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Abstract
Because of the long planning periods and their long life cycle, railway infrastructure

has to be outlined long ahead. At the present, the infrastructure is designed while

only little about the intended operation is known. Hence, the timetable and the oper-

ation are adjusted to the infrastructure. Since space, time and money for extension

measures of railway infrastructure are limited, each modification has to be done care-

fully and long lasting and should be appropriate for the future unknown demand.

To take this into account, we present the robust network design problem for railway

infrastructure under capacity constraints and uncertain timetables. Here, we plan the

required expansion measures for an uncertain long-term timetable. We show that

this problem is NP-hard even when restricted to bipartite graphs and very simple

timetables and present easier solvable special cases. This problem corresponds to

the fixed-charge network design problem where the expansion costs are minimized

such that the timetable is conductible. We model this problem by an integer lin-

ear program using time expanded networks. To incorporate the uncertainty of the

future timetable, we use a scenario-based approach. We define scenarios with indi-

vidual departure and arrival times and optional trains. The network is then optimized

such that a given percentage of the scenarios can be operated while minimizing the

expansion costs and potential penalty costs for not scheduled optional trains.

KEYWORDS
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strategic timetabling, timetabling

1 INTRODUCTION

Traditionally, the planning process for public transportation and railways is executed sequentially: infrastructure planning, line

planning, and timetable planning. Network design is included in the infrastructure while timetabling is usually executed later

in the planning horizon. Because of that, the infrastructure is often assumed to be fixed during the tactical timetabling. This

leads to strict constraints for the timetable and reduces the options to adjust the timetable to the transportation demand which

possibly changes between the infrastructure planning and the actual operation. Therefore more and more railway companies

in Europe shift from this traditional approach to a timetable-based one by including a long-term timetable into infrastructure

planning. This long-term timetable is then used as input for further planning steps, including network design. This approach is

used in several western European countries, including Switzerland, Germany, and the Netherlands. However, it is rarely covered
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in the scientific literature. The ideas and the conception of strategic timetables in Germany have been described by Weigand et

Heppe in [11]. Only recently, Polinder et al. proposed a mathematical program for strategic timetabling in [19].

Network design problems describe the decision which nodes or lines of a network should be expanded or build to meet a

given demand. They occur in many different contexts for example in transportation, communication, or electricity. The classic

network design problem is described in [14] by Leblanc. The problem is modeled as a nonlinear mixed-integer problem. An

overview over models and algorithms for transportation network design is given in [16]. A more recent review by Chen et al.

can be found in [1]. The fixed charge capacitated network design problem with multi-commodity flow is closely related to

the railway network design problem. If an arc is used, a fixed charge is applied, independently of the amount of flow that is

transported over this arc. A survey of this problem is given in [7]. They also provide possible relaxations of the problem. The

capacitated network design problem for a multi-commodity flow describes a network design problem where the capacity of

each arc is limited and the flow starts from different sources and should arrive at different sinks. In [3] this problem is described

and strategies to solve this problem with Benders decomposition are analyzed.

In the context of network design for railway infrastructure in the traditional planning approach, vague demand prognoses

are assumed. Based on these, the necessary capacity expansions and new constructions are determined. The network design

problem in railways without a timetable or temporal constraints has been studied for example in [24] where Spönemann provides

a MIP formulation for the problem as well as some computational results. In [13] Kuby et al. give an example of the railway

network design where extensions of the network are determined by using a mixed-integer linear program. In a second step, they

define different stages of the extensions through a heuristic backwards time sequencing procedure.

Most network design problems do not consider a temporal aspect and assume a static demand that does not vary over time.

This can be assumed if a worst-case demand over all time steps for the network can be given. However, if such a worst-case

cannot be determined, the timetable needs to be included in the network. As the problem becomes computationally intensive

if we additionally include a temporal dimension, there exist only very few approaches that consider a temporal aspect. In [10]

Guihaire et al. give a survey over transit network design. They include the planning of the transit routes network, the frequencies,

and departure times which covers problem related to both network design and timetabling. Zhao et al. combine in [28] route

network design, vehicle headway and timetable assignment and provide a metaheuristic search scheme consisting of simulated

annealing, tabu and greedy search methods to solve the problem.

