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Abstract

This thesis investigates low temperature transport through graphene quantum point contacts (QPCs) encap-

sulated in hexagonal boron nitride (hBN) using the van der Waals technique. Single layer graphene (SLG)

QPCs are fabricated using electron beam lithography followed by SF6 based reactive ion etching to define

the shape and the width of the QPC. In such devices, we observe that the rough edges due to physical

etching play an important role in the quantized conductance characteristics of the QPC particularly around

the charge neutrality point (CNP). In order to be able to achieve better control over the charging of these

localized edge states, we fabricate local top gates to see if it is possible to control the edges independently

from the rest of the QPC channel. In one of the two devices measured, we use a pair of top gates in a split

gate geometry that cover only the edges on either side of the QPC. Here, we not only observe quantized con-

ductance kinks on the order of 2 - 3 e2/h but also a non-linear relative gate lever arm. This can be explained

using the fact that the edges are very likely to be terminated by Fluorine atoms after etching with SF6 which

results in higher charge accumulation along the edges and consequently, a gate voltage dependent gate lever

arm.

In the other device, we employ a single top gate spanning the entire channel of the QPC except the

edges. We measure the conductance as a function of both the top and the back gate voltages and observe

conductance kinks that result in a linear relative gate lever arm. This dominant linear line denotes the charge

neutrality of each individually measured conductance trace and its slope is referred to as the "major" slope.

However, interestingly, we also observe several other features that evolve with a smaller "minor" slope.

In both experiment and theoretical calculations using the tight binding model, we notice that sweeping

the gates simultaneously along a direction with the minor slope results in a much cleaner conductance

trace especially around the CNP where the edge disorder is the maximum. This suggests that the features

corresponding to the minor slope are due to the effect of the electric field lines of the top gate on the edge

states. Since these localized edge states are farther from the top gate as compared to the channel, they are

tuned less strongly as compared to the Bloch states in the channel right under the top gate. This is further

corroborated by the Landau fan measurements along both the directions with major and minor slope. Here,

we observe that (i) the larger Landau level features at higher magnetic field appear to be unaffected by the

direction of sweep. (ii) There are number of vertical straight lines that are unaffected by the magnetic field

in the low magnetic field, low charge carrier density region around the CNP. These are the localized states

due to the edges. (iii) The number of such vertical straight line features is lesser along the minor line than

any other direction of sweep of the gates. (iv) In general, the evolution of the conductance kinks from the

size quantization to their respective Landau levels is much cleaner along the direction of the minor line

without a lot of interference from localized states. Thus, we have been able to use the top gate as a knob to

disentangle the features related to edge disorder from size quantization.

We then move to bilayer graphene (BLG) where we apply voltage on a pair of split gates to define the

width of the QPC. We create a displacement field using the combination of the split gates and a graphite back

gate. This depletes the charge carriers underneath the side gates, thereby creating a 250 nm wide channel
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in between the source and the drain. Using a layer of graphite as the back gate instead of the doped Si as in

the case of the single layer QPCs ensures that the gate is much closer to BLG resulting in a far better tuning

besides also screening any impurities from the surrounding SiO2 or hBN. We include three other finger gates

along the length of the QPC channel to tune the charge carrier density locally. Conductance traces exhibit

clear 4 e2/h steps that split into intermediate kinks at higher values of parallel magnetic field indicating spin

degeneracy lifting. From the crossing points of spin-up and spin-down branches of successive sub-bands,

we extract the values of sub-band spacing. More importantly, in the transconductance plots as a function of

the finger gate voltage and the magnetic field, we observe discontinuities in the applied voltage at (i) 0 T

between the spin-up and spin-down levels of the first sub-band. This is manifested in the form of a step at 2

e2/h that remains unaffected by the magnetic field. (ii) Another gap in voltage is observed at a higher value

of magnetic field at the crossing point of the spin up level of the first sub-band and the spin-down level of the

second sub-band. This is evident in the form of step at around 1.5 × 4 e2/h that travels down 4 e2/h which

was observed earlier in GaAs heterostructures and referred to as the 0.7 analog, similar to the 0.7 anomaly

at 0 T as a result of exchange/electron - electron (e-e) interactions. In our device, we attribute the voltage

gap at 0 T to a spin-orbit (SO) coupling of the Kane - Mele type that dominates the e-e interactions. While

at higher magnetic field, this situation is reversed and the Zeeman effects quenches the SO interaction. Both

these voltage gaps seem to evolve linearly with the displacement field.
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Zusammenfassung

Diese Dissertation untersucht den Tieftemperaturtransport durch Graphen-Quantenpunktkontakte (QPCs),

die in hexagonalem Bornitrid (hBN) verkapselt sind, unter Verwendung der Van-der-Waals-Technik. Single-

Layer-Graphen (SLG)-QPCs werden unter Verwendung von Elektronenstrahllithographie hergestellt, gefolgt

von SF6-basiertem reaktivem Ionenätzen, um die Form und die Breite des QPC zu definieren. Bei solchen

Vorrichtungen beobachten wir, dass die rauen Kanten aufgrund des physikalischen ätzens eine wichtige

Rolle bei den quantisierten Leitfähigkeitseigenschaften des QPC spielen, insbesondere um den Ladungsneu-

tralitätspunkt (CNP). Um eine bessere Kontrolle über das Aufladen dieser lokalisierten Kantenzustände

zu erreichen, stellen wir lokale Top-Gates her, um zu sehen, ob es möglich ist, die Kanten unabhängig

vom Rest des QPC-Kanals zu steuern. Bei einem der beiden gemessenen Geräte verwenden wir ein Paar

Top-Gates in einer Split-Gate-Geometrie, die nur die Kanten auf beiden Seiten des QPC bedecken. Hier

beobachten wir nicht nur quantisierte Leitwertknicke in der Größenordnung von 2 - 3 e2/h, sondern auch

einen nichtlinearen relativen Gate-Hebelarm. Dies kann mit der Tatsache erklärt werden, dass die Kanten

nach dem ätzen mit SF6 sehr wahrscheinlich von Fluoratomen abgeschlossen werden, was zu einer höheren

Ladungsakkumulation entlang der Kanten und folglich zu einem von der Gatespannung abhängigen Gate

führt Hebelarm.

Bei der anderen Vorrichtung verwenden wir ein einzelnes oberes Gate, das den gesamten Kanal des

QPC mit Ausnahme der Kanten überspannt. Wir messen die Konduktanz als Funktion sowohl der Top-

als auch der Back-Gate-Spannung und beobachten Konduktanzknicke, die zu einem linearen relativen

Gate-Hebelarm führen. Diese dominante lineare Linie bezeichnet die Ladungsneutralität jeder einzeln

gemessenen Leitfähigkeitsspur, und ihre Steigung wird als "major"-Steigung bezeichnet. Interessanter-

weise beobachten wir jedoch auch mehrere andere Merkmale, die sich mit einer kleineren "minor" Stei-

gung entwickeln. Sowohl in experimentellen als auch in theoretischen Berechnungen unter Verwendung

des engen Bindungsmodells stellen wir fest, dass das gleichzeitige überstreichen der Gates entlang einer

Richtung mit der kleineren Steigung zu einer viel saubereren Leitwertspur führt, insbesondere um den CNP

herum, wo die Kantenstörung maximal ist. Dies deutet darauf hin, dass die Merkmale, die der kleineren

Steigung entsprechen, auf die Wirkung der elektrischen Feldlinien des oberen Gates auf die Randzustände

zurückzuführen sind. Da diese lokalisierten Randzustände im Vergleich zum Kanal weiter vom oberen

Gate entfernt sind, werden sie im Vergleich zu den Bloch-Zuständen im Kanal direkt unter dem oberen

Gate weniger stark abgestimmt. Dies wird weiter durch die Landau-Fächermessungen entlang beider Rich-

tungen mit großer und kleiner Neigung bestätigt. Hier beobachten wir, dass (i) die größeren Merkmale

des Landau-Niveaus bei einem höheren Magnetfeld von der Richtung des Sweeps unbeeinflusst zu sein

scheinen. (ii) Es gibt eine Anzahl vertikaler gerader Linien, die durch das Magnetfeld in dem Bereich mit

niedrigem Magnetfeld und niedriger Ladungsträgerdichte um den CNP herum unbeeinflusst bleiben. Dies

sind die lokalisierten Zustände aufgrund der Kanten. (iii) Die Anzahl solcher vertikaler gerader Linien-

merkmale ist entlang der Nebenlinie geringer als in jeder anderen Richtung der Pfeilung der Tore. (iv) Im

Allgemeinen ist die Entwicklung der Konduktanzknicke von der Größenquantisierung zu ihren jeweiligen
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Landau-Niveaus viel sauberer entlang der Richtung der Nebenlinie ohne viel Interferenz von lokalisierten

Zuständen. Somit konnten wir das obere Tor als Knopf verwenden, um die Merkmale im Zusammenhang

mit der Kantenunordnung von der Größenquantisierung zu entwirren.

Wir wechseln dann zu zweischichtigem Graphen (BLG), wo wir Spannung an ein Paar geteilter Gates

anlegen, um die Breite des QPC zu definieren. Wir erzeugen ein Verdrängungsfeld unter Verwendung der

Kombination der Split-Gates und eines Graphit-Back-Gates. Dadurch werden die Ladungsträger unterhalb

der Seitengates verarmt, wodurch ein 250 nm breiter Kanal zwischen Source und Drain entsteht. Die Ver-

wendung einer Graphitschicht als hinteres Gate anstelle des dotierten Si wie im Fall der einschichtigen

QPCs stellt sicher, dass das Gate viel näher an BLG liegt, was zu einer weitaus besseren Abstimmung führt

und außerdem Verunreinigungen von der Umgebung abschirmt SiO2 oder hBN. Wir schließen drei weit-

ere Finger-Gates entlang der Länge des QPC-Kanals ein, um die Ladungsträgerdichte lokal abzustimmen.

Leitfähigkeitsspuren zeigen klare 4 e2/h-Schritte, die sich bei höheren Werten des parallelen Magnetfelds in

Zwischenknicke aufteilen, was auf eine Aufhebung der Spinentartung hindeutet. Aus den Kreuzungspunk-

ten von Spin-up- und Spin-down-Zweigen aufeinanderfolgender Teilbänder extrahieren wir die Werte des

Teilbandabstands. Noch wichtiger ist, dass wir in den Steilheitsdiagrammen als Funktion der Finger-Gate-

Spannung und des Magnetfelds Diskontinuitäten in der angelegten Spannung bei (i) 0 T zwischen den

Spin-up- und Spin-down-Pegeln des ersten Teilbands beobachten . Dies äußert sich in Form einer Stufe bei

2 e2/h, die vom Magnetfeld unbeeinflusst bleibt. (ii) Eine weitere Spannungslücke wird bei einem höheren

Wert des Magnetfelds am Kreuzungspunkt des Spin-Up-Niveaus des ersten Teilbands und des Spin-Down-

Niveaus des zweiten Teilbands beobachtet. Dies zeigt sich in Form einer Stufe bei etwa 1.5 × 4 e2/h, die

sich um 4 e2/h nach unten bewegt, was früher beobachtet wurde in GaAs-Heterostrukturen und wird als

0.7-Analog bezeichnet, ähnlich der 0,7-Anomalie bei 0 T als Ergebnis von Austausch/Elektron-Elektron

(e-e)-Wechselwirkungen. In unserem Gerät schreiben wir die Spannungslücke bei 0 T einer Spin-Orbit

(SO)-Kopplung des Kane-Mele-Typs zu, die die e-e-Wechselwirkungen dominiert. Bei einem höheren

Magnetfeld kehrt sich diese Situation um und der Zeeman-Effekt löscht die SO-Wechselwirkung. Diese

beiden Spannungslücken scheinen sich linear mit dem Verschiebungsfeld zu entwickeln.
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BLG bi-layer graphene

CNP charge neutrality point

CVD chemical vapour deposition

EBL electron beam lithography

FET field effect transistor

FQHE fractional quantum hall effect

GNC graphene nanoconstriction

GNR graphene nanoribbon

FWHM full width at half maximum

hBN hexagonal boron nitride

IT information technology

NEMS nano electro mechanical systems

PMMA polymethylmethacrylate

PVA polyvinylalcohol

QHE quantum hall effect

QPC quantum point contact

RIE reactive ion etching

SGM scanning gate microscopy

SEM scanning electron microscopy

SLG single-layer graphene

SOC spin-orbit coupling

13





1. Introduction

The last 50 years of mankind have witnessed a huge surge in the development of information technology

(IT), thanks to the tremendous breakthroughs in the field of electronics coupled with an enormous market

demand for fast and efficient devices. For example, in the case of computers that originally took up the size

of a small room, a rapid evolution of technology has allowed us to manufacture laptops, tablets and smart

phones that fit the size of our palms. This decrease in size was complemented with a corresponding increase

in processing power over time. This, along with the development of low cost fabrication technology has

led to an inevitable use of transistors in every walk of human life. Such an ever increasing demand for

faster and smaller electronic devices means that we need to look for new ways towards miniaturization of

devices. In 1965, Gorden Moore, a computer scientist and co-founder of the IT giant, Intel, observed that

the number of transistor components of a micro-chip doubled every two years [1], which later came to be

known as the Moore’s law. In order to keep up with this law, it is therefore necessary to manufacture even

smaller and faster transistors that could be incorporated into a smaller volume. Intel has already introduced

a 14 nm transistor [2, 3] into the market and has further laid down the road towards 10 nm technology [4,

5]. However, there seem to be significant problems with regard to the yield, time needed for improving

defects and the cost of production which could be a result of the fast increasing market demand as we

push the limits of attainable transistor densities. For example, as the size of the transistor decreases to

make more compact devices, high amount of energy dissipation is inevitable. All these point towards the

fact that there is a natural physical limit to the process of miniaturization - the size of the atom (∼ 1 Å).

As we go down to such a minuscule level, quantum mechanics inevitably comes into the picture pushing

the humankind to come up with innovative ideas to design electronic devices at such a small scale. The

ultimate level of miniaturization is achieved when single molecules or atoms are employed as the building

blocks of electronic devices. Several research groups have already reported on the transport mechanisms

through single molecule [6] and single atom [7] based transistors already. However, the scalability and

integration of such devices in complex circuits is still a problem. Besides the technical difficulties involved

in the fabrication of these devices, it is also important to understand the transport of electrons when they are

confined to such small nanostructures which can, in fact, be significantly different when compared to their

bulk counterparts.

1.1. Quantum point contacts in Mesoscopic physics

Mesoscopic physics refers to the study of physical systems whose size falls in between the macroscopic

bulk three dimensional (3D) materials and the microscopic world of atoms and molecules [8, 9]. Macro-

scopic implies visible to the naked eye such as a piece of solid material that contains a large number of

atoms and molecules. Therefore, macroscopic properties are properties of the bulk matter, for example,

density, volume, viscosity, stress, strain, temperature, surface tension etc. While the material properties

can be described using the the laws of classical mechanics in the case of macroscopic systems, mesoscopic
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objects need the concept of probability and quantum mechanics to describe their properties. In such a case,

quantities such as energy and momentum are allowed to have only discrete values instead of a continuum

as in the case of macroscopic objects. For example, when discussing the band structure of a solid, we speak

about the probability of the energy levels being occupied by an electron.

Thus, mesoscopic physics deals with the change in fundamental properties that occurs when a macro-

scopic object is miniaturized, as in the case of transistors in semiconductor electronics. In doing so, as the

number of atoms on the surface becomes smaller and smaller, a change in the dimension of confinement of

electrons in the system occurs resulting in low dimensional systems as described below [10, 11].

When electrons (or holes) are confined, say along the z-axis, but are free to move along the x-y plane, it

results in a quantum well. Electrons confined in such a system form what is known as the two dimensional

electron gas (2DEG). Similarly, when the electrons are confined along two directions (say, z and y), it forms

a one dimensional (1D) system called a quantum wire. A carbon nanotube is an example of such 1D system

where the motion is only along the tube axis and limited along the diameter. Another example of such a 1D

system is a quantum point contact (QPC) where a narrow one dimensional bottle-neck is connected to two

electron reservoirs on both sides. There are also zero dimensional systems called quantum dots where the

motion of electrons is confined in all three dimensions, thereby resulting in small, isolated, dot like regions.

In this thesis, we will focus on quantum point contacts. 1D quantum confinement in these systems occurs

when their size is of the same magnitude as the Fermi wavelength of electrons. A direct and perhaps, the

most important consequence of quantum confinement is seen in the conductance of a QPC. For example,

while the conductance of a macroscopic wire increases continuously with its diameter, in contrast, for

a QPC in the ballistic transport regime, the conductance increases in discrete steps of 2 e2/h [12]. An

interesting result of this quantization is that this effect depends only on fundamental constants e, the charge

of an electron = 1.602 ×10−19 C, and h, the Planck’s constant = 6.626 ×10−34m2kgs−1 and is independent

of the material properties. However, the exact energy values at which the quantization occurs is dependent

on the material as the size of the potential well or the width of the QPC for a particular gate voltage is

determined by the type of the material. Another reason for the interest in QPCs is that the density of

electrons in the QPC can be controlled by the use of the external gates or electric fields. Moreover, at

such small length scales, disorder also plays a huge rule in the conductance or transmission of electrons

through the device. Thus, QPCs are considered to be the foundation blocks for the study of mesoscopic

electrical transport experiments such as the Aharonov - Bohm effect [13–15], Fabry - Perot interference

[16], quantum decoherence [17] etc.

1.2. Quantum computation

While miniaturization forces us to look for ways to improve the design and fabrication of mesoscopic sys-

tems, it also compels us to look for alternate computational techniques. For instance, in very small devices,

due to quantum tunnelling, it is possible for electrons to effectively cross a physical barrier, thereby, mak-

ing it difficult to define a definite on or off state that is essential for electronics. Quantum computers store

information in quantum states called qubits instead of the ordinary classical bits in traditional electronics.

The fundamental difference between the two is that while the classical bit can assume only one value, either

0 or 1 (off or on state equivalent of an electrical switch), a qubit can be in any superposition of these two

states. Harnessing this property of a quantum state along with others such as interference and entanglement

between multiple qubits allows a quantum computer to perform various tasks that are difficult or impossible
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for a classical computer. Any quantum mechanical two level system allows the possibility of designing a

qubit. For instance, D. Loss and D. P. DiVincenzo first proposed that the spin of an electron, which has a

spin down (0) or a spin up (1) state could be used as a qubit in a quantum computer as opposed to using the

charge of the electron like in the case of traditional electronics [18].

Quantum point contacts are an integral component of such electronic and quantum computation experi-

ments. They can be used to read out the state of a charge [19–22] or spin [23–28] in a nearby capacitively

coupled quantum dot. As the conductance of a QPC increases in a step like manner, it becomes extremely

sensitive to any electrostatic changes in the surrounding environment. Thus, it becomes a very effective tool

in detecting the charge on the dot i.e. it acts as a charge detector.

1.3. Graphene as a host material for electronic devices

While most of the traditional electronic devices are based on semiconductors such as GaAs and Si, over the

last two decades, other substitute materials with a higher electron mobility or those with a higher spin life

time have received a huge attention both by the scientific community and the industry. Materials such as

graphene, molybdenum disulphide (MoS2), tungsten diselenide (WSe2) and other transition metal dichalco-

genides have been vastly explored. Indeed, this shift in research in terms of exploring new materials was

also recommended by Intel recently [29].

Specifically, graphene is a unique material that offers several advantages [30]. Its Dirac Hamiltonian is

responsible for various physical phenomena such as Klein tunneling [31], half-integer Hall quantization

[32] etc. It is expected to have high electron mobility on the order of 100,000 cm2V−1s−1 at room tem-

perature [33] and large spin life-times of up to 1 µs [34, 35]. Trauzettel et al. proposed the use of electron

spin in graphene as a qubit owing to its long spin decoherence life-time which is desirable in qubits [36].

This is attributed to the low atomic weight of carbon leading to small spin-orbit coupling along with the

nuclear spin-free C12 isotope in graphene that leads to negligible hyperfine interaction. Achieving a qubit

in graphene involves identifying spin states and manipulating electron spin, for which, it is first essential to

confine electrons to a small space. In case of semiconductors, electrons are confined to the valence band

until they are supplied with energy equivalent to the band gap which allows them to move to the conduction

band. This allows us to define two states - one in which there is no flow of electrons when the electrons

are in the valence band and the other in which there is current flow as the electrons move to the conduction

band, thereby providing a way of controlling and stopping the flow of electrons. However, graphene suffers

from the lack of an intrinsic band gap which is the most important prerequisite for its use in the current

semiconductor based electronic industry. Thankfully, the possibility of confining charge carriers using de-

vices such as graphene nanoribbons (GNRs) or constrictions (GNCs) is predicted to open an energy gap

[37]. GNRs and GNCs are 1D systems carved out of a two dimensional graphene sheet similar to how

QPCs in semiconductors are 1D dimensional channels in a 2DEG, thus confining the electrons in a single

direction. Therefore, many research groups started to explore graphene in this particular direction.

However, the early devices did not show very high values of mobility. One reason for this was that the

nanodevices were fabricated on substrates like Si/SiO2 which resulted in a significant amount of disorder

due to substrate roughness and electron - hole charge puddles [38, 39]. The other reason was that the fabri-

cation technique involved electron beam lithography and etching or cutting the graphene flake in the shape

of narrow ribbon or constriction. The rough edges with dangling bonds result in edge disorder and increased

scattering of electrons during transport, thus giving low values of mobility ranging from 10,000 to a max-
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imum of 50,000 cm2V−1s−1 at cryogenic temperatures. Suspending the constriction removes the problem

of substrate induced disorder and brought a significant increase in device quality [40]. However, the devices

are extremely fragile and susceptible to high voltage loads. In 2010, Dean at al. showed that this problem

may be circumvented by using hexagonal boron nitride (hBN), an atomically flat insulator with nearly the

same lattice constant as graphene as a suitable substrate [41]. The last and most significant breakthrough

came when researchers realized that encapsulating graphene between two layers of hBN results in even

higher experimental values of mobility of around 150,000 cm2V−1s−1 and ballistic QPCs [42]. However,

the performance of even such high quality nanostructures is heavily influenced by disorder arising from

rough edges which can tamper the conductance and wash out any confinement effects potentially. A proper

understanding of how exactly the disorder related localized edge states participate in transport and whether

their influence can be tuned by some external means stands as an important unanswered question.

