .

Let Q% be the Q-vector space with basis {ej1j=0,...,r}. We will write v =
(ay, ..., ap) for the vector v = Z;’=oaj€j e Q<.
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Definition 6.1 We endow Q¢ with the lexicographic order, i.e.
(ar,...,ap) > (by, ..., bo)if and only if @, > b,, ora, = b, anda,_1 > b,_1, or etc.

This total order is compatible with the addition of vectors: for any u, v, w € @G,
if u > v, then u + w > v + w holds.

6.1 Linking up valuations

We start with linking together the rank one valuations arising from the covering rela-
tions in the poset A.

Definition 6.2 For g € R\ {0} let g¢ = (gr,--.,&o) be the associated sequence of
rational functions (see Definition 5.2). We attach to the maximal chain € the map

.
. ¢ vi(g) |
Ve :R\{0} > Q%, g Z(:)(NT,Z,)%
j=
Remark 6.3 In terms of the numbers D;, j =0, ..., r, defined in (10), we have:

r

D
Ve®) =) ~rtre)
j=0

We will prove in Proposition 6.10 that Vg is a valuation. Before that we introduce
a lattice containing the image of Vg and discuss some examples.

Remark 6.4 The construction is similar to the one in Newton-Okounkov theory which
associates a valuation to a flag of subvarieties (see Introduction). The scaling factor
1

~+—7 inour construction shows up due to the fact that g occurs with the power N r=i

in g;, see Remark 5.1. The scaling factor bij occurs due to the fact that we divide

by the function f; and not, as usual, by a (local) equation defining the prime divisor
scheme theoretically.

Remark 6.5 For the construction of the functions g,, g,—1, ... we have made use of
the procedure described in (6). One could as well define these functions by using the

algorithm described in Remark 4.2: g, = g and, inductively, g;—; = gfi /1 @) o

fori =1,...,r. As map one would take instead:
~ —( vi@)
Ve@)=) (A) ej-
=0 Hk:j b

One sees easily from the definition that these two maps coincide: for all g € R \ {0}
one has Vg (g) = Ve (g).

An immediate consequence of Remark 6.5 is:
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Lemma 6.6 The map Ve takes values in the lattice:
C={l=(l,....00) €QC|b,---bjt; €L, 0<j<r} (13)

Remark 6.7 If all bonds in the extended Hasse diagram G 4 are equal to 1, then L¢ =~
7+,

Example 6.8 Let p; be an element in the maximal chain €. The renormalization is
chosen so that Vg (f;) =e;. ‘

Indeed, by Example 5.4 we know that (f;)e = (f;, £, lez AN L.
Let Ve (fi) = (ar,...,ap). Since f,IX £ 0 for j > i, it follows thata] =0for j >i.
Since 1 is a nowhere vanishing functlon one has a; =0 for j <i. It remains to
determine a;. Now

vi( N =N = Ny,

so the renormalization implies a; = 1, and hence V¢ ( f;) = ¢;. Note that this holds no
matter which maximal chain one chooses as long as p; shows up in the chain. The
situation becomes different if p ¢ €, as the following example shows.

Example 6.9 Let X = Gr2K4 be as in the Examples 2.5, 2.8 and 5.5. We fix the max-
imal chain €: (3,4) > (2,4) > (2,3) > (1,3) > (1,2) and N =1 as in Example 2.8.
The calculations in Example 5.5 and Example 6.8 imply that the values of V¢ on the
Pliicker coordinates are given by:

Ve(x3,4)=(1,0,0,0,0), Ve(x24)=1(0,1,0,0,0), Ve(x23)=1(0,0,1,0,0),
Ve(x1,4) =(0,1,-1,1,0), Ve(x1,3)=1(0,0,0,1,0), Ve(x1,2)=(0,0,0,0,1).

6.2 V¢ is avaluation
We extend the map Vg to K(X) = QuotR by:

Ve (f/8) :=Ve(f) = Ve(g), for f, g € R\ {0}.

The goal of this subsection is to show that the map is well defined and
Proposition 6.10 Vg is an L¢-valued valuation on K()?).

Definition 6.11 We denote by V¢(X) the valuation monoid associated to X by Ve,
ie. Ve(X)={Ve(g) | g€ R\{0}} S L®.

Proof 1t suffices to consider elements in R \ {0}. Given g, h € R\ {0}, one verifies by
induction (using Remark 5.1) that if ge = (g, ..., go) and he = (h;, ..., ho), then
(gh)e = (grhy, ..., goho). Since the v;, j =0, ..., r, are valuations, property (c)in
Definition 3.1 follows.

If one replaces g # 0 by a non-zero scalar multiple Ag, then the components g; in
the tuple g¢ are replaced by some non-zero scalar multiples (see Remark 5.1). Since
the v, j =0, ..., r, are valuations, we see that property (b) in Definition 3.1 holds.
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It remains to verify (a) in Definition 3.1. Let —1 < j < r be minimal such that
vi((g + h);) =vi(gi) =vi(h;) foralli > j.If j = —1, then obviously property (a)
holds. i

Suppose j > Oandset Fj =[[j_; £V Pt where F, = 1 because we have an
empty product. Remark 5.1 implies that (g + /) is a linear combination of functions

of the form g’thij_’Fj, t=0,...,N'=J/. A small calculation shows: for all 7 =
0,...,N"7/, one has

vi((g+h;) = minfv;(g'hN ) [1=0,... N"7) 14
= min{#v]-(gj) +1- ﬁ)vj(hj) |t=0,...,N 7/}
and hence: v;((g +h);) = min{v;(g;), v;(h;)}. If the inequality is strict, then prop-
erty (a) holds.
If the inequality is not strict, then (by the assumption on j) we have v;(g;) #
v;j(h;). Without loss of generality assume v;(g;) < v;(h;). But then:

(g+mY g¥
@+Mj1=—5"| =—3p =8j-1
B s T s

because the restrictions of all the other terms in the expansion of (g + h);_;
vanish. But this implies (g + k)¢ = g¢ for 0 < £ < j and hence Vg(g + h) >
min{Ve(g), Ve (h)}. O

6.3 The lattice generated by the image of V¢

The lattice L¢ introduced in Lemma 6.6 should be considered as a first approximation
of the lattice generated by the image of V. The valuation monoid Vg (X) = {Ve(g) |
g € R\ {0}} may be contained in a proper sublattice of L.

In this section we propose an approach to determine the sublattice LS c LY gen-
erated by V¢ (X). This strategy highlights the strong connection between the point of
view in this article and the usual procedure in the theory of Newton-Okounkov bod-
ies. The difference between these approaches will only become evident in Sect. 8.

We fix a maximal chain €: p, > p,_1 > --- > po.

Lemma 6.12 There exist rational functions Fy, ..., Fy € K()A() \ {0} such that

Ve(Fj)=(0,...,0,1/bj, %, ..., %),
‘/——/

r=Jj

where the * are certain numbers in Q.

Proof Suppose r > j > (. By assumption, the variety X j is smooth in codimension
1, so the local ring O . is a discrete valuation ring. Let 7; be a uniformizer in
Jr =

the maximal ideal. It is a rational function on X ;j with the property v;(n;) = 1.

As a rational function on X j» nj can be represented as the restriction to X j of
a rational function on V': there exist g, h € K[V] such that both do not identically
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vanish on X], and n; = 3 |X In particular, F; := §|X € K(X) is a well defined

rational function, which has nelther poles nor vanishes on non-empty open subsets in
X = X,, X, 1s-- X It follows that the first » — j entries in Vg (F;) are equal to
zero. One gets for the assoc1ated sequence of rational functions along ¢:

N N
(F])EZ(F‘]9F] |)2r_19"'7Fj |)2.],"")7

and hence the (r — j + 1)-th entry is vj(FjN’—ij(j)/(N’*jbj) = Vj,?zj)

1
b j ‘
Let L% C L9 be the sublattice generated by the valuation monoid Vg (X).

Proposition 6.13 Let F;, ..., Fy € K(}A() \ {0} be rational functions such that

Ve(Fj)=(0.....0.1/bj. %, ... %),
r=j

where the x are certain numbers in Q. Then LS = (Ve (F)), ..., Ve (Fo))z.

Proof Let Lc Ve(Fy), ..., Ve(Fy))z € LY be the lattice generated by the valua-
tions of the ratlonal functlons F., ..., Fy. Itis obvious that I:% - Lg.

To prove the reverse inclusion, it suffices to show Ve (g) € LY, for g € K(X)\ {0}.
Fix a rational function g. Note that without loss of generality we can modify g by
multiplying it by a power of F; for some j =0, ..., r.Indeed, since Vg is a valuation,
on has Vg (g) € LC if and only if Ve(gFy) € LG for some a € Z.

We proceed by induction on the number of entrles equal to zero at the beginning
of Vg (g). Suppose the first entry is non-zero: it is equal to %% (g) . After replacing g by
¢F " ® we can assume that g € K(X) \ {0} is such that the first entry in Vg (g) is
equal to zero.

Suppose g is a non-zero rational function such that the first » — j entries in
Ve(g) are equal to zero. If j = —1, then we are done. If j > 0, then (g)e¢ =
(g.8V,...,¢g""",..), and the (r — j+1)-stentry in Ve (g) is v; (g ) /(N /b)),
which is equal to ’ (g) . So by multiplying g with an appropriate power of F;, we get
a new rational funct1on having one more entry equal to zero in its valuation. g

The rational functions F;, ..., Fy € K()A( ) used above are far from being unique.
But all possible choices have one common feature. Let Ag be the rational (r 4+ 1) x

(r 4+ 1) matrix having as columns the valuations Vg (F;), ..., Ve (Fp), this is a lower
triangular matrix. Let Bg be its inverse. It is of the following form:

* by
Be=| . . ) ,

where the * are certain numbers in Q.
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Proposition 6.14 Let v € Q%. Then v € L% if and only if Bg - v € Z'T1. Moreover,
the entries of Bg are integers.

Proof The first part is just a reformulation of the previous proposition. For the inte-
grality property note that e; = vg (f;) is an element of L%, hence the j-th column of
B¢ must have integral entries. O

6.4 K*-Action versus valuation

The varieties X and X p are all endowed with a K*-action, and the algebra R as well
as the algebras R, are correspondingly graded. For g € R, and A € K* denote by g
the function g*(y) := g(Ay) for y € X p- This K*-action on R, naturally extends to
K(X ).

Lemma 6.15

i) Forany g € R\ {0} and » € K* : Ve (g*) = Ve (g).
i) Let h=h;+---+h; e R= @izo R(i) be a decomposition of h # 0 into its
homogeneous parts. Then

Ve(h) =min{Vg(h;) | 1 < j <t such that h; # 0}.

Proof The K*-action on X j stabilizes the divisor X j—1. The associated algebra au-
tomorphisms of R),; stabilize hence the vanishing ideal of X j—1 as well as the local
ring O??j,)?j_l c K()A(j) and its maximal ideal. So forall g € Rp,;: v; (gh) = vi(g).

For g € R\ {0} let g¢ = (gr, ..., go) be the associated sequence of rational func-
tions. We can use the K*-action to construct two new tuples: the A-twisted tuple
boe = (gﬁ‘, ey g(})‘) obtained by twisting component-wise each of the rational func-
tions occurring in gg¢. And we can consider gé = (g, ---» &) the tuple associated
to the function g*.

The functions { f, | p € A} are homogeneous, so by Remark 5.1 the j-th compo-
nent g’ in the A-twisted sequence *ge and the j-th component g/ in g differ only
by a scalar multiple. It follows: V¢ (g%) = Ve ().

Leth =hy+-- -+ h, be adecomposition of & # 0 into its homogeneous parts. We
know: Vg (h) > min{Vg (h;) | 1 < j <t such that 2 ; # 0} by the minimum property
of a valuation (see Definition 3.1 a)). To prove the equality, note that one can find
pairwise distinct, non-zero scalars A, ..., A; € K* such that the linear span of the
following functions coincide:

(hi,... ho)g = (W™, . Rk

So one can express the homogeneous function 4; as a linear combination of the func-
tions A, ..., kM , and hence by part i) of the lemma:

Ve (hi) = min{Ve(h*) | j=1,...,1} =Ve(h),

and hence Vg (h) = min{Ve (b)) | j=1,....1}. 0
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6.5 Leaves

Let LE" C L® be the submonoid of tuples such that the first non-zero entry is pos-
itive. Let g € R \ {0} be a regular function on X. The first non-zero entry of Ve (g)
is a rescaled vanishing multiplicity, so Ve : R \ {0} — L€ is a valuation with values
in LET. The elements in this submonoid satisfy an additional compatibility property:
for any a, b, c € LT we have:

ifa>b, thena+c>b+c>b. 15)

This property ensures that the subspaces
RS, :={g e R\ {0}|Ve(g) = a}uU {0},
respectively
RS, :=1{g € R\ {0} | Ve(g) > a} U (0}

for a € LS are ideals. It follows that the associated graded vector space

greR = @ RSQ/RSQ

QELG*T

is a K-algebra. The subquotient Rga / Rga for a € L% is called a leaf of the valua-
tion V. o -

According to Example 6.8, V¢ is a full rank valuation, i.e. the lattice generated
by Ve (X) has rank dim X + 1. As a consequence of the Abhyankar’s inequality one
obtains:

Theorem 6.16 ([38]) The valuation Vg has at most one-dimensional leaves, i.e. for
any a € L®7, dimg RS, /RS, < 1.

Corollary 6.17 Let g, h € R \ {0}. Assume that for a maximal chain € C A, Vg (g) =
Ve (h) holds. Then there exists . € K* and ' € R such that g =M +h'. If h' #0,
then Ve (h') > Ve (h) = Ve (g) holds.

Proof This is just a reformulation of Theorem 6.16. O

Lemma 6.18 Let € C A be a maximal chain and let g1, g, 83,84 € R\ {0}. If
Ve(g1) + Ve(g2) = Ve(g3) + Ve (ga), then there exist A € K* and h' € R such that
8182 =Ag3ga+ W . If W #0, then Vg (h') > Ve (g1) + Ve (g2) holds. If the functions
g1, 82, 83, 4 are homogeneous, so is h’.

Proof For the first statement it suffices to apply Corollary 6.17 to g = g1 g2 and h =
g384. Assume that g1, g2, g3, g4 are homogeneous, and let b’ = hy + hy + - - - + hy,
hy #0fork=1,...,t, be a decomposition of 4’ into its homogeneous components.
If g1g> and g3g4 are not of the same degree, then the equality g g, = Ag3gs + A’ is
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only possible if Ag3g4 = —h; for some 1 < j <t. By Lemma 6.15, this is impossible
because

Ve(hj) zmin{Ve(he) [€=1,.... 1} =Ve(h') > Ve(g182) = Ve (8384)-

Therefore g1 g2 and g3g4 are necessarily of the same degree, and so is h'. O

Lemma 6.18 suggests that the structure of gry R is very similar to that of the semi-
group algebra K[Ve(X)]. Indeed, it follows from Definition 3.1 (¢’) that gry R has
no zero divisors. Applying [10, Remark 4.13] (see also [38, Proposition 2.4]) gives:

Corollary 6.19 As K-algebra, gre R is isomorphic to K[V e (X)].

7 Localization and finite generation

In this section we introduce the core of the valuation V¢ associated to a maximal
chain €: it is a finitely generated submonoid of the valuation monoid V¢ (X). Further
results on the relation between the core and standard monomials will be given in
Sect. 9.

Definition 7.1 The core Pg(X) of the valuation monoid V¢ (X) is defined as its in-
tersection with the positive orthant:

Pe(X) :=Ve(X) NQE,.

As the intersection of two monoids, Pg(X) is a monoid. By Example 6.8 we know
Ve (fi) = e; and hence N¢ C Pg(X). So the monoid has an additional structure, it is
endowed with a natural N®-action:

N¢ x Pe(X) > Pe(X), (n.k)>nok:=n+k. (16)
Lemma 7.2 The core Pg(X) is a finitely generated N -module.

Proof For the proof we use Dickson’s Lemma ([25], Lemma A) which states (the for-
mulation has been adapted to our situation): every monomial ideal in the polynomial
ring K[y,|p € €] is finitely generated. By the standard bijection n = (n)) pec =
Yr=1l,ee y7,” between N¢ and the monomials in K[y,|p € €] we get a bijection
between monomial ideals in K[y, |p € €] and N ¢_submodules in N®, where the latter
is acting on itself by addition. And Dickson’s Lemma can be reformulated as: every
N¢-submodule M € N¢ is finitely generated as N®-module.

Since e,, ..., e1, ey € LE, adding elements of YA n o :=n+ £ defines an action
of Z% on the lattice LE. We get an induced action by N¢ on the intersection LE N
QEO, which by (16) stabilizes the submonoid Pg(X).

