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Abstract 

Atmospheric Plasma Spraying (APS) is a versatile coating technology, which offers a broad 

range of functional features. Deposition efficiency (DE) is a major performance measure in 

APS, which is determined by dozens of intrinsic and extrinsic influencing factors. Because of 

the nonlinear and complicated interdependencies of the contributing variables, enhancing DE 

has always been a challenging task in the process development of APS. Hence, employing an 

ensemble of computer-aided methods is inevitable to understand and control these correlations 

in such a complex coating technology. The concept of the so-called Digital Shadow combines 

domain-specific models with data-driven techniques of Artificial Intelligence (AI), inferred by 

autonomous agents to create a sufficiently accurate image of the production process including 

all relevant data. This dissertation is devoted to the development of the primary steps towards 

a Digital Shadow in APS with the ultimate goal of improving the process efficiency. 

 

Modern AI methods, namely Support Vector Machine (SVM) and Adaptive Neuro-Fuzzy 

Inference System (ANFIS), were used in this work to predict DE. For this purpose, both 

simulation and experimental data from the entire process chain of APS were employed to train 

the AI models, and combine them in the frame of an expert system. These data include process 

parameters, in-flight particle properties and DE on the substrate. 

 

The developed expert system consists of two subsystems: one for predicting in-flight particle 

properties from process parameters using SVM technique and another for predicting DE from 

particle properties using ANFIS. To tackle the problem of insufficient data for training the 

aforementioned AI models two approaches were pursued: 1) A method was developed for in 

situ determination of spatially resolved deposition efficiencies on the substrate, namely Local 

Deposition Efficiency (LDE). By using LDE, sufficient amount of data for learning algorithms 

could be generated, while providing that much data for ex situ measurements of global DE and 

their corresponding particle properties would be impractical. 2) Simulation data for the in-flight 

particle properties were generated by using the simulation models of the plasma jet already 

developed at IOT. The combination of these two strategies provided the aggregated and purpose 

driven data sets required for a Digital Shadow in APS. The developed expert system can be used 

as a tool to adjust the process parameters to produce sustainable and cost-effective coatings, 

and subsequently improves the integration of coating process into production chain.
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Zusammenfassung 

Atmosphärisches Plasmaspritzen (APS) ist eine vielseitige Beschichtungstechnologie, die ein 

breites Spektrum an funktionellen Eigenschaften bietet. Der Auftragswirkungsgrad (DE) ist ein 

wichtiges Leistungsmerkmal des APS, das durch Dutzende von intrinsischen und extrinsischen 

Einflussfaktoren bestimmt wird. Aufgrund der nichtlinearen und komplizierten Wechsel-

wirkungen zwischen den Einflussgrößen stellt die Verbesserung der DE eine große Heraus-

forderung bei der Prozessentwicklung des APS dar. Daher ist der Einsatz eines Ensembles 

computergestützter Methoden unumgänglich, um diese Zusammenhänge in einer derart 

komplexen Beschichtungstechnologie zu verstehen und zu kontrollieren. Das Konzept des so 

genannten Digitalen Schattens kombiniert domänenspezifische Modelle mit datengetriebenen 

Techniken der Künstlichen Intelligenz (KI), die von autonomen Agenten abgeleitet werden, um 

ein hinreichend genaues Abbild des Produktionsprozesses einschließlich aller relevanten Daten 

zu erstellen. Diese Dissertation widmet sich der Entwicklung der primären Schritte in Richtung 

eines Digitalen Schattens im APS mit dem Hauptziel der Verbesserung der Prozesseffizienz. 

 

Moderne KI-Methoden, nämlich Support Vector Machine (SVM) und Adaptive Neuro-Fuzzy 

Inference System (ANFIS), wurden in dieser Arbeit verwendet, um DE vorherzusagen. Zu 

diesem Zweck wurden sowohl Simulations- als auch experimentelle Daten aus der gesamten 

Prozesskette des APS verwendet, um die KI-Modelle zu trainieren und sie im Rahmen eines 

Expertensystems zu kombinieren. Diese Daten umfassen Prozessparameter, Partikel-

eigenschaften und die DE auf dem Substrat. Das entwickelte Expertensystem besteht aus zwei 

Teilsystemen: A) Vorhersage der Partikeleigenschaften im Flug aus den Prozessparametern 

unter Verwendung der SVM-Technik und B) Vorhersage der DE aus den Partikeleigenschaften 

mittels ANFIS. Um das Problem der unzureichenden Daten für das Training der KI-Modelle 

zu lösen, wurden zwei Ansätze verfolgt: 1) Es wurde eine Methode zur In-situ-Bestimmung 

räumlich aufgelöster DE auf dem Substrat, nämlich Local Deposition Efficiency (LDE), 

entwickelt. 2) Simulationsdaten für die Partikeleigenschaften wurden durch die Verwendung 

der bereits am IOT entwickelten Simulationsmodelle des Plasmastrahls erzeugt. Die 

Kombination dieser beiden Strategien lieferte die aggregierten und zweckgebundenen Daten-

sätze, die für einen Digitalen Schatten im APS benötigt werden. Das entwickelte Experten-

system kann als Werkzeug zur Anpassung der Prozessparameter verwendet werden, um 

nachhaltige und kosteneffiziente Beschichtungen zu erzeugen, und verbessert somit die 

Integration des Beschichtungsprozesses in die Produktionskette.
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1 Introduction 

Thermal Spraying (TS) is a coating technology in which the feedstock material is introduced 

into a high-temperature free jet to deposit a coating. The resultant molten or semi-molten 

particles are accelerated in the free jet towards a prepared substrate and their successive 

impingements build a coating with a typical thickness of 50 µm < dcoating < 400 µm [Bob13]. TS 

is considered as the most versatile coating technology due to its numerous process variants, 

which enable the deposit of a wide range of feedstock materials. Metals and metal alloys, oxide 

and nonoxide ceramics, plastics, cermets and composites can be applied using diverse process 

variants of TS. Furthermore, TS offers a broad range of functional features including wear, 

oxidation and corrosion resistance as well as electrical and thermal insulation. Other special 

characteristics of this coating technology include equipment portability, wide range of coating 

thicknesses and minimal thermal degradation to substrate [Dav04]. 

 

The quality of a thermally sprayed coating can be evaluated, among others, through the 

following coating properties with regard to a given application: thickness, thermal conductivity, 

tensile bond strength between the coating and the substrate, surface roughness and coating 

hardness, porosity and oxide content. To provide an example, porosity is discussed below as 

one of the most important coating properties. Porosity has its advantages and disadvantages 

depending on the functionality of the coating. For example, the thermal barrier coatings must 

have a low thermal conductivity and consequently a relatively high porosity in the range of 

10-20 % [BV17]. In the tribological field, the open pores, e.g. on the inner walls of the plain 

bearings or cylinder bores, act as microcavities that can store lubricants. This additional oil 

retention improves the frictional behavior of the components. On the contrary, the corrosion 

or wear-resistant coatings must have a low porosity or, ideally, a porosity close to zero. In this 

case, porosity is considered as an inherent defect for the coating. 

 

TS-processes are categorized according to the type of the energy source. Atmospheric plasma 

spraying (APS) represents one of the most important process variants of TS, in which an electric 

arc discharge inside a plasma generator is used as the energy source for heat generation and 

acceleration of the process gas [FMV+06]. One or more direct current (dc) arcs superheat an 

inert gas, commonly argon or an argon-hydrogen mixture, to generate the plasma. 
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The operating principle of a multi-arc APS process, which is the focus of this work, is depicted 

in Figure 1-a. Process temperatures in the plasma jet core can range roughly between 

6,000 °C < Tg < 15,000 °C [Dav04], allowing the processing of high-melting ceramic materials 

in particular. Feedstock material in form of powder is introduced into the plasma jet via an inert 

carrier gas inside a hose following a particle injector. The size of the injected particles are 

typically in the range of 20 µm < Dp  < 90 µm and the particle velocities can reach up to 

vp = 800 m/s [Paw08]. A cross-section of an Al2O3 coating is depicted in Figure 1-b. The coating 

microstructure is made up of deposited particles that produce the conventional lamellae shape 

by deforming to different extents. Immediately after impact on the substrate, the heated 

particles spread out, deform and solidify. The main adhesion mechanism of sprayed coatings is 

referred to as mechanical interlocking. This is defined as the mechanical anchorage of the splats 

to irregularities of the substrate by the force arising from liquid shrinkage [Paw08]. These 

irregularities result from grit blasting of the substrate as a pre-spray surface preparation. 

 

 

Figure 1: a) Schematic illustration of the APS process and b) cross-section image of an 

Al2O3 coating applied with the APS process 

 

Dc plasma arc spraying systems are one of the most flexible and at the same time sophisticated 

variants of TS-processes [Dav04]. The complexity of plasma spraying is related not only to the 

manufacturing of the plasma guns for the harsh environment of high temperatures and 

enthalpies, but also to the enormous quantity and diversity of the influencing factors. These 
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influencing factors result from the combination of intrinsic and extrinsic parameters. The 

directly adjustable extrinsic parameters include, for instance, the electrical current and the 

volume flow rates of the process gases. The resulting intrinsic parameters, such as in-flight 

particle velocities and temperatures, can only be influenced indirectly [SBD+06]. All these 

parameters are interrelated and usually follow nonlinear relationships. For example, the 

variation of the current or the process gas flow to change the particle temperatures and 

velocities at impact, also generally requires adjusting the parameters for injection the feedstock 

material to obtain thermally and kinematically matched parameters. Moreover, the parameter 

combinations are also influenced by disturbance variables, such as fluctuations of the arc or the 

wear of the system components, e.g. electrodes and injectors. 

 

A large number of overviews of the influencing variables in plasma spraying are available in the 

literature. A comprehensive list of the main setting parameters is given by Lugscheider [Lug02], 

see Table 1. In this table, some of these parameters with their direct influences on the different 

parts of the APS system are listed. These are only the main parameters that must be controlled 

and recorded in practice during plasma spraying. If the peripheral influencing variables such as 

torch travel speed, substrate variables, feedstock material influences, etc. are added, the overall 

number of influencing factors in APS is estimated to be more than 200 [Lug02]. It should be 

emphasized that the intricate nonlinear relationships among these factors further increase the 

complexity of the overall APS system. Taking the above aspects into account, the question of 

robust methods for quantifying the complex interactions between the dozens of influencing 

factors in APS arises. It turns out that computer-aided algorithms can best fulfill this 

challenging undertaking. 
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Table 1: Adjustable parameters in plasma spraying (without peripheral influences) 

according to [Lug02] 

Area Parameter Direct influence on 

Nozzle 

(Anode) 

▪ Nozzle diameter 

▪ Nozzle length 

▪ Nozzle shape 

▪ Plasma velocity 

▪ Arc length, plasma energy 

▪ Plasma velocity, plasma 

temperature 

Powder 

injection 

▪ Injector diameter 

▪ Number of injectors 

▪ Injector position, injector 

angle 

▪ Powder feed rate 

▪ Powder carrier gas flow 

▪ Max. flow rate, particle 

trajectories 

▪ Max. flow rate 

▪ Particle trajectories 

▪ Max. Particle melting 

▪ Particle trajectories 

Power ▪ Arc current intensity 

▪ Arc voltage 

▪ Plasma energy, viscosity 

▪ Plasma energy, viscosity 

Plasma gases ▪ Gas composition 

▪ Gas flows 

▪ Gas pressures 

▪ Angle of swirl 

▪ Plasma enthalpy, thermal 

conductivity, viscosity 

▪ Plasma energy 

▪ Plasma velocity 

▪ Arc and plasma swirl ⇒ 

nozzle lifetime, particle 

injection 

Cooling power ▪ Coolant flow rate 

▪ Coolant inlet temperature 

and pressure 

▪ Torch efficiency 

▪ Torch service life 

Spray distance Spray distance Particle velocity and 

temperature, 

Substrate heating 

Atmosphere Pressure Plasma energy density, 

Plasma velocity 
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The term “Industrie 4.0”, since its introduction as the fourth industrial revolution by a team of 

scientists in Germany, has been used increasingly for all kinds of fundamental concepts that are 

related to the digital transformation in production [LFK+14]. Industrie 4.0 offers the potential 

for technical system networking and real-time optimization of complex value-added systems 

based on big data processing, and consequently forecasting the future events in production. 

This is what is truly revolutionary about Industrie 4.0, and not the digitization of products and 

their production per se. The processing of big data became possible by the rapid expansion of 

computer resources, specifically High-Performance Computing (HPC), which largely 

contributed the development of Industrie 4.0. The fourth industrial revolution has also brought 

innovation and competition back to engineers and managers in the production workplace. The 

networking of supply chains on the basis of digital technologies and the resulting changes in 

supply chain systems represent a major paradigm shift for all production managers. Wrong 

decisions due to a lack of information and inadequate assessment of risks and technology 

potentials can lead to massive competitive disadvantages and endanger the long-term existence 

of the companies concerned. 

 

The main focus of Industrie 4.0 is on integrating cyber-physical production systems (CPPS) 

with processes and stakeholders along the whole value-added chain [BDJ+22]. Thereby, 

Industrie 4.0 can be facilitated by CPPS, depending on the most recent and foreseeable 

advancements in computer science, information and communication technologies, and 

manufacturing science and technology. CPPS consist of autonomous and cooperative elements 

and subsystems that interact with each other depending on the situation, across all levels of 

production, from processes to machines to humans and logistic networks [Mon14]. The main 

issue is to investigate the connections between autonomy, cooperation, optimization, and 

responsiveness. This makes the integration of simulation-based and analytical methodologies 

more important than before. The simulation permits dynamic investigation of production 

systems and supports in both operational and strategic planning [ULS17]. 

 

The concept of “Digital Twin” (DT) is one of the most promising enablers of smart 

manufacturing as well as realization of CPPS and subsequently Industrie 4.0 [TZL+19]. DT is 

referred to as a virtual or computerized representation of a physical entity, which may be a 

product or a process, including all the data and information that tie the physical entity and its 

twin together [BCF19]. This digital replication occurs mainly by integration of the Artificial 
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Intelligence (AI) methods, with the aim of system optimization, controlling and monitoring, 

maintenance as well as prediction. 

 

A DT is far more than just pure data, a simple model or simulation. The difference lies in the 

level of data integration between the physical and its digital counterpart. Digital representations 

can range from fully integrated with real-time data exchange to manually modeled ones that 

are not related to any physical objects. A basic digital model, for instance, is a digital 

representation of a current or future physical entity that does not include any automated data 

exchange. However, in the context of DT the data and information are continuously exchanged 

and updated, so if the state of the physical object changes, the state of the digital object will 

correspondingly alter, and vice versa [KKT+18]. Hence, a DT is a living, intelligent and evolving 

counterpart of a physical entity [BCF19]. Additionally, the proposed virtual-physical coupling 

requires a method to uniquely identify the physical product in order to enable a one-to-one 

(bijective) connection between the DT and its physical counterpart. Therefore, each DT is 

linked to its physical twin through a unique key [RHO+15]. 

 

Due to the enormous amounts of data that a virtual copy of a product, machine or production 

facility would require, developing a complete DT is typically not practical. Hence, the Digital 

Twins that are utilized in practice, are mostly collections of many data sets and models, each of 

which represents a distinct feature of the real object, rather than being complete digital replicas 

[BDJ+22]. Beside the concept of DT, the term “Digital Shadow” (DS) has been often used in the 

context of the Industrie 4.0. According to the definition of Schuh et al. [SBR+16, SWL+16], 

Digital Shadow describes a sufficiently accurate representation of key data involved in various 

areas such as production technology and order processing. The main difference between DS 

and DT lies in the level of data integration, in a way that DS has an automated one-way data 

flow from the existing physical object to its digital object [KKT+18]. In the context of DS, a 

change in the state of the physical object results into a state change in the digital object, but not 

vice versa, see Figure 2. Hence, DT extends the definition of DS by automatically influencing 

the physical object as well [BBD+21]. 
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Figure 2: Data flow in a Digital Model, a Digital Shadow and a Digital Twin according to 

[KKT+18] 

 

In the context of manufacturing technology, DS combines domain-specific models with data-

driven AI techniques inferred by autonomous agents to create a sufficiently accurate image of 

the production processes including all relevant data [BGA+21, BDJ+22]. DS is considered as a 

suitable solution for production engineering applications, since multi-modal views with task-

specific granularity can provide higher performance than a fully integrated DT [BDJ+22]. 

 

Figure 3 shows the sequential steps of the road map towards Digital Shadows for enterprises 

according to [SWL+16]. Since the Digital Shadow is to be designed depending on the given 

production environment, the migration path takes place in a circular manner and has to be 

retraced when the environment changes. These steps can be structured overall to four research 

fields: 1) create data structure/data model, 2) multimodal data acquisition, 3) multimodal data 

fusion and 4) consistency/plausibility check [SBR+16]. The road map begins with the definition 

of the goal of Digital Shadows and leads up to implementation and continuous data collection. 
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Figure 3: Road map to Digital Shadow according to [SWL+16] 

 

As a first step, it is necessary to specify the objectives of the Digital Shadow before initiating any 

action involving data collecting. For instance, the objective of a DS can be increasing the energy 

efficiency of a production system. Based on the goal definition, the analysis of the required data 

takes place in the second step. For this purpose, among other things, the appropriate data 

granularity and the required data format must be determined. Then it must be checked which 

data already exist and which must be newly included. The existing and required data must be 

examined with regard to their scope and the required format. 

 

Selection of appropriate technologies to collect the necessary data for each designated data point 

is crucial in accordance with the multimodal data acquisition. Granularity, frequency, data 

format, interfaces of data acquisition technology, etc. can all be used as selection factors. A 

unified general concept is desired when a variety of technologies are feasible. It is also necessary 

to assess the technologies that have previously been implemented, if any, in terms of their 

applicability and integration into a coherent overall concept. Furthermore, an operational 

design must be created before the chosen technology concept can be launched. After new 

technologies have been implemented, it must be checked whether they correctly supply and 

store the predefined data. To reduce the effort of this initial test phase, a suitable sample has to 
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be defined depending on the goal of the DS. After a successful test phase, the developed DS is 

continuously transferred to productive operation. In this final step, DS must be validated in 

terms of satisfying the requirements, for example by checking the continuous collection of data 

at the defined data points and its storage according to specifications. If necessary, the available 

data can be enriched by purposeful generation of new data in order to improve the performance 

of the developed DS. In the event that modifications are made to the production environment, 

such as adjustments to the production line or programmable logic controllers (PLCs), the road 

map needs to be repeated again, beginning with the goal definition. 

 

With respect to the aforementioned definitions, this dissertation is devoted to the development 

of Digital Shadows in plasma spraying with the ultimate goal of improving the process 

efficiency. To this end, modern AI methods were used to develop and combine domain-specific 

models using simulation and experimental data from the entire process chain of APS. These 

data include machine or process parameters, in-flight particle properties and deposition 

efficiency on the substrate. Furthermore, to tackle the problem of insufficient data for AI 

models two approaches were pursued: 1) A methodology for in situ determination of spatially 

resolved deposition efficiencies on the substrate and 2) generating simulation data by using the 

simulation models of the plasma jet developed at the Surface Engineering Institute (IOT) at the 

RWTH Aachen University. The combination of these two strategies provided the aggregated 

and purpose-driven data sets required for Digital Shadows in plasma spraying. 
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2 Theory and State of the Art 

This chapter describes the theory and the state of the art of the prerequisite stages for digital 

transformation in plasma spraying in view of improving process efficiency. It starts with 

section 2.1 about an introduction to Artificial Intelligence. In section 2.2, the use of AI methods 

for process control or quality prediction in APS is reviewed. The development of sensors in 

thermal spraying for in-flight particle diagnostic measurements is then covered in section 2.3 

as a crucial intermediate stage of the coating process. Following that, section 2.4 gives an 

overview of the current state of the art for determining deposition efficiency. A summary is 

provided at the end of this chapter. 

 

 Introduction to Artificial Intelligence 

There is no universally accepted definition for Artificial Intelligence in the literature, because 

both the terms "artificial" and "intelligence" are not well defined and understood in this context. 

Many researchers have attempted to provide a robust definition for AI [RN16]. Among these, 

the definition by Elaine Rich [Ric87] has received the most attention, since it avoids the 

philosophical issues that dominate the attempts to define the meaning of either artificial or 

intelligence: 

 

“Artificial Intelligence is the study of how to make computers do things at which, at the 

moment, people are better.” 

 

This definition by Rich briefly characterizes what AI researchers have been doing until now and 

it will be probably up to date even in future. As an example, a person entering an unknown 

room recognizes the environment within fractions of a second and, if necessary, makes 

decisions and takes actions very quickly. So far, this task is too challenging for autonomous 

robots [Ert11]. Therefore, with respect to Rich's definition, this is a task for AI. 

