
Asset Pricing with Climate Risks

and Heterogeneous Beliefs

Von der Fakultät für Wirtschaftswissenschaften der

Rheinisch-Westfälischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades eines Doktors der

Wirtschafts- und Sozialwissenschaften genehmigte Dissertation

vorgelegt von

Marco Simon Thalhammer

Berichter: Herr Univ.-Prof. Dr. sc. pol. Thomas S. Lontzek

Berichter: Herr Univ.-Prof. Dr. oec. Ole Wilms

Tag der mündlichen Prüfung: 20.10.2023
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Acknowledgements

I am indebted and sincerely grateful to my supervisors Thomas Lontzek and Ole Wilms.

Furthermore, I am thankful to Arthur Enders, Karl Schmedders, and Walter Pohl for our

cooperation on research projects and many valuable discussions we’ve had on the subject. I

am very grateful to all my colleagues at RWTH Aachen for being supportive during my whole

stay.

Finally, I would like to give special thanks to my parents for their enduring support.

i



Abstract

This thesis analyzes how climate risks are priced on financial markets. We show that

climate tipping thresholds, disagreement about climate risks, and preferences that price

in long-run risks are crucial to an understanding of the impact of climate change on asset

prices. Our model simultaneously explains several findings that have been established in

the empirical literature on climate finance: (i) news about climate change can be hedged

in financial markets, (ii) the share of green investors has significantly increased over the

past decade, (iii) investors require a positive, although small, climate risk premium for

holding “brown” assets, and (iv) “green” stocks outperformed “brown” stocks in the

period 2011–2021. The model can also explain why investments in mitigating climate

change have been small in the past. Finally, the model predicts a strong, non-linear

increase in the marginal gain from carbon-reducing investments as well as in the carbon

premium if global temperatures continue to rise.

This thesis also presents an adapted numerical solution approach based on projection

methods and Gauss-Hermite quadrature to solve long-run risk asset-pricing models with

disasters and heterogeneous agents, where closed-form solutions are unavailable. We

demonstrate an effective approach for handling nonlinearities, such as a tipping thresh-

old. The proposed approach demonstrates sufficient accuracy in solving the equilibrium

conditions, making it computationally efficient even for models involving multiple states

and agents.
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1 Introduction

A rapidly growing literature in climate science has identified specific temperature thresholds

beyond which we can expect to see significant and potentially irreversible changes to the

planet’s ecosystems and the services they provide, such as food production, water resources,

and natural habitats. For example, the Intergovernmental Panel on Climate Change (IPCC)

has highlighted the importance of limiting global warming to 1.5°C above preindustrial levels

to avoid the most severe impacts of climate change. There is, however, an ongoing scientific

debate over the uncertainty surrounding the precise magnitude and timing of these thresholds

and the exact impacts that will result from exceeding them.

While natural scientists debate the likelihood and magnitude of climate disasters linked to

temperature thresholds, there remains a widespread and often contentious public debate about

climate change and its risks. This disagreement is reflected in the diverse range of views and

opinions evident among policymakers regarding the appropriate response to climate change,

with positions ranging from inaction to drastic carbon-reduction policies. This ongoing debate

has generated uncertainty about the potential economic impact of policy responses to climate

change, affecting asset values and investment decisions.

In this paper, we provide a novel framework to analyze how climate risks are priced on

financial markets. For this, we integrate temperature thresholds and divergent beliefs about

climate change and policy responses into an asset-pricing model with long-run risks (Bansal

and Yaron 2004) and two types of investors (Pohl et al. 2021). The persistent global average

temperature anomaly, reflecting the degree of warming above preindustrial levels, creates

long-run risk in the model. The two investor types—“green” and “brown”—hold opposing

views on the extent to which changes in global temperature impact consumption disaster

probabilities. While both groups have identical Epstein–Zin preferences with a preference for

the early resolution of risk, green investors believe that climate change has a larger effect

on disaster probabilities, whereas brown investors believe in a smaller impact. We use our

asset-pricing model to examine the pricing of assets with different exposures to climate risks.

“Green” assets have a relatively smaller exposure to such risks than “brown” assets.

We show that the interplay of temperature thresholds, disagreement about climate change,

and Epstein–Zin preferences provides several insights into how climate-related risks are priced

on financial markets. First, the model reveals a new channel for risk sharing: not only is

climate risk itself priced, but the risk of receiving bad news today about the future climate

is also priced. Brown investors implicitly sell insurance against this climate news risk to

green investors. Importantly, climate news risk is only priced if agents care about long-run

risks (Epstein–Zin preferences). In contrast, under expected utility, this insurance on climate

change news is not traded by investors. Second, bad news about the climate, such as an

unexpected acceleration of the global temperature increase, increases the market share of
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green investors because they benefit from buying insurance against such news shocks. Third,

brown stocks carry a larger risk premium (“carbon premium”) compared to green stocks, as

increasing climate risks are followed by governmental responses to slow down climate change

(for example in the form of higher carbon taxes), which affect brown stocks more than green

stocks.1 Fourth, if the temperature threshold to trigger disaster events is sufficiently far away

from the current temperature anomaly, then the corresponding carbon premium is small in the

short run, and large in the long run. (For expected utility, the carbon premium is zero below

that threshold.) In such a scenario, the news-channel effect dominates the carbon-premium

effect, and the model shows an outperformance of green over brown stocks in response to bad

climate news over the short run.

Our asset-pricing model provides a simultaneous explanation for several findings on the

impact of climate risks on financial markets. Notably, the model delivers the following stylized

facts, which have been established2 in recent empirical studies: (i) news about climate change

can be hedged in financial markets (Engle et al. 2020; Ardia et al. 2023); (ii) the market

share of green investors has increased significantly over the past years (Global Sustainable

Investment Alliance 2020; van der Beck 2022); (iii) investors require a premium for holding

assets that are exposed to climate change risk, implying a positive carbon, or more generally,

climate risk premium (Bolton and Kacperczyk 2021; 2022; Bansal et al. 2021; Hsu et al. 2023);

(iv) in contrast, the past decade has shown a strong outperformance of green over brown stocks

(Huij et al. 2021, Pástor et al. 2022).

The model analysis also highlights the significance of temperature thresholds in shaping

the impact of climate investments. In the absence of such thresholds, where disasters can

occur at any time and temperature, the marginal gain from investments to slow down climate

change would initially be large but decrease as climate risks rise. By contrast, if disasters can

only occur after a temperature threshold has been crossed, the marginal gain from investments

is small for low temperatures as the likelihood of crossing the threshold in the (near) future is

low. As temperatures rise and approach the threshold, however, the marginal gains from such

investments increase significantly and become very large. The model predicts that the market

share of green investors, the carbon premium, and the gains from climate investments will

significantly increase if climate risks continue to rise over time, highlighting the importance

of temperature thresholds in shaping market outcomes.

Climate financial risks are a direct consequence of two broad types of risk associated with

climate change. Physical risks arise because climate change can potentially trigger large-

scale catastrophic events. Such events have the potential to cause major disruptions in our

1This essentially implies a positive correlation between physical and transitional climate risks which seems
plausible since governmental responses to slow down climate change should be a consequence of increased
physical climate risks.

2Recent years have seen a surge in research examining the impact of climate financial risks on asset prices; see
Giglio et al. (2021a) for an overview of this literature.
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ecosystem leading to severe weather events such as global droughts, floods, heatwaves, or hur-

ricanes, which may damage assets and infrastructure, impair productive assets, and disrupt

supply chains and business operations (IPCC 2014). The economy also faces transition risk

as a consequence of policy measures, technological changes, and reputational concerns. The

introduction of new regulations, laws, carbon costs, or other policies related to climate change

can have a dramatic impact on companies’ operations and cash flows. As the world tran-

sitions toward renewable energy sources and other sustainable technologies, companies that

fail to adapt or adopt these technologies may face increased costs or declining market share.

Companies that are perceived as not taking climate change seriously may face reputational

damage, leading to a loss of customers, partners, or employees.

In this paper, we use the term climate financial risks to describe the financial risks stem-

ming from both physical and transition risk. If a severe climate disaster materializes, there

are likely also going to be strong governmental responses. In the past, governments have often

been reluctant to introduce effective policies to slow down climate change, such as a large,

globally binding carbon tax or outright restrictions on energy consumption. However, the ac-

tual experience of a climate disaster is likely going to lead to immediate action to slow down

climate change.3 We argue that due to such strong governmental responses, brown firms with

high carbon emissions should also be more exposed to climate risks. In our model, we provide

a new channel through which news about long-term climate risks affect the differential pricing

of brown and green stocks today.

Our asset-pricing model builds on previous finance literature that incorporates climate risks

into financial models. The global temperature anomaly4 is modeled as a highly persistent long-

run risk process as in Bansal and Yaron (2004). Bansal et al. (2021) provide evidence that

long-run temperature changes are reflected in equity valuations. Climate financial risks depend

3For example, throughout the twentieth century, Australia experienced destructive wildfires. But only
following the devastating bushfires (“Black Summer”) of July 2019 to March 2020 did the Australian
Government announce a broad plan aimed at addressing the impacts of climate change and reduc-
ing the risk of future wildfires—the “Australian Bushfire & Climate Plan” of July 2020; see https://

emergencyleadersforclimateaction.org.au/australian-bushfire-climate-plan/, last accessed April
7, 2023. Another instance of a strong policy response following physical damage related to climate change oc-
curred in the United States in the spring of 2023, when the Pacific Fishery Management Council unanimously
approved the closure of fall-run (Chinook) salmon fishing from northern Oregon to the California–Mexico
border. (Limited recreational salmon fishing was allowed off southern Oregon in the fall of 2023.) Clearly,
some overfishing may have contributed to the problem, but essentially a long drought in California (made
worse by climate change) and reckless water usage (due to a policy of the previous federal administration)
resulted in physical environmental damage—namely, the huge decline in the population of Chinook. In re-
sponse to this physical damage, the regulatory body closed an entire branch of the local fishing industry;
see https://www.nbcbayarea.com/news/local/salmon-fishing-ban-west-coast/3200108/, last accessed
April 10, 2023. This policy will not mitigate climate change, but aims to reduce the damage to the fish
population.

4Climate scientists examine a wide range of natural processes to describe climate change. These include
greenhouse gas concentrations, atmospheric circulation patterns, ocean currents, and changes in solar radiation,
and many others. In public discourse, however, climate change is often simply described by the increase in
the global temperature compared to its value in the preindustrial era.
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on the global temperature anomaly and are modeled as catastrophic events as in Barro (2006),

Gabaix (2012), and Wachter (2013). Since climate change poses significant financial risks to

households, businesses, and investors due to the increased likelihood of catastrophic events

that have the potential to cause significant economic damage, using a standard approach,

one would expect that such low-probability large-impact events should command a large risk

premium (Rietz 1988; Barro 2006). Recent studies, however, have yielded mixed results on

the pricing of climate risks on financial markets. The key difference between our paper and

the standard approaches to modeling catastrophic events in asset pricing is our inclusion of

climate tipping points, which we show is crucial to an understanding of how climate risks are

priced on financial markets. Giglio et al. (2021b) use real estate data to estimate discount rates

for the valuation of investments in climate change abatement. In their model, they do not

include a temperature process but instead use a persistent process for an endogenous climate

disaster probability. They show that the term structure of discount rates for climate-hedging

investments is upward sloping, but bounded above by the risk-free rate.

Our model also builds on the existing literature that analyzes the impact of disagreement

on financial markets with Epstein–Zin investors. Borovička (2020) analyzes the incentives to

trade risks for models with recursive utility when agents disagree about the expected growth

rate of consumption. He shows that optimistic investors with fundamentally wrong beliefs can

survive in the long run so that the classical market selection hypothesis no longer holds for

models with recursive utility. Pohl et al. (2021) show that even small belief differences have

large effects in models with long-run risks and recursive preferences and that the disagreement

can help to explain several asset-pricing puzzles. Chen et al. (2012) and Branger et al. (2020)

analyze the impact of disagreement about disaster risks on financial markets. While the former

show that disagreement about disaster risk generates strong risk sharing motives such that

even a small share of optimists is sufficient to significantly reduce the disaster risk premium,

the latter analyze how market incompleteness affects risk sharing incentives.

The significance of news as a separate source of priced risk for Epstein-Zin investors was

first identified by Ai and Bansal (2018). In that setting, Epstein-Zin investors demand an

additional premium around macroeconomic announcements, a premium that is absent for

CRRA investors.

Pástor et al. (2021) provide an alternative explanation how the outperformance of green

over brown stocks in the past decade can be reconciled with a positive carbon risk premium.

Their premise is that investors enjoy holding green assets. When bad news about the climate

arrives, the tastes of investors and hence their portfolio weights shift to holding a larger

fraction of green assets. This drives up the prices, and hence the returns of green investments.

Heeb et al. (2022) provide evidence that investors are willing to pay more for green assets,

however the willingness does not increase with the greenness of the asset in contrast to the

4



assumption in Pástor et al. (2021).

Our explanation in turn is solely based on differences in beliefs about the impact of climate

change. Ardia et al. (2023) construct a climate concern index based on newspaper articles

on climate risks and show that bad news about the climate increases the value of green

firms and decreases the value of brown firms. Moreover, their climate index allows them to

analyze whether climate news affects the valuations of green and brown assets through changes

in expectations about the future cash flows of the firms or through changes in investors’

preferences. They find that returns are affected via both channels and hence provide evidence

for both theories, the one presented in this paper as well as the model in Pástor et al. (2021).

Integrating recursive preferences into asset-pricing models can offer valuable insights into

the pricing of climate risks on financial markets. However, this enhanced model complexity

typically does not allow for analytical solutions and demands higher computational power

to accurately solve the model. Daniel et al. (2016) tackle their ’EZ-Climate model’ using a

discrete-time binomial tree model. In contrast, we opt for numerical methods as demonstrated

in Pohl et al. (2018), employing a global collocation projection approach to solve our model

framework. This numerical approach proves to be more suitable for our analysis, providing

precise solutions for our research objectives.

The remainder of this paper is organized as follows. Section 2 documents empirical findings

on the impact of climate risks on financial markets as well as the key underlying assumptions

for our climate economy. In Section 3 we present our model, as well as the key mechanism

via which climate risks are traded in response to belief differences. Section 4 discusses the

outcomes of our model and relates them to the data. Section 5 provides details about the

numerical solution methods used to solve the model and accuracy of the results. Section 6

concludes.
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2 Climate Change: Selected Empirical Findings

Our asset-pricing model draws upon established insights from the climate change literature

that have not yet received much attention in finance. In Section 2.1 we provide a brief review

of the pertinent literature. Our model produces testable implications for the pricing of climate

risks, which we contrast with empirical evidence from the finance literature, in Section 4. For

this purpose, we document several stylized facts from financial markets, in Section 2.2.

2.1 Temperature Thresholds and Differences of Opinion

Our asset-pricing model relies on two fundamental assumptions derived from the climate

change literature. First, we include a temperature threshold beyond which climate-induced

consumption disasters can occur. Second, we model two distinct groups of investors that have

divergent views on the probability of occurrence of those disasters.

Climate scientists use the term climate system tipping point to refer to a critical threshold

in crucial components of the Earth’s climate system—the tipping elements—beyond which

rapid and irreversible changes can occur (Lenton et al. 2008). For example, Arctic sea ice has

been shrinking rapidly in recent decades due to global warming. As the ice cover reduces, more

sunlight is absorbed by the ocean, leading to further warming and the melting of the remaining

ice. This positive feedback loop could eventually lead to the Arctic becoming ice-free in the

summer, which would have significant consequences for the climate, ecosystems, and human

societies in the region and beyond. Other potential tipping elements in the climate system

include the collapse of the West Antarctic Ice Sheet, the slowdown of the Atlantic meridional

overturning circulation (AMOC), and the release of methane from thawing permafrost and

clathrates in the ocean.

Several works in climate economics have developed models incorporating climate system

tipping points; see, for example, Lemoine and Traeger (2014), Lontzek et al. (2015), van der

Ploeg and de Zeeuw (2018), and the discussion in Cai (2021). Typically these models address

a specific tipping element or an ensemble of tipping elements. Cai et al. (2017) and Cai and

Lontzek (2019) in turn assume a representative tipping element, whose nature is stochastically

evolving. Consequently, these models embed for each tipping element a distinct tipping point.

Recently, Armstrong McKay et al. (2022) presented an updated assessment of the location

of tipping points for major tipping elements, considering both regional and global tipping

elements. While a few tipping elements may be triggered within the 1.5°C–2°C range, most

tipping points are expected to be located beyond 2°C, with a considerable range of uncertainty

regarding the location of that critical internal threshold. Building on this literature, our asset-

pricing model also integrates the concept of a critical threshold. However, in contrast to the

abovementioned studies we define a temperature threshold beyond which catastrophic events

6



can be triggered. We do not model any particular tipping element but rather the direct adverse

impacts on the economy resulting from catastrophic events. Thus, our temperature threshold

can be viewed as a generic tipping point, and in the subsequent discussion we will use the term

“tipping point” in that sense. Since the likelihood of a climate-induced consumption disaster

is zero as long as the global temperature anomaly remains below this tipping point temper-

ature, we are assuming a safe operating space in that temperature range. Once the global

average temperature exceeds its tipping point level, the risk of a disaster occurring increases

significantly. The existence of tipping points with regard to climate disasters distinguishes

our model from the conventional approach to modeling consumption disasters in asset pricing,

which allows potential disasters to occur at any time; see, for example, Barro (2009), Gabaix

(2012) and Wachter (2013). We demonstrate that this difference has significant consequences

for the pricing of assets that are vulnerable to climate risks.

Models with tipping points have previously been proposed in the asset-pricing literature.

Bansal et al. (2016) set a temperature threshold of 2°C for a tipping point, after which a

quadratic loss function (in temperature) describes the expected disaster size, and the proba-

bility of disaster increases linearly with temperature. Daniel et al. (2016) introduce a model

with a positive probability of a tipping point, leading to a large negative shock to consumption

as soon as the temperature rises above its 2015 level; in our model, this approach corresponds

to an immediate disaster risk.

The scientific consensus on climate change is that it is real, primarily caused by human

activities, and poses a significant threat to planet Earth and its inhabitants. This consensus

is shared by an overwhelming majority of climate scientists and scientific organizations. How-

ever, some individuals and organizations, often those with significant political and financial

influence, reject this scientific evidence and consensus, often for ideological or economic rea-

sons. Therefore, despite the emergence of a scientific consensus in recent years there is still

considerable debate regarding the potential impact of global warming on the real economy, as

documented by an extensive literature.

In his book Why We Disagree about Climate Change, Hulme (2009) sheds light on the

factors that contribute to such disagreement, arguing that while climate change is a physical

phenomenon, it has also taken on social, cultural, and political dimensions. These additional

dimensions have resulted in varying beliefs and attitudes to climate change, as reflected in

public surveys such as that of Howe et al. (2015) and Saad (2017). Despite an increase in

the proportion of Americans who express concern over climate change and acknowledge its

anthropogenic causes, a significant portion of the US population still does not share these

concerns or recognize the consequences of climate change. For example, according to the

survey by Howe et al. (2015), in 2014 only 58% of the respondents believed that climate

change will significantly harm future generations.
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For a wide range of tipping elements Armstrong McKay et al. (2022) show that the proba-

bility of exceeding climate tipping points rises with higher temperature levels. There is, how-

ever, a high degree of uncertainty regarding future emission paths and thus regarding future

climate change. This uncertainty in turn affects the likelihood of climate-induced disasters.

Using the expert elicitation study of Kriegler et al. (2009), Lontzek et al. (2015) develop a

method to compute contemporaneous, temperature-dependent hazard rates of triggering var-

ious tipping points. Cai et al. (2016) use this method to compute cumulative probabilities of

triggering major global tipping points. With 2.8°C in 2100 the likelihood of having crossed

at least one of five major tipping points is 46.3 percent. In another scenario with 4.7°C in

2100 that likelihood is 87.11 percent. Yet in a very optimistic scenario with 1.5°C in 2100

that likelihood is only 11.49 percent. These findings reveal considerable disagreement about

the probability of a climate-induced disaster, particularly as global temperatures rise.

Bernstein et al. (2022) provide insights into differences in beliefs regarding the impact

of climate change, based on real estate market data. Through a comparison of individual

properties in the same US zip code, the authors find that houses with higher exposure to sea

level rise due to climate change are more likely to be owned by Republicans than by Democrats.

This suggests that Republicans are less concerned about climate risks, and therefore more

willing to hold assets that are exposed to high climate risk. In a similar vein, Baldauf et al.

(2020) use an equilibrium model of housing choice to demonstrate that house prices reflect

heterogeneity in beliefs regarding long-term climate change risks.

Given the existence of varying beliefs regarding the severity and future scenarios of cli-

mate change, it is reasonable to assume that investors may hold different beliefs about the

associated risks. In our asset-pricing model, we account for this fact by explicitly allowing for

heterogeneous beliefs among two groups of investors.