We decompose L¢ into a finite number of Z%-submodules (with respect to the
action “o” defined above). Since L¢ is a lattice, the intersection

0:=L%N{a=(a,...,a0) €Q%)|0<a; <1}
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is a finite set. By construction we have L® = EBQE 0 7% o a and correspondingly
L*NQE, = D.co N¢ o a. It follows:

Pe(X) = EB (N®oan Pe(X)) € LE N QY.
acQ

Since Q is a finite set, to show that Pg(X) is a finitely generated N¢-module it
suffices to show that the intersection (N¢ 0 @) N Pe(X) is a finitely generated N <.
module for all ¢ € Q. As N¢-modules, N¢ o ¢ and N¢ are isomorphic, and (N¢ o
a) N Pg(X) is an intersection of submodules and hence a submodule. So one can
apply (the reformulated version of) Dickson’s Lemma and hence (N¢ 0 a) N Pg(X) is
finitely generated as N €_module, which in turn implies Pg(X) is a finitely generated
N¢-module. Il

We introduce an open affine subset of X to pinch the valuation monoid Vg (X).
Let Ug be the open affine subset of X defined by

Ue=(xeX| ] /00 #0)

pec€

Its coordinate ring will be denoted by K[Ug¢]: it is the localization of K[)A(] at

npeﬂi fP'

The valuation V¢ : K(}A( )\ {0} > LY induces by restriction a valuation Vg :
K[Ug]\ {0} = L% which has one-dimensional leaves. Let V¢ (Ug) := {Ve(g) | g €
K[Ug]\ {0}} € L€ denote the associated valuation monoid. These monoids are con-
tained in each other: Pg(X) C Vg (X) € Vg (Ug). The core Pg(X) can be thought of
as a condensed version of the valuation monoid V(Ug):

Lemma 7.3 We have
Ve(Ue) = Pe(X) + 2% ={a+m|a € Pe(X), me Z%).
In particular, as 7.¢-module, V(Uyg) is finitely generated.

Proof For g € R \ {0}, there exists an m € N such that

Ve@([] f)™ =Ve(@) + > me) € Pe(X).

pec€ pec€

Hence every element in K[U¢] \ {0} can be written as a quotient h e

R\ {0}, in such a way that Vg (h) € Pg(X), which proves the claim.

h
(Tpee f)"°
Corollary 7.4 Let g € R\ {0}. There exist m € N, A € K* and an element g’ € R with
Ve(g) > mVe(g) as long as g # 0, such that in K[Ug] we have

g" =)»fnfa’ "’f;:)ao +g.
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If g is homogeneous, then so are fl’,’:“" . I',’é“o and g', and they are of the same
degree.
Proof Fix m € Z-q such that mVe(g) = (may, . .., mag) € Z. It follows by Exam-

ple 6.8: Ve (g™) =ma = Ve(fp" -+ fpo ). The remaining part of the proof is the
same as Lemma 6.18, where we only used the fact that the leaves are one dimen-
sional. g

As a consequence we get the following formula recovering the degree of a homo-
geneous element from its valuation (one easily verifies it in Example 6.9):

Corollary 7.5 If g € R\ {0} is homogeneous and V¢ (g) = a, then
degg =ay,deg fp, +---+aideg fp, +aodeg fp,.

Proof By Corollary 7.4, we can find an m € N such that g” = Af," -+ " + &’
for some A € K*, and all are of the same degree. It follows that the degree of g is
degg = L deg(fp™ - fpo"®), which proves the claimed formula. O

The valuation Vg induces a filtration on K[U¢], let gre K[Ug] be the associated
graded algebra. The same arguments as for Corollary 6.19 imply: the latter is isomor-
phic to the semigroup algebra K[V¢(Ug)], and hence by Lemma 7.2 and 7.3, this
algebra is finitely generated and integral.

Corollary 7.6 Spec(grg K[U¢]) = Spec(K[Ve(Ue)]) is a toric variety.

We finish this section by taking a different point of view: looking at Ug as being
fibered over a torus.

Corollary 7.7 The map
pe :Ue — KT, ws (fp, @), ..., fro))
is a finite morphism.

Proof According to Example 6.8, the valuations Ve (fp,), ..., Ve(fp,) are linearly
independent, hence the functions f), , ..., fp, are algebraically independent. The in-
duced map between the coordinate rings q% : K[x,il, e, xoil] — K[U¢] sending x
to fp, is therefore injective and, by Lemma 7.3 and Corollary 7.4, it makes K[U¢]
into a finite K[xril, e xgtl]-module. O

8 Globalization: a non-negative quasi-valuation
To better understand the role of the finitely generated submonoid Pg(X) of V¢ (X),
we consider in the following all the valuations Vg at once, where ¢ runs over all

maximal chains in A. To do so, let Q4 be the Q-vector space spanned by the basis
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elements {e, | g € A}. If €is a maximal chain in A, we identify QY with the subspace
of Q4 spanned by the basis elements {e » | p € €}. To be able to compare for a given
g € R\ {0} the various valuations V¢ (g) € Q¢ € Q4, we need an order on Q*.

To define a total order on Q4, fix a total order “>” on A refining the given partial
order, and such that £(p) > £(g) (see Definiton 2.3) implies p >’ ¢.> Such a total
order exists since A is a graded poset. Let

gm >"qu-1>"--->"qo o))

be an enumeration of the elements of A depicting the total order.

Writing v = (ay, ..., ap) for the vector v = Z?io ajeq; € Q*, we endow QA4
with the lexicographic order as total order. This total order is compatible with the
addition of vectors.

We will denote by C the set of all maximal chains in A.

8.1 A non-negative quasi-valuation

By Lemma 3.4, taking the minimum value over a finite number of valuations defines
a quasi-valuation. Recall that we think of Q¢ as the subspace of Q4 spanned by the
ep, p € €. So it makes sense to write Vg (g) € QA for a regular function g € R \ {0}.
Note that the total order on Q€ defined in Definition 6.1 coincides with the total order
on Q% induced by that defined on Q4.

Definition 8.1
(1) We define the quasi-valuation V : R \ {0} — Q4 by

V(g) :=min{Ve(g) | € € C}.
(2) For g € R\ {0} with V(g) = (ap) pea, the support of g is defined by
suppV(g) == {p € A | a, #0).

Remark 8.2 Let g € R\ {0}. Unless supp V(g) is a maximal chain, there might be
several maximal chains € such that V(g) = Ve (g).

As an example let us consider an extremal function.
Lemma8.3 Foranyq e A, V(fy) =e¢,.
Proof By Example 6.8 we know Ve (fy) =¢, aslong as g € € = (p,,..., po). If
q ¢ <, then let p; € € be the unique element such that £(px) = £(q). Since py and

g are not comparable with respect to the partial order on A, f; vanishes on X,.
But f; is not the zero function, so there exist elements p; > p; 1 > px in € such

SThis second condition on the length is in fact not necessary. Results in the article hold with this condition
removed. For details, see [18, Sect. 2.6].
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that p; covers p;_1, fyl Xp; # 0, but f; vanishes on X, ,. It follows (compare with
Example 5.4):

vy (PN
Upe=Ug 13 S )= Velfp) = =52 ey + ) Saiey,
Pj,Pj—-1 l<]
for some rational numbers g; € Q,0 <i < j — 1. Since Vpi.pj-1(fqg) >0and £(p;) >
£(q), this implies V¢ (f;) > e;, and hence V(f;) = ¢, . O
q p q q q q

Remark 8.4 In general, the value V(g) for g € R \ {0} depends on the choice of the
total order >’ in the construction of V. According to the lemma, for g € A, V( fq) is
independent of the choice.

Example 8.5 Consider the generic hyperplane stratification introduced in Sect. 2.4.
We study the quasi-valuation V on some particular functions.

First we compute V(gy) for the function g, where 1 < k < s, defined in Exam-
ple 2.12. Let € = (p;, ..., po) be a maximal chain in A.

(1) If po # qo.k. the function g vanishes in X ;. This implies that the support
supp Ve (gx) contains an element py for some k& > 1.

(2) If po = qo k. then the non-vanishing of gx in X, , implies that supp Vg (g) =
{po}-

It follows for the quasi-valuation: supp V(gr) = {po}, and Ve (gx) = V(gx) if and
only if g s € €. In this case we have g¢ = (g, g", ..., g""). Recall that the valuation
Vo in the last step is just the degree of a corresponding homogeneous function (see
Remark 2.10). We obtain:

Vigo) = Ve () N'(s—1) s—1
8k) = Velgk) = ey = €0-
N"bpy p_, deg fo.x
Then we consider a linear function 4 € V* which does not vanish in any of the
points @1, ..., @y, the same arguments as above imply: if go x € €, then
s
V(gh) =Ve(gh) = eo-
deg fo.x

The following non-negativity property of the quasi-valuation will be crucial in
determining relations in R in the spirit of Corollary 7.4 (see Corollary 10.4).

Proposition 8.6 For all g € R\ {0}, V(g) € Q4.

Proof For V(g) = m = (m,)pea let € = (pr,..., po) be a maximal chain such
that Vg(g) = m. Then m, = 0 for all p ¢ € We denote by mg the vector
(mp,,...,mpy) € Q. To prove the proposition, it remains to show that m¢ € Qr;gl.

Let g¢ = (g, - - -, 80) be the sequence of rational functions associated to g and €.
Since g is regular, we know v, , ,(g) > 0, and hence m, > 0. We proceed by

decreasing induction.
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Assume that for some 1 < j <r, we know that g; € K(}A( Pj) is integral over
K[)A(pj] and hence m;,; > 0. If g € A is covered by p;, then we can find a maxi-
mal chain of the form ¢ = (p,,..., pj,q,...). By the minimality assumption we
know Ve (g) < Ve (g). In € and &', the entries with indexes r,r — 1, ..., j coincide,
which implies by the minimality assumption:

vpj,pjfl (gj) < ij,q(g./)

bpjvpj—l bpj,q

By Propos1t10n 4.3, the rational function g;_; € K(X _,) is hence integral over
K[X Pj—l] and thus m Pl = > 0, which finishes the proof by induction. O

8.2 A characterization via support

Given a function g € R \ {0}, let C(g) C C be the set of maximal chains along which
the quasi-valuation attains its minimum:

C(g):={CeC|Ve(e) =V(2)}

Proposition 8.7 The set C(g) consists of maximal chains in A containing suppV(g),
i.e. €eC(g) if and only if supp V(g) € €.

Proof If € € C(g), then supp V(g) = supp Ve(g) < €.

To prove the opposite inclusion, let € = ( p;, e, p(’)) be a maximal chain in A
satisfying suppV(g) € ¢, we show that V(g) = Ve (g), hence € € C(g). We proceed
by induction on the length of the maximal chain in a poset. If all maximal chains in
A have length 0, then A has only one element and there is nothing to prove.

In the inductive procedure, the functions showing up are not necessarily regular
but those in K()A( ) which are integral over K[)A( ], so we start with such a function g
and keep in mind the setup in Sect. 3.2.

Let € = (py, ..., po) be a maximal chain such that € € C(g), i.e. V(g) = Ve (2).
We will denote ge = (g,....80), && = (g+---, &) V(&) = (r,...,a0) and
Ve () = (ay, ..., ap).

Both maximal chains € and € start with pm.x = p, = p,.. We consider the fol-
lowing cases:

(1) Assume that ppax ¢ suppVe(g), then let 0 < j < r be maximal such that
pj € supp Ve (g). It follows that ar =---=aj41 =0 and the sequence of func-
tion is g¢ = (g, g, ..., gV ..). In particular, g|X is a rational function,
integral over K[X p;1, which does not vanish on an open and dense subset of
X Xp;- Since suppV(g) < <, pj= p and hence X pj = X . This 1mp11es that g
does not vanish on an open and dense subset of the subvarletles X for k>j.
It follows that a,. =ad 1= =0and gor = (g, g",.... g" ) Replacing

X by Xp,;, g by gV H‘, and considering the subposet Ap; whose maximal chains
have smaller length, we can proceed by induction.
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(2) Now we assume that pmax € supp Ve (g). There are two cases to consider:

(a) pr—1 € supp Ve(g): In this case, pmax and p,_1 are contained in both € and
¢’. Recall that the function g,_; satisfies the desired assumption by Propo-
sition 4.3 because € € C(g). Replacing X by X, | and g by g,_1, we can
proceed by induction.

(b) pr—1 ¢ suppVe(g):Let0 < j <r—1bemaximal such that p; € supp Ve (g).
From this assumption we know a, | =---=a;1 = 0. We look at the func-
tions g, and g/_;:

N/ sNa, N, .Na,
g1=g"/f" &_1=8"/fp
then the sequence of functions is of the form

ge=(g. 818" ....eN
In particular, gfvjlfjfl, and hence g,_1]| %, is a rational function which is
integral over K[)A( p; 1, and it does not vanish on an open and dense subset of
X,

From € € C(g) one knows a, < a.. If the ineguality were strict, then g,_1
would VanislAl on the (zpen alad dense subset of X - where g,_1 is defined.
Notice that X L oX v, = X pi> and g,_1 does not vanish identically on the
latter set, we get a contradiction.

It follows that a, = a; and hence g,_1 =g, _,. Since g,_1 = g,_, does

not vanish on an open and dense subset of X, = X, the inclusions
i .

Xp;' & XP;'H S XPLz
. r—j—1 .
implya, |, =---= a}H =0,andhence g; =gV |" = g}. Now replacing

X by Xp;, g by gﬂv_r 17]71 and consider the subposet A;;, we can proceed
again by induction. O

8.3 Some consequences

We give some consequences of Proposition 8.7 which will be used later. As an im-
mediate corollary of Proposition 8.7, we have:

Corollary 8.8 If g, h € R\ {0}, then C(g) NC(h) CC(gh).

Proof If € € C(g) N C(h), then Ve(gh) = Ve(g) + Ve (h) = V(g) + V(h). This
implies V(gh) > V(g) + V(h) = Ve(gh) and hence V(gh) = Ve (gh), ie. € €
Clgh). 0

Since V is a quasi-valuation, the inequality V(gh) > V(g) + V(h) holds. We can
be more precise:
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Proposition 8.9 For g,h € R\ {0}, V(gh) = V(g) + V(h) if and only if C(g) N
C(h) #9.

Proof For a maximal chain € one has:

Ve (gh) V(gh)
I \Y; (18)
Ve(@) +Ve(h) = V(g)+V(h)

v

If there exists a maximal chain € € C(g) N C(h), then by Corollary 8.8,
V(g) +V(h) =Ve(g) + Ve (h) =Ve(gh) =V(gh).

On the other hand, if V(gh) = V(g) + V(h) and € is a maximal chain such that
Ve(gh) =V(gh), then (18) implies Vg (g) + Ve (h) = V(g) + V(h). But this is only
possible when Vg (g) = V(g) and Vg (h) = V(h), and hence € € C(g) NC(h). O

As an immediate consequence of Proposition 8.9 we get:

Corollary 8.10 Let py,...,ps € A. Foray,...,a; €N, V(f;,'l1 [?j) =Y diep
if and only if there exists a maximal chain € containing py, ..., ps.

9 Fan monoids associated to quasi-valuations

As suggested by Proposition 8.9, the image of the quasi-valuation V in Q4 is no
longer a monoid. Nevertheless, by Corollary 8.10, it is not too far away from being a
monoid. In the next sections we will study the algebraic and geometric structures of
this image.

9.1 Thefan algebra

We start with fixing notations. Let
M= lgeR\{0)cQ

denote the image of the quasi-valuation in Q4: as mentioned, I is in general not a
monoid. Let K be the set of all chains in A. To every (not necessarily maximal) chain
C € K we associate the cone K¢ in R4 defined as

Kc= Z Rxoep.
peC

The collection {K¢ | C is a chain in A}, together with the origin {0}, defines a fan
F4inRA. By Lemma 2.2, the fan F4 is pure (i.e. all its maximal cones share the same
dimension) of dimension dim X + 1. Its maximal cones are the cones K¢ associated
to the maximal chains € € C.
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For a € I" recall that suppa := {p € A | ap # 0}. From the definition of V,
suppa C € for some maximal chain € and hence by Proposition 8.6, a € K¢. Con-
versely, for a maximal chain € let I'¢ € I" be the subset

[e:={ael |suppalC}=KeNT.

Proposition 8.7, together with Proposition 8.9, implies: if g, h € R \ {0} are such that
V(g), V(h) € I'g, then

¢ eC(g) NC(h) = V(g) + V(h) = V(gh) € T¢.

In other words:

Corollary 9.1 The quasi-valuation image T is a finite union of monoids:

r:UFQ.

ceC

Definition 9.2 We call I" the fan of monoids associated to the quasi-valuation V.