 

Machine Learning (ML) is the central sub-discipline of AI. It is applicable in complex tasks that 

involve lots of data and many variables, but for which no formula or equation exists. Then, ML 

is utilized to generate an evaluation function that is as close as possible to optimal with an 

iterative process [Ert11]. Machine learning uses generally two types of techniques: supervised 

learning and unsupervised learning. The objective of supervised learning is to find a mapping 

from the inputs to outputs whose correct values, namely targets, are provided by a supervisor. 
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Then, the learned model on known input and output data, namely training data, can predict 

future outputs. In unsupervised learning, there is no such supervisor, so we only work with 

input data. The goal of unsupervised learning is to find hidden patterns or intrinsic structures 

in input data. Supervised learning uses classification and regression techniques to develop 

predictive models, while unsupervised learning uses clustering techniques to group or interpret 

the input data [Alp10]. This work deals with supervised learning techniques for regression, 

since its focus is on development of prediction models based on the provided training data. 

There are dozens of ML algorithms, each of which takes a different approach for learning. There 

is no general or best method that is fitted for all cases. Therefore, choosing the right algorithm 

often requires trading one criterion for another, such as model speed, accuracy and complexity. 

Figure 4 shows an overview of some machine learning techniques. 

 

 

Figure 4: Overview of some machine learning techniques according to [NN23a] 
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2.1.1 Artificial Neural Networks (ANNs) 

ANNs are inspired from the biological architecture of the human brain, which consists of 

billions of nerve cells or neurons that are connected in a network-like fashion. The neurons and 

their connections in the brain are responsible for consciousness, associations, thoughts and 

learning ability. The biological network served as inspiration for mathematical modeling of 

information processing. Figure 5 shows the schematic architecture of the a) biological neural 

networks and b) artificial neural networks. ANNs are considered as one of the most significant 

subsets of ML that can be used for both supervised and unsupervised learning techniques. 

McCulloch and Pitts [MP43] pioneered this subject in 1940s by presenting a mathematical 

model of biological nervous systems. Interested readers may refer to [ARP88] for a complete 

historical evolution of ANNs. 

 

Figure 5: Schematic illustration of a) biological neural networks and b) artificial neural 

networks [Ert11] 

 

ANNs are composed of some information-processing units called neurons or nodes. The 

computational model of a neuron labeled with k is presented as a block diagram in Figure 6. An 

artificial neuron receives inputs from other neurons at its entrance. Each input is associated 

with a numeric weight, which determines the strength of its connection link. The neuron is 

either activated or remains inactive depending on its total weighted input [Kro08]. The 

activation level of the neuron is the output generated by the activation function. 
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Figure 6: Block diagram of the computational model of a neuron labelled with k [Hay09] 

 

The neural model presented in Figure 6 also contains an externally induced bias that is denoted 

by bk. The bias bk causes the net input of the activation function to be increased or decreased 

depending on whether it is positive or negative respectively. In mathematical terms, this neural 

model can be described by the pair of equations 

 

𝑝𝑘  =  ∑ 𝑤𝑘𝑗 𝑥𝑗

𝑚

𝑗=1

 +  𝑏𝑘 Eq. 1 

 

and 

 

𝑦𝑘  =  𝑢 (𝑝𝑘). Eq. 2 

 

▪ 𝑝𝑘    Induced local field or activation potential of neuron 𝑘 

▪ 𝑥1,  𝑥2, … ,  𝑥𝑚  Neuron inputs 

▪ 𝑤𝑘1,  𝑤𝑘2, … ,  𝑤𝑘𝑚 Neuron weights 

▪ 𝑏𝑘    Bias parameter 

▪  𝑦𝑘    Neuron output 

▪ 𝑢    Activation function 
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The first subscript in 𝑤𝑘𝑗 in Eq. 1 refers to the neuron in question, and the second subscript 

refers to the input to which the weight corresponds [Hay09]. The activation function can be 

linear or nonlinear. Some possibilities for the activation function are depicted in Figure 7. 

 

 

Figure 7: Different examples for activation functions: a) threshold, b) piecewise linear, c) 

sigmoid, and d) Gaussian [JMM96] 

 

Two or more of the neurons described above can be joined in a layer, and a network may 

comprise one or more such layers. The network gains knowledge from its environment through 

a learning process. The connection strengths between neurons, known as synaptic weights, are 

responsible to store the gained knowledge. The capability of learning is central to the theory of 

neural networks. The structure of neurons in a neural network is tied closely to the learning 

algorithm used to train the network. ANNs can be divided into two main categories in terms of 

network architecture: 1) Feedforward networks, where the connections have no loops, and 2) 

recurrent networks, in which loops occur due to feedback connections [JMM96]. 

 

Figure 8 shows the architecture of a) feedforward neural network (FNN) and b) recurrent neural 

network (RNN) exemplarily. The neurons in multilayer networks are arranged in three different 

layers: an input layer, one or more hidden layers, and an output layer. The computation units 

of the hidden layers are correspondingly called hidden neurons, which serve as information 

processing units that intervene between the input and the network output in a useful manner. 

The network can extract higher-order statistics from its input by adding one or more hidden 

layers [Hay09]. In FNN, the information flows in only one direction from input to output. RNN 

is distinguished from FNN by the presence of at least one feedback loop. The backwards 

transmission of information in RNN allows the network to exhibit dynamic temporal behavior 

and process any sequence of inputs using internal memory [Suz11]. Many types of data, such 

as natural language and sound tracks, include extra information in the order in which they are 

presented, creating a sequence of data points. Typically, the term time series is used to describe 
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this kind of sequencing data [TPT22]. A simple example of using RNNs is to classify time series. 

RNNs have been applied for human activity recognition of daily living by using mobile and 

wearable sensors [NTA+18]. 

 

 

Figure 8: Exemplary architecture of a) feedforward neural network (FNN) and 

b) recurrent neural network (RNN) 

 

A feedforward neural network with one or more hidden layers is also referred to as multilayer 

perceptron. One of the widely used methods for the training of a multilayer perceptron is the 

backpropagation algorithm, which uses the gradient descent method. The backpropagation 

process occurs in two phases: the forward phase and the backward phase. During the forward 

phase the input signal is propagated forwards through all the layers of the network till it reaches 

the output, while the synaptic weights remain unchanged. In the backward phase the generated 

output signal during the previous phase, is compared to a target value, resulting in an error 

signal.  The obtained error signal is propagated through all the layers of the network, but this 

time the propagation is carried out backwards. The synaptic weights are successively adjusted 

throughout this second phase. The changes are relatively simple to handle for the output layer, 

but these weight adjustments are significantly more difficult for the hidden layers [Hay09]. 

 

2.1.2 Support Vector Machine (SVM) 

SVM is one of the relatively new and promising supervised learning techniques for classification 

and regression. SVM demonstrates a strong mathematical foundation in statistical learning 

theory proposed by Vapnik [Vap99]. In general, SVM originated from a robust theory of 

implementation, whereas ANN progressed heuristically from application to theory. SVM, in 
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contrast to ANN, is a deterministic algorithm that uses the concept of kernel trick [Hol14]. The 

kernel trick is a method that maps the original inputs into a higher-dimensional feature space, 

where the optima of a convex optimization problem can be found analytically rather than 

heuristically, which is the case with other ML techniques [AK15]. By solving the convex 

optimization problem analytically, SVM training always finds a global minimum [SS11]. 

 

The performance of a ML model on a known set of training data is measured by the so-called 

empirical error or the empirical risk. The term generalization refers to the ability of the ML 

model to adapt properly to unseen data sets, not encountered during training. SVM has good 

generalization properties by using Structural Risk Minimization (SRM). This makes it 

particularly powerful over the traditional methods based on the empirical risk minimization, 

like the neural networks. SRM proposes a trade-off between the complexity of the machine and 

the empirical error. Thereby, SRM considers the expected gap between the training error and 

the test error. 

 

Figure 9 illustrates how the error of the ML model varies with its complexity index. The error 

is considerable for non-complex models since a simple model cannot account for all the 

complexity of the data, leading to an underfitting state. The error decreases for the best model, 

indexed with h*, as the complexity index rises before beginning to rise once again. For high 

model indices, the model begins tailoring its learning to the training data, leading to overfitting, 

which lowers the training error and raises the model complexity, but worsens the test error. By 

minimizing the structural risk, i.e. balancing the model complexity against its empirical risk, 

SVM avoids the problem of overfitting better than other ML approaches [AK15]. Hence, SVM 

is one of the most popular ML approaches for supervised learning because of its resilience, 

strong generalization ability, and unique global optimal solutions. However, the main 

restriction of SVM is the rapid growth in computing and storage requirements as the number 

of training data sets increases [Hay09]. 
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Figure 9: Relationship between error trends and model index [AK15] 

 

SVM is a supervised learning method that can be applied to both classification and regression 

problems. In this context, classification is basically categorizing a set of data into classes and the 

term regression stands for data prediction. In the following, SVM classification will be explained 

first and this is then used to describe SVM regression. 

 

2.1.2.1 SVM Classification 

In SVM classification, a set of objects is divided into classes in such a way that the distances 

between the class boundaries are as large as possible, and thus minimizing errors. For this 

purpose, hyperplanes are used for the separation of the classes. In this context, a hyperplane is 

an affine subspace with dimension n-1. For example, if the space is two-dimensional, its 

hyperplanes are one-dimensional lines. Figure 10 shows sample objects with two different 

features, red and blue, in a two-dimensional space. Three hyperplanes, i.e. H1, H2 and H3, are 

placed in this space. The goal is to select a hyperplane that provides optimal separation with as 

few misclassified vectors as possible. Among the three illustrated hyperplanes, no classification 

was done by hyperplane H1 and therefore it is left out of consideration. On the other hand, a 

feature separation of the sample objects by both hyperplanes H2 and H3 took place. It can be 

shown that maximizing the margin of a hyperplane results in the optimal separating hyperplane 
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[BGV92]. Margin in this context stands for the minimum distance of a data point to the 

hyperplane. Thereby, a uniquely determined optimal hyperplane exists. Based on the 

aforementioned criterion, the hyperplane H3 in Figure 10 provides an optimal separation and 

this is called "maximum margin hyperplane". The points at the edge of the separation region, 

namely P1 and P2, are called "support vectors". In SVM problems, the determination of the 

optimal separating hyperplane is an optimization problem which is solved analytically. 

 

 

Figure 10: Separation planes in SVM classification 

 

In contrast to the sample data shown in Figure 10, the training data is mostly not linearly 

separable. In this case, the SVM uses the so-called kernel trick. This involves transferring the 

input space to a higher dimensional space by using a kernel function, where the objects are 

linearly separable. Subsequently, the SVM algorithm is applied much simpler in the new feature 

space with higher dimension to determine the optimal hyperplane. Figure 11 illustrates the 

principle of a kernel function for SVM classification schematically. There are many different 

types of kernel functions which can be used to create the higher dimensional space, such as 

linear, polynomial, sigmoid, Radial Basis Function (RBF) or Gaussian. It is also possible to 



Theory and State of the Art 

Page 20 

construct new kernels by combining simpler kernels. A kernel function is good if we have better 

separation of the sample data in its corresponding space [Alp10]. 

 

 

Figure 11: Schematic illustration of the principle of a kernel function for transformation 

into a linear problem in SVM classification 

 

2.1.2.2 SVM Regression 

The regression problem is an extension of the classification problem in which the model 

produces a continuous-valued output instead of a finite-valued output. In other words, a 

regression model estimates a multivariate function with continuous values. SVM can also be 

used as a regression method, keeping all the main features that characterize its classification 

algorithm, such as the maximum margin and the kernel function.  In the following, the main 

mathematical formulations of the SVM regression technique are discussed. 

 

The goal of linear SVM regression is to find an approximated hyperplane for the target model 

𝑓 in the form of 

 

𝑔(𝑥)  =  ⟨𝑤, 𝜙(𝑥)⟩  +  𝑏. Eq. 3 

 

▪ 𝑔(𝑥) Prediction values 

▪ 𝑤  Normal vector of approximated hyperplane 𝑔 

▪ 𝜙   Mapping function, which could initially be considered as identity function 

▪ 𝑏  Bias parameter 
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The predicted values from 𝑔 should have a bounded deviation not more than ε from the target 

values 𝑓(𝑥), i.e., 

 

|𝑔(𝑥)  −  𝑓(𝑥)|  ≤  𝜀 Eq. 4 

 

The distance between the hyperplane 𝑔 and the farthest point away is called margin and it is 

proportional to 
1

‖𝑤‖
. The boundary of a maximal margin is referred to as a support vector, as 

shown in Figure 12. Furthermore, 𝑔 should be maximally flat, i.e. ‖𝑤‖ should be as small as 

possible and the margin as large as possible [SS18]. 

 

 

Figure 12: Illustration of the support vectors, margins and slack variables in SVM 

[BWH+21] 

 

This kind of hyperplane is not always guaranteed to exist in practical cases. In order to cope 

with otherwise infeasible constraints, the slack variables 𝜉 and 𝜉∗are introduced to construct a 

soft margin hyperplane. As a result, the constrained optimization problem could be formulated 

as the following equations [SS04]: 
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Minimize: 1

2
‖𝑤‖2 + 𝐶 ∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑖

 
Eq. 5 

Subject to: 𝑔(𝑥)  −  𝑓(𝑥)  ≤  𝜀 +  𝜉𝑖
∗ 

𝑓(𝑥)  −  𝑔(𝑥)  ≤  𝜀 +  𝜉𝑖 

𝜉𝑖, 𝜉𝑖
∗ ≥ 0  ∀𝑖 = 1, … , |Ω| 

Eq. 5.1 

Eq. 5.2 

Eq. 5.3 

 

▪ Ω   Input variable space 

▪ 𝐶 > 0 Constant that determines the penalties for training errors 

 

A closed form representation of the regression hyperplane 𝑔 could be derived from the dual 

form of the optimization problem above, according to Eq. 6 

 

𝑔(𝑥) = ∑(𝛼𝑖
∗ − 𝛼𝑖)

𝑖

〈𝑥𝑖 , 𝑥〉 + 𝑏 
Eq. 6 

 

where 𝛼𝑖, 𝛼𝑖
∗ are Lagrange multipliers [SS04]. 

 

The already introduced linear form of SVM regression could be transformed into a nonlinear 

feature space via a nonlinear mapping 𝜙 ∶  Ω →  Ω̃. The dot product in Ω̃ is expressed by the 

kernel function 𝑘(𝑥𝑖, 𝑥𝑗) = ⟨𝜙(𝑥𝑖), 𝜙(𝑥𝑗)⟩. With the implicit mapping of kernel function 𝑘, it 

is possible to directly compute the hyperplane 𝑔 in the nonlinear feature space. With the so-

called kernel trick, the final form of the approximated hyperplane can be expressed as Eq. 7 

 

𝑔(𝑥) = ∑(𝛼𝑖
∗ − 𝛼𝑖)

𝑖

𝑘(𝑥𝑖, 𝑥) + 𝑏 
Eq. 7 

where the corresponding constrained optimization problem is now formulated in the 

transformed feature space Ω̃ instead of in the original input variable space Ω, with the help of 

the implicit mapping 𝜙 and the kernel function 𝑘 [SC04]. Figure 13 illustrates the principle of 

a kernel function for nonlinear regression problems schematically. As discussed above, the 

search for the best hyperplane in SVM regression, like in SVM classification, can be formulated 

as an optimization problem. One important advantage of SVM is that although the training 
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involves nonlinear optimization, the corresponding objective function is convex, and therefore, 

any local solution represents also a global optimum [BN06]. Furthermore, another primary 

advantage of SVM, as compared to ANN, is its good generalization ability, especially with 

limited number of training samples [SL12]. 

 

 

Figure 13: Schematic illustration of the principle of a kernel function in SVM regression 

for nonlinear problems 

 

2.1.3 Fuzzy Logic (FL) 

In addition to data-driven machine learning approaches, knowledge-based techniques are 

suitable for solving problems that cannot be adequately formulated mathematically. A 

Knowledge-based System (KBS) belongs to the artificial intelligence approaches that aim to 

retrieve knowledge from data/information in response to specific queries, along with learning 

and justification, or to transfer expertise from one domain of knowledge to another [AS09]. 

KBS in form of the so-called expert system can help to capture the knowledge of human experts 

to support decision-making. 

 

Science frequently employs mathematical models that either result from mathematical 

reasoning or follow exemplary physical principles for explaining systems. In order to transition 

from a specific situation to an appropriate mathematical model, considerable idealization is 

frequently required. Furthermore, the models are usually deficient if the problems under 

consideration are not fully understood or are too complex. In this case, a suitable approach is 
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to tolerate a portion of vagueness and uncertainty in the modeling process at the beginning. 

Thereby, fuzzy and non-precise inferences are used rather of an expensive accurate inference. 

Thus, complexity reduction is achieved compared to other systems. With the introduction of 

Fuzzy Logic (FL) by Lotfi A. Zadeh in the 1960s [Zad65], a new era began for KBS and expert 

systems in particular. FL is a type of knowledge-based strategy that allows handling with 

complex and ill-defined problems that are characterized by cognitive uncertainty, imprecision 

or fuzziness/vagueness. Thereby, diverse phenomena in the inference process may emerge, e.g.: 

▪ Uncertainty: "Coating porosity is almost certainly lower at high particle melting ratios." 

▪ Imprecision: "Electrical current is between 500 and 540 A." 

▪ Fuzziness: "Influence of electrode wear on coating properties is very high." 

The basic idea of FL is to incorporate expert knowledge and experience when the creation of an 

exact mathematical model is very time-consuming or impossible due to the complexity of the 

system. FL works with the so-called fuzzy sets. Unlike ordinary sets, where elements belong 

uniquely to a set or not, fuzzy sets allow arbitrary membership degree between 0 and 1. A 

function describing such fuzzy sets is called a membership function (MF), see Figure 14. 

 

 

Figure 14: Some typical forms of membership functions 

 

FL describes the complex system by means of linguistically formulated rules or rule base. The 

rules establish relationships between input and output of the system. Linguistic rules based on 

human experience allow for the qualitative characterization of a system without relying on exact 

quantitative analysis of nonlinear correlations among input and output parameters. A fuzzy 

inference system (FIS) basically comprises a fuzzifier, a block of database and rule base that is 

jointly referred to as knowledge base, a decision-making unit and a defuzzifier, see Figure 15. 
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Figure 15: General architecture of a fuzzy inference system [BHD22] 

 

The fuzzification interface converts the crisp inputs into degrees of match with linguistic values. 

The rule base contains a number of fuzzy if-then rules and the database defines the membership 

functions of the fuzzy sets used in the fuzzy rules. As described earlier, MF quantifies the degree 

to which an input element belongs to a particular fuzzy set. The values mapped by a MF are 

known as grade or degree of membership, and they range from 0 to 1. The inference operations 

on the rules are performed by the decision-making unit and finally the defuzzification interface 

transforms the fuzzy results of the inference into a crisp output. Fuzzy if-then rules are 

expressions in form of IF 𝑥  is 𝐴  THEN 𝑧  is 𝐵 , where 𝐴  and 𝐵  are labels for fuzzy sets 

characterized by suitable membership functions. The IF part is also called premise and the 

THEN part is referred to as consequence. This brief form of problem description facilitates the 

integration of human knowledge to deal with an uncertain and imprecise environment. 

 

2.1.4 Adaptive Neuro-Fuzzy Inference System (ANFIS) 

Due to insufficient knowledge, faults, or the complexity of the ill-defined system, FL is not 

optimal for achieving desired results in certain situations. For instance, developing a knowledge 

base for the stochastic process of plasma spraying depends on instinct and experience and is 

therefore an iterative and challenging task [JLC07]. Moreover, the human-determined 

membership functions differ from person to person and from time to time. On the other hand, 

ANN provides interesting benefits such as learning capability, adaptability, optimization and 

generalization. In the 1990s, Jyh-Shing Roger Jang [Jan93] integrated the best features of ANN 

and FL, and proposed his novel architecture under the terminology Adaptive Neuro-Fuzzy 
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Inference System (ANFIS). ANFIS uses a feed-forward neural network to automatically 

construct and tune rule bases and MF parameters from given sample data sets. Therefore, it 

leverages not only the advantages of neural networks but also the idea of conditional statements 

for uncertain systems. Figure 16 shows the general architecture of ANFIS with five layers, each 

of which is made up of several nodes. The inputs of each layer are obtained by the nodes from 

the previous layer, similar to a neural network. 