On the other hand, the bilayer equivalent of graphene, although still has no intrinsic band gap, presents

the possibility of opening a band gap when an electric field is applied perpendicular to its layers [43–47]

and therefore, acts as a semiconductor. Thus, the problem of edge disorder in bilayer graphene (BLG)

based devices may be completely circumvented by using additional gates to create a soft wall confinement

of electrons similar to semiconductors.

The aim of this thesis is to confine charge carriers in hBN encapsulated single and bilayer graphene

quantum point contacts. In the case of single-layer graphene, we fabricate quantum point contacts by

physical etching and investigate whether it is possible to tune the influence of localized edge states on the

electron transport using external top gates. Indeed, we see that using top gates presents a unique opportunity

to be able to dissociate the effect of confinement such as conductance quantization from the features arising

due to edge disorder.

By encapsulating bilayer graphene (BLG) with hBN and then defining a QPC using electrostatic gates,

we achieve a device where we can confine electrons far from the edges of the BLG flake and also enjoy

all the design benefits offered by lithography. The high quality of the device is investigated through the

observation of quantized conductance due to a gate tunable spin orbit (SO) coupling. This is manifested in

the form of an additional kink at 2 e2/h at zero magnetic field. Controlling the SO coupling in BLG may

allow us to use these devices in spin based field effect transistors or in spin-orbit valves. Another major

discovery is the evidence of spin states at higher magnetic fields which have not been achieved in such

devices until now. Moreover, we also observe splitting of spin-up states at higher magnetic field reminding

us of the 0.7 analog in GaAs heterostructures due to electron - electron interactions. The existence of six

fully spin polarized modes in magnetic field measurements open up the possibility of using these devices

as spin polarizers and detectors in BLG based transport experiments.

1.4. Outline of this thesis

In the following chapter 2, a brief introduction to a quantum point contact and its historical development

starting from point contacts in metals to QPCs in semiconductor based 2DEGs is presented. In chapter 3,

quantum point contacts in single layer graphene and the technological developments are presented in the

form of a brief literature review. This chapter also discusses some important length scales such as mean

free path, how it determines the size of the devices to be fabricated to see ballistic transport, and how this

is affected by the presence of disorder. Similarly, chapter 4 consists of some previous research in bilayer

graphene QPCs and the experiments related to band gap opening. Chapter 5 describes the fabrication of
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hBN encapsulated single and bilayer graphene QPC devices measured in this thesis using the van der Waals

stacking technique followed by electron beam lithography and reactive ion etching. All the specific details

regarding the geometry of the devices measured in this thesis are presented in chapter 6. In chapter 7,

we explore the influence of top gates (a single global top gate and also a pair of dual top gates) on edge

disorder while measuring the transport properties through etched single layer graphene QPCs. Along the

same lines, in chapter 8, we investigate the effect of edge disorder using a parallel magnetic field to see how

the conductance quantization steps evolve. Next, in chapter 9, we focus on the formation of gate defined

QPCs in bilayer graphene, formation of sub-bands along with the observation of spin states in a parallel

magnetic field. Finally, the thesis concludes with Chapter 10 with a short overview of other current and

possible future experiments in graphene QPCs.
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2. Quantum point contacts

2.1. Introduction

A quantum point contact is a one dimensional channel (length l and width w) formed in a two dimensional

electron or hole system [48–50]. Fig. 2.1 shows the schematic of one such gate defined QPC in a semi-

conductor 2DEG. Alternatively, it is also referred to as a constriction since the flow of charge carriers is

"constricted" along a specific dimension geometrically. When the width of the constriction is comparable to

the Fermi wavelength (λF) and the length is much smaller than the mean free path (lm) of charge carriers,

it forms a system that is ideal to study quantum mechanical effects such as quantized conductance.

Transport through such a one dimensional ballistic conductor where lm(> l)>> λF(∼ w) is analogous to

the problem of transmission or scattering of electrons in a wave guide with a certain number of modes. Due

to the quantum confinement of charge carriers, the valence and the conduction bands in the bulk system are

now replaced by a series of discrete one dimensional energy bands called sub-bands. The energy spacing

between two successive sub-bands is called the sub-band spacing. In such a case, the number of modes or

1D sub-bands occupied is given by N = n
2w
λF

[48, 51] where n∈ Z0 and the dispersion relation is given by

En(k) = En +
ℏ2k2

2m
(2.1)

where En is the energy of an electron in the nth sub-band and k is the wave number for propagation

inside the conductor. A voltage difference (V ) between the two reservoirs on either side of the constriction

induces a current (I) through it. For a 1D system with a degeneracy g, the density of states is given by

ρn = g
(

2π
dEn

dk

)−1
and the group velocity is given by vn =

1
ℏ

dEn

dk
. The current carried by the nth sub-band

is given by the product of these two i.e.

In =
∫ eV

0
evnρndE =

ge2

h
V. (2.2)

As obtained in the above equation, it is the cancellation of density of states with group velocity that leads

to an equipartition of current amongst all the N modes of the system. The current carried by all the N modes

together is therefore, given by

I = N
ge2

h
V. (2.3)

The total conductance through the device is then given by

G =
I
V

= N
ge2

h
. (2.4)

This shows that the conductance increases by a factor of ge2

h as we move from one sub-band to the next.

Thus, we see that the equipartition of current i.e. the equal distribution of current among all the propagating

modes in the constriction is the main reason for conductance quantization.
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Note that the pre-factor g depends on the degeneracy of the system under consideration. In case of

graphene, it is 4, if the four fold degeneracy is preserved and 2, if the valley degeneracy is lifted and

1, if both spin and valley degeneracies are lifted. Additionally, we shall see in section 7.3 that in the

presence of disorder such as rough edges in etched QPCs, the conductance in eq. 2.4 is affected by another

factor c0 called the transmission coefficient. As the name suggests, c0 is related to the finite probability

of transmission of electrons through the constriction as they are scattered at the rough edges and may,

therefore, vary anywhere between 0 and 1 [42].

2.2. History of quantum point contacts

In this section, a brief history of the research conducted in metal and semiconductor based QPCs is dis-

cussed. The experimental progress achieved in these systems serves as an important prelude and a source of

inspiration for many analogous discoveries in single layer graphene and bilayer graphene QPCs including

formation of sub-bands, quantized conductance, spin states, 0.7 analog etc. as we shall see in the following

chapters. Therefore, having a knowledge of the type of experiments and the results obtained in such devices

would help us predict the results in graphene as well.

2.2.1. Point contacts in metals

The history of ballistic transport started with point contacts based on metals that were fabricated by sim-

ply pressing a metal needle or a wedge on a metallic single crystal, followed by spot-welding. Ballistic

transport in such a device was first examined by Yuri Sharvin in 1965 [52]. His longitudinal electron fo-

cusing experiment used point contacts to inject and detect electrons in a metal. Later on, in 1974, Tsoi

further developed this idea for transverse electron focussing [53]. Point contacts have also been used to

study a wide range of interaction mechanisms such as electron-phonon interaction [54], electron-magnon

interaction [55], Kondo scattering [56] etc. Using such point contact spectroscopy in superconductors, sev-

eral interesting important phenomena such as Josephson effect [57] and Andreev reflections [58] have been

studied. This geometry proved very useful in the investigation of superconducting energy gap in several ma-

terials [58, 59]. Finally, quantum mechanical tunnelling experiments using scanning tunnelling microscopy

(STM) in which the metallic microscope tip acts an atomic point contact have also been extremely useful

in surface characterization [60]. However, excluding the case of STM in which the size of the tip is on

the order of atomic length, transport in metal point contacts would be only classical or semi-classical since

the Fermi wavelength of conduction electrons is too small (λF ≈ 0.5 nm) as compared to the size of the

point contact. Further, in these metallic QPCs, the resistance is solely determined by the geometry of point

contact and cannot be varied.

2.2.2. Point contacts in semiconductor 2DEGs

Unlike metals, in semiconductor 2DEGs such as the interface in a GaAs/AlGaAs heterostructure, point

contacts cannot be formed by the technique described in previous section, since the electron gas lies inside

the interior of the planar heterostructure. In this case, point contacts are formed by fabricating two split

gate electrodes on top of the heterostructure. By applying a suitable negative voltage to these gates, the area

below the gates is completely depleted of any charge carriers and thus, no longer electrically conductive.

The only connection between the two reservoirs on either side of the gates is the narrow channel between the
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gates which now becomes a constriction as shown in Fig. 2.1. The width of this constriction can be modified

and the transport can be completely pinched off by changing the voltage on the split gates. This method of

"electrostatic squeezing" of a 2DEG to form a 1D transport channel was first developed by Thornton et al.

[61] and Zheng et al. [62] in 1986.

Figure 2.1.: Schematic cross-sectional view of a quantum point contact in a GaAs-AlGaAs based 2D

electron gas. When a negative voltage is applied to gate electrode, the region underneath is depleted of

charge carriers, thus, forming a constriction. Figure reprinted from Ref. [48].

Using this technique in GaAs/AlGaAs heterostructures, the first experimental evidence for quantum me-

chanical size effects was observed in the form of zero field size quantization by two independent groups,

van Wees et al. [12] and Wharam et al. [63] in devices with a size much smaller than the mean free path

of electrons. By sweeping the gate voltage, the measured conductance trace showed a series of steps with a

height of 2e2/h (see Fig. 2.2) [12]. Moreover, as the voltage is gradually decreased, the width of the point

contact also decreases until the conductance is completely pinched off. As explained in section 2.1, a simple

explanation for this observation is provided using the formation of 1D subbands with a change in the gate

voltage. As the width increases by an amount corresponding to half the Fermi wavelength, an additional

channel i.e an additional sub-band is added to the conductance in a step like manner. The authors of Ref.

[63] further showed how the steps evolve in the presence of an external parallel magnetic field: the magnetic

field lifts the spin degeneracy which now gives rise to additional intermediate plateaus corresponding to the

spin split energy levels [64].

Another important feature of QPCs that attracts a lot of attention even until date is the additional step at

0.7×2e2/h besides the usual the 2e2/h quantization [65–73]. This is called 0.7 conductance anomaly and is

sensitive to both temperature and magnetic field. Several plausible explanations for this phenomenon were

offered including spontaneous spin polarization of electrons [70, 71] or the presence of a magnetic impurity

leading to Kondo effect [68, 69]. Several other accompanying effects such as an enhancement of Lande g

factor at low charge carrier density suggest that a form of electron-electron interaction could be responsible

for both these features [72]. More recent studies have attributed this to a van Hove ridge or an enhanced

density of states at the top of the QPC barrier resulting in strongly enhanced electron - electron interactions

[74, 75]. It is also interesting to note that anomalies at other non-integer values of conductance such as 0.5,

0.6 etc. besides 0.7 were observed not only in GaAs [73] but also in other semiconductor systems such as
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InAs [67] and Si [66].
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Figure 2.2.: Conductance of a quantum point contact similar to Figure 2.1. Multiple plateaus at intervals

of 2e2/h are visible. Figure adapted from Ref. [12].

Owing to the fact that QPCs show such clear characteristics of electron confinement in 1D, they can

be immensely powerful tools as electron interferometers. Yang et.al devised an electrical analogue of

the Mach-Zehnder interferometer in optics where QPCs act as electron beam splitters [76]. This utilizes

the edge transport in the quantum Hall regime which is therefore quite sensitive and more robust in high

magnetic fields as compared to earlier double slit electron interferometers. Other groups have reported

on various other interference patterns exhibited by QPCs including Aharnov Bohm effect [13, 14] and

Fabry Perot oscillations [16]. In general, QPCs have played a key role in understanding several interesting

electronic transport phenomena.

The ultimate goal of spintronics is to create devices called spin valves which can control the orientation

of the spin of the electrical currents passing through them. In this sense, QPCs are extremely useful and

with the ascertainment of high quality through phenomena such as ballistic transport and quantized con-

ductance, control and manipulation of spin was the next big goal. Several efforts have been made towards

the generation of spin polarized currents in QPCs even without the means of an external magnetic field i.e.

by all electrical means using side gates and lateral spin orbit coupling. Recently, an all-electric spin valve

was demonstrated by Chuang et.al in asymmetrically biased GaAs QPCs [77].

Ever since the proposal of Loss and DiVicenzo on quantum computing using quantum dots [18], numer-

ous efforts have been made to study the spin of an electron using quantum dots. The next subsequent step

was to explore the possibility of making electron spin qubits. QPCs have been used together in conjunction

with quantum dots in several semiconductor spin qubit experiments. A major breakthrough in the field of

spin based quantum computing was the use of a QPC to read out the individual electron spin in a quantum

dot in a GaAs/AlGaAs 2DEG [23]. In another related ground breaking experiment, coherent manipulation

of electron spin was shown again in GaAs quantum dots. Here, QPC charge sensors were used as local

electrometers [24]. Several other publications also used a QPC placed in the close vicinity of a quantum

dot due to their charge sensitivity and have shown spin manipulation using various techniques [25–28].

Besides GaAs, another highly explored material is Si. Si based 2DEGs have relatively lower carrier

mobility and therefore, most of the conductance investigation experiments were initially performed usually
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on GaAs heterostructures until the early 90s. Another reason could have been a difficulty in confining charge

carriers with an effective gating. Nonetheless, eventually, technological improvements gave significant

results such as the observation of the 2D metal-insulator transition at zero magnetic field [78] and the

measurement of spin and valley splitting in Si based systems [79]. Further experiments in QPCs included

the detection of 1D ballistic transport along with steps on the order of 4 e2/h in Si inversion layers [80] and

Si/SiGe 2DEG [81] while another study reported e2/h steps suggesting full degeneracy lifting along with

the 0.5 anomaly in a strongly confined SiGe 2DEG [82]. Recently, electrical control of a spin qubit was

demonstrated in a Si/SiGe quantum dot where a QPC is used a charge sensor [83]. The performance of this

device was even better than those based on GaAs in terms of the spin coherence time. In general, in III-V

semiconductor systems, a high degree of spin control has been achieved.

While GaAs has been the most popular material to fabricate 2DEGs, InAs has also shown promising

results particularly in terms of one dimensional transport. Besides quantized conductance, conductance

anomalies such as 0.5 or 0.7 e2/h have also been frequently observed [67, 84–86]. Results similar to Ref.

[77] were also achieved in InAs QPCs with in-plane side gates which can be used as robust spin injectors

and detectors [85]. In fact, side gating is much easier to achieve in InAs as compared to GaAs due to smaller

surface depletion. Efforts towards achieving an all-electric spin valve have also yielded pretty encouraging

results where lateral gates have been used to create a strongly spin polarized current by purely electrical

means without the help of any external magnetic field [84, 87].

The above literature is not exhaustive but already provides an idea of how metal and semiconductor

2DEG based QPCs have evolved from simple spectroscopic tools to spin qubits over the last 3-4 decades.
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This chapter has been published in parts in:

From diffusive to ballistic transport in etched graphene constrictions and nanoribbons

S. Somanchi, B. Terrés, J. Peiro, M. Staggenborg, K. Watanabe, T. Taniguchi, B. Beschoten, and C.

Stampfer Ann. Phys. (Berlin) 529, 1700082 (2017). ©2017 by WILEY - VCH Verlag GmbH & Co.

KGaA, Weinheim. Reprinted with permission.

3.1. Graphene

Ever since its isolation in 2004 by A. Geim and K. Novoselov [88], the carbon allotrope, graphene has

received a lot of attention in both fundamental research and industrial applications. Its unique two di-

mensional hexagonal honey comb crystal structure confers it with unique characteristics unlike traditional

semiconductors [30, 89–91]. For example, graphene exhibits a linear dispersion relation (at low energies)

instead of the usual quadratic relation unlike other semiconducting materials. This is, in fact, the reason

for its excellent electronic, optical and other physical properties. Consequently, the electrons in graphene

behave like massless chiral Dirac fermions [92]. This peculiar property of chirality in graphene is respon-

sible for finite transmission of electrons through an electrostatic barrier, a phenomenon known as Klein

tunnelling [31, 93]. Graphene is known to exhibit an exceptionally high values of mobility even at room

temperature which has been used in high frequency electronics to achieve cut off frequencies of about 100

GHz and even higher [94, 95]. Further, graphene also has a high saturation velocity as compared to con-

ventional semiconductors due to the higher energy of optical phonons [96]. Along with this, graphene can

also withhold high current densities on the order of 108A/cm2 which is much higher than that of copper

[97]. The high current carrying capacity makes graphene an attractive material of choice for interconnects

in integrated circuits [98]. While, in semiconductors, doping with n- or p-type materials is used to achieve

the desired nature of the charge carriers, in graphene, this is possible simply by applying an electric field

using a gate. The nature of charge carriers can then effectively be tuned from holes to electrons as they

cross the Dirac point, a property which can be used in field effect transistors and sensor applications [99].

The linear dispersion relation also gives graphene, an energy dependent density of states and an anomalous

(half integer) quantum hall effect visible even at room temperature [100]. Besides these, graphene also

has a very high thermal conductivity (4840 - 5300 W/mK) at room temperature [101]. This is an added

advantage when using graphene in electronic circuits as it ensures good distribution of heat, increases the

longevity and make more compact devices.

In terms of optical properties, graphene has an absorption coefficient of 2.3% and a reflection coefficient

of 0.1% [102]. Thus, graphene’s high transparency and low reflectance combined with a high charge carrier
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mobility make it a promising material in the field of opto-electronics, for example, in transparent conducting

electrodes, light emitting diodes etc [103–105]. Moreover, with a theoretical value of Young’s modulus of ≈
1 TPa, graphene can be integrated into several nanoelectromechanical (NEMS) applications [106]. Finally,

graphene, being ultra thin (thickness ≈ 0.345 nm) also has a huge advantage when designing electronic

devices since it is much easier to bring the top gates closer to the electron transport channel as compared

to traditional 2DEGs where the channel lies inside a heterostructure with a thickness around 5 - 50 nm.

This results in an enhanced gate coupling to graphene and hence, more electrostatic control over the charge

carrier density.

Graphene is also considered to be a promising candidate for future spintronics based devices. This is

owing to the low mass of carbon, due to which graphene has a very low spin-orbit coupling. Added to

this, almost 99% of graphene consists of nuclear spin free carbon isotope C12 resulting in a small hyper-

fine interaction which promises a long spin life time on the order of 1 µs [107]. Particularly, as discussed

in chapter 1, with the miniaturization of electronic devices quickly reaching a saturation, graphene based

spintronics could serve as an alternative to extend the Moore’s law. Graphene with its planar geometry

and mono-atomic thickness is a viable alternative to Si in traditional CMOS based technology to over-

come the scaling issues without affecting the performance. Thus, overall, graphene could potentially be

an ideal choice of material to explore scalable, patternable ultra-thin, light weight, strong yet flexible, high

performance electronic, opto-electronic and spintronic devices.

3.2. Graphene nanostructures

In spite of all the above mentioned virtues, graphene lacks one crucial property when realizing many elec-

tronic device concepts - a band gap. Along with this, graphene also exhibits a finite minimum conductivity

even at the Dirac point where the charge carrier density vanishes [108]. This has a huge impact when inte-

grating graphene into nanoelectronic devices since it can result in leakage currents and low on-off current

ratios. Therefore, many research groups have been concentrating on engineering a band gap in graphene.

One elegant means of doing so is by confinement of charge carriers in devices such as graphene nanoribbons

(GNRs) or constrictions (GNCs) (see Fig. 3.1).

A GNR is obtained by etching or cutting a graphene sheet/flake along two parallel lines with a nanometer

width resulting in different edge geometries such as zig-zag and armchair [109, 110]. Atoms along a zig-

zag edge come from the same sub-lattice while those along an armchair edge come from two different

sub-lattices in the graphene sheet. Thus, different boundary conditions of these ribbons may result in them

displaying different electronic properties. Typically, the length of a GNR l is longer than its width w [111–

115]. On the other hand, finite termination of a graphene sheet/flake along both the x and y directions results

in a GNC where the length is comparable to or less than the width i.e. l < ∼ w [42, 116–118]. Although,

physically, both the ribbon and the constriction are obtained by cutting the graphene sheet along a desired

direction, their properties differ significantly depending upon the width, length, the number of edge states

and the type of edge termination. For example, narrow and long nanoribbons are likely to contain more

edge states than their relatively shorter and wider counterparts fabricated in the same manner.

In such nanostructures, theory predicts that it is, in principle, possible to open a band gap of nearly 1 eV

in a nanoribbon of width 1 nm [37]. For arm-chair nanoribbons, the smaller the width of the ribbon, the

larger the band gap while zig-zag nanoribbons are gapless and thus, cannot be used in field effect transistors
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(FETs) [119]. On the other hand, according to Ref. [37], both zig-zag and arm chair nanoribbons with

hydrogen passivated edges have a non-zero, direct band gap.

GNR-based FETs have already shown a band gap of about 0.14 eV in 10 nm wide nanoribbons [120] and

a gap of nearly 0.2 meV for a width of 15 nm in another study [121] (band gap of narrow GNRs is sensitive

to its environment). Successful demonstration of high performance short channel (20 nm) graphene field

effect transistors (FETs) with an on-off ratio of 105 and a predicted band gap of more than 2 eV has also

been achieved [122]. In general, we see that the results obtained experimentally and theoretically, both

strongly rely on the width, morphology and the type of edges of the nanoribbon along with the method of

fabrication. Importantly, as we go towards much narrower ribbons to achieve larger energy or band gaps,

edges show an even more considerable influence on the electronic transport of such devices.