We associate to the fan of monoids I' the fan algebra given in terms of generators
and relations. Since the various monoids I'¢ are submonoids of possibly different
lattices, to avoid confusion with the group algebra of one lattice, we prefer to write the
elements of I" as lower indexes instead of using them as exponents (upper indexes).

Definition 9.3 The fan algebra K[I'] associated to the fan of monoids I" is defined as
KII':=K[xg |a € T]/1(I),
where I (I") is the ideal generated by the following elements:

Xg +Xp — Xq4p, if there exists a chain C € A suchthata, b € Kc;
Xg - Xp, if there exists no such a chain.

To simplify the notation, we will write x, also for its class in K[I"]. For a maximal
chain € denote by K[I"¢] the subalgebra:

K¢l := P Kx, SKIT],

aele

then K[I"¢] is naturally isomorphic to the usual semigroup algebra associated to the
monoid I'¢.

We endow the algebra K[I'] with a grading inspired by Corollary 7.5: for a € Q4,
the degree of x, is defined by

degx, = Za,, deg fp.
pEA
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9.2 Weakly positivity versus standardness

For a fixed maximal chain &, we start with an algebraic relation between the monoid
I'¢ and the core Pg.

Definition 9.4 A regular function g € R\ {0} is called

(1) weakly positive along € if Vg (g) € Pg, 1.e. Ve(g) € QSO.
(2) standard along € if Vg (g) € T¢,ie. V(g) =Ve(g).

By Proposition 8.6, if g # 0 is standard along €, then g is also positive along €.
So we have a natural inclusion of submonoids of the cone K¢:

I'e € Pe C Kg.

Remark 9.5 A regular function, which is weakly positive along €, is not necessarily
standard along € (see Example 16.7). One should think of the weak positivity property
as a local property, whereas the standardness property involves all maximal chains,
and it is in this sense a global property.

One might ask up to what extent the two submonoids differ.

Lemma 9.6

1) The monoid T ¢ is finitely generated.
ii) The ring extension K[I'¢] C K[ P¢] is finite and integral.

Proof By Corollary 8.10, one has N¢ C I'e C Py, and hence I'¢ is a natural N¢-
submodule of Pg. Let Q be as in the proof of Lemma 7.2. We have:

e = U (NCOQQFQ)EQSO.
aeQ

The same arguments as in the proof of Lemma 7.2 show that N¢ o ¢ N I'¢ is finitely
generated as N®-module for all ¢ in Q.

For each a € Q fix a finite generating system B, for N¢ 04 NT¢ as N®-module.
Then the union of the By, a € Q, together with {e, ..., e,}, is a finite generating
system for the monoid I'¢.

Since Pg is a finitely generated module over N¢, it is hence a finitely generated
module over I'¢, and thus K[ Pg] is a finite K[I"¢]-module. So one can find a finite
number of elements Ql, ...,a* in Pg such that K[P¢] = K[I'¢l[x,1, ..., xss]. To
prove ii), it remains to show that these generators are integral over K[I'¢].

So suppose a € Pg, and let g £ 0 be a regular function such that Vg (g) =a =
Z?:O ajep, € @SO. By Corollary 7.4, one can find an m > 1 such that

Ve (™) = Ve (fptr - fra =ma € N,

and hence ma € I'g. It follows that x, € K[P¢] satisfies the equation p(x%) =0 for
the monic polynomial p(y) = y™ — x;ua € K[['¢][y], which finishes the proof. [
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Remark 9.7 The proof of Lemma 9.6 does not imply that g™ is standard along €. But
one knows from Corollary 8.10 that the function f,*" - -+ f® is standard along €.

Since K[T'¢] is the algebra associated to a finitely generated submonoid of the
real cone K¢, it is a finitely generated integral domain, and the associated variety
Spec(K[I'¢]) is an affine toric variety. Corollary 9.1 implies hence that K[I'] is a
reduced, finitely generated algebra, so Spec(K[I']) is an affine variety. The geometry
of the fan of monoids I'" is summarized in the following proposition:

Proposition 9.8 The affine variety Spec(K[I']) is scheme-theoretically the irredun-
dant union of the toric varieties Spec(K[I"¢]) with € running over the set of maximal
chains in A. Each of these toric varieties is irreducible and of dimension dim X + 1.

Proof Let I¢ = Ann(x¢) be the annihilator of the element x¢ =[] peeXe, € KI[I'].
The multiplication rules in Definition 9.3 imply that K[["¢] >~ K[I']/[¢. Since K[I"¢]
has no zero divisors, it follows that /¢ is a prime ideal.

For each maximal chain € the canonical map K[I'] — K[I'"¢] induces an embed-
ding of a toric variety of dimension dim X 4 1:

Spec(K[T¢]) < Spec(K[T']).

We show that the intersection of the prime ideals /¢ is equal to zero: (g Ie =
(0). Indeed, let h € [ I¢ be a linear combination of monomials. For a monomial
I ped Xnye, let the support be the set {p € A | n), > 0}. The support of a monomial
is, by the definition of the fan algebra, always contained in a maximal chain. Since &
has no constant term, if 4 is non-zero, there would be at least one non-zero monomial
in the linear combination. Let € be a maximal chain containing the support of one of
these monomials. In the product x¢#, all monomials are supported in € and they stay
linearly independent. It follows x¢h # 0, and thus & ¢ ﬂe I, in contradiction to the
assumption.

It remains to show the minimality of the intersection. Given a maximal chain € in
A, we have x¢ € I for any €' # €, while x¢ ¢ I, which finishes the proof. O

We close the section with some comments on Hilbert quasi-polynomials and a
remark on connections to structures similar to the fan algebra. Let R; be an N-
graded integral K-algebra and let Quot(R;) be its quotient field. Denote by Q(R;) €
Quot(R1) the subalgebra generated by the elements %, h1, ho € R; homogeneous, it
is a Z-graded algebra.

Lemma 9.9 Suppose that R1 C Ry € Q(R1) with Ry a Z-graded K-algebra, which
is finitely generated as an Ri—module. If the Hilbert quasi-polynomial of Ry has
constant leading coefficient, then the leading term of the Hilbert quasi-polynomial of
R is the same as that of R>.

Proof Let hy,...,hy € Ry be the generators of Ry as Rj-module. Without loss of
generality we may assume that they are homogeneous and of the form h; = Z’—;,
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hi 1, hi2 € Ry homogeneous. Let /1 be the product of the denominators. The equality
Ry = :.1: | Rih; implies AR, C Ry. The Hilbert quasi-polynomial of the shifted al-
gebra i R» has the same leading term as the one of R,. Now the inclusions of graded
algebras hR> C Ry € R; show that the Hilbert quasi-polynomials of all three have
the same leading term. g

Lemma 9.10 Let £LE C Q€ be the lattice generated by T'¢ and let T'e = LE N K¢ be
the saturation of the monoid. We endow it with the same grading as T'¢. The Hilbert
quasi-polynomials associated to I'¢ and I'¢ have the same leading term.

Proof The quasi-polynomial of K[I"¢] is by construction an Ehrhart quasi-polyno-
mial with a constant leading coeffcient. Since K[I'¢] is the normalization of K[I'¢],
the inclusions K[I'¢] C K[I'¢] C K[£%] fulfill the conditions of Lemma 9.9. [l

Remark 9.11 A structure similar to the fan algebra appears in [29, Definition 1.1 (3)]
as part of their definition of a toric degeneration of Calabi-Yau varieties. We will see
later (Theorem 11.1) that the quasi-valuation V induces a filtration on the homoge-
neous coordinate ring R of X, such that the associated graded ring gry,R is isomor-
phic to the fan algebra defined above. This leads to a flat degeneration (Theorem 12.2)
of X into Xy, a reduced union of equidimensional projective toric varieties. If the Se-
shadri stratification is normal (see Definition 13.7) and the partially ordered set A in
the Seshadri stratification is shellable, then X is Cohen-Macaulay (Theorem 14.1),
and the flat degeneration fulfills the conditions in [29, Definition 1.1(3)].

Also the toric bouquets associated to a quasifan and a lattice in [2] lead to a struc-
ture similar to the fan algebra. They start with a lattice M and a quasifan (see [2] for
definitions and details) and associate to this pair the fan ring. This ring is defined in
a similar way as in Definition 9.3, see [2, Definition 7.1]. The differences between
the two approaches are: (1). we do not make the assumption that the semigroups are
saturated; (2). we do not need, and hence do not assume to have a lattice M C QA
such that for all maximal chains we have £& = M N Q€. Recall that £ is the lattice
generated by the semigroup I'¢ in Q¢. One can find a lattice M € Q4 such that the
L% are of finite index in the intersection M N Q€ but it is an open question to find
conditions on the Seshadri stratification ensuring the equality £& = M N Q¢ for all
maximal chains.

10 Leaves, the associated graded ring and the fan algebra

The quasi-valuation V : R \ {0} — Q4 induces a filtration on the homogeneous co-
ordinate ring R = K[X]. In this section we further investigate the associated graded
algebra gry, R: we will prove properties parallel to those for valuations in Sects. 6 and
7 and those for fan algebras in Sect. 9.

Definition 10.1 Fora € I' € Q2 we set

R-q:={g e R\ {0} | V(g) =a}U {0} and R, :={g € R\ {0} | V(g) > a} U{0}.
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Since the quasi-valuation has only non-negative entries, these subspaces are ideals.
Denote the associated graded algebra by:

gryR=EP Roy/Roq.

ael’

Each R>,/R-, for a € I will be called a leaf of the quasi-valuation.
We start with the one-dimensional leaves property of this quasi-valuation.

Lemma 10.2 The leaves R>,/R~q4, a € I', are one dimensional.

Proof Let f, g be non-zero regular functions on X such that V(g) =V(f)=a.Let
€ eC(g) and € € C(f) be such that

V(g) =Ve(g) =a=Ve (f) =V(f).

These equalities imply supp Ve (g) = supp Ve (f) and hence supp Vg (f) € €. By
Proposition 8.7, this implies € € C(f) and hence we can assume € = ¢’. By Corol-
lary 6.17 there exist a scalar A € K* and & € R such that g = Af + h with Vg (h) > a
when h # 0.

It remains to show that V(h) > a if h # 0. Now V is a quasi-valuation and hence
V(h) = min{V(g), V(f)} = a. If we have equality, then there exists a maximal chain
¢, such that Vg, (h) = V(h) =a = Ve(g). A similar argument as above implies
supp Ve (g) = supp Ve, (h) and hence supp Vg, (h) € €. As a consequence one has
€ € C(h) and hence V(h) = Vg (h) = a, which is a contradiction. Il

As a consequence we can prove a version of Corollary 7.4 for the quasi-valuation.
The proof relies on the following lemma, which is a generalization of Lemma 6.15 to
the quasi-valuation V:

Lemma 10.3

i) Forany g € R\{0} and » e K*, V(g") =V(g).
i) Let g=g1+---+g €R= @izo R(i) be a decomposition of g # 0 into its
homogeneous parts. Then

V(g)=min{V(g;) | j=1,...,1}.

Proof Let € € C(g), then V(g) = Ve (g) = Ve (g*) = V(g*). And if € € C(g*), then
we get vice versa: V(g*) = Ve (g*) = Ve (g) = V(g), which proves part i).

To prove ii), recall that V(g) > min{V(g;) | j =1, ..., r} by property (a) in Defi-
nition 3.1. But we can also find pairwise distinct, non-zero scalars A1, ..., A; such that
the linear spans of the following functions coincide: (g1, ..., &)k = (g)‘l AU g)‘f YK,
and hence V(g;) > min{V(g*./’) |j=1,...,r} =V(g) by part i) of the lemma. [
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Corollary 10.4 Let g € R\ {0} and suppose V(g) = ZpeA apep. If m is such that
map €N for all p € A, then there exist . € K* and g’ € R such that

gm 2)‘1_[ f;ﬂllp +g/
pEA

withV(g') > V(g™) when g’ # 0.If g is homogeneous and g' # 0, then fp ™" -+ fp
and g’ are homogeneous of the same degree as g.

Before investigating gr,R, we fix a maximal chain € and look at the subspace
gry ¢ R consisting of leaves supported in €, i.e.

gty ¢R= €D Roa/Roa S g1y R

aele

This is actually a subalgebra: for a,b € I'e let g, 1 € R be representatives of g
R>4/R>4\ {0} and he R>p/R-p\{0}. Since V(g), V(h) € I'¢, we know by Proposi-
tion 8.7: V(g) = Ve (g), V(h) = Ve (h), and hence by Lemma 8.9, V(gh) = Ve (gh).
This implies V(gh) = V(g) + V(h) = a + b, and therefore

(Rza/R>a) - (R=p/R>p) € Rzatb/R>atb S gy ¢ R.

It follows that gry, ¢ R is a subalgebra of gry, R graded by the monoid I'¢, without
zero divisors and every graded component is one dimensional. This allows us to apply
again [10, Remark 4.13]:

Lemma 10.5 There exists an isomorphism of algebras gry ¢ R >~ K[I'¢].
By Corollary 9.6 one has the following immediate consequence:

Corollary 10.6

i) The K-algebra gry,R is finitely generated and reduced.
ii) For any maximal chain €, the K-algebra gry, ¢ R is a finitely generated integral
domain.

It follows that Spec(gry, ¢ R) is an irreducible affine variety, Lemma 10.5 implies
that it is a toric variety.

Similarly, Spec(gry,R) is an affine variety. We give a decomposition of
Spec(gry, R) into irreducible components as in Proposition 9.8. The following propo-
sition can be deduced as a corollary of Theorem 11.1. We sketch a direct proof which
is similar to Proposition 9.8.

For a maximal chain € = (p,,..., po) we set x¢ = fp--- fp, € R and I¢ :=
Ann(xX¢) C gryR.

Proposition 10.7 Given a maximal chain &, the quotient gry,R/I¢ is isomorphic to

gry ¢ R. In particular, I¢ is a homogeneous prime ideal of gry,R. Moreover (¢ Ic =
(0) is the minimal prime decomposition of the zero ideal in gry,R.
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Proof First note that V(x¢) =ep, +e),,_, + - + €5, hence suppV(x¢) = € and
C(x¢) = {€} by Proposition 8.7. Now, for g € R we have g - X¢ = 0 in gry,R if and
only if V(g - x¢) > V(g) + V(x¢) and, by Proposition 8.9, this is equivalently to
suppV(g) € €, i.e. V(g) ¢ Ie.

This characterization of the elements of /¢ = Ann(x¢) proves that

Ie = @ R>a/R-q.

ael'\T'¢

It follows: gry,R/I¢ =~ gry) ¢ R and, since gry, ¢ R is an integral domain, /¢ is a prime
ideal. It also follows that (¢ /¢ = (0).

We want to show that /¢ is a minimal prime. So, suppose that / is an ideal properly
contained in /¢. The quotient gr\,R/I contains an element g with V(g) ¢ I'¢, in
particular we have g -X¢ = 0 in gr, R /I again by Proposition 8.9. Hence this quotient
is not a domain and / is not prime.

Finally, note that, for a maximal chain ®, X9 is a non-zero element in the inter-
section ﬂ&é@ I¢. This shows that the intersection () /¢ is non-redundant. O

Corollary 10.8 The variety Spec(gry, R) is scheme-theoretically the irredundant union
of the irreducible varieties Spec(gry ¢R) with € running over the set of maximal
chains of A; each of these varieties is irreducible and of dimension dim X + 1.

Proof This follows by Lemma 10.5 and Proposition 10.7. g

11 The fan algebra and the degenerate algebra

The goal of this section is to give a description of the associated graded algebra gry, R
(Theorem 11.1). It is a wide generalization of the conjecture on special LS-algebra
stated in [13, Remark 1].

We fix throughout this section a vector space basis B of the degenerate algebra

gryR:

B={gulacTl,0#gs € R>4/R>4}.
By Proposition 8.9 we know for a,b € I': g, - gp # 0 in gr,R if and only if one
can find a chain C in A (not necessarily maximal) such that suppa, suppb C C. If
this holds, then one finds some non-zero ¢, ;, € K* such that g, - g = ¢4,p8a+p- This

list of non-zero coefficients ¢, , provides a complete description of gry, R in terms of
generators and relations.

Theorem 11.1 The degenerate algebra gry, R is isomorphic to the fan algebra K[I'].
Proof First note that if we fix constants ¢, € K* for all @ € I', the linear map
K[I'l = gryR, x4+> ca8a
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is a vector space isomorphism between the fan algebra K[I'] and the degenerate al-
gebra gry, R.

