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Abstract

Abstract
Atmospheric Plasma Spraying (APS) is a versatile coating technology, which offers a broad

range of functional features. Deposition efficiency (DE) is a major performance measure in
APS, which is determined by dozens of intrinsic and extrinsic influencing factors. Because of
the nonlinear and complicated interdependencies of the contributing variables, enhancing DE
has always been a challenging task in the process development of APS. Hence, employing an
ensemble of computer-aided methods is inevitable to understand and control these correlations
in such a complex coating technology. The concept of the so-called Digital Shadow combines
domain-specific models with data-driven techniques of Artificial Intelligence (AI), inferred by
autonomous agents to create a sufficiently accurate image of the production process including
all relevant data. This dissertation is devoted to the development of the primary steps towards

a Digital Shadow in APS with the ultimate goal of improving the process efficiency.

Modern Al methods, namely Support Vector Machine (SVM) and Adaptive Neuro-Fuzzy
Inference System (ANFIS), were used in this work to predict DE. For this purpose, both
simulation and experimental data from the entire process chain of APS were employed to train
the Al models, and combine them in the frame of an expert system. These data include process

parameters, in-flight particle properties and DE on the substrate.

The developed expert system consists of two subsystems: one for predicting in-flight particle
properties from process parameters using SVM technique and another for predicting DE from
particle properties using ANFIS. To tackle the problem of insufficient data for training the
aforementioned Al models two approaches were pursued: 1) A method was developed for in
situ determination of spatially resolved deposition efficiencies on the substrate, namely Local
Deposition Efficiency (LDE). By using LDE, sufficient amount of data for learning algorithms
could be generated, while providing that much data for ex situ measurements of global DE and
their corresponding particle properties would be impractical. 2) Simulation data for the in-flight
particle properties were generated by using the simulation models of the plasma jet already
developed at IOT. The combination of these two strategies provided the aggregated and purpose
driven data sets required for a Digital Shadow in APS. The developed expert system can be used
as a tool to adjust the process parameters to produce sustainable and cost-effective coatings,

and subsequently improves the integration of coating process into production chain.
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Zusammenfassung

Zusammenfassung

Atmosphdrisches Plasmaspritzen (APS) ist eine vielseitige Beschichtungstechnologie, die ein
breites Spektrum an funktionellen Eigenschaften bietet. Der Auftragswirkungsgrad (DE) ist ein
wichtiges Leistungsmerkmal des APS, das durch Dutzende von intrinsischen und extrinsischen
Einflussfaktoren bestimmt wird. Aufgrund der nichtlinearen und komplizierten Wechsel-
wirkungen zwischen den Einflussgrof3en stellt die Verbesserung der DE eine grofle Heraus-
forderung bei der Prozessentwicklung des APS dar. Daher ist der Einsatz eines Ensembles
computergestiitzter Methoden unumginglich, um diese Zusammenhinge in einer derart
komplexen Beschichtungstechnologie zu verstehen und zu kontrollieren. Das Konzept des so
genannten Digitalen Schattens kombiniert doméanenspezifische Modelle mit datengetriebenen
Techniken der Kiinstlichen Intelligenz (KI), die von autonomen Agenten abgeleitet werden, um
ein hinreichend genaues Abbild des Produktionsprozesses einschliefllich aller relevanten Daten
zu erstellen. Diese Dissertation widmet sich der Entwicklung der primaren Schritte in Richtung

eines Digitalen Schattens im APS mit dem Hauptziel der Verbesserung der Prozesseffizienz.

Moderne KI-Methoden, ndmlich Support Vector Machine (SVM) und Adaptive Neuro-Fuzzy
Inference System (ANFIS), wurden in dieser Arbeit verwendet, um DE vorherzusagen. Zu
diesem Zweck wurden sowohl Simulations- als auch experimentelle Daten aus der gesamten
Prozesskette des APS verwendet, um die KI-Modelle zu trainieren und sie im Rahmen eines
Expertensystems zu kombinieren. Diese Daten umfassen Prozessparameter, Partikel-
eigenschaften und die DE auf dem Substrat. Das entwickelte Expertensystem besteht aus zwei
Teilsystemen: A) Vorhersage der Partikeleigenschaften im Flug aus den Prozessparametern
unter Verwendung der SVM-Technik und B) Vorhersage der DE aus den Partikeleigenschaften
mittels ANFIS. Um das Problem der unzureichenden Daten fiir das Training der KI-Modelle
zu losen, wurden zwei Ansitze verfolgt: 1) Es wurde eine Methode zur In-situ-Bestimmung
raumlich aufgeloster DE auf dem Substrat, ndmlich Local Deposition Efficiency (LDE),
entwickelt. 2) Simulationsdaten fiir die Partikeleigenschaften wurden durch die Verwendung
der bereits am IOT entwickelten Simulationsmodelle des Plasmastrahls erzeugt. Die
Kombination dieser beiden Strategien lieferte die aggregierten und zweckgebundenen Daten-
satze, die fiir einen Digitalen Schatten im APS bendétigt werden. Das entwickelte Experten-
system kann als Werkzeug zur Anpassung der Prozessparameter verwendet werden, um
nachhaltige und kosteneffiziente Beschichtungen zu erzeugen, und verbessert somit die

Integration des Beschichtungsprozesses in die Produktionskette.
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Introduction

1 Introduction
Thermal Spraying (TS) is a coating technology in which the feedstock material is introduced

into a high-temperature free jet to deposit a coating. The resultant molten or semi-molten
particles are accelerated in the free jet towards a prepared substrate and their successive
impingements build a coating with a typical thickness of 50 pm < d4¢ing < 400 pm [Bob13]. TS
is considered as the most versatile coating technology due to its numerous process variants,
which enable the deposit of a wide range of feedstock materials. Metals and metal alloys, oxide
and nonoxide ceramics, plastics, cermets and composites can be applied using diverse process
variants of TS. Furthermore, TS offers a broad range of functional features including wear,
oxidation and corrosion resistance as well as electrical and thermal insulation. Other special
characteristics of this coating technology include equipment portability, wide range of coating

thicknesses and minimal thermal degradation to substrate [Dav04].

The quality of a thermally sprayed coating can be evaluated, among others, through the
following coating properties with regard to a given application: thickness, thermal conductivity,
tensile bond strength between the coating and the substrate, surface roughness and coating
hardness, porosity and oxide content. To provide an example, porosity is discussed below as
one of the most important coating properties. Porosity has its advantages and disadvantages
depending on the functionality of the coating. For example, the thermal barrier coatings must
have a low thermal conductivity and consequently a relatively high porosity in the range of
10-20 % [BV17]. In the tribological field, the open pores, e.g. on the inner walls of the plain
bearings or cylinder bores, act as microcavities that can store lubricants. This additional oil
retention improves the frictional behavior of the components. On the contrary, the corrosion
or wear-resistant coatings must have a low porosity or, ideally, a porosity close to zero. In this

case, porosity is considered as an inherent defect for the coating.

TS-processes are categorized according to the type of the energy source. Atmospheric plasma
spraying (APS) represents one of the most important process variants of TS, in which an electric
arc discharge inside a plasma generator is used as the energy source for heat generation and
acceleration of the process gas [FMV+06]. One or more direct current (dc) arcs superheat an

inert gas, commonly argon or an argon-hydrogen mixture, to generate the plasma.
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Introduction

The operating principle of a multi-arc APS process, which is the focus of this work, is depicted
in Figure 1-a. Process temperatures in the plasma jet core can range roughly between
6,000 °C < Ty < 15,000 °C [Dav04], allowing the processing of high-melting ceramic materials
in particular. Feedstock material in form of powder is introduced into the plasma jet via an inert
carrier gas inside a hose following a particle injector. The size of the injected particles are
typically in the range of 20 um < D, <90 um and the particle velocities can reach up to
v, = 800 m/s [Paw08]. A cross-section of an ALOs coating is depicted in Figure 1-b. The coating
microstructure is made up of deposited particles that produce the conventional lamellae shape
by deforming to different extents. Immediately after impact on the substrate, the heated
particles spread out, deform and solidify. The main adhesion mechanism of sprayed coatings is
referred to as mechanical interlocking. This is defined as the mechanical anchorage of the splats
to irregularities of the substrate by the force arising from liquid shrinkage [Paw08]. These

irregularities result from grit blasting of the substrate as a pre-spray surface preparation.

a) 3 I | Particle R 2
/@ i | injector

[— 1E ] Substrate
generator || [7 =) Particle L
' ' trajectones

N

_, Lamellae | .
=l = sy ; U
|E J [ l = Electrical current
S e I & process gases ate
2= B | PO i
Figure 1: a) Schematic illustration of the APS process and b) cross-section image of an

ALO; coating applied with the APS process

Dc plasma arc spraying systems are one of the most flexible and at the same time sophisticated
variants of TS-processes [Dav04]. The complexity of plasma spraying is related not only to the
manufacturing of the plasma guns for the harsh environment of high temperatures and

enthalpies, but also to the enormous quantity and diversity of the influencing factors. These
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Introduction

influencing factors result from the combination of intrinsic and extrinsic parameters. The
directly adjustable extrinsic parameters include, for instance, the electrical current and the
volume flow rates of the process gases. The resulting intrinsic parameters, such as in-flight
particle velocities and temperatures, can only be influenced indirectly [SBD+06]. All these
parameters are interrelated and usually follow nonlinear relationships. For example, the
variation of the current or the process gas flow to change the particle temperatures and
velocities at impact, also generally requires adjusting the parameters for injection the feedstock
material to obtain thermally and kinematically matched parameters. Moreover, the parameter
combinations are also influenced by disturbance variables, such as fluctuations of the arc or the

wear of the system components, e.g. electrodes and injectors.

A large number of overviews of the influencing variables in plasma spraying are available in the
literature. A comprehensive list of the main setting parameters is given by Lugscheider [Lug02],
see Table 1. In this table, some of these parameters with their direct influences on the different
parts of the APS system are listed. These are only the main parameters that must be controlled
and recorded in practice during plasma spraying. If the peripheral influencing variables such as
torch travel speed, substrate variables, feedstock material influences, etc. are added, the overall
number of influencing factors in APS is estimated to be more than 200 [Lug02]. It should be
emphasized that the intricate nonlinear relationships among these factors further increase the
complexity of the overall APS system. Taking the above aspects into account, the question of
robust methods for quantifying the complex interactions between the dozens of influencing
factors in APS arises. It turns out that computer-aided algorithms can best fulfill this

challenging undertaking.
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Table 1: Adjustable parameters in plasma spraying (without peripheral influences)

according to [Lug02]

Area Parameter Direct influence on
Nozzle * Nozzle diameter = Plasma velocity
(Anode) * Nozzle length = Arclength, plasma energy

* Nozzle shape = Plasma velocity, plasma

temperature

Powder * Injector diameter * Max. flow rate, particle
injection * Number of injectors trajectories

* Injector position, injector * Max. flow rate

angle = Particle trajectories

* Powder feed rate * Max. Particle melting

* Powder carrier gas flow = Particle trajectories
Power * Arc current intensity * Plasma energy, viscosity

Plasma gases

Cooling power

Spray distance

Atmosphere

Arc voltage

Gas composition
Gas flows

Gas pressures
Angle of swirl

Coolant flow rate
Coolant inlet temperature
and pressure

Spray distance

Pressure

* Plasma energy, viscosity

* Plasma enthalpy, thermal
conductivity, viscosity

* Plasma energy

* Plasma velocity

* Arcand plasma swirl =
nozzle lifetime, particle
injection

» Torch efficiency
= Torch service life

Particle velocity and
temperature,
Substrate heating

Plasma energy density,
Plasma velocity
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Introduction

The term “Industrie 4.0”, since its introduction as the fourth industrial revolution by a team of
scientists in Germany, has been used increasingly for all kinds of fundamental concepts that are
related to the digital transformation in production [LFK+14]. Industrie 4.0 offers the potential
for technical system networking and real-time optimization of complex value-added systems
based on big data processing, and consequently forecasting the future events in production.
This is what is truly revolutionary about Industrie 4.0, and not the digitization of products and
their production per se. The processing of big data became possible by the rapid expansion of
computer resources, specifically High-Performance Computing (HPC), which largely
contributed the development of Industrie 4.0. The fourth industrial revolution has also brought
innovation and competition back to engineers and managers in the production workplace. The
networking of supply chains on the basis of digital technologies and the resulting changes in
supply chain systems represent a major paradigm shift for all production managers. Wrong
decisions due to a lack of information and inadequate assessment of risks and technology
potentials can lead to massive competitive disadvantages and endanger the long-term existence

of the companies concerned.

The main focus of Industrie 4.0 is on integrating cyber-physical production systems (CPPS)
with processes and stakeholders along the whole value-added chain [BDJ+22]. Thereby,
Industrie 4.0 can be facilitated by CPPS, depending on the most recent and foreseeable
advancements in computer science, information and communication technologies, and
manufacturing science and technology. CPPS consist of autonomous and cooperative elements
and subsystems that interact with each other depending on the situation, across all levels of
production, from processes to machines to humans and logistic networks [Mon14]. The main
issue is to investigate the connections between autonomy, cooperation, optimization, and
responsiveness. This makes the integration of simulation-based and analytical methodologies
more important than before. The simulation permits dynamic investigation of production

systems and supports in both operational and strategic planning [ULS17].

The concept of “Digital Twin” (DT) is one of the most promising enablers of smart
manufacturing as well as realization of CPPS and subsequently Industrie 4.0 [TZL+19]. DT is
referred to as a virtual or computerized representation of a physical entity, which may be a
product or a process, including all the data and information that tie the physical entity and its

twin together [BCF19]. This digital replication occurs mainly by integration of the Artificial
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Intelligence (AI) methods, with the aim of system optimization, controlling and monitoring,

maintenance as well as prediction.

A DT is far more than just pure data, a simple model or simulation. The difference lies in the
level of data integration between the physical and its digital counterpart. Digital representations
can range from fully integrated with real-time data exchange to manually modeled ones that
are not related to any physical objects. A basic digital model, for instance, is a digital
representation of a current or future physical entity that does not include any automated data
exchange. However, in the context of DT the data and information are continuously exchanged
and updated, so if the state of the physical object changes, the state of the digital object will
correspondingly alter, and vice versa [KKT+18]. Hence, a DT is a living, intelligent and evolving
counterpart of a physical entity [BCF19]. Additionally, the proposed virtual-physical coupling
requires a method to uniquely identify the physical product in order to enable a one-to-one
(bijective) connection between the DT and its physical counterpart. Therefore, each DT is

linked to its physical twin through a unique key [RHO+15].

Due to the enormous amounts of data that a virtual copy of a product, machine or production
facility would require, developing a complete DT is typically not practical. Hence, the Digital
Twins that are utilized in practice, are mostly collections of many data sets and models, each of
which represents a distinct feature of the real object, rather than being complete digital replicas
[BDJ+22]. Beside the concept of DT, the term “Digital Shadow” (DS) has been often used in the
context of the Industrie 4.0. According to the definition of Schuh et al. [SBR+16, SWL+16],
Digital Shadow describes a sufficiently accurate representation of key data involved in various
areas such as production technology and order processing. The main difference between DS
and DT lies in the level of data integration, in a way that DS has an automated one-way data
flow from the existing physical object to its digital object [KKT+18]. In the context of DS, a
change in the state of the physical object results into a state change in the digital object, but not
vice versa, see Figure 2. Hence, DT extends the definition of DS by automatically influencing

the physical object as well [BBD+21].
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—————— » Manual data flow

- Automatic data flow

l _____ |
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Physical Physical :g.selcfl
object object Jec
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Digital Model Digital Shadow Digital Twin
Figure 2: Data flow in a Digital Model, a Digital Shadow and a Digital Twin according to

[KKT+18]

In the context of manufacturing technology, DS combines domain-specific models with data-
driven AI techniques inferred by autonomous agents to create a sufficiently accurate image of
the production processes including all relevant data [BGA+21, BDJ+22]. DS is considered as a
suitable solution for production engineering applications, since multi-modal views with task-

specific granularity can provide higher performance than a fully integrated DT [BDJ+22].

Figure 3 shows the sequential steps of the road map towards Digital Shadows for enterprises
according to [SWL+16]. Since the Digital Shadow is to be designed depending on the given
production environment, the migration path takes place in a circular manner and has to be
retraced when the environment changes. These steps can be structured overall to four research
fields: 1) create data structure/data model, 2) multimodal data acquisition, 3) multimodal data
fusion and 4) consistency/plausibility check [SBR+16]. The road map begins with the definition

of the goal of Digital Shadows and leads up to implementation and continuous data collection.
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Data enrichment

& validation GO?I "
definition
Initial test
phase
Analysis of Data
requirements
Road Map to

Implementation

Digital Shadow

Design of
technologies -

Matching data
requirements —
Existing data

Technology
selection
Review of existing
technologies
Figure 3: Road map to Digital Shadow according to [SWL+16]

As a first step, it is necessary to specify the objectives of the Digital Shadow before initiating any
action involving data collecting. For instance, the objective of a DS can be increasing the energy
efficiency of a production system. Based on the goal definition, the analysis of the required data
takes place in the second step. For this purpose, among other things, the appropriate data
granularity and the required data format must be determined. Then it must be checked which
data already exist and which must be newly included. The existing and required data must be

examined with regard to their scope and the required format.

Selection of appropriate technologies to collect the necessary data for each designated data point
is crucial in accordance with the multimodal data acquisition. Granularity, frequency, data
format, interfaces of data acquisition technology, etc. can all be used as selection factors. A
unified general concept is desired when a variety of technologies are feasible. It is also necessary
to assess the technologies that have previously been implemented, if any, in terms of their
applicability and integration into a coherent overall concept. Furthermore, an operational
design must be created before the chosen technology concept can be launched. After new
technologies have been implemented, it must be checked whether they correctly supply and

store the predefined data. To reduce the effort of this initial test phase, a suitable sample has to
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be defined depending on the goal of the DS. After a successful test phase, the developed DS is
continuously transferred to productive operation. In this final step, DS must be validated in
terms of satisfying the requirements, for example by checking the continuous collection of data
at the defined data points and its storage according to specifications. If necessary, the available
data can be enriched by purposeful generation of new data in order to improve the performance
of the developed DS. In the event that modifications are made to the production environment,
such as adjustments to the production line or programmable logic controllers (PLCs), the road

map needs to be repeated again, beginning with the goal definition.

With respect to the aforementioned definitions, this dissertation is devoted to the development
of Digital Shadows in plasma spraying with the ultimate goal of improving the process
efficiency. To this end, modern AI methods were used to develop and combine domain-specific
models using simulation and experimental data from the entire process chain of APS. These
data include machine or process parameters, in-flight particle properties and deposition
efficiency on the substrate. Furthermore, to tackle the problem of insufficient data for Al
models two approaches were pursued: 1) A methodology for in situ determination of spatially
resolved deposition efficiencies on the substrate and 2) generating simulation data by using the
simulation models of the plasma jet developed at the Surface Engineering Institute (IOT) at the
RWTH Aachen University. The combination of these two strategies provided the aggregated

and purpose-driven data sets required for Digital Shadows in plasma spraying.
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Theory and State of the Art

2 Theory and State of the Art
This chapter describes the theory and the state of the art of the prerequisite stages for digital

transformation in plasma spraying in view of improving process efficiency. It starts with
section 2.1 about an introduction to Artificial Intelligence. In section 2.2, the use of AI methods
for process control or quality prediction in APS is reviewed. The development of sensors in
thermal spraying for in-flight particle diagnostic measurements is then covered in section 2.3
as a crucial intermediate stage of the coating process. Following that, section 2.4 gives an
overview of the current state of the art for determining deposition efficiency. A summary is

provided at the end of this chapter.