2.2 Empirical Findings on Financial Markets

In recent years there has been a notable growth in the literature exploring the impact of

climate-related financial risks on the pricing of financial assets. For an overview of this rapidly

growing research area, see Giglio et al. (2021a). In the following we limit our focus to a review

of the most pertinent literature that directly relates to the research presented in the present

paper. In particular, we discuss four stylized facts.

First, news about climate change can be hedged on financial markets. Engle et al. (2020)

show how to construct portfolios that provide a hedge against news about climate change.

They measure the “greenness” of a stock by its environmental score from environmental,

social, and governance (ESG) ratings and show that green stocks are less exposed to climate

news compared to brown stocks. Using a mimicking portfolio approach to construct portfolios,

Engle et al. (2020) show that a portfolio that is long in green stocks and short in brown stocks
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can efficiently hedge climate change news. Furthermore, to test the theory of Pástor et al.

(2021), Ardia et al. (2023) construct a climate change concern index based on newspaper

articles and show that brown stocks are more exposed to climate concern shocks than green

stocks are. Hence, a portfolio long in green and short in brown stocks can be used to hedge

climate news. Moreover, the authors’ climate index allows them to analyze whether climate

news affects the valuations of green and of brown assets through changes in expectations

regarding the future cash flows of the firms or through changes in investor preferences as

suggested by Pástor et al. (2021). They find that returns are affected via both channels.

Second, the market share of green investors has increased significantly over the past decade.

The Global Sustainable Investment Alliance (2020) reports that the market share of sustain-

able investments increased by 8% from 2016 to 2020. While 27.9% of global assets under

management were sustainable investments back in 2016, this figure had increased to 35.9% by

2020. Figure 1 from the Alliance’s Review (2020) shows the share of investments in sustainable

assets for different countries.5 From 2014 to 2021, the market share of sustainable investments

increased in Canada, the United States, Australia/New Zealand, and Japan. Europe is the

only exception, the share of green investing having decreased over the years.6

Asset managers’ willingness to invest in sustainable investments has experienced a signif-

icant upswing in recent years. Figure 2, sourced from Principles of Responsible Investment

(2021), highlights the rise in the number of Principles of Responsible Investment (PRI) in-

vestor signatories and the collective assets under management from 2006 to 2021. The number

of signatories has consistently grown in the past decade, with the collective assets under man-

agement represented by all 3,826 PRI signatories (comprising 3,404 investors and 422 service

providers as of 2021) amounting to approximately US $121 trillion as of March 31, 2021. It is,

however, important to note that these commitments do not automatically translate into better

ESG scores for signatory companies everywhere. This is demonstrated by Gibson Brandon

et al. (2022), who find that such a translation only applies to institutions outside the US. In

the US, meanwhile, there is a disconnect between what institutional investors claim to do and

what they actually do, which could be interpreted as a form of “greenwashing” by US PRI

signatories. The increase in the fraction of people who see climate change as a threat is also

visible in the survey by Howe et al. (2015). While in 2014 only 58% of the respondents said

that they believe climate change will significantly harm future generations, this number has

increased to 64% in 2021.7

5Note that sustainable assets here contain all ESG classifications. However, given the rising climate concerns
of the past decade, it seems plausible to assume that these results are not purely driven by increases in
investments in assets with high S and G scores.

6EU regulation resulted in the declassification of previously sustainable investment as no longer sustainable,
which explains the downward trend in Europe; see Regulation (EU) 2019/2088 of the European Parliament
and of the Council of 27 November 2019, https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=
CELEX:32019R2088&from=EN#d1e1107-1-1.

7We thank the authors for making their survey data publicly available.
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Figure 1: Share of Sustainable Investments

The figure plots the share of investments in sustainable assets for different countries. Source:
Global Sustainable Investment Alliance (2020).

Figure 2: PRI Investor Signatories

The figure plots the development of the number of PRI investor signatories and collective
assets under management from 2006 to 2021. Source: Principles of Responsible Investment
(2021).
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Third, investors demand a premium for holding assets that are exposed to climate change,

either due to higher carbon emissions or to greater sensitivity to long-term temperature

changes, indicating a positive carbon—or more generally—climate risk premium (Bolton and

Kacperczyk 2021, 2022; Bansal et al. 2021). Fischer and Lundtofte (2021) show in a long-

horizon asset-pricing model that stocks with a sufficiently adverse impact on the climate should

yield a positive alpha relative to the CAPM. However, the observed magnitude of the climate

risk premium has been limited in the past decade, and some alternative studies (Aswani et al.

2023; Bauer et al. 2022; Enders et al. 2023) have failed to identify a positive climate risk

premium.Sautner et al. (2023a) use earning call announcements to derive detailed firm-level

exposures to various climate risks and Sautner et al. (2023b) find that the unconditional risk

premium of firm-level climate change exposures among S&P 500 stocks has been insignificant

(after controlling for realized returns). While most studies analyze the carbon premium using

realized, ex post returns, Pástor et al. (2022) also try to estimate the carbon premium using

expected returns. They do this by using the difference in implied costs of capital and by

controlling for surprises to either climate concerns or earnings of green versus brown stocks.

This results in a slightly positive carbon premium. As we explain below, our model offers an

explanation for why climate risk premia have remained relatively small in the past but are

likely to increase significantly in the future.

Fourth, green stocks outperformed brown stocks during the decade prior to the COVID-19

pandemic. This finding is robust to either using environmental scores from ESG ratings as a

measure of greenness, as used by Pástor et al. (2022), or directly using emissions data to assess

the carbon footprint of a company, as employed by Huij et al. (2021). Both studies report

an outperformance of a portfolio of green stocks over a portfolio of brown stocks, of 59% and

45% from 2010 until 2021, respectively.8 van der Beck (2022) provides evidence of significant

fund flows toward sustainable funds and shows that the temporary outperformance of green

over brown stocks can be explained by the price pressure arising from these fund flows.

We return to these four stylized facts in the discussion of the key implications of our asset-

pricing model in Section 4. In addition, our model has further implications. Investments and

policies aimed at curbing global carbon emissions have been insufficiently effective in signif-

icantly slowing down climate change, rendering a climate catastrophe increasingly probable

according to numerous climate experts. While we recognize that there may be various reasons,

particularly political ones, for the tardy response to climate change that we do not consider

in our model, it provides a partial, market-based rationale for the historically low levels of

investment in carbon-reducing technologies in financial markets. Furthermore, our model pre-

dicts that the marginal benefit of mitigating climate change is set to rise exponentially as the

average global temperature (anomaly) approaches the climate tipping point.

8We would like to thank the authors for providing us with their portfolio return series.
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3 The Economy

We consider an endowment economy where changes in global temperature can potentially

trigger climate-induced disasters. Log consumption growth ∆ct+1 ≡ log
(
Ct+1

Ct

)
is given by

∆ct+1 = µc + σηηt+1 +Dt+1, (1)

where ηt+1 ∼ i.i.d. N(0, 1) and Dt+1 are climate-induced consumption disasters. Similar

specifications to model the impact of climate change on the economy have also been used in

Bansal et al. (2021), Karydas and Xepapadeas (2019), Giglio et al. (2021b), and Giglio et al.

(2021a). As in Wachter (2013), we assume that

Dt+1 = Nt+1d, (2)

where d is the disaster-induced decline in consumption growth and Nt+1 is a Poisson counting

process with time-varying intensity πt. In line with the climate economics literature (see,

for example, Lontzek et al. (2015)), we assume that disaster probabilities depend on climate

change:

πt = g(Tt), (3)

where Tt denotes the global temperature anomaly measured in degrees Celsius—so, temper-

ature rise above preindustrial levels. Note that the true temperature process is irrelevant

for asset prices but that what matters are the beliefs of investors about climate risks. For

example, Choi et al. (2020) show that investors update their beliefs about climate change in

response to abnormally hot weather and Acharya et al. (2022) provide direct evidence that

physical climate risk in the form of heat stress affects asset prices. The latter argue that this

effect could be driven either by increased physical risk itself or by increased investor awareness

of these kinds of risks, in line with our interpretation of climate risks.

So, Tt can be viewed more broadly as what investors believe about the global temperature

anomaly. Hence, events such as extremely high temperatures or climate events such as the

Paris Agreement are likely to shift the attention of investors and affect their beliefs about

climate change. We do not adopt a specific stance on how investors form their expectations,

but simply assume that climate change news is subsumed in the innovations to Tt.

The true function g(Tt) is unknown and there are two groups of investors, h ∈ {G,B}, who
disagree over how much changes in global temperature affect the probability of a consumption

disaster. We assume that the green investor, G, believes that climate change has a large

impact on disaster probabilities while the brown investor, B, believes in a smaller impact:

gG(Tt) ≥ gB(Tt), (4)
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where gh(Tt) = πht denotes the beliefs of agent h about the probability of a climate-induced

disaster. We assume that

gh(Tt) =

0, if Tt < Ttipp

lhTt, otherwise,
(5)

where lG > lB. Ttipp denotes the threshold temperature above which climate-induced disasters

can occur. Hence, as long as global temperature, Tt, is below the tipping point Ttipp, the

climate-induced disaster probability is zero.9 Only if the tipping point is crossed do disaster

probabilities increase proportionally to temperature. Investors disagree on the magnitude of

this effect.

As argued in Section 2.1, climate experts disagree significantly regarding the probability

of climate-induced disasters and their impacts on the economy. Furthermore, also in line with

our model assumptions, that disagreement is growing with rising temperature levels.

We assume that global temperature, Tt—or, more precisely, what investors believe about

the dynamics of global temperature—follows an AR(1) process and is given by

Tt+1 = µT (1− ν) + νTt + σζζt+1, (6)

where ζt+1 ∼ i.i.d. N(0, 1). As argued above, from an investor perspective the shocks ζt+1

can be viewed as news about climate change. Note that in the climate economics literature

it is common practice to model emissions, which then affect global temperature, and that

emissions might themselves be a function of consumption growth. To demonstrate our main

findings, we abstract from such feedback loops in our model, although they do constitute an

interesting avenue for future research. In Appendix E we provide an illustrative examination

of the relationshop between consumption growth, emissions and temperature, as presented

in Bansal et al. (2021). We also discuss how this can be linked to the AR(1) process for

temperature within our model framework.

We consider the pricing of two different assets: a green and a brown stock. We argue

that brown stocks should be more exposed to climate financial risks for the following reason:

Assume that a climate disaster such as a significant increase in sea level that causes large-

scale flooding materializes. Such an event will put pressure on governments to take immediate

actions to slow down climate change. So even though policymakers might have in the past

been reluctant to put stringent climate policies in place, they are likely to do so if severe

damage due to climate change materializes. Hence, brown stocks will not only be exposed

to the physical disaster itself, but additionally their future cash flows should decrease due to

9We acknowledge that, in general, threshold temperature levels are unknown and today’s temperature level
might lie beyond a safe operating space. In fact, we assume a positive but negligible probability if Tt < Ttipp.
A state with 0 probability is not possible as the subjective distribution dPB

t,t+1 in (15) would no longer be

absolutely continuous with respect to dPG
t,t+1.
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more stringent climate policies.

Hence, we assume that the log dividend growth, ∆dit+1 ≡ log
(
Dit+1

Dit

)
, of asset i is given by

∆dit+1 = µd + Φσηηt+1 + kiDt+1, (7)

where the market portfolio has a climate exposure of ki = 1, brown stocks are more exposed

to climate disaster risks with ki > 1, and green stocks have ki < 1. Mean log dividend growth

is represented by µd and Φ denotes the leverage parameter to account for the excess volatility

of dividend growth over consumption growth.

3.1 Investors

We assume that there are two groups of investors, h ∈ {G,B}, with Epstein–Zin preferences

(see Epstein and Zin (1989) and Weil (1989)). We argue below that this is crucial to obtaining

risk sharing dynamics in line with the empirical evidence on the hedging of climate risks. By

having two different parameters to account for agents’ willingness to substitute consumption

across (uncertain) states of nature and across time, Epstein–Zin preferences allow for simulta-

neously having a high risk aversion and low risk-free rate, consistent with the equity-premium

puzzle. Let V h
t denote agent h’s continuation utility in period t:

V h
t =

[
(1− δ)

(
Ch
t

)1− 1
ψ + δEh

t

(
(V h

t+1)
1−γ) 1− 1

ψ
1−γ

] 1

1− 1
ψ

, (8)

where Ch
t is the individual consumption of agent h. We normalize this function by aggregate

consumption, vht = V h
t /Ct, so that

vht =
[
(1− δ)(sht )

ρ + δRh
t

(
vht+1 · e∆ct+1

)ρ] 1
ρ , h ∈ {G,B}, (9)

with sht =
Cht
Ct
, and Rh

t (x) =
(
Eh
t (x

α)
) 1
α being the certainty equivalent operator. Eh

t (.) denotes

the expectation of agent h conditional on information at time t. While agents have different

beliefs, they share the same preference parameters.10 The subjective discount factor is denoted

by δ, ρ = 1 − 1
ψ

determines the elasticity of intertemporal substitution ψ, and α = 1 − γ

determines the relative risk aversion, γ, of the agents. By setting α = ρ we obtain the special

case of CRRA preferences.

10This assumption could be relaxed, as, for example, shown in Pohl et al. (2021).
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3.2 Equilibrium

We solve for the equilibrium consumption shares using the numerical procedure proposed by

Pohl et al. (2021).11 The social planner maximizes the weighted sum of the individual agents’

utilities where λht denotes the optimal weights (also called Negishi weights) that are determined

in equilibrium. The endogenous state variable λht captures the time-varying weights of the

two agents in the social planner’s problem.12 The Negishi weights are linked to the individual

consumption shares sht via the following first-order optimality condition for the individual

consumption decisions:

λGt (1− δ)(sGt )
ρ−1 = λBt (1− δ)(sBt )

ρ−1, (10)

subject to the market-clearing condition

sGt + sBt = 1. (11)

By reformulationg 10, the Negishi weights are linked to the individual consumption shares sht

via
λGt
λBt

=

(
sGt
sBt

) 1
ψ

. (12)

Note that the weights are monotone in st, and hence that an increase in λht implies an increase

in sht . Agents with an increasing consumption share over time will therefore also have an

increasing weight in the optimization problem. The dynamics of the Negishi weights are given

by the following equation:

λBt+1 =
λBt Π

B
t+1

λGt Π
G
t+1 + λBt Π

B
t+1

, (13)

with

Πh
t+1 = δeρ∆ct+1

dP h
t,t+1

dPt,t+1

(vht+1e
∆ct+1)α−ρ

Rh
t (v

h
t+1e

∆ct+1)α−ρ
, h ∈ {B,G}. (14)

By plugging in equation 14 into equation 13, the dynamics of the Negishi weights in

equilibrium are given by

λBt+1

λGt+1

=
λBt
λGt

dPB
t,t+1

dPG
t,t+1

(
(vBt+1)

RB
t (v

B
t+1e

∆ct+1)

RG
t (v

G
t+1e

∆ct+1)

(vGt+1)

) 1
ψ
−γ

, (15)

where P h
t,t+1 denotes the subjective distribution of the state at t + 1 conditional on time t

11To obtain sufficient accuracy of our numerical solution, we require that Euler errors are less than 10−4. More
importantly, we double check that there are no changes in the economic outcomes of the model, such as the
carbon premium or the welfare cost of carbon, if the accuracy is increased. Put differently, further increasing
the accuracy has only a negligible effect on equilibrium outcomes. Details are provided in Section 5.

12The Negishi weights can be normalized in a way that the following condition has to hold: λG + λB = 1. In
the reminder of this paper, we will always refer to the normalized Negishi weights.
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information. The term dPB
t,t+1/dP

G
t,t+1 is the Radon–Nikodym derivative of PB

t,t+1 with respect

to PG
t,t+1. Knowing the true conditional distribution Pt,t+1, given the information at time t,

we can rewrite each agent’s subjective expectations P h
t,t+1 about the state of the economy in

the next period in terms of the true distribution:

Eh
t [x] = Et

[
x
dP h

t,t+1

dPt,t+1

]
, (16)

for some measurable function dP h
t,t+1/dPt,t+1.

Note that in our model investors disagree about climate disaster probabilities, which de-

pend on the state of the economy Tt. However, they agree on the dynamics of temperature

itself as well as on the normal shocks to consumption. Hence, the only relevant elements

(non unit elements) in dPB
t,t+1/dP

G
t,t+1 arise from the disagreement about Dt+1. The subjective

distribution for the disaster term is given by

P h(Nt+1 = x|πht > 0) =
(πht )

x

x!
e−π

h
t . (17)

In the special case πht = 0, before reaching the tipping threshold, it trivially holds that

P h(Nt+1 = 0|πht = 0) = 1 and P h(Nt+1 = x|πht = 0) = 0 for x > 0. It follows that

dPB
t,t+1

dPG
t,t+1

=


(
πBt
πGt

)x
e−π

B
t +πGt πBt , π

G
t > 0

1 πBt = πGt = 0.
(18)

In Appendix D we show the corresponding probability ratios when we assume a binary,

i.e. 0/1 disaster process instead of a Poisson counting disaster process.

3.3 Climate Risk Sharing

In the following we explain how investors with Epstein–Zin utility share risks—that is, both

shocks to news about climate change modeled by changes in global temperature and climate

disaster risks depending on the climate tipping point. In particular, we show that, in line

with the financial market data, investors share temperature risks, while climate disaster risks

are only traded once the tipping point is crossed. Furthermore, we argue below that these

risk sharing dynamics can explain the empirical findings on the performance of brown and of

green assets and the shares of brown and of green investors.

For this, we first consider the special case of CRRA preferences. In this case, equation

(15) simplifies to
λBt+1

λGt+1

=
λBt
λGt

dPB
t,t+1

dPG
t,t+1

.
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Hence, for CRRA preferences all that matters for the next period’s consumption shares is the

disagreement about the state in the subsequent period. Assume that Tt < Ttipp. In this case

πBt = πGt = 0 and hence λht+1 = λht . So investors have no incentive to trade with one another

as they agree on the subsequent state of the economy. Hence, the wealth shares of brown

and green investors would stay constant under these assumptions. In contrast, if Tt ≥ Ttipp,

investors disagree about the probability of a climate disaster and we obtain

dPB
t,t+1

dPG
t,t+1

=

(
lB

lG

)x
e(l

G−lB)Tt .

As lG > lB, it follows that λBt+1 > λBt if x = 0. Intuitively, the brown investor believes

in a lower probability of disaster. Hence, he is willing to speculate that no disaster occurs

in the subsequent period. If in fact no disaster materializes, his consumption share will

increase. In contrast, λBt+1 < λBt if x > 0. The green investor believes in a larger disaster

probability and hence her consumption share will increase if a disaster materializes. This is the

speculation motive highlighted in Borovička (2020) and Pohl et al. (2021). This has interesting

implications for the market shares of investors. It implies that as long as no disaster occurs,

the share of brown investors must either stay constant or increase over time, which contrasts

with recent evidence on the increasing market shares of green investors; see Section 2.2.

For Epstein–Zin preferences, there arises an additional risk sharing motive in equation

(15), captured by the term

(
(vBt+1)

RB
t (v

B
t+1e

∆ct+1)

RG
t (v

G
t+1e

∆ct+1)

(vGt+1)

) 1
ψ
−γ

.

We focus on the case where γ > 1
ψ
, which implies that investors have a preference for the early

resolution of risks—a common assumption in modern asset-pricing models (see, for example,

Bansal and Yaron (2004) and Wachter (2013)). Suppose that a state materializes that the

green investor particularly dislikes, i.e. such that

(vBt+1)

RB
t (v

B
t+1e

∆ct+1)
>

(vGt+1)

RG
t (v

G
t+1e

∆ct+1)
.

This implies (
(vBt+1)

RB
t (v

B
t+1e

∆ct+1)

RG
t (v

G
t+1e

∆ct+1)

(vGt+1)

) 1
ψ
−γ

< 1

so that the consumption share of the brown investor decreases and, in turn, the share of

the green investor increases. In this case investors essentially trade insurance against states

that they particularly dislike based on their beliefs. This is what Borovička (2020) and Pohl

et al. (2021) call the risk sharing motive. In our model, green investors particularly dislike
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increases in temperature as these increase the probability of a climate disaster. Hence, the

green investor can buy insurance against these increases from the brown investor, such that she

gets compensated by a larger consumption share when the bad temperature state materializes.

Thus, for Epstein–Zin preferences (unexpected) increases in temperature lead to an increase

in the consumption share of the green investor. This effect is present even if Tt < Ttipp as

long-term changes in Tt are priced in by Epstein–Zin investors. In Section 4 we show that

this effect is quantitatively large for common calibrations of the model and can explain the

outperformance of green stocks.

3.4 Wealth Shares and Asset Prices

In this brief section, we discuss the relation between the consumption shares of the investors

and their respective wealth shares or market shares (we use the two terms interchangeably in

the following) and show how to price any asset in our modeling framework.