Suppose we have already had for all @ € I" non-zero elements ¢, € K* with the
following property: whenever suppa, suppb C C for some chain C in A, then

Ca " Ch = Catb " Ca,b- 19)

We rescale the basis B and get a new basis: B’ = {ﬁg = égg | a € T'}. The corre-
sponding rescaled vector space isomorphism is defined on the new basis as follows:

x K[T'l— grpyR, x4+ ﬁg foralla eT.

This is in fact an algebra isomorphism: if @, b € I' are such that there is no chain in
A containing both suppa and supp b, then A, - hp = 0, and otherwise we get

=

a_'}_’é:

It remains to prove the existence of the ¢, € K* for a € T', satisfying the condition in
(19). This will be done in the next subsections. [l

11.1 Existence of the rescaling coefficients

To prove the existence of the rescaling coefficients ¢ 4, a € I', we construct an affine
variety Z having the following properties:

(1) There is a natural interpretation of the g,, a € I', as functions on Z.

(2) The relations g,8p = Cq,p8a+b for @, b € I' hold also in K[Z] whenever there
exists a chain C in A such that suppa, suppb C C.

(3) There exists a point z € Z such that g,(z) #0 foralla € T'.

Proof of the existence of the rescaling coefficients Suppose Z is an affine variety hav-
ing the above properties. Let z € Z be a point as in 11.1.3. By 11.1.1 it is possible
to define ¢, = g4(2) for all @ € T, and these are all elements in K*. Then property
11.1.2 implies: if there exists a chain C in A such that suppa, suppb C C, then

Ca -~ Cb=8a(2) - 8p(2) = Ca,p8a+b(2) =Ca b Catb

So this collection of non-zero rescaling coefficients has the desired property (19). U
11.2 The varieties Z x4

It remains to construct a variety Z with the properties 11.1.1 — 11.1.3. This will be
done using an inductive procedure. Let C € A be a chain, not necessarily maximal.
We associate to C the submonoid I'c = {a@ € " | supp(a) C C}. Denote by M¢ =
(Tc)z € QA the lattice generated by I'c in Q4, and let N¢ be the dual lattice of M.
Set

Oc = @D R=4/R-q S gryR.

aelc
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In Sect. 10 we have discussed the case where C = € is a maximal chain. The same
arguments can be applied to show that Q¢ is a finitely generated integral domain.
Denote Y¢ = Spec Q¢ the associated affine variety. Again, as in Sect. 10, Y¢ is a
toric variety for the torus T¢ := Ty, i.e. the torus associated to the lattices Nc. The
K-algebra Qc is positively graded, so the affine variety Y¢ has a unique vertex which
we denote by 0.

The set of all chains in A is partially ordered with respect to the inclusion relation.

We fix an inclusion of chains C| € C. It induces an inclusion of monoids ic,,c, :
I'c, < T'c,, which in turn induces a morphism of algebras: ic, ¢, : Qc, <> Qc,. By
[19], Proposition 1.3.14, we get an induced toric morphism between the associated
varieties ¥¢, ¢, : Yc, = Y¢, and a group homomorphism ¢c, ¢, : Tc, = Tc,. All
these maps are compatible: for a sequence of inclusions of chains C; < Cy — C3,
one has ic,.c; oic,,c, =ic,,c; and ¥c,,c, o ¥c,,.c; = Vc,,c; and so on.

Moreover, we also have a closed immersion W¢, ¢, : Y¢, <> Y, of varieties: the
subspace

IC],CZ = @ RZQ/R>Q - QCz

QEFCZ \FC|
is an ideal and we have a natural isomorphism of algebras Qc,/Ic,,c, = QOc,. This

isomorphism induces the desired closed immersion W¢, ¢, : Yc, = Spec Q¢, —
Yc, =Spec Qc,. The composition of algebra morphisms

Qc, = Qc, > Qc, = 0 /Icy ¢,
is the identity map on Qc,. The composition of morphisms of affine varieties:

VYey,co vey,c,
Yo, < > Yo, > Yo,

is hence the identity map on Y¢,.

Remark 11.2 We can extend the above definitions to the case when C = ¢ is the empty
set. In this case ['y = {0} e T, My = {0} € Q4, Oy =K and Yy is the vertex O in all
toric varieties Y¢. Such definitions are compatible with the inclusion ¢ C C for any
chain C; this allows us to define iy c, ¥g.c, ¥g,c, etc.

Definition 11.3 A subset M of the set of all chains in A is called saturated if for any
chain C € M and a subset C’ C C, we have C’ € M. The set of all saturated subsets
in A will be denoted by °.

Notice that the empty set is contained in any saturated subset. The set K* is par-
tially ordered with respect to inclusion.
We now associate to M € ¥ an affine variety Z o as follows:
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Definition 11.4 For M € K, we define Z 5 as the following closed subset of the
product of varieties [ [-c 14 Y

Zm = 0c)c € l—[ YeIVCI S CreM, Wcl,cz(ycz)Z)’c.}-
CeM

We endow Z 5 with the induced reduced structure as an affine variety.

For C € M, the canonical projection pc : [[¢repq Yor — Y restricts to a mor-
phism pc: Z g — Yc.

Lemma 11.5 The morphism pc : Zaq — Yc is surjective.

Proof To prove the lemma, we associate to a chain C € M a subvariety Z¢ € Z g
having the property: pclz. : Z¢ — Yc is an isomorphism. As a first step we define
Zc as a subvariety of [ [/ 1 Ycr and set:

yc € Yc
yor =¥ener,cr o Yene,c(ye) YC' e M [T

Zc= { (yer)er € 1_[ Yer
C'eM

The subset Z is closed, we endow Z¢ with the induced reduced structure.

We show Z¢ € Z 4. Given a point (ycr)¢cr € Z¢ and two elements C; € Cy
in M, we have to verify that ¥c, c,(yc,) = yc,. Indeed, set Cl.’ = C NC; for
i = 1, 2. The inclusion C; C C, induces an inclusion C i - Cé. The two inclusions
induce two algebra homomorphisms: ic, ¢, : Qc, = Qc, followed by the quotient
4csc; 0 Qs =~ Qcy ~ 0cs/Icyc,» and the quotient map: e, ¢1 : Oc, — Q¢
QCl/IC{.,Cl followed by the monomorphism ici.c, + Qc; = Qcy- By construction,
these two algebra homomorphisms are the same, which in terms of morphisms of
varieties implies:

Ver.c, oW, =Yy ¢ 0 Ve )
And hence we conclude:

Ver.c,(ve) =V 0 Yoy o, 0¥eyc(ve)) = Ve ¢ o¥e o Veyc(e)
Ve ¢ oY c(ve)
= Yy

which shows: Z¢ € Z z4.

The restriction of p¢ to Z¢ induces a bijection between Z¢ and Y¢. The above de-
scription of Z¢ can be used to define an inverse map. It follows that Z¢ is isomorphic
to Yc. O

The varieties Z », satisfy the usual universal property of fibre products in the cat-
egory of affine varieties:
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Lemma 11.6 Let V be an affine variety. Given morphisms ®c : V — Y¢ forall C €
M such that for all C1 € Ca in M, &¢c, =V¥c,.c, o D¢, holds. Then there exist a
unique morphism n : V. — Z aq such that pc on = ®c.

Proof The image of the obvious map [[®c : V — [[ccaq Ye is contained in Z g
and this map has the desired property. g

When writing down a saturated subset, we usually omit the empty set.

Example 11.7 1If M = {C} is just a chain of length zero, then Zx( = Y¢ is a one-
dimensional (not necessarily normal) toric variety. If M ={Cy, ..., Cs} is a collec-
tion of chains, all of length zero, then the fibre product becomes a direct product and
Zp =Yc, X -+ x Y, is an s-dimensional toric variety.

Lemma 11.8 If M has a unique maximal element C, then Z g >~ Yc.

Proof By Lemma 11.6, the morphisms ¥¢ ¢ for C’ € C induce a morphism ¢ :
Yc = [1crem Yer with image in Z p4. This image is in fact the entire Z 4 by con-
struction. The compositions p¢ o ¢ and ¢ o pc, where pc : Z 1 — Y is the surjec-
tive map in Lemma 11.5, are identity maps. g

Let M',M € K° be such that M’ € M. The projection [[rrcpq Yer —
[Tcrear Yer induces a morphism between the fibered products:

Lemma 11.9 Any inclusion M’ € M induces a morphism Yy a2 Zpg — Zpayr-
These morphisms are compatible with the inclusion relations, i.e. for M" C M’ C
M one has Y p17 pm = Y MO YA M-

These morphisms can be used to describe an inductive procedure to construct Z .
Let C € M be a chain which is maximal in M with respect to the inclusion relation.
Let Mc={C"e M| C' CC}, M'= M\ {C}and M. = M\ {C}. These sets are
all saturated. Recall that the fibre products are considered in the category of varieties.

Lemma 11.10 There exists an isomorphism of varieties Z g = Y¢ XZ g LM
C

Proof If C is the only chain in M which is maximal with respect to the inclusion
relation, then M = M¢ and M’ = M-, and hence Yc xz,,, Zpr = Y = Z g by
Lemma 11.8. So without loss of generality we may assume in the following that C is
not the only chain in M which is maximal with respect to the inclusion relation.

By the universal property of the fibre product, the commutative square on the right
hand side, induced by the commutative square on the left hand side (Lemma 11.9),
gives rise to a morphism Z 4 — Y¢ XZM,C YAV

M/CHM/ Ipm — Zpmo=Yc
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By construction, the fibre product is a subvariety of

Ye x 1_[ Yo x 1_[ Yor x 1_[ Yer,

C'eM C'e Mg C"e M\ M

where, in addition to the maps defining Z ¢ C HC’EM/C Yor x HC”EM’\M’C Yer
(here we take the second copy of [ [-c M, Yc) and Z M. E [Tere M, Y (here we
take the first copy of [ [ M. Y¢’) and so on, we have the identity map between the
two copies of the product [ [ M. Yc/. So we may omit one copy of the product
HC/eM/C Ycr, what is left is the variety Z A4. O

For M € K* let My € M be the subset of all chains of length zero.
Proposition 11.11 The morphism Y a1, M 2 Zp —> Z A, 1S finite.

Before going to the proof, we discuss some consequences of the proposition.
Corollary 11.12 We have: dim Z yq = #M.

If we have saturated sets such that My € M’ C M, then, by Proposition 11.11,
the morphisms Y a1, M : Za —> Zpm, and Y aq, M7 2 ZAr —> Z A, are finite. Since
V¥ My, M 1s the composition of ¥ ¢ A4 and ¥ aq,, A1, this implies:

Corollary 11.13 Let M’ C M be such that Mo € M'. Then Y1y M Zam — Z gy
is a finite morphism.

More generally, for M" € M we set M” = M’ U M. The morphism ¥ aq aq
is the composition of the finite morphism o7 a4 and the projection ¥ a4 A4~, and
hence:

Corollary 11.14 If M’ C M, then Yypy a2 Zpg — Z payp is a surjective morphism.

Proof of Proposition 11.11 The proof is by induction on the number of elements in
M. If #M =1, then M = M, and there is nothing to prove. Suppose now #M > 1
and the claim holds for all saturated sets M’ having strictly fewer elements than M.
Let C € M be a chain which is maximal in M with respect to the inclusion relation.
The set M’ = M\ {C} is a saturated set. There are three possible cases:

(a). C is a chain of length zero. In this case the fibre product in Lemma 11.10
becomes a cartesian product, i.e. Zyq = Yo X Zagy and Zpg, = Yo X ZM6' In this
case the morphism Z 4 — Z p4, is finite by induction.

(b). C is the only chain in M which is maximal with respect to the inclusion
relation (hence of length > 1). In this case we know Mg = M and by Lemma 11.8,
Z pm = Y is an irreducible toric variety.

Chains of length zero in M are just elements of A. For p € A, we denote by C),
the chain in M consisting of p,i.e. C, ={p}.
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For every chain C, € My, the algebra Qc, = @gel“cp R>4/R-q = Kl[Yc,] is
a subalgebra of K[Yc]. As a matter of fact, from the construction, the compo-
sition of the morphisms Y¢ = Zy1 — Zaq, and Zpg, — Ye, identifies K[ch]
with this subalgebra. It follows that the morphism 1//7\40’ a 1dentifies K[Z ] =
®CpeMo K[ch] with the subalgebra of K[Yc] generated by the Oc,» Cp, € M.
In particular, the morphism ijo’ A s injective and ¥ aq, M 1s hence a dominant
morphism.

By adding some elements to a (finite) generating system of K[Y¢] if necessary,
we may without loss of generality assume it to have the form

{fp1Cpe Mo} U{gu1..... 8at}-

By Corollary 10.4, each of the generators g,; is integral over the polynomial subring
generated by the {fp | Cp € Mo}. It follows that K[Z a] = K[Y] is a finite module
over the subalgebra generated by the fp, C, € My, and hence K[Z /] is a finite
module over K[Z 1.

(c). C is a chain of length > 1 and C is not the only chain in M which
is maximal with respect to the inclusion relation. We still have My = M. Set
Mc={C'"e M| C"CC}and M/. = Mc \ {C}. These sets are saturated, and
Zpm = Ye XZM,C Zpp by Lemma 11.10. In this case one can use base change
arguments. By induction, Y¢ = Z . is finite over Zpq., and so is ZM/C over
ZM/c,o = ZMcy- Since Yyfe g Me = ch.o,M’C ) wM’C,Mc’ Z M, is finite over
ZM'c' By base change, this implies Z g ~ Y¢ sz,C Z py is finite over Z pp. By
induction, Z a4 is finite over Zyq, = Z M- Since Y aqy, M 1s the composition of
Y, m and Y aqe M2 Z pg 18 finite over Z pq,. g

11.3 The variety Zycs
The candidate for the variety Z mentioned in Sect. 11.1 is the variety Zjcs.
Proposition 11.15 The affine variety Zics satisfies the three properties 11.1.1-11.1.3.

Proof Given a €T, let C, Cy, C; be chains such that C = suppa and C C Cy, C3.
Denote by Mc (resp. Mc,, Mc,) the smallest saturated sets in K° containing C
(resp. C1, C2). By Lemma 11.8, we have Zxq. >~ Y¢ and ZMCI- ~Yc, fori=1,2.
The morphisms ¥4, Mg, are just the same as the morphisms ¥c ¢;, i =1, 2, and
hence wj/leMCi is just the inclusion ic,c; : Qc — Q¢;, i =1,2.

By construction, g, € K[Yc] = K[Za.] = Qc, and it is also an element in
K[Yc,] and K[Yc,]. By the compatibility of the dominant morphisms:

ch,ICS = ch,Mcl ° w./\/[cl JCs = wMC’MCZ © WMCZ,K“
we see that Wj‘\/lcy,@ (8a) = W}k\/lcl ks © wj\/ic,/\/lc] (8a) = w}“v(cz,;@ ° wj\/ic,/\/lcz (8a)-
(1). The variety Zs satisfies the property 11.1.1: given a € I', we can view

8a as a function on Zjs: just take any chain C in A such that suppa C C, then
1/%0 ics (84) € K[Zs] is well defined and independent of the choice of C.
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(2). The variety Zjcs satisfies the property 11.1.2: if there exists a chain C in A
such that suppa, suppb C C, then we have

Vite e Ba) Vi s 80 = Vi s (Ba - 80) = Cav¥ g sos Batd)-

So by abuse of notation we write for a € I' just g, € K[Zxs] for the function
I/ijc’ ics (8a), where C is a chain in A containing suppa.

(3). The variety Zycs satisfies the property 11.1.3: By Proposition 11.11, the map
1//,@)7 Kt Zes = Zi is finite. We adopt the notation C, from the proof of Proposi-
tion 11.11.

For an element g € A consider the projection pc, : Z K5 = HC,,e K Ye, = Yc,-
The coordinate ring Y¢ . contains the class of the extremal function fq, by abuse of
notation we also write fq eK[Z IC(;] for its image via pa. Due to the tensor product
structure of K[Z ’C’B] (compare to Example 11.7), the classes of the extremal functions
f, p» P € A, generate in K[Z Ksla polynomial algebra of dimension #A.

By the finiteness of lmgg’ ics » the classes of the extremal functions f, » € K[Zxs] (or
rather their images via 1//,*%’ jcs) generate a polynomial algebra in K[Zcs], which by
Corollary 11.12 is of the same dimension as dim Zjcs . It follows: there exists an open
and dense subset U C Zys such that fp(z) #0forallzeU.

Let a be an element in I". By property 11.1.2, the multiplication relations also hold
in K[Zjcs]. An appropriate power of g, (viewed as a function on Z) is hence in K[Z]
a non-zero scalar multiple of a product the f, »’s with p € suppa. It follows: g,(z) #0
forallze U andalla eT. U

The proof that Zys has the desired properties finishes thus the proof of Theo-
rem 11.1.