 

 

Figure 16: General architecture of ANFIS with two inputs, one output and two fuzzy if-

then rules [BHD22] 

 

For the sake of simplicity, the considered system is assumed to have two inputs 𝑥 and 𝑦, one 

output 𝑧 and two fuzzy if-then rules as follows [Jan93]: 

 

Rule 1: If 𝑥 is 𝐴1 and 𝑦 is 𝐵1, then 𝑓1  = ℎ1𝑥 + 𝑞1𝑦 + 𝑟1 

Rule 2: If 𝑥 is 𝐴2 and 𝑦 is 𝐵2, then 𝑓2  = ℎ2𝑥 + 𝑞2𝑦 + 𝑟2 

 

where 𝐴𝑖  and 𝐵𝑖 in the premise part are linguistic labels that are represented by fuzzy sets and 

characterized by an appropriate MF, while ℎ𝑖 , 𝑞𝑖 and 𝑟𝑖 are the consequent parameters of the 

𝑖-th rule. The node functions in each layer are described below. 
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Layer 1: Every node 𝑖 in the first layer is an adaptive node and has the output 𝑂𝑖
1 with a node 

function according to Eq. 8 

 

𝑂𝑖
1 = 𝜇𝐴𝑖

(𝑥) Eq. 8 

 

where 𝜇𝐴𝑖
 denotes the MF of 𝐴𝑖  and it specifies the degree to which the given 𝑥 satisfies the 

quantifier 𝐴𝑖 . 

 

In this work, Gaussian membership functions have been used according to Eq. 9, where {𝑎𝑖, 𝑐𝑖} 

is the parameter set that can be adapted to form various forms of Gaussian MFs. Parameters in 

this layer are referred to as premise parameters [Jan93]. 

 

𝜇𝐴𝑖
(𝑥) = 𝑒𝑥𝑝 [− (

𝑥 − 𝑐𝑖

𝑎𝑖
)

2

] 
Eq. 9 

 

Layer 2: Every node in this layer is a fixed (non-adaptive) node labeled with ∏ that multiplies 

the incoming signals and sends the product out. A sample node function in this layer is given 

in Eq. 10, where 𝑤𝑖 represents the so-called firing strength or degree of match with the premise 

part of the 𝑖-th rule. 

 

𝑤𝑖 = 𝜇𝐴𝑖
(𝑥) × 𝜇𝐵𝑖

(𝑦),  𝑖 = 1, 2 Eq. 10 

 

Layer 3: Every node in this layer is a fixed node labeled with 𝑁. The node function in this layer 

calculates the ratio of the 𝑖-th rule’s firing strength to the sum of all rules’ firing strengths 

according to Eq. 11. The term 𝑤̅𝑖 is referred to as normalized firing strength. 

 

𝑤̅𝑖 =
𝑤𝑖

𝑤1 + 𝑤2
,  𝑖 = 1, 2 Eq. 11 

 

Layer 4: Every node in this layer is an adaptive node. The node output of the fourth layer is the 

product of the respective previously found normalized firing strength with the consequent part 

of the respective rule, as given in Eq. 12. 
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𝑂𝑖
4 = 𝑤̅𝑖𝑓𝑖 = 𝑤̅𝑖(ℎ𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖) Eq. 12 

 

In Eq. 12, 𝑤̅𝑖 is the output of the third layer and {ℎ𝑖, 𝑞𝑖, 𝑟𝑖} is the set of adaptive parameters of 

the fourth layer, namely consequent parameters. 

 

Layer 5: The single node in this layer is a fixed node labeled with ∑ that computes the overall 

output 𝑂𝑖
5 as the summation of all incoming signals according to Eq. 13. The final output of the 

system is the weighted average over all rule outputs. 

 

𝑂𝑖
5 = ∑ 𝑤̅𝑖𝑓𝑖 =

∑ 𝑤𝑖𝑖 𝑓𝑖

∑ 𝑤𝑖𝑖
𝑖

 
Eq. 13 

 

In the literature, several kinds of fuzzy reasoning have been introduced [Lee90]. Mamdani 

[MA75] and Takagi-Sugeno [TS85] are the two most well-known types of FIS. The most 

fundamental difference between these two FIS types is the way the crisp output is generated 

from the fuzzy inputs. Mamdani employs defuzzification of a fuzzy output, whereas Sugeno 

computes the crisp output using weighted average. As a result, the computationally expensive 

defuzzification process is bypassed in Sugeno [HG08]. The type of FIS in Figure 16 is Sugeno. 

This can be noticed from the two earlier stated rules, as the fuzzy sets are involved only in the 

premise parts, while the consequent parts are described by a non-fuzzy equation of the input 

variable. The Mamdani-type has a more interpretable rule base and is well-suited to human 

input; a good example of its application field would be medical diagnostics. The Sugeno-type 

has more flexibility in system design, is computationally efficient and works well with 

optimization and adaptive techniques [HG08]. Hence, the Sugeno-type FIS has been also 

implemented in this work. 

 

 Artificial Intelligence in Plasma Spraying 

The coating properties in atmospheric plasma spraying (APS) are a function of three 

interdependent subsystems in general: 1) the generation of the plasma jet, 2) the injection and 

interaction of the feedstock material with the plasma jet that meanwhile mixes with the 

surrounding gas and 3) the impact and solidification of the particles on the substrate 

[VMT+15]. During each subsystem, several physicochemical mechanisms occur, which lead to 

the formation of a coating. These mechanisms include momentum and heat transfers from the 
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plasma jet to the particles prior to impact and during solidification, as well as mass transfers 

caused by partial vaporization of the particles in the plasma plume. Therefore, each subsystem 

has a large number of variables that influence the plasma spraying process. 

 

The number of influencing factors in APS is estimated to be more than 200 variables [SBD+06]. 

It should be emphasized that many of these factors are intimately connected by complicated 

nonlinear relationships. These interactions further increase the complexity of the overall APS 

system. Taking the above aspects into account, the question of robust methods for quantifying 

the complex interactions between the dozens of influencing factors in APS arises. It turns out 

that computer-aided algorithms can best fulfill this challenging undertaking. Artificial 

intelligence (AI) methods are suitable tools to investigate complex processes with parameter 

dependencies. 

 

Previous research studies have used AI approaches to mainly forecast process parameters in 

order to attain the desired in-flight particle properties or coating characteristics. According to 

the literature, ANN is the most commonly used method of AI in plasma spraying. There are 

only few works that have employed SVM in TS [XH17, GAU+20]. There have already been 

studies at the Surface Engineering Institute (IOT) at the RWTH Aachen University to analyze 

process data, coating properties and plasma jet characteristics using ANN and Design of 

Experiment (DoE) [See05, Ern07]. In other studies, Guessasma et al. [GMG+03] developed an 

ANN model to predict the in-flight particle properties of plasma sprayed Al2O3 13 wt.% TiO2 

feedstock material. Kanta et al. [KMV+08] implemented ANN and FL to predict the in-flight 

particle properties as a function of process parameters for deposition of alumina-titania by APS. 

They concluded that the ANN model appeared well suited for process prediction, whereas the 

FL model seemed more adapted for process control. In another work of Kanta et al. [KMB+11], 

an expert system was created by ANN and FL to control and adjust the process parameters so 

that constant values for the in-flight particle properties can be maintained. They aimed to 

account for the instabilities and intrinsic fluctuations inherent in the APS process based on the 

pre-defined rules of the FL model. Liu et al. [LPK+13] developed an expert system by 

implementation of ANN models and FL controllers to predict and control the in-flight particle 

properties and operating parameters. Similar to the work of Kanta et al., they predefined the 

fuzzy rules manually according to experimental data. 
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As the use of ANN and FL revealed drawbacks such as reliance on a significant quantity of 

experimental data and taking too much time in construction of the rules, the ANFIS technique 

was employed in subsequent works due to its high prediction accuracy and low execution time 

[PGN+15]. Datta et al. [DPB13] aimed to predict coating properties from process parameters 

in APS by developing an ANFIS, which was tuned using a genetic algorithm (GA) and particle 

swarm optimization (PSO) algorithm, separately. They found that the PSO-based approach 

performed better than the GA-based optimization in predicting the responses. Furthermore, in 

[Wu15] an empirical model was developed by combination of ANN and ANFIS to investigate 

the effect of process parameters on the coating properties in APS. 

 

Although studies have been conducted to develop AI models for predicting particle or coating 

properties, the research in investigating the interactions between process parameters, in-flight 

particle properties and deposition efficiency (DE) remains limited. One of the obstacles in this 

regard is the lengthy and time-consuming data collection to measure DE and the corresponding 

particle properties for different process parameters. One possible solution to tackle this problem 

is to produce data by employing simulation and modeling approaches like the Computational 

Fluid Dynamics (CFD). The advantage of using simulation results is the opportunity to cover a 

broad range of process parameters, while providing that much experimental data is barely 

possible. The majority of prior research works have used experimental data sets to create 

predictive models for the TS process variants. There are only few studies in the literature that 

used simulation data sets for training ML models in TS [ZWK+20]. While simulation and 

modeling approaches can help to produce sufficient data of in-flight particle properties, the 

problem of data collection for DE still remains. In order to address this issue in terms of 

experimental data, first an analysis of the methods and equipment available to capture the in-

flight particle properties is required. Following that, the state of the art regarding measurement 

of DE will be discussed. 

  



Theory and State of the Art 

Page 31 

 In-flight Particle Diagnostics 

Particle diagnostic methods support the coating development process by allowing the 

observation of particle properties in the free jet. These include measurements of particle size, 

velocity and temperature. The evolution of sensors in thermal spraying for particle in-flight 

diagnostic measurements has progressed considerably in recent years. Particle diagnostic 

systems have broadened our understanding of the spraying process and improved the 

reproducibility of the coatings. 

 

Different diagnostic devices show deficits in the number of detected particles and this depends, 

among others, on the sensor measurement volume and the stand-off distance [Lan06, FV10]. 

The diagnostic sensors employ mainly two different techniques: local measurement and 

ensemble measurement. In case of the local measurement, the observation of a single particle is 

possible. The ensemble measurement technique does not distinguish between individual 

particles and give only average values [FV10]. In conventional spray processes, numerous 

particle diagnostic methods and systems have been developed, such as Phase Doppler 

Anemometry (PDA), Accuraspray, DPV-2000, SprayWatch and HiWatch. The PDA technique 

is unable to measure the particles with an angular and blocky morphology. The Accuraspray is 

categorized as ensemble measurement and delivers a single mean value from the captured 

particle data in the whole measurement volume. The DPV-2000 is a well-established diagnostic 

system, which operates based on the principle of two-wavelength pyrometry. This diagnostic 

system utilizes the local measurement technique and has a relatively small measurement volume 

(< 1 mm3). The DPV-2000 can detect only relatively hot particles and measure their size, 

velocity and temperature. In case of using a laser to illuminate the cold particles, it is not 

possible to measure the particle temperature. This is prominently due to the laser-induced 

alterations in particle radiation, disrupting conventional temperature measurement techniques. 

SprayWatch is a particle diagnostic system especially for HVOF and HVAF processes, however, 

it works well also on the other processes. It measures particle velocities and temperatures, but 

not particle sizes. The HiWatch system consists of a camera and a pulsed laser diode to 

illuminate the particles. It can measure particle sizes and velocities, but not particle 

temperatures. The functional principle of this device is discussed later in detail in Chapter 4. 

The HiWatch system has a larger measurement volume (6.5 mm × 9 mm × 2 mm) compared 

to DPV, and is capable of observing a single particle. Furthermore, it has the advantage to 

capture both cold and hot particles. 
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The temperature and velocity of the particles vary significantly in the plasma jet, depending 

whether the particles are in the hot core of the jet or in its relatively cold outer part. Due to this 

temperature and velocity difference in the plasma jet, the deposition behavior of the particles 

on the substrate depends on their individual trajectory. Hence, in order to find a practical 

compromise between deposition efficiency and particle properties, the detection of the entire 

plasma jet is necessary. 

 

In principle, the particle diagnostic systems focus on one point or one focal plane and therefore, 

they can only partially capture the free jet. This point or plane is usually chosen in view of the 

maximum concentration of the particles and then a rotationally symmetrical free jet is assumed. 

This assumption is generally not correct due to incessant plasma fluctuations. In addition, given 

the dynamic range and signal-to-noise ratio of the diagnostic sensors, only particles within a 

certain measurable range are detected [WRT+10]. Thus, particle diagnostic systems show 

deficits in measured data and do not allow a holistic recording of the free jet. The detection of 

the entire free jet as well as the verification of the diagnostic measurements represent a central 

research need in the field of thermal spraying. 

 

 Deposition Efficiency 

During a thermal spray process, only part of the injected feedstock material adheres to the 

component surface and creates a coating. The deposition rate, [g/s] or [kg/h], of a coating 

process is defined by this part that adheres to the substrate. The part that does not adhere is lost 

as the so-called overspray. The ratio between the mass of the coating and the mass of the 

feedstock material supplied to the process defines the deposition efficiency (DE) [%] and 

determines the overall efficiency of the process. In industrial production, high DE has been 

always one of the central goals in the process development of thermal spraying to achieve cost-

effective coatings. 

 

Previous studies aimed mainly to seek a compromise between input process parameters and 

deposition efficiency of the plasma-sprayed coatings [WXZ+17, BM12]. For instance, there is a 

general tendency that the DE initially increases and then decreases with the increase of the 

electrical current, voltage and primary gas flow [VSY+09]. Furthermore, few studies have tried 

to build up the spray footprint profiles with simulation models [WM13]. However, simulative 
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determination of DE in thermal spraying, due to lack of physical equation sets for adhering the 

particles on the substrate, is not yet state of the art. 

 

The DE in thermal spraying is intimately related to the in-flight particle properties. The particle 

properties can be influenced through several adjustable as well as nonadjustable factors. The 

adjustable parameters include the flow rates of plasma and carrier gas, input electrical power of 

the torch and the injector geometry design [BÖK+20, GMC05]. The nonadjustable influencing 

factors are, among others, the wear of the electrodes and entrainment of the surrounding cold 

gas [MVS11]. Due to the multitude of influencing factors and their nonlinear interactions, the 

determination of the correlations between particle properties and DE is currently based on the 

experience of the operator and is mostly done by ex situ experiments [SSV+09]. Accordingly, 

the prediction of particle properties leading to a coating process with the desired DE is largely 

based on time-consuming trial and error. This approach complicates the coating development 

process and significantly extends the coating development time. Furthermore, available studies 

are limited to the average particle properties, which are commonly captured at the centerline of 

the free jet. There has not been an in situ mechanism yet to correlate the in-flight particle 

properties in the entire free jet with their DE on the substrate locally, see Figure 17. Therefore, 

an in situ determination of DE is necessary in order to investigate the influences of process 

parameters and in-flight particle properties on the adhesion of the particles to the substrate. 

 

 

Figure 17: Detectability of different variables in TS according to the state of the art 
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 Conclusion 

The coating properties in atmospheric plasma spraying (APS) is a function of numerous 

influencing factors, which have intricate nonlinear relationships. The complexity of the plasma 

spraying system arises the question of robust methods for quantifying the complex interactions 

between the dozens of influencing factors. The methods of artificial intelligence (AI) can best 

fulfill this challenging undertaking. 

Deposition efficiency (DE) serves as a key performance indicator in plasma spraying, which is 

also determined by dozens of intrinsic and extrinsic influencing factors. Finding a compromise 

between process parameters, in-flight particle properties and DE can help to improve the 

productivity, efficiency and consequential sustainability of the APS process. The main step 

toward this aim, is to gather the already available data or to provide new data in an efficient 

manner. Since multiple experiments to measure particle properties and DE in plasma spraying 

are a lengthy way to generate data, a novel approach to address this issue must be found. The 

amount of training data and their quality are the most important requirements for developing 

precise AI models to improve the efficiency of the process. 

The literature review on employing AI techniques to find a compromise between process 

parameters, in-flight particle properties and DE can be summarized as follows: 

▪ The majority of prior research has focused on developing AI models to predict coating or 

particle properties. 

▪ According to the literature, ANN is the most commonly used method of AI in plasma 

spraying. There are small number of works in TS that have employed deterministic ML 

models with structural risk minimization, like SVM. 

▪ Only few studies have been done specifically to create expert systems for prediction and 

increase of DE. 

▪ It is lengthy and time-consuming to collect sufficient data on DE and the corresponding 

particle properties for different process parameters. 

▪ The benefit of using simulation data sets for particle properties to train ML models has 

rarely been considered. 

▪ Since the deposition behavior of the particles on the substrate depends on their individual 

trajectory, the detection of the entire plasma jet is necessary for DE correlations. 

▪ A new approach is needed for in situ determination of DE to tackle the problem of 

insufficient experimental data.  
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3 Aim and Solution Approach 

To fill the literature gaps mentioned in the previous chapter, this dissertation is dedicated to the 

development of a Digital Shadow in plasma spraying with the ultimate goal of improving the 

process efficiency. For this purpose, modern AI methods, such as SVM and ANFIS, were used 

to develop and combine domain-specific models using simulation or experimental data from 

the entire process chain of APS. These data include process parameters, in-flight particle 

properties and deposition efficiency on the substrate. Furthermore, to tackle the problem of 

insufficient data for AI models two approaches were pursued: 1) A methodology for in situ 

determination of spatially resolved deposition efficiencies on the substrate and 2) generating 

simulation data by recycling the simulation models of the plasma jet developed at the Surface 

Engineering Institute (IOT) at the RWTH Aachen University. The term "data recycling" refers 

to the reuse of data from already developed models [Nia20]. It should be noted that the reused 

simulations have already been validated by comparing the numerical results of the particle 

properties with experimental measurements [BÖS+17]. The combination of these two strategies 

provided the aggregated and purpose-driven data sets required for Digital Shadows in plasma 

spraying. 

 

Figure 18 depicts the proposed solution approach for the development of a Digital Shadow in 

plasma spraying with the ultimate goal of improving the process efficiency. The main steps 

leading up to the proposed Digital Shadow in this work are briefly outlined below. 

▪ Development of a methodology to estimate the particle mass flow rate in the entire plasma 

jet using in-flight particle diagnostics 

▪ In situ determination of spatially resolved deposition efficiencies on the substrate, namely 

local deposition efficiency (LDE), based on the particle mass flow rate in the plasma jet 

▪ Generating simulation data sets of in-flight particle properties with their corresponding 

process parameters by recycling the already developed simulation models at the IOT 

▪ Prediction of in-flight particle properties using SVM with simulation data sets 

▪ Prediction of LDE using ANFIS with experimental data sets 

▪ Development of an expert system by combination of SVM and ANFIS models to predict 

LDE in plasma spraying 

▪ Demonstrate the proof of concept to predict the global DE out of the developed expert 

system trained with the LDE data sets
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Figure 18: Solution approach for the development of a Digital Shadow in plasma spraying 

with the ultimate goal of improving the process efficiency 
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4 Particle Mass Flow Rate (PMFR) in Plasma Jet 

In this chapter, a novel method is presented to estimate the particle mass flow rate (PMFR) 

throughout the plasma jet, which has been already published in [BWK+20]. This approach 

serves as a prerequisite for the calculation of local deposition efficiency in the next chapter. An 

in situ measurement of the PMFR in the plasma jet is a technically challenging issue, which can 

be significant to attain efficient utilization of the feedstock powder and to reduce overspray. 

The main challenge is that capturing the average particle properties at the plasma jet center 

would not be sufficient to measure the PMFR. Thereby, it is necessary to capture the entire 

plasma jet to attain a good estimation of the PMFR based on the absolute values of the particle 

properties existing in the jet. To this end, the entire free jet transverse section is divided into 

several non-overlapping focal planes. Optical particle diagnostics have been carried out to 

measure the size and velocity of the in-flight particles at these focal planes. A mathematical 

model is proposed to derive the PMFR in the free jet based on the measured in-flight particle 

sizes and velocities. The PMFR of the powder feeder is then utilized as a reference to validate 

the diagnostic measurements. Subsequently, the determined PMFR distributions at the entire 

free jet are compared to the generated experimental footprints. The cumulative deposition 

profile of the impacted particles on a prepared substrate is known as spray footprint or spray 

pattern. Accordingly, the PMFR distribution at the entire free jet is referred to simply as digital 

footprint in this work. 

 

 Spray Parameters and Feedstock Materials 

The single-cathode plasma generator F4MB-XL (Oerlikon Metco, Wohlen, Switzerland) and 

the three-cathode plasma generator TriplexProTM-210 (Oerlikon Metco) were used to do the 

experiments. The plasma generators were mounted on a six-axis robot (KUKA AG, Augsburg, 

Germany). The APS system was equipped with an external powder feeder with a transverse 

particle injection system relative to the horizontal gun axis. A conventional injector with the 

diameter of Ø = 2 mm was used. Two commercial feedstock materials were used to conduct the 

diagnostic measurements: Aluminum oxide (AMDRY 6062, Oerlikon Metco) and aluminum 

bronze (Metco 51NS, Oerlikon Metco). The volume-based particle size distributions as well as 

other properties of the feedstock powders used in this study are given in Table 2. The size 

distribution of the particles was determined by the particle analysis system Morphologi G2 

(Malvern Panalytical Ltd, Malvern, England). 
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Table 2: Properties of the feedstock powders 

Property Al2O3 Cu10Al 

D [v, 0.05], µm 17.6 28.58 

D [v, 0.5], µm 31.85 75.06 

D [v, 0.95], µm 50.3 125.7 

Density, g/cm3 3.98 7.57 

Manufacture fused and crushed gas atomized 

Morphology angular / blocky spheroidal 

 

The morphology of the powder particles was examined using a scanning electron microscope 

(SEM). The obtained SEM result is shown in Figure 19. The SEM image indicates an angular 

and blocky morphology of the particles. 