2.1 Introduction to Artificial Intelligence

There is no universally accepted definition for Artificial Intelligence in the literature, because
both the terms "artificial" and "intelligence" are not well defined and understood in this context.
Many researchers have attempted to provide a robust definition for AI [RN16]. Among these,
the definition by Elaine Rich [Ric87] has received the most attention, since it avoids the
philosophical issues that dominate the attempts to define the meaning of either artificial or

intelligence:

“Artificial Intelligence is the study of how to make computers do things at which, at the

moment, people are better.”

This definition by Rich briefly characterizes what Al researchers have been doing until now and
it will be probably up to date even in future. As an example, a person entering an unknown
room recognizes the environment within fractions of a second and, if necessary, makes
decisions and takes actions very quickly. So far, this task is too challenging for autonomous

robots [Ert11]. Therefore, with respect to Rich's definition, this is a task for AL

Machine Learning (ML) is the central sub-discipline of Al It is applicable in complex tasks that
involve lots of data and many variables, but for which no formula or equation exists. Then, ML
is utilized to generate an evaluation function that is as close as possible to optimal with an
iterative process [Ertl11]. Machine learning uses generally two types of techniques: supervised
learning and unsupervised learning. The objective of supervised learning is to find a mapping

from the inputs to outputs whose correct values, namely targets, are provided by a supervisor.
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Theory and State of the Art

Then, the learned model on known input and output data, namely training data, can predict
future outputs. In unsupervised learning, there is no such supervisor, so we only work with
input data. The goal of unsupervised learning is to find hidden patterns or intrinsic structures
in input data. Supervised learning uses classification and regression techniques to develop
predictive models, while unsupervised learning uses clustering techniques to group or interpret
the input data [Alp10]. This work deals with supervised learning techniques for regression,
since its focus is on development of prediction models based on the provided training data.
There are dozens of ML algorithms, each of which takes a different approach for learning. There
is no general or best method that is fitted for all cases. Therefore, choosing the right algorithm
often requires trading one criterion for another, such as model speed, accuracy and complexity.

Figure 4 shows an overview of some machine learning techniques.

Machine Learning

Supervised Learning Unsupervised Learning

Development of a predictive model Group and interpret data based only

based on both input and output data on input data

|

|

|
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2.1.1 Artificial Neural Networks (ANNs)

ANNSs are inspired from the biological architecture of the human brain, which consists of
billions of nerve cells or neurons that are connected in a network-like fashion. The neurons and
their connections in the brain are responsible for consciousness, associations, thoughts and
learning ability. The biological network served as inspiration for mathematical modeling of
information processing. Figure 5 shows the schematic architecture of the a) biological neural
networks and b) artificial neural networks. ANNs are considered as one of the most significant
subsets of ML that can be used for both supervised and unsupervised learning techniques.
McCulloch and Pitts [MP43] pioneered this subject in 1940s by presenting a mathematical

model of biological nervous systems. Interested readers may refer to [ARP88] for a complete

historical evolution of ANNSs.

b)

Figure 5: Schematic illustration of a) biological neural networks and b) artificial neural

networks [Ert11]

ANNs are composed of some information-processing units called neurons or nodes. The
computational model of a neuron labeled with k is presented as a block diagram in Figure 6. An
artificial neuron receives inputs from other neurons at its entrance. Each input is associated
with a numeric weight, which determines the strength of its connection link. The neuron is
either activated or remains inactive depending on its total weighted input [Kro08]. The

activation level of the neuron is the output generated by the activation function.
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Inputs Weights Bias
by
X1
Activation
function
X
2 Qutput
u p—
Yk
Weighted sum
Xm
Figure 6: Block diagram of the computational model of a neuron labelled with k [Hay09]

The neural model presented in Figure 6 also contains an externally induced bias that is denoted
by by.. The bias by causes the net input of the activation function to be increased or decreased
depending on whether it is positive or negative respectively. In mathematical terms, this neural

model can be described by the pair of equations

m
Prx = Z ij .X'j + bk Eq 1
j=1
and
Ve = u(Pr)- Eq.2
" D Induced local field or activation potential of neuron k
X, X, e, X Neuron inputs
" Wiy, Wi eor Wi Neuron weights
" by Bias parameter
= Y Neuron output
" U Activation function
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The first subscript in wy; in Eq. 1 refers to the neuron in question, and the second subscript
refers to the input to which the weight corresponds [Hay09]. The activation function can be

linear or nonlinear. Some possibilities for the activation function are depicted in Figure 7.

SR A/

a) b) 0 d)

Figure 7: Different examples for activation functions: a) threshold, b) piecewise linear, c)

sigmoid, and d) Gaussian [JMM96]

Two or more of the neurons described above can be joined in a layer, and a network may
comprise one or more such layers. The network gains knowledge from its environment through
a learning process. The connection strengths between neurons, known as synaptic weights, are
responsible to store the gained knowledge. The capability of learning is central to the theory of
neural networks. The structure of neurons in a neural network is tied closely to the learning
algorithm used to train the network. ANNs can be divided into two main categories in terms of
network architecture: 1) Feedforward networks, where the connections have no loops, and 2)

recurrent networks, in which loops occur due to feedback connections [JMM96].

Figure 8 shows the architecture of a) feedforward neural network (FNN) and b) recurrent neural
network (RNN) exemplarily. The neurons in multilayer networks are arranged in three different
layers: an input layer, one or more hidden layers, and an output layer. The computation units
of the hidden layers are correspondingly called hidden neurons, which serve as information
processing units that intervene between the input and the network output in a useful manner.
The network can extract higher-order statistics from its input by adding one or more hidden
layers [Hay09]. In FNN, the information flows in only one direction from input to output. RNN
is distinguished from FNN by the presence of at least one feedback loop. The backwards
transmission of information in RNN allows the network to exhibit dynamic temporal behavior
and process any sequence of inputs using internal memory [Suzl1]. Many types of data, such
as natural language and sound tracks, include extra information in the order in which they are

presented, creating a sequence of data points. Typically, the term time series is used to describe
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this kind of sequencing data [TPT22]. A simple example of using RNNs is to classify time series.
RNNs have been applied for human activity recognition of daily living by using mobile and

wearable sensors [NTA+18].

Input ' Hidden ' Output Input ' Hidden ' Output
Layer Layer Layer Layer Layer Layer

Figure 8: Exemplary architecture of a) feedforward neural network (FNN) and

b) recurrent neural network (RNN)

A feedforward neural network with one or more hidden layers is also referred to as multilayer
perceptron. One of the widely used methods for the training of a multilayer perceptron is the
backpropagation algorithm, which uses the gradient descent method. The backpropagation
process occurs in two phases: the forward phase and the backward phase. During the forward
phase the input signal is propagated forwards through all the layers of the network till it reaches
the output, while the synaptic weights remain unchanged. In the backward phase the generated
output signal during the previous phase, is compared to a target value, resulting in an error
signal. The obtained error signal is propagated through all the layers of the network, but this
time the propagation is carried out backwards. The synaptic weights are successively adjusted
throughout this second phase. The changes are relatively simple to handle for the output layer,

but these weight adjustments are significantly more difficult for the hidden layers [Hay09].

2.1.2 Support Vector Machine (SVM)

SVM is one of the relatively new and promising supervised learning techniques for classification
and regression. SVM demonstrates a strong mathematical foundation in statistical learning
theory proposed by Vapnik [Vap99]. In general, SVM originated from a robust theory of

implementation, whereas ANN progressed heuristically from application to theory. SVM, in
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contrast to ANN, is a deterministic algorithm that uses the concept of kernel trick [Hol14]. The
kernel trick is a method that maps the original inputs into a higher-dimensional feature space,
where the optima of a convex optimization problem can be found analytically rather than
heuristically, which is the case with other ML techniques [AK15]. By solving the convex

optimization problem analytically, SVM training always finds a global minimum [SS11].

The performance of a ML model on a known set of training data is measured by the so-called
empirical error or the empirical risk. The term generalization refers to the ability of the ML
model to adapt properly to unseen data sets, not encountered during training. SVM has good
generalization properties by using Structural Risk Minimization (SRM). This makes it
particularly powerful over the traditional methods based on the empirical risk minimization,
like the neural networks. SRM proposes a trade-off between the complexity of the machine and
the empirical error. Thereby, SRM considers the expected gap between the training error and

the test error.

Figure 9 illustrates how the error of the ML model varies with its complexity index. The error
is considerable for non-complex models since a simple model cannot account for all the
complexity of the data, leading to an underfitting state. The error decreases for the best model,
indexed with h*, as the complexity index rises before beginning to rise once again. For high
model indices, the model begins tailoring its learning to the training data, leading to overfitting,
which lowers the training error and raises the model complexity, but worsens the test error. By
minimizing the structural risk, i.e. balancing the model complexity against its empirical risk,
SVM avoids the problem of overfitting better than other ML approaches [AK15]. Hence, SVM
is one of the most popular ML approaches for supervised learning because of its resilience,
strong generalization ability, and unique global optimal solutions. However, the main
restriction of SVM is the rapid growth in computing and storage requirements as the number

of training data sets increases [Hay09].
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S
w | underfitting overfitting
best model
..................... measure of
complexity
training error/
empirical error
h* Model index
Figure 9: Relationship between error trends and model index [AK15]

SVM is a supervised learning method that can be applied to both classification and regression
problems. In this context, classification is basically categorizing a set of data into classes and the
term regression stands for data prediction. In the following, SVM classification will be explained

tirst and this is then used to describe SVM regression.

2.1.2.1 SVM Classification

In SVM classification, a set of objects is divided into classes in such a way that the distances
between the class boundaries are as large as possible, and thus minimizing errors. For this
purpose, hyperplanes are used for the separation of the classes. In this context, a hyperplane is
an affine subspace with dimension n-1. For example, if the space is two-dimensional, its
hyperplanes are one-dimensional lines. Figure 10 shows sample objects with two different
features, red and blue, in a two-dimensional space. Three hyperplanes, i.e. H1, H2 and H3, are
placed in this space. The goal is to select a hyperplane that provides optimal separation with as
few misclassified vectors as possible. Among the three illustrated hyperplanes, no classification
was done by hyperplane H1 and therefore it is left out of consideration. On the other hand, a
feature separation of the sample objects by both hyperplanes H2 and H3 took place. It can be

shown that maximizing the margin of a hyperplane results in the optimal separating hyperplane

Page 18



Theory and State of the Art

[BGV92]. Margin in this context stands for the minimum distance of a data point to the
hyperplane. Thereby, a uniquely determined optimal hyperplane exists. Based on the
aforementioned criterion, the hyperplane H3 in Figure 10 provides an optimal separation and
this is called "maximum margin hyperplane". The points at the edge of the separation region,
namely P1 and P2, are called "support vectors". In SVM problems, the determination of the

optimal separating hyperplane is an optimization problem which is solved analytically.

X2 A

Maximum margin
Y

,I

[
o
X
Figure 10: Separation planes in SVM classification

In contrast to the sample data shown in Figure 10, the training data is mostly not linearly
separable. In this case, the SVM uses the so-called kernel trick. This involves transferring the
input space to a higher dimensional space by using a kernel function, where the objects are
linearly separable. Subsequently, the SVM algorithm is applied much simpler in the new feature
space with higher dimension to determine the optimal hyperplane. Figure 11 illustrates the
principle of a kernel function for SVM classification schematically. There are many different
types of kernel functions which can be used to create the higher dimensional space, such as

linear, polynomial, sigmoid, Radial Basis Function (RBF) or Gaussian. It is also possible to
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construct new kernels by combining simpler kernels. A kernel function is good if we have better

separation of the sample data in its corresponding space [Alp10].
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Figure 11: Schematic illustration of the principle of a kernel function for transformation

into a linear problem in SVM classification

2.1.2.2 SVM Regression

The regression problem is an extension of the classification problem in which the model
produces a continuous-valued output instead of a finite-valued output. In other words, a
regression model estimates a multivariate function with continuous values. SVM can also be
used as a regression method, keeping all the main features that characterize its classification
algorithm, such as the maximum margin and the kernel function. In the following, the main

mathematical formulations of the SVM regression technique are discussed.

The goal of linear SVM regression is to find an approximated hyperplane for the target model
f in the form of

gx) = (w,¢(x)) + b. Eq.3
= g(x) Prediction values
. w Normal vector of approximated hyperplane g
= ¢ Mapping function, which could initially be considered as identity function
= b Bias parameter
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The predicted values from g should have a bounded deviation not more than € from the target

values f(x), i.e.,

lg(x) — fF(¥)]| = ¢ Eq. 4

The distance between the hyperplane g and the farthest point away is called margin and it is

. 1 . L
proportional to Tl The boundary of a maximal margin is referred to as a support vector, as

shown in Figure 12. Furthermore, g should be maximally flat, i.e. |[w|| should be as small as

possible and the margin as large as possible [SS18].

. 1‘ g(x) = (w,d(x)) +b

Support

" Vectors
- ®
o ' :L Slack &
0 T O-.‘.‘..‘
y ' .
Margin Tl
—F L
X
Figure 12: [lustration of the support vectors, margins and slack variables in SVM

[BWH+21]

This kind of hyperplane is not always guaranteed to exist in practical cases. In order to cope
with otherwise infeasible constraints, the slack variables £ and §*are introduced to construct a
soft margin hyperplane. As a result, the constrained optimization problem could be formulated

as the following equations [SS04]:
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Minimize: 1 ; Eq. 5

SIWIZ +C ) (6 + 6D !
i

Subjectto: g(x) — f(x) < & + & Eq. 5.1
fx) —gx) <€+ Eq. 5.2
§uéi=0vi=1,..,[Q] Eq. 5.3

= 0 Input variable space

= C>0 Constant that determines the penalties for training errors

A closed form representation of the regression hyperplane g could be derived from the dual

form of the optimization problem above, according to Eq. 6

gx) = Z(a;‘ —a;){x;,x)+b Eq. 6

where a;, a; are Lagrange multipliers [SS04].

The already introduced linear form of SVM regression could be transformed into a nonlinear
feature space via a nonlinear mapping ¢ : Q — Q. The dot product in { is expressed by the
kernel function k(x;, x;) = (¢ (x;), $(x;)). With the implicit mapping of kernel function k, it
is possible to directly compute the hyperplane g in the nonlinear feature space. With the so-

called kernel trick, the final form of the approximated hyperplane can be expressed as Eq. 7

gx) = Z(af —a) k(x,x)+b Eq. 7

where the corresponding constrained optimization problem is now formulated in the
transformed feature space (1 instead of in the original input variable space Q, with the help of
the implicit mapping ¢ and the kernel function k [SC04]. Figure 13 illustrates the principle of
a kernel function for nonlinear regression problems schematically. As discussed above, the
search for the best hyperplane in SVM regression, like in SVM classification, can be formulated

as an optimization problem. One important advantage of SVM is that although the training
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involves nonlinear optimization, the corresponding objective function is convex, and therefore,
any local solution represents also a global optimum [BNO06]. Furthermore, another primary
advantage of SVM, as compared to ANN, is its good generalization ability, especially with

limited number of training samples [SL12].

Kernel function

y A y A
+€
0
-€
O(x)
Figure 13: Schematic illustration of the principle of a kernel function in SVM regression

for nonlinear problems

2.1.3 Fuzzy Logic (FL)

In addition to data-driven machine learning approaches, knowledge-based techniques are
suitable for solving problems that cannot be adequately formulated mathematically. A
Knowledge-based System (KBS) belongs to the artificial intelligence approaches that aim to
retrieve knowledge from data/information in response to specific queries, along with learning
and justification, or to transfer expertise from one domain of knowledge to another [AS09].
KBS in form of the so-called expert system can help to capture the knowledge of human experts

to support decision-making.

Science frequently employs mathematical models that either result from mathematical
reasoning or follow exemplary physical principles for explaining systems. In order to transition
from a specific situation to an appropriate mathematical model, considerable idealization is
frequently required. Furthermore, the models are usually deficient if the problems under

consideration are not fully understood or are too complex. In this case, a suitable approach is
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to tolerate a portion of vagueness and uncertainty in the modeling process at the beginning.
Thereby, fuzzy and non-precise inferences are used rather of an expensive accurate inference.
Thus, complexity reduction is achieved compared to other systems. With the introduction of
Fuzzy Logic (FL) by Lotfi A. Zadeh in the 1960s [Zad65], a new era began for KBS and expert
systems in particular. FL is a type of knowledge-based strategy that allows handling with
complex and ill-defined problems that are characterized by cognitive uncertainty, imprecision

or fuzziness/vagueness. Thereby, diverse phenomena in the inference process may emerge, e.g.:

* Uncertainty: "Coating porosity is almost certainly lower at high particle melting ratios."
* Imprecision: "Electrical current is between 500 and 540 A."

* Fuzziness: "Influence of electrode wear on coating properties is very high."

The basic idea of FL is to incorporate expert knowledge and experience when the creation of an
exact mathematical model is very time-consuming or impossible due to the complexity of the
system. FL works with the so-called fuzzy sets. Unlike ordinary sets, where elements belong
uniquely to a set or not, fuzzy sets allow arbitrary membership degree between 0 and 1. A

function describing such fuzzy sets is called a membership function (MF), see Figure 14.

almost exact roughly between about
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Figure 14:  Some typical forms of membership functions

FL describes the complex system by means of linguistically formulated rules or rule base. The
rules establish relationships between input and output of the system. Linguistic rules based on
human experience allow for the qualitative characterization of a system without relying on exact
quantitative analysis of nonlinear correlations among input and output parameters. A fuzzy
inference system (FIS) basically comprises a fuzzifier, a block of database and rule base that is

jointly referred to as knowledge base, a decision-making unit and a defuzzifier, see Figure 15.
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Figure 15: General architecture of a fuzzy inference system [BHD22]

The fuzzification interface converts the crisp inputs into degrees of match with linguistic values.
The rule base contains a number of fuzzy if-then rules and the database defines the membership
functions of the fuzzy sets used in the fuzzy rules. As described earlier, MF quantifies the degree
to which an input element belongs to a particular fuzzy set. The values mapped by a MF are
known as grade or degree of membership, and they range from 0 to 1. The inference operations
on the rules are performed by the decision-making unit and finally the defuzzification interface
transforms the fuzzy results of the inference into a crisp output. Fuzzy if-then rules are
expressions in form of IF x is A THEN z is B, where A and B are labels for fuzzy sets
characterized by suitable membership functions. The IF part is also called premise and the
THEN part is referred to as consequence. This brief form of problem description facilitates the

integration of human knowledge to deal with an uncertain and imprecise environment.

2.1.4 Adaptive Neuro-Fuzzy Inference System (ANFIS)
Due to insufficient knowledge, faults, or the complexity of the ill-defined system, FL is not

optimal for achieving desired results in certain situations. For instance, developing a knowledge
base for the stochastic process of plasma spraying depends on instinct and experience and is
therefore an iterative and challenging task [JLCO7]. Moreover, the human-determined
membership functions differ from person to person and from time to time. On the other hand,
ANN provides interesting benefits such as learning capability, adaptability, optimization and
generalization. In the 1990s, Jyh-Shing Roger Jang [Jan93] integrated the best features of ANN

and FL, and proposed his novel architecture under the terminology Adaptive Neuro-Fuzzy
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Inference System (ANFIS). ANFIS uses a feed-forward neural network to automatically
construct and tune rule bases and MF parameters from given sample data sets. Therefore, it
leverages not only the advantages of neural networks but also the idea of conditional statements
for uncertain systems. Figure 16 shows the general architecture of ANFIS with five layers, each
of which is made up of several nodes. The inputs of each layer are obtained by the nodes from

the previous layer, similar to a neural network.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
Fuzzification Premise Normalization ~ Consequence Output
Al Xy
x |
A2 wi f,
f
" W
v il
B2 Xy
Adaptive node O Fixed node
Figure 16: General architecture of ANFIS with two inputs, one output and two fuzzy if-

then rules [BHD22]

For the sake of simplicity, the considered system is assumed to have two inputs x and y, one

output z and two fuzzy if-then rules as follows [Jan93]:

Rule 1: Ifxis A and y is By, then f; = hyx+q;y+ 1y
Rule 2: If xis A, and y is By, then f, = hox + g,y + 1,
where 4; and B; in the premise part are linguistic labels that are represented by fuzzy sets and

characterized by an appropriate MF, while h;, q; and r; are the consequent parameters of the

i-th rule. The node functions in each layer are described below.
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Layer 1: Every node i in the first layer is an adaptive node and has the output O} with a node

function according to Eq. 8

0f = ug,(x) Eq. 8

where p1,, denotes the MF of A; and it specifies the degree to which the given x satisfies the

quantifier 4;.