12 Flat degenerations

In this section we construct a flat degeneration from X to the reduced projective
scheme Proj(gry,R) using a Rees algebra construction. We start by extending the
valuation image by a total degree.

For a € T, there exists a homogeneous function g € R (Lemma 10.3) such that
V(g) = a with degree given by the formula in Corollary 7.5. This motivates the fol-
lowing definition of an extra N-grading on I'. Let 7 € N x I" be the subset

J=3(m,a)eNxT|ael\m= Z apdeg fp
pesuppa

Denote by > the lexicographic order on the set N x I'. For a pair (m,a) € N x I" let
Zs (m,q) be the following homogeneous ideal in R:

either degg = m and V(g) > g>

L ma) = <g € R | g homogeneous and {or degg > m
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It follows Zy(n,a)Lsk,b) € L>(m+k,a+b), SO the ideals define a filtration on the
ring R.
We define Z; (o) similarly. By Lemma 10.2, the quotient

{0}, if (m,a) ¢ J;

. (20)
Rzg/Rw_u if (m,a) € J.

L m,a)/Lrm,a) =

In particular, if (m, a) € J, the quotient space Z»(in,q)/Zs (m,a) is One-dimensional.

Let r : 7 — N be an enumeration of the countable many elements respecting the
total order, i.e. m((m, @)) < w((k, b)) if and only if (m, a) < (k, b) with respect to the
lexicographic order. We write sometimes just Z; if 7 ((m, a)) = j instead of T (5 q).
In this way we get a decreasing filtration:

R=Ty21, 21 2.
Let
A= @RPORIGROTiI @ Tt 2@ - CRI1, 1]

be the associated Rees algebra. The natural inclusion K[7] < A induces a morphism
¢ : Spec(A) — Al

The ring R = K[X] is clearly graded since X is the cone over the projective va-
riety X. We extend this grading to R[f,7!] by declaring that the degree of  is 0.
Being generated by homogeneous elements, the ideals Z; are homogeneous, hence
the subalgebra A C R[t,t~'] is graded. So we have natural G,,-actions on Spec(.A)
and on Al; note that the latter is trivial since K[] is in degree 0.

Theorem 12.1 The morphism ¢ is flat and G —equivariant. The general fibre for
t # 0 is isomorphic to X, the special fibre for t = 0 is isomorphic to Spec(gry,R).

Proof The ring A is a torsion-free K[t] module by the inclusion A € R[r, '], and
hence it is a flat module. For b # 0 it is easily seen that 4/(t — b) >~ R, and for t =0
we get

A/ =RITO@T /L @D /T3 @ = D Rza/Roa = gryR.
(ZpeA ap deg fpsQ)EJ

The morphism ¢ is G,—equivariant simply because its fibers are stable by the
G,—action on Spec(.A) since K[#] is in degree 0. Il

An immediate consequence of the G,,—equivariance of ¢ is the existence of an
induced morphism 1 : Proj(A) — A!; in particular we get the following result.

Theorem 12.2 The morphism  is flat. The general fibre for t # 0 is isomorphic to
X, and the special fibre for t = 0 is isomorphic to Proj(gry,R).

Combining Theorem 12.2 with the existence of a generic hyperplane stratification
in Proposition 2.11, we have:
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Corollary 12.3 Every embedded projective variety X C P(V), smooth in codimension
one, admits a flat degeneration into X, a reduced union of projective toric varieties.
Moreover, X is equidimensional, the number of irreducible components in X coin-
cides with the degree of X.

The varieties appearing as irreducible components of X are in general not linear
because the valuations Vg may take values in different lattices. See next section,
especially Sect. 13.5 for a convex geometric aspect of this corollary.

As mentioned in Remark 2.13, the above corollary resembles a geometric coun-
terpart of the result by Hibi [31] that finitely generated positively graded rings admit
Hodge algebra structures.

13 The Newton-Okounkov simplicial complex

In the theory of Newton-Okounkov bodies [37, 50, 59], one associates a convex body
to a valuation on a positively graded algebra by taking the convex closure of the
degree-normalized valuation images. The (normalized) volume of this convex body
computes the leading coefficient of the Hilbert polynomial of the graded algebra.

In our setup, the image I' :={V(g) | g € R\ {0}} C QA of the quasi-valuation V
is not necessarily a monoid. We need variations of the approaches in loc.cit. to define
an analogue of the Newton-Okounkov body for a quasi-valuation, so that its volume
computes the degree of the embedded projective variety X in P(V).

From now on we will work in real vector spaces with the usual Euclidean topology.
The spirit of the construction is much the same as in [24, Sect. 3].

13.1 The order complex

Recall that in Sect. 9.1, to every chain C in A we have associated a cone K¢ in RA
defined by

KC = Z Rzoep.
peC

The collection of these cones, together with the origin {0}, is the fan F,4 associated
to the poset A. Its maximal cones are the cones K¢ associated to the maximal chains
in A. Each of them comes endowed with a submonoid, the monoid I'e C K¢ (see
Sect. 9.1).

The order complex A(A) associated to the poset (A, <) is the simplicial com-
plex having A as vertices and all chains C C A as faces, i.e. A(A) ={C C A |
C is a chain}. A geometric realization of A(A) can be constructed by intersecting
the cones K¢ with appropriate hyperplanes: for a chain C C A denote by A¢c € RA
the simplex:

1
Ac := convex hull {—el, | pe C} . 2n
€g
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The union of the simplexes

A= |J Accr?
CCA chain

is the desired geometric realization of A(A). The maximal simplexes are those Ag
arising from maximal chains € in A.

13.2 The Newton-Okounkov simplicial complex

Let€={p, > --- > pp} be amaximal chain. To avoid an inundation with indexes, we
abbreviate throughout this section the natural basis e i of R¢ bye;,for j=0,...,r.
Similarly, the functions f),; (resp. the bonds by, ;) will be simplified to f; (resp.
bj)for j=0,...,r.

Let deg : R4 — R be the degree function defined by: for a € R4, set

dega := Zap deg fp.
PEA

If g € R\ {0} is homogeneous, then Corollary 7.5 implies that deg V(g) is the degree
of g.
Recall that C is the set of all maximal chains in A.

Definition 13.1 The Newton-Okounkov simplicial complex Ay, associated to the
quasi-valuation V is defined as

a

szz{ |g€F\{O}}§RA.

dega

Remark 13.2

(1) It is straightforward to show that

Ay = U U {%nger‘g,degg:m}.

ceCm=>1

(2) In the definition of the Newton-Okounkov bodies in [37, 50, 59] as closed convex
hulls of points, the convex hull operation is not necessary (see for example [60]).

Recall that a simplicial complex A of dimension r is called homogeneous when
for any face F of A, there exists an r-simplex containing F as a face.

Proposition 13.3 We have Ay, = |A(A)|. In particular, Ay, is a homogeneous simpli-
cial complex of dimension r.

Proof We show Ay C |A(A)|. Let g € R \ {0} be a homogeneous element with
V(g) = a € I'e. By Corollary 10.4, there exists m € N such that for any p € €,
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ma, € Nand V(g") = V(H[)EQ‘ f;,"“p), Noticing that

V(g) V(g™
degg  mdegg’

it suffices to assume that g =[] ,cc f;p for n, € N and a chain C C A. Let m =
degg =) ,ccnpdeg fp be the degree of g. If € is a maximal chain containing C,
then

V(g) _ Ve(g) _ Z np degfp

degg m hee m

1
(degfpe,,) € Ac SIAA).

Conversely, we show |A(A)| N QA C Ay . For a chain C C A, a pointin A¢c N QA4
|A(A)| N QA is a convex linear combination

N

1
Zapd—ep, with a, € Q>0 and Zap =1
peC egfp peC

Choose a non-zero m € N to be such that for all p € C: mde‘;pfp eN. Let g =

ap
mge D . .
[lpec fp /7' 1tis now easy to verify that

Vo) Ve g, 1
degg m = pdegfp P

This terminates the proof since Ay is closed. g

13.3 Rational and integral structures on simplexes

Let Hgr(t) be the Hilbert polynomial for the homogeneous cooordinate ring R =
K[X]. Our aim is to translate the calculation of its leading coefficient into a problem
of calculating the leading coefficient of certain Ehrhart quasi-polynomials. Let I'), =
{a € " | dega = n} be the elements in I" of degree n. Since the leaves of the quasi-
valuation are one dimensional, one has Hg(n) = #I';, = #Ay (n) for n large, where
Ay (n) is defined as the intersection nAy NT.

We have already pointed out that the lattice LE defined in (13) is in general too
large compared to the monoid I'¢. In the following let £¢ € L be the sublattice
generated by I'¢. The affine span of the simplex Ag is the affine subspace Uy =
degl_foeo + Uy of RE, where Uy is the linear subspace

1 1
o —
deg f; ' deg fo

This linear subspace Uy € R® can also be characterized as the kernel of the degree
function deg : R¢ - R, a > Zpe@ap deg f. Hence for m € Z, the affine subspace

UO;:spanR{ eo|j=l,...,r}.

U,, of RE of elements of degree m is given by:

Upn = ——e + Up = {a € R | dega = m}.
deg fo
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13.3.1 The projection

Let € = (py,..., po) be a maximal chain in A. The degree function deg : R — R
takes integral values on I'¢, and hence the function deg takes also integral values on
LY. Set Eg = Up N LY. For later purpose it is important to know that U,, N L% % ¢J
for all m € Z, this is a consequence of the following lemma:

Lemma 13.4 We have: Elfoeo eU;nLE.

Proof We fix an enumeration of the length O elements in A, say: ¢; = po, g2, - - -, gs,
and identify g; with the unique pointin X,;. Fori =2,...,s let h; € V* be a linear
function such that 4;(q;) #0for j =1,...,s, j #i, and h;(g;) = 0. The function

g= [] (22)
i=2,...,8
vanishes in ¢, ..., gg, but not in pg = q.

Let ¢’ = (p;, ..., p;) be another maximal chain and & € V* a linear function
which does not vanish in any of the points ¢, ..., gs. The same calculation as in
Example 8.5 shows that

s—1

V(g) =

eo and V(gh) = €.
deg fp, deg fp,

These elements are both in I'¢, hence ﬁeo is an element in the lattice £¢ gener-
PO
ated by ['g. g

Set £1 = ﬁeo. The projection pry, : RE — RE! (~ RE/R¢}) induces an
0
isomorphism of vector spaces:

pre, lug = Uo — RE\Pol,

We identify for convenience in the following Uy sometimes with RE\MP0} and we
identify ﬁg C Uy with its image in RE\(P0}, Note that ¢; is primitive, so the image of
,Cg is isomorphic to £&/Z¢;.

For all m > 1, the restriction pr, lu,, : Un — Up induces a bijection between the

affine subspace U,, and the vector space Uy. An element ¢, € £¢NU, can always
be written as £,, = mf + £o for some £ € Lg . The bijection pry, |y, induces hence

in this case a bijection between L% N U, and the lattice Eg C Up.
The map pry, is R-linear, so the restriction pr, |y, preserves the notion of the

affine convex linear hull of elements in U;. Set A% '=pry, lu, (A¢) € Uy, then

1
A = hull { —— e¢
¢ = convex hu {deg fpprgl(ep) | p }

1
= hull{0, ——e,. | j=1,...,r¢.
convex hu { degfpep-/ | j r}
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The same arguments hold for all m > 1:
pry, lu, (MAe) =mAY.
From this construction we have:
Lemma13.5 Foralln>1,# (nA¢ N £€) =# (nA% N £g).
13.3.2 Rational and integral structure

By fixing an ordered basis of £, one gets an isomorphism W : Uy — R’ which
identifies the lattice £§ € Uy with the lattice Z" € R". The simplex A% C Uy can be
identified in this way with the simplex D¢ C R”, defined as:

1
D¢ = convex hull {O, ——W(ep) | pe€\ {po}} CR.
deg f)

The simplex has rational vertices. Now Lemma 13.5 implies for all n € N:
#(nAeNLY) =#(nDeNZ'). (23)

The correspondence in (23) generalizes [24, Definition 3.1]; we call it a rational
structure on Ag. In case the vertices of D¢ are integral points, it will be called an
integral structure on Ag.

The map W and the simplex D¢ depend on the choice of the ordered basis of Eg.
But different choices of ordered bases lead to unimodular equivalent simplexes.

13.4 The degree formula

Let Ay, be the Newton-Okounkov simplicial complex associated to X and the quasi-
valuation V. For each maximal chain € let A¢ C Ay, be the associated simplex given
by the simplicial decomposition in Proposition 13.3. We fix for all maximal chains
¢ in A a rational structure on A¢ (see Sect. 13.3.2), denote by Dg € R” the corre-
sponding simplex with rational vertices. Let vol(D¢) be the Euclidean volume of the
simplex. This is also the normalized volume of A% with respect to the lattice /.Zg.

Theorem 13.6 The degree of the embedded variety X — P(V) is equal to

deg X =r! Z vol(De¢).
¢ceC

Proof Let Hg(t) be the Hilbert polynomial of the homogeneous coordinate ring
R =K[X]. The degree of X can be computed as r! - ¢, where ¢, is the leading co-
efficient of Hr(¢). By Theorem 11.1, the Hilbert polynomial Hg(¢) and the Hilbert
polynomial Hr(#) associated to the fan algebra K[I'] coincide.

Let Hg(?) be the Hilbert quasi-polynomial of the algebra K[I'¢]. The leading
coefficient of Hr(t) is the sum of the leading coefficients of the Hg(¢), where the
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sum runs over all maximal chains € in A. By Lemma 9.10, the leading coefficient of
He (1) is equal to the leading coefficient of the Hilbert quasi-polynomial He (¢) of the
algebra K[f‘d.

In the Sects. 13.2, 13.3.1 and 13.3.2 we construct a simplex D¢ € Q" such that
#(Te)m =#(mAc N LY) is equal to # (mDe NZ"), which implies that the leading
coefficient of ﬁg(t) is the same as the leading coefficient of the Ehrhart quasi-
polynomial Ehrp, (¢) associated Dg. In this case the leading coefficient is the Eu-
clidean volume of D¢ divided by the co-volume of the lattice Z", which finishes the
proof of the theorem. 0

The estimates above can be made more precise if the monoid ¢ is saturated, that
is to say, L N K¢ = I'g, for all maximal chains €. Algebraically it is equivalent to
say that the algebra K[I"¢] is normal. Geometrically this condition is equivalent to
the normality of all the irreducible components of the degenerate variety Spec(gry,R).
We give a name to such a situation:

Definition 13.7 A Seshadri stratification is called normal if I'¢ is saturated for every
maximal chain €.

Further results on normal Seshadri stratifications can be found in [17]. If this con-
dition is fulfilled, then the number of points #(nAy N T') can be determined as an
alternating sum of the set of lattice points in all possible intersections of the sim-
plexes.

Proposition 13.8 If the Seshadri stratification is normal, then the Hilbert func-
tion Hgr(t) of the graded ring R = K[X] is an alternating sum of Ehrhart quasi-
polynomials. More precisely, let €1, ..., & be an enumeration of the maximal chains
in A, then

Hrn= Y, (=D 'Ehrag nonag, (-

1<ij<---<ig<r
13.5 The degree formula and the generic hyperplane stratification

We fix a generic hyperplane stratification as in the proof of Proposition 2.11 and
choose the functions fj x as in Example 2.12.

To see the connection with the degree formula above, note that by Lemma 6.6,
for every maximal chain € = (g,, ..., q1, qo,;) the valuation V¢ takes values in the
lattice:

L ={(ar,...,a0) €Q%|(s —Vag€Z,a; €Z, 1 < j <r}.

Since £% € L%, Example 6.8 and Lemma 13.4 imply that one has indeed equality
LE=LC.

It follows that the projection pry, : RE — RE\490.j} (Sect. 13.3.1) induces an iden-
tification of Lg ~ Lc/Zﬁl with Z", and A% :=pry, lu, (Ae) 1s just the standard sim-
plex with vertices 0, ¢, . .., e,4, . Therefore in this case we can take W as the identity
map, and D¢ = AY, is a standard simplex of dimension r in R®\ 90,7,
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As a summary: For every maximal chain in A we get as simplex a standard sim-
plex, its Euclidean volume is % There are s maximal chains in A. The degree formula
in Theorem 13.6 reproduces hence the predicted number.

14 Projective normality

In this section, we give a criterion on the projective normality of the projective variety
X C P(V) using the normality of the toric varieties Spec(K[I"¢]) and the topology
of the poset A.

Let SR(A) be the Stanley-Reisner algebra of the poset A. By definition

SR(A) :=K]t, | p € A]/(tpt4 | p and g are incomparable).