Timetables in the railway network design problem have been studied in [21]. Schöbel at al. provide a formalization

of the network design problem under timetable constraints as well as sketch some possible algorithms and heuristics. No

implementations or computational results are given. In [22], the approach is extend with some considerations to reduce the

computation time of the problem. In [8], a neighborhood search algorithm is given where as in [9] a meta-heuristic approach

is developed.

Due to the long planning horizons for railway infrastructure, the strategic timetable is subject to uncertainty. One method

to handle this uncertainty is robust optimization. In the context of railways, robust optimization has been extensively studied. A

survey about robust optimization in railway planning can be found in [15]. However, most research considering robustness in

railways focuses on robust timetables and not on robust infrastructure. Results about robust infrastructure in the case of failure

which occur in the operation can be found in [5].

Robustness in network design problems can be found in different contexts: Ukkusuri et al. [26] consider the network

design problem under demand uncertainties for transportation networks. The uncertainty in the demand is modeled through

random variables with known distributions for the entries of the origin-destination-matrices. Pishvaee et al. [18] describe a

probabilistic programming approach for the supply network design problem under uncertainties. In [1] Chen et al. present

a bi-objective-reliable network design problem model that optimizes the reliability of the capacity and the travel time

under demand uncertainty. A simulation-based multi-objective genetic algorithm solution procedure is developed. In [17]

Mudchanatongsuk et al. present a robust optimization-based formulation for the network design problem under transportation

cost and demand uncertainty. An approximation to this is shown to be done efficiently for a network with single origin and

destination per commodity and general uncertainty in transportation costs and demand that are independent of each other. For

a network with path constraints, an efficient column generation procedure to solve the linear programming relaxation is given.

These approaches do not take a temporal aspect into account.

Up to the authors’ knowledge, little research considering the network design problem under both uncertain demand and

timetable constraints has been conducted yet. In [20], we integrate the timetable conditions by modeling the arrival and departure

times as variables and provide computational results for a scenario-based robust approach. In this paper, we aim to provide

another model for the same railway network design problem under timetable constraints. A comparison of both models can be

found in [4] where we describe the theoretical differences between the models and compare their computational results for a

test instance of a network around Dresden.

The model presented here is based on a time expanded network. This considers the influence of timetables as well as the

influence of uncertainty on the railway network design problem. We propose an optimization model that allows for the expansion
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FRIESEN ET AL. 291

cost-optimal calculation of railway networks while the demand is given as a set of trains with a respective starting and end

node as well as earliest departure and latest arrival times. We prove that this problem is NP-hard to solve and present some

graph classes for which the problem easier to solve. Additionally, we present a formalization of the optimization problem for

the deterministic and the robust case.

This paper is structured as follows: First, we define the problem and introduce the notation in section 2. In section 3, we

describe our mathematical model for the network design problem which we adapt for the robust approach in section 3.1. Then,

we provide the proof of the NP-hardness of the problem in Section 4 as well as some easier special cases. Some computational

results are given in section 3.2. We conclude this paper in section 5 with some final remarks and a short outlook onto further

research.

2 PROBLEM DEFINITION AND NOTATION

In this paper, we expand the classic network design problem by incorporating timetable constraints and adapting railway specific

capacity measures. We aim to find an expansion cost minimal railway network to operate a given long-term timetable on such

that the capacity constraints are respected.

The problem is closely related the well-known fixed-charge network design problem as described in [25]. Instead of costs

for each unit of flow as in the more common minimum cost flow problem, we consider costs that occur if an arc is used at all,

independently of the amount of flow on this arc. Here, these fixed charges correspond to the expansion costs for arcs. If the

capacity of an arc is not sufficient, the arc is expanded and the expansion costs incur. We consider a setting in which it is a

binary decision to expand an arc, so the arc is either expanded fully or not at all.

We consider a railway network consisting of stations represented by nodes and lines represented by arcs (i, j). Each arc has

a travelling time ttij which is the number of time steps, a vehicle needs to pass that arc.

Since the capacity of railway lines is limited, it is necessary to include a capacity measure to estimate the number of tracks

needed for the operation of the input timetable. Railway line capacity depends on several different factors, most notably the

type and amount of trains running on a line, the number of tracks, and the train control system in place. Here, we assume the

capacity to be given for each line. The capacity of each arc is given by cij which is the maximum number of vehicles that can

start in node i to node j in a predefined time interval t̃. The capacity of a line can be extended by c̃ij for the cost of kij. The lines

that can be built, expanded or already exist are predefined as well as the corresponding costs. This is due to the fact that not all

lines could be built due to financial and spacial restrictions.