In this work, Gaussian membership functions have been used according to Eq. 9, where {a;, c;}
is the parameter set that can be adapted to form various forms of Gaussian MFs. Parameters in

this layer are referred to as premise parameters [Jan93].

pa,(x) = exp [— (x ; Ci)zl Eq.9

i

Layer 2: Every node in this layer is a fixed (non-adaptive) node labeled with [] that multiplies
the incoming signals and sends the product out. A sample node function in this layer is given
in Eq. 10, where w; represents the so-called firing strength or degree of match with the premise

part of the i-th rule.
wi = g, (x) X pp,(y),  i=1,2 Eq. 10

Layer 3: Every node in this layer is a fixed node labeled with N. The node function in this layer
calculates the ratio of the i-th rule’s firing strength to the sum of all rules’ firing strengths

according to Eq. 11. The term w; is referred to as normalized firing strength.

_ w;
w; = ———, | = Eq. 11
owtwy i=12 q

Layer 4: Every node in this layer is an adaptive node. The node output of the fourth layer is the
product of the respective previously found normalized firing strength with the consequent part

of the respective rule, as given in Eq. 12.
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0f = wif; = wi(hyx + qiy + 1) Eq. 12

In Eq. 12, w; is the output of the third layer and {h;, g;, 73} is the set of adaptive parameters of

the fourth layer, namely consequent parameters.

Layer 5: The single node in this layer is a fixed node labeled with }; that computes the overall
output 07 as the summation of all incoming signals according to Eq. 13. The final output of the

system is the weighted average over all rule outputs.

‘w; F Eq. 1
0i5=zwifi=Zl lfl q.13

In the literature, several kinds of fuzzy reasoning have been introduced [Lee90]. Mamdani
[MA75] and Takagi-Sugeno [TS85] are the two most well-known types of FIS. The most
fundamental difference between these two FIS types is the way the crisp output is generated
from the fuzzy inputs. Mamdani employs defuzzification of a fuzzy output, whereas Sugeno
computes the crisp output using weighted average. As a result, the computationally expensive
defuzzification process is bypassed in Sugeno [HGO08]. The type of FIS in Figure 16 is Sugeno.
This can be noticed from the two earlier stated rules, as the fuzzy sets are involved only in the
premise parts, while the consequent parts are described by a non-fuzzy equation of the input
variable. The Mamdani-type has a more interpretable rule base and is well-suited to human
input; a good example of its application field would be medical diagnostics. The Sugeno-type
has more flexibility in system design, is computationally efficient and works well with
optimization and adaptive techniques [HGO8]. Hence, the Sugeno-type FIS has been also

implemented in this work.

2.2 Artificial Intelligence in Plasma Spraying

The coating properties in atmospheric plasma spraying (APS) are a function of three
interdependent subsystems in general: 1) the generation of the plasma jet, 2) the injection and
interaction of the feedstock material with the plasma jet that meanwhile mixes with the
surrounding gas and 3) the impact and solidification of the particles on the substrate
[VMT+15]. During each subsystem, several physicochemical mechanisms occur, which lead to

the formation of a coating. These mechanisms include momentum and heat transfers from the

Page 28



Theory and State of the Art

plasma jet to the particles prior to impact and during solidification, as well as mass transfers
caused by partial vaporization of the particles in the plasma plume. Therefore, each subsystem

has a large number of variables that influence the plasma spraying process.

The number of influencing factors in APS is estimated to be more than 200 variables [SBD+06].
It should be emphasized that many of these factors are intimately connected by complicated
nonlinear relationships. These interactions further increase the complexity of the overall APS
system. Taking the above aspects into account, the question of robust methods for quantifying
the complex interactions between the dozens of influencing factors in APS arises. It turns out
that computer-aided algorithms can best fulfill this challenging undertaking. Artificial
intelligence (AI) methods are suitable tools to investigate complex processes with parameter

dependencies.

Previous research studies have used AI approaches to mainly forecast process parameters in
order to attain the desired in-flight particle properties or coating characteristics. According to
the literature, ANN is the most commonly used method of Al in plasma spraying. There are
only few works that have employed SVM in TS [XH17, GAU+20]. There have already been
studies at the Surface Engineering Institute (IOT) at the RWTH Aachen University to analyze
process data, coating properties and plasma jet characteristics using ANN and Design of
Experiment (DoE) [See05, Ern07]. In other studies, Guessasma et al. [GMG+03] developed an
ANN model to predict the in-flight particle properties of plasma sprayed ALOs 13 wt.% TiO,
feedstock material. Kanta et al. [KMV+08] implemented ANN and FL to predict the in-flight
particle properties as a function of process parameters for deposition of alumina-titania by APS.
They concluded that the ANN model appeared well suited for process prediction, whereas the
FL model seemed more adapted for process control. In another work of Kanta et al. [KMB+11],
an expert system was created by ANN and FL to control and adjust the process parameters so
that constant values for the in-flight particle properties can be maintained. They aimed to
account for the instabilities and intrinsic fluctuations inherent in the APS process based on the
pre-defined rules of the FL model. Liu et al. [LPK+13] developed an expert system by
implementation of ANN models and FL controllers to predict and control the in-flight particle
properties and operating parameters. Similar to the work of Kanta et al., they predefined the

fuzzy rules manually according to experimental data.
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As the use of ANN and FL revealed drawbacks such as reliance on a significant quantity of
experimental data and taking too much time in construction of the rules, the ANFIS technique
was employed in subsequent works due to its high prediction accuracy and low execution time
[PGN+15]. Datta et al. [DPB13] aimed to predict coating properties from process parameters
in APS by developing an ANFIS, which was tuned using a genetic algorithm (GA) and particle
swarm optimization (PSO) algorithm, separately. They found that the PSO-based approach
performed better than the GA-based optimization in predicting the responses. Furthermore, in
[Wul5] an empirical model was developed by combination of ANN and ANFIS to investigate

the effect of process parameters on the coating properties in APS.

Although studies have been conducted to develop AI models for predicting particle or coating
properties, the research in investigating the interactions between process parameters, in-flight
particle properties and deposition efficiency (DE) remains limited. One of the obstacles in this
regard is the lengthy and time-consuming data collection to measure DE and the corresponding
particle properties for different process parameters. One possible solution to tackle this problem
is to produce data by employing simulation and modeling approaches like the Computational
Fluid Dynamics (CFD). The advantage of using simulation results is the opportunity to cover a
broad range of process parameters, while providing that much experimental data is barely
possible. The majority of prior research works have used experimental data sets to create
predictive models for the TS process variants. There are only few studies in the literature that
used simulation data sets for training ML models in TS [ZWK+20]. While simulation and
modeling approaches can help to produce sufficient data of in-flight particle properties, the
problem of data collection for DE still remains. In order to address this issue in terms of
experimental data, first an analysis of the methods and equipment available to capture the in-
flight particle properties is required. Following that, the state of the art regarding measurement

of DE will be discussed.
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2.3 In-flight Particle Diagnostics

Particle diagnostic methods support the coating development process by allowing the
observation of particle properties in the free jet. These include measurements of particle size,
velocity and temperature. The evolution of sensors in thermal spraying for particle in-flight
diagnostic measurements has progressed considerably in recent years. Particle diagnostic
systems have broadened our understanding of the spraying process and improved the

reproducibility of the coatings.

Different diagnostic devices show deficits in the number of detected particles and this depends,
among others, on the sensor measurement volume and the stand-off distance [Lan06, FV10].
The diagnostic sensors employ mainly two different techniques: local measurement and
ensemble measurement. In case of the local measurement, the observation of a single particle is
possible. The ensemble measurement technique does not distinguish between individual
particles and give only average values [FV10]. In conventional spray processes, numerous
particle diagnostic methods and systems have been developed, such as Phase Doppler
Anemometry (PDA), Accuraspray, DPV-2000, SprayWatch and HiWatch. The PDA technique
is unable to measure the particles with an angular and blocky morphology. The Accuraspray is
categorized as ensemble measurement and delivers a single mean value from the captured
particle data in the whole measurement volume. The DPV-2000 is a well-established diagnostic
system, which operates based on the principle of two-wavelength pyrometry. This diagnostic
system utilizes the local measurement technique and has a relatively small measurement volume
(< 1 mm?®). The DPV-2000 can detect only relatively hot particles and measure their size,
velocity and temperature. In case of using a laser to illuminate the cold particles, it is not
possible to measure the particle temperature. This is prominently due to the laser-induced
alterations in particle radiation, disrupting conventional temperature measurement techniques.
SprayWatch is a particle diagnostic system especially for HVOF and HVAF processes, however,
it works well also on the other processes. It measures particle velocities and temperatures, but
not particle sizes. The HiWatch system consists of a camera and a pulsed laser diode to
illuminate the particles. It can measure particle sizes and velocities, but not particle
temperatures. The functional principle of this device is discussed later in detail in Chapter 4.
The HiWatch system has a larger measurement volume (6.5 mm x 9 mm x 2 mm) compared
to DPV, and is capable of observing a single particle. Furthermore, it has the advantage to

capture both cold and hot particles.
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The temperature and velocity of the particles vary significantly in the plasma jet, depending
whether the particles are in the hot core of the jet or in its relatively cold outer part. Due to this
temperature and velocity difference in the plasma jet, the deposition behavior of the particles
on the substrate depends on their individual trajectory. Hence, in order to find a practical
compromise between deposition efficiency and particle properties, the detection of the entire

plasma jet is necessary.

In principle, the particle diagnostic systems focus on one point or one focal plane and therefore,
they can only partially capture the free jet. This point or plane is usually chosen in view of the
maximum concentration of the particles and then a rotationally symmetrical free jet is assumed.
This assumption is generally not correct due to incessant plasma fluctuations. In addition, given
the dynamic range and signal-to-noise ratio of the diagnostic sensors, only particles within a
certain measurable range are detected [WRT+10]. Thus, particle diagnostic systems show
deficits in measured data and do not allow a holistic recording of the free jet. The detection of
the entire free jet as well as the verification of the diagnostic measurements represent a central

research need in the field of thermal spraying.

2.4 Deposition Efficiency

During a thermal spray process, only part of the injected feedstock material adheres to the
component surface and creates a coating. The deposition rate, [g/s] or [kg/h], of a coating
process is defined by this part that adheres to the substrate. The part that does not adhere is lost
as the so-called overspray. The ratio between the mass of the coating and the mass of the
feedstock material supplied to the process defines the deposition efficiency (DE) [%] and
determines the overall efficiency of the process. In industrial production, high DE has been
always one of the central goals in the process development of thermal spraying to achieve cost-

effective coatings.

Previous studies aimed mainly to seek a compromise between input process parameters and
deposition efficiency of the plasma-sprayed coatings [WXZ+17, BM12]. For instance, there is a
general tendency that the DE initially increases and then decreases with the increase of the
electrical current, voltage and primary gas flow [VSY+09]. Furthermore, few studies have tried

to build up the spray footprint profiles with simulation models [WM13]. However, simulative
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determination of DE in thermal spraying, due to lack of physical equation sets for adhering the

particles on the substrate, is not yet state of the art.

The DE in thermal spraying is intimately related to the in-flight particle properties. The particle
properties can be influenced through several adjustable as well as nonadjustable factors. The
adjustable parameters include the flow rates of plasma and carrier gas, input electrical power of
the torch and the injector geometry design [BOK+20, GMCO05]. The nonadjustable influencing
factors are, among others, the wear of the electrodes and entrainment of the surrounding cold
gas [MVS11]. Due to the multitude of influencing factors and their nonlinear interactions, the
determination of the correlations between particle properties and DE is currently based on the
experience of the operator and is mostly done by ex situ experiments [SSV+09]. Accordingly,
the prediction of particle properties leading to a coating process with the desired DE is largely
based on time-consuming trial and error. This approach complicates the coating development
process and significantly extends the coating development time. Furthermore, available studies
are limited to the average particle properties, which are commonly captured at the centerline of
the free jet. There has not been an in situ mechanism yet to correlate the in-flight particle
properties in the entire free jet with their DE on the substrate locally, see Figure 17. Therefore,
an in situ determination of DE is necessary in order to investigate the influences of process

parameters and in-flight particle properties on the adhesion of the particles to the substrate.

Particle Deposition efficiency

injector \I | P
| )

In-flight particle properties | Coating

Process =  Temperature properties \

parameters u Velocity
' = Size
Adjustable - Partially in situ measurable In situ not measurable

Figure 17: Detectability of different variables in TS according to the state of the art
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2.5 Conclusion

The coating properties in atmospheric plasma spraying (APS) is a function of numerous
influencing factors, which have intricate nonlinear relationships. The complexity of the plasma
spraying system arises the question of robust methods for quantifying the complex interactions
between the dozens of influencing factors. The methods of artificial intelligence (AI) can best

fulfill this challenging undertaking.

Deposition efficiency (DE) serves as a key performance indicator in plasma spraying, which is
also determined by dozens of intrinsic and extrinsic influencing factors. Finding a compromise
between process parameters, in-flight particle properties and DE can help to improve the
productivity, efficiency and consequential sustainability of the APS process. The main step
toward this aim, is to gather the already available data or to provide new data in an efficient
manner. Since multiple experiments to measure particle properties and DE in plasma spraying
are a lengthy way to generate data, a novel approach to address this issue must be found. The
amount of training data and their quality are the most important requirements for developing

precise Al models to improve the efficiency of the process.

The literature review on employing AI techniques to find a compromise between process

parameters, in-flight particle properties and DE can be summarized as follows:

* The majority of prior research has focused on developing AI models to predict coating or
particle properties.

* According to the literature, ANN is the most commonly used method of Al in plasma
spraying. There are small number of works in TS that have employed deterministic ML
models with structural risk minimization, like SVM.

* Only few studies have been done specifically to create expert systems for prediction and
increase of DE.

» Tt is lengthy and time-consuming to collect sufficient data on DE and the corresponding
particle properties for different process parameters.

* The benefit of using simulation data sets for particle properties to train ML models has
rarely been considered.

» Since the deposition behavior of the particles on the substrate depends on their individual
trajectory, the detection of the entire plasma jet is necessary for DE correlations.

* A new approach is needed for in situ determination of DE to tackle the problem of

insufficient experimental data.
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3 Aim and Solution Approach

To fill the literature gaps mentioned in the previous chapter, this dissertation is dedicated to the
development of a Digital Shadow in plasma spraying with the ultimate goal of improving the
process efficiency. For this purpose, modern Al methods, such as SVM and ANFIS, were used
to develop and combine domain-specific models using simulation or experimental data from
the entire process chain of APS. These data include process parameters, in-flight particle
properties and deposition efficiency on the substrate. Furthermore, to tackle the problem of
insufficient data for AI models two approaches were pursued: 1) A methodology for in situ
determination of spatially resolved deposition efficiencies on the substrate and 2) generating
simulation data by recycling the simulation models of the plasma jet developed at the Surface
Engineering Institute (IOT) at the RWTH Aachen University. The term "data recycling" refers
to the reuse of data from already developed models [Nia20]. It should be noted that the reused
simulations have already been validated by comparing the numerical results of the particle
properties with experimental measurements [BOS+17]. The combination of these two strategies

provided the aggregated and purpose-driven data sets required for Digital Shadows in plasma

spraying.

Figure 18 depicts the proposed solution approach for the development of a Digital Shadow in
plasma spraying with the ultimate goal of improving the process efficiency. The main steps

leading up to the proposed Digital Shadow in this work are briefly outlined below.

* Development of a methodology to estimate the particle mass flow rate in the entire plasma
jet using in-flight particle diagnostics

* In situ determination of spatially resolved deposition efficiencies on the substrate, namely
local deposition efficiency (LDE), based on the particle mass flow rate in the plasma jet

* Generating simulation data sets of in-flight particle properties with their corresponding
process parameters by recycling the already developed simulation models at the IOT

* Prediction of in-flight particle properties using SVM with simulation data sets

* Prediction of LDE using ANFIS with experimental data sets

* Development of an expert system by combination of SVM and ANFIS models to predict
LDE in plasma spraying

* Demonstrate the proof of concept to predict the global DE out of the developed expert
system trained with the LDE data sets
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Solution approach for the development of a Digital Shadow in plasma spraying

Figure 18:

with the ultimate goal of improving the process efficiency
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4 Particle Mass Flow Rate (PMFR) in Plasma Jet

In this chapter, a novel method is presented to estimate the particle mass flow rate (PMFR)
throughout the plasma jet, which has been already published in [BWK+20]. This approach
serves as a prerequisite for the calculation of local deposition efficiency in the next chapter. An
in situ measurement of the PMFR in the plasma jet is a technically challenging issue, which can
be significant to attain efficient utilization of the feedstock powder and to reduce overspray.
The main challenge is that capturing the average particle properties at the plasma jet center
would not be sufficient to measure the PMFR. Thereby, it is necessary to capture the entire
plasma jet to attain a good estimation of the PMFR based on the absolute values of the particle
properties existing in the jet. To this end, the entire free jet transverse section is divided into
several non-overlapping focal planes. Optical particle diagnostics have been carried out to
measure the size and velocity of the in-flight particles at these focal planes. A mathematical
model is proposed to derive the PMFR in the free jet based on the measured in-flight particle
sizes and velocities. The PMFR of the powder feeder is then utilized as a reference to validate
the diagnostic measurements. Subsequently, the determined PMFR distributions at the entire
free jet are compared to the generated experimental footprints. The cumulative deposition
profile of the impacted particles on a prepared substrate is known as spray footprint or spray
pattern. Accordingly, the PMFR distribution at the entire free jet is referred to simply as digital
footprint in this work.

4.1 Spray Parameters and Feedstock Materials
The single-cathode plasma generator F4AMB-XL (Oerlikon Metco, Wohlen, Switzerland) and

the three-cathode plasma generator TriplexPro™-210 (Oerlikon Metco) were used to do the
experiments. The plasma generators were mounted on a six-axis robot (KUKA AG, Augsburg,
Germany). The APS system was equipped with an external powder feeder with a transverse
particle injection system relative to the horizontal gun axis. A conventional injector with the
diameter of @ = 2 mm was used. Two commercial feedstock materials were used to conduct the
diagnostic measurements: Aluminum oxide (AMDRY 6062, Oerlikon Metco) and aluminum
bronze (Metco 51NS, Oerlikon Metco). The volume-based particle size distributions as well as
other properties of the feedstock powders used in this study are given in Table 2. The size
distribution of the particles was determined by the particle analysis system Morphologi G2
(Malvern Panalytical Ltd, Malvern, England).
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Table 2: Properties of the feedstock powders
Property ALO; Cul0Al
D [v, 0.05], pm 17.6 28.58
D[v,05],um  31.85 75.06
D [v,0.95],um  50.3 125.7
Density, g/cm®  3.98 7.57
Manufacture fused and crushed  gas atomized

Morphology angular / blocky spheroidal

The morphology of the powder particles was examined using a scanning electron microscope
(SEM). The obtained SEM result is shown in Figure 19. The SEM image indicates an angular
and blocky morphology of the particles.