The wealth share, wht , of investor h is given by

wht =
W h
t

Wt

,

where W h and Wt denote the wealth of investor h and total wealth, respectively. We compute

wht using the identity

wht = sht ·
W h
t

Ch
t

·
(
Wt

Ct

)−1

.

The aggregate wealth–consumption ratio Wt

Ct
follows from the standard asset-pricing equation

Eh
t (M

h
t+1R

i
t+1) = 1,

where Mh
t+1 denotes the stochastic discount factor:

Mh
t+1 = δ ·

∂vht
∂Cht+1

∂vht
∂Cht

.

Hence, the stochastic discount factor (SDF) depends on the ratio of the partial derivative of

continuation utility with respect to future consumption to the partial derivative of continuation

utility with respect to today’s consumption. The SDF is a fundamental concept in asset pricing

theory and helps to explain why some assets have a higher expected return than other assets.

In general, the SDF provides the appropriate discount rate for valuing payoffs in a specific

time-period and state of the world. These states of the world are typically linked to different

consumption levels.
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For Epstein–Zin preferences, Mh
t+1 is given by

Mh
t+1 = δ ·

(
sht+1

sht

)− 1
ψ (
e∆ct+1

)−γ · ( vht+1

Rh
t (v

h
t+1e

∆ct+1)

) 1
ψ
−γ

,

and the wealth–consumption ratio of investor h satisfies

W h
t

Ch
t

=
1

1− δ
·
(
vh

sh

)1− 1
ψ

. (19)

As explained in Cochrane (2017), in models with recursive preferences and long-run risk,

people are afraid of assets that go down when there is bad news about long-run future con-

sumption growth. This can explain the risk premiums between different assets. While some

may view this as a limitation of the model, as there is not always a constant stream of news

about long-run consumption growth, global warming could naturally act as a source of long-

run risk which introduces uncertainty about future states of the world. In our model, investors

demand a risk premium for holding stocks that go down when unexpected positive shocks to

temperature occur. This is why the model produces a positive carbon premium even in the

distant tipping point case.

We are using the equations from above to solve the wealth–consumption ratio and price–

dividend ratios in our model, which are discussed in detail in Section 4. Figure 31 in Appendix

A plots the consumption share of the green investor against her wealth share for the calibration

of our economy presented in Section 4. We find that there is almost a one-to-one mapping

between the two. So, changes in consumption shares imply equivalent changes in wealth

shares, and we use the two terms interchangeably.
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4 Results and Discussion

In the following we present the predictions of our climate finance economy and show that

it can match the climate risk sharing dynamics on financial markets, the market shares of

green and of brown investors, and the pricing of green and of brown stocks. Furthermore, our

model makes important predictions regarding welfare gains from climate mitigating policies

as well as the carbon premium when global temperatures continue to increase. We calibrate

the model using key insights from both the climate economics literature and the asset-pricing

literature. Note that even though we provide evidence for the specific choices of all model

parameters, we are less concerned about finding the best calibration for our model, but rather

are interested in the qualitative predictions our model makes and what we can learn from

it about the pricing of climate-exposed assets as well as the benefits of climate mitigating

policies.

4.1 Calibration

As formulated in equation (6), our modeling framework allows us to include investors’ be-

liefs about global average temperature as a state variable that dynamically evolves around

its long-run average. For the expected long-run mean global surface temperature above the

preindustrial level we assume E(Tt) = µT = 2°C, which according to Nauels et al. (2017) falls

between the expected 2300 levels for the RCP2.6 and RCP4.5 paths. The “true” long-run

temperature level is unknown and will depend on our future emissions and policy efforts to

curb carbon emissions. The latest IPCC report presents five illustrative emission scenarios.

Even under the intermediate greenhouse gas emissions scenario, warming of 2°C would very

likely be exceeded by the end of the century. Another reason for choosing 2°C is that in the

form of the Paris Climate Agreement (COP 21) there is a legally binding international treaty

on climate change that, adopted by 196 parties in 2015, introduces the goal of limiting global

warming to significantly less than 2°C, or preferably 1.5°C (UNFCCC (2015)). We argue

that this agreement also serves as a reference point for investors’ beliefs. As noted earlier,

we do not incorporate a measure of atmospheric carbon content into our model. Neverthe-

less, the persistence component of our temperature process can at least in part capture the

positive relationship between global average temperature and cumulative emissions as shown

in Matthews et al. (2009). In our benchmark calibration we assume that the persistence of

temperature is given by ν = 0.995. The implied half-life or doubling time is about 140 years,

which falls within the range of uncertainty currently used in the literature (see Folini et al.

(2021) or Smith et al. (2018)). This implies that, assuming no exogenous shocks to tempera-

ture, global temperature will increase from 1.2°C today to 1.5°C degree by 2100. Hence, we

assume that investors believe in more moderate global warming compared to current average
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projections. The volatility of the unexpected shocks to temperature is set to σζ = 0.1, which

implies that there is a 25% probability that global temperature exceeds 2°C by 2100 in line

with the predictions by many climate experts (see IPCC (2022). In Section 4.8 we show that

our results are robust with regard to changes in the calibration of the climate processes. For

example using E(Tt) = µT = 2.5°C instead of µT = 2°C, which implies that global tem-

perature will increase from 1.2°C today to 1.64°C degree by 2100 on average, and there is a

32% probability that temperature exceeds 2°C by 2100, has negligible impact on equilibrium

outcomes.

For the calibration of our consumption and dividend process, we stick to the related lit-

erature as closely as possible: in line with the literature on long-run consumption risks (see

Bansal and Yaron (2004) and Bansal et al. (2012)), we set ψ = 1.5, γ = 8, δ = 0.9763,

µc = µd = 0.02, ση = 0.02, and Φ = 2.6. The notations µc, µd, ση, and Φ are used to match

the mean and volatility of consumption and dividend growth. For example, Bansal and Yaron

(2004) use µc = µd = 0.0180 to match the average consumption and dividend growth rate of

about 2% per year in the United States. Wachter (2013) gives us ση = 0.02 and Φ = 2.6 to

match the volatility of consumption and dividend growth of about 1.5% and 6.5% per year,

respectively. We seek to calibrate our model such that the implied annual asset-pricing mo-

ments are in line with empirical findings (see Table 3 in Section 4.5). Furthermore, γ > 1/ψ

is crucial to matching the moments of asset prices as well as to obtaining climate risk sharing

dynamics in line with the data.

We calibrate disaster probability and size to approximately match the findings in Cai et al.

(2016).13 While we prefer to focus on our qualitative results, we take the findings in Cai et al.

(2016) as a proxy and assume that in the case of a disaster, the log consumption growth drops

by 20% (d = −0.2). We assume the subjective temperature-induced disaster probability to

be twice as high for the green investor with lG = 0.03 (3% per 1°C of temperature increase)

compared to for the brown investor with lB = 0.015 (1.5% per 1°C of temperature increase).14

This implies a disaster probability of 4.2% (8.4%) per year under the beliefs of the brown

(green) investor once the tipping threshold is passed (Tt = 2.8°C).
We assume a climate exposure for the green stock of kG = 0.75 and for the brown stock

of kB = 3.0. Barro (2006) reports that severe disasters have, in the past, destroyed up 50%

of GDP while mild disasters have led to a decrease of 15–20%. Our exposures imply that

dividends of brown stocks drop by 45% while dividends of green stocks drop by 15%. Note

that our results are robust to variations in the climate exposures and all we require for our

qualitative findings to hold is that kG < kB. We demonstrate the robustness of our findings

13Cai et al. (2016) formulate a stochastic model with interactive climate tipping points. They compute that for
approximately Tt = 3°C the annual average damage caused by disastrous climate change events amounts to a
roughly 1.8 percent loss of global GDP.

14Here we adopt the findings of Lontzek et al. (2015), who derive hazard rates for optimistic and pessimistic
experts based on the elicitation study in Kriegler et al. (2009).
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in Section 4.8. The full calibration of our model is summarized in Table 1.

Table 1: Baseline Calibration

Parameter Value Interpretation
γ 8 risk aversion
ψ 1.5 intertemporal elasticity of substitution
δ 0.9763 time discount factor
µc 0.02 average consumption growth rate
σc 0.02 volatility of i.i.d. normal consumption shock
µd 0.02 average dividend growth rate
Φ 2.6 dividend leverage
d -0.2 disaster size
µT 2 long-run mean temperature
ν 0.995 persistence of temperature
σζ 0.1 volatility of i.i.d. normal temperature shock
lG 0.03 belief parameter green investor
lB 0.015 belief parameter brown investor
TT ipp 2.8 temperature tipping threshold
kB 3 climate risk exposure brown stocks
kG 0.75 climate risk exposure green stocks
kM 1 climate risk exposure market portfolio

To demonstrate the key mechanisms of our model, we present two sets of results. Our

main results include the distant tipping point with Ttipp = 2.8°C. We call this model the

Tipping Point case. Second, we consider a model with immediate climate disaster risks where

disasters could occur as of today as has been assumed in many climate finance models; see,

for example, Giglio et al. (2021b,a) and Bansal et al. (2021). This is equivalent to setting

Ttipp = 0°C so that disaster risks can occur as of today. We call this model the Immediate

Disaster Risk case.

4.2 Hedging Climate News and Climate Disaster Risk

In the following, we show how the different beliefs about the impact of climate change on

the real economy affect the hedging incentives of the green and the brown investor. For this,

we first present, in Figure 3, the subjective climate disaster probabilities πht as a function of

temperature, Tt, for the green investor (h = G) as well as for the brown investor (h = B).

Solid lines show results for the tipping point case. As long as Tt < Ttipp, both agents agree

that the probability of a climate disaster hitting today is zero. In contrast, once the tipping

point is crossed, both agents believe in a positive probability of disaster. Green investors,

who believe more strongly in climate change, believe in a larger climate disaster probability

so that πGt > πBt . In line with Zickfeld et al. (2007), this difference increases with Tt. In
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Figure 3: Subjective Disaster Probabilities
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The figure plots subjective climate disaster probabilities πht as a function of temperature, Tt,
for the green investor as well as for the brown investor. Solid lines show results with the
distant tipping threshold (Ttipp = 2.8°C, marked by the vertical line) and dashed lines results
with immediate disaster risk (Ttipp = 0°C).

the case of immediate climate disaster risks (dashed lines), disaster probabilities πht are a

continuous function of Tt and the difference πGt − πBt increases with temperature (assuming

Tt > 0). Hence, investors disagree even if temperatures are low, which induces strong risk

sharing incentives as we show below.

Figure 4 shows changes in the consumption share of the green investor, sGt+1 − sGt , as

a function of temperature, Tt, for different shocks in period t + 1. The left panel shows

results for CRRA utility where γ = 1/ψ and the right panel for Epstein–Zin utility with

γ = 8 and ψ = 1.5. Red lines depict the case where a disaster hits in t + 1 and blue

lines the case with no disaster in t + 1. Lines with circles show the case of a positive shock

in Tt+1 (Tt+1 − Et(Tt+1) = +0.0816°C), lines with triangles that of a negative shock in Tt+1

(Tt+1−Et(Tt+1) = −0.0816°C), and the plain solid lines the average change in the consumption

share. Results are shown for sGt = 0.5.

First, consider the immediate disaster risk case with CRRA utility. As shown in Section

3.3, investors only trade based on their beliefs about the probability of a disaster in the next

period. However, they do not hedge climate news risk. Hence, independent of the shock

to Tt+1, the consumption share of the green investor decreases as long as no disaster hits.

Only if a disaster materializes does the wealth share of the green investor increase. Hence, in

such a model, as long as no climate disaster materializes the wealth shares of brown investors

persistently increase over time. In contrast to the empirical evidence in Engle et al. (2020),

climate news risk (shocks to temperature in our model) is not traded by the investors in the

CRRA case as investors agree on the distribution of global temperature.
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Figure 4: Risk Sharing
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0 1 2 3 4 5

T
t

0

0.05

0.1

0.15

0.2

0.25

s
G t+

1
 -

 s
G t

0 1 2 3 4 5

T
t

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

s
G t+

1
 -

 s
G t

(b) Distant Tipping Threshold (Ttipp = 2.8°C)
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The figure plots changes in the consumption share of the green investor, sGt+1−sGt , as a function
of temperature, Tt, for different shocks in period t+1. The left panel shows results for CRRA
utility and the right for Epstein–Zin utility. Red lines depict the case where a disaster hits in
t + 1 and blue lines the case with no disaster in t + 1. Lines with circles show the case of a
positive shock in Tt+1 (Tt+1 − Et(Tt+1) = +0.0816°C), lines with triangles that of a negative
shock in Tt+1 (Tt+1 − Et(Tt+1) = −0.0816°C), and the plain solid lines the average change in
the consumption share. Results are shown for sGt = 0.5 and the vertical line marks the tipping
threshold.
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For Epstein–Zin preferences this does not hold true. Changes in temperature are a source

of long-run consumption risk and hence affect the lifetime utility of the investors, similar to

Bansal and Yaron (2004). Hence, investors have an incentive to trade temperature risks; see

equation (15). In particular, the green investor, who believes in a larger impact of tempera-

ture changes on disaster probabilities, has an incentive to hedge positive shocks to tempera-

ture. Hence, her consumption share increases when a positive temperature shock materializes

(circled lines) compared to the case of a negative temperature shock (lines with triangles).

However, as in the CRRA case, as climate disasters can potentially occur as of today these

risks are traded as well, implying that the average change in the consumption share of the

green investor is significantly negative (given no disaster hits) as she is paying to insure against

immediate disaster risk.

Panel (b) shows the corresponding results for our benchmark model with a distant tipping

point of Ttipp = 2.8°C. For CRRA preferences, as long as Tt < Ttipp investors agree on the

distribution of climate disasters and hence have no incentive to trade. Only once the tipping

point is crossed do they disagree about the probability of a climate disaster and trade with

each other as in the case without the tipping point. Hence, for CRRA preferences climate

news has no effect on the equilibrium consumption shares independent of whether the climate

disaster risk is immediate or only occurs once the distant tipping point is crossed.

In contrast, for Epstein–Zin preferences temperature risks are traded even if Tt < Ttipp as

the risk that the tipping point will be crossed in the future is reflected in continuation utility

vht . Hence, green investors buy insurance against bad climate shocks so that when temperature

increases they can compensate the decline in utility by an increased consumption share. In

contrast to the immediate disaster risk case, climate disaster risks are not traded as long as

Tt < Ttipp as investors agree on disaster probabilities and hence have no incentive to trade

these risks. This implies that green investors are also not paying a premium to hedge disaster

risks such that the average change in the consumption share is close to 0 for low temperature

levels.

So, our model implies that as long as the tipping point has not been crossed the only

sources of variation in the market shares of green and of brown investors are climate news

shocks. In particular, bad news about the climate (positive shocks to temperature) leads to an

increase in the market share of green investors in line with the increase in green investing over

the past decade as reported in Section 2.2. We discuss this finding as well as the equilibrium

implication for the carbon risk premium in more detail in the following section.
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4.3 Mean-Variance Trade-off of the Continuation Utilities

In this section, we explain the economic intuition behind the trading in the two-agent economy

with Epstein–Zin preferences in more detail.15 Colacito and Croce (2013) show that for

Epstein–Zin investors the equilibrium consumption shares in the infinite-horizon economy can

be characterized by a mean-variance trade-off of the continuation utilities of the investors. To

show this analytically, they rewrite the value functions (9) of the investors. Let vht =
(vht )

ρh

ρh
.

The value functions are then given by

vht = (1− δh)
(sht )

ρh

ρh
+ δEh

t

(
(vht+1)

αh

ρh eα
h∆ct+1

) ρh

αh

, h ∈ {B,G}. (20)

In the model presented in this paper, all investors share the same preference parameters and

only disagree about the disaster probability. Hence, we can simply write γh = γ, ψh = ψ

and δh = δ. Assuming log-normality for vht , Colacito and Croce (2013) show that the value

functions can be approximated by

vht ≈ (1− δ)
(sht )

ρ

ρ
+ δkht E

h
t (v

h
t+1)− δkht

ρ− α

2ρ

V arht (v
h
t+1)

Eh
t (v

h
t+1)

, h ∈ {B,G}, (21)

with kht = Eh
t (e

α∆ct+1)
ρ
α . For investors with CRRA preferences, it holds that ρ = α, so the last

term of the equation vanishes in this case. Hence, the continuation utility of these investors

solely depends on the expected future utility, and not on the volatility of future utility. In

our baseline calibration we choose γ > 1
ψ
, so agents have a preference for the early resolution

of risks. This implies (ρ − α) > 0, and since ρEh
t (v

h
t+1) is also positive, a higher subjective

variance of the continuation utility, V arht (v
h
t+1), reduces welfare today. In other words, the

investors are willing to trade off expected future utility, Eh
t (v

h
t+1), to reduce today’s uncertainty

about future utility V arht (v
h
t+1). This is what we refer to as the mean-variance trade-off in

this section. Moreover, this trade-off can also be interpreted in terms of effects on the wealth

shares of the two investors, as there is a one-to-one mapping between the continuation utility

values vht and the lifetime wealth of the investors.

Figure 5 shows the conditional mean and variance of the continuation utilities for the

baseline economy with Tt = 1°C. The upper panel displays the subjective expectations of the

continuation utilities for the green investor (left plot) and brown investor (right plot) in the

trade minus no-trade economy. In this context, the trade case refers to the baseline economy,

where agents can freely trade with each other and insure against future states of the economy

they particularly dislike. On the other hand, the no-trade case refers to an autarky economy,

where the consumption shares of the two agents remain constant over time, as they are not

15The analysis in this chapter is inspired by Pohl et al. (2021), while the narrative and economic intuition have
been tailored to align with the specific model outlined in this paper.
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allowed to trade risks with each other. The ’trade minus no-trade’ curve is positive across

almost the entire sGt state space, indicating positive gains from trade for both agents.

Figure 5: Conditional Mean and Variance of Continuation Utilities
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The figure shows the conditional mean and variance of continuation utilities as a function of the
consumption share of the green investor, sGt , for the baseline model with a tipping threshold
at 2.8°C. The top panel displays the difference in expected utility between an economy in
which the agents are allowed to trade and a no-trade assumption. The lower panel shows the
conditional variance for both, the trade and no-trade case. The left panel presents the results
for the green investor, who beliefs in a higher temperature-induced disaster probability, and
the right panel shows the results for the brown investor, who believes in a lower temperature-
induced disaster probability. Results are shown for Tt = 1°C.

For the green investor, the gains from trade are largest when there is only a small fraction

of green investors in the economy. This can be explained by the risk sharing motive introduced

in Section 3.3 The green investors believe in a higher impact of global warming on disaster

probabilities, and due to Epstein–Zin preferences with a preference for the early resolution of

risks, the investors care about these long-run consumption risks and want to hedge against

low growth states. The brown investors, on the other hand, believe in a smaller impact of
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higher temperatures on consumption growth and provide insurance for these bad states in

exchange for an insurance premium in the form of higher future wealth during normal times.

For a small share of green investors, the demand for insurance against high temperature

states is low, while the supply of this insurance is high due to the larger share of brown

investors. This drives down the price of this insurance, allowing green investors to insure

against future consumption volatility without paying a high premium today. In contrast,

when the share of green investors is large in the economy, there is a high demand for this

insurance but limited supply, leading to a higher insurance price. The upper left plot of

Figure 5 demonstrates, that green investors are even willing to give up some (subjective)

future expected utility, to buy insurance and reduce volatility of future consumption. On

the other hand, the gains of trade for brown investors (upper right plot) are largest when

there is only a small share of brown investors in the economy, as the premium they collect for

providing the insurance is higher in such an economy.

The lower panel of Figure 5 plots the conditional variance of the continuation utility for

both investors in the trade (solid blue line) and no-trade (dashed orange line) case. The green

investor can significantly reduce her volatility of future utility by hedging against states of

high marginal utility, particularly high temperature states. In contrast, the brown investor

is willing to accept more uncertainty about future utility in exchange for a higher expected

continuation utility.

Similar analysis about the effects of risk sharing with recursive preferences have also been

made in different settings. Pohl et al. (2021) show the risk sharing for an economy in which

agents have different beliefs about the persistence of shocks to the long-run risk process.

Colacito and Croce (2013) and Colacito et al. (2022) analyze the risk sharing in a two-country

model, in which trade is a response to different idiosyncratic endowment shocks.

4.4 Carbon Premium

Our model yields predictions regarding the pricing of green and of brown assets. Figures 6

and 7 show the carbon premium for CRRA and Epstein–Zin preferences, respectively.16 We

define the carbon premium as the expected return of brown stocks minus the expected return

of green stocks, and show the premium as a function of Tt for the beliefs of the brown investor

and a fixed wealth share of wGt = 0.5.17

The red line in Figure 6 shows results for the immediate disaster risk case and the blue line

16For CRRA preferences, results are shown for γ = 2, as for higher degrees of risk aversion existence issues
occur (see Pohl et al. (2023) for a detailed discussion of the existence problem). However, while this lowers
the carbon premium quantitatively, it does not have any effect on the qualitative conclusions we draw based
on these results.