To integrate the temporal aspect we use a time-expanded network. That is, for each node i we have as many copies it as we

have time steps t ∈ T Where T is the set of all time steps. The edges of the time expanded network rely on the edges of the

original network. That is for each edge ij in the original network we define edges itjt′ in the time-expanded network where t′ − t
is the travelling time for edge ij. To describe these edges we use a adjacency matrix A where aitjt′ = 1 if the edge ij exists and

the travelling time between i and j is t′ − t and t, t′ ∈ T . As we only model a fixed travel time for all vehicles in this paper, we

omit t′ for simplicity in the following.

Further, we have a long-term timetable as an input which is described through a set of trains V where each train v ∈ V has

a departure and an arrival node 𝑑v and av with an earliest departure time t
𝑑v and a latest arrival tav time at these nodes. These

trains then have to be routed such that the, potentially expanded, capacity is not exceeded.

For each edge and each pair of vehicles, there exists a minimum headway time Mv
1
v

2
ij which states the minimal time train

v2 can leave onto line ij after v1 left station i.
We define binary variables bij that state if the edge ij is expanded. The binary variables xv,i,j,t describe if the edge ij ∈ E is

used by vehicle v ∈ V which leaves node i ∈ N at time point t ∈ T .

Additionally, we introduce VIA-nodes which are stations a train has to pass. For VIA-Nodes, we define a pair (v, n) where

train v ∈ V needs to pass node n ∈ N that is ∃i ∈ N, t ∈ T ∶ xi,n,v,t = 1. Furthermore, connections are specified through a

station and for the connection a pair of trains. In these stations, both trains have to stop and allow the transition of passengers

from the first train to the second one. Connections are given as a tuple (n, v1.v2) where train v1 should arrive at node n before

train v2 to ensure a connection.

3 MIXED INTEGER LINEAR PROGRAMMING FORMULATION

In this section, we want to formalize the network design problem for railways under timetable constraints. We model this

optimization problem through a time-expanded network. The objective of the network design problem for railway infrastructure

is to minimize the expansion costs of a railway network while the constrains ensure that the timetable is conductible.
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292 FRIESEN ET AL.

The optimization model can informally be described as follows:

minimize
bij binary,ij∈E

∑

ij∈E
ExpansionCosti,j ⋅ bij

such that (Expanded) capacity is not exceeded

Earliest departure times are respected

Latest arrival times are respected

Minimum headway times are respected

Flows are conserved

Connections are respected

VIA-Nodes are respected

With the notations from Section 2 we obtain the following mathematical formalization.

Objective function

min

∑

ij∈E
ki,j ⋅ bi,j (1)

The objective function is to minimize the expansion costs. For that, the variable bij for each arc ij becomes true if the capacity

of this arc is expanded. The costs for the expansion of that track ij are given by kij. To obtain the costs for the whole network,

we build the sum of these costs over all arcs.

Capacity

∑

v∈V ,t∈[t
0
,t

0
+̃t]

xi,j,t,v ≤ cij + bij ⋅ c̃ij ∀ij ∈ E, t0 ∈ T (2)

We include the capacity cij as the number of trains on a line which cannot be exceeded per a given time interval t̃. The binary

variables xi,j,v,t are true if train v leaves node i at time t to get to node j. Hence, the sum of these xi,j,v,t needs to be less or equal

to the capacity cij for a predefined time interval t̃ ∈ {1,max{T}}. This needs to be respected for each time interval [t0, t0 + t̃]
for all time points t0 ∈ {0, … ,max{T} − t̃}. This capacity cij can be extended by c̃ij to allow more trains per time window. If

the line is extended, bij has to be true and therefore the costs of the extension have to be respected in the objective function.