Figure 19: Morphology analysis of the alumina feedstock particles using SEM

Figure 20 shows the result of the morphology analysis using SEM for the Cul0Al spray particles.
In comparison with fused and crushed powders, which have an irregular particle shape, gas
atomized powders have a spherical shape. The resulted SEM image for the gas atomized Cul0Al

confirms this matter.
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Figure 20: ~ Morphology analysis of the Cul0Al particles using SEM

The spray powders used for the diagnostic experiments were selected based on different particle
sizes and morphologies. The spray parameters with regard to the plasma torches and feedstock

powders are listed in Table 3.

Table 3: Spray parameters used for particle diagnostic experiments
Parameter Single-cathode gun Single-cathode gun Three-cathode gun
Feedstock material ALO:; CulOAl ALO;
Current [A] 600 500 500
Input power [kW] 35.6 25.5 48.4
Argon [SLPM] 42 50 60
Hydrogen [SLPM] 9 2 -
Carrier gas (Ar) [SLPM] 5.5 3.5 5.5
Nozzle diameter [mm] 6 6 9

4,2 Experimental Footprints

The cumulative deposition profile of the impacted particles on a prepared substrate is known
as spray footprint or spray pattern. Experimental footprints were produced to determine the

section of the free jet in which most particles are located. The point with maximum particle
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intensity was then considered as the reference point for the particle diagnostic experiments.
Furthermore, the determined PMFR distributions at the entire free jet are compared to the
profile of the experimental footprints. The PMFR distribution at the entire free jet will be

referred to simply as “digital footprint” for the remainder of this thesis.

To generate footprints, the plasma gun was held at a spray distance of d = 100 mm in front of
the substrate for 5 seconds. Figure 21 shows a) the principle of generating a footprint
schematically and b) an experimental footprint with the three-cathode plasma gun and alumina

spray powder.

a) OB Diectionof
le injection

Injection nozzle
~ Feedstock powder
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| — ubstrate
. _—7
! Footprint
z Yy
Figure 21: a) Schematic illustration of generating a footprint and b) an experimental

footprint with the three-cathode plasma gun and alumina spray powder

[BWH+20]

Flat samples made of S235]R structural steel with the dimension of 50 x 50 x 5 mm? were used
as substrates. Before producing the footprints, a grit blasting system was utilized to roughen the
substrates with a pressure of p = 0.4 MPa and corundum with a grit size of F16. To ascertain the
height profiles of the experimental footprints, a confocal laser-scanning microscope (VK-X 210
Keyence, Osaka, Japan) was used with a 10X optical magnification. Figure 22 illustrates a) the
3D height profile of the experimental footprint and b) the substrate under the laser-scanning

microscope.

Page 40



Particle Mass Flow Rate (PMFR) in Plasma Jet

[<1)
—

Height [pm]

Height [um] Height [um]

Figure 22: a) 3D height profile of the footprint and b) substrate under the laser-scanning
microscope [BWH+20]

4.3 Particle Diagnostics
The particle diagnostic system HiWatch CS (Oseir Ltd, Tampere, Finland) was used to conduct

the particle diagnostic measurements. The output data of this diagnostic tool are, among others,
the size, velocity and position of the particles. The device package consists of a pre-aligned
assembly of a camera and a pulsed diode laser head with a power of 50 W. The HiWatch system
measures the particle properties based on the stroboscobic image analysis, where the particles
on certain transverse section of the free jet are recorded using triple-exposure imaging. The

functional principle of the HiWatch system is schematically illustrated in Figure 23.

Particle

Signal of a / - '

@
V= % U particle under
Ax  triple-exposure Measurmg plane

Figure 23: Schematic configuration of the particle diagnostic system HiWatch [BWK+20]
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The measuring area with standard optics for HiWatch is 6.5 mm in the spray direction and
9 mm perpendicular to the spray direction, see Figure 24. The depth of field of the camera lens

in z direction is about 2 mm. The object space resolution is 6.8 um/pixel.

Spray direction

Figure 24: Sample measurement image of the HiWatch at a particular focal plane in the

free jet [BWK+20]

The HiWatch determines the particle sizes by the average reflection intensity of the multiple
images of a particle. In contrast to the emissivity, the reflectivity of the particles under the
applied laser illumination with a wavelength of A = 810 nm is almost independent of the particle
temperature. Therefore, both hot and cold particles can be captured by the HiWatch. The
particle velocities are calculated by the travel distance in the image and the laser pulse time
interval. Fast particles are detected with a relatively smaller pulse interval compared to the
settings for detecting slower particles. To detect particles in different velocity ranges, the laser
pulse interval was set in the range of 0.3 < tinwerva < 25 ps and the pulse duration in the range of
0.16 < tauration < 0.5 ps. The laser settings for the individual measurements were subject to the
measurement location in the free jet. Optimal laser settings were adjusted using the live view
option to capture as many particle triplets as possible while avoiding overlapping of these

triplets.
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4.4 PMFR of the Powder Feeder
The determined PMEFR in the free jet is validated using the PMFR of the powder feeder as a

reference. Figure 25 shows the powder feeder of the spraying system with a schematic drawing
of its main components. The spray powder is conveyed by the carrier gas, which is argon in this
case. The carrier gas is regulated by a mass flow controller. The stirrer, controlled by the stirrer
motor, maintains the powder movement. To discharge any potential static that may build up in
the feeder, the hopper is grounded. The PMER of the powder feeder is controlled volumetrically
by the speed of the rotating metering disk that receives the powder from the powder hopper.
The operator can control the metering disk speed by changing the setting of the metering disk
in terms of percentage. After metering the rotational speed of the disk by the entered percentage
value, the powder is transported with the carrier gas through a powder hose, which ends in a

particle injector. The powder particles are then injected into the plasma jet.

Powder feeder Schematic drawing of the main components

!
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ﬁ% Stirrer motor

Stirrer

Powder hose to <— Powder hopper

spray gun
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Powder
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Mass flow 5 Z

controller

Carrier gas inlet A

Powder feeder cabinet
ground
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.
Figure 25: Functional principle of the powder feeder according to [NN23b]

The PMER of the powder feeder at different metering disk settings was calculated by weighing
the amount of powder that was injected into a closed can over a predetermined period of time,
see Figure 26. The particle-gas mixture conveyed in the hose is injected into the can from one
side. The inserted filter on the other side allows only the gas to escape. The mass flow rate of the
feedstock material supplied to the spraying process can be determined by weighing the powder

injected into the can within a certain time. The measurements were conducted three times.
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Figure 26: Measuring principle of the PMFR of the powder feeder supplied to the process

The argon carrier gas for the ALLO; powder was set to 5.5 SLPM and for the Cul0Al powder to
3.5 SLPM. In each case, the same carrier gas flow was used as in the diagnostic experiments.
Figure 27 shows the average PMFR of the powder feeder for the two feedstock powders against
different metering disk settings. The results in Figure 27 indicate that the PMFR increases

almost linearly with the increase of the metering disk setting.
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Figure 27: Average PMFR of the powder feeder for the two feedstock powders against
different metering disk settings [BWK+20]
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4,5 Particle Size Normalization

The particle sizes determined by the HiWatch revealed a deviation compared to the findings of
the particle analyzer. One possible explanation is the background subtraction algorithm, which
slightly modifies the particle shapes in the recorded images. It should be mentioned that the
object space resolution of the HiWatch is not a limitation for the particle detectability. The
minimum measurable particle size by the HiWatch is 5 um. However, due to imaging system
non-idealities, the particles appear larger in the images and this leads to an overestimation of
the particle sizes, but the position and velocity measurements are not affected by this. The
HiWatch system uses the background subtraction algorithm to improve particle detection in
the free jet. However, this algorithm may alter the particle shapes in the captured images,
resulting in misperceived particle diameters. Additionally, the presence of larger particles may
indicate the merging of multiple smaller particles that are melted or semi-melted in the plasma
jet. Furthermore, smaller particles may be more challenging to detect by the diagnostic system

compared to larger ones.

Hence, to avoid overestimating the PMFR, the measured particle sizes in the entire plasma jet
for the both feedstock powders were normalized based on the results of the particle analyzer.
To do this, a linear regression was used to normalize the measured particle sizes based on the
D [v, 0.05] and D [v, 0.95] of the particles stated in Table 2. Figure 28 shows the volume-based
particle size distribution exemplarily for the Al,Os; powder using the particle size analyzer as
well as the HiWatch diagnostic system before and after normalization. The particle size
distribution after normalization shows a good agreement with the distribution measured by the
particle analysis system. With respect to this size normalization and the conservation of mass,
the particle density in room temperature can be assumed for the in-flight particles as well.

Thereby, the vaporization of the particle in the plasma jet has been neglected.
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Figure 28: Comparison of exemplarily determined particle sizes before and after

normalization by HiWatch with the measurement results of the particle

analysis system for AL,O; feedstock powder [BWK+20]

4.6 PMFR Measuring Principle in Free Jet

Experimental footprints were produced to determine the section of the free jet in which most
particles are located. The point with maximum particle intensity was then considered as the
reference point for the particle diagnostic experiments. Prior to generating the footprints, all
substrates were roughened using a grit blasting system. The height profiles of the applied
experimental footprints were measured using a confocal laser-scanning microscope. In a next

step, these profiles were compared with the digital footprints.

The PMFR of a focal plane from a HiWatch image was calculated based on the following

equation:

n 4 Dpi 3
pz(—5)"Vp,
i = Z 37V 2 Pt Eq. 14

; L
i=1

" Particle mass flow rate (PMFR)

" p Particle density
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= D, Particle diameter

"y Particle velocity

" n Number of particles in a HiWatch image

= L Length of a HiWatch image in spray direction

At each focal plane, 250 images were captured and the PMFR of a focal plane corresponds to
the average PMFR of all images captured at that focal plane. Figure 29 shows the measured area
of the free jet schematically. The free jet transverse section was divided into 15 focal planes in z

direction and 3 stages in x direction, see Figure 29.
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Figure 29: Schematic illustration of the measured area of the free jet by the particle

diagnostic device [BWK+20]

The particle diagnostic measurements and the experimental footprints were performed at a
spray distance of d = 100 mm. The center of the middle stage corresponds to the point with
maximum particle intensity, which was determined by the experimental footprints. At each
stage, 15 individual diagnostic measurements were carried out by moving the robot at an
increment of 2 mm in z direction, which equals the depth of field of the CCD camera. Therefore,
an area of 9 x 2 mm? in xz plane was covered by each individual measurement. Subsequently,
the PMFR values for each individual measurement were calculated based on Eq. 14. Finally, the
PMER of the entire measuring area was determined by summation of the obtained PMFR values
of the three stages. In this approach, no symmetric distribution of PMER in the free jet was

assumed. It must be pointed out that, as another approach, the PMFR of the focal plane with
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maximum particle intensity was also integrated rotationally symmetric over the entire free jet.
The results showed an overestimation in the PMFR relative to the PMFR of the powder feeder,

which makes the symmetric assumption impermissible.

4.7 Digital Footprint

As mentioned before, the spatial PMFR distribution in the entire free jet is referred to simply as
digital footprint. The digital footprints were created based on the determined PMFRs of the all
individual measurements described in Figure 29. For better visualization of the digital
footprints, the particle positions in each focal plane were considered. The HiWatch system
delivers the position of the center of the captured particle triplets in a measurement image, with
reference to the upper and left edge of the image. Figure 30 illustrates the covered free jet cross-
section by a single measurement together with particle positions schematically. In Figure 30,
the particles are sprayed in y direction and the HiWatch captures the particles in z direction.
The xz plane was divided into several sections along the x-axis. The PMER for each section was
projected onto the xz plane to create a digital footprint. Afterwards, these digital footprints were

compared to the previously produced experimental footprints to validate the results.
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Figure 30: Schematic illustration of an individual measurement in terms of considering

the particle positions for precise visualization of the digital footprint

[BWK+20]

4.8 PMFR Calibration

Since the particle diagnostic systems are not fully capable to detect all the existing particles in

the entire free jet, a calibration of the captured PMFR is necessary. The PMEFR directly at the
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outlet of the injection nozzle was measured to calibrate the determined PMEFR in the free jet,
see Figure 31. This allows to capture all injected particles at one focal plane. In this approach,
the PMEFR at the injection nozzle outlet was calculated and compared with the corresponding

PMER of the powder feeder for different metering disk settings.

Injection nozzle outlet

Figure 31: Schematic illustration of capturing the particles directly at the outlet of the
injection nozzle [BWK+20]

The PMEFR of the ALLOs feedstock material at the injector outlet and the corresponding PMFR
of the powder feeder are given in Table 4 for different metering disk settings. The PMFR values
at the injector outlet were calculated according to Eq. 14. The corresponding PMFR values of
the powder feeder were measured according to the measuring principle described in section 4.4.
The proportion of the detected PMEFR at the injector outlet, denoted by V¥, is calculated based
on dividing the detected PMFR at the injector outlet by the corresponding PMFR of the powder
feeder. In other words, this shows the proportion of the particles recorded by the HiWatch at

the injector outlet. The index “i” in ¥; refers to the injector.

The results show that up to a metering disk setting of 5 %, almost a constant proportion of the
PMFR was obtained. With higher metering disk settings, due to a dense crowd of particles at
the focal plane, the measured values are not reliable. The typical setting of the metering disk,

depending on the feedstock material, is between 20 and 30 % in APS. However, in order to avoid
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overlapping of the particles and thus incorrect measurements by the HiWatch, the setting of

the metering disk was not increased to the maximum typical range.

Table 4: Results of the determined PMFR directly at the injector outlet [BWK+20]
Number of PMER [g/min] Proportion of the
Metering
particles in 250 . detected PMFR

disk [%] Injector Powder
1mages outlet feeder (%)
0.5 345 0.28 0.53 0.52
1 762 0.50 1.08 0.46
2 1,502 0.95 2.12 0.45
5 3,575 2.46 5.5 0.44
10 3,088 2.42 10.75 0.23
20 2,229 1.20 21.08 0.06

The HiWatch images at the injector outlet are shown in Figure 32. ¥; represents the proportion
of the detected PMFR relative to the PMEFR of the powder feeder and MD is the metering disk
setting in percentage. It is evident that W; has been greatly decreased in the case of 10 % and
20 % of MD, since the particle triplets overlap with each other and therefore, the HiWatch
cannot reliably evaluate the measured images of the overlapped particles. On the contrary, such
a high particle concentration was not observed at a focal plane in the free jet. In addition to the
overlapping of the particles, the proportion of the detected particles also depends on the particle
diameter, since the larger particles can usually be better detected by the diagnostic equipment.
It should be mentioned that the particle size is already considered in the calculation of ¥; during

the calculation of PMFR by Eq. 14.
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Figure 32: HiWatch images captured directly at the outlet of the injection nozzle

The proportion of the determined PMFR at the injector outlet (¥;) is plotted against the
metering disk setting in Figure 33. Up to a metering disk setting of 5 %, almost 47 % of the
PMFR of the powder feeder could be obtained. Thus, a factor of roughly 2.1 should be
considered to calibrate the PMFR in the free jet. This calibration factor determined at the nozzle
outlet was validated afterwards by measuring the PMFR in the free jet in case of different spray
powders and plasma generators. These results revealed no dependencies of the calibration
factor on the particle size and material. However, this calibration factor may vary for other
diagnostic systems. It should be noted that due to the overlapping of the particles directly at the
injector outlet, the calibration factor could be measured for a metering disc setting of up to 5 %.
In the following results of the PMFR determination in the free jet, it is confirmed that this

calibration factor also fits well for higher metering disc settings.
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Figure 33: Proportional PMFR detected at the injection nozzle outlet against different
metering disk settings [BWK+20]

4,9 Single-Cathode Plasma Torch

The described methodology was implemented in the MATLAB program version R2019b (The
MathWorks, Inc., Massachusetts, USA) to calculate the PMFR of each individual measurement
and visualize digital footprints based on the PMFR distributions in the free jet. In case of the
single-cathode plasma generator, particle diagnostic measurements were carried out for the
AL O; and Cul0Al feedstock powders with different metering disk settings of the powder feeder.
The determined PMER in the free jet and the corresponding PMFR of the powder feeder are
given in Table 5. The PMFR in the free jet given in this table was calculated by summation of
the PMFR values of all individual measurements based on Eq. 14 without considering the
calibration factor at the injector outlet. The corresponding PMFR of the powder feeder was
measured according to the description in section 4.4 by weighing the amount of powder that
was injected into a closed can within a certain time. The proportion of the recorded PMFR in
the free jet, denoted by ¥y, is also stated in Table 5. The index “f” in ¥¢ refers to the free jet. ¥s
is calculated based on dividing the detected PMER in the free jet by the corresponding PMFR
of the powder feeder. For this calculation, it is assumed that all injected powder particles enter

the free jet.

Page 52



Particle Mass Flow Rate (PMFR) in Plasma Jet

Table 5: Results of the PMFR determination for different feedstock powders and
metering disk settings using single-cathode torch [BWK+20]

Feedstock Metering disk PMFRin free = PMFR of the powder = Proportional PMFR

powder setting [%] jet [g/min] feeder [g/min] in free jet (¥r)
ALO; 10 52 10.75 0.484
Cul0Al 20 25.2 50.66 0.497

The proportion of the detected PMFR in the free jet (¥r) given in Table 5 agrees well with the
determined proportional PMFR in Figure 33 directly at the injector outlet (¥; = 0.47). This
comparison validates the application of the specified calibration factor at the injector outlet also
for the PMFR determination in the free jet. Furthermore, with regard to the metering disc
settings of 10 % and 20 % used in Table 5, the results confirm that the calibration factor
determined for a metering disc setting of up to 5 % at the injector outlet is also well suited for
higher metering disc settings for the measurements in the free jet. Considering the average
difference between Wrand Vi, the PMFR in the free jet can be estimated with a deviation of less
than 5 % compared to the PMER of the powder feeder. A slight increase in Wrhas been observed
for the Cul0Al feedstock powder. This can be explained by the fact that the particle diagnostic
device can calculate the size of a spherical particle more precisely, since the calculation error for
determining the circle equivalent diameter is smaller for a regularly shaped particle. In addition,
the HiWatch can determine large particle sizes from a diameter of d > 50 um more accurately.
Furthermore, the Cul0Al powder particles possess greater momentum due to their larger
particle sizes which leads to less overspray outside the measuring area in comparison with the

ALOs particles.

Figure 34 shows a) the experimentally generated footprint under the laser-scanning microscope
and b) the digital footprint based on the PMFR distribution in the free jet for the AL,O; feedstock
powder. The profile of the digital footprint closely matches with the experimental footprint.
Nonetheless, the higher amounts of PMFR on the boundaries of the digital footprint represent
the in-flight particles which have not been deposited on the substrate.
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Figure 34: a) Experimental footprint profile under laser-scanning microscope and

b) digital footprint using single-cathode gun and ALLO; feedstock powder
[BWK+20]

The presence of the unmolten or partially molten in-flight particles is also evident on the
periphery of the 3D digital footprint, illustrated in Figure 35. The dense center of the footprint
is attributed to the particles with the highest melting ratio. Moving radially out from the center,
where fewer particles are dispersed, the plasma temperature decreases relatively and therefore,

the particles deposit barely on the substrate.