17Figures 33 and 34 in Appendix A show the corresponding results for the beliefs of the green investor, which
are qualitatively the same; only the magnitude of the carbon premium decreases.
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Figure 6: Carbon Premium for CRRA Preferences
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The figure plots the expected return of the brown stock minus the expected return of the green
stock as a function of temperature, Tt, for w

G
t = 0.5 for CRRA preferences with γ = 1/ψ = 2.

Results are shown for the case with immediate disaster risk and for the case with the distant
tipping threshold for the beliefs of the brown investor. The vertical dashed line marks the
tipping threshold.

Figure 7: Carbon Premium for Epstein–Zin Preferences
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The figure plots the expected return of the brown stock minus the expected return of the green
stock as a function of temperature, Tt, for w

G
t = 0.5 for Epstein–Zin preferences. Results are

shown for the case with immediate disaster risk and for the case with the distant tipping
threshold for the beliefs of the brown investor. The vertical dashed line marks the tipping
threshold.
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for our benchmark model with the distant tipping point. In the case of CRRA preferences,

the carbon premium is zero as long as Tt < Ttipp. Investors with CRRA preferences do not

price in long-term risks and, as the disaster risk can only occur in the future, the premium

for assets with different exposures to climate risk is the same across assets and is equal to

zero. Only once the tipping threshold is crossed does the carbon premium become large and

significant and increase with the disaster probability driven by Tt. Hence, for temperature

levels below the temperature threshold as observed in the past decade, CRRA investors would

not require a premium for holding assets that are more exposed to climate risks. This is in

contrast with the findings of Bolton and Kacperczyk (2021, 2022), who report a significant

carbon premium.

In turn, for Epstein–Zin preferences the carbon risk premium is positive as long-run climate

risks are priced in and brown stocks have a higher exposure to climate risks than green stocks

(kB = 3.0 versus kG = 0.75). The carbon premium increases with temperature as it positively

affects the probability of a disaster. Note that this is true in the tipping point model even

if Tt < Ttipp as temperature changes are a source of long-run risk, which is priced under

Epstein–Zin utility. So even if temperatures are well below the tipping point, an increase in

temperature increases the carbon premium.

If climate disasters pose a potential risk as of today (red line), the carbon premium will

be large even for low temperature levels. For example, for the temperature level of 2020 of

1°C the carbon premium is 3.5 percent. In contrast, when we appropriately account for the

distant tipping point when modeling climate disaster risks the implied carbon premium is

significantly smaller for lower temperatures as the tipping point is sufficiently far away, in

line with the small carbon premium reported on financial markets. Pástor et al. (2022) com-

pute an expected carbon premium of approximately 0.5–1.5 % respectively in the period from

2012–2020, depending on the estimation method used, which is in line with our carbon pre-

mium in the tipping threshold model. However, our model predicts that the carbon premium

will increase significantly if climate risks increase in the future. These results highlight the

importance of appropriately accounting for the specific properties of climate risks in financial

models. More precisely, when climate risks are analyzed in financial models, it is crucial to

include tipping thresholds when modeling these risks and not to model them as imminent dis-

aster risks, which is standard in the asset-pricing literature. Moreover, for CRRA preferences

long-term climate risks are not priced, so it is crucial to use preferences that take long-term

trade-offs into account.

The carbon premium depends not only on the temperature level but also on the market

share of the green investor. Figure 8 plots the carbon premium as a function of the wealth

share of the green investor for a low temperature level, Tt = 1°C, and a high temperature level

close to the tipping point, Tt = 2°C, which—in line with the pessimistic RCP8.5 emission
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scenario—could be reached in 2050.

Figure 8: Carbon Premium as a Function of the Wealth Share

0 0.2 0.4 0.6 0.8 1

w
t

G

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

C
a

rb
o

n
 P

re
m

iu
m

T
t
 = 1°C

Tipping Point

Immediate Disaster Risk

0 0.2 0.4 0.6 0.8 1

w
t

G

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

C
a

rb
o

n
 P

re
m

iu
m

T
t
 = 2°C

Tipping Point

Immediate Disaster Risk

The figure plots the expected return of the brown stock minus the expected return of the
green stock as a function of the wealth share of the green investor, wGt , for different levels of
temperature, Tt. Results are shown for the case with immediate disaster risk and for the case
with the distant tipping threshold for the beliefs of the brown investor.

Green investors are more afraid of climate risks and hence require a larger premium for

holding the brown asset. So in equilibrium, the larger the market share of the green investor,

the larger is the carbon premium. While this effect is quantitatively small for the low temper-

ature level of today (Tt = 1°C), with a carbon premium only slightly above 1 percent for any

wealth share of the green investor, it significantly increases once the temperature gets closer

to the tipping point, with a carbon premium of up to 4 percent for Tt = 2°C.
Our model hence yields a positive carbon premium that increases with temperature risks

as well as with the share of green investors. So the increase in the market share of green

investors over the past decade has likely contributed to an increase in the carbon premium,

and our model predicts that the carbon premium will increase significantly if the market share

of green investors keeps rising.

4.5 Green Investing

How can this evidence be reconciled with the recent outperformance of green stocks as for

example reported in Huij et al. (2021) and Pástor et al. (2022)? We show that unexpected

bad news about the climate drives up the wealth shares of green investors and pushes up the

relative valuations of green versus brown firms. Ardia et al. (2023) provide empirical evidence

31



for this mechanism. They construct a climate concern index based on newspaper articles and

show that green stocks react more positively to bad climate news compared to brown stocks.

Pástor et al. (2022) use this climate concern index and show that forecasting errors have a

strong downward trend implying that news about the climate has been consistently worse

than expected.

In our model, unexpected bad news about the climate—that is, positive shocks to Tt—

has two effects on the pricing of green and brown assets, one direct and one indirect: Positive

shocks to Tt lead to a decrease in the price of stocks that have a large exposure to climate risks.

In turn, green stocks that provide a (partial) hedge against climate risks increase in value in

response to bad climate news; see the left panel of Figure 9, which plots the price–dividend

ratios of the green and the brown asset as well as the market portfolio as a function of Tt.

Simultaneously, the increase in temperature increases the market share of green investors as

argued in Section 4.2. Green investors require a larger compensation for holding brown assets

compared to brown investors, and hence the increase in their market share leads to a further

decrease in the prices of the brown asset (see the right panel of Figure 9, which plots price–

dividend ratios as a function of wGt ). As a result, increases in temperature endogenously drive

up the market share of green investors and lead to an outperformance of green over brown

stocks.

Figure 9: Price–Dividend Ratio
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The figure plots the log price–dividend ratio for the green and the brown stocks and for the
market portfolio. In the left panel, the price–dividend (pd) ratios are shown as a function of
temperature, Tt, for w

G
t = 0.5. The right panel shows the pd ratios as a function of the wealth

share of the green investor for Tt = 1°C. Results are shown for the baseline calibration with a
tipping threshold at 2.8°C.
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We demonstrate this mechanism in Figures 10 and 11. Figure 10 shows the impact of a

bad climate shock on the market share of the green investor and on the returns of green and

of brown stocks. Starting at T0 = 1°C, the temperature level today, and wG0 = 0.5, it shows

the effect of a one standard deviation climate shock of σζζt+1 = +0.1°C in period 2, assuming

that all shocks in other periods are zero.18 The bad climate shock increases the market share

of the green investor, who buys insurance against climate risk from the brown investor as

argued in Section 3.3. Hence, a series of bad shocks leads to an increased market share of

green investors over time. Green and brown stocks are differently affected by bad climate

news. Brown stocks with a large climate exposure depreciate in value when bad news about

the climate arrives, as shown in the right panel of Figure 10. In contrast, green stocks provide

a (partial) hedge against climate risks such that their prices increase in response to bad news

about the climate. Hence, positive shocks to Tt imply an outperformance of green over brown

stocks in our model.

Figure 10: Impulse Responses for Temperature Shock
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The figure plots changes in the wealth share of the green investor and the log returns of green
and of brown stocks for a one-time shock in temperature of 0.1°C in period 2. All other shocks
are set to zero and results are shown for wG0 = 0.5.

Figure 11 shows corresponding results assuming that no news about the climate occurs,

but that there is an exogenous shift in the market share of green investors in period 2. Green

investors are more afraid of climate risks and hence are willing to pay a lower (higher) price for

the brown (green) asset. As a consequence, the increase in market share implies temporarily

18Note that due to mean reversion, Tt is slightly sloping upward and the market share of green investors is sloping
downward in the absence of shocks as green investors pay a premium to hedge climate news; see Figure 4.
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higher returns for green stocks compared to brown stocks. So, both the bad climate news and

the resulting increase in the market share of the green investor lead to an outperformance of

green over brown stocks.

Figure 11: Impulse Responses for Wealth Share Shock
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The figure plots changes in the wealth share of the green investor and the log returns of green
and of brown stocks for a one-time shock in the wealth share of the green investor of 10% in
period 2. All other shocks are set to zero and results are shown for wG0 = 0.5.

Ardia et al. (2023) find that there was a series of bad climate news items in the period

2010–2021. Our model predicts that such a series of bad climate news items will lead to

an outperformance of green stocks over brown stocks in line with the outperformance of

green stocks in the past decade reported by Huij et al. (2021) and Pástor et al. (2022). We

demonstrate the impact of a series of bad climate news items in Table 2. For this, we simulate

1,000 sample paths each containing 11 years of data. We consider two scenarios. In the first,

climate news shocks ζt+1 are simply drawn from a random normal distribution. This describes

a scenario with no particularly bad news about the climate. In the second scenario, in each

period we exogenously add a bad climate news shock of σζζt+1 = 0.1°C to the temperature

process. We assume that the green agent holds the correct beliefs about disaster probability,

so l = lG = 0.03. However, given the 90% quantile of the temperature process in Figure 12, it

becomes evident that the speculation motive has minimal impact in these simulations.

Table 2 shows selected annualized asset-pricing moments for the two scenarios. In the first

scenario, without unexpectedly bad climate news, brown stocks slightly outperform green

stocks reflecting the small but positive carbon premium for low temperature levels reported

in Figure 7. As brown stocks are more exposed to climate risks, they have a smaller price–
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dividend ratio compared to green stocks and are slightly more volatile. The wealth share of

green investors is slightly decreasing over time as green investors are paying a premium to

insure against climate risks; see Figure 4.

In contrast, a series of bad climate news items leads to a strong outperformance of green

stocks. In our calibrated economy, we obtain an annual outperformance of 3.70% with a

standard deviation across the sample paths of 1.65%, which is roughly in line with the out-

performance of 4.08% reported in Huij et al. (2021) and that of 5.4% reported in Pástor et al.

(2022).

Table 2: Annual Asset-Pricing Moments of Brown and Green Stock

E(pit − dit) σ(pit − dit) E(log(Ri
t)) σ(log(Ri

t)) RB
t −RG

t E(wGT )

Normal Shocks to Tt+1

Green Stock
3.9567 0.0146 0.0412 0.0496

0.4942
(0.0198) (0.0069) (0.0158) (0.0111) 0.0031

Brown Stock
3.6728 0.0255 0.0442 0.0519 (0.0077)

(0.0351) (0.0150) (0.0162) (0.0118)

Unexpectedly bad climate news

Green Stock
4.0235 0.0499 0.0520 0.0501

0.5559
(0.0235) (0.0135) (0.0160) (0.0113) -0.0370

Brown Stock
3.5173 0.1353 0.0151 0.0605 (0.0165)

(0.0738) (0.0600) (0.0205) (0.0145)

The table reports annual asset-pricing moments for green and for brown stocks from simulating
1,000 sample paths each containing 11 years of data. We set Tstart = 0.6°C and wGstart = 0.5.
The top panel shows results when shocks to temperature, ζt+1, are drawn from a standard
normal distribution. In the bottom panel we assume that, additional to the normal shocks,
there is bad climate news of +0.1°C per period. Standard deviations of the time series moments
across the sample paths are shown in parentheses.

Figure 12 shows the impact of a series of bad news about the climate on the performance

of green over brown stocks, corresponding to the second scenario from above. We do not

aim to precisely match the size of outperformance (note that the return spreads reported in

Huij et al. (2021) and Pástor et al. (2022) have large standard errors) but rather provide an

intuitive mechanism on how bad news about the climate have affected the market share of

green investors and the pricing of green and brown assets. As empirically shown in Pástor

et al. (2022), we assume that there has been a series of bad news about the climate in the past

decade. More precisely, we assume that there has been a climate news shock of σζζt+1 = 0.1°C
each period from 2010 until 2021 additional to the random variation in Tt+1. That is, we draw
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ζt+1 from a normal distribution and exogenously add +0.1°C each period. Figure 12 shows

the median path together with the 10% and 90% quantiles of Tt, w
G
t as well as cumulative log

returns and the return spread of the brown and green asset using 1,000 simulated paths.

Figure 12: Performance of Green and Brown Stocks

The figure shows the median path together with the 10% and 90% quantiles of Tt, w
G
t as

well as cumulative log returns and the return spread of the brown and green asset using 1000
simulated paths for a 11-year period from 2010 to 2021. Shocks to temperature ζt+1 are drawn
from normal distribution and additionally an exogenous climate news shock of +0.1°C is added
each period. The right panel also shows the performance of the Brown-Minus-Green factors
from Huij et al. (2021) and Pástor et al. (2022).

The left panel plots the implied path of Tt which increases by approximately 1.2°C in the

11 year period. In line with the arguments above, the unexpectedly bad climate news lead to

a steady increase in the market share of green investors, consistent with the evidence provided

in Section 2.2. Both, the increases in Tt as well as the increase in the market share of the

green investor lead to an outperformance of green over brown stocks. The right panel shows

the performance of a portfolio that goes long the brown stock and short the green stock.

Additional to the model implied performance, the figure also shows the performance of the

brown-minus-green portfolios of Huij et al. (2021) based on emission data, and the portfolio

of Pástor et al. (2022) based an environmental-scores. We find that a series of bad climate

shocks can explain the outperformance of green over brown stocks reported in the two papers.

Bad climate news leads to a strong increase in the valuations of green assets while the

average price–dividend ratio of brown assets is significantly smaller compared to the scenario

without unexpectedly bad climate news. As green investors buy insurance against climate

shocks, their market share increases in response to the bad climate news resulting in an increase

in their market share of about 5 percent over the 11 year period. This is approximately in line
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with the survey evidence provided by Howe et al. (2015), who find that the fraction of people

who believe that climate change will significantly harm future generations has increased by

roughly 6 percentage points between 2014 and 2021. Furthermore, as brown stocks are more

exposed to climate risks their prices react more strongly to climate news leading to a larger

volatility of brown stocks compared to green stocks.

Finally, Table 3 shows annual moments for aggregate consumption growth, dividend growth

of the market portfolio, the market risk premium, and the carbon premium, as well as the

risk-free rate. As the climate tipping point is not crossed in the simulations, climate shocks

have no effect on consumption and dividend growth. Our calibration implies average aggregate

consumption growth of about 2% per year with a volatility of 1.88%, in line with the US data.

Dividends also have a growth rate of about 2% per year but are significantly more volatile,

in line with the moments in the data (see, for example, Wachter (2013)). Our model implies

a market risk premium of below 1% per year. Note that climate risks are the only priced

risks in our model and hence we do not target a matching of the aggregate market premium

of about 7% per year in the US. Finally, the risk-free rate in our model is about 3.45% per

year as precautionary savings due to disasters are low for temperature levels significantly

below the tipping point. Figure 13 plots the risk-free rate as a function of Tt. In the case of

immediate disaster risk, the risk-free rate is monotonically decreasing in Tt, as precautionary

savings increase with the probability of a disaster (Wachter, 2013). Precautionary savings only

become economically relevant once the tipping point is crossed. Hence, for low temperature

levels the risk-free rate is relatively large. Note that the model would produce both a large risk

premium and a low risk-free rate if, for example, other consumption disaster risks as in Barro

(2009) and Wachter (2013) were added to it. This would increase the disaster risk premium

and lower the risk-free rate due to precautionary savings, such that aggregate moments could

be matched. As we are primarily interested in the consequences of belief disagreement for the

pricing of green and of brown assets, we abstract from this level of complexity here.
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Figure 13: Risk-free Rate
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The figure plots the risk-free rate as a function of temperature, Tt, for w
G
t = 0.5. Results

are shown for the case with immediate disaster risk and for the case with the distant tipping
threshold. The vertical dashed line marks the tipping threshold.

Table 3: Annual Asset-Pricing Moments of Market Portfolio and Risk-free Rate

∆ct+1 ∆dMt+1 log(Rf
t ) RM

t −Rf
t

Normal Shocks to Tt+1

mean
0.0205 0.0213 0.0345 0.0081

(0.0055) (0.0142) (1.1946e-04) (0.0155)

σ
0.0188 0.0488 0.0001 0.0486

(0.0040) (0.0103) (6.8924e-05) (0.0109)

Unexpectedly large climate news shocks

mean
0.0205 0.0213 0.0338 0.0025

(0.0055) (0.0142) (4.7979e-04) (0.0157)

σ
0.0188 0.0488 0.0008 0.0492

(0.0040) (0.0103) (6.2944e-04) (0.0111)

The table reports annual asset-pricing moments from simulating 1,000 sample paths each
containing 11 years of data. We set Tstart = 0.6°C and wGstart = 0.5. The top panel shows
results when shocks to temperature, ζt+1, are drawn from a standard normal distribution. In
the bottom panel we assume that, additional to the normal shocks, there is an unexpected
increase in temperature of +0.1°C per period. Standard deviations of the time series moments
across the sample paths are shown in parentheses.
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4.6 Welfare Cost of Carbon

In our asset-pricing model, we measure the impact of climate risks on equity valuations and

the wealth of the investors. In line with Bansal et al. (2021), we refer to our measure in

the following as the welfare cost of carbon (WCC). We interpret the WCC as a marginal

concept—the monetary loss that is caused by an additional metric ton of carbon emissions.

It is important to note that carbon emissions only affect the WCC to the extent that they are

already reflected in equity valuations. In contrast, the social cost of carbon (SCC) measures

the full extent of emissions’ negative externality 19.

Thus, if (a part of) emissions impose(s) a negative externality and are (is) not correctly

priced yet, the SCC would exceed the WCC. The WCC sets a lower bound to the “true” SCC

in this scenario. This concept of measuring the impact of temperature increases on future

wealth is also related to the “welfare cost of consumption uncertainty,” introduced by Barro

(2009), who shows that society would be willing to reduce GDP by around 20 percent yearly

to eliminate the possibility of rare disasters. This is around 15 times as much as the welfare

cost of usual economic fluctuations. So as long as ψ > 1, we would expect to see a sizeable

WCC since agents want to reduce the risk of future consumption disasters.

In our model we do not explicitly include carbon emissions, but instead directly model

the dynamics of global temperature, which is affected by increases in emissions. We use the

estimate of Bansal et al. (2021) for the sensitivity of global temperature to changes in emissions

to quantitatively analyze the WCC implied by our model. We express that cost in terms of a

numeraire good, in our case current consumption. Hence, the WCC is defined as the ratio of

two marginal values:

WCCt = −
∂Vt
∂Et
∂Vt
∂Ct

. (22)

For Epstein–Zin preferences, the value function is a function of the aggregate wealth–consumption

ratio Zt ≡ Wt

Ct
.

Vt
Ct

= [(1− δ)Zt]
ψ
ψ−1 ,

so that the WCC can be written as

WCCt =
ψ

ψ − 1

−∂logZt
∂Tt

∂Tt
∂Et

Ct. (23)

In Appendix B we provide the derivations of equation (23). Note that WCCt measures

19The SCC is an attempt to put a monetary value on the negative consequences of climate change, now and
in the future. There is a wide range of different estimates for the SCC in the literature. These differences
result mainly from different assumptions of parameter values regarding, for example, preferences, discounting,
damage, climate response to emissions, and uncertainties in general.
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aggregate welfare effects—that is, how changes in climate risks affect aggregate wealth in the

economy. We discuss the impact of climate risks on individual wealth in Section 4.7. As

Bansal et al. (2021), we use a semi-parametric approach to calculate WCCt. The sensitivity

of the log wealth–consumption ratio, ∂logZt
∂Tt

, follows from our climate economy and depends on

both the temperature level and the wealth share of the green and the brown investors at time

t. In line with Bansal et al. (2021), we set the temperature sensitivity to cumulative carbon

emissions to ∂Tt
∂Et

= 1.71◦C per trillion tonnes of carbon. They obtain the value by matching

the mean value of carbon sensitivity to emissions estimated in MacDougall et al. (2017).20

For Ct we use the purchasing power parity adjusted world gross domestic product, which was

about 146.71 trillion international dollars in 202121.