Departure and arrival
∑

t<t
𝑑v

x
𝑑v,j,t,v = 0 ∀v ∈ V ,∀j ∈ N

∑

t≥t
𝑑v

a
𝑑vt ,jt′ ⋅ x

𝑑v,j,t,v ≥ 1 ∀v ∈ V ,∀j ∈ N

∑

t>tav

xi,av,t,v = 0 ∀v ∈ V ,∀i ∈ N

∑

t≤tav

ait′ ,avt
⋅ xi,av,t−tt(i,av),v ≥ 1 ∀v ∈ V ,∀i ∈ N (3)

These constraints ensure that no vehicle v leaves before their earliest departure time t
𝑑v which is no xi,j,t,v is 1 for t < t

𝑑v .

Furthermore, they make sure that the departure from the starting node 𝑑v only occurs along an existing line. This is not ensured

by the flow constraints as the starting and end nodes are not included in the flow constraints we use in this model. These

constraints are implemented for the arrival node av and latest arrival time tav accordingly.

Minimum headway time

xi,j,t
1
,v

1
⋅ (Mijv

1
v

2
− (t2 − t1)) − (1 − xi,j,t

2
,v

2
) ⋅ max{0;Mijv

1
v

2
− (t2 − t1)} ≤ 0

∀ij ∈ E, t1 < t2 ∈ T , v1 ≠ v2 ∈ V (4)
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FRIESEN ET AL. 293

Furthermore, we implement minimum headway times. These are defined as the amount of time that has to pass between the

departure of two trains following each other on the same track. They depend on the speed and the acceleration of the trains, the

blocking distance and the distance to the next station which permits a change of the train sequence. Therefore, the minimum

headway time is individually determined for each line ij and each pair of trains (v1, v2).
The most intuitive way to implement the minimum headway time is to multiply the difference between the departure times

and the minimum headway time with the binary variables xi,j,t
1
,v

1
and xi,j,t

2
,v

2
for all ij ∈ E, t1 < t2 ∈ T , v1 ≠ v2 ∈ V which

indicate that the trains are driving on that line at the indicated time. By that, we obtain the constraint

xi,j,t
1
,v

1
⋅ (Mi,j,v

1
,v

2
− (t2 − t1)) ⋅ xi,j,t

2
,v

2
≤ 0 (5)

To avoid this quadratic constraint, we use the linear constraint given in (4). If both trains v1 and v2 use the line (i, j), we

obtain (Mijv
1
v

2
− (t2 − t1)) ≤ 0 which is exactly the constraint we are aiming for. If xi,j,v

1
,t

1
= 1 and xi,j,t

2
,v

2
= 0, we obtain

(Mijv
1
v

2
− (t2 − t1)) −max{0; (Mijv

1
v

2
− (t2 − t1))} ≤ 0 which is true trivially. If xi,j,v

1
,t

1
= 0, Equation (4) becomes (1 − xi,j,t

2
,v

2
) ⋅

−max{0;Mijv
1
v

2
− (t2 − t1)} ≤ 0 which is 0 ≤ 0 for xi,j,t

2
,v

2
= 1 and −max{0;Mijv

1
v

2
− (t2 − t1)} ≤ 0 for xi,j,t

2
,v

2
= 0. Both are

easy to verify.

Flow constraints
∑

i∈N,t∈T ,j≠av

ait ,jt′ ⋅ xi,j,t,v −
∑

i∈N,t′′∈T ,j≠𝑑v

ajt′ ,it′′ ⋅ xj,i,t′,v = 0

∀v ∈ V , j ∈ N, t′ ∈ T (6)

The train paths have to be consistent. That is that no trains appear or disappear somewhere else than their origin or destination

node. This is made sure through the inclusion of flow conservation constraints. All trains that enter a time-space-node have

to leave that node through an existing line except for their arrival node. By including the parameter ait ,jt′ which is true if the

connection is possible we make sure that only existing lines are used.

Connections
Connections are given as a tuple of two trains v1 and v2 and a station i where the connection should occur. By the constraints

|N|∑

n=1

ant ,j′t ⋅ xn,i,t−ttn,i,v1
−

|N|∑

n=1

ait ,nt′ ⋅ xi,n,t,v
2
≥ 0 ∀t ∈ T , (v1, v2, i) ∈ Connections (7)

we ensure that v1 arrives before or at the same time as v2. Furthermore, we need to ensure that train v2 leaves station i. This is

done by

∑

t∈T

|N|∑

n=1

xi,n,t,v
2
≥ 1 ∀(v1, v2, i) ∈ Connections (8)

This already implies by Equation (7) the arrival of train v1 at the station as elsewise Equation (7) could become negative.