From a fundamental point of view, these narrows strips of graphene provide a platform to confine elec-

trons causing an energy gap near the charge neutrality point (CNP) leading to Coulomb blockade which

will be discussed in a bit more detail in the next sections [121, 123, 124]. Furthermore, like in the case

of semiconductor 2DEGs, these nanoribbons and constrictions can be used together in conjunction with

graphene quantum dots as charge detectors and also tunneling barriers [114, 125, 126].

With the advent of improved fabrication technologies, ballistic transport has already been achieved at

room temperature in high quality micron-scale encapsulated graphene devices [127]. More recently, bal-

listic transport and size quantization effects in encapsulated graphene nanoconstrictions or QPCs have also

been reported [42]. Such graphene quantum point contact devices could be exploited to construct valley

filters and valley valves in analogy with spin filters and spin valves [128]. Moreover, with engineered elec-

trostatic gating, these ballistic constrictions could also function as collimated point-like sources allowing us

to explore a wealth of electron optics experiments based on Veselago lensing, beam splitters or waveguides

[129, 130]. Interestingly, graphene QPCs have also been used as sensors even in the field of biology for

DNA detection and characterization thanks to their ability to carry large sheet currents and the sensitivity

of conductance to the edges [131]. In general, what makes graphene QPCs really exotic is that they display

a range of properties depending on their width, edge morphology, orientation, doping etc. that can be tuned

on an atomic scale for different applications.

(a)

A
B

(b)
w

l

Figure 3.1.: Schematic illustration of a graphene nanoribbon (a) and nanoconstriction (b) of length l and

width w. Inset in (a) indicates rough edges and dangling bonds (red dots) along the edge of the nanoribbon.

Inset in (b) shows the hexagonal lattice structure of graphene with carbon atoms in the two sub-lattices A

(grey dots) and B (green dots).
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3.3. Characteristic length scales and gate couplings in

graphene nanodevices

In this section, we discuss the properties of graphene nanostructures which depend crucially on (i) the sur-

rounding environment, giving rise to charge carrier inhomogeneities as well as on (ii) the edge termination

or edge roughness that is likely to give rise to localized edge states as in the case of etched devices. In

particular, the flatness of graphene or the suppression of nanometer-scale strain variations has been shown

to be crucial for high carrier mobility [132, 133]. All these have important consequences on the charge

transport length scales such as the mean free path as well as on the gate couplings in realistic graphene

nanodevices.

Fig. 3.2 (b) shows how the quantity k2
F/π where kF is the Fermi wave number varies as a function of

back gate voltage Vbg in an etched graphene nanoribbon or constriction (see the schematic in Fig. 3.2 (a))

and how it depends on the disorder induced residual charge carrier density n∗ according to the following

equation.

n =
k2

F
π

=
√

(α∆Vbg)2 +(n∗)2 (3.1)

Here, n is the net charge carrier density and ∆Vbg = Vbg −V 0
bg where V 0

bg is the back gate voltage at the

CNP. We assume that 1. V 0
bg = 0 V such that ∆Vbg = Vbg and 2. graphene is placed on a d = 285 nm thick

SiO2 layer deposited on a highly p-doped Si substrate that serves as the back gate (BG) resulting in a gate

lever arm α = εoεr
ed = 7.2×1010cm−2V−1 , where ε0 is the dielectric constant of air and εr = 3.9 is the value

for SiO2. The residual charge carrier density n∗ reflects the presence of electron-hole puddles near the CNP

most likely due to charge impurities in the near vicinity [38]. In cleaner systems exhibiting low values of

n∗ such as the red trace in Fig. 3.2 (b), there is less smearing of the charge carrier density around the CNP

and a lower overall carrier density can be achieved. Thus, in an ideal device, n∗ = 0.

In Fig. 3.2 (c) and (d), we consider a system where n∗ = 0 but introduce another disorder related term,

the trap state density nT which arises due to the localized states near the edges of a graphene nanostructure.

In this case, we follow Ref. [42] and use

n =
k2

F
π

+nT (kF) = α∆Vbg. (3.2)

The localized states arise from the rough edges of a nanoribbon or constriction, for example, by using top-

down fabrication such as etching leading to imperfections like dangling bonds (see Fig. 3.1) consequently

resulting in edge disorder. Studies have shown that edge disorder can play a huge role in limiting the

transport through graphene nanostructures especially in narrower ribbons and constrictions where the edges

are much closer to the bulk transport channel [42, 134].

The density of these localized trap states ρ is estimated using a Gaussian (see Fig. 3.2 (c)) where the

width and the amplitude together (area under the Gaussian curve) determine the trap state density nT as

shown in Fig. 3.2 (d). We see that as the trap state density increases, the term k2
F/π which arises due the

conduction of non-localized charge carriers smears out along the gate axis in Fig. 3.2 (e). In particular, we

observe a gate dependent broadening of k2
F/π near the CNP. At higher values of Vbg, the density of states in

the bulk dominates and the transport is not affected by the localized states anymore. The black dashed line

is a linear fit using Eq.3.2 to the blue trace assuming nT = 0. Note that this line is parallel to all other traces

at higher values of Vbg but deviates from the expected value as the gate voltage approaches zero. Thus, the
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localized states contribute only to the total density of states and thus, to the charging characteristics of the

system but not to the charge transport itself.

From the above discussion, we arrive at the following general relation between n and kF .

n =
k2

F
π

+nT (kF) =
√

(α∆Vbg)2 +(n∗)2 (3.3)
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Figure 3.2.: (a) Schematic of a graphene nanoribbon resting on the surface of Si++/SiO2 substrate that

serves as the back gate (BG). Source (S) and drain (D) electrodes are used to apply a bias voltage across

the ribbon. (b) Density of the non-localized charge carriers k2
F/π in the bulk channel of the device in (a) as

a function of the back gate voltage Vbg for different values of residual charge carrier density n∗. (c) Density

of localized trap states ρ as a function of the Fermi wave number kF . Blue and green traces correspond

to Gaussian distribution functions with different amplitudes A. Red trace denotes the ideal linear density

of states of graphene. (d) Trap state charge carrier density nT as a function of kF for different values of

A as shown in (c). (e) k2
F/π as a function of Vbg for different values of trap state carrier density nT . The

black dashed line is a straight line fit using the ideal relation k2
F/π = α∆Vbg. As nT increases, we observe a

deviation from the linear behavior of the charge carrier density around the CNP.

Keeping this in mind, in Fig. 3.3 (a), an important length scale for ballistic transport - the mean free path

lm is plotted as a function of applied gate voltage for different carrier mobilities µ . The mean free path is

given by

lm =
ℏµ

e
kF . (3.4)
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where e is the elementary charge and ℏ, the Planck’s constant [127]. For comparison, the Fermi wave-

length λF is also included.

λF =
2π

kF
(3.5)

For this plot, we assume an ideal disorder-free system where n∗ = nT = 0. The Fermi wavelength has

to be significantly smaller than the mean free path (λF ≪ lm) for ballistic transport. Fig. 3.3 (a) shows that

for high carrier mobility devices e.g. for µ = 300,000 cm2V−1s−1, it is possible to have ballistic transport

beyond Vbg = 0.15 V (see region ’A’ consisting of both the light and dark gray shaded areas. This includes

the region enclosed in between the green and the pink curves to the right side of their point of intersection.).

This allows us to obtain long mean free paths on the order of 1 µm in such a system at very low n (n = 7

×1010cm−2 for Vbg = 1 V).

Further, the window in which it is possible to observe ballistic transport becomes smaller as we move to a

mobility of 40,000 cm2V−1s−1 (see region ’B’, the dark gray shaded area. This includes the region enclosed

in between the green and the orange curves to the right side of their point of intersection). Consequently,

for a device with a low mobility to be ballistic, its width should be around 100 - 200 nm in the voltage range

under consideration (see horizontal black dashed line at 130 nm). Whereas, in the case of high mobility

devices, it is possible to design devices, for example, with a width of 0.5 µm for µ = 150,000cm2V−1s−1

and 1.5 µm for µ = 300,000cm2V−1s−1 to allow ballistic transport (see horizontal black dashed lines at

0.5 µm and 1.5 µm). Thus, achieving a higher mobility relaxes the restriction on the size of the devices to

observe ballistic transport.
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Figure 3.3.: (a) Fermi wavelength λF (green trace) and mean free path lm (orange, red and pink traces) as

a function of Vbg for different mobilities in an ideal system with no disorder i.e. n∗ = nT = 0. (b) Similar to

(a) for different values of n∗ (see Fig. 3.2 (b)) for the red trace in (a). (c) Similar to (a) for different values

of nT (see Fig. 3.2 (e)) for the red trace in (a).

We, now, introduce the disorder related term n∗ back into the system (refer to Fig. 3.2 (b)). Fig. 3.3 (b)

shows how the length scales vary for different values of n∗ for the red trace in Fig. 3.3 (a) with µ = 150,000

cm2V−1s−1. Interestingly, we observe that as n∗ increases, the system becomes more conducive to observe

ballistic transport - the red traces meet at a voltage of 0.3 V while the blue traces do not meet at all in the

given voltage range.

Similarly, in Fig. 3.3 (c), we observe the effect of nT (refer to Fig. 3.2 (e)) on the length scales. For

larger values of trap state density such as the blue traces, a voltage greater than 6 V (see ’B’, the dark gray
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region in between the two blue traces) is required to observe ballistic transport in devices with dimensions

between 200 - 400 nm (see the horizontal black dashed line at 250 nm). This restriction on both the applied

voltage and the width of the device relaxes as we go to traces with lower values of nT - see the region ’A’

consisting of both the light and the dark gray shaded areas between the two red traces which allows us to

design a device with dimensions greater than 1 µm to observe ballistic transport in the given voltage range

(see the horizontal black dashed line at 1 µm).

It is important to note that for the narrow top-down etched nanoribbons and constrictions (roughly w <

200 nm), the influences of the rough edges play a dominant and unfortunately, limiting role [135–137]. For

such devices, localized states and statistical Coulomb blockade open a mobility gap making the mean free

path in Fig. 3.2 (e) - (f) nearly meaningless. For the state-of-the-art etching technology, this puts a lower

limit on the nanoribbon and constriction width for observing quantum ballistic transport. In the case of gate

defined nanostructures, the quantity nT (kF) is no longer relevant since there are no rough edges while n∗

can be lessened by using suspended or encapsulated graphene to reduce the influence of charge puddles in

the substrate.

The following sections of this chapter describes efforts made in the field of electron confinement in

both single layer graphene QPCs followed by bilayer graphene QPCs in the next chapter. In the case of

SLG QPCs, we mostly discuss the technique of lithographic confinement of electrons by etching where

the broken lattice symmetry introduces an effective mobility gap. While in the case of BLG QPCs, an

external out-of-plane electric field can be used to break the inversion symmetry, resulting in the opening of

a band gap. The focus is on the technological challenges involved in the fabrication of high quality devices,

how disorder due to both substrate and edges as described above, affect the device characteristics and the

advancements made so far to understand and control the edge physics.

3.4. Electronic transport in graphene nanoribbons and

nanoconstrictions

A common method employed to produce graphene nanoribbons is the lithographic patterning of graphene.

On one hand, this method offers huge control over the design and geometry of the sample. However, due to

technical limitations, making arbitrarily small nanoribbons with a stronger energy of confinement is difficult

to achieve. The use of etching always results in rough edges which act as sources of scattering thereby de-

creasing the mobility and the overall performance of the device as discussed in the previous section. Other

fabrication methods include unzipping of carbon nanotubes [138], bottom-up fabrication from molecules

[139], growth along the edges of SiC steps [140], and epitaxial growth [141]. A comprehensive outline of

various fabrication techniques and the relevant literature is mentioned in Refs. [125, 142]. While bottom-up

synthesized atomically precise GNRs are the most promising for controlling the electronic properties, their

maximum length sets some limitations for advanced transport studies and device integration. This makes,

at present, top-down lithographically defined GNRs and GNCs, the most common and straight forward

approach for fabricating quantum transport devices and is also used for making the graphene nanoconstric-

tions/ quantum point contact devices in this thesis. Therefore, in the next sections of this chapter, a short

literature review consisting of the research conducted in the field in GNRs and GNCs that have mostly been

fabricated by etching is presented.
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3.4.1. Graphene nanoribbons/constrictions on SiO2

In the early days of graphene research, the most commonly used substrate for the fabrication of GNRs

and GNCs is a highly doped Si/SiO2. This is thanks to its wide availability, good dielectric properties

of SiO2 and the potential integration of graphene-based devices with the existing Si-based semiconductor

technology. Most early experiments involved deposition of graphene on such Si/SiO2 substrates either

by direct exfoliation or by some other transfer method. GNRs or GNCs were then fabricated using a

series of electron beam lithography (EBL) and reactive ion etching (RIE) steps [38, 113–116, 124, 132,

133, 143–149]. An example of such a graphene nanoribbon (length l = 2 µm and width w = 80 nm)

is shown in Fig. 3.4 (a). Lateral confinement of electrons in lithographically patterned GNRs is usually

characterized by suppressed conductance particularly near the CNP leading to a so-called "transport gap"

in back gate voltage characteristic [113–116]. Fig. 3.4 (b) shows an example of conductance as a function

of the back gate voltage highlighting the transport gap ∆Vbg, centered around the CNP at V0. In particular,

statistical Coulomb blockade is observed in this region of suppressed conductance similar to the experiments

based on quantum dots. Subsequently, transport in such disordered nanoribbons on SiO2 was explained by

treating the nanoribbon as a series of charged islands of varying sizes that exhibit local resonances due

to statiscal Coulomb blockade in the transport gap region [114]. Moreover, it has also been successfully

demonstrated, that the addition of a single electron to the nanoribbon can be monitored by a nearby single

electron transistor with a combination of lateral gates [150–153]. Associated with the region of suppressed

conductance are two energy scales - one ∆EF ∝
√

∆Vbg that depends on the extent of the gap in the back gate

voltage direction which is a measure of the disorder potential and the other, Eg is the extent of bias voltage

(in bias spectroscopy) which gives the charging energy of individual charged islands (see Fig. 3.4 (c)). The

transport gap ∆EF is a result of both the confinement of electrons due to etching and a bulk/edge disorder

potential together resulting in the formation of charged islands and quantum dots. While the source-drain

gap, Eg is related to the size and charging energy of the associated quantum dots and therefore, scales

inversely with the width of the nanoribbon (narrower nanoribbons consist of smaller charge islands with

larger charging energy) [113]. This is in agreement with earlier theoretical calculations which suggest that

the origin of energy gaps comes from both the confinement and disorder potential due to rough edges [154].

Further, scanning gate microscopy measurements also confirmed the existence of multiple quantum dots in

such devices [155].

Similar scaling of the energy gap Eg as a function of the ribbon width was, indeed, also earlier observed

by Han et al. [121] in nanoribbons with width ranging from 10-100 nm and lengths of 1-2 µm (i.e. w <

l). In another closely related study of aspect ratios in etched nanoconstrictions particularly in the regime of

w ∼ l and also w > l (smallest width = 50 nm, largest length = 1 µm) [156], shorter constrictions showed

a much smaller transport gap. This is because shorter constrictions consisted of fewer charge islands and

hence, less charging events. Although the width dependent charging energy was nearly independent of

the length, the minimum conductivity in the transport gap region itself was strongly length dependent with

shorter constrictions having a much higher conductance level (0.1 - 1 e2/h).

A temperature dependent study of the transport gap in nanoribbons with similar dimensions (20 nm < w

< 120 nm and 0.5 µm < l < 2 µm) revealed that the transport through the nanoribbon is dictated by ther-

mal activation of charge carriers at higher temperatures and variable range hopping at lower temperatures.

Electric field-based transport measurements indicate that the transport gap in disordered GNRs is governed

by hopping through localized states [157] or co-tunneling processes [158].
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Figure 3.4.: (a) Scanning electron microscopy image of graphene nanoribbon with l = 2 µm and w = 80

nm. (b) Two-terminal back gate characteristics of the graphene nanoribbon shown in panel (a). The hole

and electron transport are highlighted in the insets and red dashed lines mark the overall linear increase of

conductance. V0 denotes the CNP of the conductance trace. (c) Color plot of the source-drain current Isd

as a function of the back gate voltage Vbg and the bias Vb for a constriction with w = 50 nm and l = 500

nm. The arrow indicates the region of suppressed current which comprises of Coulomb diamonds. Figure

adapted from Ref. [156].

Etched graphene nanoribbons were also synthesized using oxygen plasma reactive ion etching with a

patterned hydrogen silsesquioxane HSQ layer as protective mask [112]. The transport properties were

found to be heavily dependent on the proper removal of the HSQ layer using HF. In these devices having

w = 30 nm width and l = 1.7 µm channel length, first experimental evidence of sub band formation in

1D channels was noted [112]. However, these devices are not ballistic which is due to a combination of

high edge disorder (long channel length implies a stronger influence of edges) and also substrate-induced

disorder. More recently, it has been shown that this edge disorder can be reduced by treating the etched

graphene constrictions with a low concentration of hydrofluoric (HF) acid for a very short duration of 20 s

[146]. This suppresses the transport gap significantly and shifts the CNP close to zero volts. However, the

effective energy gap remains unaltered.

3.4.2. Suspended graphene nanoribbons/constrictions

One straight forward approach to reduce substrate-induced disorder is to remove or to replace the SiO2

substrate. The substrate could be either completely removed to form "suspended" nanoribbons or replaced

by another more suitable material. The first significant improvement in device quality was observed by

Bolotin et al. in micron-sized suspended and current annealed devices [159]. While the carrier mobility

of devices before current annealing remained rather low (28,000 cm2V−1s−1 at n = 2×1011 cm−2), the

mobility of current annealed devices was as high as 230,000 cm2V−1s−1 at similar charge carrier density

at a temperature of 4 K. This is attributed to the fact that current annealing removes residual dopants and

other fabrication impurities thus resulting in a sharper resistance peaks at the CNP and, correspondingly,

to a higher mobility and a lower charge inhomogeneity. Owing to the superior quality of such devices,

many interesting phenomena such as ballistic transport [160], snake states [130] and fractional quantum

Hall effect [161] which were earlier limited by device quality are now observed.
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Signatures of quantized conductance in graphene nanoconstrictions were first observed by Tombros et al.

in devices suspended above the surface of a SiO2/Si substrate [40]. These devices were current annealed

which leads to a carrier mobility as high as 600,000 cm2V−1s−1 at a charge carrier density of 5 ×109 cm2

at 77 K resulting in an electron mean free path of several hundred nanometers (200 - 450 nm) [162].

Conductance steps were observed at intervals of around 2 e2/h suggesting that the valley degeneracy is lifted.

The transition from quantized conductance at zero magnetic field to the quantum Hall regime for magnetic

fields above 60 mT was observed which confirms the high quality of these devices [40]. This work was

further corroborated by calculations performed by S. Ihnatsenka and G. Kirczenow [163] which provide

a theory for the observation of integer and fractional quantized conductance with a comparison between

zigzag and arm-chair edges. However, in devices produced by the same fabrication method and current

annealing but with much smaller device width, Coulomb blockade was observed at 0 T similar to disordered

nanoribbons fabricated on SiO2. The Coulomb blockade becomes strongly suppressed beyond a relatively

low magnetic field of nearly 2 T and shows a completely insulating state [164]. This shows that even for

high quality samples, edge disorder is most likely inevitable and plays a key role in the determination of

the observed physical phenomena. In similarly fabricated devices, formation of p-n junctions was also well

studied. Characteristic Fabry-Perót interferences and ballistic transport with a mean free path of nearly 2

µm were observed, thus, also paving the way for more advanced electron optics experiments in the future

[165, 166].

Suspended devices, however, suffer from severe inherent limitations. Crucial to note is that this process

does not allow for control over the dimensions of the devices. Also, the maximum applicable back gate

voltage is in most cases limited to a few volts due to the straining of graphene. Furthermore, it is difficult

to incorporate top gates and fabricate multi-terminal devices.

3.4.3. Graphene nanoribbons/constrictions based on hBN

Most graphene nanodevices that rest directly on SiO2 suffer from inherent substrate induced disorder in

the form of dangling bonds, substrate roughness, charge puddles [38, 39] and surface phonons [167] which

cause serious limitations to the mobility of charge carriers in such devices. Later on, hBN has received

a great deal of attention as an alternative substrate for graphene owing to its atomically smooth surface

that suppresses rippling in graphene, a lattice constant similar to that of graphene and planar structure

that is expected to be free of any dangling bonds or surface charge traps [41, 168]. Scanning tunneling

microscopy studies also confirmed that graphene on hBN has significantly less pronounced electron-hole

puddles as compared to SiO2 [169].

However, incorporating a new substrate alone cannot improve the quality of nanostructure devices as

reported by Bischoff et al. [143]. It was seen that the micron sized graphene devices on hBN have sig-

nificantly higher mobility (more than 45,000 cm2V−1s−1 at n = 1010cm−2) and lower disorder density (n∗

less than 1010cm−2) than devices fabricated on SiO2 [158]. However, the transport behavior of nanoribbons

remained the same. In both cases, transport seems to be dominated by localized states and charge puddles

similar to Ref. [114]. Further, nanoribbons of similar width etched from the same graphene flake showed

strong variations in the quality and evolution of conductance. This is a strong indication that edge disorder

plays an important role in the transport properties of reactive ion etched graphene nanostructures irrespec-

tive of the substrate. In order to reduce the influence of edges, the authors of Ref. [158] also fabricated

ultra-short constrictions with a width of only 30 nm [170]. Analysis of transport gap revealed an interesting
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result - it is possible that the area over which the charge is localized can be almost 10 times larger than the

constriction itself. This is allowed only if these localized states extend along the edges of the constriction

into the graphene leads. In such a case, a small wave function overlap between the localized state in the

edge and the delocalized state in the lead should allow electron tunneling. These findings further indicate

the importance of the influence of edges on transport.