Figure 14 shows the WCC as a function of global temperature for the benchmark case with

a distant tipping point as well as for the case with immediate climate disaster risks. First,

consider the case with immediate disaster risks. The WCC is slightly decreasing in Tt as the

marginal decline in utility due to an increase in Tt is decreasing in temperature. Note that

Bansal et al. (2021) report a constant WCC, which, however, only arises as they use a linear

approximation to solve the model. Once the model is solved accurately using global methods

as proposed by Pohl et al. (2018), the wealth–consumption ratio is a convex function of Tt; see

Figure 15. Hence, immediate climate disaster risks imply that the WCC is high as of today,

but should decrease in the future if global temperature keeps increasing.

In contrast, our benchmark model—accounting for the fact that climate disasters can only

occur once the tipping point is crossed—implies a low WCC for low temperature levels, as

observed until now. The marginal decline in utility due to an increase in temperature is small

as long as the tipping point is sufficiently far away. However, once temperature approaches

the tipping point, the WCC increases significantly and can almost triple compared to the case

with immediate climate disaster risks. Close to the tipping point, a reduction in temperature

leads to a large utility gain for the investors as it significantly decreases the probability of

crossing the tipping point. So the wealth–consumption ratio is strongly decreasing in Tt close

to the tipping point—see Figure 15—such that the WCC is high.

Thus, our model provides a potential explanation of why investments to reduce climate

risks have been low in the past: as the tipping point was sufficiently far away, the welfare

gains from such investments were small. However, with increasing temperatures, as predicted

by climate scientists for the coming years, the WCC is likely to increase significantly. Put

differently, the marginal gain from investments to slow down climate change should increase

in the future.

20They base their results on the carbon–climate response; see Matthews et al. (2009) for the scientific background
to these estimations.

21This value is provided by the World Bank, using the current international dollar value
(https://data.worldbank.org/indicator/NY.GDP.MKTP.PP.CD).
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Figure 14: Welfare Cost of Carbon
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The figure plots the welfare cost of carbon as a function of Tt for w
G
t = 0.5. Results are shown

for the case with immediate disaster risk and for the case with the distant tipping threshold.
The vertical dashed line marks the tipping threshold.

Figure 15: Wealth–Consumption Ratio
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The figure plots the aggregate log wealth–consumption ratio as a function of Tt for w
G
t = 0.5.

Results are shown for the case with immediate disaster risk and for the case with the distant
tipping threshold. The vertical dashed line marks the tipping threshold.
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Figure 16: Welfare Cost of Carbon as a Function of Wealth
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The figure plots the welfare cost of carbon as a function of the wealth share, wGt , of the green
investor for different levels of temperature, Tt. Results are shown for the case with immediate
disaster risk and for the case with the distant tipping threshold.

Figure 16 plots the WCC as a function of the market share of the green investor for the

current temperature level of Tt = 1°C as well as for a global temperature of Tt = 2°C. It shows
that the WCC strongly increases with the market share of green investors. Green investors

believe in a larger impact of temperature increases on the probability of a climate-induced

disaster. Hence, their utility increases more strongly in response to a reduction in temperature

compared to that of brown investors. This effect is particularly strong once global temperature

approaches the tipping point. For Tt = 2°C, the WCC is significantly larger for the model with

the distant tipping point compared to the immediate disaster risk model and, in particular,

the difference increases with the wealth share of the green investor. Hence, the welfare gains

from policies to slow down climate change are going to increase if the market share of green

investors keeps on increasing in the future.

Using the insights from Figures 14 and 16, we can also analyze the impact of (bad) news

about climate change on the welfare cost of carbon. When bad news about climate change is

interpreted as an unexpected increase in temperature, as done in Section 4.5, such news have

two effects on the WCC. The direct, first-order effect is an increase in the WCC if the tipping

threshold has not been reached yet, as the WCC increases with temperature below the tipping

point. Additionally, the unexpected shock to temperature increases the wealth share of the

green investors, as they hedge against these states. Since the WCC also increases with the

wealth share of the green investors, this second-order effect leads to a further increase in the

WCC.
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Having an exogenous increase in the market share of the green investor would also increase

the WCC. This increase in the WCC can be motivated by an increased awareness of the

population about the impact of climate change on future economic growth, leading to a higher

willingness to pay to slow down climate change. For example, using survey evidence provided

by Howe et al. (2015), who find that the fraction of people who believe that climate change

will significantly harm future generations has increased from 58% in 2014 to 64% in 2021, this

alone would imply an increase in the WCC from approximately $49 to $52, assuming Tt is

held constant at 1°C.

4.7 Individual Welfare Cost of Carbon

In the previous section, the (aggregate) welfare cost of carbon was computed via the elasticity

of the aggregate wealth–consumption ratio to temperature. Instead, we could also re-write

the welfare cost of carbon as the (by consumption share) weighted individual welfare cost of

carbon of the two agents. In Section C we show that the aggregate WCC is then given as a

function of the individual wealth–consumption ratios by:

WCCt =
ψ

ψ − 1
sGt

−∂logZG
t

∂Et
Ct +

ψ

ψ − 1
sBt

−∂logZB
t

∂Et
Ct, (24)

with Zh
t =

Wh
t

Cht
being the individual wealth–consumption ratio of investor h.

Figure 17 shows the individual WCC for the green and brown investor, along with the

aggregate WCC in an economy where both agents hold a wealth share of 50%. The aggregate

WCC in this case is the same as shown in Figure 14 for the tipping threshold economy.

The figure illustrates that as the wealth share of the green (brown) investor increases, the

aggregate WCC moves closer to the individual WCC of the green (brown) investor. The

individual WCCs for both agents are increasing in temperature before reaching the tipping

threshold and declining afterwards. The individual WCC of the green agent is consistently

higher than the individual WCC of the brown agent, since her future utility is more affected by

higher temperatures. This can also be seen by looking at the individual wealth–consumption

ratio of the two agents in Figure 18, where the wealth–consumption ratio of the green investor

decreases more in Tt, leading to a corresponding higher WCC for her.
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Figure 17: Individual Welfare Cost of Carbon
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The figure plots the individual welfare cost of carbon for the green and brown investor, along
with the aggregate welfare cost of carbon for an economy with wGt = 0.5, as a function of Tt.
Results are shown for the model with the distant tipping threshold. The vertical dashed line
marks the tipping threshold.

Figure 18: Individual Wealth–Consumption Ratios
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The figure plots the individual log wealth–consumption ratio of the green and brown investor,
along with the aggregate log wealth–consumption ratio for an economy with wGt = 0.5, as
a function of Tt. Results are shown for the model with the distant tipping threshold. The
vertical dashed line marks the tipping threshold.
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Figure 19 shows the individual WCC of the green and brown investor, along with the

aggregate WCC, as a function of the wealth share of the green investor. Results are shown for

the current temperature level of Tt = 1°C, as well as for a global temperature of Tt = 2°C. For
wGt = 1, the individual WCC of the green agent equals the aggregate WCC, and for wGt = 0,

the individual WCC of the brown agent equals the aggregate WCC. The results are cut at

the boundaries, as the individual WCC for an investor with a market share of zero is not

defined. The aggregate WCC increases with the wealth share of the green agent, while the

individual WCC of the brown agent decreases with the wealth share of the green agent and

even becomes negative in the left panel. This phenomenon occurs in economies dominated

by many green investors and only a few brown investors, which results in a high demand for

hedging climate risks, yet the supply of insurance is limited. This observation is evident in

the upper-right plot of Figure 5, where the wealth of the brown investor experiences the most

significant increase through trading with green investors under such circumstances. In these

scenarios, the gains from trade can even outweigh the negative consequences of climate change

for future consumption growth for the brown investor. He benefits from climate risks by selling

insurance to the green investor. Figure 18 in Appendix A plots the corresponding individual

wealth–consumption ratios as a function of wealth. The individual wealth–consumption ratio

of the brown agent increases monotonically with the share of wGt , with the increase being

particularly pronounced as wGt → 1, coinciding with the most substantial decrease in the

corresponding WCC for these cases.

Figure 19: Individual Welfare Cost of Carbon as a Function of Wealth
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The figure plots the individual welfare cost of carbon for the green and brown investor, along
with the aggregate welfare cost of carbon, as a function of the wealth share, wGt , of the green
investor, for different levels of temperature Tt. Results are shown for the economy with a
distant tipping threshold.
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4.8 Robustness

In this section we conduct several robustness checks to show that the qualitative conclusions

we draw based on our benchmark calibration do not depend on the specific choice of param-

eters. We consider the following cases: lowering the tipping threshold, changing the degree

of disagreement, changing the climate exposure of green and of brown stocks, changing the

risk aversion of the investors, changing the disaster size, and changing the long-run mean

global temperature. Figures 20 - 22 plot the carbon premium and the WCC as a function of

temperature for these different cases. First, consider the case with a lower tipping threshold.

A report from the OECD (2022) shows that important tipping points may become “likely”

already within the Paris Agreement range of 1.5°C to 2°C of global warming. The possibility

that tipping points could already be crossed under moderate levels of global warming adds

further urgency to the climate challenge. Hence, we also discuss results for a tipping point of

Ttipp = 2.0°C instead of Ttipp = 2.8°C as in the benchmark model. All other parameters are

kept at the level of the baseline calibration provided in Table 1. The carbon premium plotted

in Figure 20 is qualitatively similar to the case with the distant tipping point of 2.8°C with

the exception that for low temperature levels it is slightly larger. This larger premium arises

as the tipping point is not as far away, so investors demand a higher risk premium for holding

more carbon-exposed (brown) stocks. For the WCC plotted in Figure 21 we also find that it

is slightly higher for lower temperature levels, as climate disaster risks are a more imminent

threat. Otherwise, the results are qualitatively similar to those for the benchmark model.

We also consider cases in which we either change the amount of risk by decreasing the

parameters that determine the disaster probabilities (lB from 0.015 to 0.01 and lG from 0.03

to 0.02) or by decreasing the climate exposure of the brown stock, kB, from 3 to 1.5, or change

the price of risk by decreasing risk aversion, γ, from 8 to 5. All three cases have similar effects

on the carbon premium, leading to a lower premium relative to the benchmark case. However,

qualitatively our findings do not change, which also holds for the WCC shown in Figure 21.22

We also consider the case in which we increase the mean temperature to µT = 2.5°C which

has negligible impact on equilibrium outcomes. Finally, we analyze the impact of different

disaster sizes on our results. There is not only uncertainty about disaster probabilities after

crossing the tipping threshold, but the impact itself of disasters is also unknown. Figure 22

shows that, as expected, the carbon premium increases (decreases) for a higher (lower) disaster

size. However, the qualitative implications remain unchanged.

22Note that changing kB does not affect the WCC, which is why we do not consider this case in Figure 21.
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Figure 20: Robustness Checks for Carbon Premium
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The figure plots the expected return of the brown stock minus the expected return of the green
stock for the beliefs of the brown investor as a function of temperature, Tt, for w

G
t = 0.5. The

dark blue line depicts the case of our benchmark model with parameters provided in Table
1. The red line assumes a lower tipping threshold of Ttipp = 2.0° C. The yellow line assumes
more moderate beliefs about climate change, with lB = 0.01 and lG = 0.02. The purple line
depicts the case with less climate exposure of the brown stock, with kB = 1.5, and the green
line shows results for a lower risk aversion of γ = 5. The light blue line depicts the case
with a long-run mean temperature of µT = 2.5°C. The vertical dashed lines mark the tipping
threshold at 2°C and 2.8°C, respectively.
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Figure 21: Robustness Checks for Welfare Cost of Carbon

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

T
t

0

20

40

60

80

100

120

140

160

180

200

W
C

C
t

baseline calibration

2°C Tipping Point

lB = 0.01 and lG = 0.02

gamma = 5

2.5°C long-run Temperature

The figure plots the welfare cost of carbon as a function of temperature, Tt, for w
G
t = 0.5. The

dark blue line depicts the case of our benchmark model with parameters provided in Table
1. The red line assumes a lower tipping threshold of Ttipp = 2.0°C. The yellow line shows the
welfare cost of carbon for more moderate beliefs about climate change, with lB = 0.01 and
lG = 0.02, and the green line shows results for a lower risk aversion of γ = 5. The light blue
line depicts the case with a long-run mean temperature of µT = 2.5°C. The vertical dashed
lines mark the tipping threshold at 2°C and 2.8°C, respectively.

Figure 22: Robustness Checks for different Disaster Size
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The figure plots the expected return of the brown stock minus the expected return of the green
stock for the beliefs of the brown investor as a function of temperature, Tt, for w

G
t = 0.5. The

blue line depicts the case of our benchmark model with parameters provided in Table 1,
especially d = −0.2. The red line assumes a lower disaster impact of d = −0.15. The yellow
line assumes a higher disaster impact of d = −0.23. The vertical dashed line marks the tipping
threshold.
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4.9 Long-Run Simulations

In this chapter we study the long-run equilibrium of our model, specifically examining the

dynamics of the wealth share of the two investors over an extensive time horizon spanning

several hundred years. Our primary objective is to demonstrate that, based on the baseline

calibration and some robustness checks, no investor will be entirely forced out of the market

within this extended 500-year period. It’s important to note that our emphasis lies on investi-

gating the behavior of the system over this substantial time frame, rather than solely focusing

on the traditional t→ ∞ scenario typically explored in survival literature.

As shown in Section 3.3, the evolution of consumption shares for investors with Epstein–

Zin preferences depends on the interplay of the speculation motive and risk sharing motive.

In contrast, for investors with CRRA preferences, only the speculation motive matters. This

has important implications for the survival of agents with different beliefs in the long-run.

Investors with CRRA preferences only bet on different realizations for the state in the next

period, which in our case are different beliefs about the probability of climate-induced disas-

ters. In the long run, only the investors with the (more) correct beliefs will survive, as they

bet on the correct states more frequently. This is also known as the classical market selection

hypothesis, which was already developed by Alchian (1950) and Friedman (1953). Hence, only

the investor with the (more) correct beliefs has an impact on asset prices in the long-run.

The interesting new feature that arises for EZ preferences is the risk sharing channel.

Agents are willing to pay a premium to hedge future (long–run) risks. In our case, the brown

investor, believing in a lower impact of climate change on future consumption growth, provides

insurance for the green agent, who is more concerned about climate change. During normal

times–in the absence of climate disasters or unexpected shocks to temperature–this leads to

an increased consumption share of the brown investor. Thus, even if the brown investor has

the wrong beliefs, he can survive in the long-run and possibly even dominate the economy by

collecting the insurance premium from the green investor.

In the following, we demonstrate that for different calibrations, both agents will maintain

a significant wealth share in the long-run, and thus, also have an impact on asset prices. Table

4 reports the median, 10%, and 90% quantile paths using 1,000 simulations, each consisting of

200 or 500 years of simulated data, respectively. In the initial period, the wealth is distributed

equally among the two investors with wG0 = wB0 = 0.5. The temperature in the initial period

is set to its long-run mean T0 = µT = 2°C and evolves according to equation 6 over time. We

assume that the green investor holds the true beliefs regarding the probability of a climate-

induced disaster, hence l = lG. Consequently, the speculation motive works on average in favor

of the green investor. The results for the same exercise, but starting at the current temperature

anomaly T0 = 1°C instead of at its long-run mean of T0 = µT = 2°C, are presented in Table

12 in Appendix A.
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Table 4: Wealth Shares – Different Simulations

200 years 500 years

10% median 90% 10% median 90%

Baseline TP 0.0515 0.1293 0.2325 0.0042 0.0262 0.0896

TT ipp = 2°C 0.0415 0.0723 0.1380 0.0023 0.0103 0.0386

γ = 5 0.1702 0.3014 0.4024 0.0477 0.1265 0.2754

lG = 2%; lB = 1% 0.1159 0.2183 0.3204 0.0205 0.0659 0.1730

d = −0.15 0.1476 0.2459 0.3436 0.0286 0.0845 0.2070

Imm. Disaster Risk 0.0405 0.0671 0.1108 0.0023 0.0080 0.0231

The table shows the median, 10% and 90% quantiles of the wealth share of the green investor
wG from 1,000 samples – each containing 200 or 500 years of simulated data. The starting
distribution is wG0 = wB0 = 0.5. Temperature at the beginning is T0 = µT = 2°C. Results are
shown for different calibrations of the economy. ’Baseline TP’ refers to the model calibration
presented in Table 1. Additionally, results are also shown for a lower tipping threshold (TT ipp =
2.0°C instead of TT ipp = 2.8°C), lower risk aversion (γ = 5 instead of γ = 8), lower subjective
disaster probabilities (l = lG = 0.02 and lB = 0.01 instead of l = lG = 0.03 and lB = 0.015),
a lower impact of disasters (d = −0.15 instead of d = −0.2) and an immediate disaster risk
economy (TT ipp = 0.01°C instead of TT ipp = 2.8°C).

Table 4 shows that in all considered cases the wealth share of the brown investor increases

over time. This is due to the risk sharing channel as explained in Section 3.3. Note that

the speculation motive is only relevant once the tipping threshold is crossed, so for most of

the time of the simulations only the risk sharing motive matters. The size of the risk sharing

channel increases with the degree of risk aversion of the investors, see equation 15. By lowering

the risk aversion from γ = 8 to γ = 5, the median wealth share of the green investor increases

from 13% to 30% after 200 years, and from 3% to 13% after 500 years, since she pays less to

insure against climate risks.

Table 4 also reports several other robustness checks for the evolution of the wealth shares

over time. For a lower tipping threshold of TT ipp = 2.0°C instead of TT ipp = 2.8°C, the
wealth shifts even faster to the brown investor on average, as climate disaster risks are a

more imminent threat. A closer tipping threshold increases the chance of passing it in a given

interval of time, and hence, increases the demand for hedging against theses states. This

drives down the median wealth share of the green investor to 7% after 200 years (compared to

13% with TT ipp = 2.8°C) and only 1% after 500 years (compared to 3% with TT ipp = 2.8°C).
The intuition behind the two next robustness checks is similar: both, a decrease in the

subjective disaster probabilities as well as a decrease of the disaster impact lowers the demand

for hedging against these states. Hence, in both of these scenarios, the wealth share of the
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green investor decreases less over time compared to the baseline scenario.

Finally, we consider the evolution of the wealth shares in the immediate disaster risk

economy. In this case, the disaster probability is positive in each period of the simulation, so

according to equation 15, the dynamics of the consumption shares do not only depend on the

risk sharing channel but also on the speculation motive in each period of the simulation. On

average, the speculation motive works in favor of the green investor in the long-run, since we

assume that she holds the correct beliefs about the disaster probabilities (l = lG). However,

the wealth share of the brown investor increases even faster in this case compared to the

tipping point case, so the risk sharing motive clearly dominates the speculation motive here.

The demand for risk sharing already increased when lowering the tipping threshold from 2.8°C
to 2°C, and further increases when lowering the disaster threshold further to 0.01°C.

While we do not focus on the equilibrium at the limit here (t → ∞), we conducted some

tests for the baseline economy and found that in the (very) long-run, the wealth share of the

green investor vanishes. Given the simulation above, after 1,000 years of simulation her mean

wealth share declines to wG1000 = 0.0032. After 2,000 years of simulation, the median wealth

share further declines to wG2000 = 2.3716e-5, and after 10,000 years of simulation it declines to

wG10000 = 1.9618e-7.
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5 Numerical Solution

In this section, we describe the solution methods employed to solve our baseline-model: a

long-run risk asset-pricing model incorporating disasters with heterogeneous agents and re-

cursive preferences. Since there are–to the best of our knowledge–no closed-form solutions for

this model framework available, we rely on a numerical solution approach as proposed in Pohl

et al. (2018). This approach is based on projection methods to approximate for the equilib-

rium functions. We also give a brief introduction to collocation methods and Gauss-Hermite

quadrature in general, but focus on its application for our model framework. For a more

comprehensive discussion of projection methods used to solve asset-pricing models, interested

readers can refer to Pohl et al. (2018).

To simplify notation, the subsequent procedures are described for the two-agent economy

presented in Chapter 3 and a single state variable yt ∈ R1, representing the temperature state

Tt in our model. The described approach can be extended analogously to the general case

involving more than two agents and multiple states. As proposed by Pohl et al. (2021), we

solve the social planer’s problem using a collocation projection. This involves reformulating

the equilibrium into an alternative representation involving functions of the state variables on

our state space. To simplify notation further, the current exogenous state of the economy will

be denoted by T and the subsequent state in the next period by T ′. Analogously, the current

endogenous state of the Negishi weight is denoted by λ and the the corresponding state in the

subsequent period by λ′, within the bounded state space Λ ∈ (0, 1). In the following, we will

write the equilibrium conditions as a function of λB. Remember, that we have normalized

the Negishi weights, so once we solve for λB, we can directly calculate λG, using the equation

λG = 1− λB.