VIA-Nodes
∑

t∈T

|N|∑

j=1

xi,j,t,v ≥ 1 ∀(v, i) ∈ VIA − No𝑑es (9)

We can define a VIA-Node i for a train v as a tuple (v, i) ∈ VIA − No𝑑es. This ensures that the vehicle v passes node i at some

time point.

3.1 Robust extension of the model
Since extension measures have a long planning and construction horizon, the long-term timetable, we use to determine the

necessary extensions, is not final. The demand or the traffic policy in the future could differ. To incorporate this uncertainty of

the timetable, we developed a robust version of the model.

We model the uncertainty through two different extensions of the deterministic model:

• Optional trains and

• Different timetables as scenarios.
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First, we introduce optional trains, which can but do not have to be routed. If they are not routed, this leads to a penalty

which is implemented in the objective function. The objective function is therefore changed to

min

∑

ij∈E
ki,j ⋅ bi,j −

∑

v∈Vopt

x
𝑑v,j,t,v ⋅ kv (10)

where kv is the penalty of the optional train v and Vopt ⊆ V is the set of optional trains. The departure and arrival are not

necessary for the optional trains. Therefore, the constraints that force the train to leave and arrive are omitted for the optional

trains v ∈ Vopt.

Arrival and Departure

∑

t<t
𝑑v

x
𝑑v,j,t,v = 0 ∀v ∈ V

∑

t≥t
𝑑v

a
𝑑vt ,jt′ ⋅ x

𝑑v,j,t,v ≥ 1 ∀v ∈ V ⧵ Vopt

∑

t>tav

xi,av,t,v = 0 ∀v ∈ V

∑

t≤tav

ait′ ,avt
⋅ xi,av,t−tt(i,av),v ≥ 1 ∀v ∈ V ⧵ Vopt (11)

As all xi,j,v,t on the time-space-path of the train equal x
𝑑v,j,v,t for some t due to the flow constraints, the path is completely true

or all variables for this train are 0. Therefore, the capacity constraints and minimum headway time constraints do not change due

to the introduction of optional trains. Connection constraints and VIA-node constraints are not implemented for optional trains.

Secondly, we integrated m different scenarios into the optimization. Each scenario has its own set of trains Vn where each

train in V =
⋃

n∈{1,… ,m} Vn has to be routed. Therefore the departure and arrival time constraints (3), the flow constraints (6),

the connection constraints (7) and VIA-node constraints (9) stay the same and have to be fulfilled for all trains. The constraints

(13) and (12) describe interactions between the trains and are used for every Vn independently:

Capacity

∑

v∈Vn,t∈(t0,t0+̃t)

xi,j,t,v ≤ cij + bij ⋅ c̃ij

∀ij ∈ E, t0 ∈ T , t0 < max{T} − t̃, n ∈ {1, … ,m} (12)

Minimum Headway times

xi,j,t
1
,v

1
⋅ (Mijv

1
v

2
− (t2 − t1)) − (1 − xi,j,t

2
,v

2
) ⋅ max{0;Mijv

1
v

2
− (t2 − t1)} ≤ 0

∀ij ∈ E, t1 < t2 ∈ T , v1 ≠ v2 ∈ Vn, n ∈ {1, … ,m} (13)

With these adaptations, we can model a uncertainty set of timetables in which different scenarios with different set of

trains can occur. The optimization model can decide if the network can be extended to be able to schedule optional trains. This

happens through the comparison of the penalty for not scheduling the train and the needed expansion cost for scheduling it.

This uncertainty set allows us to represent a uncertain long-term timetable for operation in a few decades. Based on this, we

can decide which infrastructure measure can be taken to obtain a robust infrastructure.

3.2 Computational results
The following test instances are run on an Intel i7-10700 CPU 2.90 GHz machine with 16 GB RAM using Gurobi 9.1.0 as

optimizer. All the instances are solved to optimality. The runtime is taken as the average out of four resolutions of the same

instance. The test instances are a small extract for 1 h of the German strategic timetable D̈eutschlandtaktïn the area of Dresden,

see [23].

In the deterministic case, we obtain the running times in Table 1.

Already in these small examples, we see the exponentially rising runtime and number of constraints.