 

 

Figure 19: Morphology analysis of the alumina feedstock particles using SEM 

 

Figure 20 shows the result of the morphology analysis using SEM for the Cu10Al spray particles. 

In comparison with fused and crushed powders, which have an irregular particle shape, gas 

atomized powders have a spherical shape. The resulted SEM image for the gas atomized Cu10Al 

confirms this matter. 
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Figure 20: Morphology analysis of the Cu10Al particles using SEM 

 

The spray powders used for the diagnostic experiments were selected based on different particle 

sizes and morphologies. The spray parameters with regard to the plasma torches and feedstock 

powders are listed in Table 3. 

 

Table 3: Spray parameters used for particle diagnostic experiments 

Parameter Single-cathode gun Single-cathode gun Three-cathode gun 

Feedstock material Al2O3 Cu10Al Al2O3 

Current [A] 600 500 500 

Input power [kW] 35.6 25.5 48.4 

Argon [SLPM] 42 50 60 

Hydrogen [SLPM] 9 2 - 

Carrier gas (Ar) [SLPM] 5.5 3.5 5.5 

Nozzle diameter [mm] 6 6 9 

 

 Experimental Footprints 

The cumulative deposition profile of the impacted particles on a prepared substrate is known 

as spray footprint or spray pattern. Experimental footprints were produced to determine the 

section of the free jet in which most particles are located. The point with maximum particle 
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intensity was then considered as the reference point for the particle diagnostic experiments. 

Furthermore, the determined PMFR distributions at the entire free jet are compared to the 

profile of the experimental footprints. The PMFR distribution at the entire free jet will be 

referred to simply as “digital footprint” for the remainder of this thesis. 

 

To generate footprints, the plasma gun was held at a spray distance of d = 100 mm in front of 

the substrate for 5 seconds. Figure 21 shows a) the principle of generating a footprint 

schematically and b) an experimental footprint with the three-cathode plasma gun and alumina 

spray powder. 

 

 

Figure 21: a) Schematic illustration of generating a footprint and b) an experimental 

footprint with the three-cathode plasma gun and alumina spray powder 

[BWH+20] 

 

Flat samples made of S235JR structural steel with the dimension of 50 × 50 × 5 mm³ were used 

as substrates. Before producing the footprints, a grit blasting system was utilized to roughen the 

substrates with a pressure of p = 0.4 MPa and corundum with a grit size of F16. To ascertain the 

height profiles of the experimental footprints, a confocal laser-scanning microscope (VK-X 210 

Keyence, Osaka, Japan) was used with a 10X optical magnification. Figure 22 illustrates a) the 

3D height profile of the experimental footprint and b) the substrate under the laser-scanning 

microscope. 
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Figure 22: a) 3D height profile of the footprint and b) substrate under the laser-scanning 

microscope [BWH+20] 

 

 Particle Diagnostics 

The particle diagnostic system HiWatch CS (Oseir Ltd, Tampere, Finland) was used to conduct 

the particle diagnostic measurements. The output data of this diagnostic tool are, among others, 

the size, velocity and position of the particles. The device package consists of a pre-aligned 

assembly of a camera and a pulsed diode laser head with a power of 50 W. The HiWatch system 

measures the particle properties based on the stroboscobic image analysis, where the particles 

on certain transverse section of the free jet are recorded using triple-exposure imaging. The 

functional principle of the HiWatch system is schematically illustrated in Figure 23. 

 

Figure 23: Schematic configuration of the particle diagnostic system HiWatch [BWK+20] 
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The measuring area with standard optics for HiWatch is 6.5 mm in the spray direction and 

9 mm perpendicular to the spray direction, see Figure 24. The depth of field of the camera lens 

in z direction is about 2 mm. The object space resolution is 6.8 µm/pixel. 

 

Figure 24: Sample measurement image of the HiWatch at a particular focal plane in the 

free jet [BWK+20] 

 

The HiWatch determines the particle sizes by the average reflection intensity of the multiple 

images of a particle. In contrast to the emissivity, the reflectivity of the particles under the 

applied laser illumination with a wavelength of λ = 810 nm is almost independent of the particle 

temperature. Therefore, both hot and cold particles can be captured by the HiWatch. The 

particle velocities are calculated by the travel distance in the image and the laser pulse time 

interval. Fast particles are detected with a relatively smaller pulse interval compared to the 

settings for detecting slower particles. To detect particles in different velocity ranges, the laser 

pulse interval was set in the range of 0.3 < tinterval < 25 µs and the pulse duration in the range of 

0.16 < tduration < 0.5 µs. The laser settings for the individual measurements were subject to the 

measurement location in the free jet. Optimal laser settings were adjusted using the live view 

option to capture as many particle triplets as possible while avoiding overlapping of these 

triplets. 
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 PMFR of the Powder Feeder 

The determined PMFR in the free jet is validated using the PMFR of the powder feeder as a 

reference. Figure 25 shows the powder feeder of the spraying system with a schematic drawing 

of its main components. The spray powder is conveyed by the carrier gas, which is argon in this 

case. The carrier gas is regulated by a mass flow controller. The stirrer, controlled by the stirrer 

motor, maintains the powder movement. To discharge any potential static that may build up in 

the feeder, the hopper is grounded. The PMFR of the powder feeder is controlled volumetrically 

by the speed of the rotating metering disk that receives the powder from the powder hopper. 

The operator can control the metering disk speed by changing the setting of the metering disk 

in terms of percentage. After metering the rotational speed of the disk by the entered percentage 

value, the powder is transported with the carrier gas through a powder hose, which ends in a 

particle injector. The powder particles are then injected into the plasma jet. 

 

 

Figure 25: Functional principle of the powder feeder according to [NN23b] 

The PMFR of the powder feeder at different metering disk settings was calculated by weighing 

the amount of powder that was injected into a closed can over a predetermined period of time, 

see Figure 26. The particle-gas mixture conveyed in the hose is injected into the can from one 

side. The inserted filter on the other side allows only the gas to escape. The mass flow rate of the 

feedstock material supplied to the spraying process can be determined by weighing the powder 

injected into the can within a certain time. The measurements were conducted three times. 
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Figure 26: Measuring principle of the PMFR of the powder feeder supplied to the process 

 

The argon carrier gas for the Al2O3 powder was set to 5.5 SLPM and for the Cu10Al powder to 

3.5 SLPM. In each case, the same carrier gas flow was used as in the diagnostic experiments. 

Figure 27 shows the average PMFR of the powder feeder for the two feedstock powders against 

different metering disk settings. The results in Figure 27 indicate that the PMFR increases 

almost linearly with the increase of the metering disk setting. 

 

Figure 27: Average PMFR of the powder feeder for the two feedstock powders against 

different metering disk settings [BWK+20] 
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 Particle Size Normalization 

The particle sizes determined by the HiWatch revealed a deviation compared to the findings of 

the particle analyzer. One possible explanation is the background subtraction algorithm, which 

slightly modifies the particle shapes in the recorded images. It should be mentioned that the 

object space resolution of the HiWatch is not a limitation for the particle detectability. The 

minimum measurable particle size by the HiWatch is 5 µm. However, due to imaging system 

non-idealities, the particles appear larger in the images and this leads to an overestimation of 

the particle sizes, but the position and velocity measurements are not affected by this. The 

HiWatch system uses the background subtraction algorithm to improve particle detection in 

the free jet. However, this algorithm may alter the particle shapes in the captured images, 

resulting in misperceived particle diameters. Additionally, the presence of larger particles may 

indicate the merging of multiple smaller particles that are melted or semi-melted in the plasma 

jet. Furthermore, smaller particles may be more challenging to detect by the diagnostic system 

compared to larger ones. 

 

Hence, to avoid overestimating the PMFR, the measured particle sizes in the entire plasma jet 

for the both feedstock powders were normalized based on the results of the particle analyzer. 

To do this, a linear regression was used to normalize the measured particle sizes based on the 

D [v, 0.05] and D [v, 0.95] of the particles stated in Table 2. Figure 28 shows the volume-based 

particle size distribution exemplarily for the Al2O3 powder using the particle size analyzer as 

well as the HiWatch diagnostic system before and after normalization. The particle size 

distribution after normalization shows a good agreement with the distribution measured by the 

particle analysis system. With respect to this size normalization and the conservation of mass, 

the particle density in room temperature can be assumed for the in-flight particles as well. 

Thereby, the vaporization of the particle in the plasma jet has been neglected. 
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Figure 28: Comparison of exemplarily determined particle sizes before and after 

normalization by HiWatch with the measurement results of the particle 

analysis system for Al2O3 feedstock powder [BWK+20] 

 

 PMFR Measuring Principle in Free Jet 

Experimental footprints were produced to determine the section of the free jet in which most 

particles are located. The point with maximum particle intensity was then considered as the 

reference point for the particle diagnostic experiments. Prior to generating the footprints, all 

substrates were roughened using a grit blasting system. The height profiles of the applied 

experimental footprints were measured using a confocal laser-scanning microscope. In a next 

step, these profiles were compared with the digital footprints. 

 

The PMFR of a focal plane from a HiWatch image was calculated based on the following 

equation: 

 

𝑚̇  =  ∑
𝜌

4
3 𝜋(

𝐷𝑝,𝑖

2 )3𝑣𝑝,𝑖

𝐿

𝑛

𝑖=1

 Eq. 14 

 

▪ 𝑚̇  Particle mass flow rate (PMFR) 

▪ 𝜌  Particle density 
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▪ 𝐷𝑝  Particle diameter 

▪ 𝑣𝑝  Particle velocity 

▪ 𝑛  Number of particles in a HiWatch image 

▪ 𝐿  Length of a HiWatch image in spray direction 

 

At each focal plane, 250 images were captured and the PMFR of a focal plane corresponds to 

the average PMFR of all images captured at that focal plane. Figure 29 shows the measured area 

of the free jet schematically. The free jet transverse section was divided into 15 focal planes in z 

direction and 3 stages in x direction, see Figure 29. 

 

 

Figure 29: Schematic illustration of the measured area of the free jet by the particle 

diagnostic device [BWK+20] 

 

The particle diagnostic measurements and the experimental footprints were performed at a 

spray distance of d = 100 mm. The center of the middle stage corresponds to the point with 

maximum particle intensity, which was determined by the experimental footprints. At each 

stage, 15 individual diagnostic measurements were carried out by moving the robot at an 

increment of 2 mm in z direction, which equals the depth of field of the CCD camera. Therefore, 

an area of 9 × 2 mm2 in xz plane was covered by each individual measurement. Subsequently, 

the PMFR values for each individual measurement were calculated based on Eq. 14. Finally, the 

PMFR of the entire measuring area was determined by summation of the obtained PMFR values 

of the three stages. In this approach, no symmetric distribution of PMFR in the free jet was 

assumed. It must be pointed out that, as another approach, the PMFR of the focal plane with 
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maximum particle intensity was also integrated rotationally symmetric over the entire free jet. 

The results showed an overestimation in the PMFR relative to the PMFR of the powder feeder, 

which makes the symmetric assumption impermissible. 

 

 Digital Footprint 

As mentioned before, the spatial PMFR distribution in the entire free jet is referred to simply as 

digital footprint.  The digital footprints were created based on the determined PMFRs of the all 

individual measurements described in Figure 29. For better visualization of the digital 

footprints, the particle positions in each focal plane were considered. The HiWatch system 

delivers the position of the center of the captured particle triplets in a measurement image, with 

reference to the upper and left edge of the image. Figure 30 illustrates the covered free jet cross-

section by a single measurement together with particle positions schematically. In Figure 30, 

the particles are sprayed in y direction and the HiWatch captures the particles in z direction. 

The xz plane was divided into several sections along the x-axis. The PMFR for each section was 

projected onto the xz plane to create a digital footprint. Afterwards, these digital footprints were 

compared to the previously produced experimental footprints to validate the results. 

 

 

Figure 30: Schematic illustration of an individual measurement in terms of considering 

the particle positions for precise visualization of the digital footprint 

[BWK+20] 

 

 PMFR Calibration 

Since the particle diagnostic systems are not fully capable to detect all the existing particles in 

the entire free jet, a calibration of the captured PMFR is necessary. The PMFR directly at the 
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outlet of the injection nozzle was measured to calibrate the determined PMFR in the free jet, 

see Figure 31. This allows to capture all injected particles at one focal plane. In this approach, 

the PMFR at the injection nozzle outlet was calculated and compared with the corresponding 

PMFR of the powder feeder for different metering disk settings. 

 

 

Figure 31: Schematic illustration of capturing the particles directly at the outlet of the 

injection nozzle [BWK+20] 

 

The PMFR of the Al2O3 feedstock material at the injector outlet and the corresponding PMFR 

of the powder feeder are given in Table 4 for different metering disk settings. The PMFR values 

at the injector outlet were calculated according to Eq. 14. The corresponding PMFR values of 

the powder feeder were measured according to the measuring principle described in section 4.4. 

The proportion of the detected PMFR at the injector outlet, denoted by Ψi, is calculated based 

on dividing the detected PMFR at the injector outlet by the corresponding PMFR of the powder 

feeder. In other words, this shows the proportion of the particles recorded by the HiWatch at 

the injector outlet. The index “i” in Ψi refers to the injector. 

 

The results show that up to a metering disk setting of 5 %, almost a constant proportion of the 

PMFR was obtained. With higher metering disk settings, due to a dense crowd of particles at 

the focal plane, the measured values are not reliable. The typical setting of the metering disk, 

depending on the feedstock material, is between 20 and 30 % in APS. However, in order to avoid 
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overlapping of the particles and thus incorrect measurements by the HiWatch, the setting of 

the metering disk was not increased to the maximum typical range. 

 

Table 4: Results of the determined PMFR directly at the injector outlet [BWK+20] 

Metering 

disk [%] 

Number of 

particles in 250 

images 

PMFR [g/min] Proportion of the 

detected PMFR 

(Ψi) 
Injector 

outlet 

Powder 

feeder 

0.5 345 0.28 0.53 0.52 

1 762 0.50 1.08 0.46 

2 1,502 0.95 2.12 0.45 

5 3,575 2.46 5.5 0.44 

10 3,088 2.42 10.75 0.23 

20 2,229 1.20 21.08 0.06 

 

The HiWatch images at the injector outlet are shown in Figure 32. Ψi represents the proportion 

of the detected PMFR relative to the PMFR of the powder feeder and MD is the metering disk 

setting in percentage. It is evident that Ψi has been greatly decreased in the case of 10 % and 

20 % of MD, since the particle triplets overlap with each other and therefore, the HiWatch 

cannot reliably evaluate the measured images of the overlapped particles. On the contrary, such 

a high particle concentration was not observed at a focal plane in the free jet. In addition to the 

overlapping of the particles, the proportion of the detected particles also depends on the particle 

diameter, since the larger particles can usually be better detected by the diagnostic equipment. 

It should be mentioned that the particle size is already considered in the calculation of Ψi during 

the calculation of PMFR by Eq. 14. 
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Figure 32: HiWatch images captured directly at the outlet of the injection nozzle 

 

The proportion of the determined PMFR at the injector outlet (Ψi) is plotted against the 

metering disk setting in Figure 33. Up to a metering disk setting of 5 %, almost 47 % of the 

PMFR of the powder feeder could be obtained. Thus, a factor of roughly 2.1 should be 

considered to calibrate the PMFR in the free jet. This calibration factor determined at the nozzle 

outlet was validated afterwards by measuring the PMFR in the free jet in case of different spray 

powders and plasma generators. These results revealed no dependencies of the calibration 

factor on the particle size and material. However, this calibration factor may vary for other 

diagnostic systems. It should be noted that due to the overlapping of the particles directly at the 

injector outlet, the calibration factor could be measured for a metering disc setting of up to 5 %. 

In the following results of the PMFR determination in the free jet, it is confirmed that this 

calibration factor also fits well for higher metering disc settings. 
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Figure 33: Proportional PMFR detected at the injection nozzle outlet against different 

metering disk settings [BWK+20] 

 

 Single-Cathode Plasma Torch 

The described methodology was implemented in the MATLAB program version R2019b (The 

MathWorks, Inc., Massachusetts, USA) to calculate the PMFR of each individual measurement 

and visualize digital footprints based on the PMFR distributions in the free jet. In case of the 

single-cathode plasma generator, particle diagnostic measurements were carried out for the 

Al2O3 and Cu10Al feedstock powders with different metering disk settings of the powder feeder. 

The determined PMFR in the free jet and the corresponding PMFR of the powder feeder are 

given in Table 5. The PMFR in the free jet given in this table was calculated by summation of 

the PMFR values of all individual measurements based on Eq. 14 without considering the 

calibration factor at the injector outlet. The corresponding PMFR of the powder feeder was 

measured according to the description in section 4.4 by weighing the amount of powder that 

was injected into a closed can within a certain time. The proportion of the recorded PMFR in 

the free jet, denoted by Ψf, is also stated in Table 5. The index “f” in Ψf refers to the free jet. Ψf 

is calculated based on dividing the detected PMFR in the free jet by the corresponding PMFR 

of the powder feeder. For this calculation, it is assumed that all injected powder particles enter 

the free jet. 
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Table 5: Results of the PMFR determination for different feedstock powders and  

  metering disk settings using single-cathode torch [BWK+20] 

Feedstock 

powder 

Metering disk 

setting [%] 

PMFR in free 

jet [g/min] 

PMFR of the powder 

feeder [g/min] 

Proportional PMFR 

in free jet (Ψf) 

Al2O3 10 5.2 10.75 0.484 

Cu10Al 20 25.2 50.66 0.497 

 

The proportion of the detected PMFR in the free jet (Ψf) given in Table 5 agrees well with the 

determined proportional PMFR in Figure 33 directly at the injector outlet (Ψi = 0.47). This 

comparison validates the application of the specified calibration factor at the injector outlet also 

for the PMFR determination in the free jet. Furthermore, with regard to the metering disc 

settings of 10 % and 20 % used in Table 5, the results confirm that the calibration factor 

determined for a metering disc setting of up to 5 % at the injector outlet is also well suited for 

higher metering disc settings for the measurements in the free jet. Considering the average 

difference between Ψf and Ψi, the PMFR in the free jet can be estimated with a deviation of less 

than 5 % compared to the PMFR of the powder feeder. A slight increase in Ψf has been observed 

for the Cu10Al feedstock powder. This can be explained by the fact that the particle diagnostic 

device can calculate the size of a spherical particle more precisely, since the calculation error for 

determining the circle equivalent diameter is smaller for a regularly shaped particle. In addition, 

the HiWatch can determine large particle sizes from a diameter of d > 50 µm more accurately. 

Furthermore, the Cu10Al powder particles possess greater momentum due to their larger 

particle sizes which leads to less overspray outside the measuring area in comparison with the 

Al2O3 particles. 

 

Figure 34 shows a) the experimentally generated footprint under the laser-scanning microscope 

and b) the digital footprint based on the PMFR distribution in the free jet for the Al2O3 feedstock 

powder. The profile of the digital footprint closely matches with the experimental footprint. 

Nonetheless, the higher amounts of PMFR on the boundaries of the digital footprint represent 

the in-flight particles which have not been deposited on the substrate. 
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Figure 34: a) Experimental footprint profile under laser-scanning microscope and 

b) digital footprint using single-cathode gun and Al2O3 feedstock powder 

[BWK+20] 

 

The presence of the unmolten or partially molten in-flight particles is also evident on the 

periphery of the 3D digital footprint, illustrated in Figure 35. The dense center of the footprint 

is attributed to the particles with the highest melting ratio. Moving radially out from the center, 

where fewer particles are dispersed, the plasma temperature decreases relatively and therefore, 

the particles deposit barely on the substrate. 

 

From the comparison of the experimental and digital footprints in Figure 34, it can be 

concluded that the most important factor, which affects the particle deposition behavior, is its 

trajectory. This depends if the particle trajectory lies primarily within the free jet core or outside 

of it [BBZ+11]. Moreover, the results show that the profile of the PMFR distribution in the 

plasma jet is not rotationally symmetric about the center. 
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Figure 35: 3D profile of the digital footprint using single-cathode gun and Al2O3 feedstock 

powder [BWK+20] 

 

The profiles of the experimental and digital footprints for the experiments with the Cu10Al 

feedstock powder and use of the single-cathode gun are illustrated in Figure 36. An irregular 

bean shaped profile can be observed in both footprints. 