The Stanley-Reisner algebra has a linear basis consisting of #, := tla,’r' .- -tzg where
&= (pr,..., p1, po) runs over all maximal chainsin A and a = (a;, ...,ap) € N¢,
The poset A is called Cohen-Macaulay over K, if the algebra SR(A) is Cohen-
Macaulay. As an example, a shellable poset A is Cohen-Macaulay over any field
K [6].
The goal of this section is to prove the following result:

Theorem 14.1 If the Seshadri stratification is normal and the poset A is Cohen-
Macaulay over K, then

i) the ring R is normal, hence X C P(V) is projectively normal,
i) the special fibre X is Cohen-Macaulay.

Proof The proof follows the ideas in [13]. We divide it into several steps.

Step 1. We construct an embedding of K-algebras ¢ : K[I'] — SR(A). This endows
SR(A) with a K[I"]-module structure.

Let M be the product of all bonds in G4. For a fixed maximal chain €, by
Lemma 6.6, the monoid ¢ is contained in the lattice LY, hence MT'¢ € N€. The
embedding of monoids I'¢ <> N%, a > Ma induces injective K-algebra morphism
¢ :K[T¢] — K[N¢]. In view of Corollary 9.1, we define a morphism of K-algebra
¢ :K[x, | a € '] = SR(A) in such a way that for a maximal chain € and a € I'g,
¢ (xq) = ¢g(xq) = tpyq. This map is clearly independent of the choice of the max-
imal chain so it is well-defined. Since the ¢¢ are injective, ¢ passes through 7(I"),
yields an injective K-algebra morphism from K[I'] to SR(A), which is also denoted
by ¢.

Step 2. We define a K[I']-module morphism ¢ : SR(A) — K[I'].

We start from considering a single maximal chain €. Let ¢ : K[N¢] — K[[¢] be
the K-linear map sending ¢, € K[N%] to Xq/m if a € MT¢ or to 0 otherwise. We show
that ¥¢ is a morphism of K[I'¢]-modules, where the K[I'¢]-module structure on
K[N?] is defined by: for a € I'¢ and b € N, Xg - tp :=tpaqtp- 1t suffices to show that
fora € I'g and b € N¢, Ve (tmaty) = XaWe(tp). If b € MT'¢ then there is nothing to
show. Assume that b ¢ MT'¢, then ¢ (1) = 0. We need to show that Ma+b ¢ MTs.
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Assume the contrary, since MT'¢ is saturated, b = (Ma + b) — Ma € MT' ¢ gives a
contradiction.

For the general case, take a monomial #, in SR(A) supported on a maximal chain
¢ and define v (#) := Y¥e (). It is independent of the choice of the maximal chain
¢, hence the map v is well-defined.

To show that i is a morphism of K[I']-modules, take a € T, there exists a max-
imal chain ¢’ such that supp(a) € ¢'. Take a monomial 7, in SR(A) supported on
a maximal chain €. If the support of 7, is not contained in ¢, ¢ (xq) - tp = 0. Oth-
erwise we assume that they both supported in &, and ¥ (¢ (x4) - 1) = Ve (Epatp) =
¢(xq) - Y (1p).

One easily verifies that as linear maps v o ¢ = idg|r.

Step 3. The K-algebra K[I'] is Cohen-Macaulay over K.
We start with the Stanley-Reisner algebra, which is Cohen-Macaulay by assump-

tion. Consider the following elements in SR(A): fori =0, 1,...,r with r =dim X,
l; = Z Ip.
peA, t(p)=i

Since SR(A) is Cohen-Macaulay, £g, €1, ..., £, form a regular sequence in SR(A).
We prove the Cohen-Macaulay-ness of K[I'] by constructing a regular sequence
in K[I'] of length r + 1. Then the depth of K[I'] is greater or equal than r 4 1, while
the other inequality always holds.
Since any two elements in A having the same length are incomparable: we con-
sider the elements

M= Z zj)”,i=0,1,...,r.
peA, U(p)=i

These elements form a regular sequence in SR(A), and they are contained in the

image of ¢.
We choose the unique element u; € K[I'] such that ¢ (u;) = ZlM , and show that the
image of u; is not a zero divisor in K[I"]/(uo, ..., u;j—1). Assume the contrary, there

exist hg, ..., hj—1 € K[I'] such that u;h = houg + - - - + hj—1u;—1. Applying ¢ gives
Mo (h) =g o))l + -+ P (hi—)EM | IE ¢ (h) = 50t} + - +5;_1 £} | for some
505 -.-,8i—1 € SR(A), applying K[I"']-module morphism 1 gives h = ¥ (so)ug +
-+ ¥ (si—1)u;_1, contradicting to the assumption that 7 ¢ (uo, ..., u;—1). There-
fore ¢ (h) ¢ (ZM, e, E%l), contradicts to the fact that Zg”, Zf”, e, Zﬁ” is a regular
sequence.

Step 4. The ring R is normal, hence X € IP(V) is projectively normal.

By Theorem 11.1, gry,R is isomorphic to the fan algebra K[I'], it is therefore
Cohen-Macaulay. Since being Cohen-Macaulay is an open property, Theorem 12.1
implies that R is Cohen-Macaulay. According to the axiom (S1) of a Seshadri strat-
ification, the ring R is smooth in codimension one. By Serre’s criterion, R is nor-
mal. U
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15 Standard monomial theory

In this section we first review the results from the previous sections in terms of a
weak form of a standard monomial theory for the ring R = K[X]. Imposing addi-
tional conditions on the Seshadri stratification gives stronger versions of this theory.
We will discuss two of these enhancements: the normality and the balancing of the
stratification. In case these requirements are fulfilled, the ring R admits a structure
closely related to the LS-algebras [13].

15.1 A basis associated to the leaves

For a e I" we choose a regular function x, € R with quasi-valuation V(x,) = a.
By Lemma 10.2, R = @, Kx, as a K—vector space. In particular, for each pair
a,b €T, there exists a relation, called straigthening relation,

Xg * Xp = Z u%’kxQ 24)

atb<'c

expressing the product x, - xp in terms of the K-basis elements. In what follows,
each time we refer to the coefficients u%é of a straightening relation, we will simply
write u. by omitting the dependence on the leaves a and b if this does not create any
ambiguity.

The restriction on the indexes of the possibly non-zero terms in the expression
above comes from the fact that V is a quasi-valuation (Lemma 3.3). This implies that
uc # 0 only for those ¢ € I such that @ + b <’ c. We recall that a + b € T" if and only
if suppa U supp b is a chain in A (Corollary 9.1). In such a case, the term x4, does
appear in the straightening relation for x4 - xp, i.e. uq1p # 0. This term is clearly the
leading term in the above straightening relation.

Remark 15.1 In analogy to the theory of LS-algebras developed in [13] and [14],
one can call the data consisting of the generators x, with a € I' and the straightening
relations an algebra with leaf basis over I" for the ring R. Results in previous sections
can be proved in the general algebraic context of an algebra with leaf basis; this will
appear in a forthcoming article.

15.2 Normality and standard monomials

Imposing the normality to the Seshadri stratification allows us to make a natural
choice to the monomials, and to define the condition of being standard in a standard
monomial theory. Let € be a maximal chain in A.

Definition 15.2 An element a € 'y is called decomposable if it is 0, or if there exist
ay, a, € I'¢ \ {0} with minsuppa; > maxsuppa, such that a = a, +a,. We say that
a is indecomposable if it is not decomposable.

Proposition 15.3 Each a € I'¢ has a decomposition a = a; +a, + --- + a, with

ay,ay, ..., a, € I'e indecomposable such that minsuppa ; > maxsuppa ;. for each
j=12,...,n—1.
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Proof 1If a is 0 or indecomposable, then there is nothing to prove. So we suppose that
a is decomposable and proceed by induction on the degree of a.

Leta =a; + a, with a;,a, # 0 and minsuppa; > maxsuppa,. By induction,
both a; and a, have decompositions into indecomposable elements. Putting them
together gives a decomposition of a. g

The decomposition as in the above proposition may not be unique. The uniqueness
holds in an important special case. Recall that ' is saturated if LE N K¢ = T'¢ (see
the paragraphs before Proposition 13.8).

Proposition 15.4 If T'¢ is saturated, the decomposition of any element in I'g is
unique.

Proof Leta=0b,+---+b,=c; +---+ ¢, be two different decompositions of a
into indecomposable elements. Let k be minimal such that b, # ¢,. We can assume
that either min supp b, > minsuppc, or that p = minsupp b, = minsuppc; but the
entries of b, in p is strictly less than that of ¢;. In both cases d =¢; — b; #0 is an
element of L% N K¢ = I'g and hence ¢, = b, +d with minsupp b, > maxsuppd.
This is impossible since ¢, is indecomposable. O

Assume that the Seshadri stratification is normal (Definition 13.7). Let G C T be
the set of indecomposable elements in I". By Proposition 15.3, G is a generating set
of I'. For each a € G, we fix a regular function x, € R satisfying V(x,) = a and
denote Gg := {x, | a € G}.

Definition 15.5 A monomial Xa, """ Xa, witha,...,a, € G is called standard if for
each j we have minsuppa; > maxsuppa;_ ;.

When writing down a standard monomial x, L Xa, s it is understood that for each
J, minsuppa; > maxsuppa ;. holds.

By Proposition 15.4, any element a € I' has a unique decomposition a = a; +
.-+ + a, into indecomposable elements. By Proposition 15.3, there exists a maximal
chain € such that suppa; € € for all j =1,...,n. By Proposition 8.9, this implies
that the quasi-valuation is additive on standard monomials. Summarizing we have:

Proposition 15.6

i) The set G is a generating set for R.
ii) The set of standard monomials in Gg is a vector space basis for R.
iii) Ifa=a, +a, + --- +a,, is the decomposition of a € I" into indecomposables,
then the standard monomial xg := x4, - - - X, is such that V(xq) = a.
iv) If amonomial x4, - - - x4, is not standard, then there exists a straightening relation
expressing it as a linear combination of standard monomials

xﬂl o .xgn = Zuhxgh,l o .xgh,nh ’
h

where, as in (24), up # 0 only ifa; +---+a, <"a, | +---+a;,, .
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v) Ifiniv) there exists a chain € such that suppa; C € foralli =1,...,n,and 2/1 +
-+ a), is the decomposition of a; + - - - + a,, € I then the standard monomial
Xgl -+ Xa), appears in the right side of the straightening relation in iv) with a

non-zero coefficient.

We must note here that it is not true in general that, given p € A, the element
ep € I' is indecomponsable. But there exists a positive integer m, such that mLpe »
is the unique indecomponsable element with support {p}. Indeed, assume that p €
¢ for a maximal chain €, then ¢, € I'¢ and there exist indecomponsable elements
uiep, ..., upep, withuy, ..., u, € Q-o, such that

n
ep= E uep

i=1

is the decomposition of e;,. Now let %e p» With a, m € Q- o, be an indecomponsable
element. Then we have

n
a

E auje, =dae, =m- —e
- p p m’P
=

and, since the decomposition of ae;, is unique, we have au; = % for each i. So
U = %, a=1and %e p 1s the unique indecomponsable element with support {p}.
In the following, whenever the stratification is normal, we fix a function 4, € R

such that V(h)) = mLpep and we set x,/m, = hp € Gg. The function %, does not

vanish identically on X, since Vg (hp) = %e p» Where € is any maximal chain in
A containing p. In some special situations, as will be shown in the proof of Theo-
rem 15.12 below, the functions 4, p € A, have vanishing properties similar to those

of the functions f,.
15.3 Balanced stratification

In the process of associating a quasi-valuation to a Seshadri stratification, the only
choice we made is a total order <’ on A refining the given partial order (see Sect. 8
for all possible choices for such a refinement). To emphasize this dependence, we
write V< for the quasi-valuation and I'<: for the fan of monoids in this subsection.

Definition 15.7 A Seshadri stratification of the variety X is called balanced® if the
following two properties hold:

(1) the set I'<r of leaves for the quasi-valuation V< is independent of the choice of
the total order <’: this allows us to simply write I" instead of L

(2) for each a € T there exists a regular function x, € R such that V/(x,) = a for
each possible total order <’ J

6The notion of a balanced Seshadri stratification got generalized in [18, Sect. 2.9], where the length-
preserving condition on the refinements of the partial order is removed.

7This second condition is a consequence of the first one, see [18, Sect. 2.9] for a proof.
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Remark 15.8 If the Seshadri stratification is normal and balanced, the second condi-
tion above can be weakened: it suffices to require this condition to hold for a € G,
the indecomposable elements in I

For a balanced stratification the order requirement in the straightening relations
(24) is much stronger. It carries more the spirit of the classical Pliicker relations.

Definition 15.9 Leta, b € Q4. We write a < b if a <' b for each total order <’ on A
extending the given partial order < and such that p <’ g if £(p) < £(q).

Note that the partial order < is not necessarily a total order on (@A. Indeed, if p
and ¢ are not comparable in A and £(p) =€(q) thene, ¥ ¢, and e; £ ).

Proposition 15.10 If the Seshadri stratification is balanced, then in the straightening
relation (24) with the choice of x4 as in Definition 15.8, we have: u. # 0 only if
at+bdec.

15.4 Compatibility with the strata

We have seen in Remark 2.4 that each stratum X, in the Seshadri stratification of
X is naturally endowed with a Seshadri stratification. Let 1 be the quasi-valuation
on R = K[)A( ] and let >’ be the total order on A chosen in the construction of V.
We denote by >’ the induced total order in A, and let V,, be the associated quasi-
valuation on R, = K[X »]. So we get an associated fan of monoids etc. It is natural to
ask under which conditions these objects are compatible with the corresponding ones
for X. The best result is obtained in case the Seshadri stratification of X is balanced
and normal. Indeed, in this case one gets automatically a standard monomial theory
for each subvariety X .

We assume for the rest of this subsection: the Seshadri stratification of X is bal-
anced and normal.

Let G C I be the subset of indecomposable elements and Gg :={x, |a € G} S R
be a set of regular functions chosen as in Definition 15.7 (2) (see Remark 15.8).

Definition 15.11 Let p € A. A standard monomial x4, - --x, on X is called standard
on X, if maxsuppa; < p.

By fixing an element p € A one gets various natural objects associated to A:
Gp:={aecG|suppa S A,}, GRp = {xa_|xp laeGpl,and T, :={a eI |suppa C
Ap}. We consider the vector space QA» as a subspace of Q4. Since every maximal
chainin A, is a chain in A, by abuse of notation we write V,,(f) € QA for a non-zero
function f € K[)A(p].

Theorem 15.12 [f the Seshadri stratification of X is balanced and normal, then the
following holds:

1) Forall p € A, the induced Seshadri stratification on X , is balanced and normal.
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ii) The fan of monoids associated to V), is equal to T, G, is its generating set of
indecomposables and G, is a generating set for R, = K[X ol
iii) If x, is a standard monomial, standard on X , then V), (x£|xl,) =V(x,) =a.
iv) The restrictions of the standard monomials x| x i standard on X p,, form a basis
of K[X,].
v) A standard monomial x, on X vanishes on the subvariety X , if and only if x, is
not standard on X .
vi) The vanishing ideal T(X,) € R = K[X] is generated by the elements in Gg \
GR/:’ and the ideal has as vector space basis the set of all standard monomials
on X which are not standard on X .
vii) For all pairs of elements p,q € A, the scheme theoretic intersection X, N X,
is reduced. It is the union of those subvarieties X, such thatr < p andr < q,
endowed with the induced reduced structure.

Proof We start with the most important property v). Let x4 := x4, - -- X4, be a stan-
dard monomial and g := max suppa;.

The monomial x, is standard on X, if and only if ¢ < p. In this case, by Propo-
sition 15.6 iii), we have V(x,) = a. Let € be a maximal chain containing suppa and
p (the existence is guaranteed by g < p). By Proposition 8.7, V(x4) = Ve (x,) and
hence x, does not vanish on X .

For the other implication, assuming ¢ £ p, we show that x, vanishes on X ,. The
proof is by descending induction on the length of g. There are two cases:

(a). g and p are comparable, i.e. ¢ > p. Notice that the base step ¢ = pmax Of the
induction is included in this case. Let M be a positive integer such that Ma €
N4,

(a.1). Assume that suppa = {g}. Then a =n - m—lqeq by the discussion after
Proposition 15.6; so we can choose M = m,,. The monomial x = x,
is standard and it is equal to hZM - Note that f' and xp, have the same
value ne, for each quasi-valuation V<; hence we have

fl=c-hM+g,
where ¢ € K* and g is a linear combination of standard monomials
xp of the same degree of f7' with ne; < b, neg # b. So, if we set
g’ = max supp b we have £(q") > £(g). Hence ¢’ £ p and, by induction, g
vanishes on X ,. Since f, vanishes on X, as well, it follows that 4, and
hence x, vanish on X, too.