From the comparison of the experimental and digital footprints in Figure 34, it can be
concluded that the most important factor, which affects the particle deposition behavior, is its
trajectory. This depends if the particle trajectory lies primarily within the free jet core or outside
of it [BBZ+11]. Moreover, the results show that the profile of the PMFR distribution in the

plasma jet is not rotationally symmetric about the center.
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Figure 35: 3D profile of the digital footprint using single-cathode gun and AL,Os feedstock

powder [BWK+20]

The profiles of the experimental and digital footprints for the experiments with the Cul0Al

feedstock powder and use of the single-cathode gun are illustrated in Figure 36. An irregular

bean shaped profile can be observed in both footprints.
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Figure 36: a) Experimental footprint profile under laser-scanning microscope and

b) digital footprint using single-cathode gun and Cul0Al feedstock powder

[BWK+20]
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Figure 37 illustrates the digital footprint in 3D. The two peaks in PMFR values can be attributed
to the arc motion fluctuations and restrike inside the torch. Considering the design of the single-
cathode plasma gun, the attachment of the electric arc root over the inner surface of the anode
can change mainly due to the strong plasma gas flow. This is advantageous to the anode lifetime,
since the large heat load can be distributed over the gun nozzle [DGH+01]. However, changing
the position of the anode attachment leads to variations in arc length and therefore, results in
arc voltage and power fluctuations [LFS09]. Subsequently, these fluctuations inside the single-
cathode torch influence the in-flight particle behavior in the plasma jet. It is suggested that the
phenomenon of asymmetric footprint is more evident in case of Cul0Al than in ALLO; due to

the applied higher metering disc setting and also larger particle size distribution.

Direction of
particle injection

Figure 37: 3D profile of the digital footprint using single-cathode gun and Cul0Al
feedstock powder [BWK+20]

The 3D profile of the digital footprint in Figure 37 signifies the capability of the developed
method to obtain an asymmetrical spray pattern with regard to the plasma fluctuations.
Furthermore, fine particles at the outer part of the free jet tend to oxidize more due to the
entrained air from the surrounding atmosphere [Dav04]. This leads to the presence of

undeposited particles at the footprint periphery, which are also visible in this figure.
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4,10 Three-Cathode Plasma Torch
For the three-cathode plasma gun, diagnostic experiments were conducted using the feedstock

material ALO; for a metering disk setting of 10 %. In this case, the PMFR in the free jet was
determined to be 5.6 g/min that leads to a proportional PMFR of ¥¢ = 0.521. The results show

a minor increase in the proportional PMFR comparing to the single-cathode torch.

Experimental and digital footprints resulting from the three-cathode plasma gun are shown in
Figure 38. A nearly symmetric and round-shaped spray pattern is visible in both cases. This can
be explained through different construction concepts of the plasma guns. The three-cathode
plasma gun utilizes a triple axially symmetrical arc system, which results in decreasing of the
local heat load to the anode ring [VMT+15]. Moreover, it features a relative stable plasma jet
due to less fluctuation of the electric arc length inside the torch [BBZ+11]. This leads to a
homogenous heat treatment of the powder particles in the free jet and consequently a more

uniform deposition pattern.

450 Direction of particle injection b Direction of particle injectio 0.006
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Figure 38: a) Experimental footprint profile under laser-scanning microscope and

b) digital footprint using three-cathode gun and Al,Os feedstock powder
[BWK+20]

The 3D illustration of the digital footprint is depicted in Figure 39. The PMER values at the

outer part of the footprint, in contrast to the one with the single-cathode torch, are almost

homogenously near zero. This observation demonstrates the advantage of the multi-arc plasma
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chamber geometry with regard to the stability of the plasma jet under the applied process

parameters.
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Figure 39: 3D profile of the digital footprint using three-cathode gun and ALOs feedstock
powder [BWK+20]

The cascaded design of the three-cathode plasma gun results in a ring-shaped high viscous flow
surrounding the plasma jet that helps the particle trajectories to stay in the high temperature
core of the plasma jet, see Figure 40 [BOS+17]. The process parameters, such as electric current
and plasma gas flow rate, have strong influence on the position and intensity of the surrounding
viscous flow [BO16]. Hence, the multi-arc spray system allows a confining path for particle
injection toward the center of the plume, which results in the most efficient particle heating in

the free jet [SRL+08]. Consequently, the footprint illustrated in Figure 39 shows less overspray

particles.
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Figure 40: Distribution of dynamic viscosity of process gas over injection plane; ring-

shaped high viscous flow surrounding the plasma jet [BOS+17]

4,11 Conclusion

A novel methodology was presented to estimate the particle mass flow rate (PMFR) in the
plasma jet based on capturing the in-flight particle properties at different focal planes. The
approach is capable of estimating the PMFR in the free jet with a deviation of less than 5 %
compared to the PMFR of the powder feeder. Furthermore, the key benefit of the developed
approach is that no rotationally symmetric particle flow has been assumed. This makes the
determined PMFR distribution more precise. The results could be replicated with different
feedstock powders and plasma guns, demonstrating the capability of the developed method.
The spatial PMFR distributions throughout the free jet, referred to as digital footprint, showed
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a good agreement with the height profile of the corresponding experimental footprints.
Moreover, the results indicated a more accurate determination of the PMFR in the case of
utilizing spherical feedstock powder with relatively large particles as well as employing a three-
cathode plasma gun. By using the findings of the PMFR estimation in the free jet, the local

deposition efficiency on the substrate can be determined according to the next chapter.
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5 Local Deposition Efficiency (LDE)

In this chapter, a novel methodology is introduced for in situ determination of spatially resolved
deposition efficiencies on the substrate, namely Local Deposition Efficiency (LDE). The results
of this chapter have been already published in [BWH+20]. The motivation for using LDE is to
generate a sufficient amount of data for learning algorithms, while generating that much data
for ex situ measurements of global DE and their corresponding particle properties would be
impractical. In addition, LDE data sets allow the entire plasma jet to be considered, instead of
its centerline, as it is the case for classical diagnostic measurements. This consideration of widely
distributed particle trajectories in the plasma jet can improve the accuracy of deriving

correlations between the particle properties and DE.

The spatial distribution of PMFR from the previous section is used in combination with the
height profile of the respective experimental footprint to calculate the LDE. Subsequently, the
interdependencies between the measured in-flight particle properties and the LDE are studied
by SVM method. The generated data sets of LDE together with the corresponding particle
properties are used later in Chapter 7 to develop an ANFIS model for prediction of deposition

efficiency in plasma spraying.

5.1 Spray Parameters and Feedstock Material

The same experimental setup for the three-cathode plasma generator TriplexPro™-210,
described in Chapter 4, is also used here. The main spray parameters are listed in Table 6. The
electrical current of the plasma generator was set to 500 A. Argon with the flow rate of 60 SLPM
was used as the primary plasma gas. The distance between the particle injector tip and the
plasma jet centerline axis was d = 12 mm. The commercially available ALLO; feedstock material
(AMDRY 6062, Oerlikon Metco) was used. The properties of this alumina feedstock powder

were given in Table 2 in section 4.1.
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Table 6: Spray parameters for the three-cathode plasma gun
Parameter Value
Current [A] 500
Input power [kW] 48.4
Voltage [V] 99.3
Argon [SLPM] 60
Carrier gas [SLPM] 5.5
Nozzle diameter [mm] 9
Powder feed rate [g/min] 11

5.2 Particle Diagnostics

The setup of the particle diagnostics for measuring particle size and velocity is similar to that of
the PMFR estimation in Chapter 4. The difference lies in the evaluation of the measurement
data, in a way that the captured particles in a HiWatch image are segmented into five parts
regarding their positions to visualize the spatial distribution of the particle properties precisely.
Furthermore, in this experimental setup, the in-flight particle temperatures are also measured
on a specific transverse section of the free jet using the particle diagnostic system DPV-2000.
The focus here is on the analysis of the distribution of the in-flight particle properties rather
than on the PMFR measurements in the previous chapter. Consequently, the correlations
between the particle properties and LDE are investigated. In addition, in the data evaluation of
this chapter, the number of particles detected by the HiWatch and DPV diagnostic systems is

also analyzed and compared. The aforementioned points are explored in more detail below.

The particle diagnostic system HiWatch CS was employed to determine the size and velocity of
the in-flight particles. This device utilizes a pulsed diode laser to capture the particles on a
particular transverse section of the free jet based on triple-exposure imaging of each particle.
The measuring area for a single measurement is 6.5 x 9 mm?. The depth of field of the camera
lens is about 2 mm in z-direction, see Figure 41-a. The pulsed laser illumination allows each
particle to be captured three times in an image. Along with measuring particle sizes and
velocities, the positions of the captured triplets are considered to accurately visualize the spatial
distribution of the particle properties. To achieve this, the xz-plane in Figure 41-a was divided

into five sections along the x-axis. The particles captured in each measurement were then
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divided into the designated sections based on their x-position. Multiple measurements were
carried out to cover the entire domain of the free jet. Figure 41-b displays a schematic
illustration of the area of the free jet measured by the HiWatch. In this illustration, the particles
are sprayed in y-direction. The transverse section of the free jet was divided into 15 focal planes
in z-direction and 3 stages in x-direction. At each stage, 15 individual diagnostic measurements
were carried out by moving the robot incrementally by Az = 2 mm in z-direction. The interval

between two consecutive measurements is equivalent to the depth of field of the CCD camera.

3) Spray direction b)
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€ £
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direction z 2mm
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6.5 mm
Figure 41: a) An exemplary measurement image of HiWatch at a focal plane in the plasma

jet. The captured particles are schematically segmented into five parts along the
x-axis to visualize the spatial distribution of the particle properties precisely.
b) schematic illustration of the measured area of the plasma jet by diagnostic

experiments [BWH+20]

As previously stated, the particles captured at each stage were divided into 5 sections based on
their x-position for more accurate visualization of the spatial distributions. At each focal plane,
250 images were taken. The particle size and velocity of a focal plane correspond to the
respective average values of the images captured at that focal plane. The spatial distributions for

particle size and velocity were then obtained based on all individual measurements in the entire
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measuring area of 27 x 30 mm?, resulting in 225 measurement points on a grid of 15 x 15 in the
plasma jet. The particle diagnostic measurements were performed at the same stand-off
distance of y =100 mm as the experimental footprints. The center of the middle stage
corresponds to the point with highest particle intensity, which was determined beforehand by

the experimental footprints.

The optical particle diagnostic system DPV-2000 (Tecnar Automation Ltd., St. Bruno, QC,
Canada) was utilized to measure the in-flight particle temperatures. The DPV-2000 system uses
the principle of two-wavelength pyrometry to measure the surface temperature of particles in
the spray plume [MVS07]. The diagnostic experiments to determine the spatial distribution of
particle temperatures were performed on a 30 x 30 mm? measurement grid normal to the gun
axis at a stand-off distance of 100 mm. A step size of Ax = Az = 2 mm was selected between each
successive measurement. The total measurement area contained 225 grid points. The
measurement time for each grid point was 5 seconds. Before beginning the experiments, the
central point of the measurement grid was adjusted to the maximum particle flux using the

DPV-2000 autocenter function.

5.3 Spatial Distribution of Particle Properties
The programming software MATLAB was used to implement the described method and

visualize the spatial distribution of the particle properties in the plasma jet. Figure 42 shows the
normalized particle number flux detected by the diagnostic systems a) HiWatch and b) DPV
for the entire free jet measurements. Since the two diagnostic systems have different
measurement volumes, normalization of the particle number flux is necessary to ensure
comparability. It is evident that HiWatch has captured more particles than DPV, since it has a
relatively larger measurement volume. However, it should be considered that DPV is unable to
capture the cold particles without a laser for particle illumination. Thus, the HiWatch particle
diagnostic system was chosen to measure the size and velocity of the particles because of its

ability to detect both cold and hot particles with a relatively larger measurement volume.
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Figure 42: Normalized particle number flux detected by a) HiWatch and b) DPV in the
entire free jet at a stand-off distance of y = 100 mm [BWH+20]

Figure 43 illustrates the spatial distribution of the in-flight particle velocities at a stand-off
distance of y = 100 mm. The spatial distribution of the in-flight particle velocities shows that
this distribution is not symmetrical about the gun axis, considering the measurement points at
the upstream edge of the plasma jet. With increasing the radial distance from the side of particle
injection to the bottom of the plasma jet, the particle velocities first increased to a maximum on

the center and then decreased.

360 Direction of particle injection

Average particle velocity [m/s]

Figure 43: Spatial distribution of the in-flight particle velocities at a stand-off distance of
y = 100 mm using HiWatch [BWH+20]
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Due to the geometry of the plasma generator, there is a swirling plasma gas flow at the torch
exit [SBD+06]. This swirling flow has consequently an influence on the in-flight particle
trajectories and leads to asymmetrical particle velocity distribution [WFCO00]. Moreover, this
spatial distribution shows that in the area of the injection head, the particles with relatively

higher velocities were measured.

Figure 44 shows the spatial distribution of the in-flight particle sizes. The particle size
distribution indicates that the large particles were concentrated at the center of the free jet. This
can be explained with particle momentum. Particles with larger diameters possess relatively

greater momentum, which leads to a deeper penetration into the plasma jet [QFL08].

Direction of particle injection

v

Average particle size [um]

Figure 44: Spatial distribution of the in-flight particle sizes at a stand-oft distance of
y = 100 mm using HiWatch [BWH+20]

The median size of the captured particles is calculated to be Dso = 39.5 pum. This shows that the
HiWatch has overestimated the particle sizes, when compared to the particle analyzer results
given in Table 2 (Dsp=31.85um). One possible explanation for this, is the background
subtraction algorithm, which the HiWatch system uses to increase the particle detectability.
This background subtraction algorithm slightly changes the particle shapes in the recorded
images and could therefore lead to misperceived particle diameters. Another explanation for

this size deviation could be the angular and blocky morphology of the particles. The unregularly
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shaped particles rotate in the view field of the HiWatch, while these are immobile under
microscope. This leads to some calculation error in determining the circle equivalent diameter
of the particles. Moreover, the larger particles could be a sign of consolidated particles in the
plasma jet, consisting of multiple smaller particles that pack together. In addition, smaller

particles can be captured harder than large ones by the diagnostic system.

Figure 45 displays the spatial distribution of the in-flight particle temperatures on a transverse
section of the plasma jet at a stand-off distance of y = 100 mm. The results show that the
particles with highest temperature were positioned in the center of the plasma jet, where the
largest and fastest particles were also located. Figure 45 also reveals a homogenous heat
treatment of the powder particles in the plasma jet by the three-cathode plasma generator,

resulting in a uniform deposition pattern.
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Figure 45: Spatial distribution of the in-flight particle temperatures at a stand-off distance
of y = 100 mm using DPV [BWH+20]

The spatial distributions of the number of particles with velocities above v =200 m/s, sizes
greater than D = 50 um and temperatures above T = 2,000 °C are shown in Figure 46-a, b and c
respectively. These thresholds in particle properties are determined based on the LDE results in
the next section. The results reveal that mostly the center of the free jet has a dense crowd of

particles with velocities, sizes and temperatures above the defined thresholds.
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Figure 46: Spatial distribution of the number of particles in case of a) velocities above
v, = 200 m/s, b) sizes above D,, = 50 um and c) temperatures above

T, = 2,000 °C according to [BWH+20]

5.4 Calculation of LDE

Experimental footprints were generated as a reference to investigate the LDE of the particles.
By comparing the height of the experimental footprint with the above measured particle
properties, only limited conclusions in terms of the particle DE can be drawn. Therefore, a
methodology is introduced to investigate the correlations between the in-flight particle
properties and their LDE on the substrate. For this purpose, the spatial distribution of the in-
flight PMFR from Chapter 4 has been considered. Figure 47 shows the spatial distribution of

the PMFR resulting from the three-cathode plasma gun and alumina spray powder.

6.3 %1073 Direction of particle injectio

PMFR [g/min]

o

Figure 47: Spatial distribution of the in-flight PMFR at a stand-off distance of y = 100 mm
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For the next step to calculate the LDE, the values of the height profile of the respective
experimental footprint measured by the laser-scanning microscope were used to calculate the
mass of the feedstock material deposited on the substrate locally. As mentioned earlier, the
entire measuring area of the free jet transverse section was 27 x 30 mm? containing 225
measurement points on a grid of 15 x 15. The same segmentation was done on the substrate by
dividing the xz-plane of the footprint height profile in 225 elements, see Figure 48-a. The mass

of the deposited feedstock material on each element (m,) is estimated based on Eq. 15.

me = He Ae p Eq. 15
" m, Deposited mass on each element
= H, Average height of the footprint on each element
" A, Area of each element
" p Density of the feedstock material

The common porosity range of plasma sprayed ceramic coatings vary between 5-10 %
[VDS+07]. As it is impractical to measure the porosity of the footprint for each measurement
element, zero porosity is assumed for the whole domain. Consequently, it should be clarified
that the calculated LDE might be overestimated in some places due to zero porosity assumption.

a) b)

480 Direction of particle injection Direction of particle injection
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Figure 48:  a) Segmented height profile of the experimental footprint in xz-plane under
laser-scanning microscope and b) spatial distribution of LDE in the entire jet

[BWH+20]
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The LDE:s of the particles for each element are calculated in percentage terms based on Eq. 16.

me
LDE = — 100 Eq. 16
mt
"= m, Deposited mass on each element
" Particle mass flow rate (PMFR)
=t Time for generation of experimental footprint

It must be pointed out that the calculated LDE is an estimation of the absolute DE based on the
norm [DIN17]. Figure 48-b shows the distribution of the calculated LDE in the entire free jet.
It is evident that the particles at the free jet center, on the contrary to the outer part of the free

jet, revealed a higher LDE.

5.5 Correlations between Particle Properties & LDE

In this section, the correlations between the particle properties in the plasma jet and the
calculated LDE on the substrate are investigated. To do this, first different pairs of particle
properties are visualized with their corresponding LDE values. Afterwards, a nonlinear
regression model using SVM has been developed to investigate the relationships between the

particle properties and LDE.

The plot of the particle velocities, particle sizes and LDE is presented in Figure 49. The results
demonstrate that the large particles with relatively high particle velocities showed a higher LDE.
With the assumption of LDE >25 % for a relatively good deposition efficiency, it can be
concluded that the particles with a minimum velocity of roughly v, = 200 m/s in combination
with a minimum size of roughly D,, = 50 um deposited well on the substrate. The ratio of the
radiated heat to the latent heat, which is proportional to the surface to volume ratio, suggests
overheating of larger particles compared to the smaller ones [BOK+20]. This fact explains the
result that the particles with larger diameters showed a higher LDE, since they are melted better

in the plasma jet.
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Figure 49: Plot of the particle velocities, particle sizes and LDE [BWH+20]

Figure 50 illustrates the correlations among the particle velocities, particle temperatures and

LDE. It is evident that some particles, despite having relatively small velocities, have deposited

on the substrate. The plasma jet allowed these particles to reach the minimum temperature for

deposition. This concludes that particle temperature is an important factor for evaluating the

LDE of ceramic particles. Following this, the particles needed roughly a temperature of

T, = 2,000 °C and a velocity of v, = 200 m/s to deposit well on the substrate.
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Figure 50: Plot of the particle velocities, particle temperatures and LDE [BWH+20]
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The particle sizes and particle temperatures together with their corresponding LDE are plotted
in Figure 51. The particles with relatively larger diameters, exhibited a better LDE than the
smaller particles surrounding the free jet. This observation can be explained through the fact
that the cascaded design of the three-cathode plasma gun allows larger particles to stay in the
high temperature core of the plasma jet, which results the best LDE in the free jet [SRL+08,
BO16]. The results show that the particles with a minimum diameter of almost D,, = 50 ym in
combination of a minimum temperature of almost T, = 2,000 °C had a good chance to deposit
on the substrate. This temperature threshold is near the melting temperature of the alumina,

which amounts to Ty, = 2,072 °C.
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Figure 51: Plot of the particle sizes, particle temperatures and LDE [BWH+20]

In order to reveal the interdependencies between the particle properties and the calculated LDE
quantitatively, a nonlinear regression model is developed. The particle sizes, velocities and
temperatures are considered as input variables and LDE is considered as a response variable. In
this model, SVM method with a Gaussian kernel function is employed in the MATLAB
environment to predict the correlations between the input and response variables. The accuracy
metrics of the model, namely root mean square error (RMSE) and coefficient of determination,
are calculated to be RMSE = 2.85 [%] and R-Squared = 0.97 respectively. Figure 52 shows the
3D scatter plot of the variables resulted from the regression model. These results confirm

nonlinear interdependencies among the particle properties and the LDE values.
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Figure 52:  Nonlinear regression of the particle properties and LDE using SVM [BWH+20]

5.6 Conclusion

In this chapter a methodology was presented to determine the spatially resolved deposition
efficiencies on the substrate, namely local deposition efficiency. Particle diagnostic experiments
were carried out using a three-cathode plasma generator and alumina as feedstock powder. This
type of plasma generator has been considered for LDE determination, since it offers higher
process stability that minimizes process-related fluctuations during the particle diagnostic
measurements. The spatial distribution of the in-flight PMFR, presented in Chapter 4, and the
local deposited mass on the substrate were employed to calculate LDE. The spatial distribution
of the particle properties showed that the larger particles with higher velocities and
temperatures penetrated deeply in the center of the plasma jet. Subsequently, these particles

revealed relatively higher LDE compared with the particles at the periphery of the free jet.