 

 

Figure 36: a) Experimental footprint profile under laser-scanning microscope and 

b) digital footprint using single-cathode gun and Cu10Al feedstock powder 

[BWK+20] 
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Figure 37 illustrates the digital footprint in 3D. The two peaks in PMFR values can be attributed 

to the arc motion fluctuations and restrike inside the torch. Considering the design of the single-

cathode plasma gun, the attachment of the electric arc root over the inner surface of the anode 

can change mainly due to the strong plasma gas flow. This is advantageous to the anode lifetime, 

since the large heat load can be distributed over the gun nozzle [DGH+01]. However, changing 

the position of the anode attachment leads to variations in arc length and therefore, results in 

arc voltage and power fluctuations [LFS09]. Subsequently, these fluctuations inside the single-

cathode torch influence the in-flight particle behavior in the plasma jet. It is suggested that the 

phenomenon of asymmetric footprint is more evident in case of Cu10Al than in Al2O3 due to 

the applied higher metering disc setting and also larger particle size distribution. 

 

 

Figure 37: 3D profile of the digital footprint using single-cathode gun and Cu10Al 

feedstock powder [BWK+20] 

 

The 3D profile of the digital footprint in Figure 37 signifies the capability of the developed 

method to obtain an asymmetrical spray pattern with regard to the plasma fluctuations. 

Furthermore, fine particles at the outer part of the free jet tend to oxidize more due to the 

entrained air from the surrounding atmosphere [Dav04]. This leads to the presence of 

undeposited particles at the footprint periphery, which are also visible in this figure. 
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  Three-Cathode Plasma Torch 

For the three-cathode plasma gun, diagnostic experiments were conducted using the feedstock 

material Al2O3 for a metering disk setting of 10 %. In this case, the PMFR in the free jet was 

determined to be 5.6 g/min that leads to a proportional PMFR of Ψf = 0.521. The results show 

a minor increase in the proportional PMFR comparing to the single-cathode torch. 

 

Experimental and digital footprints resulting from the three-cathode plasma gun are shown in 

Figure 38. A nearly symmetric and round-shaped spray pattern is visible in both cases. This can 

be explained through different construction concepts of the plasma guns. The three-cathode 

plasma gun utilizes a triple axially symmetrical arc system, which results in decreasing of the 

local heat load to the anode ring [VMT+15]. Moreover, it features a relative stable plasma jet 

due to less fluctuation of the electric arc length inside the torch [BBZ+11]. This leads to a 

homogenous heat treatment of the powder particles in the free jet and consequently a more 

uniform deposition pattern. 

 

 

Figure 38: a) Experimental footprint profile under laser-scanning microscope and 

b) digital footprint using three-cathode gun and Al2O3 feedstock powder 

[BWK+20] 

 

The 3D illustration of the digital footprint is depicted in Figure 39. The PMFR values at the 

outer part of the footprint, in contrast to the one with the single-cathode torch, are almost 

homogenously near zero. This observation demonstrates the advantage of the multi-arc plasma 
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chamber geometry with regard to the stability of the plasma jet under the applied process 

parameters. 

 

Figure 39: 3D profile of the digital footprint using three-cathode gun and Al2O3 feedstock 

powder [BWK+20] 

 

The cascaded design of the three-cathode plasma gun results in a ring-shaped high viscous flow 

surrounding the plasma jet that helps the particle trajectories to stay in the high temperature 

core of the plasma jet, see Figure 40 [BÖS+17]. The process parameters, such as electric current 

and plasma gas flow rate, have strong influence on the position and intensity of the surrounding 

viscous flow [BÖ16]. Hence, the multi-arc spray system allows a confining path for particle 

injection toward the center of the plume, which results in the most efficient particle heating in 

the free jet [SRL+08]. Consequently, the footprint illustrated in Figure 39 shows less overspray 

particles. 
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Figure 40: Distribution of dynamic viscosity of process gas over injection plane; ring-

shaped high viscous flow surrounding the plasma jet [BÖS+17] 

 

  Conclusion 

A novel methodology was presented to estimate the particle mass flow rate (PMFR) in the 

plasma jet based on capturing the in-flight particle properties at different focal planes. The 

approach is capable of estimating the PMFR in the free jet with a deviation of less than 5 % 

compared to the PMFR of the powder feeder. Furthermore, the key benefit of the developed 

approach is that no rotationally symmetric particle flow has been assumed. This makes the 

determined PMFR distribution more precise. The results could be replicated with different 

feedstock powders and plasma guns, demonstrating the capability of the developed method. 

The spatial PMFR distributions throughout the free jet, referred to as digital footprint, showed 



Particle Mass Flow Rate (PMFR) in Plasma Jet 

Page 60 

a good agreement with the height profile of the corresponding experimental footprints. 

Moreover, the results indicated a more accurate determination of the PMFR in the case of 

utilizing spherical feedstock powder with relatively large particles as well as employing a three-

cathode plasma gun. By using the findings of the PMFR estimation in the free jet, the local 

deposition efficiency on the substrate can be determined according to the next chapter. 
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5 Local Deposition Efficiency (LDE) 

In this chapter, a novel methodology is introduced for in situ determination of spatially resolved 

deposition efficiencies on the substrate, namely Local Deposition Efficiency (LDE). The results 

of this chapter have been already published in [BWH+20]. The motivation for using LDE is to 

generate a sufficient amount of data for learning algorithms, while generating that much data 

for ex situ measurements of global DE and their corresponding particle properties would be 

impractical. In addition, LDE data sets allow the entire plasma jet to be considered, instead of 

its centerline, as it is the case for classical diagnostic measurements. This consideration of widely 

distributed particle trajectories in the plasma jet can improve the accuracy of deriving 

correlations between the particle properties and DE. 

 

The spatial distribution of PMFR from the previous section is used in combination with the 

height profile of the respective experimental footprint to calculate the LDE. Subsequently, the 

interdependencies between the measured in-flight particle properties and the LDE are studied 

by SVM method. The generated data sets of LDE together with the corresponding particle 

properties are used later in Chapter 7 to develop an ANFIS model for prediction of deposition 

efficiency in plasma spraying. 

 

 Spray Parameters and Feedstock Material 

The same experimental setup for the three-cathode plasma generator TriplexProTM-210, 

described in Chapter 4, is also used here. The main spray parameters are listed in Table 6. The 

electrical current of the plasma generator was set to 500 A. Argon with the flow rate of 60 SLPM 

was used as the primary plasma gas. The distance between the particle injector tip and the 

plasma jet centerline axis was d = 12 mm. The commercially available Al2O3 feedstock material 

(AMDRY 6062, Oerlikon Metco) was used. The properties of this alumina feedstock powder 

were given in Table 2 in section 4.1. 
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Table 6: Spray parameters for the three-cathode plasma gun 

Parameter Value 

Current [A] 500 

Input power [kW] 48.4 

Voltage [V] 99.3 

Argon [SLPM] 60 

Carrier gas [SLPM] 5.5 

Nozzle diameter [mm] 9 

Powder feed rate [g/min] 11  

 

 Particle Diagnostics 

The setup of the particle diagnostics for measuring particle size and velocity is similar to that of 

the PMFR estimation in Chapter 4. The difference lies in the evaluation of the measurement 

data, in a way that the captured particles in a HiWatch image are segmented into five parts 

regarding their positions to visualize the spatial distribution of the particle properties precisely. 

Furthermore, in this experimental setup, the in-flight particle temperatures are also measured 

on a specific transverse section of the free jet using the particle diagnostic system DPV-2000. 

The focus here is on the analysis of the distribution of the in-flight particle properties rather 

than on the PMFR measurements in the previous chapter. Consequently, the correlations 

between the particle properties and LDE are investigated. In addition, in the data evaluation of 

this chapter, the number of particles detected by the HiWatch and DPV diagnostic systems is 

also analyzed and compared. The aforementioned points are explored in more detail below. 

 

The particle diagnostic system HiWatch CS was employed to determine the size and velocity of 

the in-flight particles. This device utilizes a pulsed diode laser to capture the particles on a 

particular transverse section of the free jet based on triple-exposure imaging of each particle. 

The measuring area for a single measurement is 6.5 × 9 mm2. The depth of field of the camera 

lens is about 2 mm in z-direction, see Figure 41-a. The pulsed laser illumination allows each 

particle to be captured three times in an image. Along with measuring particle sizes and 

velocities, the positions of the captured triplets are considered to accurately visualize the spatial 

distribution of the particle properties. To achieve this, the xz-plane in Figure 41-a was divided 

into five sections along the x-axis. The particles captured in each measurement were then 
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divided into the designated sections based on their x-position. Multiple measurements were 

carried out to cover the entire domain of the free jet. Figure 41-b displays a schematic 

illustration of the area of the free jet measured by the HiWatch. In this illustration, the particles 

are sprayed in y-direction. The transverse section of the free jet was divided into 15 focal planes 

in z-direction and 3 stages in x-direction. At each stage, 15 individual diagnostic measurements 

were carried out by moving the robot incrementally by ∆z = 2 mm in z-direction. The interval 

between two consecutive measurements is equivalent to the depth of field of the CCD camera. 

 

 

Figure 41: a) An exemplary measurement image of HiWatch at a focal plane in the plasma 

jet. The captured particles are schematically segmented into five parts along the 

x-axis to visualize the spatial distribution of the particle properties precisely. 

b) schematic illustration of the measured area of the plasma jet by diagnostic 

experiments [BWH+20] 

 

As previously stated, the particles captured at each stage were divided into 5 sections based on 

their x-position for more accurate visualization of the spatial distributions. At each focal plane, 

250 images were taken. The particle size and velocity of a focal plane correspond to the 

respective average values of the images captured at that focal plane. The spatial distributions for 

particle size and velocity were then obtained based on all individual measurements in the entire 
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measuring area of 27 × 30 mm2, resulting in 225 measurement points on a grid of 15 × 15 in the 

plasma jet. The particle diagnostic measurements were performed at the same stand-off 

distance of y = 100 mm as the experimental footprints. The center of the middle stage 

corresponds to the point with highest particle intensity, which was determined beforehand by 

the experimental footprints. 

 

The optical particle diagnostic system DPV-2000 (Tecnar Automation Ltd., St. Bruno, QC, 

Canada) was utilized to measure the in-flight particle temperatures. The DPV-2000 system uses 

the principle of two-wavelength pyrometry to measure the surface temperature of particles in 

the spray plume [MVS07]. The diagnostic experiments to determine the spatial distribution of 

particle temperatures were performed on a 30 × 30 mm2 measurement grid normal to the gun 

axis at a stand-off distance of 100 mm. A step size of ∆x = ∆z = 2 mm was selected between each 

successive measurement. The total measurement area contained 225 grid points. The 

measurement time for each grid point was 5 seconds. Before beginning the experiments, the 

central point of the measurement grid was adjusted to the maximum particle flux using the 

DPV-2000 autocenter function. 

 

 Spatial Distribution of Particle Properties 

The programming software MATLAB was used to implement the described method and 

visualize the spatial distribution of the particle properties in the plasma jet. Figure 42 shows the 

normalized particle number flux detected by the diagnostic systems a) HiWatch and b) DPV 

for the entire free jet measurements. Since the two diagnostic systems have different 

measurement volumes, normalization of the particle number flux is necessary to ensure 

comparability. It is evident that HiWatch has captured more particles than DPV, since it has a 

relatively larger measurement volume. However, it should be considered that DPV is unable to 

capture the cold particles without a laser for particle illumination. Thus, the HiWatch particle 

diagnostic system was chosen to measure the size and velocity of the particles because of its 

ability to detect both cold and hot particles with a relatively larger measurement volume. 
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Figure 42: Normalized particle number flux detected by a) HiWatch and b) DPV in the 

entire free jet at a stand-off distance of y = 100 mm [BWH+20] 

 

Figure 43 illustrates the spatial distribution of the in-flight particle velocities at a stand-off 

distance of y = 100 mm. The spatial distribution of the in-flight particle velocities shows that 

this distribution is not symmetrical about the gun axis, considering the measurement points at 

the upstream edge of the plasma jet. With increasing the radial distance from the side of particle 

injection to the bottom of the plasma jet, the particle velocities first increased to a maximum on 

the center and then decreased. 

 

Figure 43: Spatial distribution of the in-flight particle velocities at a stand-off distance of 

y = 100 mm using HiWatch [BWH+20] 
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Due to the geometry of the plasma generator, there is a swirling plasma gas flow at the torch 

exit [SBD+06]. This swirling flow has consequently an influence on the in-flight particle 

trajectories and leads to asymmetrical particle velocity distribution [WFC00]. Moreover, this 

spatial distribution shows that in the area of the injection head, the particles with relatively 

higher velocities were measured. 

 

Figure 44 shows the spatial distribution of the in-flight particle sizes. The particle size 

distribution indicates that the large particles were concentrated at the center of the free jet. This 

can be explained with particle momentum. Particles with larger diameters possess relatively 

greater momentum, which leads to a deeper penetration into the plasma jet [QFL08]. 

 

 

Figure 44: Spatial distribution of the in-flight particle sizes at a stand-off distance of 

y = 100 mm using HiWatch [BWH+20] 

 

The median size of the captured particles is calculated to be D50 = 39.5 µm. This shows that the 

HiWatch has overestimated the particle sizes, when compared to the particle analyzer results 

given in Table 2 (D50 = 31.85 µm). One possible explanation for this, is the background 

subtraction algorithm, which the HiWatch system uses to increase the particle detectability. 

This background subtraction algorithm slightly changes the particle shapes in the recorded 

images and could therefore lead to misperceived particle diameters. Another explanation for 

this size deviation could be the angular and blocky morphology of the particles. The unregularly 
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shaped particles rotate in the view field of the HiWatch, while these are immobile under 

microscope. This leads to some calculation error in determining the circle equivalent diameter 

of the particles. Moreover, the larger particles could be a sign of consolidated particles in the 

plasma jet, consisting of multiple smaller particles that pack together. In addition, smaller 

particles can be captured harder than large ones by the diagnostic system. 

 

Figure 45 displays the spatial distribution of the in-flight particle temperatures on a transverse 

section of the plasma jet at a stand-off distance of y = 100 mm. The results show that the 

particles with highest temperature were positioned in the center of the plasma jet, where the 

largest and fastest particles were also located. Figure 45 also reveals a homogenous heat 

treatment of the powder particles in the plasma jet by the three-cathode plasma generator, 

resulting in a uniform deposition pattern. 

 

 

Figure 45: Spatial distribution of the in-flight particle temperatures at a stand-off distance 

of y = 100 mm using DPV [BWH+20] 

 

The spatial distributions of the number of particles with velocities above v = 200 m/s, sizes 

greater than D = 50 µm and temperatures above T = 2,000 °C are shown in Figure 46-a, b and c 

respectively. These thresholds in particle properties are determined based on the LDE results in 

the next section. The results reveal that mostly the center of the free jet has a dense crowd of 

particles with velocities, sizes and temperatures above the defined thresholds. 



Local Deposition Efficiency (LDE) 

Page 68 

 

Figure 46: Spatial distribution of the number of particles in case of a) velocities above 

𝑣𝑝 = 200 m/s, b) sizes above 𝐷𝑝 = 50 µm and c) temperatures above 

𝑇𝑝 = 2,000 °C according to [BWH+20] 

 

 Calculation of LDE 

Experimental footprints were generated as a reference to investigate the LDE of the particles. 

By comparing the height of the experimental footprint with the above measured particle 

properties, only limited conclusions in terms of the particle DE can be drawn. Therefore, a 

methodology is introduced to investigate the correlations between the in-flight particle 

properties and their LDE on the substrate. For this purpose, the spatial distribution of the in-

flight PMFR from Chapter 4 has been considered. Figure 47 shows the spatial distribution of 

the PMFR resulting from the three-cathode plasma gun and alumina spray powder. 

 

Figure 47: Spatial distribution of the in-flight PMFR at a stand-off distance of y = 100 mm 



Local Deposition Efficiency (LDE) 

Page 69 

For the next step to calculate the LDE, the values of the height profile of the respective 

experimental footprint measured by the laser-scanning microscope were used to calculate the 

mass of the feedstock material deposited on the substrate locally. As mentioned earlier, the 

entire measuring area of the free jet transverse section was 27 × 30 mm2, containing 225 

measurement points on a grid of 15 × 15. The same segmentation was done on the substrate by 

dividing the xz-plane of the footprint height profile in 225 elements, see Figure 48-a. The mass 

of the deposited feedstock material on each element (𝑚𝑒) is estimated based on Eq. 15. 

𝑚𝑒 = 𝐻𝑒 𝐴𝑒 𝜌 Eq. 15 

 

▪ 𝑚𝑒  Deposited mass on each element 

▪ 𝐻𝑒  Average height of the footprint on each element 

▪ 𝐴𝑒   Area of each element 

▪ ρ  Density of the feedstock material 

 

The common porosity range of plasma sprayed ceramic coatings vary between 5-10 % 

[VDS+07]. As it is impractical to measure the porosity of the footprint for each measurement 

element, zero porosity is assumed for the whole domain. Consequently, it should be clarified 

that the calculated LDE might be overestimated in some places due to zero porosity assumption. 

 

Figure 48: a) Segmented height profile of the experimental footprint in xz-plane under 

laser-scanning microscope and b) spatial distribution of LDE in the entire jet 

[BWH+20] 
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The LDEs of the particles for each element are calculated in percentage terms based on Eq. 16. 

 

𝐿𝐷𝐸 =  
𝑚𝑒

𝑚̇ 𝑡
 100 Eq. 16 

 

▪ 𝑚𝑒  Deposited mass on each element 

▪ ṁ  Particle mass flow rate (PMFR) 

▪ 𝑡  Time for generation of experimental footprint 

 

It must be pointed out that the calculated LDE is an estimation of the absolute DE based on the 

norm [DIN17]. Figure 48-b shows the distribution of the calculated LDE in the entire free jet. 

It is evident that the particles at the free jet center, on the contrary to the outer part of the free 

jet, revealed a higher LDE. 

 

 Correlations between Particle Properties & LDE 

In this section, the correlations between the particle properties in the plasma jet and the 

calculated LDE on the substrate are investigated. To do this, first different pairs of particle 

properties are visualized with their corresponding LDE values. Afterwards, a nonlinear 

regression model using SVM has been developed to investigate the relationships between the 

particle properties and LDE. 

 

The plot of the particle velocities, particle sizes and LDE is presented in Figure 49. The results 

demonstrate that the large particles with relatively high particle velocities showed a higher LDE. 

With the assumption of LDE > 25 % for a relatively good deposition efficiency, it can be 

concluded that the particles with a minimum velocity of roughly 𝑣𝑝 = 200 m/s in combination 

with a minimum size of roughly 𝐷𝑝 = 50 µm deposited well on the substrate. The ratio of the 

radiated heat to the latent heat, which is proportional to the surface to volume ratio, suggests 

overheating of larger particles compared to the smaller ones [BÖK+20]. This fact explains the 

result that the particles with larger diameters showed a higher LDE, since they are melted better 

in the plasma jet. 
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Figure 49: Plot of the particle velocities, particle sizes and LDE [BWH+20] 

 

Figure 50 illustrates the correlations among the particle velocities, particle temperatures and 

LDE. It is evident that some particles, despite having relatively small velocities, have deposited 

on the substrate. The plasma jet allowed these particles to reach the minimum temperature for 

deposition. This concludes that particle temperature is an important factor for evaluating the 

LDE of ceramic particles. Following this, the particles needed roughly a temperature of 

𝑇𝑝 = 2,000 °C and a velocity of 𝑣𝑝 = 200 m/s to deposit well on the substrate. 

 

 

Figure 50: Plot of the particle velocities, particle temperatures and LDE [BWH+20] 
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The particle sizes and particle temperatures together with their corresponding LDE are plotted 

in Figure 51. The particles with relatively larger diameters, exhibited a better LDE than the 

smaller particles surrounding the free jet. This observation can be explained through the fact 

that the cascaded design of the three-cathode plasma gun allows larger particles to stay in the 

high temperature core of the plasma jet, which results the best LDE in the free jet [SRL+08, 

BÖ16]. The results show that the particles with a minimum diameter of almost 𝐷𝑝 = 50 µm in 

combination of a minimum temperature of almost 𝑇𝑝 = 2,000 °C had a good chance to deposit 

on the substrate. This temperature threshold is near the melting temperature of the alumina, 

which amounts to Tm = 2,072 °C. 