3.4.4. Encapsulated graphene nanoribbons/constrictions

The most successful approach to completely isolate graphene from its surroundings for preventing contam-

ination is by encapsulating it within two flakes of hBN, thus forming a hBN-graphene-hBN "sandwich"

structure (see Fig. 3.5 (a)). While the carrier mobility of graphene on SiO2 was in the range of 10,000

to a maximum of 50,000 cm2V−1s−1, the mobility of such sandwich structures reached the highest values

of several hundred thousand [171], which is comparable to values obtained from suspended devices [159,

162]. This was shown to be the case even at room temperature. This technology, therefore, allows us to

achieve high mobility devices along with a good control over their geometry and size. Furthermore, it also

allows to fabricate high performance multi-terminal devices with an efficient gate coupling [127, 172, 173].

In particular, dry transfer processes [172, 174] for making hBN-graphene-hBN sandwiches together in

combination with a metal (Al) hard mask and SF6 or CHF3 based reactive ion etching allows us to achieve

well controlled constrictions with high quality [42]. Evidence of size quantization in nanoconstrictions with

widths in the range of 200 - 380 nm, made from this technique of encapsulating graphene was first observed

by Terrés et.al [42]. Conductance kinks with a step height of 2 - 4 e2/h were observed. This height was seen

to be dependent on how strongly the electrons were likely to get scattered at the rough edges of the QPC,

which in turn, depends on the width of constriction. Conductance trace of one such QPC with a width of

280 nm is shown in Fig. 3.5 (b) and (c). We see clear kinks on the order of 2 e2/h. A detailed analysis of

the conductance kinks shall be presented in the following chapters.

Size quantization was further confirmed by the application of magnetic field, upon which the kinks at

zero magnetic field evolved into their respective Landau levels at higher magnetic fields [42].

Interestingly, narrower (w = 35 and 40 nm) and relatively longer nanoribbons (l = 100 and 150 nm

respectively) fabricated in the same manner show a transport gap at zero magnetic field similar to etched

graphene nanoribbons on SiO2 (or hBN as discussed in section 3.4.1 and 3.4.3), although the extent of the

gap was much smaller due to the reduction of substrate induced disorder [111]. However, a larger magnetic

fields, an insulating state, as in the case of high mobility graphene, appears due to the breaking of valley

symmetry by the perpendicular magnetic field.
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Figure 3.5.: (a) Schematic of a hBN encapsulated graphene nanostriction. Figure adapted from Ref. [42].

(b) Conductance trace of a 280 nm wide encapsulated graphene QPC as a function of the back gate voltage.

(c) Close-up of the trace in (b) around the CNP. Conductance kinks on the order of around 2 e2/h are denoted

by the black arrows.
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graphene

As discussed in the previous chapter, confinement of electrons by etching graphene into nanostructures

makes them suffer from an inherent edge disorder. In case of semiconductor systems, as seen in Fig. 2.1,

confinement is achieved by the use of additional split gates in a 2DEG, thus, forming a quantum well. The

advantage of this method is that the confinement potential is much smoother as compared to the rough

edges in the etched graphene samples. However, similar split gate geometry cannot be realized in single

layer graphene based devices because it lacks a band gap. In this case, Klein tunnelling occurs between n-

and p-doped regions thereby preventing electrostatic gating. In this context, Bernal stacked bilayer graphene

presents a great advantage as compared to its single layer counterpart. Bilayer graphene, unlike single layer

has a parabolic dispersion relation (at low values of energy) where the charge carriers have an effective mass

of about 0.033 me where me is the mass of an electron [175–178]. Although Bernal AB stacked bilayer

graphene is also a zero gap metal in its pristine form, it offers the possibility of opening a band gap when a

transverse electric field is applied causing a difference in the electrostatic potential between the two layers

[175–180]. The gap is a result of the layer asymmetry such that its magnitude can be tuned by the applied

gate voltage up to 0.4 eV [179–181]. Therefore, bilayer graphene can be readily combined with the split

gate technology of semiconductor 2DEGs for fabricating an edge disorder free system along with a band

gap in graphene.

Indeed, an experimental evidence for this band gap was first provided in Ref. [182] using BLG on a

SiC substrate. In this experiment, doping is provided to BLG by the adsorption of potassium atoms. This

resulted in a maximal band gap of 0.2 eV as observed using ARPES technique. Likewise, for graphene

grown epitaxially on SiC, both theory and experiment show a consistent band gap of 0.25 eV. Several

groups used bilayer graphene FETs for band gap engineering [135, 136]. Oostinga et.al. used a double

gated configuration to induce an insulating state that could be controlled by the applied gate voltages [137].

With this configuration, it is possible to control both the band gap and the carrier concentration indepen-

dently which was previously not possible with Ref. [182]. In one theoretical work based on tight binding

simulations [183], it was seen that it is not quite possible to achieve the International Technology Roadmap

for Semiconductors (ITRS) requirements (band gap of 0.4 eV and current on-off ratios over 104 ) [184,

185] for designing a FET with bilayer graphene due to the weak suppression of band to band tunnelling

resulting in a small band gap. However, in the same year, using a dual gated geometry for bilayer graphene

on SiO2 , Zhang et.al showed a gate controlled, field tunable band gap of up to 0.25 eV [43]. Moreover,

theoretical studies show that bilayer graphene could be a promising candidate for tunnel FETs where even a

small band gap of the order of a few hundreds of meV is already enough to achieve the required on/off cur-

rent ratio [186]. More recently, CVD based Bernal bilayer graphene RF transistors showed an exceptional

performance with a forward power gain of up to 5.6 GHz and a conversion gain of -7 dB [187].

The following sections of this chapter focus on the efforts towards the confinement of electrons and
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microscopic control of band gap using split gates in bilayer graphene nanoconstrictions.

4.1. Gate defined BLG nanoconstrictions on SiO2

Similar to etched constrictions, gate defined constrictions also first began on Si/SiO2 substrate. In one such

device with a bilayer graphene flake exfoliated on top of a Si/SiO2 substrate, Dröscher et.al used a pair

of split gates separated by a narrow opening (w = 80 nm) and probed the transport through the channel

or the constriction between them [188]. This was done by comparing the transport characteristics of the

constriction formed due to the split gates to that of region under the continuous top gate in another area of

the bilayer graphene flake. The opening of a band gap was seen in the form of an insulating state with an

increase in resistance by a factor of 1000 below the top gated region. It was observed that the charge carriers

are forced to flow through narrow channel under the split gates for higher displacement fields. This sug-

gested that a perpendicular electric field i.e. a displacement field can confine charge carriers to a restricted

area. However, since this device is built on SiO2, charge puddles and the associated disorder potential led

to diffusive transport. The oscillations observed in the lever arm maps were attributed to universal con-

ductance fluctuations instead of quantized conductance. Identical results were noted by Goosens et. al on

Si/SiO2 substrate [189]. Their geometry also involved a continuous "strip gate" which was used to prove

that it is possible to open a band gap in bilayer graphene and a split gate geometry to form a narrow channel.

Here as well, the constriction (w ≈ 20 nm ) did not show any signs of quantized conductance. The dominant

mechanism was deduced to be variable range hopping type and led to a mean free path of only 10 nm at a

charge carrier density of 1012cm−2. However, these results were still encouraging enough to show that it is

possible to achieve quantum confinement in gated graphene nanostructures which could then be extended

to suspended graphene or graphene on hBN to decrease the influence of disorder as we will see in the next

sections.

4.2. Gate defined suspended BLG nanoconstrictions

The first evidence of band gap control in bilayer graphene QPCs was demonstrated by Allen et.al. in 2012

in suspended structures [190]. QPCs without both substrate and edge disorder were achieved by local

gating. This geometry involved a combination of split gates directly on top of the suspended graphene

which depletes the charge carriers in the region underneath leading to the formation of the constriction. The

suspension of another central gate (finger gates) on top of these split gates is used to control the charge

carrier density of the channel locally. The constrictions (w ≈ 200 nm) showed quantized conductance with

a step height of 2 e2/h at zero magnetic field indicating valley degeneracy lifting. Similar gating technique

was used to fabricate dots with varying geometry (circular, elliptical), size (150 - 450 nm) and number

of gates. Band gap is induced by application of voltage or a perpendicular electric field to the top gates

thereby forming tunnel barriers. The formation of quantum dots is confirmed by the formation and analysis

of periodic Coulomb blockade oscillations.
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4.3. Gate defined encapsulated BLG nanoconstrictions

Analogous to the chronological order of research in etched SLG devices, once quantized conductance and

evidence of band gap opening were observed in suspended BLG devices, the next step was to look for a

similar behaviour on BLG constrictions on a cleaner substrate. Graphene encapsulated in hBN was a natural

choice based on previous developments and this method was first successfully utilized by Goossens et.al

[191]. Using multiple top gates along with the silicon back gate, both one dimensional sub-bands showing

signatures of quantized conductance and zero dimensional quantum dots showing Coulomb blockade were

demonstrated. The transport gap was only around 50 meV but was sufficient enough to achieve quantum

confinement. However, due to this relatively small band gap, the channel showed a minimum conductance

of e2/h and it was not possible to completely pinch it off. Further, the conductance step height was on

the order of 2 e2/h instead of 4 e2/h as expected for gate defined bilayer graphene. On the other hand, by

inducing double barriers using appropriate gate voltages, a region of strongly suppressed conductance with

diamond like features of Coulomb blockade was observed.
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Figure 4.1.: Conductance of a gate defined encapsulated bilayer graphene QPC sample with a graphite

back gate at zero magnetic field as a function of the channel gate voltage VCH . Quantized conductance steps

on the order of 2 e2/h are clearly visible as indicated by the ✕ symbols. Figure adapted with permission

from Nano Lett. 2018, 18, 1, 553-559. Copyright (2018) American Chemical Society.

More recently, a similar top gate and split gate geometry was used in encapsulated graphene QPCs along

with a graphite back gate [192]. This small change had a tremendous impact on the resistance of the channel

below the depletion gates- almost 1 GΩ as compared to 10 - 100 kΩ in the previous works [193–195]. With

this addition, a resistance of almost 105 h/e2 was achieved while depleting the region under the top gate.

Two different QPC samples were investigated by this group. One of them showed quantized conductance

with a step height of 2 e2/h while in case of the other, it was 4 e2/h. This difference in the expected step

height is attributed to the different residual disorder or strain patterns in both the devices. This could be due

to the fact that the hBN layer separating top or split gate from the graphene is relatively thinner compared to

GaAs heterostructures and may lead to changes in the confinement potential. A band gap of about 47 meV

could be opened below the split gates which is consistent with the value achieved in previously discussed

publications as well. Finally magnetic field measurements demonstrated a complete degeneracy lifting and
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expected quantum Hall plateaus for bilayer graphene (see Fig. 4.1). The important point to take home from

this work is that the use of graphite back gate has the potential to achieve large on-off resistance ratios (on

the order of GΩ) which was previously not possible with bilayer graphene on a substrate. This is due to the

fact that graphite helps in screening charge impurities from underlying Si, hBN and even graphene itself

thereby resulting in a large reduction in disorder. A great improvement in sample quality using graphite

back gate was already demonstrated earlier by Ref. [196].

While high quality samples with robust conductance steps have been devised, deviations from the ex-

pected step height of 4 e2/h have been commonly observed. It is not usual to observe valley degeneracy

lifting even at zero magnetic field due to confinement. Control and breaking of valley degeneracy is a cru-

cial requirement for both spintronics and valleytronics. Very recently, clear quantization steps on the order

of 4 e2/h and their peculiar splitting into steps on the order of e2/h, 2 e2/h and 4 e2/h in the presence of a

magnetic field was observed [197]. In this case, the back gate and the side gates on one hand are used to

locally deplete the charge carriers and create a band gap in the region of the QPC. The global top gate on

the other hand is fabricated right on top of the side gates (separated by a layer of oxide) and can tune the

Fermi level in QPC directly. Further, a small perpendicular magnetic field of 20 mT was also applied on

the leads in their normal state. When a magnetic field is applied perpendicular to the plane of graphene, a

complete lifting of the four fold degeneracy is visible in the first two Landau levels. However, in case of

higher sub-bands, the degeneracy of 4 e2/h seems to be restored at high magnetic fields. In the intermediate

fields, steps on the order of 2 e2/h were also visible. Such peculiarities of the system in the presence of a

magnetic field are explained by the formation, splitting and mixing of magneto-electric sub-bands. Thus,

this particular study allows us to study and control the transition of sub-bands from full degeneracy to full

splitting and forms an important step towards the development of valleytronics.

Similar results were indeed also observed by the authors from the same research group as Ref. [192].

Full four fold degeneracy at zero magnetic field, two fold degeneracy at intermediate magnetic fields and

restoration of the four fold degeneracy in complete quantum Hall regime was noticed in three bilayer quan-

tum point contacts of similar geometry but varying widths as in Ref. [198]. A theory for the observed

mode splittings and crossings was provided using both k.p theory and tight binding simulations, both of

them in agreement with each other. At zero magnetic field, the Berry curvature induces a non-zero orbital

magnetic moment in the states occupied by the QPC. This leads to a vertical magnetic field splitting lines

at low magnetic fields. At high magnetic fields, the system evolves into the Landau levels of gapped bilayer

graphene which is manifested in the step height once again.

Finally, it is worth mentioning that the split gate technology has also been used to achieve confinement

in zero dimensional quantum dots as well. Authors of Ref. [199] used a similar fabrication technique

(i.e. including a graphite back gate) to prepare quantum dots of superior quality comparable to those in

semiconductors. Using opposite voltages on the source/drain and the dot that they connect, both n- and

p- type dots were formed, thus, demonstrating the ambipolar nature of the charge transport. Next, like the

experiments based on etched quantum dots, a perpendicular magnetic field was applied to extract single

particle level spectrum, shelling filling and show orbital degeneracy as well from the coulomb resonances.

Thereafter, using a parallel magnetic field, a Zeeman splitting with a g-factor around 2 was observed, which

is as expected for carbon based systems. This method of fabrication and device operation was further

extended by Banszerus et.al. [200] to define single, double and triple dots in bilayer graphene using three

finger gates on top of the split gates. In fact, this device is designed such that it could be used to define both

quantum point contacts and quantum dots by careful selection of appropriate side and finger gate voltages.
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For the schematic of the device, please refer to Ref. [200] or Fig. 5.7. Different features expected in

traditional etched quantum dots such as coulomb peaks, excited states, double and triple dot formation are

all possible and highly reproducible in this configuration. These experiments serve as the first step towards

realization of spin relaxation experiments in bilayer graphene quantum dots. One can then combine such a

quantum dot with a quantum point contact for spin qubit based experiments.
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5. Fabrication of graphene and bilayer

graphene quantum point contact

devices

Contributions to this chapter:

All single layer graphene and hBN samples including optical images were made by Sowmya Somanchi.

The bilayer graphene samples have been fabricated and the corresponding images have been provided by

Luca Banszerus from RWTH Aachen University. All the schematics are made by Sowmya Somanchi.

5.1. Introduction

In this chapter, details regarding the fabrication of the devices discussed in this thesis are described. To

begin with, isolation of graphene and hBN is introduced as the very first step to make any device. In

the following section, the stacking technique used to assemble these 2D materials into van der Waals het-

erostructures or "sandwiches" is described. These sandwiches are processed further using standard electron

beam lithography, reactive ion etching and metal evaporation to form the final device.

5.2. Substrate preparation

For all our devices, we used a substrate consisting of a 7 mm × 7 mm size chip made from a Si++/SiO2

wafer, where the thickness of the oxide is about 285 nm. Here, Si++ is intended to be used as the back

gate and therefore, the wafer is p-doped to ensure that the back gate is indeed conducting at cryogenic

temperature. Using electron beam lithography (EBL), which is later followed by metal evaporation, Cr/Au

based cross shaped markers (for example, see yellow + in Fig. 5.2 (b)) are designed on this wafer. Later,

the wafer is diced into small chips of desired size. These markers are useful to identify the position of the

graphene or hBN flake when exfoliated. This position is then utilized while designing the mask for EBL of

the actual device. Before exfoliation, the chip is cleaned in Acetone/IPA and also exposed to oxygen plasma

for a brief period to clean any residues of the dicing resist or other contaminants. This also increases the

adhesion of the flake to the chip while exfoliation.

5.3. Exfoliation of graphene

Although, graphene was first isolated using the process of simple mechanical exfoliation [201], several

other methods have been developed to optimize the quality, size and yield of graphene flakes for various ap-
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plications. Some of these include chemical vapour deposition (CVD) based growth of graphene on catalytic

metal substrates such as copper and nickel, epitaxial growth on silicon carbide, electrochemical exfoliation

and synthesis using organic molecular precursors [202]. However, out of all these, mechanical exfoliation

seems to be the simplest and the most straight forward process which also yields a high quality of graphene

in terms of high electron mobility particularly when encapsulated with hBN as discussed in section 3.4.4.

In the recent years, CVD on copper has also produced devices with exceptionally great performance. How-

ever, the high quality of graphene which is usually manifested in the form of features such as ballistic

transport, quantized conductance etc. seems to be more dependent on the process of encapsulation with

hBN rather than the origin of graphene i.e exfoliated or CVD [42, 171, 174]. Hence, all the state-of-the-art

graphene based devices mentioned in this thesis are encapsulated in hBN where both hBN and graphene

are fabricated by using the technique of mechanical exfoliation.

Graphene is exfoliated by placing the natural graphite flakes on a sticky scotch tape (Nitto Denko model

no. BT-150E-CM or Minitron Ultron 1008R and 1009R tape). The tape is then folded around 5-6 times until

it is entirely covered with graphite. Exfoliating too many times can lead to smaller flakes. Then a Si/SiO2

chip is pressed onto the tape with an adequate amount of force and then released to pick up the flakes. The

thickness of the silicon oxide layer provides an optical contrast that is sufficient for the determination of

single and bilayer graphene using an optical microscope (see Fig. 5.1 (a) and (c)).

5.4. Selection of graphene flakes

In case of SLG based devices used in this thesis, the size of the final device which consists of the constriction

along with the leads is around 12 x 6 µm (see Fig. 6.1 (d) and Fig. 6.2 (a)). Since the transfer process might

lead to the formation of bubbles, graphene flakes with dimensions of about at least 20 × 10 µm are chosen

such that there is enough space to fit at least one device while avoiding the areas with bubbles. Similarly,

for BLG, flakes with a size of at least 10 × 10 µm are chosen to fabricate all the gates later on. Using a

fresh tape for exfoliation ensures minimum residues on the flakes. This can also be verified using light and

dark field microscopy.

After exfoliation, Raman spectroscopy (using a laser with an excitation wavelength of 532 nm) is used

to confirm the number of layers in the exfoliated graphitic flake. Raman spectroscopy serves as a non-

destructive tool to obtain a wealth of information about the quality of graphene such as the number of

layers [203, 204], doping [205, 206], strain [207, 208] etc.

In particular, the Raman 2D peak can be used to distinguish between single and bilayer graphene [209].

The 2D peak is a consequence of a double resonance process wherein the excitation and the recombination

of an electron-hole pair results in the emission of two transverse optical (iTO) phonons near the K point

[210, 211]. In case of single layer graphene, the 2D peak is usually described by fitting a single Lorentzian

curve [212]. Although it is sometimes observed that a Voigt model i.e. a combination of both Lorentzian

and Gaussian curves fits the peak better especially around the tails of the curve for graphene on SiO2.

This could be a result of charge inhomogeneties and physical corrugations in SiO2. These are known to

be responsible for nanometer scale strain variations which follow a Gaussian distribution [132]. Typically,

for graphene on SiO2, the full width at half maximum (FWHM) is around 22-23 cm−1. From single to

bilayer, the band structure evolves from a linear, single valence and conduction bands to a parabolic, double

valence and conductance bands. As a result, the number of bands that participate in the double resonance

process and the possible scattering mechanisms increases. Therefore, in case of bilayer graphene, the 2D
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peak consists of four Lorentzian peaks corresponding to different Raman processes [213] and the FWHM

is usually between 90 - 100 cm−1.
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Figure 5.1.: (a) Optical microscopy image of a single layer graphene flake exfoliated on the surface of a

Si++/SiO2 chip. (b) Raman spectrum of the flake in (a) at the point indicated by the black cross. The G

and 2D peaks are indicated. Inset: Single Lorentzian curve (red dashed line) fitted to the 2D peak with a

FWHM of 23 cm−1. (c) Optical microscopy image of a bilayer graphene flake exfoliated on the surface of

a Si++/SiO2 chip. (d) Same as (b) at the point indicated by the black cross in (c). Inset: Four Lorentzian

curves (dashed blue lines. Solid black line is the cumulative sum of all the four blue dashed lines and the

red dashed line is a Lorentzian fit to the solid black line.) Here, the FWHM is taken as the sum of the widths

of individual Lorentzians. Scale bar in (a) and (c) is 20 µm.

5.5. Exfoliation of hBN

hBN is exfoliated from high quality crystals provided by K. Watanabe and T. Taniguchi from the National

Institute for Material Science in Japan. In this case, two different types of substrates are used for exfoliation.

One is a Si++/SiO2 substrate as in the case of graphene exfoliation. hBN flakes exfoliated in this way are

typically used as the bottom layer during the fabrication of graphene-hBN sandwiches. We refer to such a

flake as "bottom hBN". The other one is called "top hBN" and is obtained by exfoliating hBN crystals on

a Si++ wafer that is coated with a layer of polyvinyl alcohol (PVA)/polymethyl methaacrylate (PMMA).