The developed methodology for determination of LDE improves the understanding of particle
adhesion conditions on the substrate. Moreover, the results of this technique have provided
relatively large data sets of particle properties and LDE, covering the entire free jet transverse
section. These data sets are used later in Chapter 7 as training data for the ANFIS model to find
the correlations between particle properties and DE. An approach to produce data sets of
particle properties along with their corresponding process parameters by using simulations of

the plasma jet is discussed in the next chapter.
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6 Prediction of Particle Properties using Support Vector Machine

The coating process in plasma spraying is associated with many complex physical phenomena.
Due to the large number of parameters involved in this coating technology as well as the
nonlinear relationships between these parameters, precise control and optimization of the
process is a lengthy and expensive undertaking. Not all of the influencing parameters can be
controlled, because on the one hand the effect of many variables on the coating process is not
quantitatively measurable, and on the other hand the technical possibilities for an adequate
process monitoring are still lacking. Therefore, employing computer-aided methods, such as
ML approaches, is essential to quantify these complex relationships and subsequently enhance

the process reproducibility.

In this chapter, SVM models are presented to predict in-flight particle properties from process
parameters in plasma spraying. To train the SVM models, different data sets from a CFD model
of the plasma jet have been employed. The motivation of using simulation results is the
opportunity to cover a broad range of process parameters, while providing that much
experimental data is barely possible. The increasingly sophisticated CFD models in plasma
spraying have the drawback of requiring considerable calculation time. Developing ML
algorithms with simulation data sets is at the same time a promising possibility for substitution

of the computationally expensive CFD simulations.

A precise prediction of the properties of each individual particle in the stochastic process of
plasma spraying cannot be anticipated using the ML methods at hand. This is due to the
randomness of the particle behavior caused by the turbulence of the plasma flow and the
collisions of the particles with each other and with the inner wall of the narrow particle injector.
Therefore, the final particle properties are highly sensitive to their initial position. However, the
accurate prediction of average particle properties serves as a key performance indicator in
plasma spraying and can significantly help, for example, in investigating the interrelationships
between process parameters and DE. Hence, the objective of the SVM models is to accurately

predict the average particle behavior depending on different sets of process parameters.

To develop the SVM models, several data sets comprising various process parameters as well as
in-flight particle velocities, temperatures and positions were extracted from a CFD model of the

plasma jet. The data preparation was carried out using two different Design of Experiments
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(DoE) methods, namely Central Composite Design (CCD) and Latin Hypercube Sampling
(LHS), to cover a set of representative process parameters for training the ML models.
Afterwards, the prepared data were fed into SVM models to predict the particle properties. The
results presented in this chapter have been already published in [BWH+21].

6.1 Numerical Modeling

The simulation data sets of this work are obtained from a former numerical model, performed
at the IOT at RWTH Aachen. To resolve different physical phenomena and reduce the model
complexity of the entire system, the plasma spraying process is divided into two sub-processes
that are modeled separately: the plasma generator model and the plasma jet model. In the
plasma generator model, the flow characteristics at the plasma generator outlet including the
temperature and velocity profiles of the plasma gas as well as the profiles of turbulent kinetic
energy and turbulent eddy dissipation are determined. By using these determined profiles as a
boundary condition at the inlet of the plasma jet model, the two sub-models are coupled. The
computational domain and the boundary conditions of the plasma generator model are
presented in Figure 53. The geometry of the torch nozzle has a threefold axial symmetry. Hence,

one-third of the whole geometry was used as the computational domain.

A two-equation Shear Stress Transport (SST) turbulence model was used to simulate the
turbulence inside the plasma generator as well as in the plasma jet. For an accurate description
of the plasma-particle interaction in plasma spraying, the influences of the plasma on the
particles and vice versa were considered in the plasma jet model in a two-way coupled manner
[BO17]. Furthermore, a validation of the plasma generator and the plasma jet models was
conducted by comparing numerical results to experimental data [BOS+16, BOS+17]. A detailed

description of the numerical modeling used for data generation can be found in [Ote16, BO16].
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Figure 53: Computational domain and boundary conditions of the plasma generator model

[BOS+17]

Figure 54 shows the simulated particle trajectories and their temperatures inside the plasma jet
exemplary for one simulation. For each simulation, a virtual clipping plane was defined to
export the particle properties at specific stand-off distances. The particle properties include the

in-flight particle coordinates on the clipping plane, the particle velocities and temperatures. The
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simulation models were created in ANSYS CFX version 20.2 (ANSYS, Inc., Canonsburg, USA).
For each simulation, the calculated number of particle trajectories was set to 2,000. Alumina
was used as the feedstock material for the simulations. Further details regarding the procedure

of preparing the simulation data are described in the next section.
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Figure 54: Exemplary simulated particle trajectories and their temperatures in plasma jet
[BWH+21]

6.2 Data Preparation

Simulations often involve larger number of variables compared to physical experiments. It is
necessary to find a set of input parameters, namely the design matrix, so that potentially the
best-fitting predictive model can be constructed on the resulting data sets formed by the design
matrix [FLS05]. Furthermore, this allows understanding the cause-and-effect relationships in
the system by changing the designed input variables and observing the resulting changes in the
system output [Mon13]. Therefore, two different DoE methods, CCD and LHS, were employed
to cover a set of representative input process parameters for the simulations. The parameter

setup for the CCD and LHS methods are given in Table 7.
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Table 7: Parameter setup for the DoE methods
Parameter [unit] Interval
Primary gas flow [SLPM] 40 - 60
Electric current [A] 400 - 540
Carrier gas flow [SLPM] 35-7
Powder feed rate [g/min] 10 - 30

Particle size distribution [pm] -35 +15; -55 +35; -75 +55
Stand-off distance [mm] 100 - 180

Totally six different process parameters were considered for the DoE approach: primary gas
flow (Argon), electric current, carrier gas flow, powder feed rate, particle size distribution at the
injection point and stand-off distance. The particle sizes were divided into three different
fractions to cover the broad spectrum of the possible particle size distributions in plasma
spraying. As part of an automated data preparation pipeline, the DoE was built in the MATLAB
environment and was linked with the CFX Command Language (CCL) to implement the DoE
parameters in the simulation models. This structure was then connected to the batch job
scheduler using shell scripts on the RWTH compute cluster. Therefore, several sets of process
parameters with corresponding particle properties were acquired from the CFD simulations
and were prepared as training data for the SVM models automatically. Overall, 45 simulations
were carried out for the CCD data sets and another 45 simulations for the LHS data sets. In the
following, both DoE methods and the structure of the data for the simulations are briefly
described.

6.2.1 Central Composite Design (CCD)

CCD is based on a two-level full or fractional factorial design with 2k additional points between
the axes, where k is the number of independent variables. It has also a set of repeated points at
the centroid labeled with Nj,. Figure 55 shows a geometric view of a CCD for a two-factor full
factorial design. CCD is used widely in constructing second-order response surface models
[MMAO09].
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Figure 55: Geometric view of central composite design for k = 2 factors [BWH+21]

Random errors are inevitable in physical experiments and the output may be different even with
the same experimental settings. In the contrary, the computer experiments are deterministic
and multiple trials result in identical outputs. Hence, carrying out several runs at the centroid
is only meaningful in physical experiments [FLS05]. For data preparation, the number of
computational experiments was set to 45, which corresponds to a CCD with 6-factor fractional

design (Zk'1 + 2k + Nj).

6.2.2 Latin Hypercube Sampling (LHS)

LHS is one of the most popular space-filling designs that aims at reducing the variance of sample
mean [SZ16]. It is a stratified sampling technique that divides the multidimensional
experimental domain into N strata of equal marginal probability, where N is the number of
sample points. Each stratum contains only one sample point along each space dimension, and

then the technique samples once from each stratum. [FLS05].

The so-called maximin distance criteria can be applied as an optimality factor for construction
of LHS to further decrease the variance of the sample mean. A maximin LHS maximizes the
minimum distance between each pair of experimental points within the experimental domain,

see Figure 56.
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Figure 56: Transformation of a 2D LHS (left) to a maximin LHS (right) [BWH+21]

This optimality criterion ensures that the experimental points are spread out uniformly through
the domain and therefore, no point lies too far away from a design point [JH08]. This results in
an enhancement of the prediction accuracy of the constructed model. LHS is a very suitable and
powerful DoE technique for computer experimentation, which can serve various numbers of
runs and input variables. To ensure the comparability of the results, the same number of runs

as the CCD method was used for the LHS method.

6.2.3 Structure of Training Data

As mentioned earlier, for each of the DoE methods introduced in the above sections, 45
simulations were performed respectively with different input process parameters, see Table 7.
For instance, the simulation data sets gathered from the LHS method for the parameters
primary gas flow, electric current, carrier gas flow, powder feed rate, particle size distribution

and stand-off distance, respectively, are:

1. 40.36 SLPM, 461.6 A, 6.39 SLPM, 28.8 g/min, -35 +15 um, 126 mm
2. 40.36 SLPM, 532.9 A, 5.72 SLPM, 15.6 g/min, -35 +15 pm, 153 mm
3. 41.37 SLPM, 473.8 A, 4.04 SLPM, 12.0 g/min, -35 +15 um, 169 mm

45. 59.87 SLPM, 470.3 A, 4.04 SLPM, 18.0 g/min, -75 +55 yum, 144 mm
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The CCD simulation data were also structured into 45 simulations. The complete list of process
parameters from both LHS and CCD methods are presented in the Appendix (page 124-127).
The outputs of the simulations are the in-flight particle properties of the 2,000 simulated
particle trajectories per simulation respectively. However, regarding the different process
parameters within each simulation, not all of the 2,000 simulated particle trajectories can reach
the specified stand-off distance. Hence, the exact number of output data per simulation for the
45 CCD or LHS simulations is not the same and can vary between 1,500 and 2,000 particle
trajectories. The inputs and outputs of each simulation were provided with indices to be able to

assign the particles of each simulation for the ML models.

The DoE methods provide the representative simulation data sets for training the ML models.
The inputs of the prediction models are the process parameters listed in Table 7. The outputs
are the particle properties including the in-flight particle temperatures T, [K] and velocities
v, [m/s] as well as the in-flight particle x-coordinates x,, [m] and z-coordinates z,, [m] at

specific stand-off distances on the virtual substrate (clipping plane).

The results from the LHS and CCD methods were each partitioned into one training data set
and one test data set. From each of the respective 45 simulations, 75 % of the data were used as
training data and the remaining 25 % as test data. As described earlier, the number of particles
per simulation may differ and thus, the overall number of particles in the training and test data
sets for the CCD and LHS methods is different. The training data for CCD contain 64,858
particles and the test data include 21,612 particles, while these numbers amount to 64,728 and
21,566 for the LHS respectively. Even the models are trained and tested with the whole training
and test data out of the 45 simulations respectively, the allocation of the particles to each
simulation is still known by use of the indices as data labels. This is utilized later in the

evaluation of the results.

The simulation data sets for each DoE method consist of approximately 90,000 particles,
resulting in a total simulation data sets of 180,000 particles. It is worth mentioning that
generating this much data through experiments is extremely resource-intensive, both in terms
of time and energy consumption. In addition, the experiments, involving the utilization of gas,

powder, and energy, lead to a substantial carbon footprint. This underscores the importance of

Page 82



Prediction of Particle Properties using Support Vector Machine

using computational methods, particularly Digital Shadows, as a more sustainable alternative

to classical process development approaches.

6.3 SVM Setup

SVM is a supervised-learning algorithm that uses structural risk minimization, and therefore
exhibits great generalization features. SVM employs a symmetrical loss function, which equally
penalizes high and low errors. An important property of the SVM regression is that its
computational complexity does not depend on the dimension of the input space. SVM
automatically determines the model complexity by choosing the number of support vectors,
unlike ANN, which controls model complexity by restricting the feature set. Furthermore, since
SVM solves the convex optimization problem analytically, it always returns the same optimal

hyperplane parameter [AK15]. Please refer to Chapter 2 for an in-depth description of SVM.

The implementation of the SVM regression algorithm was carried out using the Statistics and
Machine Learning Toolbox of MATLAB. In order to make the inputs and targets insensitive to
the scales and magnitudes on which they are processed, a preprocessing step has been carried
out to standardize the training data sets. The standardization was done based on the so-called
z-score method, in which the corresponding standardized data have a mean value of zero and a

standard deviation of one. Hence, the shape of the original data set is retained.

Four single-output SVM models, corresponding to the four outputs, for each of the two DoE
methods, LHS and CCD, were developed. For training the regression models, Gaussian kernels

k(x;, x;) based on Eq. 17 were employed, where y represents the kernel scale.

2
k(x;,x;) = ex <—M> Eq. 17
i»Xj) = €Xp 2y q.

The training of the SVM models was conducted with different kernel scales, as given in Table
8, to choose the best prediction accuracy. The term P in Table 8 denotes the number of
predictors, which equals to P = 6 in this case. Furthermore, a 10-fold cross-validation was used

to analyze the level of generalization and prevent possible overfitting.
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Table 8: Kernel scales of different Gaussian kernels applied for training the SVM models
Kernel type Kernel scale
Fine Gaussian y = i
32
. . p
Medium Gaussian v= |3
Coarse Gaussian y =8P

6.4 Prediction of Particle Properties

In this section, the results of the ML models based on simulation models, namely metamodels,
are presented and discussed. For each data set produced by different experimental designs,
separate prediction models were trained. Then, the target values on the virtual substrate, which
are the particle temperatures, velocities and positions (x and z-coordinates) were tested by the

corresponding predefined test data sets.

Due to the data labeling, the assignment of the particles to their particular simulation is known.
Hence, for a qualitative comparison of ML and simulation results, the average particle behavior
per simulation can be investigated. Exemplarily, the mean particle temperatures T,; per

simulation i € [1,45] are computed by

1 n; Eq. 18
Tpi=—) Tpij
n; <
Jj=1
= Ty Mean particle temperature of simulation i
.y Number of test particles of simulation i
* Toij Temperature of particle j of simulation i
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The mean value over all 45 simulations is then computed by

45 Eq. 19

and denoted by “grandmean” in the following. The means and grandmeans of the particle

velocities and positions are computed analogously.

For a quantitative evaluation of the ML results, two statistical measures are considered. To
evaluate the prediction accuracy of the individual particle properties, the mean absolute
percentage error (MAPE) is calculated. Given N data points, the MAPE is defined by

N Eq. 20
1 t:— D q
MAPE=—§ |‘ pl|
Nol ¢
=

* MAPE  Mean Absolute Percentage Error

= N Number of data points
" Target values
" D Prediction values

Furthermore, the R-squared value, for N data points, target values t; with mean t and

predictions p; defined by

_ £V=1(ti - Pi)z Eq. 21

R. =
o ?’=1(ti - t_)z

is calculated to evaluate the prediction accuracy of the average particle properties.

Figure 57-a shows the results of the mean particle temperatures T}, ; per simulation i € [1,45],
see Eq. 18, from the CCD data sets. The mean values predicted by the SVM model shown in red
are denoted with “Mean SVM”, while the corresponding target values from the simulation
model displayed in blue are labeled with “Mean Sim.”. The grandmeans according to Eq. 19 are
also plotted in Figure 57. In the same way, the results of the mean predicted particle

temperatures from the LHS data sets are depicted in Figure 57-b.
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Figure 57: Results of the SVM model for mean particle temperatures per simulation from

a) CCD and b) LHS data sets according to [BWH+21]
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The results demonstrate that the developed metamodels have high accuracy in predicting the
mean in-flight particle temperatures of the 45 simulations out of the input process parameters.
Furthermore, it is observed that the developed SVM models have slightly better performance in
predicting the particle properties with higher temperatures than the lower ones. In other words,
in cases where the particles penetrated deeply into the plasma jet, thus resulting in higher
temperatures and velocities, the models could find better relationships between the input
process parameters and the particle properties. This has been observed for both CCD and LHS
data sets in the SVM metamodels. The maximum deviations between the targets and the
predicted values for particle temperatures in case of the CCD and LHS data sets are calculated

to be Max_Devr ccp = 14.55 % and Max_Devr  ys = 15.60 %.

Figure 58-a shows the findings of the mean predicted particle velocities from the CCD data sets,
while Figure 58-b shows the results from the LHS data sets. Analogously, the predicted values
are shown in red and their corresponding target values are displayed in blue. The figures show
that the mean in-flight particle velocities could be accurately replicated with the SVM models.
When comparing the lower and upper ranges of particle velocities, it is also evident from these
figures that the metamodels exhibit a slightly better performance in predicting particle velocities
within the upper range. In comparison to particle temperatures, the model grandmeans for
particle velocities show a better agreement with the grandmeans of the simulation. The
maximum deviations between the targets and the predicted values for particle velocities in case
of the CCD and LHS data sets are calculated to be Max_Dev,ccp = 10.10 % and
Max_Dev, s = 9.23 %.
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a) CCD and b) LHS data sets according to [BWH+21]
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The predicted and target values of the individual particle velocities exemplarily from the LHS
data sets are shown in Figure 59. For a clear presentation, only 250 data points from the total
45 simulations are randomly selected. It is evident that the metamodel can replicate the trend
of the particle velocities in the plasma jet. The prediction of the mean particle velocities and
temperatures is more accurate than the prediction of the individual particle properties. As
mentioned earlier, this can be explained with the stochastic nature of the plasma spraying
process and the turbulence of the plasma flow. Therefore, predicting the behavior of each single
particle is very difficult because it depends on many factors that influence each other. In
addition, the individual particles substantially collide with each other and with the inner wall of
the narrow particle injector, resulting in a random initial distribution of the particles. These
collisions cause the final particle properties to be very sensitive to the initial position, i.e., small
differences in the initial position can have a large influence on the final particle positions,
velocities, and temperatures on the substrate. Hence, it is possible that two particles of nearly
the same size and for the same process parameters exhibit different temperatures or velocities.