 

 

Figure 51: Plot of the particle sizes, particle temperatures and LDE [BWH+20] 

 

In order to reveal the interdependencies between the particle properties and the calculated LDE 

quantitatively, a nonlinear regression model is developed. The particle sizes, velocities and 

temperatures are considered as input variables and LDE is considered as a response variable. In 

this model, SVM method with a Gaussian kernel function is employed in the MATLAB 

environment to predict the correlations between the input and response variables. The accuracy 

metrics of the model, namely root mean square error (RMSE) and coefficient of determination, 

are calculated to be RMSE = 2.85 [%] and R-Squared = 0.97 respectively. Figure 52 shows the 

3D scatter plot of the variables resulted from the regression model. These results confirm 

nonlinear interdependencies among the particle properties and the LDE values. 
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Figure 52: Nonlinear regression of the particle properties and LDE using SVM [BWH+20] 

 

 Conclusion 

In this chapter a methodology was presented to determine the spatially resolved deposition 

efficiencies on the substrate, namely local deposition efficiency. Particle diagnostic experiments 

were carried out using a three-cathode plasma generator and alumina as feedstock powder. This 

type of plasma generator has been considered for LDE determination, since it offers higher 

process stability that minimizes process-related fluctuations during the particle diagnostic 

measurements. The spatial distribution of the in-flight PMFR, presented in Chapter 4, and the 

local deposited mass on the substrate were employed to calculate LDE. The spatial distribution 

of the particle properties showed that the larger particles with higher velocities and 

temperatures penetrated deeply in the center of the plasma jet. Subsequently, these particles 

revealed relatively higher LDE compared with the particles at the periphery of the free jet. 

 

The developed methodology for determination of LDE improves the understanding of particle 

adhesion conditions on the substrate. Moreover, the results of this technique have provided 

relatively large data sets of particle properties and LDE, covering the entire free jet transverse 

section. These data sets are used later in Chapter 7 as training data for the ANFIS model to find 

the correlations between particle properties and DE. An approach to produce data sets of 

particle properties along with their corresponding process parameters by using simulations of 

the plasma jet is discussed in the next chapter. 
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6 Prediction of Particle Properties using Support Vector Machine 

The coating process in plasma spraying is associated with many complex physical phenomena. 

Due to the large number of parameters involved in this coating technology as well as the 

nonlinear relationships between these parameters, precise control and optimization of the 

process is a lengthy and expensive undertaking. Not all of the influencing parameters can be 

controlled, because on the one hand the effect of many variables on the coating process is not 

quantitatively measurable, and on the other hand the technical possibilities for an adequate 

process monitoring are still lacking. Therefore, employing computer-aided methods, such as 

ML approaches, is essential to quantify these complex relationships and subsequently enhance 

the process reproducibility. 

 

In this chapter, SVM models are presented to predict in-flight particle properties from process 

parameters in plasma spraying. To train the SVM models, different data sets from a CFD model 

of the plasma jet have been employed. The motivation of using simulation results is the 

opportunity to cover a broad range of process parameters, while providing that much 

experimental data is barely possible. The increasingly sophisticated CFD models in plasma 

spraying have the drawback of requiring considerable calculation time. Developing ML 

algorithms with simulation data sets is at the same time a promising possibility for substitution 

of the computationally expensive CFD simulations. 

 

A precise prediction of the properties of each individual particle in the stochastic process of 

plasma spraying cannot be anticipated using the ML methods at hand. This is due to the 

randomness of the particle behavior caused by the turbulence of the plasma flow and the 

collisions of the particles with each other and with the inner wall of the narrow particle injector. 

Therefore, the final particle properties are highly sensitive to their initial position. However, the 

accurate prediction of average particle properties serves as a key performance indicator in 

plasma spraying and can significantly help, for example, in investigating the interrelationships 

between process parameters and DE. Hence, the objective of the SVM models is to accurately 

predict the average particle behavior depending on different sets of process parameters. 

 

To develop the SVM models, several data sets comprising various process parameters as well as 

in-flight particle velocities, temperatures and positions were extracted from a CFD model of the 

plasma jet. The data preparation was carried out using two different Design of Experiments 
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(DoE) methods, namely Central Composite Design (CCD) and Latin Hypercube Sampling 

(LHS), to cover a set of representative process parameters for training the ML models. 

Afterwards, the prepared data were fed into SVM models to predict the particle properties. The 

results presented in this chapter have been already published in [BWH+21]. 

 

 Numerical Modeling 

The simulation data sets of this work are obtained from a former numerical model, performed 

at the IOT at RWTH Aachen. To resolve different physical phenomena and reduce the model 

complexity of the entire system, the plasma spraying process is divided into two sub-processes 

that are modeled separately: the plasma generator model and the plasma jet model. In the 

plasma generator model, the flow characteristics at the plasma generator outlet including the 

temperature and velocity profiles of the plasma gas as well as the profiles of turbulent kinetic 

energy and turbulent eddy dissipation are determined. By using these determined profiles as a 

boundary condition at the inlet of the plasma jet model, the two sub-models are coupled. The 

computational domain and the boundary conditions of the plasma generator model are 

presented in Figure 53. The geometry of the torch nozzle has a threefold axial symmetry. Hence, 

one-third of the whole geometry was used as the computational domain. 

 

A two-equation Shear Stress Transport (SST) turbulence model was used to simulate the 

turbulence inside the plasma generator as well as in the plasma jet. For an accurate description 

of the plasma-particle interaction in plasma spraying, the influences of the plasma on the 

particles and vice versa were considered in the plasma jet model in a two-way coupled manner 

[BÖ17]. Furthermore, a validation of the plasma generator and the plasma jet models was 

conducted by comparing numerical results to experimental data [BÖS+16, BÖS+17]. A detailed 

description of the numerical modeling used for data generation can be found in [Öte16, BÖ16]. 
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Figure 53: Computational domain and boundary conditions of the plasma generator model 

[BÖS+17] 

 

Figure 54 shows the simulated particle trajectories and their temperatures inside the plasma jet 

exemplary for one simulation. For each simulation, a virtual clipping plane was defined to 

export the particle properties at specific stand-off distances. The particle properties include the 

in-flight particle coordinates on the clipping plane, the particle velocities and temperatures. The 
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simulation models were created in ANSYS CFX version 20.2 (ANSYS, Inc., Canonsburg, USA). 

For each simulation, the calculated number of particle trajectories was set to 2,000. Alumina 

was used as the feedstock material for the simulations. Further details regarding the procedure 

of preparing the simulation data are described in the next section. 

 

 

Figure 54: Exemplary simulated particle trajectories and their temperatures in plasma jet 

[BWH+21] 

 

 Data Preparation 

Simulations often involve larger number of variables compared to physical experiments. It is 

necessary to find a set of input parameters, namely the design matrix, so that potentially the 

best-fitting predictive model can be constructed on the resulting data sets formed by the design 

matrix [FLS05]. Furthermore, this allows understanding the cause-and-effect relationships in 

the system by changing the designed input variables and observing the resulting changes in the 

system output [Mon13]. Therefore, two different DoE methods, CCD and LHS, were employed 

to cover a set of representative input process parameters for the simulations. The parameter 

setup for the CCD and LHS methods are given in Table 7. 
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Table 7: Parameter setup for the DoE methods 

Parameter [unit] Interval 

Primary gas flow [SLPM] 40 - 60 

Electric current [A]  400 - 540 

Carrier gas flow [SLPM] 3.5 - 7 

Powder feed rate [g/min]  10 - 30 

Particle size distribution [µm] -35 +15; -55 +35; -75 +55 

Stand-off distance [mm] 100 - 180 

 

Totally six different process parameters were considered for the DoE approach: primary gas 

flow (Argon), electric current, carrier gas flow, powder feed rate, particle size distribution at the 

injection point and stand-off distance. The particle sizes were divided into three different 

fractions to cover the broad spectrum of the possible particle size distributions in plasma 

spraying. As part of an automated data preparation pipeline, the DoE was built in the MATLAB 

environment and was linked with the CFX Command Language (CCL) to implement the DoE 

parameters in the simulation models. This structure was then connected to the batch job 

scheduler using shell scripts on the RWTH compute cluster. Therefore, several sets of process 

parameters with corresponding particle properties were acquired from the CFD simulations 

and were prepared as training data for the SVM models automatically. Overall, 45 simulations 

were carried out for the CCD data sets and another 45 simulations for the LHS data sets. In the 

following, both DoE methods and the structure of the data for the simulations are briefly 

described. 

 

6.2.1 Central Composite Design (CCD) 

CCD is based on a two-level full or fractional factorial design with 2k additional points between 

the axes, where k is the number of independent variables. It has also a set of repeated points at 

the centroid labeled with N0. Figure 55 shows a geometric view of a CCD for a two-factor full 

factorial design. CCD is used widely in constructing second-order response surface models 

[MMA09]. 
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Figure 55: Geometric view of central composite design for k = 2 factors [BWH+21] 

 

Random errors are inevitable in physical experiments and the output may be different even with 

the same experimental settings. In the contrary, the computer experiments are deterministic 

and multiple trials result in identical outputs. Hence, carrying out several runs at the centroid 

is only meaningful in physical experiments [FLS05]. For data preparation, the number of 

computational experiments was set to 45, which corresponds to a CCD with 6-factor fractional 

design (2k-1 + 2k + N0). 

 

6.2.2 Latin Hypercube Sampling (LHS) 

LHS is one of the most popular space-filling designs that aims at reducing the variance of sample 

mean [SZ16]. It is a stratified sampling technique that divides the multidimensional 

experimental domain into N strata of equal marginal probability, where N is the number of 

sample points. Each stratum contains only one sample point along each space dimension, and 

then the technique samples once from each stratum. [FLS05]. 

 

The so-called maximin distance criteria can be applied as an optimality factor for construction 

of LHS to further decrease the variance of the sample mean. A maximin LHS maximizes the 

minimum distance between each pair of experimental points within the experimental domain, 

see Figure 56. 
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Figure 56: Transformation of a 2D LHS (left) to a maximin LHS (right) [BWH+21] 

 

This optimality criterion ensures that the experimental points are spread out uniformly through 

the domain and therefore, no point lies too far away from a design point [JH08]. This results in 

an enhancement of the prediction accuracy of the constructed model. LHS is a very suitable and 

powerful DoE technique for computer experimentation, which can serve various numbers of 

runs and input variables. To ensure the comparability of the results, the same number of runs 

as the CCD method was used for the LHS method.  

 

6.2.3 Structure of Training Data 

As mentioned earlier, for each of the DoE methods introduced in the above sections, 45 

simulations were performed respectively with different input process parameters, see Table 7. 

For instance, the simulation data sets gathered from the LHS method for the parameters 

primary gas flow, electric current, carrier gas flow, powder feed rate, particle size distribution 

and stand-off distance, respectively, are: 

1. 40.36 SLPM, 461.6 A, 6.39 SLPM, 28.8 g/min, -35 +15 µm, 126 mm 

2. 40.36 SLPM, 532.9 A, 5.72 SLPM, 15.6 g/min, -35 +15 µm, 153 mm 

3. 41.37 SLPM, 473.8 A, 4.04 SLPM, 12.0 g/min, -35 +15 µm, 169 mm 

⋮ 

45. 59.87 SLPM, 470.3 A, 4.04 SLPM, 18.0 g/min, -75 +55 µm, 144 mm 
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The CCD simulation data were also structured into 45 simulations. The complete list of process 

parameters from both LHS and CCD methods are presented in the Appendix (page 124-127). 

The outputs of the simulations are the in-flight particle properties of the 2,000 simulated 

particle trajectories per simulation respectively. However, regarding the different process 

parameters within each simulation, not all of the 2,000 simulated particle trajectories can reach 

the specified stand-off distance. Hence, the exact number of output data per simulation for the 

45 CCD or LHS simulations is not the same and can vary between 1,500 and 2,000 particle 

trajectories. The inputs and outputs of each simulation were provided with indices to be able to 

assign the particles of each simulation for the ML models. 

 

The DoE methods provide the representative simulation data sets for training the ML models. 

The inputs of the prediction models are the process parameters listed in Table 7. The outputs 

are the particle properties including the in-flight particle temperatures 𝑇𝑝 [K] and velocities 

𝑣𝑝  [m/s] as well as the in-flight particle x-coordinates 𝑥𝑝  [m] and z-coordinates 𝑧𝑝  [m] at 

specific stand-off distances on the virtual substrate (clipping plane). 

 

The results from the LHS and CCD methods were each partitioned into one training data set 

and one test data set. From each of the respective 45 simulations, 75 % of the data were used as 

training data and the remaining 25 % as test data. As described earlier, the number of particles 

per simulation may differ and thus, the overall number of particles in the training and test data 

sets for the CCD and LHS methods is different. The training data for CCD contain 64,858 

particles and the test data include 21,612 particles, while these numbers amount to 64,728 and 

21,566 for the LHS respectively. Even the models are trained and tested with the whole training 

and test data out of the 45 simulations respectively, the allocation of the particles to each 

simulation is still known by use of the indices as data labels. This is utilized later in the 

evaluation of the results. 

 

The simulation data sets for each DoE method consist of approximately 90,000 particles, 

resulting in a total simulation data sets of 180,000 particles. It is worth mentioning that 

generating this much data through experiments is extremely resource-intensive, both in terms 

of time and energy consumption. In addition, the experiments, involving the utilization of gas, 

powder, and energy, lead to a substantial carbon footprint. This underscores the importance of 
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using computational methods, particularly Digital Shadows, as a more sustainable alternative 

to classical process development approaches. 

 

 SVM Setup 

SVM is a supervised-learning algorithm that uses structural risk minimization, and therefore 

exhibits great generalization features. SVM employs a symmetrical loss function, which equally 

penalizes high and low errors. An important property of the SVM regression is that its 

computational complexity does not depend on the dimension of the input space. SVM 

automatically determines the model complexity by choosing the number of support vectors, 

unlike ANN, which controls model complexity by restricting the feature set. Furthermore, since 

SVM solves the convex optimization problem analytically, it always returns the same optimal 

hyperplane parameter [AK15]. Please refer to Chapter 2 for an in-depth description of SVM. 

 

The implementation of the SVM regression algorithm was carried out using the Statistics and 

Machine Learning Toolbox of MATLAB. In order to make the inputs and targets insensitive to 

the scales and magnitudes on which they are processed, a preprocessing step has been carried 

out to standardize the training data sets.  The standardization was done based on the so-called 

z-score method, in which the corresponding standardized data have a mean value of zero and a 

standard deviation of one. Hence, the shape of the original data set is retained. 

 

Four single-output SVM models, corresponding to the four outputs, for each of the two DoE 

methods, LHS and CCD, were developed. For training the regression models, Gaussian kernels 

𝑘(𝑥𝑖, 𝑥𝑗) based on Eq. 17 were employed, where 𝛾 represents the kernel scale. 

 

𝑘(𝑥𝑖, 𝑥𝑗) = exp (−
‖𝑥𝑖 − 𝑥𝑗‖

2

2𝛾2
) Eq. 17 

 

The training of the SVM models was conducted with different kernel scales, as given in Table 

8, to choose the best prediction accuracy. The term 𝑃  in Table 8 denotes the number of 

predictors, which equals to 𝑃 = 6 in this case. Furthermore, a 10-fold cross-validation was used 

to analyze the level of generalization and prevent possible overfitting. 
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Table 8: Kernel scales of different Gaussian kernels applied for training the SVM models 

Kernel type Kernel scale 

Fine Gaussian 𝛾 = √
𝑃

32
 

Medium Gaussian 𝛾 = √
𝑃

2
 

Coarse Gaussian 𝛾 = √8𝑃 

 

 Prediction of Particle Properties 

In this section, the results of the ML models based on simulation models, namely metamodels, 

are presented and discussed. For each data set produced by different experimental designs, 

separate prediction models were trained. Then, the target values on the virtual substrate, which 

are the particle temperatures, velocities and positions (x and z-coordinates) were tested by the 

corresponding predefined test data sets. 

 

Due to the data labeling, the assignment of the particles to their particular simulation is known. 

Hence, for a qualitative comparison of ML and simulation results, the average particle behavior 

per simulation can be investigated. Exemplarily, the mean particle temperatures 𝑇̅𝑝,𝑖  per 

simulation 𝑖 ∈ [1,45] are computed by 

 

𝑇̅𝑝,𝑖 =
1

𝑛𝑖
∑ 𝑇𝑝,𝑖,𝑗

𝑛𝑖

𝑗=1

 
Eq. 18 

 

▪ 𝑇̅𝑝,𝑖  Mean particle temperature of simulation 𝑖 

▪ 𝑛𝑖   Number of test particles of simulation 𝑖 

▪ 𝑇𝑝,𝑖,𝑗 Temperature of particle 𝑗 of simulation 𝑖 
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The mean value over all 45 simulations is then computed by 

𝑇̅𝑝 =
1

45
∑ 𝑇̅𝑝,𝑖

45

𝑖=1

 
Eq. 19 

and denoted by “grandmean” in the following. The means and grandmeans of the particle 

velocities and positions are computed analogously. 

For a quantitative evaluation of the ML results, two statistical measures are considered. To 

evaluate the prediction accuracy of the individual particle properties, the mean absolute 

percentage error (MAPE) is calculated. Given 𝑁 data points, the MAPE is defined by 

 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑡𝑖 − 𝑝𝑖

𝑡𝑖
|

𝑁

𝑖=1

 

Eq. 20 

 

▪ 𝑀𝐴𝑃𝐸 Mean Absolute Percentage Error 

▪ 𝑁  Number of data points 

▪ 𝑡𝑖  Target values 

▪ 𝑝𝑖  Prediction values 

 

Furthermore, the R-squared value, for 𝑁  data points, target values 𝑡𝑖  with mean 𝑡̅  and 

predictions 𝑝𝑖 defined by 

𝑅𝑠𝑞 = 1 −
∑ (𝑡𝑖 − 𝑝𝑖)

2𝑁
𝑖=1

∑ (𝑡𝑖 − 𝑡̅)2𝑁
𝑖=1

 
Eq. 21 

is calculated to evaluate the prediction accuracy of the average particle properties. 

 

Figure 57-a shows the results of the mean particle temperatures 𝑇̅𝑝,𝑖 per simulation 𝑖 ∈ [1,45], 

see Eq. 18, from the CCD data sets. The mean values predicted by the SVM model shown in red 

are denoted with “Mean SVM”, while the corresponding target values from the simulation 

model displayed in blue are labeled with “Mean Sim.”. The grandmeans according to Eq. 19 are 

also plotted in Figure 57. In the same way, the results of the mean predicted particle 

temperatures from the LHS data sets are depicted in Figure 57-b. 
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Figure 57: Results of the SVM model for mean particle temperatures per simulation from 

a) CCD and b) LHS data sets according to [BWH+21] 
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The results demonstrate that the developed metamodels have high accuracy in predicting the 

mean in-flight particle temperatures of the 45 simulations out of the input process parameters. 

Furthermore, it is observed that the developed SVM models have slightly better performance in 

predicting the particle properties with higher temperatures than the lower ones. In other words, 

in cases where the particles penetrated deeply into the plasma jet, thus resulting in higher 

temperatures and velocities, the models could find better relationships between the input 

process parameters and the particle properties. This has been observed for both CCD and LHS 

data sets in the SVM metamodels. The maximum deviations between the targets and the 

predicted values for particle temperatures in case of the CCD and LHS data sets are calculated 

to be 𝑀𝑎𝑥_𝐷𝑒𝑣𝑇,𝐶𝐶𝐷 = 14.55 % and 𝑀𝑎𝑥_𝐷𝑒𝑣𝑇,𝐿𝐻𝑆 = 15.60 %. 

 

Figure 58-a shows the findings of the mean predicted particle velocities from the CCD data sets, 

while Figure 58-b shows the results from the LHS data sets. Analogously, the predicted values 

are shown in red and their corresponding target values are displayed in blue. The figures show 

that the mean in-flight particle velocities could be accurately replicated with the SVM models. 

When comparing the lower and upper ranges of particle velocities, it is also evident from these 

figures that the metamodels exhibit a slightly better performance in predicting particle velocities 

within the upper range. In comparison to particle temperatures, the model grandmeans for 

particle velocities show a better agreement with the grandmeans of the simulation. The 

maximum deviations between the targets and the predicted values for particle velocities in case 

of the CCD and LHS data sets are calculated to be 𝑀𝑎𝑥_𝐷𝑒𝑣𝑣,𝐶𝐶𝐷 = 10.10 %  and 

𝑀𝑎𝑥_𝐷𝑒𝑣𝑣,𝐿𝐻𝑆 = 9.23 %. 
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Figure 58: Results of the SVM model for mean particle velocities per simulation from the 

a) CCD and b) LHS data sets according to [BWH+21] 
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The predicted and target values of the individual particle velocities exemplarily from the LHS 

data sets are shown in Figure 59. For a clear presentation, only 250 data points from the total 

45 simulations are randomly selected. It is evident that the metamodel can replicate the trend 

of the particle velocities in the plasma jet. The prediction of the mean particle velocities and 

temperatures is more accurate than the prediction of the individual particle properties. As 

mentioned earlier, this can be explained with the stochastic nature of the plasma spraying 

process and the turbulence of the plasma flow. Therefore, predicting the behavior of each single 

particle is very difficult because it depends on many factors that influence each other. In 

addition, the individual particles substantially collide with each other and with the inner wall of 

the narrow particle injector, resulting in a random initial distribution of the particles. These 

collisions cause the final particle properties to be very sensitive to the initial position, i.e., small 

differences in the initial position can have a large influence on the final particle positions, 

velocities, and temperatures on the substrate. Hence, it is possible that two particles of nearly 

the same size and for the same process parameters exhibit different temperatures or velocities. 