For the case with more scenarios, the runtime heavily depends on the partition of the vehicles onto the scenarios as shown

in Table 2. If the vehicles are approximately evenly distributed over the scenarios, the runtime decreases compared to the

deterministic case. This happens as the constraints for the minimum headway time (which are the majority of the constraints)

only occur for vehicles that are in the same scenario. If a higher percentage of the vehicles occur in both scenarios, the number

of constraints and the runtime rise.

 10970037, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22192 by R

w
th A

achen H
ochschulbibliothek, W

iley O
nline L

ibrary on [17/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



FRIESEN ET AL. 295

TABLE 1 Runtime of the optimization model for the deterministic case.

Timesteps Trains Nodes Arcs Runtime (s) Constraints Variables

60 20 30 100 0.7 19,875 1661

60 22 30 100 1.73 26,621 2313

60 24 30 100 1.81 32,265 2965

60 26 30 100 3.77 44,879 4019

60 28 30 100 16.5 56,507 5073

TABLE 2 Runtime of the optimization model for four scenarios and 60 timesteps.

Trains In Sc 1 In Sc 2 In Sc 3 In Sc 4 Nodes Arcs Runtime (s) Constr. Variables

28 7 7 7 7 30 100 1.19 45,502 5076

28 9 8 7 2 30 100 1.59 45,284 5076

28 10 9 7 1 30 100 1.15 45,612 5076

28 12 10 4 0 30 100 0.54 45,612 5076

4 COMPLEXITY

In this section, we are going to analyze the complexity of the network design problem for railways under timetable constraints.

We will show, that the problem is already NP-hard for very simple graphs and timetable structures. Nevertheless, we will give

some examples of specific graph classes in which the problem is (pseudo-)polynomial solvable. We will focus on given, fixed

departure times. Otherwise, we obtain, even if our network consists of only one edge, an interval scheduling problem. This is

shown to be NP-hard in [2] if there exists three or more departure options for any train.

The proof in this section is adapted from [12] who studied the budget-constrained minimum cost flow problem. The network

design problem for railways we study in here is analogous to the dual problem of the budget-constrained minimum cost flow

problem. In this problem, a minimum cost flow is searched for. The costs occur per unit of flow on each arc. Furthermore, a

fixed-charge is applied if the capacity of an arc is not sufficient. This fixed charge is budgeted.

For this proof, we reduce the ExactCoverBy3Sets problem onto the railway network design problem. In this proof, we omit

VIA-nodes and connections for simplicity.

Definition 1. ExactCoverBy3Sets: Given a set X with 3q elements and a set C of 3-element subsets Ci of X. Does

there exist a subset ̃C ⊂ C where each element of X occurs exactly once?

Theorem 1. The railway network design problem is strongly NP-hard to solve even on bipartite graphs and if all
trains have the same, fixed departure time.

Proof. We reduce the ExactCoverBy3Sets-problem to our problem. This problem is shown to be strongly NP-hard

in [6].

If we are given an instance of ExactCoverBy3Sets, we design a network consisting of a source and a sink vertex,

a vertex v′i for each subset Ci and a vertex vj for each element xj ∈ X. We then construct arcs from the source s to

each node v′i and from each node vi to the sink t. Furthermore, we connect each node v′i with the nodes vj if xj ∈ Ci.

All of these arcs have a capacity of 0. Let the expandable capacity c̃s,v′i of the arcs between the source and each v′i
be 3 and the expandable capacity of the arcs between each vi and t and the expandable capacity of the arcs between

v′i and vj equal 1. Let all arcs have a travelling time of 1. The expansion cost for the arcs from the source to each v′i
are 3 while all other arcs have expansion costs of 0. Alternatively, this can be modelled by defining no expandable

capacity and having already a capacity of 1 in these arcs.

For a small example given by X = {x1, … , x6} and C = {{x1, x3, x4}, {x1, x4, x5}, {x2, x5, x6}}, the resulting

network is shown in Figure 1.

In this example, we can easily verify that the sets corresponding to v′
1

and v′
3

would lead to an Exact3Cover.

We define a timetable with X trains which all have the same earliest departure time 0 at their departure node s
and latest arrival time 3 at their arrival node t. This results in a given, specific departure time which is the same for

all trains (and as the minimal travel time is 3, the departure has to be at the earliest possible departure time). All

trains start at node s and end at node t.
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296 FRIESEN ET AL.