As a consequence, prediction of the average particle behavior is more precise and reliable.
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Figure 59:  Exemplary trend of the predicted particle velocities by SVM model from LHS
data sets [BWH+21]
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Table 9 presents the statistical values MAPE (Eq. 20) and R-squared (Eq. 21) for the prediction
of single and average particle properties by the SVM models from different DoE methods. The
performance of the SVM models, in terms of the prediction accuracy of average particle
properties, remains consistent for both CCD and LHS data sets. However, when it comes to
prediction of single particle properties, the LHS experimental design shows a slight
improvement in prediction accuracy compared to CCD. This confirms the suitability of the
LHS for computational experiments. Furthermore, it should be emphasized again that due to
the stochastic nature of the plasma spraying process, the prediction of single particle properties

cannot be guaranteed using the ML methods at hand.

Table 9: Statistical values for prediction of single and average particle properties by

SVM models from different DoE methods [BWH+21]

Statistic MAPE R-squared

parameter

Property Single particle ~ Single particle = Mean particle =~ Mean particle

temperature velocity temperature velocity
CCD 19.78 % 22.75% 0.82 0.97
LHS 18.49 % 21.11 % 0.82 0.97

Figure 60 shows the distribution of the predicted particle coordinates by the SVM models from
LHS data sets exemplarily for one simulation. For this sample simulation, the process
parameters of primary gas flow, electric current, carrier gas flow, powder feed rate, particle size
distribution and stand-off distance are respectively: 48.43 SLPM, 413.40 A, 4.71 SLPM,
18.60 g/min, -35 +15 pm and 121 mm. It is clear that the predictions of the single particle
coordinates are much less accurate than the particle velocities and temperatures. As previously
mentioned, this is due to the fact that the behavior of single particles is to some extent random
in a plasma spraying process, while the essence of ML is to learn and predict regular data. In
contrast, the SVM models predict the mean particle coordinates per simulation more accurately
with R-squared values of 0.86 and 0.88 for x and z-coordinates, respectively. The accurate
prediction of the mean particle coordinates can be used as a tool to find the position of the
maximum particle intensity in the free jet. This information can, for instance, aid in adjusting

injection settings or positioning a particle diagnostic device accordingly [BWK+20].
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Figure 60: ~ Exemplary distribution of the predicted particle coordinates by SVM models
from LHS data sets for one simulation [BWH+21]

The average prediction time of the SVM metamodels for the predefined test data sets was
calculated to be about 4.2 s, which is dramatically faster than one CFD simulation of the plasma
jet with an average calculation time of 3 hours. Therefore, by using the ML metamodels, the
computationally intensive CFD simulations of the plasma jet can be sidestepped for average

values of the particle properties.

6.5 Conclusion

The aim of this chapter was to take the primary steps towards creating a Digital Shadow for the
plasma spraying process to predict the in-flight particle properties based on input process
parameters. The data sets for training the ML models were acquired from a CFD model of the
plasma jet. Contrarily to experiments, simulations allow the efficient generation of wide-ranged
process data, which not only improves the model's prediction accuracy, but also speeds up the
process development. CCD and LHS experimental designs were employed to cover a set of

representative process parameters by reducing the number of tests, while selecting the most

Page 91



Prediction of Particle Properties using Support Vector Machine

valuable sample data. The developed metamodels with SVM are able to replicate the average
particle properties with high accuracy, while reducing the computational cost dramatically. The
results showed that the average particle properties could be predicted by the metamodels much
more accurately than the behavior of single particles. This phenomenon is expected, since the
plasma spraying is a stochastic process that involves many influencing factors. Thus, the
behavior of single particles is much more random in comparison to average particle behavior.
The results of the metamodels from the LHS data sets showed a minor enhancement in terms
of the prediction accuracy, which confirmed the suitability of space-filling designs for
computational experiments. In the following chapter, the SVM models are integrated in an

expert system for prediction of DE in plasma spraying.
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7 Expert System for Prediction of Deposition Efficiency

High deposition efficiency (DE) has always been one of the main aims in the development of
plasma spraying process in order to create cost-effective coatings in industrial production. DE
is one of the key performance indicators for the productivity and consequential sustainability
of the APS process. Increasing DE is a difficult task in the process development of plasma
spraying due to the nonlinear and complicated interdependencies of the contributing elements.
Hence, this chapter is dedicated to develop an expert system to predict DE in plasma spraying.
In the following, the architecture of the expert system is described in detail. After description
of the system architecture and its training approaches, a test case is considered to present the
results of the developed expert system for prediction of DE. The results of this chapter have
been already published in [BHD22].

7.1 Architecture of Expert System

The overall architecture of the expert system is depicted in Figure 61. This expert system
consists of two blocks: Block A) SVM-models from Chapter 6 are used to predict the in-flight
particle properties from different process parameters based on simulation data sets. Block B) an
ANFIS model is developed to predict DE from the in-flight particle properties based on
experimental data sets of LDE from Chapter 5. The setups of the SVM and ANFIS models are

described in the following subsections.

Block A Block B
r—_——==-- 1 === I
1 I . . 1 | .
Process Ly svm 1 .| Predicted gartncle Ly ANEIS L, Predicted
parameters 1 1 properties 1 1 DE
1 I | 1
| A I 4 | T 4
Trained with Trained with
simulation data sets experimental data sets
Figure 61: Architecture of the expert system for prediction of deposition efficiency

[BHD22]

7.2 Block A: SVM
As discussed in Chapter 6, the training setup of the SVM models is illustrated in Figure 62. In a

first step, former CFD models of a multi-arc APS process, developed at the IOT at the RWTH
Aachen University, are used to generate the training data for the SVM models. In Figure 62, the
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use of data from the already developed models is referred to as data recycling. The benefit of
using simulation data is that a wide range of process parameters can be covered, while providing
that much experimental data is hardly possible. In the next step, DoE is implemented to cover
a set of representative input process parameters for the SVM models. As part of an automated
data preparation pipeline, several sets of process parameters with the corresponding particle
properties are acquired from the CFD simulations and prepared as training and test data for the

SVM models.

. Design of Automated Replication of
Data recycling experiment data preparation SVM moc{els simulation data
(. PY e T Prepared ' Eibna, E
| — T data — 7g® o—_— |
; T st Raw@ 9
) ) Process data
CFD simulations parameters T Ve Dy

Figure 62:  Architecture of Block A of the expert system: Training setup of the SVM
models to predict in-flight particle properties [BHD22]

The training inputs of the prediction models are the process parameters listed in Table 7 in the
previous chapter. These include primary gas flow (Argon), electric current, carrier gas flow,
powder feed rate, particle size distribution at the injection point and stand-off distance. The
outputs of the SVM models are the particle properties including the in-flight particle
temperatures T, [K], velocities v, [m/s] and sizes D,, [um] at specific stand-off distances. These
particle properties are used then as inputs for the next block of the expert system to predict
LDE. Please note that the prediction of particle size is considered here as an additional output
of the SVM models compared to the previous chapter. This is because the LDE data sets
obtained in Chapter 5 were correlated with these three particle properties, in particular
temperature, velocity and size. The results of the SVM models for different process parameters

were given in Chapter 6.

7.3 Block B: Neuro-Fuzzy System
The training setup of the Block B of the expert system is shown in Figure 63. The training data

consist of experimental data from Chapter 5. These data include the in-flight particle sizes and

velocities measured by the HiWatch as well as the in-flight particle temperatures measured by

Page 94



Expert System for Prediction of Deposition Efficiency

the DPV-200. Besides of these particle properties, the corresponding data sets of the spatially
resolved deposition efficiencies on the substrate, namely local deposition efficiency (LDE), are
used to train the neuro-fuzzy system. As discussed in Chapter 5, LDE was calculated based on
spatial distribution of the particle mass flow rate in the free jet and the mass of the deposited
feedstock material locally on the substrate. The motivation for using spatially resolved
deposition efficiency is that a relatively broad database of particle properties and LDE can be
obtained, while providing that much data for the global DE together with the corresponding in-

flight particle diagnostic measurements is hardly practical.

In-flight particle
properties Ty, vp, Dy,

h A
Spatial distribution of
the particle mass flow
rate in the plasma jet

Predicted
DE

h 4

ANFIS

A 4

Data augmentation

A 4

Local Deposition
Efficiency (LDE)

Figure 63: Architecture of Block B of the expert system: Training setup of the ANFIS
model to predict DE according to [BHD22]

Please note that the SVM model developed in Chapter 5 served to investigate the nonlinear
interdependencies among the in-flight particle properties and LDE values. In this chapter, it is
proposed to replace the SVM model illustrated in Figure 52 with a neuro-fuzzy system. We have
already a collection of input/output data of particle properties and LDE from a specific set of
process parameters, see Table 6 in Chapter 5. The ANFIS technique is chosen due to its ability
to handle highly nonlinear mappings by its adaptive parameters that customize the membership
functions. This makes ANFIS a powerful tool for generalizing the characteristics of a data
collection to similar scenarios, in our case from one set of process parameters to similar sets of
process parameters in APS. Hence, in this block of the expert system, an ANFIS model is
proposed to leverage its adaptive interpretation capabilities to generalize our data collection and

to finally predict DE from particle properties for different sets of process parameters.
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As shown in Figure 63, before developing the ANFIS model to predict DE, the training data
were augmented using the k-nearest neighbor (k-NN) algorithm to enhance the model accuracy
in terms of automatic generation of the rule base and membership functions. This technique
uses k closest training data to a particular sample point in our experimental database to increase
the diversity and the amount of data before training the ANFIS model. In the following sections,
first the implemented data augmentation is described in detail. Subsequently, the setup of the
ANFIS model and the results of LDE prediction are presented. Finally, the results of the

developed expert system for predicting global DE are outlined as part of a test case.

7.4 Data Augmentation

The amount of training data needed for an ANFIS model may be less than what is required for
a classical neural network. However, the size of the training data should still be sufficient to
account for all possible cases, depending on the number of premise and consequent parameters
[ASA+12]. As Jang stated in [Jan93], the quantity and quality of data play a crucial role in the
learning processes used to establish the membership functions (MFs). In this work, to enhance
the automatic tuning of MFs, the 100 experimental data sets for particle properties and LDE
from Chapter 5 were increased by a factor of 1.5 before training the ANFIS model. This led to
a total of 150 data sets used to train the ANFIS model. The k-nearest neighbor (k-NN) method
is utilized for data augmentation, where k is set to 5. This method finds the k closest, most
similar, neighbors to the sample point being investigated, by minimizing a distance function.

For this purpose, the Euclidean distance [Pet09] is considered based on Eq. 22.

Eq. 22
E(X;,Ys) = \/(xij - ij)Z + (x; — ysj)z + e (g — }’51)2

i=12..,1,s=12,..,5,j=1,2,..,]

= X Input vector of original data
= Y Input vector to be classified
= ] Length of the vector X
= S Length of the vector Y

J

Total number of features
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In this work, the features of the input vectors consist of particle temperatures, velocities and
sizes, therefore J is equal to 3. To apply the k-NN method, 50 initial data sets of particle
properties are first generated randomly within the oriented bounding box (OBB) of the original
data, as shown in Figure 64. OBB is the box with the smallest dimension, in our case a volume,
circumscribing all the points in the input space [O'R85]. The next step involves identifying the

five nearest original data to these initial sample data using Eq. 22.

-+ Original data

O Initial sample

Dy [um]

o

500

3,000 0

Figure 64: Initial sample data of particle properties in the oriented bounding box of the

original data to be used for the k-NN method [BHD22]

The final augmented data are obtained by calculating the average of the nearest neighbors, as
demonstrated in Figure 65. In this figure, one exemplary initial point is linked to its nearest
neighbors with black dashed lines and to its final resulting k-NN point with a green line.
Furthermore, the particle properties in this figure are normalized for the purpose of comparing

the distances between the points.
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Figure 65: Plot of the particle properties for the original data, initial sample data and the
corresponding augmented data by k-NN [BHD22]

Similarly, the LDE of the generated data sets of particle properties are obtained by averaging the
LDE of the corresponding nearest neighbors of the original data. Figure 66 displays the entire
data sets, comprising both the augmented and original data, as an example in a 2D plot of
temperature versus velocity. In this figure, the corresponding LDE values are given in color

map. The overall data sets are utilized to develop the ANFIS model.
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Figure 66: Opverall data sets, including the original and augmented data, exemplarily in a

2D plot of temperature versus velocity with the corresponding LDE values

[BHD22]

7.5 ANFIS Model

The increasing interest in the field of artificial neural networks injected a new driving force into
the architecture of FL systems, arising a novel synergy called neuro-fuzzy systems. An adaptive
network framework, which unites both neural networks and fuzzy models, forms the
foundation of neuro-fuzzy systems [JS95]. Such system employs a learning algorithm developed
from or motivated by ANN to establish its parameters, fuzzy sets and fuzzy rules, by processing
of data sets. The fuzzy models within the adaptive network framework are known as the
Adaptive Neuro-Fuzzy Inference System (ANFIS), which may have several advantages over

neural networks. Please refer to Chapter 2 for a comprehensive description of ANFIS.

In this work, the adaptive parameters of the ANFIS model are adjusted using a data-driven
hybrid learning algorithm. The hybrid approach combines backpropagation for the parameters
linked to the input membership functions or premise parameters, and least squares estimation

(LSE) for the parameters associated with the output membership functions or consequent
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parameters [Jan93]. The mathematical description of the hybrid learning algorithm is given in

the appendix (page 128-129).

Figure 67 displays the block diagram of the optimization algorithm used to optimize the FIS
parameters. As illustrated in this figure, the optimization algorithm generates potential FIS
parameter sets during training. The fuzzy system is updated with each parameter set and then
the input training data are employed for evaluation. The cost for each solution is calculated by
the difference between the output of the fuzzy system and the expected output values from the

training data.

Hybrid optimization

1
1
| :
optimization ! | + Leastsquares estimation 1 optimized
problem : * Backpropagation | parameters
1 Y 1
. Ak ) !
I = E ole -
1 wni s 1
1 o3 2l3 1
I a0 v -
i 6 2 Ul v }
1 = | !
: . Cost }
: Fuzzy Inference System Measurement |
: F 3 F 3 }
: Knowledge base i
input [ = Membership functions } g 1
i evaluate
i H = Rule base 1
training data y oUtout :
1
output I ]
training data B i e e et e e e 2

Figure 67: Block diagram of tuning fuzzy inference system [BHD22]

The ANFIS model to predict DE from particle properties is developed in the MATLAB program
version R2021b (The MathWorks, Inc., Massachusetts, USA). The 150 total data sets, including
augmented and original data, are split into two distinct groups, such that 80 % of the data are
used as training data and the remaining 20 % as test data. This division results in 120 data sets
for training and 30 data sets for testing. To model the data behavior with the fewest possible
rules, the input-output training data are first clustered using Fuzzy c-means (FCM) clustering
technique [BEF84]. This method is employed to classify multidimensional data points into a

certain number of different clusters. Each data point in FCM belongs to a cluster to some degree
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that is specified by a membership grade. FCM begins by estimating initial cluster centers, which
are meant to represent the average location of each cluster. In addition, FCM assigns a
membership grade to each data point for each cluster. FCM then iteratively updates the cluster
centers and the membership grades of each data point to arrive at the optimal cluster locations
within the data set. The use of FCM clustering helps to minimize the number of rules in an
ANFIS model, as the rules are partitioned based on the fuzzy qualities associated with each of

the data clusters.

In this work, FCM clustering method is utilized to classify the training data into four clusters.
The FCM information is then used to create a Sugeno-type ANFIS model, where the MFs reflect
the fuzzy qualities of each cluster. Figure 68 depicts the block diagram of the developed ANFIS.
The Sugeno-type inference system contains four rules corresponding to the four pre-defined
clusters. The inputs of the model include particle temperatures, velocities and sizes, while LDE
is its single output. Each input is characterized by a Gaussian MF per each fuzzy cluster, leading
to a total of four MFs for each input. The output variable, on the other hand, has one linear MF

for each fuzzy cluster.

In1 (4 MF)

Sugeno-

type

ANFIS
In2 (4 MF)

4 rules

Out1 (4 MF)

In3 (4 MF)

Figure 68: Block diagram of the developed ANFIS [BHD22]
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The diagrams in Figure 69 display the membership functions of the inputs. The four Gaussian
MFs for each input, corresponding to the fuzzy clusters, are depicted in each diagram. The
ranges of the input particle properties can also be seen on the x-axis of the diagrams shown in

Figure 69. These ranges represent the typical scope of particle properties in APS.
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Figure 69: Input membership functions of the ANFIS model [BHD22]

In the following, the results of the developed ANFIS model in Block B of the expert system are
presented. As mentioned above, totally 150 data sets of particle properties and LDEs are
available, which include the 100 original experimental data from Chapter 5 and the 50
augmented data from section 7.4 of this chapter. These data are separated into two unique
groups, with 120 data sets for training and 30 data sets for testing the ANFIS model. Table 10
shows the results of the developed ANFIS model for the 30 test data sets. The average particle
temperatures (Tp), velocities (7,) and sizes (ﬁp) of the test cases with their corresponding
experimental local deposition efficiencies (LDE,,,) and predicted values by ANFIS (LDE,yF;s)
are listed in Table 10.
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Table 10: Results of the ANFIS model for the 30 test sets [BHD22]

Test index 'I_’p K] Uy, [m/s] Ep [um] LDE.y, [%] LDEsyps [%]
1 1568.09 167.69 42.56 8.78 9.42
2 1564.87 91.36 40.24 6.09 6.44
3 1786.35 167.36 44.23 11.91 13.94
4 2052.55 216.13 51.43 27.28 26.57
5 2893.08 333.54 78.40 44.44 44.34
6 2368.36 202.91 59.69 36.36 35.86
7 2054.55 152.27 50.87 22.11 21.07
8 2152.31 226.81 54.97 32.04 32.18
9 1921.74 196.62 48.83 21.20 21.05
10 2135.98 159.40 52.33 26.55 24.00
11 1671.47 168.11 44.63 14.36 12.19
12 2289.24 189.54 56.96 33.65 33.95
13 2179.66 207.15 53.72 31.00 29.63
14 2535.18 271.78 61.26 36.28 3591
15 1818.67 141.26 40.83 11.61 12.26
16 1863.90 123.12 46.57 13.59 15.28
17 2644.25 294.00 67.78 43.14 43.20
18 1826.92 152.03 45.47 13.43 14.84
19 1640.27 155.41 42.12 10.32 10.15
20 2690.62 306.01 68.09 41.88 42.34
21 1964.10 210.62 47.31 20.42 18.81
22 2535.89 277.67 61.83 38.08 35.94
23 2846.40 329.43 75.96 43.96 43.77
24 1750.51 121.38 37.02 8.50 8.80
25 1501.95 101.55 37.82 4.5 4.44
26 2239.33 233.01 55.45 32.97 31.98
27 2902.06 336.19 78.11 44.58 43.93
28 2582.08 248.92 65.19 40.15 39.28
29 1954.29 176.83 49.53 20.72 21.07
30 1977.95 198.33 50.81 24.47 25.31
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Figure 70 shows the predicted LDE values versus their experimental targets for the 30 test data
sets. Each test index in this figure corresponds to a combination of particle properties listed in
Table 10. The ANFIS model is able to predict LDE accurately with RMSE of approximately
1.1 [%]. When investigating the data points plotted in Figure 70 and their corresponding values
from Table 10, it can be concluded that the deposition efficiency tends to increase with
increasing particle size, velocity, and temperature. However, this behavior is nonlinear. The
accuracy metric mentioned above (RMSE = 1.1 [%]) for the prediction of LDE indicates that
this nonlinearity is well analyzed by the ANFIS model for the typical range of particle properties
in APS. As investigated in Chapter 5, the particles with relatively larger diameters have greater
momentum, which leads to a deeper penetration into the plasma jet. Furthermore, the cascaded
design of the three-cathode plasma gun allows larger particles to stay in the high temperature
core of the plasma jet [BO16], contributing positively to both their melting ratio and velocity to
achieve the best DE in the plasma jet.
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Figure 70: Results of the predicted LDE by ANFIS model for 30 test sets [BHD22]

Page 104



Expert System for Prediction of Deposition Efficiency

7.6 Test Case
In Block A of the introduced expert system, the in-flight particle properties are predicted by the

SVM models. As described earlier, the SVM models are trained based on simulations of the
plasma jet with different process parameters. It was then shown in the Block B of the expert
system that the developed ANFIS model is able to predict LDE from the particle properties
accurately with the RMSE of about 1.1 [%]. In this section, the concept of predicting the global
DE by the developed expert system trained with the LDE data sets is demonstrated with a test
case. To present the results of the expert system for this test case, the process parameters listed
in Table 11 are considered, using the three-cathode gun TriplexPro™-210 and the feedstock
material ALOswith a particle size distribution of -45 +22 um. It should be mentioned that the

process parameters of this test case are the same as those used in Chapter 5, Table 6.