As a consequence, prediction of the average particle behavior is more precise and reliable. 

 

 

Figure 59: Exemplary trend of the predicted particle velocities by SVM model from LHS 

data sets [BWH+21] 
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Table 9 presents the statistical values MAPE (Eq. 20) and R-squared (Eq. 21) for the prediction 

of single and average particle properties by the SVM models from different DoE methods. The 

performance of the SVM models, in terms of the prediction accuracy of average particle 

properties, remains consistent for both CCD and LHS data sets. However, when it comes to 

prediction of single particle properties, the LHS experimental design shows a slight 

improvement in prediction accuracy compared to CCD. This confirms the suitability of the 

LHS for computational experiments. Furthermore, it should be emphasized again that due to 

the stochastic nature of the plasma spraying process, the prediction of single particle properties 

cannot be guaranteed using the ML methods at hand. 

 

Table 9: Statistical values for prediction of single and average particle properties by 

SVM models from different DoE methods [BWH+21] 

Statistic 

parameter 

MAPE R-squared 

Property Single particle 

temperature 

Single particle 

velocity 

Mean particle 

temperature 

Mean particle 

velocity 

CCD 19.78 % 22.75 % 0.82 0.97 

LHS 18.49 % 21.11 % 0.82 0.97 

 

Figure 60 shows the distribution of the predicted particle coordinates by the SVM models from 

LHS data sets exemplarily for one simulation. For this sample simulation, the process 

parameters of primary gas flow, electric current, carrier gas flow, powder feed rate, particle size 

distribution and stand-off distance are respectively: 48.43 SLPM, 413.40 A, 4.71 SLPM, 

18.60 g/min, -35 +15 µm and 121 mm. It is clear that the predictions of the single particle 

coordinates are much less accurate than the particle velocities and temperatures. As previously 

mentioned, this is due to the fact that the behavior of single particles is to some extent random 

in a plasma spraying process, while the essence of ML is to learn and predict regular data. In 

contrast, the SVM models predict the mean particle coordinates per simulation more accurately 

with R-squared values of 0.86 and 0.88 for x and z-coordinates, respectively. The accurate 

prediction of the mean particle coordinates can be used as a tool to find the position of the 

maximum particle intensity in the free jet. This information can, for instance, aid in adjusting 

injection settings or positioning a particle diagnostic device accordingly [BWK+20]. 
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Figure 60: Exemplary distribution of the predicted particle coordinates by SVM models 

from LHS data sets for one simulation [BWH+21] 

 

The average prediction time of the SVM metamodels for the predefined test data sets was 

calculated to be about 4.2 s, which is dramatically faster than one CFD simulation of the plasma 

jet with an average calculation time of 3 hours. Therefore, by using the ML metamodels, the 

computationally intensive CFD simulations of the plasma jet can be sidestepped for average 

values of the particle properties. 

 

 Conclusion 

The aim of this chapter was to take the primary steps towards creating a Digital Shadow for the 

plasma spraying process to predict the in-flight particle properties based on input process 

parameters. The data sets for training the ML models were acquired from a CFD model of the 

plasma jet. Contrarily to experiments, simulations allow the efficient generation of wide-ranged 

process data, which not only improves the model's prediction accuracy, but also speeds up the 

process development. CCD and LHS experimental designs were employed to cover a set of 

representative process parameters by reducing the number of tests, while selecting the most 
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valuable sample data. The developed metamodels with SVM are able to replicate the average 

particle properties with high accuracy, while reducing the computational cost dramatically. The 

results showed that the average particle properties could be predicted by the metamodels much 

more accurately than the behavior of single particles. This phenomenon is expected, since the 

plasma spraying is a stochastic process that involves many influencing factors. Thus, the 

behavior of single particles is much more random in comparison to average particle behavior. 

The results of the metamodels from the LHS data sets showed a minor enhancement in terms 

of the prediction accuracy, which confirmed the suitability of space-filling designs for 

computational experiments. In the following chapter, the SVM models are integrated in an 

expert system for prediction of DE in plasma spraying. 
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7 Expert System for Prediction of Deposition Efficiency 

High deposition efficiency (DE) has always been one of the main aims in the development of 

plasma spraying process in order to create cost-effective coatings in industrial production. DE 

is one of the key performance indicators for the productivity and consequential sustainability 

of the APS process. Increasing DE is a difficult task in the process development of plasma 

spraying due to the nonlinear and complicated interdependencies of the contributing elements. 

Hence, this chapter is dedicated to develop an expert system to predict DE in plasma spraying. 

In the following, the architecture of the expert system is described in detail. After description 

of the system architecture and its training approaches, a test case is considered to present the 

results of the developed expert system for prediction of DE. The results of this chapter have 

been already published in [BHD22]. 

 

 Architecture of Expert System 

The overall architecture of the expert system is depicted in Figure 61. This expert system 

consists of two blocks: Block A) SVM-models from Chapter 6 are used to predict the in-flight 

particle properties from different process parameters based on simulation data sets. Block B) an 

ANFIS model is developed to predict DE from the in-flight particle properties based on 

experimental data sets of LDE from Chapter 5. The setups of the SVM and ANFIS models are 

described in the following subsections. 

 

 

Figure 61: Architecture of the expert system for prediction of deposition efficiency 

[BHD22] 

 

 Block A: SVM 

As discussed in Chapter 6, the training setup of the SVM models is illustrated in Figure 62. In a 

first step, former CFD models of a multi-arc APS process, developed at the IOT at the RWTH 

Aachen University, are used to generate the training data for the SVM models. In Figure 62, the 
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use of data from the already developed models is referred to as data recycling. The benefit of 

using simulation data is that a wide range of process parameters can be covered, while providing 

that much experimental data is hardly possible. In the next step, DoE is implemented to cover 

a set of representative input process parameters for the SVM models. As part of an automated 

data preparation pipeline, several sets of process parameters with the corresponding particle 

properties are acquired from the CFD simulations and prepared as training and test data for the 

SVM models. 

 

 

Figure 62: Architecture of Block A of the expert system: Training setup of the SVM 

models to predict in-flight particle properties [BHD22] 

 

The training inputs of the prediction models are the process parameters listed in Table 7 in the 

previous chapter. These include primary gas flow (Argon), electric current, carrier gas flow, 

powder feed rate, particle size distribution at the injection point and stand-off distance. The 

outputs of the SVM models are the particle properties including the in-flight particle 

temperatures 𝑇𝑝 [K], velocities 𝑣𝑝 [m/s] and sizes 𝐷𝑝 [µm] at specific stand-off distances. These 

particle properties are used then as inputs for the next block of the expert system to predict 

LDE. Please note that the prediction of particle size is considered here as an additional output 

of the SVM models compared to the previous chapter. This is because the LDE data sets 

obtained in Chapter 5 were correlated with these three particle properties, in particular 

temperature, velocity and size. The results of the SVM models for different process parameters 

were given in Chapter 6. 

 

 Block B: Neuro-Fuzzy System 

The training setup of the Block B of the expert system is shown in Figure 63. The training data 

consist of experimental data from Chapter 5. These data include the in-flight particle sizes and 

velocities measured by the HiWatch as well as the in-flight particle temperatures measured by 
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the DPV-200. Besides of these particle properties, the corresponding data sets of the spatially 

resolved deposition efficiencies on the substrate, namely local deposition efficiency (LDE), are 

used to train the neuro-fuzzy system. As discussed in Chapter 5, LDE was calculated based on 

spatial distribution of the particle mass flow rate in the free jet and the mass of the deposited 

feedstock material locally on the substrate. The motivation for using spatially resolved 

deposition efficiency is that a relatively broad database of particle properties and LDE can be 

obtained, while providing that much data for the global DE together with the corresponding in-

flight particle diagnostic measurements is hardly practical. 

 

 

Figure 63: Architecture of Block B of the expert system:  Training setup of the ANFIS 

model to predict DE according to [BHD22] 

 

Please note that the SVM model developed in Chapter 5 served to investigate the nonlinear 

interdependencies among the in-flight particle properties and LDE values. In this chapter, it is 

proposed to replace the SVM model illustrated in Figure 52 with a neuro-fuzzy system. We have 

already a collection of input/output data of particle properties and LDE from a specific set of 

process parameters, see Table 6 in Chapter 5. The ANFIS technique is chosen due to its ability 

to handle highly nonlinear mappings by its adaptive parameters that customize the membership 

functions. This makes ANFIS a powerful tool for generalizing the characteristics of a data 

collection to similar scenarios, in our case from one set of process parameters to similar sets of 

process parameters in APS. Hence, in this block of the expert system, an ANFIS model is 

proposed to leverage its adaptive interpretation capabilities to generalize our data collection and 

to finally predict DE from particle properties for different sets of process parameters. 
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As shown in Figure 63, before developing the ANFIS model to predict DE, the training data 

were augmented using the k-nearest neighbor (k-NN) algorithm to enhance the model accuracy 

in terms of automatic generation of the rule base and membership functions. This technique 

uses k closest training data to a particular sample point in our experimental database to increase 

the diversity and the amount of data before training the ANFIS model. In the following sections, 

first the implemented data augmentation is described in detail. Subsequently, the setup of the 

ANFIS model and the results of LDE prediction are presented. Finally, the results of the 

developed expert system for predicting global DE are outlined as part of a test case. 

 

 Data Augmentation 

The amount of training data needed for an ANFIS model may be less than what is required for 

a classical neural network. However, the size of the training data should still be sufficient to 

account for all possible cases, depending on the number of premise and consequent parameters 

[ASA+12]. As Jang stated in [Jan93], the quantity and quality of data play a crucial role in the 

learning processes used to establish the membership functions (MFs). In this work, to enhance 

the automatic tuning of MFs, the 100 experimental data sets for particle properties and LDE 

from Chapter 5 were increased by a factor of 1.5 before training the ANFIS model. This led to 

a total of 150 data sets used to train the ANFIS model. The k-nearest neighbor (k-NN) method 

is utilized for data augmentation, where k is set to 5. This method finds the k closest, most 

similar, neighbors to the sample point being investigated, by minimizing a distance function. 

For this purpose, the Euclidean distance [Pet09] is considered based on Eq. 22. 

 

𝐸(𝑋𝑖, 𝑌𝑠) = √(𝑥𝑖𝑗 − 𝑦𝑠𝑗)
2

+ (𝑥𝑖𝑗 − 𝑦𝑠𝑗)
2

+ ⋯ + (𝑥𝐼𝐽 − 𝑦𝑆𝐽)
2
 

Eq. 22 

𝑖 = 1, 2, … , 𝐼 , 𝑠 = 1, 2, … , 𝑆 , 𝑗 = 1, 2, … , 𝐽  

 

▪ 𝑋  Input vector of original data 

▪ 𝑌  Input vector to be classified 

▪ 𝐼  Length of the vector 𝑋 

▪ 𝑆  Length of the vector 𝑌 

▪ 𝐽  Total number of features 
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In this work, the features of the input vectors consist of particle temperatures, velocities and 

sizes, therefore 𝐽  is equal to 3. To apply the k-NN method, 50 initial data sets of particle 

properties are first generated randomly within the oriented bounding box (OBB) of the original 

data, as shown in Figure 64. OBB is the box with the smallest dimension, in our case a volume, 

circumscribing all the points in the input space [O'R85]. The next step involves identifying the 

five nearest original data to these initial sample data using Eq. 22. 

 

 

Figure 64: Initial sample data of particle properties in the oriented bounding box of the 

original data to be used for the k-NN method [BHD22] 

 

The final augmented data are obtained by calculating the average of the nearest neighbors, as 

demonstrated in Figure 65. In this figure, one exemplary initial point is linked to its nearest 

neighbors with black dashed lines and to its final resulting k-NN point with a green line. 

Furthermore, the particle properties in this figure are normalized for the purpose of comparing 

the distances between the points. 
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Figure 65: Plot of the particle properties for the original data, initial sample data and the 

corresponding augmented data by k-NN [BHD22] 

 

Similarly, the LDE of the generated data sets of particle properties are obtained by averaging the 

LDE of the corresponding nearest neighbors of the original data. Figure 66 displays the entire 

data sets, comprising both the augmented and original data, as an example in a 2D plot of 

temperature versus velocity. In this figure, the corresponding LDE values are given in color 

map. The overall data sets are utilized to develop the ANFIS model. 
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Figure 66: Overall data sets, including the original and augmented data, exemplarily in a 

2D plot of temperature versus velocity with the corresponding LDE values 

[BHD22] 

 

 ANFIS Model 

The increasing interest in the field of artificial neural networks injected a new driving force into 

the architecture of FL systems, arising a novel synergy called neuro-fuzzy systems. An adaptive 

network framework, which unites both neural networks and fuzzy models, forms the 

foundation of neuro-fuzzy systems [JS95]. Such system employs a learning algorithm developed 

from or motivated by ANN to establish its parameters, fuzzy sets and fuzzy rules, by processing 

of data sets. The fuzzy models within the adaptive network framework are known as the 

Adaptive Neuro-Fuzzy Inference System (ANFIS), which may have several advantages over 

neural networks. Please refer to Chapter 2 for a comprehensive description of ANFIS. 

 

In this work, the adaptive parameters of the ANFIS model are adjusted using a data-driven 

hybrid learning algorithm. The hybrid approach combines backpropagation for the parameters 

linked to the input membership functions or premise parameters, and least squares estimation 

(LSE) for the parameters associated with the output membership functions or consequent 
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parameters [Jan93]. The mathematical description of the hybrid learning algorithm is given in 

the appendix (page 128-129). 

 

Figure 67 displays the block diagram of the optimization algorithm used to optimize the FIS 

parameters. As illustrated in this figure, the optimization algorithm generates potential FIS 

parameter sets during training. The fuzzy system is updated with each parameter set and then 

the input training data are employed for evaluation. The cost for each solution is calculated by 

the difference between the output of the fuzzy system and the expected output values from the 

training data. 

 

 

Figure 67: Block diagram of tuning fuzzy inference system [BHD22] 

 

The ANFIS model to predict DE from particle properties is developed in the MATLAB program 

version R2021b (The MathWorks, Inc., Massachusetts, USA). The 150 total data sets, including 

augmented and original data, are split into two distinct groups, such that 80 % of the data are 

used as training data and the remaining 20 % as test data. This division results in 120 data sets 

for training and 30 data sets for testing. To model the data behavior with the fewest possible 

rules, the input-output training data are first clustered using Fuzzy c-means (FCM) clustering 

technique [BEF84]. This method is employed to classify multidimensional data points into a 

certain number of different clusters. Each data point in FCM belongs to a cluster to some degree 
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that is specified by a membership grade. FCM begins by estimating initial cluster centers, which 

are meant to represent the average location of each cluster. In addition, FCM assigns a 

membership grade to each data point for each cluster. FCM then iteratively updates the cluster 

centers and the membership grades of each data point to arrive at the optimal cluster locations 

within the data set. The use of FCM clustering helps to minimize the number of rules in an 

ANFIS model, as the rules are partitioned based on the fuzzy qualities associated with each of 

the data clusters. 

 

In this work, FCM clustering method is utilized to classify the training data into four clusters. 

The FCM information is then used to create a Sugeno-type ANFIS model, where the MFs reflect 

the fuzzy qualities of each cluster. Figure 68 depicts the block diagram of the developed ANFIS. 

The Sugeno-type inference system contains four rules corresponding to the four pre-defined 

clusters. The inputs of the model include particle temperatures, velocities and sizes, while LDE 

is its single output. Each input is characterized by a Gaussian MF per each fuzzy cluster, leading 

to a total of four MFs for each input. The output variable, on the other hand, has one linear MF 

for each fuzzy cluster. 

 

 

Figure 68: Block diagram of the developed ANFIS [BHD22] 
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The diagrams in Figure 69 display the membership functions of the inputs. The four Gaussian 

MFs for each input, corresponding to the fuzzy clusters, are depicted in each diagram. The 

ranges of the input particle properties can also be seen on the x-axis of the diagrams shown in 

Figure 69. These ranges represent the typical scope of particle properties in APS. 

 

 

Figure 69: Input membership functions of the ANFIS model [BHD22] 

 

In the following, the results of the developed ANFIS model in Block B of the expert system are 

presented. As mentioned above, totally 150 data sets of particle properties and LDEs are 

available, which include the 100 original experimental data from Chapter 5 and the 50 

augmented data from section 7.4 of this chapter. These data are separated into two unique 

groups, with 120 data sets for training and 30 data sets for testing the ANFIS model. Table 10 

shows the results of the developed ANFIS model for the 30 test data sets. The average particle 

temperatures (𝑇̅𝑝), velocities (𝑣̅𝑝) and sizes (𝐷̅𝑝) of the test cases with their corresponding 

experimental local deposition efficiencies (𝐿𝐷𝐸𝑒𝑥𝑝) and predicted values by ANFIS (𝐿𝐷𝐸𝐴𝑁𝐹𝐼𝑆) 

are listed in Table 10.  
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Table 10: Results of the ANFIS model for the 30 test sets [BHD22] 

Test index 𝑇̅𝑝 [K] 𝑣̅𝑝 [m/s] 𝐷̅𝑝  [µm] 𝐿𝐷𝐸𝑒𝑥𝑝 [%] 𝐿𝐷𝐸𝐴𝑁𝐹𝐼𝑆 [%] 

1 1568.09 167.69 42.56 8.78 9.42 

2 1564.87 91.36 40.24 6.09 6.44 

3 1786.35 167.36 44.23 11.91 13.94 

4 2052.55 216.13 51.43 27.28 26.57 

5 2893.08 333.54 78.40 44.44 44.34 

6 2368.36 202.91 59.69 36.36 35.86 

7 2054.55 152.27 50.87 22.11 21.07 

8 2152.31 226.81 54.97 32.04 32.18 

9 1921.74 196.62 48.83 21.20 21.05 

10 2135.98 159.40 52.33 26.55 24.00 

11 1671.47 168.11 44.63 14.36 12.19 

12 2289.24 189.54 56.96 33.65 33.95 

13 2179.66 207.15 53.72 31.00 29.63 

14 2535.18 271.78 61.26 36.28 35.91 

15 1818.67 141.26 40.83 11.61 12.26 

16 1863.90 123.12 46.57 13.59 15.28 

17 2644.25 294.00 67.78 43.14 43.20 

18 1826.92 152.03 45.47 13.43 14.84 

19 1640.27 155.41 42.12 10.32 10.15 

20 2690.62 306.01 68.09 41.88 42.34 

21 1964.10 210.62 47.31 20.42 18.81 

22 2535.89 277.67 61.83 38.08 35.94 

23 2846.40 329.43 75.96 43.96 43.77 

24 1750.51 121.38 37.02 8.50 8.80 

25 1501.95 101.55 37.82 4.5 4.44 

26 2239.33 233.01 55.45 32.97 31.98 

27 2902.06 336.19 78.11 44.58 43.93 

28 2582.08 248.92 65.19 40.15 39.28 

29 1954.29 176.83 49.53 20.72 21.07 

30 1977.95 198.33 50.81 24.47 25.31 
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Figure 70 shows the predicted LDE values versus their experimental targets for the 30 test data 

sets. Each test index in this figure corresponds to a combination of particle properties listed in 

Table 10. The ANFIS model is able to predict LDE accurately with RMSE of approximately 

1.1 [%]. When investigating the data points plotted in Figure 70 and their corresponding values 

from Table 10, it can be concluded that the deposition efficiency tends to increase with 

increasing particle size, velocity, and temperature. However, this behavior is nonlinear. The 

accuracy metric mentioned above (RMSE ≈ 1.1 [%]) for the prediction of LDE indicates that 

this nonlinearity is well analyzed by the ANFIS model for the typical range of particle properties 

in APS. As investigated in Chapter 5, the particles with relatively larger diameters have greater 

momentum, which leads to a deeper penetration into the plasma jet. Furthermore, the cascaded 

design of the three-cathode plasma gun allows larger particles to stay in the high temperature 

core of the plasma jet [BÖ16], contributing positively to both their melting ratio and velocity to 

achieve the best DE in the plasma jet. 

 

 

Figure 70: Results of the predicted LDE by ANFIS model for 30 test sets [BHD22] 
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 Test Case 

In Block A of the introduced expert system, the in-flight particle properties are predicted by the 

SVM models. As described earlier, the SVM models are trained based on simulations of the 

plasma jet with different process parameters. It was then shown in the Block B of the expert 

system that the developed ANFIS model is able to predict LDE from the particle properties 

accurately with the RMSE of about 1.1 [%]. In this section, the concept of predicting the global 

DE by the developed expert system trained with the LDE data sets is demonstrated with a test 

case. To present the results of the expert system for this test case, the process parameters listed 

in Table 11 are considered, using the three-cathode gun TriplexProTM-210 and the feedstock 

material Al2O3 with a particle size distribution of -45 +22 µm. It should be mentioned that the 

process parameters of this test case are the same as those used in Chapter 5, Table 6.  