(a.2). We assume that suppa # {q}. Since the Seshadri stratification is nor-
mal, there exist 0 # a4’ € I' and n > 1 such that Ma = ne, + a’ and
max suppa’ < g. In this case xy7, = th" xg'. Notice that x/ is not a stan-
dard monomial: in its straightening relation we choose a standard mono-
mial x;, with non-zero coefficient. By Proposition 15.10, Ma < b. We
denote g’ := max supp b, then either ¢ = ¢’ or £(q’) > £(q).

In the first case, we can write b = me, + b’ with a rational num-
ber m > n. Since b —ney €T, xp = hgm"xé,neq. Since we have already
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proved in (a.1) that &, vanishes on X, so does x;,. In the second case, xp
vanishes on X, by induction.

(b). ¢ and p are not comparable. In this case x,/ , is not standard: in its straightening
relation we take a standard monomial x; with non-zero coeffcient. By Proposi-
tion 15.10, a + ¢, /m, < b. We denote ¢’ := max supp b, then £(q") > £(g) and
2(q") > £(p). The last inequality implies ¢’ £ p, and the induction can be ap-
plied: x; vanishes on X . This shows that x,/, vanishes on X . Since &, does
not vanish on X, and X, is irreducible, x, vanishes on X .

This completes the proof of v).

We prove iii). Let x, be a standard monomial, standard on X . By v) we know
that the restriction x,|x, does not identically vanish, so it makes sense to consider
the quasi-valuation V) (x4|x,). Let ¢’ C A, be a maximal chain in A, and let € be
an extension of the chain to a maximal chain in A. Keeping in mind the identification
of Q47 as a subspace of Q*, the renormalizing coefficients of the valuation in Defini-
tion 6.2 are chosen such that V,, ¢7(x4|x [,) = V¢ (x4). Conversely, since suppa C A,
one can always find a maximal chain ¢’ in A, containing the support and extend this
chain to a maximal chain € in A. Since € contains suppa we get: V(x4) = Ve (x4),
and the latter is by the above equal to V,, ¢/ (x4| x,)- 1t follows: V), (x4 x p) =V(xg).

Parts i), ii), iv) follow from part iii). Part vi) is an immediate consequence of iv)
and v).

It remains to prove vii). Let Y € X be the union of the subvarieties X, such that
r < p and r < g, endowed with the induced reduced structure. We say a standard
monomial x, on X is standard on Y if it is standard on at least one of its irreducible
components. It follows that the restriction x4|y of a standard monomial vanishes
identically on Y if and only if it is not standard on Y. So the restrictions x,|y of
the standard monomials, standard on Y, span the homogeneous coordinate ring K[Y]
as a vector space. Indeed, it is a basis: given a linear dependence relation between
standard monomials x,|y, standard on Y, fix a € A such that at least one summand
with a non-zero coefficient is standard on X;. All summands which are not standard
on X; vanish on X;, so after restricting the linear dependence relation to X, one gets a
non-trivial linear dependence relation between standard monomials, standard on X;,
which is not possible by iv). It follows that the homogeneous coordinate ring of Y has
as vector space basis the standard monomials, standard on Y, and the vanishing ideal
Z(Y) C R has as vector space basis the standard monomials which are not standard
on Y. Using the decomposition of an element a € I" into indecomposables, we see
that Z(Y) is generated by those x, € G such that x, is not standard on Y. But this
implies x, is either not standard on X , and hence x, € Z(X ), or x, is not standard on
X4 and hence x, € Z(X,). It follows by vi): Z(X4) + Z(X ) = Z(Y), which finishes
the proof. g

15.5 Algorithmic aspects of standard monomials
We restate some of the above results in the language of Khovanskii basis and dis-
cuss an implementation of the subduction algorithm (see for example [38]) to write

a mononial in R = K[X] into a linear combination of standard monomials. We keep
notations as in previous subsections.
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Definition 15.13

(1) A subset B C R is called a Khovanskii basis for the quasi-valuation V<, if the
image of B in gry, , R generates the algebra gry, | R.

(2) A subset B C R is called a Khovanskii basis for the Seshadri stratification, if it
is a Khovanskii basis for all possible V<r, where <! is a linear extensions of <
satisfying: if £(p) < £(g) then p <’ q.

Combining Lemma 9.6 and Theorem 11.1 gives

Corollary 15.14

i) For any total order <', there exists a finite Khovanskii basis B: for the quasi-
valuation V: .
i) If the Seshadri stratification is balanced, there exists a finite Khovanskii basis for
the Seshadyri stratification.
iii) If the Seshadri stratification is normal and balanced, the set Gg is a Khovanskii
basis for the Seshadri stratification.

Assume hereafter that the Seshadri stratification is normal. For g € R, denote by
g its image in gry,R.

Algorithm 15.15 (Subduction algorithm)

Input: A non-zero homogeneous element f € R.

Output: f =Y cqa,...a,Xa, " Xa, Where ca,, .o €K*and x4, --- x4, is a standard
monomial.

Algorithm:

,,,,,

(1). Compute a := V(f) and choose a maximal chain € such thata € I'¢.

(2). Decompose a into a sum of indecomposable elements a =a; + --- + a,, such
that minsuppa; > maxsuppa; ;.

(3). Compute f and Xg, -+ X4, in gryR to find A € K* such that f =Xy, -+ X, -

(4). Print Axg, ++ Xa, and set f1:=f —AXg, " Xg, . If f1 # 0O then return to Step (1)
with f replaced by fi.

(5). Done.

Proposition 15.16 For any valid input, the algorithm terminates and prints out the
output as in the description.

Proof We first prove the termination of the algorithm. Assume the contrary. In the first
step V(f) < V(f1) holds by construction. Iterating this argument gives an infinite
long sequence

V() <V <V(f)<---,

hence f, f1, f2, ... are linearly independent. In the first step f and x4, --- x4, have
the same degree, so does fi. Repeating this argument shows that f, f1, f2,... are in
the same homogeneous component of R, contradicting to the linear independency.
Once the termination is established, the correctness holds by Lemma 10.2 and
Proposition 15.6. O
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The subduction algorithm allows us to lift relations in gry, R to R.

Let S denote the polynomial ring in variables y, for a € G. There is a surjective
algebra morphism ¢ : § — R sending the variable y, to the regular function x, € R.
Let I denote the kernel of ¢.

We apply the subduction algorithm to lift relations from gry, R to R. Let ¢ : K[z, |
a € G] — gry R be the algebra morphism defined by 1, — X, and Iy, be its kernel.
By Proposition 15.6, ¢ is surjective. For r(#,) € Iy) we set g :==7(y,) € S. The setup
is summarized in the following diagram:

7
S :=Klyal R
I
K41 gryR.

We apply the subduction algorithm to ¢(g) and denote the output by 4. Being a
linear combination of standard monomials, /# can be looked as an element in S. We
set7:=g—hekerg CS.

From the subduction algorithm, all these relations 7 for r € I, are sufficient to
rewrite a product of elements in the generating set Gg as a linear combination of
standard monomials. This proves

Corollary 15.17 The ideal I is generated by {¥ | r € I)}.

As a matter of fact, lifting a particular generating set of Iy, gives a Grobner basis
of I. Details on this lifting, applications to the Koszul and Gorenstein properties, as
well as the relations to Lakshmibai-Seshadri algebras, can be found in [17].

16 Examples
16.1 Seshadri stratifications of Hodge type

We consider a special case of a Seshadri stratification where all bonds appearing in
the extended Hasse diagram G 4 are 1; such a Seshadri stratification will be called of
Hodge type. Their properties are summarized in the following proposition.

Proposition 16.1 The following statements hold for a Seshadri stratification of Hodge
type.

1) For any maximal chain &€, the monoid T ¢ coincides with N, hence the Seshadri
stratification is normal.
ii) The degenerate algebra gry,R is isomorphic to the Stanley-Reisner algebra
SR(A).
iii) There exists a flat degeneration of X into a union of weighted projective spaces,
one for each maximal chain in C.

@ Springer



Seshadri stratifications and standard monomial theory

iv) If the poset A is Cohen-Macaulay over K, X C P(V) is projectively normal.
V) The degree of the embedded variety X CP(V) is

1
@Z:ec qu@ degft] .

vi) The Hilbert polynomial of R is given by the formula in Proposition 13.8.
vii) The Seshadri stratification is balanced.
viii) Ifdeg(f,) =1 forall p € A, then the subvarieties X , are defined in X by linear
equations.
ix) Forany p,q € A, X, N X, is a reduced union of the subvarieties contained in
both of them.

Proof By Remark 6.7, for any maximal chain € in A, the lattice L® = Z%. Together
with Example 6.8, it implies I'¢ = N¢. Therefore K[I'¢] are polynomial algebras,
and the associated (projective) toric varieties are weighted projective spaces. The
first six statements follow from Proposition 9.8, Theorem 11.1, Theorem 13.6, Theo-
rem 14.1 and Proposition 13.8.

It remains to show vii), then viii) and ix) follow from Theorem 15.12. By 1), all
monoids I'¢ = N¢ do not depend on the possible choices of the total order <’. The
set G of indecomposable elements is given by {e,, | p € A}. In view of Remark 15.8,
we choose f, as the regular function, its image under the quasi-valuation V< is e,
which is independent of the possible choices of <’. U

According to Remark 2.4, for any p € A, the induced Seshadri stratification on
X is of Hodge type, so results in the above proposition hold for X .
We apply it to low degree projective varieties.

Corollary 16.2 If X C P(V) is a projective variety of degree 2 which is smooth in
codimension one, then X is projectively normal.

Proof Under the degree 2 assumption, the generic hyperplane stratification for X
in Proposition 2.11 with choices of fy ; as in Example 2.12 is of Hodge type. The
statement follows from Proposition 16.1 iv). |

Example 16.3 We consider the Seshadri stratification of the Grassmann variety
GryK”" with the Pliicker embedding in Example 2.6 where all the bonds are 1 and
the extremal functions are of degree 1. In this case the poset A is a distributive lat-
tice, hence for any p € A, the subposet A, is shellable and hence Cohen-Macaulay
over any field K ([6]). Applying Proposition 16.1, we obtain:

i) a degeneration of Schubert varieties X (i) € GryK" for i € I, into a union of
projective spaces using quasi-valuations, recovering the main results in [27];
ii) the projective normality of the Schubert varieties X (i) for i € 1; , in the Pliicker
embedding;
iii) the degree of the embedded Schubert varieties X (i) as the cardinality of C; for
i €lyn;
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iv) the Schubert varieties are defined by linear equations in the Grassmann variety;
v) the intersection of two Schubert varieties X (i) N X (j) is a reduced union of
Schubert varieties.

The projective normality of the Schubert varieties in Grassmann varieties are proved
by Hochster [32], Laksov [49], and Musili [57] (see also the work of Igusa [34] for
the Grassmann varieties themselves). Our approach is a geometrization of the one in
the framework of Hodge algebra by De Concini, Eisenbud and Procesi in [23].

Remark 16.4 On Grassmann varieties there exist many Seshadri stratifications. For
example, all positroid varieties [42] in X, together with some well-chosen extremal
functions, form a Seshadri stratification on Gr,C*. Details will be given in a forth-
coming work.

Example 16.5 For any finite lattice £ with meet operation A and join operation V,
Hibi [31] introduced a graded K-algebra

Rr(L) :=Klxg | £ € L] (xexp — XenpXeve | £, € € £ non comparable),

which is an integral domain if and only if £ is a distributive lattice. In this case,
one obtains a projective toric variety Y, C P(KI£1), called Hibi toric variety. For
pel,L,:={{e L]l p}isagain a distributive lattice. We leave to the reader
to verify that the collection of projective subvarieties Y., and f) :=x, for p € £
defines a Seshadri stratification of Hodge type on Y. Proposition 16.1 recovers the
well-known degeneration of the Hibi toric variety into the variety associated to the
Stanley-Reisner algebra SR(L) and its projective normality.

16.2 Compactification of a maximal torus

The action of the torus 7 of PSL3(C) on sl3(C) defines an embedding of 7 in
P(End(sl3(C))). Since this is a diagonal action and the weights of s[3(C) are the
union ®¢ of 0 and the root system ®, we get an embedding

T >t +—> [ty € gl € PO(C).

Let X C P%(C) be the torus compactification given by the closure of the image of
this embedding. We want to show that the 7—orbit closures in X are the strata for a
Seshadri stratification.

If we denote by [x, |y € ®¢] the homogeneous coordinates in P(C) then the
equations defining X in P6(C) are

XyXs = XeXxy, V,6,€,n€ Pgsuchthaty +6=¢€+n.

It is well known that the T'-orbit closures in X are in bijection with the faces of the
polyhedral decomposition of R? given by the Weyl chambers. Further, it is easy to
check that:

(i) we have six O—dimensional (closed) orbits {p, }, y € ®, where p, € X has co-
ordinates x, (py) =1 and x5(p,) =0for § # y,
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(ii) the six 1-dimensional orbit closures are the projective lines £, s passing through
Dy, Ds,Withy, 6 € @,y #5 and y + 6 ¢ Do.
(iii) X is the unique 2—dimensional orbit closure.

Clearly these varieties are all smooth in codimension one.

Let us denote by «, 8, 6 the three positive roots of ® such that @ + 8 = 6. The
inclusion relations among these orbits, i.e. the same inclusion relations among the
faces of the polyhedral decomposition of R?, are as follows:

Pp Py

|

If we choose as extremal functions

(i) x, for the orbit p,,,
(ii) x,xs for the orbit closure £, s,
(iii) xo for X

then we get a Seshadri stratification with all bonds equal to 1.

Remark 16.6 A normal projective toric variety admits a Seshadri stratification where
the subvarieties are orbit closures arising from the torus action. We will return to this
example in a separate work.

16.3 A compactification of PSL;(C)

The De Concini—Procesi compactification X of G = SL,(C) is the projective space
of all 2 x 2 matrices (see [22]). The group G x G acts on X by left and right multi-
plication

(g, h) - [Al=[gAR™"].

If B is the Borel subgroup of upper triangular matrices of G, then the B x B—orbit
closures in X are: Xy = {[8 (1)“, a unique point, X| = {[8 :]} and X, =
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{ [S 3} } two projective lines, X3 = { |:I :i| of rank one } a smooth quadric,

X4 = ”:;; I:| }, a projective plane, and X5 = X ~ P*(C).

Let (JZC f ) be the coordinates on the space of matrices and define the following

functions: fo =y, fi=t, fo=x, 3=z, fa=xt —yzand fs =z(xt — yz).
The inclusion relations for the subvarieties and the associated functions are

X5, f5=2z(xt —yz)

N

T ><X4’ 1
X1, fi=t X, fa=x
Xo. fo=»
It is easy to check that the orbit closures Xo, ..., X5 with the corresponding ex-
tremal functions fy, ..., f5 give a Seshadri stratification of X.

16.4 A family of quadrics

We see a Seshadri stratification for certain quadrics. Let [x : y : z : ¢] be the homo-
geneous coordinates on P3(C), let & = ax + by + ¢z be a linear polynomial where
(a,b) # (0,0) and (a, c) # (0, 0) and consider the quadric X defined by yz —th =0
in P3(C).

The quadric is smooth if a # 0 and has [1 : 0: 0 : 0] as unique singular point if
a = 0. So it is smooth in codimension one.

We define the strata as follows: X3 := X, Xo :={[x:y:z:t]e X |z=1t =0},
X1y ={lx:y:z:t]eX|y=t=0}and Xo:={[1:0:0:0]}. It is clear that X,
is the projective line in P? defined by z =7 = 0 and X is the projective line in P>
defined by y =t = 0. We take as extremal functions: f3 :=¢, f> =y, f] :=z and
fo := x. One easily verifies that these data give a Seshadri stratification for X.

X3, f3=t

PN

X1, fi=z X2, fr=vy

~

Xo. fo=x
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Example 16.7 We consider the special case a =0, b = ¢ = 1: the quadric X is defined
by the homogeneous equation yz — #(y + z). The poset A = {p3, p2, p1, po} With
Xp, :=X;fori =0,1,2,3. Let €= (p3, p1, po) be the maximal chain to the left of
the above diagram.

We claim that the valuation V¢ (y) = (1, 0, 0). Indeed, since all bonds are 1, we
set N = 1. The function y vanishes on X with order 1; and the function % =1+ %,
once restricted to X1, is the constant function 1.

The function y is positive along the chain €, but by Lemma 8.3, it is not standard
along the chain €. In fact, we have the following relation in K[U¢]:

t 1
y=1+4 2 with Ve (—y> =2, —1,0)> (1,0,0),
Z Z

which explains the equality Ve (y) = Ve (2).
16.5 An elliptic curve

Let X be the elliptic curve defined by the homogeneous equation y?z — x> + xz2 in
P2. Let R := K[x, y, z]/(y?z — x3 4 xz?) be its homogeneous coordinate ring. We
abuse the notation and use the same variables x, y, z for their classes in R.