We use a piecewise-linear approximation for the value functions of the two agents vh(λ, T ),

with h ∈ {B,G}. The approximated value functions are then denoted by v̂h(λ, T ). We tested

different interpolation methods to handle the discontinuity around the tipping threshold, and

piecewise-linear approximation turned out to deliver the best approximations for values close

to the tipping threshold. For the model with immediate disaster risk, the value functions

can also be interpolated using other methods, such as cubic splines, with high accuracy. The

results presented below use piecewise-linear interpolation for both models, since they are faster

to compute and deliver sufficiently accurate results as we show. This way, we can also directly

compare the accuracy of the case with a tipping threshold and without. The primary aim of

this section is not to achieve the highest level of accuracy possible in our solution. Instead,

our focus is on showcasing the sufficient accuracy of our solution method and demonstrating

the numerical robustness of all our economic outcomes even when we increase the number of

collocation nodes further.

To compute the expectations over the i.i.d. shocks in our model, we rely on Gauss-
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Hermite quadrature, a powerful numerical integration method. By strategically placing sample

points (quadrature nodes) at the specific roots of Hermite polynomials and leveraging the

weighting mechanism of the Gaussian probability distribution, Gauss-Hermite quadrature

excels in accurately estimating expectations. This makes this method particularly well-suited

for handling expectations over independent and identically distributed (i.i.d.) shocks with

remarkable efficiency.23

For the collocation projection, we need to select a set of collocation nodes at which we

evaluate v̂h(λ, T ). For the Negishi weights, we choose a vector of length nl ({λa}nla=1) and for

the temperature state, we use a vector of length nT ({Tb}nTb=1). Altogether, we have a matrix

with nl × nT collocation nodes for which the equilibrium conditions need to hold.

The Negishi weight of the subsequent period λ′ and the value function of the next period v′

are given by a vector of size nl×nT ×nGHT ×nD, where ’nl’ denotes the number of collocation

nodes for λ, ’nT ’ denotes the number of collocation nodes for T , ’nGHT ’ denotes the number

of quadrature nodes for the i.i.d. temperature shock and ’nD’ represents the number of states

for the Poisson counting process over which we compute the expectations. Note that the

dynamics of the Negishi weights are independent of the realization of the i.i.d. shock ηt+1 in

the consumption process. As a result, the corresponding quadrature can be computed in a

separate step instead of being solved together with the equilibrium conditions each time, to

save computing time.

5.1 Collocation Projection Approach

We showed in Section 3.2 that the dynamics of the Negishi weights depend on the value

functions (9) of the two investors, which in turn depend on the consumption decisions (10).

Hence, we need to jointly solve for the value functions vh of the two investors and the dynamics

of the equilibrium Negishi weights λ. We do this in a two step procedure.

Step 1: Computing Optimal Consumption Allocations

In the first step, we compute the optimal consumption allocations in equilibrium. The trans-

formation from Negishi weights to individual consumption shares is necessary, since the indi-

vidual value functions vh depend on the consumption shares. We see that the consumption

decisions today – as given by equations (10) and (11) – depend only on the current endoge-

nous state λt and can be solved independently of the utility functions and the dynamics of

the Negishi weights next period. Equation (10) has to hold at each collocation node {λa}nla=1.

23For a more extensive review of numerical integration methods in economics, we refer the interested reader to
Judd (1998).
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Together with the market-clearing condition we get

λBa (1− δ)(sBa )
ρ−1 = (1− λBa )(1− δ)(1− sBa )

ρ−1. (25)

Since the agents share the same preference parameters, we can reformulate this condition and

get a closed-form solution for the consumption share of the brown agent 24:

sBa =
(λGa )

1
ρ−1

(λBa )
1
ρ−1 + (λGa )

1
ρ−1

(26)

We can solve for sBa to get the optimal consumption choice for the brown investor at each

collocation node. The optimal consumption choice for the green agent, sGa is obtained by using

the market-clearing condition, thus sGa = 1− sBa .

Step 2: Solving for the Value Functions and the Dynamics of the Negishi Weights

In a second step, we solve jointly for the value functions of the two agents together with the

dynamics of the Negishi weights, hence for equations (9) - (14). The reason we have to solve

these equations jointly is that the value functions depend on the dynamics of the Negishi

weights – which depend themselves on the utility functions.

The expectation over the exogenous T -state in the subsequent period is computed by

a Gaussian quadrature, using nGHT quadrature nodes. The corresponding values for T ′ at

which we need to evaluate vh are given by the quadrature rule. For the temperature state T ,

the corresponding quadrature nodes depend on the temperature state today {Tb}nTb=1, and are

given by {T ′
b,c}

nT ,nGHT
b=1,c=1 . The accompanying weights for the Gaussian quadrature are given by

{wc}nGHTc=1 .

Although closed-form solutions exist for the expectation over the Poisson disaster process,

we opt for a numerical solution to account for the divergence in beliefs between the two

investors regarding the probability of a disaster in the next period. To compute agent h’s

expectation over the disaster term, the possible number of disasters (x) next period is weighted

by the subjective probability πht of each of these states, as given by the probability mass

functions from equation (17):

Eh
t [Dt+1] = Eh

t [Nt+1] · d =
∞∑
x=0

(πht )
x

x!
e−π

h
t · x · d (27)

Theoretically, there is an infinite number of possible disasters to consider, albeit with dimin-

ishing probabilities. We show at the end of this chapter how we could choose a cutoff value

24We could analogously solve for the consumption share of the green agent first. In the following, we solve all
equilibrium conditions for the brown agent.
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for the maximum number of disasters x considered, in order to compute an accurate solution

while remaining numerical tractability.

We can solve equation (13) for a given pair of collocation nodes {λBa , Tb}
nl,nT
a=1,b=1, the cor-

responding quadrature nodes {T ′
b,c}

nT ,nGHT
b=1,c=1 and the probability mass function for having x

disasters next period, given current temperature Tb. With this input, we compute a vector

for λB
′
of size nl × nT × nGHT × nD.

25 For each λB
′

a,b,c,x, equation (13) then reads

λB
′

a,b,c,x =
λBa Π

B

(1− λBa )Π
G + λBa Π

B
,

with

Πh =

(
vh(λB

′

a,b,c,x, T
′
b,c)

Rh [vh(λB′ , T ′)e∆c(N ′)|λBa , Tb]

)α−ρ

· dP
h(N ′|Tb)

dP (N ′|Tb)
, (28)

where

Rh
[
vh(λB

′
, T ′)e∆c(N

′)|λBa , Tb
]
= G−1

h

(
E

[
Gh

(
vh(λB

′
, T ′)e∆c(N

′)
) dP h(N ′)

dP (N ′)

∣∣∣∣λBa , Tb]) .
Due to the expectation operator, the values of λB

′

a,b,c,x depend on the entire distribution of λB
′
.

We apply the Gaussian quadrature to compute the expectation over the i.i.d temperature-

shock and use the probability mass function to compute the expectation over the disaster

state next period:

E

[
Gh

(
vh(λB

′
, T ′)e∆c(N

′)
) dP h(N ′)

dP (N ′)

∣∣∣∣λBa , Tb] ≈
nD∑
x=0

nGHT∑
c=1

Gh

(
vh(λB

′

a,b,c,x, Tb,c) · e∆c(N
′)
)
· ωc ·

(πh(Tb))
x

x!
e−π

h(Tb) · x · d.

The collocation nodes {λBa , Tb}
nl,nT
a=1,b=1 together with the quadrature nodes {T ′

b,c}
nT ,nGHT
b=1,c=1 and

the maximum number of considered disasters in the Poisson counting process (nD) determine

the values λB
′

a,b,c,x at which we need to evaluate the value functions vh. This yields a square

system of equations with nL × nT × nGHT × nD unknowns, and as many equations (28) for

each point {a, b, c, x}.
As noted earlier, the value functions are not known and need to be computed in the same

step when solving for λB
′

a,b,c,x. By plugging in the approximation v̂h(λB, T ) into equation (9),

the value functions can be described as:

v̂h(λBa , Tb) =

[
(1− δ)(sha)

ρ + δRh
t

(
v̂h(λB

′
, T ′) · e∆c(N ′)

)ρ ∣∣∣∣λBa , Tb] 1
ρ

. (29)

25The vector for λB′
depends on the temperature shock as well as on temperature today and the realization of

the disaster state: {λB′

a,b,c,x}
nl,nT ,nGHT ,nD

a=1,b=1,c=1,x=0.
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The collocation projection conditions require that equation (29) must hold at each collocation

node {λBa , Tb}
nl,nT
a=1,b=1. This yields a square system of equations with nL×nT equations for each

agent, resulting in nl × nT × 2 equations and as many unknowns for the linear interpolation

at each collocation node. We solve this system of equations jointly with the system for

{λB′

a,b,c,x}
nl,nT ,nGHT ,nD
a=1,b=1,c=1,x=0 described before.

We use the built-in interp-functions of Matlab for the function interpolation, using the

interpolation option ’linear’. However, the built-in Matlab function ’interp2’, which returns

interpolated values of a function of two variables at specific query points using linear inter-

polation, cannot handle linear extrapolation, so we have to adjust the function accordingly26.

We could not find any significant performance differences whether we used the solver ’fsolve’,

’fmincon’ or ’knitro’. All of these were able to solve for the equilibrium conditions described

above. We provide the solvers with additional information for the boundary cases. For λB = 1

for example, the brown investor holds all the wealth in the economy. We can compute vB(1, Tb)

in this case in the representative agent economy of the brown agent. The value function of

the green agent, vG(1, Tb), will be zero in this case for all temperature states. The same can

be done for the case of λB = 0, which is equal to the solution for the representative agent

economy of the green agent.

In the following subsections, we provide details about the accuracy of the numerical solu-

tion method. In particular, we show that further increasing the number of collocation nodes

does not affect the results. The Euler errors are computed for collocation grids with different

numbers and distributions of collocation nodes. Additionally, we control for the number of

Gauss-Hermite nodes and the cutoff value for the number of disasters in the next period,

for which we compute the expectations. In a first step, we consider the immediate disaster

risk model, which is a long-run risk disaster model with immediate disaster risk but without

a tipping threshold. Afterward, we show how to adapt the grid to deal with nonlinearities,

such as the temperature threshold, and still maintain a sufficient level of accuracy. While

the methods presented in this chapter work for long-run risk models including disasters and

heterogeneous agents in general, the specific choice of the grids and the reported errors refer

to the baseline calibration presented in Chapter 4.1.

The collocation grids which are compared in the following contain two states: the en-

dogenous Negishi-weight λBt , and the current temperature anomaly Tt. To solve the model

numerically, we need one additional dimension to compute the expectation for each i.i.d.

shock. In the baseline-model presented in Section 3 are two i.i.d. shocks: one shock enters

into the equations for consumption growth (1) and dividend growth (7) and the other shock

affects the dynamics of temperature (6). Note that η in the equations for consumption and

dividend growth represents the same shock, but is scaled by the leverage parameter Φ in the

26For the Matlab function ’interp1’ instead, which returns interpolated values of a 1-D function at specific query
points using linear interpolation, Matlab has a built-in option for extrapolation.
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latter, as consumption and dividend growth are correlated. As a consequence, we only need

one quadrature to compute the expectations over this shock. In addition to the two dimensions

for the normally distributed shocks, we need an extra dimension to compute the expectations

over the expected value of the climate-induced disasters. Hence, the largest matrices to work

with in this model will be 5-dimensional of size nL × nT × nGHT × nGHC × nD.

Table 5: Cumulative Subjective Disaster Probabilities

Tt = 0 Tt = 1 Tt = 2 Tt = 3 Tt = 4 Tt = 5

P (x = 0|Tt) 0 0.9704 0.9418 0.9139 0.8869 0.8607

P (x ≥ 1|Tt) 0 0.0296 0.0582 0.0861 0.1131 0.1393

P (x ≥ 2|Tt) 0 4.4110e-4 0.0017 0.0038 0.0066 0.0102

P (x ≥ 3|Tt) 0 4.4000e-6 3.4418e-5 1.1359e-4 2.6328e-4 5.0286e-4

P (x ≥ 4|Tt) 0 3.2950e-8 5.1472e-7 2.5441e-6 7.8506e-6 1.8714e-5

P (x ≥ 5|Tt) 0 1.9750e-10 6.1642e-9 4.5656e-8 1.8765e-7 5.5858e-7

P (x ≥ 6|Tt) 0 9.8683e-13 6.1553e-11 6.8336e-10 3.7423e-9 1.3914e-8

The table shows the cumulative subjective probability for the green agent that the number of
disasters next period is greater or equal to x, given the current temperature Tt: P

G(Nt+1 ≥
x|Tt). Values are shown for the immediate disaster risk case. In the tipping point case, it
holds that P h(Nt+1 = 0|Tt < TT ipp) = 1. After passing the tipping threshold, the probabilities
are the same as in the immediate disaster risk case.

As mentioned earlier, in theory, the possible number of disasters over which we have to

compute expectations is infinite, with the probability of multiple simultaneous disasters de-

clining as we consider more disasters per period. Table 5 denotes the cumulative disaster

probabilities for having at least x disasters next period, as a function of the current temper-

ature anomaly. The numbers are computed for the beliefs of the green agent. Assuming a

current temperature anomaly of approximately 1°C for example, it is even in the immediate

disaster risk case very unlikely to have more than one disaster next period. For the tipping

threshold economy, the disaster probability is zero anyways below the temperature threshold.

Although the current temperatures are far from reaching 5 degrees global warming, these are

the most extreme cases that require accurate solving using our global approximation method.

Having a 5°C world, the probability of having more than 2 (3) disasters next period is in

the order of 5e-4 (1.9e-5). We will show in the following that cutoff values in this range are

sufficient to solve numerically accurate for the Poisson disaster process. Note that all values

in Table 5 are computed using the subjective beliefs of the green investor. Since lB < lG, the

chance of having multiple disasters within a period is even smaller for the subjective beliefs

of the brown investor.
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5.2 Accuracy: Immediate Disaster Risk Model

In this chapter, we present the numerical errors for different collocation grids in the immediate

disaster risk case, and show how the number of collocation nodes impacts the accuracy of the

results. After choosing the collocation nodes, we vary the number of quadrature nodes and

the cutoff value for the maximum length of the disaster state to ensure that these do not

change the results. The numerical errors (Euler errors) are computed using a 100 × 100

uniform grid27 for the two states of the model: the exogenous temperature state Tt and the

endogenous Negishi weight λBt . We report the errors for the value functions (9) of the two

agents and the error in the dynamics of the equilibrium conditions (13) for different grid sizes.

In a second step, we investigate whether these errors have a relevant economic impact on our

results. To do so, we analyze how the asset pricing moments of interest and the WCC change

with different approximation degrees.

All collocation grids for the immediate disaster risk model are uniformly distributed in

both dimensions. While the equilibrium conditions depend on the Negishi weights, the value

function, wealth–consumption ratio and price–dividend ratio depend on the corresponding

consumption shares. As shown in Section 3.2, consumption shares and Negishi weights are

linked together via the following equation:

λGt
λBt

=

(
sGt
sBt

) 1
ψ

.

For ψ > 1, a uniform distribution of λ implies that the corresponding consumption shares are

concentrated more heavily on the boundaries of the state space. This effect gets stronger, the

higher the value for ψ is chosen. In the special case of ψ = 1, it holds that sGt = λGt . Figure 23

shows the mapping between λG and sG for ψ = 1.5, as in our baseline calibration computed

for nl = 45 collocation nodes. We also tested collocation grids that are uniformly distributed

with respect to the consumption shares, i.e. choosing a uniform distribution of sBt , and then

computing the corresponding Negishi weights to solve for the equilibrium. While a uniform λB-

distribution was numerically more stable in computing the equilibrium conditions, a uniform

sB-distribution delivered better results when solving for the wealth–consumption and price–

dividend ratio. For the rest of this section, whenever we mention ’uniformly distributed,’ it

pertains to the uniform distribution in the λ-dimension.

27We also checked errors for some collocation grids on a 200 × 200 grid. However, since the differences were
marginal and computing the numerical errors on a 200 × 200 grid takes four times more computing time
compared to a 100× 100 grid, we report the errors for the 100× 100 grids.
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Figure 23: Mapping between Negishi Weights and Consumption Shares
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The figure plots the consumption share, sGt , of the green investor as a function of her Negishi
weight, λGt . The dashed lines mark the 45-degree line. Values are computed for ψ = 1.5, as
in the baseline calibration. The dots mark the collocation nodes for nl = 45.

Table 6 shows the root-mean-square errors (RMSEs) and the maximum absolute errors

(MAEs) in the value functions (9) as well as in the equilibrium conditions of the Negishi

weights (13). Errors are reported on a state grid covering ±3 standard deviations around the

unconditional long-run mean of T , which is approximately from -1 to 5°C. We set the disaster

probability to zero for all Tt < 0, to avoid negative disaster probabilities according to equation

(5).28 A different way to deal with negative disaster probabilities is to exclude the possibility

of negative temperature values, i.e. set Tmin = 0.01°C as a lower bound for the T-dimension

of the state space. Using the latter approach, we could avoid nonlinear behavior around 0°C.
Outside of that area, it would not affect the approximation results, as can be seen in Figure

26. Since the errors are largest around zero degrees (see Figure 24 and 25), solving a model

with a lower bound of Tmin = 0.01°C would decrease the approximation errors. We show

the respective approximation errors in Appendix A (Table 13) for some collocation grids with

Tmin = 0.01, but focus the discussion in the following on the model that is solved on a state

space from -1 to 5°C, using different collocation grids.

We exclude all error terms for λB
′

t values, for which the corresponding T ′-value is outside of

the collocation grid. The reason to exclude these errors is that the main focus of the analysis

lies on the errors and accuracy of the results within the collocation grid. Given that the errors

at the boundaries are considerably large and depend on extrapolation, they could potentially

28Technically, we set the tipping threshold to 0.01°C in the immediate disaster risk case.
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skew the accuracy statistics. For the Negishi weights, the full state space is included between

0 and 1. We observe that for nl = 15 and nT = 30, the errors in the value functions of the two

agents are already small with a maximum absolute error of 0.001 and 0.0012, respectively. By

increasing the approximation degree further, there are small improvements in the accuracy of

the value functions. The maximum error in the Negishi weights, however, can be reduced by

roughly a factor of three from 0.0116 to 0.0043, by increasing the approximation degree to

nl = 35 and nT = 35. We argue that this approximation degree is already sufficient for our

model statistics.

Table 6: Numerical Errors – Immediate Disaster Risk Case

vGt vBt λB
′

t E[λB
′

t ]

nl nT RMSE MAE RMSE MAE RMSE MAE RMSE MAE

15 20 4.215e-4 0.0021 4.237e-4 0.0020 6.936e-4 0.0117 2.665e-4 0.0030

15 30 2.101e-4 0.0010 2.256e-4 0.0012 6.780e-4 0.0116 2.416e-4 0.0030

15 35 1.587e-4 8.661e-4 1.764e-4 0.0012 6.759e-4 0.0116 2.379e-4 0.0030

15 55 8.754e-5 7.736e-4 1.118e-4 0.0012 6.719e-4 0.0116 2.336e-4 0.0029

25 35 1.502e-4 8.021e-4 1.572e-4 9.544e-4 6.617e-4 0.0069 1.684e-4 0.0016

35 35 1.506e-4 7.819e-4 1.560e-4 9.324e-4 5.598e-4 0.0043 1.389e-4 0.0011

45 45 5.627e-5 4.194e-4 6.304e-5 4.475e-4 6.975e-4 0.0076 1.207e-4 9.562e-4

The table shows root-mean-square errors (RMSEs) and maximum absolute errors (MAEs) in
the value functions and equilibrium conditions for the Negishi weights for different numbers of
collocation nodes for the immediate disaster risk model. Errors are reported for a state grid
of ±3 standard deviations around the unconditional mean of Tt. For λ

B
t the full grid between

0 and 1 is used. We denote the number of collocation nodes for the λBt -dimension by nl and
the number of collocation nodes for the Tt-dimension by nT . Errors are computed on a grid
of size 100× 100.

Figure 24 shows the numerical errors in the two value functions for a uniform grid with 35

collocation nodes in the λB- and Tt- dimension. The most substantial approximation errors

occur in the area close to the ’hypothetical’ tipping threshold of 0.01°C. However, even in this

area, the value functions are computed with high accuracy with a maximum absolute error of

7.819e-4 and 9.324e-4 for the two agents.

For the dynamics of the Negishi weights, the maximum absolute error is orders of magni-

tude larger. Since λB
′

t is 4-dimensional of size nl×nT ×nGHT ×nD, Figure 25 shows the errors

for a zero-shock in temperature (σζζt+1 = 0) and different number of disasters next period.

The plots for different positive or negative shocks to temperature can be found in Appendix

A (Figure 37). The approximation is most inaccurate at the borders of the state grid. We see

in all three subplots that the errors are largest when λB is close to the boundaries of the state
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Figure 24: Numerical Errors in the Value Functions – Immediate Disaster Risk Case

The figure plots numerical errors in the value functions for the two agents in the immediate
disaster risk case. Errors are reported for a state grid covering ±3 standard deviations around
the unconditional mean of Tt. For λBt the full grid between 0 and 1 is used. The projection
method uses a 35 × 35 uniform grid for the λB- and Tt- dimension. Numerical errors are
computed on a 100× 100 uniform grid.

space, hence, when λB gets close to 0 or 1. For the states covering a disaster next period, it

can be seen that the errors are larger for positive temperatures, since the disaster probability

is zero for negative temperatures. Since our economic analysis focuses on economies that are

inhabited by a significant share of both investors, the economic impact of the errors at the

boundaries of the λ-space should be limited.