FIGURE 1 Resulting graph modeling an Exact3Cover as a railway network design problem.

We consider the decision problem if it is possible to construct a routing with a maximum cost of 3q such that

3q trains can be operated. We show that this is true if and only if the given instance of ExactCoverBy3Sets is a

yes-instance.

Let there exist a schedule for 3q trains with cost ≤ 3q. In this case at most q lines from the source to the nodes

v′i are expanded and can therefore be used to route the trains. Since the capacity of the arcs between s and v′i is 3

each and 3q trains are scheduled, we obtain that at least q arcs have to be expanded. Therefore, 3 trains have to use

each of the expanded arcs between the source and the v′i since there exists exactly as many options to leave s as

there exists trains. Each trains then has to use exactly one of the edges between v′i and vj. Since only q nodes v′i are

used, all arcs between these v′i and their corresponding three successors vj have to be used to route the trains. This

leads to a subset ̃C = {Ci|(s, v′i) is expanded} with q sets such that all elements of X are covered.

Let us now assume that there exists an ExactCoverBy3Sets given as ̃C ⊂ C. With the same correspondence as

before, we can expand the arcs (s, v′i) for each Ci ∈ ̃C. This leads to expansion costs of 3q. Then three trains can

be send through each of these arcs. As there exists an exact cover, these trains can then proceed to the three nodes

vj following v′i and each vj is only visited by one train for which the capacity of 1 between vj and t is sufficient.

This leads to a routing for all 3q trains with a cost of 3q. By this, we show that ExactCoverBy3Sets can be reduced

polynomially onto the network design problem for railways. If we have a train schedule, we can easily verify if it is

feasible. Therefore, the problem is in NP and we have shown that it is strongly NP-hard. ▪

As we used an extremely simple timetable and a very simple costs structure to prove the NP-hardness, a further simplification

of the timetable does not seem helpful to obtain easier solvable special cases. Therefore, we focus in the following on specific

graph classes to find (pseudo-) polynomial solvable subproblems.

4.1 Complexity on arborescences
In this subsection, we show that the network design problem for railway is polynomially solvable on arborescences. An arbores-

cences is an abstraction of a tree onto digraphs. One vertex is defined as a root and all arcs point away from the root. There

exists no cycles. This leads to a unique path between each pair of nodes.

Theorem 2. The railway network design problem is polynomially solvable on an arborescence, if all trains leave
at a fixed departure time.

Proof. If we are given a set of trains with an origin and a departure, the route for each train is unique and therefore

fixed. Hence, we can count the number of vehicles on each arc (either per time step or directly if we set the root

vertex as departure for all trains). We can now verify if the routing is feasible and if the (expandable) capacity on
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FRIESEN ET AL. 297

each arc is respected. It follows directly which arcs need to be expanded. It can be easily seen that all these steps

can be executed in polynomial time in the input size. ▪

However, as the trains potentially use the same lines, we again obtain an interval scheduling problem if we omit the fixed

departure time.

4.2 Complexity on series-parallel graphs
We focus in this section on so called series-parallel graphs, for which we obtain pseudo-polynomial solvability. We neglect

here the fact that trains use the capacity only during their respective travelling time on the line as we would again obtain an

NP-hard interval scheduling problem even on one arc. (This corresponds to choosing the time interval for the capacity constraints

t̃ = max t.)

Definition 2. A series-parallel graph is a graph G = (V ,E) with a source s and a sink t which can be recursively

constructed. Each series-parallel graph is build from two series-parallel graphs through composition as shown in

Figure 2. The simplest series-parallel graph is defined as one edge between s and t. This simple graph can then be

expanded through series and parallel composition. For a series composition of two series-parallel graphs G and G′

the sink t of G is contracted with the source s′ of G′
to obtain a new graph with source s an sink t′. For a parallel

composition the sources s and s′ are contracted to obtain a new source s as well as the sinks t and t′ are contracted

to a new sink t.

Theorem 3. The network design problem for railway infrastructure under timetable constraints is
pseudo-polynomial solvable in

O(|V| ⋅ maxv(ttv) ⋅ (1 ⋅ m + maxv(ttv) ⋅ n + |V| ⋅ m) (14)

for problems with a uniform given departure time.