The top hBN is then used to pick up graphene and deposit on the bottom hBN, the details of which are

elucidated further in section 5.7.
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The thickness of the resist layers is optimized such that the contrast of hBN on Si++/PVA/PMMA is

similar to that of hBN on Si++/SiO2.

5.6. Selection of hBN flakes

While flakes with a thickness of around 15 nm are easily identifiable with a standard optical microscope,

thinner hBN flakes particularly single and bilayer flakes are more easily identified using some special op-

tical filters, thinner SiO2 wafers etc. As seen in Fig. 5.2 (a)-(d), the thickness of the hBN flakes can be

approximately guessed from the optical contrast with the substrate but is also confirmed later with AFM.

Additionally, dark field microscopy which is possible with most optical microscopes is also quite useful to

determine and choose cleaner flakes without any contamination such as bubbles, impurities from the sticky

tape, PMMA residues or even micro-cracks which may not be very apparent in light field microscopy (see

Fig. 5.2 (e)-(h)).

(a) (c)(b) (d)

(e) (g)(f) (h)

h = 5 nm h = 8.5 nm h = 18 nm h = 27 nm

Figure 5.2.: (a)-(d) Light field optical microscope images of hBN flakes with different thickness or

height h. (a)-(b) hBN flakes exfoliated directly on Si/SiO2 substrate. ((c)-(d)) hBN flakes exfoliated

on a Si substrate that is spin coated with PVA/PMMA. Observe that the optical contrast is identical in both

the cases. (e)-(h) Dark field microscope images corresponding to (a)-(d) respectively. In case of very thin

hBN such as in (e), more light may be needed to observe the flake with a better contrast. Impurities are

more easily identified in dark field images as compared to their light field counterparts. Scale bar in all the

panels is 20 µm.

The size of the top hBN should be larger than size of the graphene flake to pick it up successfully.

Otherwise, the graphene flake might break or fold up during the pick-up process. The thickness of the top

hBN is also important while fabricating a top gate since the hBN acts a gate oxide. If it is too thin (< 15

nm), high voltages can easily break the gate. If it is too thick (> 50 nm), metallization of contacts during

subsequent device fabrication can become a hassle.
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Similar to top hBN, the size of the bottom hBN should also be big enough to encapsulate the entire

graphene flake while the thickness should not be too low (usually between 20-40 nm) to prevent the hBN

from cracking after the final step of transfer. In general, it is desirable to have the total height of the stack

below ≈ 80 nm for the ease of fabrication. Finally, similar to graphene, we ensure that the hBN flakes are

also freshly exfoliated just before transfer. In such cases, making a stack is successful almost all the time.

If the flakes are allowed to rest on the substrate for too long, we observed that we laid down the top hBN

on top of graphene instead of picking it up. Or the graphene flake does not get picked up by the hBN at all.

This could be due to the increase of van der Waals adhesive forces between the flake and the substrate.

5.7. van der Waals stacking method/dry transfer technique

The method used to transfer graphene in this thesis utilizes the van der Waals interaction forces between

graphene and hBN. Here, a PMMA membrane with exfoliated hBN on top is used to pick up and transfer

graphene onto another hBN flake.

5.7.1. Step 1

In step 1, all the flakes are prepared for transfer. Once a top hBN flake is selected as explained above, a circle

of about 5 mm radius is scratched around the flake on the Si++/PVA/PMMA wafer using a pair of tweezers.

Then, a drop of water is released carefully along the circumference of the scratch. Since water dissolves

PVA, a circular PMMA membrane consisting of the pre-selected hBN flake is slowly separated. Then, the

wafer is dipped into a beaker filled with distilled water which releases the hBN/PMMA membrane. This

membrane is then fished using a metal ring attached to holder. The membrane is allowed to dry on top of

the ring after which the top hBN is ready for transfer (see schematic Fig. 5.3 (a)). Simultaneously, graphene

and bottom hBN are also exfoliated on a Si/SiO2 chips.

To stack these flakes, we use a transfer system (built by the University of Manchester) which includes an

optical microscope, a vacuum holder for the fishing metal ring, and a rotatable sample stage with vacuum

to hold the substrate and a heater to heat the stage. Both the stage and the vacuum holder are equipped with

a set of micrometer screws to move them along x and y directions. These are useful to adjust the relative

positions of graphene and hBN. Additionally, the vacuum holder can move vertically along z axis and is

used to bring the membrane in contact with the substrate on the stage.

5.7.2. Step 2

In step 2 of the transfer process as shown in Fig. 5.3 (b), the metal ring with the top hBN is attached to the

vacuum holder with the membrane facing downwards towards the stage. The chip with the graphene flake is

placed on stage and held down by vacuum. Using the optical microscope attached, the position of the hBN

is aligned relative to the graphene flake. Then the ring is lowered onto the stage until the meniscus of the

membrane touches the surface of the chip. To aid this, a nitrogen gun can be used to blow the gas onto the

membrane such that it touches the graphene flake. At this stage, the heater temperature can be increased to

about 40°C to increase the adhesion between graphene and hBN. A change in contrast is visible once they

are in contact and one can see the hBN laid on top of the graphene. Once this is observed, the membrane

is slowly lifted upwards picking up the graphene flake along with it. This is due to the fact the graphene
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Figure 5.3.: Schematic figures of the van der Waals stacking method- (a) The top hBN is exfoliated on top

of a PVA/PMMA layer and the graphene flake is exfoliated on SiO2 substrate. (b) The top hBN is used to

pick up the graphene flake. (c) The bottom hBN is exfoliated on top of another Si++/SiO2 substrate chip.

(d) The membrane consisting of top hBN/graphene can be completed melted onto the substrate. This is

used for single layer graphene devices where the Si++ acts as the back gate. (e) On the other hand, the top

hBN/graphene membrane can also be used to pick up the bottom hBN. (f) In case of bilayer devices, this

stack deposited on top of a graphite flake exfoliated on another substrate chip.

adheres more strongly to the hBN than to the chip thanks to the van der Waals forces present between the

two. Note that if the temperature is too high, the membrane might just melt and collapse onto the chip and

cannot be used to pick up graphene.

5.7.3. Step 3

In step 3 (see Fig. 5.3 (c)-(d)), the substrate with graphene is replaced by another chip with bottom hBN.

Once again, the membrane, now consisting of both top hBN and graphene is lowered onto this chip as

described in step 2. Now, the heater is set to a temperature of about 120°C to fully melt the membrane onto

the chip. Once in contact and fully melted, the membrane does not move any further and can be torn off by

simply moving the stage laterally.

5.7.4. Step 4

Finally, in step 4 (see Fig. 5.3 (e)-(f)), the PMMA membrane on the chip can be dissolved in acetone and

further cleaned in IPA. The end product is a hBN-Gr-hBN stack or sandwich. In general, this process can

be repeated to pick up as many as flakes as one desires and lay them all down on a suitable substrate.

For example, in case of BLG based devices where a graphite back gate is desired, instead of melting the

membrane in step 3, the hBN on the chip is lifted off and the entire stack is placed on a layer of graphite
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exfoliated on a SiO2 chip. For detailed images of this and other different transfer processes, please check

Ref. [214].

The transfer technique that we use here, in which the graphene flake does not come into contact with any

potentials contaminants such as organic solvents (Acetone, IPA etc.) or liquid polymers (PVA, PMMA etc.)

is called the van der Waals pick up transfer or the dry transfer method and was introduced by Wang et.al.

[172] and further developed by Zomer et.al [215]. Both these techniques utilize glass slide/PDMS/polymer

stacks to pick up crystals. On the other hand, the method described above replaces this with a simple

polymer membrane. Such a modification facilitates higher visibility of graphene and hBN and therefore a

better alignment for a local transfer. Dry transfer produces high quality samples with enhanced electronic

properties such as high charge mobility, lower residual charges etc. It also eliminates the need for any

further annealing which was earlier necessary to remove any impurities.

5.8. Characterizing the stacked heterostructure

Once the hBN/graphene/hBN sandwich is fabricated, it is immersed in solution of acetone for around 10-15

minutes in acetone to dissolve the PMMA membrane on top of the sandwich. This is followed by leaving

in isopropyl alcohol (IPA) for 5 min to finish the process of cleaning. Fig. 5.4 (a) shows the optical image

of such a sandwich resting on a Si/SiO2 substrate. Graphene is indicated by the dashed lines (solid lines

indicate the rest of the few layer graphene flake). One can also see the bubbles indicated by solid black

circles. Since these bubbles have contaminants and not are properly encapsulated, they tend to have low

mobility. Therefore, these regions are avoided while designing devices.

After cleaning the sandwich, Raman spectroscopy is once again used to determine which area of the

stack is clean, free from cracks and bubbles for patterning the device. The cracks can arise while stacking

different layers while the bubbles are formed due to the agglomeration of hydrocarbon residues [216].

Fig. 5.4 (b) shows the map of the FWHM of the 2D peak across the hBN/graphene/hBN sample. Through

encapsulation of graphene with hBN, strain fluctuations are reduced and this leads to a narrower 2D peak of

around 17-18 cm−1 [132]. The 2D peak is connected to the mobility of the sample - the smaller the width,

the higher the mobility [133]. Therefore, in order to fabricate high mobility devices, regions with 2D width

in the range of 17 - 21 cm−1 are chosen to fabricate devices.

Fig. 5.4 (c) shows the optical image of a bilayer graphene sandwich deposited on a graphite flake (solid

black line). The dashed line indicates the position of the bilayer graphene flake. Similar to single layer, the

peak width once again reduces as compared to that on SiO2 and the entire peak width is typically around

55-65 cm−1. In order to verify this, one could, in principle, look at the peak width of individual Lorentzian

curves such as those in the inset of Fig. 5.1 (d) and ensure that it is less than 21 cm−1. However, this would

be difficult to do for a complete 2D peak FWHM map shown in Fig. 5.4 (d) as it consists of different regions

consisting of only the graphene flake, graphite flake and the region of overlap between the two. These could

be distinguished from the intensity scale. The area of overlap is the region where we build devices (shown

in the next sections) and is already above 70 cm−1 due to contribution of both graphite and graphene. We

can, however, ensure that the bilayer flake is rather homogeneous (except around its edges) and without any

big bubbles or cracks, thus, suitable for building devices.
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Figure 5.4.: (a) Optical image of a hBN-SLG-hBN stack on a Si/SiO2 substrate. The single layer region

is denoted by the black dashed lines while the rest of the few layer graphene is denoted by the black solid

line. Bubbles are indicated by the black solid line circles. (b) Raman map showing the FWHM of the 2D

peak across the region enclosed by the red dashed line in (a). (c) Optical image of hBN- BLG- hBN stack

on graphite/Si/SiO2. Black dashed line indicates the bilayer flake while the solid black line indicates the

graphite flake. (d) Raman map showing the FWHM of the 2D peak across the region enclosed by the red

dashed line in (c). Scale bars in (a) and (c) correspond to 20 µm. Scale bar in (b) is 10 µm while it is 6 µm

in (d).

5.9. Patterning the heterostructure and, adding contacts and

gates

In general, we employ a series of standard EBL and RIE procedures followed by metal evaporation to form

contacts. The detailed process parameters are elucidated in the Appendix A.2 (for SLG) and A.3 (for BLG).

5.9.1. Single-layer graphene - Patterning the constriction

In order to pattern the device, a double layer resist stack consisting of PMMA 50K and PMMA 950K is

spin coated on the Si/SiO2 chip containing the sandwich to serve as an EBL mask. Such a double layer

resist stack provides a better under-cut. Upon development of the resist after EBL (Fig. 5.5 (a)), a thin layer

of Al (20 nm) is evaporated as an etch mask. After metal lift-off in acetone, there is metal remaining only

in the areas designated for the QPC as shown in Fig. 5.5 (b). In the subsequent steps, the sample is exposed

to Ar/SF6 plasma. Ar is used to etch graphene while SF6 has good selectivity towards hBN. All the areas
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unprotected by the metal are etched away (see Fig. 5.5 (c)). Finally, the remaining metal is removed using

Cr etchant resulting in a hBN-Gr-hBN QPC (see Fig. 5.5 (d)).

(a) (d)(c)(b)

Figure 5.5.: (a) Optical image of the sample in Fig. 5.4 (a) after the development of the EBL mask. (b)
Optical image after the deposition and lift-off of Al hard mask. Note that the hall bar was metallized already

in a previous step and might have rolled over onto one of the QPC devices due to bad adhesion of the metal.

This is not seen very often as the metallization and lift-off procedure is optimized quite well and may be

treated as an exception. (c) Sample after reactive ion etching in Ar/SF6. (d) QPC devices after stripping

the remaining metal in a Cr etchant solution. Scale bar in all the panels is 10 µm.

5.9.2. Single-layer graphene - Contacts

After defining the QPC, one dimensional contacts are fabricated as explained in Ref. [172]. Here, we use a

resist stack consisting of two layers of PMMA 50K followed by a final layer of PMMA 950K (Fig. 5.6 (a)).

After another EBL step, evaporation of Cr/Au (5/100 nm) and subsequent lift off results in edge contacts

(Fig. 5.6 (b)). The thickness of the metal deposited must be larger than the height of the stack for making

proper contacts.

5.9.3. Single-layer graphene - Definition of top gates

After contacting graphene, a layer of hBN (between 20-40 nm thickness), is transferred onto the entire

device as shown in Fig. 5.6 (b)). This, along with the top hBN of the hBN-Gr-hBN stack together serves as

a gate oxide for the top gate. Deposition of a layer of hBN is much easier and less time consuming (can be

done in a single step using the same transfer system) as compared to using other forms of gate oxides such

as Al2O3 which requires layer to layer deposition of metal and subsequent oxidation. Further, hBN has also

been proven to be a good choice of dielectric for graphene based devices [217, 218]. For the top gate, once

again, we follow the above procedure for EBL and evaporate Cr/Au (5/90 nm) (Fig. 5.6 (c) and (d)).

5.9.4. Bilayer graphene - contacts

In case of BLG based devices, a graphite back gate is used. This enables us to have a huge control over

device statistics since the gate is significantly closer to graphene (30 nm or less) as compared to Si++ (285

nm). It also helps in screening any potential fluctuations from Si/SiO2 (please see section 4.3). In these

devices, the back gate is also electrically connected to the rest of the device by one dimensional contacts.

A schematic and an AFM image of a bilayer graphene device used in this thesis are presented in Fig. 5.7.
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(a) (d)(c)(b)

Figure 5.6.: (a) QPC devices from Fig. 5.5 after EBL of contacts and subsequent development. (b) After

deposition of Cr/Al metal and lift-off. Afterwards, another layer of hBN (height ≈ 30 nm) is deposited on

top of these devices to act as a gate oxide. (c) After deposition and metal lift-off of top gates (indicated by

the black lines). (d) Final image of the device with side contacts, top gates and bond pads that is ready to

be measured. Scale bar in (a)-(c) is 10 µm and 200 µm in (d).

Cr/Au contacts graphene hBN graphite
split gate finger gate

(a) (b)

(c)

x

y

Source

Drain

FG 1

FG 2

FG 3

Figure 5.7.: (a) Schematic top view of a split gated BLG QPC. All the various parts of the device are

depicted using different colors. (b) AFM image of the final device showing the split gates and finger gates.

Scale bar corresponds to 2 µm. (c) AFM image of the device in the region enclosed by the black dashed

line in (b). Scale bar corresponds to 0.5 µm.

In this case, the van der Waals technique described in section 5.7 is used to stack a hBN-bilayer graphene-

hBN sandwich on top of a layer of graphite on SiO2. The size of the graphite layer is chosen in such a way

that it protrudes out of the sandwich making it clearly visible and accessible to make contact (see Fig. 5.4

(c) and schematic Fig. 5.7 (a)). The graphene and graphite flake are oriented perpendicular to each other

for ease of making contacts and preventing short circuit. After the deposition of the sandwich, contacts to

graphite back gate and graphene are once again made using reactive ion etching followed by EBL based

on a PMMA mask. The contacts act the source and drain at which voltage/current is induced or detected.

A mixture of CF4 (40 sccm) /O2 (4 sccm) is used to etch the device. O2 is used to remove any organic
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contaminants from the sample while CF4 is used to etch through hBN (see Fig. 5.8 (b)). Standard light

field microscopy and Raman spectroscopy are employed periodically to check if the top hBN has been

etched thoroughly and if the bottom hBN is still intact. After successful etching, Cr/Au (5nm/70 nm) were

evaporated to make contacts. It is worth mentioning that several tests have also been performed with other

fluorine based gases such SF6 and CHF3. SF6 turned out to be too strong for our purpose i.e. it completely

etched away the Si wafer, probably due to higher molecular weight of SF6 as compared to CF4. On the

other hand, experiments with CHF3 showed no significant difference. If anything, the process seemed to

be not very reproducible after repeated trials. Therefore, for the sample in this thesis, we have used CF4,

which showed good selectivity towards hBN along with a controllable etch rate.

5.9.5. Bilayer graphene - Definition of top (split) gates

After the metallization of the contacts, the next step is to fabricate the split gates and their corresponding

leads. After following a similar procedure for lithography on top of the upper hBN, two Cr/Au (5/45 nm)

based split gates are designed (see Fig. 5.8 (c)). The split gates produced in this step are 5µm wide and are

separated by approximately 250 nm as seen in the AFM images in Fig. 5.7 (b)).

5.9.6. Bilayer graphene - Definition of finger gates

In this step, atomic layer deposition (ALD) is used to fabricate a 25 nm thick dielectric layer (Al2O3) on

the structure prior to the fabrication of the finger gates (see Fig. 5.8 (d)).

Then, finger gates consisting of Cr/Au (5 nm/ 70 nm) are fabricated similar to the other gates and contacts

(see Fig. 5.8 (e)). Fig. 5.7 (c) shows the final image of a device with three finger gates (FG1-FG3) crossing

the channel defined by the split-gates. These finger gates have a width of around 200 nm and are separated

by around 60 nm.

During the process of ALD, the oxide is deposited throughout the entire sample including the bond pads.

This must be removed in order to bond the sample later on. For this purpose, a wet chemical etching process

was used. The samples were first placed in a solution consisting of a Tetra-Methyl Ammonium Hydroxide

(TMAH) based optical developer for two minutes followed by water for five minutes before drying them

with nitrogen gas.

In some cases, where a finer finger gate pattern is desired, a slightly smaller electron beam dose (115

µC/cm2 instead of the standard 120 µC/cm2) is used. In addition, a methyl isobutyl ketone (MIBK) based

developer was used instead of isopropanol for the development of the finger gates which seemed to improve

the resolution of lithography greatly.
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Figure 5.8.: Schematic cross section of bilayer graphene nanoconstriction device at different stages of

processing along the x direction indicated in Fig. 5.7. Colors used for various components are also the

same. (a) hBN-graphene-hBN sandwich deposited on graphite/Si++/SiO2. (b) Side contacts deposited on

the sandwich while ensuring that they do not short the device (graphene) with back gate (graphite). These

act the source (S) and the drain (D). (c) Fabrication of split gates. (d) Al2O3 (pink) is deposited on top of

the entire device. (e) Finger gates are deposited on top of the gate oxide.

56



6. Single-layer and bilayer graphene

quantum point contact device

geometry

This chapter has been published in parts in:

From diffusive to ballistic transport in etched graphene constrictions and nanoribbons

S. Somanchi, B. Terrés, J. Peiro, M. Staggenborg, K. Watanabe, T. Taniguchi, B. Beschoten, and C.

Stampfer Ann. Phys. (Berlin) 529, 1700082 (2017). ©2017 by WILEY - VCH Verlag GmbH & Co.

KGaA, Weinheim. Reprinted with permission.

Author contributions:

S. Somanchi fabricated the single layer graphene samples while the bilayer graphene samples were fab-

ricated by L. Banszerus.

In this chapter, we describe the exact geometry- device dimensions, thickness of individual hBN or

graphite flakes, the design of the gates (top/split/finger) and other such minute but important details that

have been taken into consideration during the fabrication of the specific devices used in this thesis.

6.1. Single layer graphene QPC devices

In sections 3.3 - 3.4, we discussed how edges play an important role in electron transport through nanostruc-

tures, particularly, in narrow ribbons or constrictions where edges account for an appreciable fraction of the

total device area [121, 219]. As long as the devices are fabricated using the traditional method of etching

(reactive ion or plasma etching) resulting in random edge termination, edge disorder is always present and

can potentially hamper the overall conductance even in high quality sandwich devices that show ballistic

transport. Although there is enough experimental evidence to prove that edges play an important role in

transport [42, 125], manipulating the influence of such localized edge states on the transport has not been

achieved in such devices.

One standard component that can be added to several graphene devices to gain extra control over the

transport characteristics is a top or a side gate using graphene leads. For example, side gated graphene FETs

have been used to study several characteristics such as the modulation of conductance, transconductance

[149, 220, 221] etc. In case of quantum dots, plunger gates are used to control the barrier strength and

the electron tunnelling rate to study electron-hole crossover, ground and excited states etc. [143, 151–153,
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222]. Top and side gates have already been demonstrated as useful in controlling the electronic transport

of the channel, for example, by forming a p-n junction that creates a potential barrier [129, 130]. They

provide additional knobs to tune the electron density locally in the specific region of the device they are

incorporated into. Therefore, in this chapter, we employ additional metallic top gates in the region of the

constriction with a goal of shedding more light on the charging characteristics of these localized edge states

and to see if their detrimental influence on the transport can be tuned using the gates.

(a) (c)

(e)(d)

(b)

15 nm

15 nm

30 nm

x (µm)

y 
(n

m
)

75 nm

500 nm 20   m

20   m

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40
500 nm

hBN

Figure 6.1.: (a) AFM image of a 380 nm wide etched constriction built using hBN encapsulated graphene.