 

Table 11: Process parameters of the test case to predict global DE using the expert system 

Parameter [unit] Value 

Current [A] 500 

Argon [SLPM] 60 

Carrier gas (Ar) [SLPM] 5.5 

Powder feed rate [g/min] 11 

Spray distance [mm] 100 

 

Figure 71 shows the results of the average particle temperatures and velocities for SVM, 

simulation and the corresponding experimental measurements. The data for the experimental 

case were obtained from the measurements in Chapter 5. The particle sizes and velocities were 

captured with the HiWatch, while the particle temperatures were measured with the DPV-2000. 

The comparison of the average particle properties confirms the previous validation of the 

simulation models and demonstrates the accurate replication of the simulation data with SVM. 

The SVM models can predict mean particle velocities with R-squared of 𝑅𝑠𝑞,𝑣 ≈ 0.97 and mean 

particle temperatures with 𝑅𝑠𝑞,𝑇 ≈ 0.82 , indicating more accuracy in prediction of particle 

velocities. This can be explained by the strong correlation of the particle velocity with the 

particle size distribution and its drag force. According to [FHB14], in general and for a constant 

drag coefficient, the particle velocity is proportional to the square root of the ratio of the 

distance traveled, divided by the particle diameter. On the other hand, the influencing factors 



Expert System for Prediction of Deposition Efficiency 

Page 106 

on the particle temperatures are much more complicated, as radiation, heat transfer, particle 

vaporization and other physicochemical mechanisms play a dominant role. Hence, considering 

the particle size distribution as one of the inputs of the ML models, it is expected to have a better 

prediction accuracy for the particle velocities. 

 

It must be pointed out that the experimental measurements of particle velocities are more 

precise than that of particle temperatures. This is due to the non-homogeneous temperature 

distribution within the particles. The particle diagnostic devices are only able to measure the 

surface temperature of the particles. Furthermore, the relatively cold particles, which are not 

adequately illuminated, cannot be detected by the diagnostic systems. On the other hand, the 

simulation results and the corresponding predicted values by SVM show the average particle 

temperature based on the governing heat transfer equations of the particles. This indicates that 

the measured value for the particle temperature is subject to some uncertainties as a reference. 

 

 

Figure 71: Results of the mean particle properties for experiment, simulation and SVM 

using the process parameters listed in Table 11 [BHD22] 
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The results of the mean particle properties predicted by the SVM models in Block A are fed into 

the ANFIS model in Block B to predict the global DE. The bar chart shown in Figure 72 makes 

a comparison between the predicted DE and the measured DE for the test case utilizing the 

process parameters listed in Table 11. The experimental measurements to determine the global 

DE for the bar chart shown in Figure 72 (left bar) were performed based on the norm [DIN17]. 

The DE was measured by weighing a specimen before and after coating with respect to the total 

mass of sprayed material during the coating process. The result of the predicted DE is in a good 

agreement with the corresponding experimental target. This demonstrates the proof of concept 

that the developed expert system is capable of predicting the global DE based on the norm, while 

being trained with spatially resolved deposition efficiencies on the substrate. This confirms the 

motivation of using LDE data sets to develop and fine-tune such an expert system, while 

providing that much experimental data for the global DE is hardly practical. 

 

 

Figure 72: Comparison of the experimental DE and its corresponding predicted DE by 

ANFIS using the SVM results for the process parameters listed in Table 11 

[BHD22] 
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 Conclusion 

Deposition efficiency (DE) serves as a key performance indicator in plasma spraying, which is 

tailored by dozens of intrinsic and extrinsic influencing factors. Due to the nonlinear and 

complex interdependencies of these influencing factors, increasing DE has always been a 

challenging undertaking in the process development of plasma spraying. Hence, employing 

modern computer-aided algorithms is inevitable to navigate these challenges. This chapter 

aimed to tackle this task by developing an expert system to predict DE using state-of-the-art AI 

techniques. The developed expert system consists of two subsystems: one for predicting particle 

properties from process parameters using a support vector machine, and another for predicting 

DE from particle properties using an adaptive neuro-fuzzy inference system. The developed 

expert system can predict LDE accurately with RMSE of about 1.1 [%] through the combination 

of ANFIS and SVM models. The results revealed that DE tends to rise with increasing particle 

size, velocity, and temperature, whereas this behavior is nonlinear. Furthermore, the concept to 

predict global DE from spatially resolved DE on the substrate was demonstrated. It should be 

pointed out that the DE may depend also on other parameters, such as powder feed rate, torch 

traverse velocity or spraying distance in general. Additionally, the developed expert system can 

contribute to the acceleration of the coating development process in APS. 
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8 Summary and Outlook 

In the context of manufacturing technology, the so-called Digital Shadow combines domain-

specific models with data-driven techniques inferred by autonomous agents to create a 

sufficiently accurate image of the production processes including all relevant data. This concept 

is primarily realized by the integration of the Artificial Intelligence (AI) methods, with the aim 

of system optimization, controlling as well as prognostics. With respect to the aforementioned 

definition, this dissertation is devoted to the development of the primary steps towards a Digital 

Shadow in plasma spraying with the ultimate goal of improving the process efficiency. 

 

Deposition efficiency (DE) is a major performance measure in plasma spraying, which is 

influenced by a variety of internal and external variables. Because of the nonlinear and 

complicated interdependencies of the contributing factors, enhancing DE has always been a 

difficult task in the plasma spraying process development. To address this issue, modern AI 

methods were used in this work to develop and combine domain-specific models to predict DE. 

For this purpose, both simulation and experimental data from the entire process chain of APS 

were employed to train AI models, and combine them in the frame of a so-called expert system. 

These data include machine or process parameters, in-flight particle properties and deposition 

efficiency on the substrate. 

 

The developed expert system consists of two subsystems: one for predicting in-flight particle 

properties from process parameters using support vector machine (SVM) technique, and 

another for predicting DE from particle properties using an adaptive neuro-fuzzy inference 

system (ANFIS). To tackle the problem of insufficient data for training the aforementioned AI 

models two approaches were pursued: 1) A method was developed for in situ determination of 

spatially resolved deposition efficiencies on the substrate, namely local deposition efficiency 

(LDE). By using LDE, sufficient amount of data for learning algorithms could be generated, 

while providing that much data for ex situ measurements of global DE and their corresponding 

particle properties would be impractical. 2) Simulation data for in-flight particle properties were 

generated by recycling the simulation models of the plasma jet already developed at IOT. The 

combination of these two strategies provided the aggregated and purpose-driven data sets 

required for a Digital Shadow in plasma spraying. 
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The developed SVM models based on simulation models, namely metamodels, are able to 

replicate the average particle properties for different process parameters with high accuracy, 

while reducing the computational cost dramatically. The SVM models can predict mean particle 

velocities with R-squared of 𝑅𝑠𝑞,𝑣 ≈ 0.97 and mean particle temperatures with 𝑅𝑠𝑞,𝑇 ≈ 0.82, 

indicating more accuracy in prediction of particle velocities. The developed expert system can 

predict LDE from particle properties accurately with RMSE of about 1.1 [%] through the 

combination of ANFIS and SVM models. The results indicated that DE tends to increase with 

rising particle size, velocity, and temperature, illustrating a non-linear behavior. This 

nonlinearity is captured well by the developed predictive models. Moreover, the concept of 

predicting the global DE based on the spatially resolved deposition efficiencies on the substrate 

was demonstrated by a test case. 

 

The developed expert system can be used as a tool to adjust the process parameters to produce 

sustainable and cost-effective coatings. Moreover, it can contribute to the acceleration of the 

coating development process in APS. Future works could be directed towards establishing an 

iterative feedback loop based on experimental data sets that encompass global DE and the 

corresponding in-flight particle properties. This iterative approach aims to improve both the 

accuracy and range of predictions made by the Digital Shadow. In this regard, the developed 

expert system also needs to be trained with DEs higher than 50 %. The concept of the iterative 

feedback loop is depicted in Figure 73. Furthermore, the data generation module can be 

connected to a database for real-time process optimization. With live data acquisition and 

controlling, a full-scale Digital Shadow in plasma spraying can be achieved. 
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Figure 73: Concept of creating an iterative feedback loop based on experimental data sets 

and connecting the Digital Shadow with a database
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The in situ determination of the LDE in this work was conducted by several grid measurements 

of the in-flight particle properties using the HiWatch diagnostic system. To avoid the time-

consuming grid measurements at various focal planes of the free jet, a Particle Image 

Velocimetry (PIV) method could be developed. This method involves a pulsed laser and a high-

speed camera to detect particles near the substrate. The schematic representation of this concept 

is shown in Figure 74. The different laser options together with the moving table allow to 

capture the particles at once and therefore, the LDE can be determined with less effort. 

Furthermore, the rebounding flow of the non-deposited particles near the substrate has an 

influence on the incoming particle flow in the free jet. It is supposed that the spatial distribution 

of the particle flow near the substrate is broader than that in the free jet. The effect of the 

bouncing flow of the non-deposited particles on the LDE can be also considered by this concept. 

 

 

Figure 74: Schematic illustration of an experimental setup with a high-speed camera and a 

laser for in situ determination of LDE without lengthy grid measurements 
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10 Appendix 

List of process parameters for the 45 simulations from the CCD method 

Sim. 

No. 

Primary gas 

(Ar) [SLPM] 

Electric 

current [A] 

Carrier gas 

[SLPM] 

Powder feed 

rate [g/min] 

Particle 

size [μm] 

Stand-off 

distance [mm] 

1 40.02 470.00 5.38 19.80 -55 +35 140 

2 45.74 440.60 4.37 15.60 -35 +15 123 

3 45.74 440.60 4.37 15.60 -75 +55 157 

4 45.74 440.60 4.37 24.00 -35 +15 157 

5 45.74 440.60 4.37 24.00 -75 +55 123 

6 45.74 440.60 6.05 15.60 -35 +15 157 

7 45.74 440.60 6.05 15.60 -75 +55 123 

8 45.74 440.60 6.05 24.00 -35 +15 123 

9 45.74 440.60 6.05 24.00 -75 +55 157 

10 45.74 499.40 4.37 15.60 -35 +15 157 

11 45.74 499.40 4.37 15.60 -75 +55 123 

12 45.74 499.40 4.37 24.00 -35 +15 123 

13 45.74 499.40 4.37 24.00 -75 +55 157 

14 45.74 499.40 6.05 15.60 -35 +15 123 

15 45.74 499.40 6.05 15.60 -75 +55 157 

16 45.74 499.40 6.05 24.00 -35 +15 157 

17 45.74 499.40 6.05 24.00 -75 +55 123 

18 50.11 400.00 5.38 19.80 -55 +35 140 

19 50.11 470.00 3.36 19.80 -55 +35 140 

20 50.11 470.00 5.38 10.20 -55 +35 140 

21 50.11 470.00 5.38 19.80 -35 +15 140 

22 50.11 470.00 5.38 19.80 -55 +35 100 

23 50.11 470.00 5.38 19.80 -55 +35 140 

24 50.11 470.00 5.38 19.80 -55 +35 180 

25 50.11 470.00 5.38 19.80 -75 +55 140 

26 50.11 470.00 5.38 30.00 -55 +35 140 

27 50.11 470.00 7.06 19.80 -55 +35 140 

28 50.11 540.00 5.38 19.80 -55 +35 140 

29 54.15 440.60 4.37 15.60 -35 +15 157 
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Sim. 

No. 

Primary gas 

(Ar) [SLPM] 

Electric 

current [A] 

Carrier gas 

[SLPM] 

Powder feed 

rate [g/min] 

Particle 

size [μm] 

Stand-off 

distance [mm] 

30 54.15 440.60 4.37 15.60 -75 +55 123 

31 54.15 440.60 4.37 24.00 -35 +15 123 

32 54.15 440.60 4.37 24.00 -75 +55 157 

33 54.15 440.60 6.05 15.60 -35 +15 123 

34 54.15 440.60 6.05 15.60 -75 +55 157 

35 54.15 440.60 6.05 24.00 -35 +15 157 

36 54.15 440.60 6.05 24.00 -75 +55 123 

37 54.15 499.40 4.37 15.60 -35 +15 123 

38 54.15 499.40 4.37 15.60 -75 +55 157 

39 54.15 499.40 4.37 24.00 -35 +15 157 

40 54.15 499.40 4.37 24.00 -75 +55 123 

41 54.15 499.40 6.05 15.60 -35 +15 157 

42 54.15 499.40 6.05 15.60 -75 +55 123 

43 54.15 499.40 6.05 24.00 -35 +15 123 

44 54.15 499.40 6.05 24.00 -75 +55 157 

45 59.87 470.00 5.38 19.80 -55 +35 140 
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List of process parameters for the 45 simulations from the LHS method 

Sim. 

No. 

Primary gas 

(Ar) [SLPM] 

Electric 

current [A] 

Carrier gas 

[SLPM] 

Powder feed 

rate [g/min] 

Particle 

size [μm] 

Stand-off 

distance [mm] 

1 40.36 461.60 6.39 28.80 -35 +15 126 

2 40.36 532.90 5.72 15.60 -35 +15 153 

3 41.37 473.80 4.04 12.00 -35 +15 169 

4 40.70 520.20 6.73 23.40 -75 +55 158 

5 42.04 411.50 5.04 20.40 -55 +35 131 

6 43.39 402.90 4.37 15.60 -35 +15 164 

7 42.71 453.30 5.38 28.20 -55 +35 147 

8 42.71 524.90 3.70 10.20 -55 +35 159 

9 43.72 482.70 6.73 24.60 -75 +55 123 

10 44.06 488.30 6.39 10.20 -55 +35 112 

11 45.40 400.20 5.38 23.40 -35 +15 133 

12 45.07 446.80 5.72 21.60 -35 +15 116 

13 44.40 467.30 5.72 24.60 -75 +55 172 

14 46.41 440.40 5.04 10.80 -35 +15 156 

15 45.74 534.20 6.73 13.80 -75 +55 100 

16 46.75 517.00 4.71 12.60 -75 +55 127 

17 47.42 528.60 5.72 21.60 -35 +15 137 

18 48.43 413.40 4.71 18.60 -35 +15 121 

19 47.76 451.10 4.04 28.80 -35 +15 174 

20 49.10 417.40 6.39 27.60 -35 +15 118 

21 49.44 421.50 6.05 26.40 -75 +55 107 

22 48.77 507.50 5.72 30.00 -55 +35 151 

23 50.11 432.70 5.38 15.00 -75 +55 128 

24 50.11 538.70 3.70 24.00 -35 +15 102 

25 51.46 424.70 6.05 22.20 -75 +55 139 

26 51.12 513.70 5.04 16.80 -75 +55 143 

27 52.13 427.60 4.37 29.40 -75 +55 112 

28 51.79 464.50 3.70 19.20 -55 +35 139 

29 52.80 436.30 7.06 17.40 -35 +15 106 
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Sim. 

No. 

Primary gas 

(Ar) [SLPM] 

Electric 

current [A] 

Carrier gas 

[SLPM] 

Powder feed 

rate [g/min] 

Particle 

size [μm] 

Stand-off 

distance [mm] 

30    53.14 439.40 3.36 26.40 -55 +35 164 

31    52.47 479.30 4.37 19.20 -55 +35 177 

32    54.48 475.50 4.71 12.60 -55 +35 154 

33    53.81 501.20 5.04 21.00 -35 +15 167 

34    54.82 418.90 4.04 25.80 -75 +55 142 

35    55.49 494.40 3.70 14.40 -35 +15 109 

36    55.83 504.30 4.71 22.20 -55 +35 135 

37    56.17 523.20 5.38 13.20 -55 +35 119 

38    56.84 406.40 6.05 27.00 -55 +35 170 

39    56.84 484.80 4.04 11.40 -75 +55 115 

40    58.18 497.80 6.39 17.40 -75 +55 105 

41    57.85 510.60 6.05 14.40 -55 +35 175 

42    58.52 446.20 4.37 25.20 -55 +35 179 

43    59.19 457.00 6.73 16.20 -75 +55 161 

44    59.19 491.60 6.73 19.80 -55 +35 150 

45    59.87 470.30 4.04 18.00 -75 +55 144 
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Hybrid learning algorithm 

The adaptive parameters of the ANFIS model in this study are tuned using a data-driven hybrid 

learning algorithm. The hybrid method consists of backpropagation for the parameters 

associated with the input membership functions or premise parameters, and least squares 

estimation (LSE) for the parameters associated with the output membership functions or 

consequent parameters. 

 

In the forward pass of the hybrid learning algorithm, the premise parameters are fixed and the 

consequent parameters are identified by the LSE technique. Let 𝑋 be an unknown vector with 

the size of 𝑀 whose elements are consequent parameters, and let 𝐵 be the vector of training 

data with the size of 𝑃, then it can be shown that the matrix equation 𝐴𝑋 =  𝐵 can be obtained 

in the adaptive network, where the dimension of  𝐴 𝑖𝑠 𝑃 × 𝑀. The LSE technique estimates the 

vector of consequent parameters by minimizing the squared error ‖𝐴𝑋 −  𝐵‖2 . The least 

squares estimate of 𝑋, denoted by 𝑋∗, is given by 

 

𝑋∗  =  (𝐴𝑇𝐴)−1𝐴𝑇𝐵  

 

where 𝐴𝑇 is the transpose of 𝐴. 

 

In the backward pass, the error rates propagate backward and the premise parameters are 

updated by the gradient descent method, while the consequent parameters are fixed. The error 

measure for the p-th (1 ≤ 𝑝 ≤ 𝑃) entry of training data can be obtained as the sum of squared 

errors according to 

 

𝐸𝑝 = ∑ (𝑇𝑚,𝑝 − 𝑂𝑚,𝑝
𝐿 )2

#(𝐿)

𝑚=1

 

 

 

where 𝑇𝑚,𝑝  is the m-th component of p-th target output vector, and 𝑂𝑚,𝑝
𝐿  denotes the m-th 

component of actual output vector produced by the p-th input vector. The overall error 𝐸 can 

be calculated by 
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𝐸 = ∑ 𝐸𝑝

𝑃

𝑝=1

 
 

 

The set of premise parameters can be obtained through the backpropagation procedure that 

implements gradient descent in 𝐸 over the parameter space. Let 𝛼 be a premise parameter of 

the given adaptive network, then the update formula for the parameter 𝛼 is 

 

∆𝛼 = −𝜂
𝜕𝐸

𝜕𝛼
 

 

 

In the above equation, 𝜂 is the learning rate, which depends on the length of each gradient 

transition in the parameter space. Please refer to [Jan93] for further detail regarding the hybrid 

learning algorithm in an adaptive network. 
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Atmospheric Plasma Spraying (APS) is a versatile coating technology, which offers a broad 

range of functional features. Deposition efficiency (DE) is a major performance measure in 

APS, which is determined by dozens of intrinsic and extrinsic influencing factors. Because of 

the nonlinear and complicated interdependencies of the contributing variables, enhancing 

DE has always been a challenging task in the process development of APS. Hence, emplo-

ying an ensemble of computer-aided methods is inevitable to understand and control these 

correlations in such a complex coating technology. The concept of the so-called Digital Sha-

dow combines domain-specific models with data-driven techniques of Artificial Intelligence 

(AI), inferred by autonomous agents to create a sufficiently accurate image of the production 

process including all relevant data. This dissertation is devoted to the development of the pri-

mary steps towards a Digital Shadow in APS with the ultimate goal of improving the process 

efficiency.

Modern AI methods, namely Support Vector Machine (SVM) and Adaptive Neuro-Fuzzy Infe-

rence System (ANFIS), were used in this work to predict DE. For this purpose, both simulation 

and experimental data from the entire process chain of APS were employed to train the AI 

models, and combine them in the frame of an expert system. These data include process 

parameters, in-flight particle properties and DE on the substrate.

The developed expert system consists of two subsystems: one for predicting in-flight particle 

properties from process parameters using SVM technique and another for predicting DE 

from particle properties using ANFIS. To tackle the problem of insufficient data for training the 

aforementioned AI models two approaches were pursued: 1) A method was developed for in 

situ determination of spatially resolved deposition efficiencies on the substrate, namely Local 

Deposition Efficiency (LDE). By using LDE, sufficient amount of data for learning algorithms 

could be generated, while providing that much data for ex situ measurements of global DE 

and their corresponding particle properties would be impractical. 2) Simulation data for the 

in-flight particle properties were generated by using the simulation models of the plasma jet 

already developed at IOT. The combination of these two strategies provided the aggregated 

and purpose driven data sets required for a Digital Shadow in APS. The developed expert 

system can be used as a tool to adjust the process parameters to produce sustainable and 

cost-effective coatings, and subsequently improves the integration of coating process into 

production chain. 
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