All values in Table 6 are computed using nGHC = 3, nGHT = 7 and nD = 429. In Table

7, we demonstrate that the number of nodes chosen for the Gauss-Hermite quadrature and

the cutoff value for the expectation over the disaster term are sufficient. Generally, a larger

number of quadrature nodes increases the accuracy of the approximation, but at the same

time increases the computation time needed to solve the model. For this reason, our objective

is to determine the minimum number of quadrature nodes required, while ensuring that any

further increase in the number of nodes has only a marginal impact on the accuracy of the

results. Table 7 reports the effect of increasing the number of Gauss-Hermite nodes compared

to the baseline grid. The distribution of the i.i.d. consumption shock can be approximated

with high accuracy by using only 3 Gauss-Hermite nodes. Using 5 Gauss-Hermite nodes

instead would not affect the results. The i.i.d. temperature shock is approximated using 7

29This refers to a cutoff value of x = 3, as x = 0 also counts as a state.
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Figure 25: Numerical Errors in the Negishi Weights – Immediate Disaster Risk Case

The figure plots numerical errors in the dynamics of the Negishi weights for a different number
of disasters next period in the immediate disaster risk case. The i.i.d. temperature shock is
set to zero (σζζt+1 = 0). Errors are reported for a state grid covering ±3 standard deviations
around the unconditional mean of Tt. For λBt the full grid between 0 and 1 is used. The
projection method uses a 35 × 35 uniform grid for the λB- and Tt- dimension. Numerical
errors are computed on a 100× 100 uniform grid.
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Gauss-Hermite nodes. Changing to 9 nodes would only have a marginal effect on the errors.

The expectation over the disaster impact is already approximated with high accuracy using a

cutoff value of 3, which itself has only very little difference to a higher cutoff value of 4.

Table 7: Robustness Numerical Errors – Immediate Disaster Risk Case

vGt vBt λB
′

t

RMSE MAE RMSE MAE RMSE MAE

baseline 1.5058e-4 7.8186e-4 1.5598e-4 9.3240e-4 5.5975e-4 0.0043

nGHC = 5 1.5058e-4 7.8186e-4 1.5598e-4 9.3240e-4 5.5975e-4 0.0043

nGHT = 9 1.5231e-4 8.0383e-4 1.6127e-4 9.5582e-4 5.7180e-4 0.0048

Nmax = 4 1.5041e-4 7.8096e-4 1.5596e-4 9.3239e-4 5.6396e-4 0.0047

The table shows root-mean-square errors (RMSEs) and maximum absolute errors (MAEs) in
the value functions as well as the equilibrium conditions for the Negishi weights for a different
number of Gauss-Hermite nodes and a different cutoff value for the disaster state. Errors are
reported for a state grid covering ±3 standard deviations around the unconditional mean of
Tt. For λBt the full grid between 0 and 1 is used. The number of collocation nodes for the
λBt -dimension and for the Tt-dimension is given nl = nT = 35. Errors are computed on a grid
of size 100× 100.

.

Finally, we conduct two exercises to analyze the economic significance of the numerical

errors. As noted before, the errors are largest at the boundaries of the collocation grid and

around Tt = 0.01°C. However, these are not the states on which we focus in our economic

analysis, since we assume that the belief disagreement about climate change will not be re-

solved in the near future. Instead, we assume that we will have a significant share of green

as well as brown investors over the next decades, which is also the result of the simulations

shown in Section 4.9. Also, given a current temperature anomaly of around 1.2°C and its high

persistency, we argue that (without geo-engineering) global warming will not be reversed to

preindustrial levels in the near future. We show the impact of the numerical errors on asset

prices by running a simulation over 100 years, starting at a temperature of T0 = 1°C. At
the beginning, both agents have an equal consumption share, hence sG0 = sB0 = 0.5. We run

this simulation 100 times for several collocation grids and report selected mean annualized

asset-pricing moments from these simulations in Table 8.30 At the end of the simulation, the

mean consumption share of the brown agent is sB100 = 0.75 and mean temperature at the end

is T100 = 1.45°C.
30Table 14 in Appendix A shows the corresponding price–dividend ratio from the simulations for the green stock,
brown stock, and the market portfolio.
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Table 8: Annualized Asset-Pricing Moments – Immediate Disaster Risk Case

nl nT log(RM
t ) σ(log(RM

t )) log(RG
t ) σ(log(RG

t )) log(RB
t ) σ(log(RB

t ))

15 20 0.0410 0.0642 0.0351 0.0588 0.0621 0.1258

15 55 0.0404 0.0654 0.0347 0.0594 0.0607 0.1308

35 35 0.0406 0.0655 0.0349 0.0597 0.0609 0.1298

45 45 0.0408 0.0650 0.0352 0.0594 0.0616 0.1273

The table reports selected annualized asset-pricing moments for different approximation de-
grees for the green stock, brown stock, and the market portfolio in the immediate disaster
risk model. Moments are computed by simulating 100 sample paths each containing 100 years
of data. We set Tstart = 1.0°C and wGstart = 0.5. The number of collocation nodes for the
λBt -dimension is denoted by nl and the number of collocation nodes for the Tt-dimension by
nT . Shocks to temperature, ζt+1, are drawn from a standard normal distribution, and no
exogenous shocks are added.

The differences in the returns for different grids are relatively small and do not significantly

impact the economic interpretation of the model outcomes. The model economy produces a

significant carbon premium over the simulation period, as brown stocks outperform green

stocks during normal times. The return of the market portfolio lies somewhere in between,

reflecting the climate risk exposure that is also between that of green and brown stocks.

However, the simulation does not cover the whole state space as can be seen in Figure 32

in Appendix A. To demonstrate the accuracy of our solution for much higher and lower

temperature states, we show the carbon premium as well as the welfare cost of carbon for a

temperature space from -1 to 5°C in an economy with wG = wB = 0.5 in Figure 26. While

there are some differences observed when using a 15× 20 collocation grid, the results show a

convergence when comparing grids of 15× 35 and 35× 35.

The green line in Figure 26 shows the respective economy with a lower limit to the tem-

perature state space, hence setting Tmin = 0.01°C. The effect is very limited for the carbon

premium. For the welfare cost of carbon instead, the difference is significant around Tt = 0°C
but the results converge around Tt = 1°C. This difference can be explained since the marginal

gain of reducing temperature is higher in a world in which negative temperatures are possible,

compared to a world in which negative temperature values are not possible, and hence, the

disaster probability will always be positive. While we show in the main part of our paper re-

sults for an immediate disaster risk model with a lower bound to temperature of 0.01°C to get

a monotone declining welfare cost of carbon, all other results are robust to that assumption.

In Appendix A, we show the corresponding figures closer to the λ-dimension boundaries

within the state space. Specifically, Figure 39 shows the carbon premium and WCC for an

economy with wGt = 0.05 and for an economy with wGt = 0.95. The carbon premium remains
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relatively consistent across different approximation degrees, displaying only minimal variation.

In the WCC plot, there is a slight distinction between the 15 × 20 grid and the larger grids,

all of which ultimately converge near 1°C.

Figure 26: Carbon Premium and Welfare Cost of Carbon for different Collocation Grids –
Immediate Disaster Risk Case
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The figure plots the carbon premium and the welfare cost of carbon for different collocation
grids. The four grids without an asterisk cover a T-space from approximately -1 to 5°C, while
the grid with an asterisk (green line) refers to the collocation grid with a lower boundary of
Tmin = 0.01°C. Results are shown for an economy with wGt = 0.5. The vertical dashed line
marks 0°C.
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5.3 Accuracy: Tipping Threshold Model

In this section, we show how to adapt the uniform grid to handle the discontinuity around the

tipping threshold. The numerical errors for the tipping point case are reported for a state grid

covering ±3 standard deviations around the unconditional mean of T , which is approximately

from −1 to 5°C temperature anomaly. We do not need to distinguish between cutting off the

temperature state space at 0°C or not for this case, since disaster probabilities are zero for

any Tt < TT ipp, which is at 2.8°C in our baseline calibration. For this reason, the discontinuity

of interest is no longer at a temperature of zero degrees but at the positive tipping threshold.

To get a better approximation around the tipping threshold, we include some additional

collocation nodes in this area. In particular, we explicitly place a collocation node exactly

at the tipping threshold (Tt = 2.8°C). Another collocation node is included infinitesimally

before the tipping threshold: Tt = (2.8 − ϵ)°C, with ϵ = 1e-6. This allows us to divide the

grid in a state space with positive disaster probability and a state space with zero disaster

probability. We tested for several other ways to adapt the grid around the tipping threshold,

for example by using a finer collocation grid around this area. The method with including a

node directly at the tipping threshold and infinitesimally before provided the best results in

terms of convergence and accuracy, so we only discuss results for this method in the following

in detail. The adjusted grids are all marked with an asterisk in the tables.

Table 9 shows the root-mean-square errors (RMSEs) and the maximum absolute errors

(MAEs) in the value functions (9) as well as in the equilibrium conditions of the Negishi

weights (13). As in the immediate disaster risk case, we exclude all error terms for λB
′

t values,

for which the corresponding T ′-value would be outside of the collocation grid. For the Negishi

weights, the full state space is included between 0 and 1. We observe that for nl = 11

and nT = 35, the errors in the value functions of the two agents are already small with a

maximum absolute error of 0.0078 and 0.0082, respectively. By increasing the approximation

degree further up to nl = 23 and nT = 55, the maximum errors in the value functions go down

to 0.0055 and 0.0052 for the two agents, and the root-mean-square errors can be lowered to

4.0e-4 and 6.1e-4, respectively. The numerical errors in the value functions for a collocation

grid with nl = 23 and nT = 55 are plotted in Figure 27. The maximum errors in the value

functions are concentrated in the area around the tipping threshold at 2.8°C and are rather

evenly distributed across the remaining state space. As noted before, there is no spike in the

errors around 0°C, in contrast to the immediate disaster risk case.
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Table 9: Numerical Errors – Tipping Point Case

vGt vBt λB
′

t E[λB
′

t ]

nl nT RMSE MAE RMSE MAE RMSE MAE RMSE MAE

11 21* 0.0013 0.0113 0.0019 0.0121 0.0013 0.0192 5.246e-4 0.0037

11 35* 8.877e-4 0.0078 0.0011 0.0082 0.0012 0.0192 4.427e-4 0.0037

11 55* 4.294e-4 0.0055 6.317e-4 0.0052 0.0011 0.0167 3.156e-4 0.0036

15 55* 4.038e-4 0.0055 6.100e-4 0.0052 9.029e-4 0.0161 2.405e-4 0.0025

19 55* 3.978e-4 0.0055 6.065e-4 0.0052 9.253e-4 0.0161 2.234e-4 0.0019

23 55* 3.962e-4 0.0055 6.064e-4 0.0052 8.813e-4 0.0161 2.010e-4 0.0015

The table shows root-mean-square errors (RMSEs) and maximum absolute errors (MAEs) in
the value functions as well as the equilibrium conditions for the Negishi weights for different
numbers of collocation nodes for the tipping threshold model. Errors are reported for a state
grid covering ±3 standard deviations around the unconditional mean of Tt. For λBt the full
grid between 0 and 1 is used. We denote the number of collocation nodes for the λBt -dimension
by nl and the number of collocation nodes for the Tt-dimension by nT . Errors are computed
on a grid of size 100× 100. An asterisk (*) denotes cases where we used an adjusted grid by
placing a collocation node exactly on the tipping point and an additional node infinitesimally
before the tipping threshold. The remaining state space is uniformly distributed.

Figure 27: Numerical Errors in the Value Functions – Tipping Point Case

The figure plots numerical errors in the value functions for the two agents in the tipping
point case. Errors are reported for a state grid covering ±3 standard deviations around the
unconditional mean of Tt. For λ

B
t the full grid between 0 and 1 is used. The projection method

uses a collocation grid with nl = 23 and nT = 55 nodes, with a collocation node exactly on
the tipping point and an additional node infinitesimally before the tipping threshold. The
remaining state space is uniformly distributed. Numerical errors are computed on a 100×100
uniform grid.
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The maximum errors in the Negishi weights are significantly larger in the tipping threshold

case compared to the immediate disaster risk case. This holds especially true for temperature

values around the tipping area. These values are driven by outliers, however, and do not affect

the economic interpretation of our results. While the maximum absolute error in λB
′

t is quite

significant with a value of 0.0161, the maximum absolute error in the expectation over the

Negishi weight next period, E[λB
′

t ], is around ten times lower with a value of 0.0015. This is

a first indication that the maximum errors occur in very unlikely states of nature, which have

accordingly only a little weight when computing the expectations of each agent. Note that

the asset-pricing moments in our model also depend on the subjective expectations of the two

agents on the future states of the economy. Figure 28 visualizes the errors in the dynamics

of the Negishi weights. Since the matrices of λB
′
are 4-dimensional, we plot the figures for

a zero-shock in temperature (σζζt+1 = 0), and for no disaster, one disaster and two disasters

occurring in the next period. The largest errors are around the area of the tipping threshold

and at the boundaries of the state space. The plots for different positive or negative shocks

to temperature can be found in Appendix A (Figure 38).

The results in Table 9 are computed using nGHC = 3, nGHT = 7 and nD = 431. We

refer to these errors as ’baseline’ in Table 10 and show that the number of nodes chosen

for the Gauss-Hermite quadrature and the numerical cutoff value for the expectation over the

disaster term are sufficient. The distribution of the i.i.d. consumption shock can be accurately

approximated using only 3 Gauss-Hermite nodes; using 5 Gauss-Hermite nodes instead would

not affect the results. For the i.i.d. temperature shock, 7 Gauss-Hermite nodes are used, and

increasing the number of nodes to 9 would only slightly affect the numerical errors.32 The

disaster impact is already approximated with high accuracy using a cutoff value of 3. For

comparison, results with a cutoff value of 4 are reported in the table. Note that the cutoff

value only affects the accuracy for Tt-values above the tipping threshold on the collocation

grid, as the disaster probability is always zero for values below the threshold.

Finally, as a last exercise, we try to use a finer grid around the tipping threshold, since the

numerical errors are largest in this area. We do this by including some additional collocation

nodes in the region of TT ipp ± 0.3°C. While the errors can be further decreased by including

additional nodes in this region, the economic results are nearly unaffected by this as shown

in the following.

31This refers to a cutoff value of x = 3, as x = 0 also counts as a state.
32The observed difference in errors primarily arises from large jumps in temperature (σζζt+1) around the tipping
point.
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Figure 28: Numerical Errors in the Negishi Weights – Tipping Point Case

The figure plots numerical errors in the dynamics of the Negishi weights for a different num-
ber of disasters next period in the model including a tipping threshold at 2.8°C. The i.i.d.
temperature shock is set to zero (σζζt+1 = 0). Errors are reported for a state grid covering ±3
standard deviations around the unconditional mean of Tt. For λ

B
t the full grid between 0 and

1 is used. The projection method uses a collocation grid with nl = 23 and nT = 55 nodes,
with a collocation node exactly on the tipping point and an additional node infinitesimally
before the tipping threshold. The remaining state space is uniformly distributed. Numerical
errors are computed on a 100× 100 uniform grid.
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Table 10: Robustness Numerical Errors – Tipping Point Case

vGt vBt λB
′

t

RMSE MAE RMSE MAE RMSE MAE

baseline 3.9618e-4 0.0055 6.0637e-4 0.0052 8.8134e-4 0.0161

nGHC = 5 3.9618e-4 0.0055 6.0636e-4 0.0052 8.8134e-4 0.0161

nGHT = 9 2.9204e-4 0.0036 4.9529e-4 0.0043 0.0013 0.0209

Nmax = 4 3.9512e-4 0.0055 6.0668e-4 0.0052 8.8005e-4 0.0161

finer TP 2.6772e-4 0.0046 4.3810e-4 0.0055 8.2381e-4 0.0117

The table shows root-mean-square errors (RMSEs) and maximum absolute errors (MAEs) in
the value functions as well as the equilibrium conditions for the Negishi weights for a different
number of Gauss-Hermite nodes, a different cutoff value for the disaster state and a finer
grid around the tipping threshold. Errors are reported for a state grid covering ±3 standard
deviations around the unconditional mean of Tt. For λBt the full grid between 0 and 1 is
used. The number of collocation nodes for the λBt -dimension and for the Tt-dimension is given
nl = 23 and nT = 55, with a collocation node exactly on the tipping point and an additional
node infinitesimally before the tipping threshold. The remaining state space is uniformly
distributed. Errors are computed on a grid of size 100× 100.

We argue that the approximation degree presented above is sufficient for our model statis-

tics of interest. Table 11 shows asset pricing moments for different collocation grids by running

a simulation over 100 years, starting at a temperature of T0 = 1°C.33 At the beginning, both

agents have an equal consumption share, hence sG0 = sB0 = 0.5. We run this simulation 100

times for each of the collocation grids and report selected annualized asset-pricing moments

from these simulations. At the end of the simulation, the mean temperature is T100 = 1.45°C
and the mean consumption share of the brown agent is sB100 = 0.63. The differences be-

tween the tested collocation grids are marginal and do not significantly impact the qualitative

predictions of the model.

Again, the simulation presented in Table 11 does not cover the whole state space, but

rather focuses on the regions most likely to be encountered in the coming decades. To provide

a more comprehensive analysis, we turn to Figure 29, which compares the carbon premium and

WCC across the entirety of the state space of Tt for an economy with wGt = 0.5. Examining

the carbon premium, we observe a slight variance between the 11 × 21 and 11 × 35 grids,

though the difference diminishes when comparing the 11 × 35 and 23 × 55 collocation grids.

The discrepancies in the WCC, however, are more apparent between the 11× 21 and 11× 35

grids, yet they also converge upon comparing the 11× 35 and 23× 55 collocation grids. It is

33Table 15 in Appendix A shows the corresponding price–dividend ratio from the simulations for the green stock,
brown stock, and the market portfolio.
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noteworthy that the WCC is particularly sensitive to even small approximation errors in the

wealth–consumption ratio, given its dependency on its derivative (see equation 23).

Figure 40 in Appendix A presents the results for two scenarios closer to the boundaries of

the λ-dimension: one with wGt = 0.05 and another with wGt = 0.95. Similar to the immediate

disaster risk model, the differences between the various collocation grids do not significantly

increase at the boundaries. Although the 11 × 21 collocation grid shows some variation, the

solutions from the two larger grids converge, as seen before in the case of the economy with

wGt = 0.5.

Finally, we tested whether the results change with an extended approximation interval for

temperature. We increased the collocation grid to cover ±4 standard deviations around the

unconditional mean of temperature (approximately from -2°C to 6°C), instead of ±3 standard

deviations (approximately from -1°C to 5°C). We compare the carbon premium and WCC

for both cases in Figure 30 and find no economically significant differences between the two

choices for the approximation interval.

Table 11: Annualized Asset-Pricing Moments – Tipping Point Case

nl nT log(RM
t ) σ(log(RM

t )) log(RG
t ) σ(log(RG

t )) log(RB
t ) σ(log(RB

t ))

11 21∗ 0.0443 0.0533 0.0403 0.0539 0.0506 0.0665
11 35∗ 0.0441 0.0535 0.0401 0.0540 0.0503 0.0679
11 55∗ 0.0441 0.0533 0.0400 0.0539 0.0503 0.0674
23 55∗ 0.0441 0.0534 0.0402 0.0539 0.0502 0.0679
23 55∗∗ 0.0441 0.0535 0.0401 0.0539 0.0503 0.0686

The table reports selected annualized asset-pricing moments for different approximation de-
grees for the green stock, brown stock, and the market portfolio. Moments are computed by
simulating 100 sample paths each containing 100 years of data. We set Tstart = 1.0°C and
wGstart = 0.5. The number of collocation nodes for the λBt -dimension is denoted by nl and the
number of collocation nodes for the Tt-dimension by nT . Shocks to temperature, ζt+1, are
drawn from a standard normal distribution, and no exogenous shocks are added. An asterisk
(*) denotes cases where we used an adjusted grid by placing a collocation node exactly on
the tipping point and an additional node infinitesimally before the tipping threshold. Two
asterisks (**) denote the case where we put some additional collocation nodes around the
tipping point.
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Figure 29: Carbon Premium and Welfare Cost of Carbon for different Collocation Grids –
Tipping Point Case
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The figure plots the carbon premium and the welfare cost of carbon for different collocation
grids as a function of Tt. The grids cover a T-space from approximately -1 to 5°C. Results are
shown for an economy with wGt = 0.5. Collocation grids are adjusted by placing a collocation
node exactly on the tipping point and an additional node infinitesimally before the tipping
threshold. The remaining state space is uniformly distributed. The vertical dashed line marks
the tipping threshold.