(b) Height profile of the constriction along the solid red line in (a). The distance between the two black

dashed lines gives the approximate width of the constriction. (c) Optical microscopy image of the constric-

tion after fabrication of Cr/Au contacts. Each device has six contacts (in yellow), three on either side of the

constriction. (d) Optical microscopy image of the device encircled in the (c) after the deposition of a 30 nm

thick hBN and the fabrication of the Cr/Au top gate. Note that the two contacts to the top gate as indicated

by the black arrows arrows are short to one another during experiment ensuring that there is only global top

gate applying a symmetric potential over the constriction. (e) Cross-sectional schematic of the final device

in (d) along the red line in (a). The Si++/SiO2 surface is represented in gray, hBN in blue, graphene in

black and the top gate in yellow. We indicate different length scales including the width of the different

hBN layers and the separation between the top gate and the edge of the constriction (see the black dashed

lines).

6.1.1. Single top gated graphene constriction devices

Fig. 6.1 (a) shows an AFM image of a 380 nm wide (see the line cut in Fig. 6.1 (b)) and 150 nm long

constriction fabricated using a hBN-graphene-hBN sandwich that is built using the van der Waals pick-up

technique described in section 5.7. The entire device rests on the surface of a p-doped Si substrate with an

oxide thickness of 285 nm (tSiO2 ) which acts as the back gate. The thickness of the bottom (tbottom) and the

58



6.2. BILAYER GRAPHENE QPC DEVICES

top hBN (ttop) is about 15 nm each. The design and fabrication process used here is similar to the devices

described in Ref. [42] which have shown a mobility of nearly 150,000 cm2V−1s−1 and a mean free path

exceeding 1 µm. However, one major difference in the geometry of the device is that size of the leads is

much larger as compared to the width of the constriction - 6 µm in this case as compared to 1.5 - 2 µm in

Ref. [42].

This ensures that the leads are significantly larger than the mean free path and the phase coherence length

making the transport through the leads effectively diffusive. This allows us to attribute any features of

ballistic transport to the constriction only. Further, it might also prevent any stray interference effects such

as Fabry- Peŕot oscillations from masking the features related to quantized conductance [42]. Since the

Cr/Au based side contacts rest on top of the sandwich as shown in Fig. 6.1 (c), another layer of hBN with

a thickness tgateoxide ≈ 30 nm is placed on top of the entire sandwich constriction which along with the top

hBN of the sandwich acts a dielectric for the top gate. On top of this, a Cr/Au based top gate that also

mimics the shape of a constriction with a width of 230 nm is deposited (see Fig. 6.1 (d)) in such a way that

the top gate covers everything (including the leads) except the edges of the constriction. It is designed to be

symmetric such that distance between the top gate and the edge of the QPC is around 75 nm on either side

of the QPC as shown in the schematic in Fig. 6.1 (e).

The idea behind this geometry is to use the top gate to tune the conductive channel predominantly and

to a lesser extent, the edge regions while the back gate tunes the entire device globally. If this is achieved,

then we can disentangle the influence of the edges on the channel and see how the conductance of this

device compares now with those in Ref. [42]. We would then have a device in which the contribution of

the localized edge states can somehow be separated from transport through the central region in the device

using an additional gate. This could be used to extract important information on the how the localized edge

states participate in transport.

6.1.2. Dual top gated graphene constriction devices

Fig. 6.2 (a) shows an AFM image of a 300 nm wide and 150 nm long graphene constriction device with

two top gates. The fabrication of this device is similar to the one described in the previous section i.e. it

includes etching a hBN-graphene-hBN sandwich to form a constriction with wide leads, 1D side contacts

and an additional layer of hBN as the top gate dielectric (see Fig. 6.2 (b)-(c)). The thicknesses tbottom and ttop

are about 17 nm and 15 nm respectively while tgateoxide is around 30 nm. The only difference as compared

to the device in the previous section is that the sample now consists of two top gates that are designed to

be about 30 nm inside on either side of the constriction. They fall directly over the constriction and also

extend along the edges of the leads on either side of the constriction (see the schematic in Fig. 6.1 (d)).

6.2. Bilayer graphene QPC devices

In the previous sections of this chapter, we have discussed the confinement of electrons in constrictions

that are fabricated by top-down lithography techniques and reactive ion etching of single layer graphene.

As discussed in chapter 4, it is possible to open a a band-gap in bilayer graphene in the presence of an

external electric field, thereby allowing us to overcome the problem of edge roughness. In such a sample, a
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Figure 6.2.: (a) AFM image of an etched 300 nm wide hBN encapsulated graphene constriction. (b)
False colored optical microscope image of the constriction with six Cr/Au based 1D side contacts, three on

either side of the constriction. The sandwich is blue and the contacts are yellow in color. (c) False colored

optical microscope image of the final device with top gates (TG). An additional layer of hBN on top of the

constriction (in purple color) is used as the top gate dielectric. (d) Schematic cross-sectional illustration of

the device along the dashed line in (c) highlighting the top gate geometry. Here, Si/SiO2 substrate is gray,

hBN in the sandwich is blue, graphene is black, hBN laid on top of the contacts is green and the top gates

are yellow in color. Thicknesses of different layers in the device is indicated. The top gate is designed to be

around 30 nm (the distance between the black dashed lines) inside the constriction and overlap the edges of

the leads as well.

constriction can be formed by the use of external gates. In the following section,we discuss the fabrication

of such a gate defined BLG nanoconstriction.

6.3. With split and finger gates

The device consists of BLG encapsulated in hBN sandwich as described in section 5.7. The thicknesses of

the bottom (tbott ) and the top hBN (ttop) are approximately 30 nm and 20 nm respectively. This is then placed

on top of a graphite flake (thickness ≈ 10 nm) resting on the surface of a Si++/SiO2 substrate and acts the

back gate. All further details about the fabrication of this device have already been described in section

5.9.4 (see Fig. 5.8). Electron beam lithography and reactive ion etching followed by metal evaporation are

used form one dimensional Cr/Au contacts and two split gates which are 5 µm wide and separated from

each other by a 250 nm wide channel. ALD is used to deposit a 28 nm thick layer of Al2 O3 that acts the

gate oxide for the finger gates as shown in Fig. 5.7. These three finger gates are also fabricated using the

same technique as the split gates and side contacts. The finger gates FG1 - FG3 are fabricated at equal

interval spacing along the length of the channel. Each finger gate is around 200 nm wide and separated

from the adjacent one by a distance of 60 nm. In the following chapters, we shall see how the combination

of these split and finger gates is used to form a QPC in this device.
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graphene quantum point contacts

This chapter has been published in parts in:

From diffusive to ballistic transport in etched graphene constrictions and nanoribbons

S. Somanchi, B. Terrés, J. Peiro, M. Staggenborg, K. Watanabe, T. Taniguchi, B. Beschoten, and C.

Stampfer Ann. Phys. (Berlin) 529, 1700082 (2017). ©2017 by WILEY - VCH Verlag GmbH & Co.

KGaA, Weinheim. Reprinted with permission.

Contributions to this chapter:

Fabrication of all the etched top gated devices and the experimental measurements were performed by

S.Somanchi. Theoretical simulations were performed by T. Fabian and F. Libisch from Vienna University

of Technology.

7.1. Introduction

In this chapter, we study the effect of a top gate on the conductance of the etched single layer graphene

nanoconstrictions discussed in section 6.1 of the previous chapter.

While the overall substrate induced disorder and as a result, the residual charge carrier density n∗ is

much lesser for hBN encapsulated graphene nanoconstrictions, edge disorder due to the device fabrication

technique of etching graphene flakes is still present. Indeed, authors of Ref. [42] have used back gated

encapsulated graphene constrictions and still observed a strong influence of the localized edge states or trap

states nT on the conductance of their devices especially as the constriction width was reduced down to 230

nm. This presents a need for designing experiments through which it is possible to manipulate the influence

of edge disorder on the conductance of the QPC.

In this context, addition of a external gates provides a way of tuning the charge carrier density and the

doping profile in the QPC. The in-built back gate is universal. It uses the substrate Si as the gate and

the SiO2 on top of the substrate as the gate dielectric. It applies an electric field to not only the channel

but also the leads connecting the channel to the source and drain metal contacts. As a result, the contact

resistance may change during device operation. To avoid the influence of contact resistance, four terminal

configuration is used measure the sample.

The advantage with implementing an additional top gate is that it is possible to bring the gate much closer

to the graphene layer underneath. In the current devices, the top gate dielectric is hBN with a thickness of
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around 30 - 40 nm which is much smaller than the SiO2 thickness that is around 300 nm. Considering the

fact that the dielectric constants for SiO2 and hBN are nearly the same (≈ 4), the capacitive coupling of

the top gate is around 7 - 10 times stronger than that of the back gate as the top gate is much closer to the

graphene structure. As explained earlier in the previous chapter, the geometry of the etched graphene QPC

device consists of one global top gate that covers the entire channel except the edges in one case as shown

in Fig. 6.1 and two top gates that cover just the edges in the other case as shown in Fig. 6.2. The idea behind

such a geometry is to see if the top gate can be used as a means to manipulate the localized states along

the edges and the bulk states in the channel with different strengths. However, whether it is one or two

top gates, one should keep in mind that there will always be fringe fields from the top gate that affect the

regions that the top gate does not cover especially considering the short distances between the edges and the

channel (see Fig. 6.1 (e) and Fig. 6.2 (d)). Therefore, while the top gate may not be used to exclusively tune

just the edges or the channel, it can still be used to allow a different tuning or coupling strength between the

edges and the channel. This discussion will form the crux of many results discussed below.

7.2. Measurement set-up

All the measurements are performed in a 3He/4He dilution refrigerator. The single layer graphene based

experiments described in this chapter and also Chapter 8 are performed at a temperature of around 4 K. The

measurement set-up is equipped with superconducting magnetic field coils that can apply a magnetic field

of up to ± 9 T to the sample. The chip carrier socket is fixed using a set of screws and can be rotated to fix

the sample either perpendicular or parallel to the magnetic field.

To connect the sample on the Si/SiO2 chip to the measurement equipment, the chip is fixed down on

a commercial chip carrier (Kyocera C-QFN PB-C88084) using a conductive silver glue (Beru RLS001).

Thereafter, the bondpads are connected to the chip carrier using an Al-Si 1% based TPT HB06 wedge

bonder. The sample can then be mounted into the set-up and is ready to be measured. Standard lock-in

amplifiers (Stanford Research SRS 830) are used to measure differential conductance and resistance. To

apply a fixed DC bias across the sample, an I-V convertor is used. The DC bias is further complemented

with an AC voltage VAC = 300 µVp-p that is generated by a standard lock-in (Stanford Research SRS 830) .

Hence, both these sources of voltage together contribute to the bias Vb across the constriction. The resulting

current Isd between the source and drain terminals is measured using a multimeter (Agilent 34401).All the

gate voltages including back gate Vbg and top gate Vtg voltages are applied using a standard voltage source,

Yokogawa 7651. A high resistance (1M Ω or greater) is connected in series with all the gates to prevent the

sample and the equipment from damage due to any sudden high voltage/current break-down. The resulting

differential I-V curves are measured using another lock-in. The voltage drop across of the sample Vsd is

measured using Agilent 34401 for four terminal conductance measurements to avoid contact resistance.

The four terminal (or differential) conductance across the QPC is given by G(= dI/dV ) = Isd/Vsd . All the

electrical equipment was controlled by a python based measurement software called Labber [223].

Fig. 7.1 (a) shows the scanning electron microscopy (SEM) image of the device shown in Fig. 6.1 (d).

In the close-up in Fig. 7.1 (b), we see a single top gate with a width of ≈ 230 nm mimicking the shape of

the constriction underneath. Fig. 7.1 (c) shows a false color AFM image of the etched dual top gated QPC

device described in Fig. 6.2 (c). As such, there is no electrical contact between the two top gates 1 and 2

i.e. there is no current along the black dashed line, but in this particular configuration, they are short to each
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Figure 7.1.: (a) SEM image of the final 380 nm etched QPC device with a single top gate shown in

Fig. 6.1 (d) including the top gate in the same shape as that of the constriction underneath. (b) Close-up

of the top gate in (a) around the center. (c) False color AFM image of the etched, top gated 300 nm wide

encapsulated graphene constriction with two top gates 1 and 2 as shown in Fig. 6.2 (c). The gates are

electrically isolated from one another, so there is no current along the black dashed line unless they are

short to one another as depicted here.

other externally such that a symmetric voltage is applied on both the gates.

7.3. Theory of conductance through an ideal QPC

In section 2.1, we saw how the conductance in a QPC system with degeneracy g and width w is quantized in

units of ge2/h. Since ballistic transport in such a system is analogous to a wave guide problem, the number

of modes m or channels of transport is given by m =
kF w

π
where m ∈ Z0. Therefore, as the Fermi wave
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number kF reaches a value of mπ/w, there is a jump in the value of conductance by a factor of ge2/h as seen

in Fig. 7.2.
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Figure 7.2.: Schematic of the conductance G as a function of the Fermi wave number kF in a QPC of

width w. The degeneracy of the system is given by g.

This information can now also be specifically applied to a graphene QPC using the following Landauer

formula

G =
4e2

h

∞

∑
m=1

θ(
wkF

π
−m), (7.1)

where θ(x) is the Heavy side step function and the factor 4 accounts for the spin and valley degeneracy

of graphene [12, 40, 63]. Therefore, the conductance increases in a series of steps, by a quantum of 4 e2/h

whenever the factor wkF becomes a multiple of π . Fourier series expansion of this equation gives

G =
4e2

h
c0wkF

π
+

4e2

h

[
∞

∑
j=1

c j sin(2 jwkF −φ j)−
c0

2

]
. (7.2)

The factor c0, called the tranmission coefficient is the average transmission per mode i.e. it indicates the

amount of electrons that actually travel from the source to the drain through the QPC after being scattered

at the rough edges of the constriction. In the case of an ideal constriction, c0 = 1, φ j = 0 and c j = 1/( jπ)

for j > 0. However, c0 is reduced to a value between 0 and 1 in the presence of rough edges that limit the

transmission of charge carriers through the QPC [42]. The mean conductance G(0) is given by the zeroth

order component in this expansion i.e.,

G(0) =
4e2c0

h

(
wkF

π
− 1

2

)
=

4e2

h
c0w
π

√
πα(Vg −V 0

g )−
2e2

h
c0 (7.3)

Here, we have used the fact that ideal graphene has a linear density of states and thus,

n =
k2

F
π

= α(Vg −V 0
g ), (7.4)

where V 0
g is the gate voltage at the CNP. Thus, in contrast to diffusive transport, where G ∝ Vg, here, in the

case of transmission via quantum modes in graphene, we expect to see G ∝ kF ∝
√

n ∝
√

Vg dependence.
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Table 7.1.: Sub-band spacing and Fermi velocity for three different steps shown in the bias spectroscopy

measurements in Fig. 7.3 (d)

.

Step no. ∆G (step height) ∆E (meV) vF(106m/s)

A 2.08 6.2±1.0 1.14±0.18

B 2.58 5.0±0.6 0.92±0.11

C 3 4.9±0.7 0.90±0.13

7.4. Conductance through a QPC with a single top gate

7.4.1. Conductance as a function of back gate and top gate

Fig. 7.3 (a) shows the conductance through the 380 nm wide QPC device with a single top gate (see Fig. 7.1

(a)) as a function of both the top gate Vtg and the back gate Vbg voltages. This map is obtained by measuring

the conductance G(Vtg) as Vtg is varied from -2 to 2 V for a fixed value of Vbg. Thus, several conductance

traces are obtained as the value of Vbg is varied from -20 to 20 V. The solid white line corresponds to the

CNP of each such individual conductance trace G(Vtg) measured as a function of Vtg for a fixed value of

Vbg. Thus, this feature, the CNP is tuned both by the top and back gate along this solid white line.

In Fig. 7.3 (b), we see the conductance trace (in black) measured by sweeping both Vtg and Vbg simul-

taneously according to the equation Vbg = 0.143×Vtg +3.6 along the direction of the white dashed arrow

in Fig. 7.3 (a). This direction is perpendicular to the solid white CNP line. Besides the CNP of the QPC,

as denoted by the vertical blue dashed line, we find another minor kink in conductance (see the red arrow)

leading to an asymmetry in the conductance profile of the QPC. Due to this, we stick to the holes side for

all future measurements and data analysis.

We observe conductance kinks with a step height on the order of 2 - 3 e2/h in the close-up in Fig. 7.3 (c)

starting from as low as 4 - 6 e2/h and going up to 24 e2/h. This indicates the confinement of charge carriers

in the QPC in accordance with eq. 7.1. However, we see that the observed features are more like kinks

rather than steps. This is a consequence of the fact that the charge carriers are bound to scattering at the

rough edges of the QPC resulting in a decay in the magnitude c j of higher order Fourier components and

the accumulation of random phases i.e. φ j ̸= 0 in eq. 7.2 [42]. As a result, the expected sharp quantization

steps now appear as periodic modulations. Authors of Ref. [224] explained this using back-scattering at

energies close to the opening of a new mode which results in a reduction in transmission causing the slight

dips in conductance as we move one kink to another.

The confinement of the charge carriers can be further supported by performing bias spectroscopy mea-

surements in the holes side of the conductance trace as shown in Fig. 7.3 (d). We consider three kinks A, B

and C at ≈ 4, 13.5, 17.5 e2/h which show very nice signs of quantization (see red dashed boxes in Fig. 7.3

(d) and the corresponding kinks denoted by the red double-edged arrows in Fig. 7.3 (c)). The dense regions

along the source - drain bias voltage axis Vsd (see the right end of blue double edged arrows in Fig. 7.3 (d))

where the traces seem to bunch together correspond to the plateaus/kinks in conductance. The source-drain

bias across the QPC is used to extract the sub-band spacing ∆E directly for the three kinks and summarized

in Table 7.1. Using the sub-band spacing and the width of the QPC w = 380 nm, one can calculate the Fermi

velocity vF using the relation vF = 2w∆E/h. This matches well with the value expected for graphene (≈
106 m/s).
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Figure 7.3.: (a) Four terminal conductance G through the 380 nm wide QPC with a single top gate as a

function of the top gate voltage Vtg and the back gate voltage Vbg at a DC bias of 500 µV . The solid white

line marks the CNP of each individual conductance trace G(Vtg) at a fixed Vbg. (b) Conductance trace along

the white dashed arrow in (a). Here, Vtg and Vbg are varied simultaneously such that Vbg = 0.143×Vtg+3.6.

The blue dashed line denotes the CNP. (c) Close-up of the trace shown in (b) in the region enclosed by

the red dashed lines. (d) Zero magnetic field differential conductance G as a function of the bias across

the QPC Vsd measured using a lock-in with an AC excitation voltage of 300 µV p-p. For each trace, Vtg

is varied from -0.65 V to -1.62 V in steps of 9 mV (see label on the upper right corner). The blue double

edged arrows indicate the sub-band spacing ∆E for the kinks denoted A, B and C (See corresponding red

double edged arrows in (c). Also refer to table 7.1).
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7.4.2. Extraction of gate lever arm from quantum Hall measurements
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Figure 7.4.: Measurement of Landau levels in the 380 nm wide QPC with a single top gate. Longitudinal

differential conductance G as a function of the top gate voltage Vtg and the perpendicular magnetic field

B.The conductance trace at B = 0 T is shown in Fig. 7.3 (b). The solid black lines indicate the evolution of

Landau levels with the indices m = 0 to -4.

The strength of a gate i.e. how well it tunes the device can be estimated by calculating the lever-arm

(α) which is simply the capacitance per unit area of the gate to the graphene structure. The slope of the

solid white line in Fig. 7.3 (a) is a measure of the relative lever arm αtg/αbg i.e. the ratio of the capacitive

coupling of the back and top gate to the constriction. Thus, αtg/αbg = ∆Vbg/∆Vtg ≈ 7.

Indeed, this value fits well with the value calculated using the thicknesses of dielectric materials, hBN

and SiO2. The back gate lever arm can be calculated by assuming a simple parallel plate capacitor model

and is given by αbg = ε0/ [(etSiO2/εSiO2)+(etbottom/εhBN)] where ε0 is the dielectric field constant of vac-

uum, e is the elementary charge, tSiO2 and tbottom (see section 6.1.1) are the values of thickness and εSiO2 (=

3.9) and εhBN (= 4) are the dielectric constants of the gate dielectrics SiO2 and hBN respectively [43].

This gives us a value of ≈ 7.2 ×1010V−1cm−2. Likewise, the lever arm of the top gate is given by

αtg = ε0εhBN/e(ttop + tgateoxide)≈ 49.12×1010V−1cm−2 where ttop and tgateoxide refer to the thickness of

the top hBN layer of the hBN- graphene -hBN sandwich and the gate oxide hBN (see Fig. 6.2 (d)) respec-

tively. Using these values, we obtain the relative lever arm αtg/αbg = 6.82.

Experimentally, the gate lever arm can be extracted from quantum Hall measurements. We, now, discuss

the measurement of Landau levels in the QPC as a function of the top gate voltage Vtg and a perpendicular

magnetic field B. The energy of Landau level with index m in graphene is given by

Em(B) = sgn(m)vF
√
ℏ|e|2|m|B, m ∈ Z0. (7.5)

On the other hand, the energy dispersion relation for massless Dirac fermions in graphene is given by

E = ℏvFkF. (7.6)

Comparing these two results, we get

Bm =
h

4me
k2

F
π
. (7.7)
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Using eq. 7.4, we get

Bm =
h

4me
n =

h
4me

αeff∆Vtg (7.8)

where αeff is the effective gate lever arm [42, 134] such that

n = αeff∆Vtg = αtg∆Vtg +αbg∆Vbg. (7.9)

Thus, the Landau levels form straight lines with a slope Cm = h
4me αeff in the B - Vtg plane. Fig. 7.4

shows the Landau fan map of the QPC where the conductance trace at B = 0 T is same as the black trace in

Fig. 7.3 (b)). As mentioned earlier, in order to measure this trace, the back gate and the top gate are swept

simultaneously according to the equation Vbg = 0.143×Vtg + 3.6 such that it is perpendicular to the solid

white CNP line in Fig. 7.3 (a). Thus, ∆Vbg
∆Vtg

= 0.143. Using this and the fact that αtg/αbg = 7 in eq. 7.9, we

obtain the relation

αeff = αtg(1+0.1432) (7.10)

The solid black lines in Fig. 7.4 correspond to different Landau levels with the index m = 0 to -4 fitted

according to eq. 7.8. Taking the average of the slopes of all these lines, we get an effective lever arm αeff =

average slope × 4me/h = 50.03 ×1010V−1cm−2.