Table 11: Process parameters of the test case to predict global DE using the expert system
Parameter [unit] Value
Current [A] 500
Argon [SLPM] 60
Carrier gas (Ar) [SLPM] 5.5
Powder feed rate [g/min] 11
Spray distance [mm)] 100

Figure 71 shows the results of the average particle temperatures and velocities for SVM,
simulation and the corresponding experimental measurements. The data for the experimental
case were obtained from the measurements in Chapter 5. The particle sizes and velocities were
captured with the HiWatch, while the particle temperatures were measured with the DPV-2000.
The comparison of the average particle properties confirms the previous validation of the
simulation models and demonstrates the accurate replication of the simulation data with SVM.
The SVM models can predict mean particle velocities with R-squared of Ry, ,, & 0.97 and mean
particle temperatures with Ry, r = 0.82, indicating more accuracy in prediction of particle
velocities. This can be explained by the strong correlation of the particle velocity with the
particle size distribution and its drag force. According to [FHB14], in general and for a constant
drag coefficient, the particle velocity is proportional to the square root of the ratio of the

distance traveled, divided by the particle diameter. On the other hand, the influencing factors
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on the particle temperatures are much more complicated, as radiation, heat transfer, particle
vaporization and other physicochemical mechanisms play a dominant role. Hence, considering
the particle size distribution as one of the inputs of the ML models, it is expected to have a better

prediction accuracy for the particle velocities.

It must be pointed out that the experimental measurements of particle velocities are more
precise than that of particle temperatures. This is due to the non-homogeneous temperature
distribution within the particles. The particle diagnostic devices are only able to measure the
surface temperature of the particles. Furthermore, the relatively cold particles, which are not
adequately illuminated, cannot be detected by the diagnostic systems. On the other hand, the
simulation results and the corresponding predicted values by SVM show the average particle
temperature based on the governing heat transfer equations of the particles. This indicates that

the measured value for the particle temperature is subject to some uncertainties as a reference.
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Figure 71: Results of the mean particle properties for experiment, simulation and SVM

using the process parameters listed in Table 11 [BHD22]
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The results of the mean particle properties predicted by the SVM models in Block A are fed into
the ANFIS model in Block B to predict the global DE. The bar chart shown in Figure 72 makes
a comparison between the predicted DE and the measured DE for the test case utilizing the
process parameters listed in Table 11. The experimental measurements to determine the global
DE for the bar chart shown in Figure 72 (left bar) were performed based on the norm [DIN17].
The DE was measured by weighing a specimen before and after coating with respect to the total
mass of sprayed material during the coating process. The result of the predicted DE is in a good
agreement with the corresponding experimental target. This demonstrates the proof of concept
that the developed expert system is capable of predicting the global DE based on the norm, while
being trained with spatially resolved deposition efficiencies on the substrate. This confirms the
motivation of using LDE data sets to develop and fine-tune such an expert system, while

providing that much experimental data for the global DE is hardly practical.
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Figure 72: Comparison of the experimental DE and its corresponding predicted DE by
ANFIS using the SVM results for the process parameters listed in Table 11
[BHD22]
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7.7 Conclusion

Deposition efficiency (DE) serves as a key performance indicator in plasma spraying, which is
tailored by dozens of intrinsic and extrinsic influencing factors. Due to the nonlinear and
complex interdependencies of these influencing factors, increasing DE has always been a
challenging undertaking in the process development of plasma spraying. Hence, employing
modern computer-aided algorithms is inevitable to navigate these challenges. This chapter
aimed to tackle this task by developing an expert system to predict DE using state-of-the-art Al
techniques. The developed expert system consists of two subsystems: one for predicting particle
properties from process parameters using a support vector machine, and another for predicting
DE from particle properties using an adaptive neuro-fuzzy inference system. The developed
expert system can predict LDE accurately with RMSE of about 1.1 [%] through the combination
of ANFIS and SVM models. The results revealed that DE tends to rise with increasing particle
size, velocity, and temperature, whereas this behavior is nonlinear. Furthermore, the concept to
predict global DE from spatially resolved DE on the substrate was demonstrated. It should be
pointed out that the DE may depend also on other parameters, such as powder feed rate, torch
traverse velocity or spraying distance in general. Additionally, the developed expert system can

contribute to the acceleration of the coating development process in APS.
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8 Summary and Outlook

In the context of manufacturing technology, the so-called Digital Shadow combines domain-
specific models with data-driven techniques inferred by autonomous agents to create a
sufficiently accurate image of the production processes including all relevant data. This concept
is primarily realized by the integration of the Artificial Intelligence (AI) methods, with the aim
of system optimization, controlling as well as prognostics. With respect to the aforementioned
definition, this dissertation is devoted to the development of the primary steps towards a Digital

Shadow in plasma spraying with the ultimate goal of improving the process efficiency.

Deposition efficiency (DE) is a major performance measure in plasma spraying, which is
influenced by a variety of internal and external variables. Because of the nonlinear and
complicated interdependencies of the contributing factors, enhancing DE has always been a
difficult task in the plasma spraying process development. To address this issue, modern Al
methods were used in this work to develop and combine domain-specific models to predict DE.
For this purpose, both simulation and experimental data from the entire process chain of APS
were employed to train Al models, and combine them in the frame of a so-called expert system.
These data include machine or process parameters, in-flight particle properties and deposition

efficiency on the substrate.

The developed expert system consists of two subsystems: one for predicting in-flight particle
properties from process parameters using support vector machine (SVM) technique, and
another for predicting DE from particle properties using an adaptive neuro-fuzzy inference
system (ANFIS). To tackle the problem of insufficient data for training the aforementioned Al
models two approaches were pursued: 1) A method was developed for in situ determination of
spatially resolved deposition efficiencies on the substrate, namely local deposition efficiency
(LDE). By using LDE, sufficient amount of data for learning algorithms could be generated,
while providing that much data for ex situ measurements of global DE and their corresponding
particle properties would be impractical. 2) Simulation data for in-flight particle properties were
generated by recycling the simulation models of the plasma jet already developed at IOT. The
combination of these two strategies provided the aggregated and purpose-driven data sets

required for a Digital Shadow in plasma spraying.
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The developed SVM models based on simulation models, namely metamodels, are able to
replicate the average particle properties for different process parameters with high accuracy,
while reducing the computational cost dramatically. The SVM models can predict mean particle
velocities with R-squared of Ry, ,, ~ 0.97 and mean particle temperatures with Ry, 7 ~ 0.82,
indicating more accuracy in prediction of particle velocities. The developed expert system can
predict LDE from particle properties accurately with RMSE of about 1.1 [%] through the
combination of ANFIS and SVM models. The results indicated that DE tends to increase with
rising particle size, velocity, and temperature, illustrating a non-linear behavior. This
nonlinearity is captured well by the developed predictive models. Moreover, the concept of
predicting the global DE based on the spatially resolved deposition efficiencies on the substrate

was demonstrated by a test case.

The developed expert system can be used as a tool to adjust the process parameters to produce
sustainable and cost-effective coatings. Moreover, it can contribute to the acceleration of the
coating development process in APS. Future works could be directed towards establishing an
iterative feedback loop based on experimental data sets that encompass global DE and the
corresponding in-flight particle properties. This iterative approach aims to improve both the
accuracy and range of predictions made by the Digital Shadow. In this regard, the developed
expert system also needs to be trained with DEs higher than 50 %. The concept of the iterative
feedback loop is depicted in Figure 73. Furthermore, the data generation module can be
connected to a database for real-time process optimization. With live data acquisition and

controlling, a full-scale Digital Shadow in plasma spraying can be achieved.
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The in situ determination of the LDE in this work was conducted by several grid measurements
of the in-flight particle properties using the HiWatch diagnostic system. To avoid the time-
consuming grid measurements at various focal planes of the free jet, a Particle Image
Velocimetry (PIV) method could be developed. This method involves a pulsed laser and a high-
speed camera to detect particles near the substrate. The schematic representation of this concept
is shown in Figure 74. The different laser options together with the moving table allow to
capture the particles at once and therefore, the LDE can be determined with less effort.
Furthermore, the rebounding flow of the non-deposited particles near the substrate has an
influence on the incoming particle flow in the free jet. It is supposed that the spatial distribution
of the particle flow near the substrate is broader than that in the free jet. The effect of the

bouncing flow of the non-deposited particles on the LDE can be also considered by this concept.
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Figure 74: Schematic illustration of an experimental setup with a high-speed camera and a

laser for in situ determination of LDE without lengthy grid measurements
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10 Appendix

List of process parameters for the 45 simulations from the CCD method

Sim. Primarygas  Electric Carrier gas Powder feed Particle  Stand-off

No. (Ar) [SLPM] current [A] [SLPM] rate [g/min] size [um] distance [mm]

1 40.02 470.00 5.38 19.80 -55 +35 140
2 45.74 440.60 4.37 15.60 -35 +15 123
3 45.74 440.60 4.37 15.60 -75 +55 157
4 45.74 440.60 4.37 24.00 -35+15 157
5 45.74 440.60 4.37 24.00 -75 +55 123
6 45.74 440.60 6.05 15.60 -35+15 157
7 45.74 440.60 6.05 15.60 -75 +55 123
8 45.74 440.60 6.05 24.00 -35+15 123
9 45.74 440.60 6.05 24.00 -75 +55 157
10 45.74 499.40 4.37 15.60 -35+15 157
11 45.74 499.40 4.37 15.60 -75 +55 123
12 45.74 499.40 4.37 24.00 -35+15 123
13 45.74 499.40 4.37 24.00 -75 +55 157
14 45.74 499.40 6.05 15.60 -35 +15 123
15 45.74 499.40 6.05 15.60 -75 +55 157
16 45.74 499.40 6.05 24.00 -35+15 157
17 45.74 499.40 6.05 24.00 -75 +55 123
18 50.11 400.00 5.38 19.80 -55+35 140
19 50.11 470.00 3.36 19.80 -55+35 140
20 50.11 470.00 5.38 10.20 -55+35 140
21 50.11 470.00 5.38 19.80 -35+15 140
22 50.11 470.00 5.38 19.80 -55 +35 100
23 50.11 470.00 5.38 19.80 -55 +35 140
24 50.11 470.00 5.38 19.80 -55+35 180
25 50.11 470.00 5.38 19.80 -75 +55 140
26 50.11 470.00 5.38 30.00 -55 +35 140
27 50.11 470.00 7.06 19.80 -55+35 140
28 50.11 540.00 5.38 19.80 -55+35 140
29 54.15 440.60 4.37 15.60 -35+15 157
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Sim. Primarygas  Electric Carrier gas Powder feed Particle  Stand-off

No. (Ar) [SLPM] current [A] [SLPM] rate [g/min] size [um] distance [mm]

30 54.15 440.60 4.37 15.60 -75 +55 123
31 54.15 440.60 4.37 24.00 -35+15 123
32 54.15 440.60 4.37 24.00 -75 +55 157
33 54.15 440.60 6.05 15.60 -35+15 123
34 54.15 440.60 6.05 15.60 -75 +55 157
35 54.15 440.60 6.05 24.00 -35 +15 157
36 54.15 440.60 6.05 24.00 -75 +55 123
37 54.15 499.40 4.37 15.60 -35+15 123
38 54.15 499.40 4.37 15.60 -75 +55 157
39 54.15 499.40 4.37 24.00 -35+15 157
40 54.15 499.40 4.37 24.00 -75 +55 123
41 54.15 499.40 6.05 15.60 -35+15 157
42 54.15 499.40 6.05 15.60 -75 +55 123
43 54.15 499.40 6.05 24.00 -35+15 123
44 54.15 499.40 6.05 24.00 -75 +55 157
45 59.87 470.00 5.38 19.80 -55+35 140
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List of process parameters for the 45 simulations from the LHS method

Sim. Primarygas  Electric Carrier gas Powder feed Particle  Stand-off

No. (Ar) [SLPM] current [A] [SLPM] rate [g/min] size [um] distance [mm]

1 40.36 461.60 6.39 28.80 -35 +15 126
2 40.36 532.90 5.72 15.60 -35 +15 153
3 41.37 473.80 4.04 12.00 -35+15 169
4 40.70 520.20 6.73 23.40 -75 +55 158
5 42.04 411.50 5.04 20.40 -55 +35 131
6 43.39 402.90 4.37 15.60 -35+15 164
7 42.71 453.30 5.38 28.20 -55+35 147
8 42.71 524.90 3.70 10.20 -55+35 159
9 43.72 482.70 6.73 24.60 -75 +55 123
10 44.06 488.30 6.39 10.20 -55+35 112
11 45.40 400.20 5.38 23.40 -35+15 133
12 45.07 446.80 5.72 21.60 -35+15 116
13 44.40 467.30 5.72 24.60 -75 +55 172
14 46.41 440.40 5.04 10.80 -35+15 156
15 45.74 534.20 6.73 13.80 -75 +55 100
16 46.75 517.00 4.71 12.60 -75 +55 127
17 47.42 528.60 5.72 21.60 -35 +15 137
18 48.43 413.40 4.71 18.60 -35+15 121
19 47.76 451.10 4.04 28.80 -35+15 174
20 49.10 417.40 6.39 27.60 -35+15 118
21 49.44 421.50 6.05 26.40 -75 +55 107
22 48.77 507.50 5.72 30.00 -55 +35 151
23 50.11 432.70 5.38 15.00 -75 +55 128
24 50.11 538.70 3.70 24.00 -35+15 102
25 51.46 424.70 6.05 22.20 -75 +55 139
26 51.12 513.70 5.04 16.80 -75 +55 143
27 52.13 427.60 4.37 29.40 -75 455 112
28 51.79 464.50 3.70 19.20 -55+35 139
29 52.80 436.30 7.06 17.40 -35+15 106
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Sim. Primarygas  Electric Carrier gas Powder feed Particle  Stand-off

No. (Ar) [SLPM] current [A] [SLPM] rate [g/min] size [um] distance [mm]

30 53.14 439.40 3.36 26.40 -55+35 164
31 52.47 479.30 4.37 19.20 -55+35 177
32 54.48 475.50 4.71 12.60 -55 +35 154
33 53.81 501.20 5.04 21.00 -35+15 167
34 54.82 418.90 4.04 25.80 -75 455 142
35 55.49 494.40 3.70 14.40 -35 +15 109
36 55.83 504.30 4.71 22.20 -55+35 135
37 56.17 523.20 5.38 13.20 -55+35 119
38 56.84 406.40 6.05 27.00 -55+35 170
39 56.84 484.80 4.04 11.40 -75 +55 115
40 58.18 497.80 6.39 17.40 -75 +55 105
41 57.85 510.60 6.05 14.40 -55 +35 175
42 58.52 446.20 4.37 25.20 -55+35 179
43 59.19 457.00 6.73 16.20 -75 +55 161
44 59.19 491.60 6.73 19.80 -55+35 150
45 59.87 470.30 4.04 18.00 -75 +55 144
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Hybrid learning algorithm
The adaptive parameters of the ANFIS model in this study are tuned using a data-driven hybrid

learning algorithm. The hybrid method consists of backpropagation for the parameters
associated with the input membership functions or premise parameters, and least squares
estimation (LSE) for the parameters associated with the output membership functions or

consequent parameters.

In the forward pass of the hybrid learning algorithm, the premise parameters are fixed and the
consequent parameters are identified by the LSE technique. Let X be an unknown vector with
the size of M whose elements are consequent parameters, and let B be the vector of training
data with the size of P, then it can be shown that the matrix equation AX = B can be obtained
in the adaptive network, where the dimension of A is P X M. The LSE technique estimates the
vector of consequent parameters by minimizing the squared error ||AX — B||?. The least

squares estimate of X, denoted by X", is given by
X* = (ATA)'A"B
where AT is the transpose of A.

In the backward pass, the error rates propagate backward and the premise parameters are
updated by the gradient descent method, while the consequent parameters are fixed. The error
measure for the p-th (1 < p < P) entry of training data can be obtained as the sum of squared

errors according to
#(L)

Ep = z (Tm,p - Orl;l,p)z
m=1

where Ty, ,, is the m-th component of p-th target output vector, and O}, ,, denotes the m-th
component of actual output vector produced by the p-th input vector. The overall error E can

be calculated by
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P
E=ZE,,

=1

The set of premise parameters can be obtained through the backpropagation procedure that
implements gradient descent in E over the parameter space. Let a be a premise parameter of

the given adaptive network, then the update formula for the parameter « is

0E

Aa = —n%

In the above equation, 7 is the learning rate, which depends on the length of each gradient
transition in the parameter space. Please refer to [Jan93] for further detail regarding the hybrid

learning algorithm in an adaptive network.
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Atmospheric Plasma Spraying (APS) is a versatile coating technology, which offers a broad
range of functional features. Deposition efficiency (DE) is a major performance measure in
APS, which is determined by dozens of intrinsic and extrinsic influencing factors. Because of
the nonlinear and complicated interdependencies of the contributing variables, enhancing
DE has always been a challenging task in the process development of APS. Hence, emplo-
ying an ensemble of computer-aided methods is inevitable to understand and control these
correlations in such a complex coating technology. The concept of the so-called Digital Sha-
dow combines domain-specific models with data-driven techniques of Artificial Intelligence
(Al), inferred by autonomous agents to create a sufficiently accurate image of the production
process including all relevant data. This dissertation is devoted to the development of the pri-
mary steps towards a Digital Shadow in APS with the ultimate goal of improving the process
efficiency.

Modern Al methods, namely Support Vector Machine (SVM) and Adaptive Neuro-Fuzzy Infe-
rence System (ANFIS), were used in this work to predict DE. For this purpose, both simulation
and experimental data from the entire process chain of APS were employed to train the Al
models, and combine them in the frame of an expert system. These data include process

parameters, in-flight particle properties and DE on the substrate.

The developed expert system consists of two subsystems: one for predicting in-flight particle
properties from process parameters using SVM technique and another for predicting DE
from particle properties using ANFIS. To tackle the problem of insufficient data for training the
aforementioned Al models two approaches were pursued: 1) A method was developed for in
situ determination of spatially resolved deposition efficiencies on the substrate, namely Local
Deposition Efficiency (LDE). By using LDE, sufficient amount of data for learning algorithms
could be generated, while providing that much data for ex situ measurements of global DE
and their corresponding particle properties would be impractical. 2) Simulation data for the
in-flight particle properties were generated by using the simulation models of the plasma jet
already developed at IOT. The combination of these two strategies provided the aggregated
and purpose driven data sets required for a Digital Shadow in APS. The developed expert
system can be used as a tool to adjust the process parameters to produce sustainable and
cost-effective coatings, and subsequently improves the integration of coating process into

production chain.
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