Figure 30: Carbon Premium and Welfare Cost of Carbon for a larger Approximation Space -
Tipping Point Case
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The figure plots the carbon premium and the welfare cost of carbon for different collocation
grids as a function of Tt. The blue line corresponds to a grid that covers a T-space from
±3 standard deviations (approx. -1°C to 5°C), while the red line corresponds to a T-space
from ±4 standard deviations (approx. -2°C to 6°C) around the unconditional mean of Tt.
Results are shown for an economy with wGt = 0.5. Collocation grids are adjusted by placing a
collocation node exactly on the tipping point and an additional node infinitesimally before the
tipping threshold. The remaining state space is uniformly distributed. The vertical dashed
line marks the tipping threshold.
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6 Conclusion

We present an asset-pricing model for the analysis of climate financial risks. The persistent

global average temperature anomaly is a natural source of long-run risk in financial markets.

In our model, as long as the global temperature is below the temperature threshold of a

tipping point, climate-induced disaster cannot occur. Once the global temperature crosses

that threshold, disasters become increasingly likely. The economy is populated by two types of

investor with divergent beliefs about climate change. Green investors believe that the disaster

probability rises considerably faster than brown investors do. Both groups of investors have

identical Epstein–Zin preferences with a preference for the early resolution of risk.

The model simultaneously explains several empirical findings that have recently been doc-

umented in the literature. First, not only is climate risk itself priced, but the risk of receiving

bad news about the future climate is also priced. Brown investors implicitly sell insurance

against this climate news risk to green investors. Second, bad news about the climate increases

the market share of green investors, because they benefit from buying insurance against such

news shocks. Third, brown stocks carry a carbon premium relative to green stocks due to

their greater exposure to climate risks. Fourth, if the temperature threshold to trigger disaster

events is sufficiently far away from the current temperature anomaly, then the corresponding

carbon premium is only small. The news-channel effect dominates the carbon-premium effect

and the model thus shows an outperformance of green over brown stocks in response to bad

climate news.

The model provides predictions for the future evolution of asset prices. As per our model,

there exists a positive carbon premium, which means that the expected return of brown stocks

is higher than that of green stocks. For this reason, according to our model past performance

is not a good predictor of future performance. While realized returns of green stocks have gone

up in response to negative climate news, expected returns have gone down simultaneously.

In the absence of further exogenous shocks and climate-induced disasters, our model predicts

higher future returns for brown stocks. However, if temperatures continue to rise and approach

the tipping point threshold, the potential benefits of investments to slow down climate change

increase significantly. In this scenario, our model predicts a significant increase in the market

share of green investors and the carbon premium.

The model also points out the differences in the gains from carbon-reducing investments

between investors with different beliefs about climate change. By introducing multiple in-

vestors and allowing them to trade with each other, climate risks can also lead to substantial

gains in the wealth of some investors as shown in the simulations. Hence, while climate risks

pose a threat to overall societal welfare in the economy, they also offer financial opportunities

for specific investors.

Our novel framework for the pricing of climate risks opens numerous directions for future
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research. We assume, for example, that investors have constant beliefs about climate change.

It would be interesting to understand how the pricing of climate risks changes when investors

update their beliefs based on new climate data. As certain thresholds are surpassed in the

future, investors will gain a better understanding of the ’true’ impact of climate change,

resulting in a partial resolution of uncertainty. We also do not model the large uncertainty and

ambiguity investors face when pricing in climate risks. Our model underscores the increasing

significance of climate-related financial risks within financial markets, which have substantial

implications for firms that are most exposed to climate risks. Consequently, innovative metrics

to assess firm-level climate risk exposure should incorporate predictive data on climate change,

rather than solely relying on historical emission data. Our model highlights a potential shift

in the carbon risk from transitional to physical climate risk in the future – with significant

implications for identifying the companies that bear the highest carbon risk. A worthwhile

augmentation for subsequent research would be to broaden our framework to accommodate

varying regional exposures to large-scale climate catastrophes such as floods and heatwaves,

and to study the implications of such exposure on societal welfare and climate risk hedging

across different regions.
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Appendix

A Additional Figures and Tables

Figure 31: Mapping between Wealth Shares and Consumption Shares
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The figure plots the wealth share, wGt , of the green investor as a function of her consumption
share, sGt , for different temperature states. The dashed lines mark the 45 degree line. Model
parameters are calibrated using values reported in Table 1.

Figure 32: Temperature Pathways from 100 Simulations

The figure shows the mean temperature path, along with the 10% and 90% quantiles for 100
simulations covering 100 years of simulated data each. The starting point is T0 = 1°C and the
mean temperature after 100 years is 1.45°C.
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Figure 33: Carbon Premium for CRRA Preferences for the Beliefs of the Green Investor

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

T
t

0

1

2

3

4

5

C
a
rb

o
n
 P

re
m

iu
m

10
-3

Tipping Point

Immediate Disaster Risk

The figure plots the expected return of the brown stock minus the expected return of the green
stock as a function of temperature, Tt, for w

G
t = 0.5 for CRRA preferences with γ = 1/ψ = 2.

Results are shown for the case with immediate disaster risk and for the case with the distant
tipping threshold for the beliefs of the green investor. The vertical dashed line marks the
tipping threshold.

Figure 34: Carbon Premium for Epstein–Zin Preferences for the Beliefs of the Green Investor
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The figure plots the expected return of the brown stock minus the expected return of the green
stock as a function of temperature, Tt, for w

G
t = 0.5 for Epstein–Zin preferences with γ = 8

and ψ = 1.5. Results are shown for the case with immediate disaster risk and for the case
with the distant tipping threshold for the beliefs of the green investor. The vertical dashed
line marks the tipping threshold.

82



Figure 35: Price–Dividend Ratio for Immediate and Distant Disaster Risk
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The figure plots the log price–dividend ratios for the green and the brown stock and for the
market portfolio as a function of temperature, Tt, for w

G
t = 0.5. Results are shown for the

case with immediate disaster risk and for the case with the distant tipping threshold. The
vertical dashed line in the right panel marks the tipping threshold.

Figure 36: Individual Wealth–Consumption Ratio as a Function of Wealth
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The figure plots the individual wealth–consumption ratio for the green and brown investor,
along with the aggregate wealth–consumption ratio, as a function of the wealth share, wGt , of
the green investor, for different levels of temperature Tt. Results are shown for the economy
with a distant tipping threshold.
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Figure 37: Numerical Errors in the Negishi Weights – Immediate Disaster Risk Case

The figure plots the numerical errors in the dynamics of the Negishi weights for a no disaster
state next period (upper row) and one disaster next period (bottom row) in the immediate
disaster risk model. The i.i.d. temperature shock is set to σζζt+1 = −0.0816 in the left panel,
σζζt+1 = 0 in the middle panel and σζζt+1 = +0.0816 in the right panel. Errors are reported
for a state grid covering ±3 standard deviations around the unconditional mean of Tt. For
λBt the full grid between 0 and 1 is used. The projection method uses a 35 × 35 uniform
collocation grid for the λB- and Tt- dimension. Numerical errors are computed on a 100× 100
uniform grid.
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Figure 38: Numerical Errors in the Negishi Weights – Tipping Point Case

The figure plots the numerical errors in the dynamics of the Negishi weights for a no disaster
state next period (upper row) and one disaster next period (bottom row) in the model includ-
ing a tipping threshold at 2.8°C. The i.i.d. temperature shock is set to σζζt+1 = −0.0816 in
the left panel, σζζt+1 = 0 in the middle panel and σζζt+1 = +0.0816 in the right panel. Errors
are reported for a state grid covering ±3 standard deviations around the unconditional mean
of Tt. For λ

B
t the full grid between 0 and 1 is used. The projection method uses a collocation

grid with nl = 23 and nT = 55 nodes, with a collocation node exactly on the tipping point and
an additional node infinitesimally before the tipping threshold. The remaining state space is
uniformly distributed. Numerical errors are computed on a 100× 100 uniform grid.
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Figure 39: Carbon Premium and Welfare Cost of Carbon for different Collocation Grids –
Immediate Disaster Risk Case at the Boundaries

(a) Economy dominated by Brown Investors (wGt = 0.05)
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(b) Economy dominated by Green Investors (wGt = 0.95)
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The figure plots the carbon premium and the welfare cost of carbon for different collocation
grids as a function of temperature Tt. The upper two plots show the results for an economy
with wGt = 0.05, and the lower two plots show results for an economy with wGt = 0.95. The four
grids without an asterisk cover a T-space from approximately -1 to 5°C, while the grid with
an asterisk (green line) refers to the collocation grid with a lower boundary of Tmin = 0.01°C.
The vertical dashed line marks 0°C.
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Figure 40: Carbon Premium and Welfare Cost of Carbon for different Collocation Grids –
Tipping Point Case at the Boundaries

(a) Economy dominated by Brown Investors (wGt = 0.05)
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(b) Economy dominated by Green Investors (wGt = 0.95)
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The figure plots the carbon premium and the welfare cost of carbon for different collocation
grids as a function of temperature Tt. The upper two plots show the results for an economy
with wGt = 0.05, and the lower two plots show results for an economy with wGt = 0.95.
Collocation grids are adjusted by placing a collocation node exactly on the tipping point and
an additional node infinitesimally before the tipping threshold. The remaining state space is
uniformly distributed. The vertical dashed line marks the tipping threshold.
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Table 12: Wealth Shares – Different Simulations with T0 = 1°C

200 years 500 years

10% median 90% 10% median 90%

Baseline TP 0.1271 0.2523 0.3584 0.0096 0.0504 0.1584

TT ipp = 2°C 0.0745 0.1563 0.2643 0.0049 0.0217 0.0714

γ = 5 0.2991 0.4134 0.4727 0.0729 0.1997 0.3697

lG = 2%; lB = 1% 0.2181 0.3440 0.4233 0.0342 0.1138 0.2668

d = −0.15 0.2517 0.3662 0.4370 0.0464 0.1446 0.2971

Imm. Disaster Risk 0.0637 0.1066 0.1671 0.0040 0.0135 0.0358

The table shows the median, 10% and 90% quantiles of the wealth share of the green investor
wG from 1,000 samples – each containing 200 or 500 years of simulated years. The starting
distribution is wG0 = wB0 = 0.5. Temperature at the beginning is T0 = 1°C and mean tem-
perature after 200 and 500 years is T200 = 1.59°C and T500 = 1.92°C, respectively. Results
are shown for different calibrations of the economy. Baseline refers to the model calibration
presented in Table 1. Results are also shown for a lower tipping threshold (TT ipp = 2.0°C
instead of 2.8°C), lower risk aversion (γ = 5 instead of γ = 8), lower subjective disaster
probabilities(l = lG = 0.02 and lB = 0.01 instead of l = lG = 0.03 and lB = 0.015), a lower
impact of disasters (d = −0.15 instead of d = −0.2) and an immediate disaster risk economy
(TT ipp = 0.01°C instead of TT ipp = 2.8°C).

Table 13: Numerical Errors – Immediate Disaster Risk Case with Tmin = 0.01°C

vGt vBt λBt

nl nT RMSE MAE RMSE MAE RMSE MAE

18 18 4.081e-4 0.0022 3.688e-4 0.0011 8.246e-4 0.0098

18 36 7.382e-5 6.588e-4 8.464e-5 7.379e-4 8.037e-4 0.0096

36 36 7.233e-5 4.852e-4 6.848e-5 3.288e-4 6.376e-4 0.0058

The table shows root-mean-square errors (RMSEs) as well as maximum absolute errors
(MAEs) in the value functions as well as the equilibrium conditions for the Negishi weights
for different numbers of collocation nodes for the immediate disaster risk model. Errors are
reported for a state grid from 0.01°C – 5°C, which is approximately from -2 to +3 standard
deviations around the unconditional mean of Tt. For λ

B
t the full grid between 0 and 1 is used.

We denote the number of collocation nodes for the λBt -dimension by nl and the number of
collocation nodes for the Tt-dimension by nT . Errors are computed on a grid of size 100×100.
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Table 14: Price–Dividend Ratio from Simulations - Immediate Disaster Risk Case

E(pMt − dMt ) σ(pMt − dMt ) E(pGt − dGt ) σ(pGt − dGt ) E(pBt − dBt ) σ(pBt − dBt )

15× 20 3.6363 0.0294 3.9827 0.0166 2.7903 0.1388

15× 55 3.6371 0.0295 3.9791 0.0153 2.7866 0.1373

35× 35 3.6384 0.0294 3.9747 0.0151 2.7921 0.1375

45× 45 3.6390 0.0291 3.9732 0.0146 2.7924 0.1363

The table reports the mean and standard deviation of the price–dividend ratio for the green
stock, brown stock, and the market portfolio in the immediate disaster risk model. Results
are computed by simulating 100 sample paths each containing 100 years of data. We set
Tstart = 1.0°C and wGstart = 0.5. The number of collocation nodes for the λBt -dimension is
denoted by nl and the number of collocation nodes for the Tt-dimension by nT . Shocks to
temperature, ζt+1, are drawn from a standard normal distribution, and no exogenous shocks
are added.

Table 15: Price–Dividend Ratio from Simulations - Tipping Point Case

E(pMt − dMt ) σ(pMt − dMt ) E(pGt − dGt ) σ(pGt − dGt ) E(pBt − dBt ) σ(pBt − dBt )

11× 21∗ 3.7526 0.0255 3.9924 0.0409 3.4669 0.1322

11× 35∗ 3.7569 0.0273 3.9982 0.0407 3.4716 0.1393

11× 55∗ 3.7606 0.0278 3.9958 0.0394 3.4796 0.1410

23× 55∗ 3.7613 0.0276 3.9912 0.0388 3.4814 0.1405

23× 55∗∗ 3.7594 0.0282 3.9915 0.0382 3.4723 0.1432

The table reports the mean and standard deviation of the price–dividend ratio for the green
stock, brown stock, and the market portfolio in the model with a distant tipping point. Re-
sults are computed by simulating 100 sample paths each containing 100 years of data. We
set Tstart = 1.0°C and wGstart = 0.5. The number of collocation nodes for the λBt -dimension is
denoted by nl and the number of collocation nodes for the Tt-dimension by nT . Shocks to tem-
perature, ζt+1, are drawn from a standard normal distribution, and no exogenous shocks are
added. An asterisk (*) denotes cases where we used an adjusted grid by placing a collocation
node exactly on the tipping point and an additional node infinitesimally before the tipping
threshold. Two asterisks (**) denote the case where we put some additional collocation nodes
around the tipping point.
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B Derivations of the Welfare Cost of Carbon

The welfare cost of carbon (WCC) is defined as the ratio of two marginal values:

WCCt = −
∂Vt
∂Et
∂Vt
∂Ct

. (30)

For Epstein–Zin preferences, the value function is a function of the aggregate wealth–consumption

ratio, Zt ≡ Wt

Ct
:

Vt
Ct

= [(1− δ)Zt]
ψ
ψ−1 ,

where Zt ≡ Wt

Ct
. Using this relationship, the two derivatives in equation (30) yield

∂Vt
∂Et

=
∂Vt
∂Zt

∂Zt
∂Et

=
ψ

ψ − 1
(1− δ)

ψ
ψ−1Z

1
ψ

1− 1
ψ

t

∂Zt
∂Et

,

∂Vt
∂Ct

= [(1− δ)Zt]
ψ
ψ−1 .

Hence, the WCC depends on the elasticity of Zt to emissions:

WCCt =
ψ

ψ − 1

−∂Zt
∂Et

Ct
Zt
. (31)

As ∂logZt
∂Et

= 1
Zt

∂Zt
∂Et

, this is equivalent to

WCCt =
ψ

ψ − 1

−∂logZt
∂Et

Ct. (32)

Dividing and multiplying by ∂Tt yields equation (23).
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C Derivations of the Individual Welfare Cost of Carbon

We showed in section B that the welfare cost of carbon in the aggregate economy is given by:

WCCt = −
∂Vt
∂Et
∂Vt
∂Ct

=
ψ

ψ − 1

−∂Zt
∂Et

Ct
Zt

The wealth–consumption ratio of the individual investor h satisfies

W h
t

Ch
t

=
1

1− δ
·
(
vh

sh

)1− 1
ψ

.

Using WG +WB = W , we can re-write the aggregate wealth–consumption ratio as:

W

C
=
WG

CG

CG

C
+
WB

CB

CB

C

Inserting yields:

WCCt =
ψ

ψ − 1

Ct
Zt

(
∂ZG

t

∂Et

CG
t

Ct
+
∂ZB

t

∂Et

CB
t

Ct

)

WCCt =
ψ

ψ − 1
· Ct
Zt

∂ZG
t

∂Et

CG
t

Ct︸ ︷︷ ︸
effect on green agent

+
ψ

ψ − 1
· Ct
Zt

∂ZB
t

∂Et

CB
t

Ct︸ ︷︷ ︸
effect on brown agent

As
∂logZht
∂Et

= 1
Zht

∂Zht
∂Et

, and
Cht
Ct

= sht , this is equivalent to:

WCCt =
ψ

ψ − 1
sGt

−∂logZG
t

∂Et
Ct +

ψ

ψ − 1
sBt

−∂logZB
t

∂Et
Ct.

Thus, the aggregate welfare cost of carbon can be re-written as the weighted sum of the

two individual welfare costs of carbon.
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D Alternative Modelling of Disasters

In the main part of the paper, the impact of disasters on economic growth is modeled using

a Poisson counting process. In theory, Nt+1 could take any value in the next period, so there

is a small, but positive probability for having more than one disaster in the next period (see

the discussion in Section 5, in particular Table 5).

Another way to model the disaster process would be to implement disaster shocks in a

way that Nt+1 could only take two values each period: 0 or 1. In the following, we show how

the probability ratios would look like under this case.

As in the case with Poisson disasters, the two agents disagree about the disaster term

Dt+1 in equation 1, given the information at time t. Let P h
t,t+1 be the subjective conditional

distribution of agent h about Dt+1, given Tt, and Pt,t+1 be the true conditional distribution.

We assume that each agent’s expectation can be written in terms of the true distribution as

Eh
t [Dt+1] = Et

[
Dt+1

dP h
t,t+1

dPt,t+1

]
,

for some measurable function
dPht,t+1

dPt,t+1
.

Agent h believes with probability pht (Tt) that there will be a disaster next period and with

probability (1− pht (Tt)) that no disaster will occur. This yields the following probabilities for

the green and brown investor:34

PG
t =

[
pGt

(1− pGt )

]
;PB

t =

[
pBt

(1− pBt )

]
.

The probability ratio in this case is given by:

dPG
t,t+1

dPB
t,t+1

=

[
pGt
pBt

(1−pGt )
(1−pBt )

]
.

If the disaster probabilities pht are constant (independent of the state, i.e. temperature Tt),

the probability ratio also has a constant value for the disaster and no disaster case. However,

since the disaster probability is time-varying, depending on the current temperature anomaly

Tt, the probability ratio becomes a matrix of the size nT × 2, in which the ”2” captures the

two states ”disaster” and ”no disaster” and nT represents the number of collocation nodes for

the temperature state. Notably, in this case, we do not need to choose a cutoff value as in the

Poisson disaster case, as the probabilies of the two disaster states already sum up to 1.

34For improved readability, we will suppress the state-dependency of the probabilities in the following.
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E Mapping from Emissions to Temperature

In this section, we present an alternative interpretation of the temperature process, where it is

expressed as a function of emissions instead of the AR(1) process used earlier. To achieve this,

we start with the system of equations as proposed by Bansal et al. (2021) and then proceed

with a reformulation that leads to the temperature process as described in Section 3.This

approach allows us to explore the relationship between emissions and temperature dynamics

in our model framework.

The global temperature anomaly is driven by carbon emissions, which themselves are a

function of consumption growth:

Tt+1 = χεt+1, (33)

εt+1 = νεt +Θ(µc + σηηt+1) + σζζt+1, (34)

where ν determines the persistence of carbon emissions in the atmosphere and, consequently,

also the persistence of temperature. Θ measures carbon intensity of consumption. The param-

eter χ > 0 reflects the climate sensitivity to emissions, indicating how anthropogenic carbon

emissions influence global temperature in this model. The exogenous innovation to emissions

and temperature is represented by ζ, assumed to follow a normal distribution with a mean of

zero and a standard deviation of σζ .

By inserting equation 34 into equation 33, temperature dynamics in this model are given

by:

Tt+1 = χνεt + χΘ(µc + σηηt+1) + χσζζt+1. (35)

We know that the unconditional (long-run) mean of temperature is given by:

µT =
χΘµc
1− ν

. (36)

For simplicity, we ignore the i.i.d. consumption shock in the following and use χεt = Tt,

following equation 33, and χΘµc = (1− ν)µT , following equation 36. Inserting in equation 35

yields:

Tt+1 = (1− ν)µT + νTt + χσζζt+1.

By defining ζt+1 as a temperature instead of an emission shock, we arrive at equation 6 from

the main part:

Tt+1 = (1− ν)µT + νTt + σζζt+1.
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