We present two Seshadri stratifications on X.

(1) We consider the Seshadri stratification on X defined as follows. The subvarieties
are X1 := X and X¢ :={[0: 1:0]}. As extremal functions we choose f; =z and
fo =y. The Hasse graph is a chain X; <— Xo. The vanishing order of z at X
is 3, which is the bond between X| and X(. The quasi-valuation V is the val-
uation associated to this unique chain; it is determined by V(x) = (1/3,2/3),
V(y) = (0,1) and V(z) = (1,0). Having different valuations, the monomials
xPyiz7", where p=0,1,2, q,r € N are linearly independent, hence form a ba-
sis of R. It follows that the valuation monoid is generated by V(x), V(y) and
V(z). Theorem 12.2 produces a toric degeneration of X to the toric variety
Proj(K[x, y, z1/ (y*z — x?)). The Newton-Okounkov complex is in this case the
segment connecting (1,0) and (0, 1).

This toric degeneration is obtained in [39] using a filtration arising from sym-

bolic powers.

(2) We give another Seshadri stratification on X. The subvarieties are X; := X,
Xo,1 :={[0:1:0]} and X¢2 := {[0:0: 1]}. The extremal functions are f; = x,
Jo.1: =y and fo 2 :=z. The Hasse graph with bonds is depicted below:

We leave to the reader to verify that this is indeed a Seshadri stratification, and the
degeneration predicted by Theorem 12.2 is the union of two toric varieties, one
of the two is a P!, and the normalization of the other one is a twisted cubic. The
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Newton-Okounkov complex is a union of two segments at a point. The degree
formula reads: 3 =1+ 2.

16.6 Flag varieties and Schubert varieties

An important motivation for introducing Seshadri stratifications was the aim to under-
stand standard monomial theory on Schubert varieties and the associated combina-
torics (as developed by Lakshmibai, Musili, Seshadri and others [43-48, 54, 65-68])
in the framework of Newton-Okounkov theory.

We present in this subsection just an announcement, the detailed proofs are pub-
lished in a separate article [15]. A different approach without using quantum groups
at roots of unity is carried out in [18]. We stick in the following for simplicity to the
case of flag varieties G/B for G a simple simply connected algebraic group, though
the results hold, with an appropriate reformulation, also for Schubert varieties (more
generally, unions thereof) contained in a partial flag variety in the symmetrizable
Kac-Moody case (see loc.cit).

We fix a Borel subgroup B of G, a maximal torus 7 C B and a regular dominant
weight A. The associated line bundle £, on X := G/B is ample, and we have a cor-
responding embedding G/B < P(V (1)), where V (1) is the Weyl module of highest
weight L. Let W be the Weyl group of G, endowed with the partial order given by its
structure as Coxeter group.

16.6.1 Seshadri stratification of G/ B

The Bruhat decomposition G = |,y BwB of G implies: G/B has a decompo-
sition into cells C(w) := BwB/B, called Schubert cells. The closure of a cell is
called a Schubert variety X (w) := C(w). These varieties have an induced cellular
decomposition: X (w) =, «,, C(u). Schubert varieties are known to be smooth in
codimension one, see for exa;nple [68, Corollary 4.4.5].

Let A := A(T) be the character group of T and let Ar be the Euclidean vector
space A ®z R, endowed with the Killing form as a W-invariant scalar product. Let
P). € AR be the polytope obtained as the convex hull of all characters with a non-zero
weight space in V (1). The vertices of this polytope are the characters {o (1) | 0 € W}.

Fix a highest weight vector v, € V(&) and for o € W set v, = n,(vy), where
ne € Ng(T) is a representative of o in the normalizer in G of T. Then v, is a
T -eigenvector for the character o (1). The cell C(o) € G/B CP(V (1)) can be iden-
tified with the B-orbit B.[v, ].

Fix a lowest weight vector £_; € V(L)*. For o € W let f; =ns(£_;) € V(L)*,
then f,(v;) # 0 if and only if T = 0. Using the cellular decomposition, one sees that
Hy, N X (o) is the union of all codimension one Schubert varieties in X (o). And the
property of the weights o (1) to be vertices in P; can be used to show that f5|c(r) Z0
implies [v,] € X (7). It follows X (6) = B.[vs] € X(7), and hence T > o. So for any
o €W, f, vanishes on X (7) if o £ 7.

Therefore the collection of subvarieties X (t) and functions f;, T € W, satisfies
the three axioms for a Seshadri stratification of X = G/B.

It is clearly evident that to establish a standard monomial theory in such a general
setting, one needs good candidates: for the monoid I'¢ we present a candidate L; 5
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which is a reincarnation of the path model given by the Lakshmibai-Seshadri paths
(LS-paths for short) of shape A. And for each element 7 € L; , of degree one, we
present a linear function p, € V(A)*, a candidate for a representative of a leaf of the
quasi-valuation V. The points to prove are: Le , =ID¢, V(pr) =, and the standard
monomials (as in Sect. 15) form a basis of the homogeneous coordinate ring K[X].

16.6.2 LS-paths

We recall first the notion of an LS-path 7 of shape A (see [46, 51]). Given a maximal
chain 0 = o0; > --- > 0p = 7 joining two elements o, T € W, o > t, there exist pos-
itive roots By, ..., By such that sg.0;_1 = 0; and £(0;) =L(oj—1) +1,i=1,...,¢t
Given a rational number a, the chain is called an (a, A)-chain joining o and 7 if in
addition a(o; (}), ﬁiv) e Zforalli =1,...,t. It has been shown in [24] that if one
maximal chain between o and 7 has the property of being an (a, A)-chain, then all
maximal chains joining o and t are (a, A)-chains.

Definition 16.8 An LS-pathm = (0 :0, >0,_1>--->0135a:0<a, <---<a; =
m) of shape A and degree m > 1 is a pair of sequences of linearly ordered elements
in W and rational numbers such that for all i =2, ..., p there exists an (a;, A)-chain
joining o;_1 and o;. Let LS(}) denote the set of LS path of shape A and arbitrary
degree m > 0.

An LS-path w = (0 > 0p—1 > --- > 01; @) € LS(}) is said to be supported in €,
where € is a maximal chainin W, if {01, ...,0,} € C.

The LS-path 7 is said to be of shape A on a Schubert variety X (t) if in addition
T > 0p. We call o, the initial direction of the path, and o the final direction of 7.

For convenience we add the empty path () as an LS-path of shape A and de-
gree 0. The welght of an LS-path is defined as 7 (1) := Zp_l(aj ajy1)oj(d),
where a1 := 0. The weight of the empty path is set to be 0 The weight 7 (1) is
a weight appearing in the Weyl module V (mA), and the character of this representa-
tion is given by the following sum, running over all LS-paths of shape A and degree
m [51, 52]:

Char V (m)) = Ze”(l). (25)

e

Remark 16.9 The character formula will play a role later because it gives a dimension
bound for the graded part K[G/B],, of the homogeneous coordinate ring. We have a
natural map from the homogeneous coordinate ring K[G/B] to the ring of sections
@D,,-0H*(G/B, L2™). The graded part of degree m: H*(G/B, LZ™) is, as represen-
tation, the dual V (mA)* of the Weyl module V (mA). So the dimension of V (mA) is
an upper bound for the dimension of K[G/B],,.

16.6.3 LS-paths as fan of monoids

We translate the definition of LS-paths into the language of lattices and Hasse dia-
grams with bonds: the indexing set for the Schubert varieties in X is the Weyl group

@ Springer



R. Chirivi et al.

W, endowed with the Bruhat order as partial order. The bonds are given by the Pieri-
Chevalley formula: if o covers T and T = sgo for a positive root 8, then the bond is
bs,r = (T(X), BY). Fix a maximal chain € : wg =0, > --- > o = id, where wy is
the maximal element in W. As before, for such a fixed maximal chain, we simplify
the notation by writing b; instead of by, ,,_, for the bonds. Note that all extremal
functions have degree 1 and hence bg = 1. Let L¢ ) € QY be the lattice

Uy brur €Z
¢ by 1 (ur +uy— I)EZ
Les={u=|: |eQ . (26)
. by(ur +up_q1+-- +ul)eZ
uop ug+uy+---+ur €

We call the sum ug + uj + - - - + u, the degree of u.

As before, we view QY as a subspace of Q% and we consider the union of the
lattices Ly := (Jg Le,x S e QF as a subset of QW. The set L = L, N QY is our
candidate for the fan of monoids I". Indeed, the results in [24] mentioned above show
that the set L;\F is a fan of monoids.

It remains to give an explicit bijection between the set of LS-paths LS(1) and the
fan of monoids L/J{. The proof of the following lemma will be given in [15], see [13,
Proposition 1] for a proof in a slightly different language. In the following formula
wesetapy =0.

Lemma 16.10 The map v defined below:

v: LS) — L;r:L;LﬂQiVO;
T=(0p,...,01;0,ap,...,a1=m) > v(n)::Zle(aj—ajH)egj,

induces a bijection between the set of LS-paths of shape A and degree m > 0, and the
elements in Lj: of degree m.

It is understood that the empty path is mapped to O.

Consider again the lattice L¢ ; and the intersection Le , o =LegyN (@ . By the
above Lemma, we can identify this monoid with the set of all LS- paths of shape A and
supported in €. This monoid is normal, and hence by Proposition 15.4, every path in
L€ ,, can be decomposed in a unique way into a sum of indecomposable paths. One
can show (see [15] or [13, Proposition 3]) that the only indecomposable paths are
those of degree 1.

Following Sect. 15.2, one can view a path w of degree m > 1 as a tuple m =
(my, ..., my) of m LS-paths of shape A and degree 1, satisfying the additional condi-
tion: foralli =1,...,m — 1, the final direction of ; is larger or equal to the initial
direction of ;1.

Example 16.11 Let G = SL3(K) and A = w1 + w>.

The pair w = (515251, 5251, 515 0, 1, %, 2, 3) is an LS-paths of shape X and degree 3.
Then 7 = (71, mp, m3), where w1 = (s15251; 0, 1), T = (5251, 51; 0, %, 1) and 713 =
(s1; 0, 1) is the decomposition of 7 into LS-paths of shape A and degree 1.
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16.6.4 The candidates for the leaves

It was shown in [54] that one can associate to every LS-path of shape A and degree
1 a linear function p, € V(1)*, called a path vector. Roughly speaking, one fixes

for m = (0p,...,01;0,ap,...,a; = 1) a natural number n such that na; € N for all
j=1,..., p. The function p, is then intuitively defined as .’ (f:" oo i e, an

n-th root of this product of extremal functions. Indeed, we need a representation-
theoretic trick: Lusztig’s quantum Frobenius map at an appropriate root of unity
makes it possible to define analogues of the n-th roots of these kind of functions.

By construction, these linear functions have the following property: p, vanishes
identically on a Schubert variety X (t) C X if and only if:

T =(0p,0p—1,...,01;0,ap,...,a; =1) is such that o), £ 7. 27

LetV:K[X] — QWY be the quasi-valuation provided by the Seshadri stratification
described above. The proof of the following theorem can be found in [15]:

Theorem 16.12 For all LS-paths w of shape A, degree 1 and support in € one has

V(pr) =Ve(pr) = v(m).

The value V(py) is independent of the choice of the total order in the construction

of V.
One has as immediate consequences of Theorem 16.12:

Corollary 16.13

i) The fan of monoids L;r of LS-paths of shape A and degree m > 1 is contained in
the fan of monoids T".
il) The set B = {p, | ® LS-paths of shape A and degree 1} is a basis for V (1)*.

Proof The first claim follows from the fact that the monoids in the fan of monoids L)f
are generated by the degree 1 elements. The elements in B are linearly independent
because vectors with different quasi-valuations are linearly independent [37], and the
character formula in (25) implies that B is a basis for V (1)*. U

Since L)T C T, we know by Theorem 16.12 that a path vector p, € V(L)* is a
representative for the leaf associated to v(sr). Since these elements are all of degree
1, they are indecomposable. So we can talk about standard monomials in the sense of
Definition 15.5. Reformulated into the language of LS-paths this gives: a monomial
of degree m of path vectors: py, - - py,, 18 called a standard monomial, if the tuple
m = (my,...,7Ty) is an LS-path of shape A and degree m.

Theorem 16.14

1) The above Seshadri stratification of G/ B is normal and balanced.
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ii) The standard monomials in the path vectors form a basis of the homogeneous
coordinate ring of the embedded flag variety G/B — P(V (1)).

iii) This basis is compatible with the quasi-valuation V.

iv) We have I' = L;‘.

Proof Since the paths occurring in a standard monomial p; = py, - - - py,, have sup-
port in a common maximal chain, we get by Proposition 8.9 and Theorem 16.12:

m

V(px) =Y v(x)),

i=1

and the image is independent of the choice of the total order in the definition of V.
The uniqueness of the decomposition of a LS-path of degree m into paths of
degree 1 implies the linear independence of the set of standard monomials of de-
gree m. Indeed, vectors with different quasi-valuations are linearly independent [37].
The character formula in (25) implies that dim K[X],, > dim V (mA)*, which by Re-
mark 16.9 implies that the standard monomials of degree m in the path vectors form
a basis of K[X],,. By construction, the basis is compatible with the leaves of the
quasi-valuation, which implies the claim in the theorem. g

As an immediate consequence, Proposition 15.10 provides straightening relations
expressing a non-standard monomial as a linear combination of standard monomials.

16.6.5 Schubert varieties

By Remark 2.4, each stratum X (7) in the Seshadri stratification of X = G/B is nat-
urally endowed with a Seshadri stratification. Since the Seshadri stratification is nor-
mal and balanced, by Theorem 15.12, the induced Seshadri stratification of a Schu-
bert variety is normal and balanced. In particular, we get a standard monomial theory
for each Schubert variety which is compatible in the sense of Sect. 15.4 with the
standard monomial theory on G/B.

As consequences we recover the following known results: Schubert varieties are
projectively normal (Theorem 14.1 and [7]; see also [61] for a different proof using
Frobenius splitting); the degenerate variety is a union of normal toric varieties; the
scheme theoretic intersection of Schubert varieties is reduced (Theorem 15.12). In
this case, further results like (1) vanishing theorems for higher cohomology; (2) the
identification of the Newton-Okounkov simplicial complex to the polytopes equipped
with an integral structure in [24]; (3) the connection between the flat degeneration in
[13] and that in Sect. 12; will be discussed in [15].

We conclude this section with a degree formula, which is an application of The-
orem 13.6, but now reformulated into the setting of Schubert varieties. Denote by
V(X)r € V()) the subspace generated by the affine cone X (t) over the Schubert va-
riety X(t) € G/B C P(V(A)). This subspace is called the Demazure submodule of
V (A) associated to 7. The following formula can also be found in [13], and in [40] in
a symplectic context:
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Proposition 16.15 The degree of the embedded Schubert variety X (t) C P(V (X))
is equal to the sum ) ]_[‘;:1 bj ¢ running over all maximal chains € in A;, and
Hj‘:l bj ¢ is the product of over all bonds along a maximal chain €.

List of notations

A poset indexing strata in Seshadri stratification

A extended poset

Ay subposet of A

bpq bonds between p and g

¢ maximal chain in A

C set of all maximal chains in A

C(g) maximal chains hitting minimum

Ay Newton-Okounkov complex associated to Seshadri stratification
I extremal functions

Ga Hasse graph with bonds

r the fan of monoid associated to V

e monoid in I"

ge sequence of rational function associated to g along €
>! fixed total order on A

gre R associated graded algebra of V¢

Gry K" Grassmann variety
gry ¢ R subalgebra of gry,R

gryR associated graded algebra of quasi-valuation V
I annihilating ideal associated to €

K set of all chains in A

K¢ cone associated to chain C in A

K[I'] the fan algebra associated to I"

KE set of all saturated chains in A

L length function on A

L® a lattice

LET submonoid of lattice L¢

L lattice generated by I'¢

N l.c.m of all bonds in G4

Py (X) core of valuation monoid V¢ (X)

R, homogeneous coordinate ring of X,
supp V(g) support of function g

Ue an open affine subset of X

Ve normalized valuation associated to a maximal chain
Ve a variation of the valuation Vg

Ve(Ug) valuation monoid on Ug

Ve valuation monoid of Vg

V(g) minimized quasi-valuation of function g
Vp.g valuation from vanishing multiplicity
X, strata in Seshadri stratification

X P) affine cone over X,
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Xp normalization of X,
Z M affine variety associated to saturated set M
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