Proof. By KG(v, tt) we denote the minimal expansion cost on a series-parallel graph for a number of v vehicles and

a maximum travel time for all vehicle of tt time steps.

We start with the case that the network G = (N,A) only consists of one edge. If the extendable capacity is

smaller than the number of trains that want to pass the edge, there exists no feasible solution and the minimum

FIGURE 2 Series and parallel composition for a series-parallel graph.
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298 FRIESEN ET AL.

costs are infinite. If the capacity without any extension is already greater or equal than the number of trains, no

extensions are necessary, so no costs occur. Finally, if the extended capacity is greater or equal to the number of

trains while the existing capacity is smaller, the minimal costs are exactly the extension costs for this edge.

Therefore, we obtain for the expansion costs for the edge ij

KG(v, tt) =
⎧
⎪
⎨
⎪⎩

0 if v ≤ cij

kij if cij < v ≤ cij + c̃ij

∞ if v ≥ cij + c̃ij

(15)

▪

Series composition
For a series composition G = G1◦G2 we show that

KG(v, tt) = min
tt

1
∈(0,tt)

KG
1
(v, tt1) + KG

2
(v, tt − tt1). (16)

The minimal expansion costs for graph G denoted by KG(v, tt) are clearly smaller or equal to the sum of the costs KG
1
(v, tt1)+

KG
2
(v, tt − tt1) for al tt1 ∈ (0, tt) as this is a specific division of G into subgraphs for which the expansion scheme is minimal.

This is not necessarily the minimal expansion scheme for G.

Let us assume there exists a flow x such that

KG(v, tt) < min
tt

1
∈(0,tt)

KG
1
(v, tt1) + KG

2
(v, tt − tt1). (17)

Let x1 denote the flow of G restricted on G1 and x2 the flow restricted on G2. Then either x1 has to have expansion costs lower

than KG
1
(v, tt1) or x2 has to have expansion costs lower than KG

2
(v, tt − tt1) for some tt1 ∈ (0, tt). This contradicts the definition

of KG
1

as minimal, as the flow x has to pass G1 completely and then pass G2 completely by the definition of a series-parallel

graph.

Parallel composition
Let G = G1|G2 be the parallel composition of two series-parallel graphs G1 and G2. Then we obtain for the expansion

cost of G
KG(v, tt) = min

v
1
≤v

KG
1
(v1, tt) + KG

2
(v − v1, tt) (18)

This holds, since we look for the optimal partition of the vehicles onto G1 and G2 with respect to the expansion costs.

For each series-parallel graph, a tree can be constructed whose nodes refer to the series and parallel compositions and whose

leaves represent each single edge. In [27] Valdes et al. show that such a tree for G can be computed in O(m + n) where m is

the number of arcs and n the number of vertices in G. This tree has O(m) inner nodes for parallel composition and O(n) inner

nodes for series composition as well as m leaves which correspond to single arcs. We compute KG(v, tt) for each node in the

composition tree for tt ≤ maxv(ttv) and v ≤ |V|. If the values are computed from the leaves up, it can be assumed that the values

for all subgraphs are known. Therefore, the value KG can be computed in O(1) for a single edge, in O(maxv(ttv)) for a series

composition as we minimize over the travelling times and in O(V) for a parallel composition as we minimize over the partition

of the vehicles onto the parallel graphs. Then we obtain the minimal expansion cost with KG(|V|,maxv(ttv)). Therefore, we

obtain a running time of

O(|V| ⋅ maxv(ttv) ⋅ (1 ⋅ m + maxv(ttv) ⋅ n + |V| ⋅ m). (19)

5 CONCLUSION AND OUTLOOK

In this article, we analyzed the network design problem under timetable constraints. We have shown that the railway network

design problem under timetable constraints is NP-hard to solve on bipartite graphs and have shown some easier solvable cases.

Furthermore, we provided a formalization of the macroscopic railway network design problem under timetable constraints for

both the deterministic and the robust problem formulation using time expanded networks. The robust formulation can be used as

a long-term timetable. This still allows some flexibility to adapt the timetable to changing traffic demand or political conditions

during the long planning process of railway infrastructure. Based on this timetable, the infrastructure planning can be conducted

more demand-oriented and economical.

Our next research goal is to find heuristics and approximations to reduce the running time of the implementation of this

NP-hard optimization problem.
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