Using this value in eq. 7.10, we extract the value of the top gate lever arm as αtg = 49.03×1010V−1cm−2

which matches excellently with the value obtained through pure geometry in the beginning of this section.

Further, the back gate lever arm αbg = αtg/7 = 7.01×1010V−1cm−2.

7.4.3. Effect of localized states on conductance

After identifying the series of quantized conductance kinks, we now proceed to investigate how the mean

conductance in eq. 7.3 behaves for this device. In Fig. 7.5 (a), the same trace shown in Fig. 7.3 (b) is

measured for a larger range of Vtg (see the black trace). Using the gate lever arms extracted in the previous

section, we now convert Vtg into n using eq.7.9 (see the top axis). The blue trace is a square root fit to the

holes side of the experimental trace using the Landauer- Büttiker formula in eq.7.3. This is obtained by first

squaring the conductance as shown in Fig. 7.5 (b) and then fitting a straight line to the data as depicted by

the blue trace. The first fit parameter gives the slope (= 16c2
0w2αtg/π) of this straight line which is used to

extract the transmission coefficient c0 ≈ 0.7 for a QPC of width w = 380 nm. The other fit parameter V h
0

which is the x - intercept of the blue straight line in Fig. 7.5 (b), along with the slope is used to obtain the

blue square root fit in Fig. 7.5 (a). Note that the constant c0, in fact, determines the actual height of the

kinks shown in Fig. 7.3 (c). The step height is given by c0 ×4e2/h ≈ 2.8 e2/h which fits well the observed

2 - 3 e2/h height of these kinks.

Thus, we clearly see that the measured trace follows the expected G ∝
√

Vtg ∝
√

n at higher gate voltages

and deviates as we approach the CNP i.e. for absolute values of Vtg < 2.5 V or n < or 1 ×1012cm−2 (see

orange shaded region and also refer to Fig. 3.2) (e)). This is a primary indication of the fact that the ideal

relation between n and kF i.e. n = k2
F/π is not enough to explain the experimentally measured trace and

needs to be modified to eq. 3.2 to include the additional trap state charge carrier density nT .

The density of trap states ρ is estimated using a Gaussian as shown by the black trace in Fig. 7.6 (a)

as opposed to the linear density of states in ideal graphene (see the red line). The factor V h
0 as well as the
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Figure 7.5.: (a) Conductance trace shown in Fig. 7.3 (b) as a function of Vtg and also the charge carrier

density n(Vtg) (see top x axis). Blue trace is a fit using eq. 7.3 i.e. G ∝
√

Vtg ∝
√

n. Orange shaded region

denotes the deviation of G from the square root fit. (b) Square of the conductance in (a) is shown by the

black trace. Blue line is a straight line fit using eq. 7.3.

difference in the conductance between the measured trace and the square root fit (black and blue traces in

Fig. ?? (a)) are used to estimate the centre, width and the height of the Gaussian. The larger the width of

the orange shaded region, the larger the area under the Gaussian in Fig. 7.6 (a). Thus, the trap states play

a significant role only around the CNP. As kF approaches zero close to CNP, it is clear from the equation

n =
k2

F
π
+nT (kF) = α∆Vtg, that the charge carrier density is dominated by nT . Far away from the CNP, when

k2
F ≫ πnT , the ideal relation between n and kF and consequent square root behavior of the conductance is

restored as ρ approaches the tail end of the Gaussian. Thus, the deviation of G from its ideal behavior

provides us a way to extract nT experimentally.

The trap states contribute only to the charging characteristics i.e. they act like electron traps and reduce

the overall transmission of the channel but do not contribute to the electron transport itself [42]. Such trap

states can be found at the rough edges of samples like the present device which are fabricated by cutting or

etching the graphene flake resulting in a number of localized states [170, 225]. Therefore, one would expect

that in narrower constrictions where the edges are much closer to the bulk of the QPC, their influence is

much stronger. While the suppression of conductance due to rough edges was earlier shown via simulations

for example, in Ref. [224], this was observed experimentally in hBN encapsulated graphene QPCs by the

authors in Ref. [42] where back-scattering of electrons at the rough edges was much higher in narrower

constrictions with a width of 230 nm and was significantly reduced as the width increased. As a result, the

value of c0 was close to 0.5 in a 230 nm wide constriction and the consequent step height was approximately

2 e2/h (c0 × 4e2/h) while it was close to 1 with evident 4 e2/h height kinks in a 310 nm wide constriction.

Moreover, when the same device (width = 230 nm) was measured once again after exposing it to air for

several days, it showed the nearly the same transport characteristics at higher values of n or kF . But, the

second cool-down of sample resulted in a larger spread of conductance at smaller values of n around the

CNP implying more trap states. As the graphene was sandwiched between two layers of hBN, the bulk was

protected while only the edges were exposed to air and likely experienced some chemical modifications.
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This, further, proves that the edges contribute to trap state density i.e. the charging characteristics of the

sample.

With the trap state density taken into consideration, the Landauer - Büttiker model now fits the measure-

ment pretty well (red trace in Fig. 7.6 (b)). Further, it is now possible to express the conductance as a linear

function of rescaled kF using eq. 3.2 as shown by the black trace in Fig. 7.6 (c) which overlaps quite well

with the expected linear mean conductance trace denoted by the red dashed line.

Once the conductance is linearized, this provides us an alternate method to verify the width of our device

besides AFM or SEM measurements. By subtracting the zeroth order term i.e. the mean conductance G0

from the measured conductance i.e. the red dashed line subtracted from the black trace in Fig. 7.6 (c), we are

left with the superimposed conductance modulations as seen in Fig. 7.7 (a). If these modulations are indeed

signatures of size quantization, then the first peak in the Fourier transform of this quantity δG = G−G0

should give us the width of the QPC. From Fig. 7.7 (b), we see that the first peak occurs at around 386 nm

which is quite close to the width of the QPC from AFM measurements (≈ 380 nm) in Fig. 6.2 (a).

7.4.4. Effect of the top gate on localized states

Since the top gate covers only the bulk of the channel, it is expected to have stronger coupling to the channel

as compared to the edges that only experience fringe field effects. Therefore, the measurements described

in this section are performed to check if tuning the top gate allows us to control the influence of localized

edge states on the channel conductance.

For this purpose, we consider the derivative of the conductance, dG/dVbg in the Vtg–Vbg plane as shown

in Fig. 7.8 (a). Note that the solid black "major line" is same as the one shown in Fig. 7.3 (a) i.e. it denotes

the CNP of each individual conductance trace G(Vtg) measured at a particular value of Vbg. Therefore, the

slope of this line, the "major slope" corresponds to the ratio of gate lever arms. We find that there are several

features evolving parallel to this line (see solid black lines in the close-up in Fig. 7.8 (b)).

Fig. 7.8 (c) shows conductance traces measured perpendicular to the major line, similar to the measure-

ment of the trace discussed in Fig. 7.8 (b), i.e. according to the equation Vbg = 0.143×Vtg + k0 where k0

= 1.20, 2.24, 2.96, 3.60, 4.24 (see section 7.4.2) as we move towards the left from the orange to the pink

trace. Note that the black trace in Fig. 7.8 (c) is the same as the black trace shown in Fig. 7.3 (b). All the

traces show highly robust quantized conductance steps on the order of 2-3 e2/h that move parallel to the

major line as we move from one trace to the next (see blue arrows). These features that develop parallel to

the major line are a result of the evolution of quantized conductance kinks with the top gate voltage.

Besides these larger features, there are several other features that evolve parallel to the so-called "minor

line" (see the black dashed lines in Fig. 7.8 (a) and (b)).

Since the top gate is confined only to the inner channel of the QPC leaving the edges free, extended states

that exist over the entire sample including the bulk region under the top gate (orange region with a width

of 230 nm in Fig. 7.8 (d)) are tuned quite strongly by the top gate resulting in the quantized conductance

features evolving parallel to major line with a slope of 7. However, the localized states closer to and along

the edges of the QPC (red dots) are influenced by the stray field emerging from the top gate. These states

are only weakly tuned by the top gate i.e. their capacitive coupling to the to the top gate is much weaker

than the extended states which results in the minor lines with a much smaller slope of about 1.4. Naturally,
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Figure 7.6.: (a) Density of trap states (black curve) estimated using a Gaussian. Red trace denotes the

ideal linear density of states of graphene. (b) Conductance trace (in black) for the holes in (a). Red trace

is a square root fit to the black conductance trace after accounting for the density of trap states shown in

(a). Thus, once the trap states are taken into consideration, G(Vtg) follows the expected square root relation.

Blue trace is same as the one shown in Fig. 7.5 (a) i.e. it is the fit to the experimental data without including

the trap state density and deviates from the expected square root relation. (c) Conductance as a function of

kF . Blue trace is obtained from the corresponding blue trace in (b). Black trace denotes the conductance

trace after rescaling kF using the eq. 3.2, n =
k2

F
π
+ nT (kF) = α∆Vtg. Red dashed line shows the expected

ideal linear conductance such that G ∝ kF .
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Figure 7.7.: (a) Modulations in hole conductance δG = G−G0 as a function of kF . G,G0 refer to the

conductance and mean conductance traces after including the trap state density, nT i.e. the solid black and

dashed red traces in Fig. 7.6 (c) respectively. (b) Fourier transform of the conductance in (a). The first

prominent peak appears at 386 nm which is nearly equal to the width of the QPC i.e. 380 nm.

both extended and localized edge states are tuned with the same capacitive strength by the back gate as they

are the same distance away from the gate.

In this scenario, it should be possible to reduce the influence of these localized edge states by sweeping

the gates along the minor line. The resulting conductance would then be mostly a result of size quantization

with minimal influence of edge disorder. To check this prediction, we sweep the top and back gate voltages

simultaneously along two lines with different slopes (marked 1 and 2 in Fig. 7.9 (a)). The conductance trace

1 has already been shown and discussed in Fig. 7.3 (b) and is perpendicular to the major line. Here, both Vtg

and Vbg are varied simultaneously according to the equation Vbg = 0.143×Vtg +3.6. The sweep direction

2 is parallel to the minor line and the gate voltages are swept such that Vbg = 3.74−1.4× (Vtg +1.32) (see

Appendix B.1). The kinks in the conductance traces in Fig. 7.9 (b) can be correlated with the corresponding

conductance derivative maxima in Fig. 7.9 (a) (see black arrows in Fig. 7.3 (a)). The kinks are highly robust

and occur at the same value of conductance independent of the sweep direction.

For instance, we see a series of clear 2-3 e2/h steps starting from 16 e2/h down to up to 8 e2/h (marked

✖, ▲, ⋆ and ■) in both traces although occuring at different gate voltages.) Further, we notice that as we

go closer to the CNP (below 6 e2/h, see ◆, ●), the conductance behaves quite differently in both traces.

Since it has been established that disorder due to trap states manifests strongly around the CNP [42],this

corroborates the argument that the influence of these localized trap states depends on the sweep direction.

Similar results were obtained in another data set shown in Fig. 7.10 (a) where the sweep directions "3"

and "4" are parallel to "1" and "2" discussed above. Therefore, the gate voltages are swept according the

equation Vbg = 0.143×Vtg + 2.722 for trace 3 and Vbg = 3.2− 1.4× (Vtg + 1.32) for trace 4. Once again,

we see that the conductance kinks (see different symbols from 6 - 16 e2/h) in Fig. 7.10 (b) are quite robust

irrespective of the sweep direction, thus, proving the size confinement of electrons.
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Figure 7.8.: (a) Transconductance dG/dVbg of the QPC as a function of Vtg and Vbg at a DC bias voltage

Vb = 500 µV along with an AC bias of 300 µVpeak-to-peak. The solid black "major line" indicates the CNP of

each individual conductance trace in top gate G(Vtg) at a fixed value of Vbg (similar to Fig. 7.3 (a)). Besides

this dominant feature, several other structures are seen to evolve parallel to the "minor line", as indicated by

the black dashed lines. (b) Close-up of the region enclosed by the white dashed lines in (a). (c) Individual

conductance traces measured along the corresponding coloured arrows in (a) and (b). Starting from the

left, each trace is offset horizontally by 0.5 V with respect to its previous trace for clarity. Note that the

black trace is the same as the one measured in Fig. 7.3 (b). (d) Schematic of the rough-edged QPC (green)

along with the top gate (orange). The width of the top gate (the QPC) is 230 nm (380 nm). Red dots mark

localized states along the edges of the QPC.

7.5. Conductance of a QPC with two top gates

7.5.1. Non-constant gate lever arm measurements

Similar measurements on the behavior of conductance were also performed on the 300 nm wide QPC with

two top gates as shown in Fig. 7.1 (c). Similar to the discussion in section 7.4.2, the value of αbg estimated

using the parallel plate capacitor model is 7.32 ×1011V−1cm−2. The fact that the back gate has a nearly

constant lever arm has also been shown previously in Ref. [37] using quantum Hall measurements in a

perpendicular magnetic field.

Fig. 7.11 (a) shows a plot of the four terminal conductance G through the constriction as a function of

Vbg and Vtg voltages. The solid white line indicates the CNP of each individual back gate trace G(Vbg)

measured at a particular value of Vtg. However, unlike the earlier device with a single top gate, here, we
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Figure 7.9.: (a) Close-up of the conductance map shown in Fig. 7.3 (b). The black arrows indicate different

directions of sweep "1" and "2" of Vbg and Vtg. (b) Conductance traces corresponding to the arrows shown

in (a). "1" corresponds to the trace that is measured along a line (slope = 0.143) which is perpendicular to

major line in Fig. 7.8 (a) from Vtg = -1.8 V to -0.5 V. Here, Vtg is varied such that Vbg = 0.143×Vtg+3.6. "2"

corresponds to the trace that is measured along a line (slope = -1.4) that is parallel to the minor line Fig. 7.8

(a) as Vtg is varied from -1.7 V to -0.25 V. Here, Vtg is varied such that Vbg = 3.74− 1.4× (Vtg + 1.32).

The symbols indicate different conductance kinks and can be correlated to the derivative maxima in the

conductance map in (a) using the black dashed lines.

observe that the slope of this line is continuously changing implying a non-constant relative lever arm (in

the voltage range under consideration). Interestingly, this effect is comparable to the previous experiments

on side gated HF-dipped graphene nanoribbons on SiO2 [220]. In those devices, the non-constant lever arm

is attributed to edge modification due to their treatment with HF. Such a modification resulting in Fluorine

terminated graphene edges is also possible with the presented top gated devices since the hBN-graphene-

hBN sandwiches were etched using SF6 during fabrication. Calculations also suggest that replacing -OH

and -O by -F termination leads to significant reduction in density of states along the graphene edges resulting

in back gate dependent top gate coupling [226]. Similar to the single top gate device discussed earlier, this
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Figure 7.10.: (a) Similar to Fig. 7.9 (a). The black arrows indicate different directions of sweep of

Vbg and Vtg - the arrows marked "3" and "4" are similar to "1" and "2" respectively in Fig. 7.9 (a). (b)
Conductance traces corresponding to the arrows shown in (a). Trace "3" is measured along a line (slope =

0.143) perpendicular to major line in Fig. 7.8 (a). Here, Vtg is varied such that Vbg = 0.143×Vtg + 2.722.

While "4" corresponds to the trace that is measured along a line (slope = -1.4) that is parallel to the minor

line in Fig. 7.8 (a) as Vtg is varied from -1.7 V to -0.5 V. Here, Vtg is varied such that Vbg = 3.2−1.4×(Vtg+

1.32). The symbols indicate different conductance kinks and can be correlated to the derivative maxima in

the conductance map in (a) using the black dashed lines.

is most likely a result of the proximity of the top gates to the channel due to which the entire constriction is

tuned and not just the edges.

Fig. 7.11 (b) shows individual conductance traces (horizontal line cuts from Fig. 7.11 (a)) as a function of

the back gate voltage. Each trace is shifted horizontally by V0 which is the value of Vbg at the CNP such that

the CNP is now at zero. Similarly, each trace is offset by 4 e2/h vertically with respect to its previous trace.

In the inset, we show the transmission coefficient c0 which has been extracted by fitting the conductance of
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individual back gate traces to a square root function as explained in Fig.7.5. For a constriction with a width

of 300 nm, we observe that the overall transmission through the constriction can be slightly tuned and levels

off at a value of nearly 0.5.

Fig. 7.11 (c) shows a close up of the same traces as in Fig. 7.11 (b) shifted horizontally by a constant value

of Vbg. Importantly, we observe that the conductance kinks on the order of 2-3 e2/h are indeed independent

of Vtg. Thus, the top gates can be used to prove that these kinks are, indeed, very stable signatures of

quantized conductance and occur solely due to the effect of size confinement in the constriction.
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Figure 7.11.: (a) Four terminal conductance G of the 300 nm wide QPC with two top gates shown in

Fig.7.1 (c) as a function of the back gate Vbg and the top gate voltage Vtg. Here, both top gates TG1 and

TG2 are short to one another such that a symmetric gate voltage is applied on both the top gates. Solid

white line indicates the CNP of each conductance trace in back gate G(Vbg) measured at a fixed value of

Vtg. (b) Horizontal line-cuts across the plot in (a). Individual curves represent back gate traces at different

values of Vtg with the CNP shifted to zero. The curves are offset vertically by 4 e2/h for clarity. Inset shows

the transmission coefficient calculated from individual back gate traces as a function of Vtg using the same

method as in Fig.7.5. (c) Close-up of the traces in (b). The black trace is at a fixed value of Vtg (= 0.5 V)

and all the other traces to its right are shifted by 0.85 V relative to the preceding trace.

Independent tuning of each of the two top gates also yielded similar results i.e. a non uniform lever arm

(see Fig. 7.12). Unfortunately, this sample did not remain stable enough to conduct further measurements.

For future study in this direction, it would be highly informative to tune the two top gates independently

from one another in both a symmetric and an asymmetric manner to understand the influence of tuning

multiple gates on the trap state density [221, 227].

However, a constant problem that we encountered with such dual top gated devices was that if one of the

gates did not work, it led to an asymmetric gate potential and a conductance profile through the QPC. For

this reason, the single top gate design of the previous sample was far more useful and stable to study the

conductance of the device.
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Figure 7.12.: Four terminal conductance G of a 300 nm wide QPC with two top gates shown in Fig.7.1 (c)

as a function of the back gate Vbg and the top gate voltage Vtg. (a) The top gate TG1 is swept continuously

along with the back gate while the other top gate TG2 is grounded. (a) TG2 is swept continuously while

TG1 is grounded.

7.6. Theoretical simulations of conductance in a graphene

QPC with a single top gate

Features similar to the experiment described in section 7.4 including different major and minor slopes in the

lever arm map have also been attained using theoretical simulations using an idealized scattering structure.

We employ a tight-binding Hamiltonian [224],

H = ∑
i

ViΦiΦi − ∑
(i, j)

γi jΦiΦ j +h.c., (7.11)

where i are lattice sites with on-site potential Vi, and (i, j) are pairs of lattice sites with hopping matrix

elements γi j. We include coupling up to the third-nearest-neighbor and omit physical spin. The sample

geometry is quite simple and minimal - it consists of a 50 nm long and 20 nm wide ribbon (I) cut out

of a large graphene flake as shown in Fig. 7.13 (a). We simulate 200 × 200 atoms in an ≈ 20 nm wide

zig-zag ribbon. A small amount of disorder in the form of edge roughness with an amplitude of about

4 Å is included to account for patterning of the device. As contacts, we use semi-infinite leads within the

Landauer-Büttiker formalism [228, 229].

Similar to the experiment, we tune not only the Fermi energy E but also the potential near the edge

of the ribbon via a side gate U . We can thus independently tune the localized states and the bulk states.

The side gate potential U tunes the energy of localized edge states and slightly decreases the width of the

transmission channel. The Fermi energy E affects the on-site potential on all the atoms, including the edges.

The differential conductance dG/dE thus features two slopes on the U–E plane, just as in the experiment:

the first emerges due to conductance quantization (parallel to the black dashed lines in Fig. 7.13 (b)). The

second (parallel to the purple line) is given by the edge-localized states, which are more strongly tuned by

U . We compare the conductance along two line cuts in the U–E plane in all our simulations. The first is

at fixed side gate U =−0.2 eV (green line) and the other one is parallel to the slope due to the edge-states

(purple line in Fig. 7.13 (b) and (c)). These are equivalent to the two cuts perpendicular to the "major slope"
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and parallel to the "minor slope" considered in the experiment. The "minor slope" avoids resonances of

localized states, leading to cleaner quantization signatures than at fixed U . Indeed, the purple conductance

trace in Fig. 7.13 (c) shows slightly better steps as compared the green trace.
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Figure 7.13.: (a) Schematic of the ribbon model (I) consisting of a 50 nm long and 20 nm wide graphene

ribbon with an edge roughness of 4 Å. The potential near the edge is tuned with the side-gate potential U .

(b) Differential conductance as a function of the Fermi energy E and side gate potential U . Black dashed

line denotes the evolution of the conductance kinks. Therefore, it is comparable with the "major line" in

Fig. 7.8 (a). The green line is at a fixed side gate U =−0.2 eV and can be compared with the measurements

perpendicular to the major line i.e. line "1" in Fig. 7.9 (a). The purple line U(E) = 3/2 E−0.75 eV denotes

the evolution of the edge states and corresponds to the "minor line" in the experiment in Fig. 7.8 (a) and

is comparable with line "2" in Fig. 7.9 (b). (c) Conductance along the two sweep directions in purple and

green in (b). The purple curve is offset vertically by + 4 e2/h for clarity. Dashed lines mark the energies of

the conductance steps.

7.7. Conclusion

In this chapter, we have used additional top gates on an encapsulated graphene constriction where the idea

was to have another knob besides the back gate to tune the transmission of the quantum point contact. Two

different geometries of top gate - the first one with a single global top gate covering the entire channel except

the edges and the second type with two top gates, one on either side of the constriction and covering only

its the edges symmetrically. In the case of the constriction with two top gates, we observe a non-constant,

non-linear gate lever arm. This is attributed to the fluorine terminated rough edges resulting from reactive

ion etching which lead to a back gate dependent top gate coupling. We see quantized conductance kinks on

the order of 2 - 3 e2/h that shift nicely with the back gate voltage, further corroborating the argument that

these kinks are a result of size quantization occurring within the constriction.

In the case of the device with the global top gate, we can clearly see two different slopes in the measure-

ment of lever arm - a stronger "major" slope due to quantized conductance kinks and a relatively smaller

"minor" slope due to the localized edge states, something that we also see in the theoretical tight binding

simulations. By sweeping the back and top gates along two directions - along the minor slope and perpen-

dicular to the major slope, we show that the influence of edge disorder on the channel conductance can be

varied. This is visible in the corresponding conductance traces which show significant differences in the
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features observed around the CNP where the effect of edge disorder is maximum. Away from the CNP, the

conductance kinks are independent of the direction of sweep.

Thus, employing an additional top gate is a successful technique to not only shed light on the contribution

of the edge states but also to control their influence on the transport through a QPC.
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8. Crossover from size quantization to

Landau quantization in etched

graphene quantum point contacts

Contributions to this chapter:

S.Somanchi fabricated and performed measurements on the etched top gated graphene QPC device. The

theoretical simulations were performed by T. Fabian and F. Libisch from Vienna University of Technology.

8.1. Introduction

In this chapter, we discuss the conductance of the etched graphene QPC device with a single top gate

discussed in section 6.1.1 as a function of a perpendicular magnetic field. The magnetic field offers another

possibility to distinguish the bulk states in the QPC channel from the localized edge states through the

difference in the effect it produces on them. We observe this difference in evolution between the localized

edge and bulk states as the device moves from a size quantization regime at zero magnetic field to Landau

quantization as the field increases.

8.2. Experimental magnetic field measurements - Evolution

of conductance kinks in an etched graphene QPC with a

single top gate

In Fig. 8.1 (a) and (c), we look at how the conductance kinks in the trace "1" (measured perpendicular

to the major line) and trace "2" (measured parallel to the minor lines and is therefore, expected to have

lesser influence of edge disorder on the conductance) are affected by a perpendicular magnetic field B.

As explained already using Fig.7.9 (b), conductance trace "1" is measured by sweeping both Vtg and Vbg

simultaneously according to the equation Vbg = 0.143×Vtg +3.6 while for trace "2", we use Vbg = 3.74−
1.4× (Vtg +1.32).

The transition from the size quantization regime (see different symbols in Fig. 8.1 (a) - (f) denoting

various conductance kinks) at low B field to Landau level quantization at higher magnetic fields occurs

when the cyclotron radius of the charge carriers becomes half the width w of the QPC. For a semiconductor

with conventional parabolic bands, we can use the relation rc = m∗v/eB where the effective mass of the

electron m∗ is constant as it moves in a magnetic field B with a velocity v and cyclotron radius rc. In the

case of graphene with conical bands at the Dirac point, the momentum of an electron with Fermi velocity
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vF is given by P = ℏkF = m∗vF . Therefore, the dynamical mass of the electron m∗ = ℏkF/vF varies as a

linear function of kF or
√

n in the case of graphene [230, 231].

Thus, the cyclotron radius is given by

rc =
ℏkF

eB
<

w
2
. (8.1)

Using the above equation at the boundary where the system moves from quantized conductance kinks to

Landau levels, we get the following relation.

Bc =
h

πe

√
πn
w

. (8.2)

Therefore, the critical magnetic field Bc at the boundary is proportional to the square root of the charge

carrier density n. In the magnetic field measurements shown in Fig. 8.1 (b) and (e), the green curve marks

this line of transition for the present QPC device with a width of 380 nm. At magnetic fields above this trace,

we see that the transconductance in both the traces "1" and "2" displays near-identical features in the form

of Landau levels from the index m = 0 to -4. However, below the green trace, around zero B field region in

Fig. 8.1 (c) and (f) i.e. where the conductance is still dominated by size quantization, the features evolve

quite differently for these two traces. This region is highly influenced by the amount of edge disorder in the

device, which changes for different directions of sweeping the gate voltages Vbg and Vtg in traces "1" and

"2". We already understood from the discussion on Fig. 7.9 in the previous chapter, that the conductance

kinks further away from the CNP look nearly identical for both sweep directions 1 and 2. The difference

occurs as we get closer to the CNP. Indeed, the largest discrepancies appear at zero magnetic field and near

the CNP, where the disorder is strongest. For example, see the difference in features around ■, ◆, ● in

Fig. 8.1 (c) and (f).

Similar results are also observed for the second data set involving the conductance traces "3" and "4"

shown in Fig. 7.10 (b). As explained in the previous chapter, trace "3" is measured similar to trace "1" in

accordance with the equation Vbg = 0.143×Vtg +2.722 while trace "4" is measured similar to trace "2" in

accordance with the equation Vbg = 3.2− 1.4× (Vtg + 1.32). In Fig. 8.2 (a) - (c), we see the evolution of

the conductance kinks in trace "3" with magnetic field and in Fig. 8.2 (d) - (f), we see the same results for

trace "4". Nearly-identical quantum Hall features for both these traces as seen in Fig. 8.2 (b) and (e). Upon

careful observation of the corresponding close-up Landau fan maps in Fig. 8.2 (c) and (f), we see that there

are features which seems to be unaffected by the magnetic field. For example, observe the vertically straight

features (black lines) to the right of ◆ in both Fig. 8.2 (c) and (f) (also see the black straight lines in Fig. 8.1

(c) and (f)). Interestingly, we see that the straight line around the ◆ in Fig. 8.2 (c) gets modified to a more

curved feature in in Fig. 8.2 (f) which joins the Landau level m = -3 going upwards. Thus, this straight line

feature seems to be somehow related to the direction of sweep i.e. whether we sweep the gate voltages such

that the trace is measured perpendicular to the major line or parallel to the minor line. In the next sections,

we delve deeper into such differences at low magnetic field between the two directions of sweep and try to

explain them using theoretical simulations in section 8.4.
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Figure 8.1.: (a) Conductance trace "1" from Fig. 7.9 (b) as a function of the charge carrier density n. This

trace is obtained by sweeping the top and back gate voltages simultaneously along a direction perpendicular

to the major line as discussed in Fig. 7.8 (a). Here, Vtg is varied such that Vbg = 0.143×Vtg + 3.6. (b)
Differential conductance (offset by the mean ⟨dG/dn⟩) of the trace in (a) as a function of the magnetic

field B. The green curve marks the region of transition between the size quantization regime at lower B

field and quantum Hall regime at higher B field for a QPC with a width of 380 nm, in accordance with

eq.8.2. Landau levels with the index m = 0 to -4 are visible at B field above the green curve. (c) Close-up

of the trace in (b) in the low magnetic field region. (d,e,f) Same as (a,b,c) for the conductance trace "2"

in Fig. 7.9 (b). The conductance trace "2" in (d) is obtained by sweeping the top and back gate voltages

simultaneously along a direction parallel to the minor line as discussed in Fig. 7.8 (a). Here, Vtg is varied

such that Vbg = 3.74−1.4× (Vtg +1.32).
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Figure 8.2.: (a) Conductance trace "3" from Fig. 7.10 (b) as a function of the charge carrier density n. This

trace is obtained by sweeping the top and back gate voltages simultaneously along a direction perpendicular

to the major line as discussed in Fig. 7.8 (a). Here, Vtg is varied such that Vbg = 0.143×Vtg + 2.722. (b)
Differential conductance (offset by the mean ⟨dG/dn⟩) of the trace in (a) as a function of the magnetic

field B. The green curve marks the region of transition between the size quantization regime at lower B

fields and quantum Hall regime at higher B fields for a QPC with a width of 380 nm, in accordance with

eq.8.2. Landau levels with the index m = -1 to -4 are visible at B field above the green curve. (c) Close-up

of the trace in (b) in the low magnetic field region. (d,e,f) Same as (a,b,c) for the conductance trace "4"

in Fig. 7.10 (b). The conductance trace "4" in (d) is obtained by sweeping the top and back gate voltages

simultaneously along a direction parallel to the minor line as discussed in Fig. 7.8 (a). Here, Vtg is varied

such that Vbg = 3.2−1.4× (Vtg +1.32).
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Figure 8.3.: (a) Theoretical differential conductance in a perfect graphene nanoribbon with no edge dis-

order. In this ideal system, spin and valley degrees of freedom remain degenerate as the holes evolve from

size quantization to Landau quantization. (b) Theoretical differential conductance in a ribbon with an edge

roughness of 4 Å as shown in Fig. 7.13 (a). The conductance trace at zero B-field is the purple trace shown

in Fig. 7.13 (c). Here, both the Fermi energy of the ribbon E and the side gate potential U are varied simul-

taneously. This is equivalent to sweeping the back and the top gate voltages simultaneously in a direction

parallel to the minor lines as shown in Fig. 7.13 (b). (c) Same as (b) but for the green trace shown in

Fig. 7.13 (c). Here, the side gate potential is fixed and only the Fermi energy is varied. This is comparable

to sweeping the gates in a direction perpendicular to the major line. Compared to (c), (b) shows a cleaner

pattern implying lesser influence of edge disorder in (b).

8.3. Theoretical simulations - Evolution of conductance kinks

with magnetic field

8.3.1. Simulations of magnetic field measurements using the nanoribbon
model

We now look into the evolution of the two theoretical conductance traces shown in Fig. 7.13 (c) in the

presence of a perpendicular magnetic field. It is useful, however, to first consider the ideal case of a transla-

tionally invariant ribbon geometry (I) discussed in section 7.6 without edge disorder. In this case, in Fig. 8.3

(a), conductance steps evolve adiabatically from the size-quantization at low magnetic field to the Landau

levels in quantum Hall regime, as expected. In the case of the purple trace in Fig. 7.13 (c) which is obtained

by sweeping the gates parallel to the minor slope, we see that edge roughness distorts the ideal quantization

at low B field although the underlying pattern of the conductance steps remains is still quite clearly visible

(see Fig. 8.3 (b)). The number of additional features in the zero magnetic field increases further for the

green trace in Fig. 7.13 (c) as shown in Fig. 8.3 (c). As explained earlier, green trace is similar to the case

of sweeping the back and top gates in a direction perpendicular to the major line. Important to note is that

not all the interferences due to the localized edge states can be avoided with the side gate, since the states

show different degrees of localization. Thus, a single additional gate cleans the transmission spectrum only

partially.
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8.3.2. Analysis of different Eigen states in the graphene nanoribbon

In this section, we investigate the factors responsible for the magnetic field interference patterns discussed

in the previous sub-section. To gain insight into this, we consider quasi-bound states of our scattering

geometry, i.e. the Eigen states (and complex Eigen energies) of the Hamiltonian of the graphene ribbon.

The imaginary part Γ of the Eigen energies E = ε+ iΓ describes the coupling of the Eigen states to the leads.

This Γ determines the width of each resonance in the tranmission spectrum such as in Fig. 8.1 and Fig. 8.2.

States with vanishing Γ show up as sharp peaks in the transmission while the others mainly contribute to

a broad background signal [232]. We show these Eigenstates in the upper half of Fig. 8.4 (a) as green

and yellow lines such that green (yellow) corresponds to the states with minimum (maximum) strength of

coupling to the leads Γ. Features in the transmission spectrum often arise from some Eigen state with weak

coupling to the leads - see the effect of green lines in the lower half of Fig. 8.4 (a) which is a close-up of

Fig. 8.1 (c) .

We can group the Eigen states into three rough categories according to their dependence on B and their

imaginary part Γ [Fig. (8.4)]:

(i) Eigenstates with weak coupling to the leads (green lines, Γ ≪ 1) with their Eigen energies almost

independent of the magnetic field. They show strong localization near the edge of the ribbon as seen

in Fig. 8.4 (b) and (c).

(ii) Eigen states with weak coupling to the leads which shift to larger i.e. more negative n with increasing

magnetic field. These are the extended Eigen states of the system with rather weak coupling to the

leads as seen in Fig. 8.4 (d).

(iii) Eigen states with strong coupling to the leads (yellow lines, Γ ≫ 1) which move towards lower or less

negative n with increasing field. These are states of the semi-infinite lead which extend slightly into

the system as shown in Fig. 8.4 (e). They evolve towards the zeroth Landau level in this energy range.

The evolution in magnetic field of these Eigen states and interference between them results in the complex

transmission pattern. Features which do not depend on B typically arise from strongly localized states

- due to their small area, their Eigen energies are (almost) independent of the magnetic field [233]. A

transmission feature which can be attributed to such a single Eigen state (i) is the conductance peak at

n =−0.076×1012cm−2 in the lower half of Fig. 8.4 (a). Its largest probability amplitude is near the edge

of the ribbon and Eigen state in Fig. 8.4 (b) and scattering state in Fig. 8.4 (c) at this energy are very similar.

On the other hand, the interaction of two different Eigen states is responsible for the peak that develops

at B ≈ −76 mT at n ≈ −0.105 × 1012cm−2, and is marked by a + in Fig. 8.4 (a). At this point, two

localized states (in green, in the upper half of the figure) approach each other starting from B = 0 T with

increasing magnetic field. When their Eigen energies are at the same value, the (hole) transmission increases

(appears as blue in the transmission spectrum in the lower half as the current tunnels sequentially over both

Eigenstates). This, however, is one of the few very obvious interference effects, while there are apparently

many more of them in the experiment.
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Figure 8.4.: (a) Lower half of the figure is a close - up of the Fig. 8.1 (c). Therefore, this is the map

of the differential conductance dG/dn as a function of the charge carrier density n and the perpendicular

magnetic field B. The corresponding conductance trace G(n) at B = 0 T is the conductance trace "1". Upper

half represents the Eigen states of the open system color coded according to their strength of coupling to

the leads (Γ). Thus, green lines represent the states with the weakest coupling to the leads while yellow

lines represent the states with the strongest coupling. The + symbol marks the resonance formed by the

intersection of two green Eigen states. (b-e): Probability of the wave function Ψ at the • in (a). (b,c)
Scattering state and Eigen state at the position marked (i), i.e. at B = 0.15 T, n = −0.076× 1012 cm−2 in

the upper of (a). Both of them show a strong localization along the edge. They also show only a weak

dependence on B (dark green line denoted as state (i) in the upper half of (a) or the corresponding red-blue

feature in the lower half of (a)). (d) Eigen state at position (ii) i.e. at B = 0.36 T, n = −0.11× 1011cm−2

in (a). This Eigen state (green line at state (ii) in the upper half in (a)) follows a conductance step (blue

features in the lower half) and moves towards more negative n values with increasing B. (e) Eigen state at

position (iii) i.e. at B = 0.15 T, n =−0.072×1011cm−2, denoted by a yellow line in the upper half in (a). In

this case, the yellow line moves towards less negative n values with increasing B, thus, its energy decreases

with increasing B.

8.3.3. Rescaling the theoretical simulations to fit the experimental data

A. Convert the energy axis in simulation to the charge carrier density axis in experimental
data

All the theoretical simulations described until now are originally calculated as a function of the energy of

the conducting quasiparticles E. Before we can compare this data to the experiment, we have to rescale

the data to the correct n and B axis. As discussed in section 7.4.3, the charge carrier density including the

contribution of trap states is given by eq. 3.2, n =
k2

F
π
+nT (kF). Using the knowledge that nT is estimated

using a Gaussian, the charge carrier density can be rewritten in terms of energy as

n =
∫ EF

0

(
ae−E2/2σ2

+bE
)

dE, (8.3)

where a, b and σ are fit parameters. Here, a determines the amount of trap states and σ , their distribution

around the charge neutrality point. The overall scaling from the calculated energy to the measured charge

carrier density is given by the parameter b.
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With these parameters, we can compare the conductance kinks in theory with experiment. This procedure

is as follows: First, we fit b to the level spacing for large charge carrier density n in the experiment. This

scaling accounts for the difference in width and edge disorder strength in experiment and theory. Auto-

matically, the zero field conductance traces agree well. Then, we adjust the trap state density parameters

a,σ to recover the experimental conductance step spacing at low n. The parameter a controls how much

the spacing of the lower levels is increased and σ determines how many of the lowest levels are affected.

Since a and σ also somewhat affect the higher n region, we re-adjust the parameter b. With this, we attain

excellent agreement of all spacings at B = 0 T. This is shown as the overlay (black curves) in Fig. 8.7 (b).

B. Readjust the magnetic field axis in simulation to fit the experimental data

After we have adjusted the n-axis, we also rescale the B axis to account for the smaller size of the ribbon

in theory (20 nm) as compared to the experiment (380 nm). Here, there are two different options: The

energy Em of the Landau level with index m scales according to eq. 7.5 i.e. Em ∝
√

B. This means that once

the energy axis is fixed, the B axis is also fixed. However, rescaling the B axis to fulfill eq. 7.5, Em(B) =

sgn(m)vF
√

ℏ|e|2|m|B does not correctly account for the transition from size to Landau quantization. This

is because Landau quantization sets in once the Landau wave function is smaller than the constriction width

according to eq. 8.1. To correctly model the low B regime, one should, thus, rescale the B-axis according to

E = vFℏk = evF wB ∝ B. (8.4)

Now, the energy spacing of the Landau levels (LL) given by eq. 7.5) for a given value of B would be

much too narrow. It is impossible to fit both eq. 7.5 and eq. 8.4 with a single linear rescaling of the B axis.

Rescaling the n-axis in the low field region and the high field region separately solves this problem. For

fitting the high field region, we first arbitrarily choose some fixed "high" B field value. We take the value

of B where it equals two times the field of the Landau level onset. The onset happens when 2rC < w (see

eq. 8.1). Since the experimental Landau fan shows straight lines in the n–B plane at this B field, a minimal

n ∝ E2
F model is sufficient and we account for only the trap states by an appropriate offset.

We interpolate smoothly between the two regimes by making b in eq. 8.3] dependent on B: We define a

function α(B) as a product of Fermi functions F̃(B,µ,T ) = 1−1/(exp((B−µ)/T )+1)

α(B) = F̃(B,0.52,0.35)F̃(B,0.26,0.09)F̃(B,0.05,0.02). (8.5)

which smoothly decreases from 1 at B= 0 T to 0 as B increases. Both functional form and values (B,µ,T )

are an arbitrary choice. We use α to smoothly rescale n for changing B such that

n =α(B)
∫ EF

0

(
ae−E2/2σ2

+bB=0E
)

dE, (8.6)

+(1−α(B))
(∫ EF

0
bB=LLE dE +∆

)
. (8.7)

C. Summary of the rescaling procedure

The rescaling procedure is summarized in Fig. 8.5. Differential conductance of a pristine graphene nanorib-

bon without edge roughness as a function of energy EF and magnetic field B as shown in Fig. 8.5 (a). The

Landau fan shows no straight lines since Em(B) ∝
√

B according to eq. 7.5. A linear density of states with
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Figure 8.5.: Pristine ribbon as in Fig. 8.3 (a) with different rescalings. (a) The x-axis is a function of the

Fermi energy EF (instead of the charge carrier density n). (b) assuming n ∝ E2
F . (c) trap states included. (d)

interpolation between fits for both B = 0 T and high field regime.

n ∝ E2
F produces the usual linear Landau Fan in Fig. 8.5 (b) with nm ∝ B. However, quantization steps at low

n are too narrowly spaced compared to the experiment. Trap states fix the spacing of quantization energies

at low n in Fig. 8.5 (c), but distort the Landau fan since the additional density at low n results in an almost

linear n ≈ EF in this regime. Different scalings in the high and low B-field regime in Fig. 8.5 (d) resolve

this last issue and agree best with the experiment.

8.3.4. Simulations of magnetic field measurements using the constriction
model

The simple ribbon (w ≈ 20 nm) model (I) agrees qualitatively with the experimental Landau level mea-

surements. The larger size of the experimental structure (w ≈ 380 nm) implies many more Eigen states,

which also interfere more strongly in the transport measurements due to their smaller energy spacing. Next,

the constriction geometry includes broad leads that reach the Landau regime earlier than the center of the

constriction, which is not included in our simple ribbon model (I). Furthermore, there are certain key fea-

tures in the experimental data at high energies that are absent in the simulation results - the set of diagonal

lines quickly evolving towards higher (absolute) or more negative charge carrier densities with increasing

magnetic field (see Fig. 8.7 (g) - (i)). We, therefore, set up a more accurate model (II) of the experimental

geometry (see Fig. 8.6), including four contact points, a constriction with a width of the order of 250 nm

between wider graphene regions of 1 µm in width. These model dimensions substantially increase the nu-

merical cost, yet provide much better agreement with the experiment as we shall in the next section. We

89



CHAPTER 8. CROSSOVER FROM SIZE QUANTIZATION TO LANDAU QUANTIZATION IN ETCHED GRAPHENE QUANTUM POINT CONTACTS

B
 (

T
)

-0.4 -0.3 -0.2 -0.1 0
-1.5

-1

-0.5

0

0.5

1

1.5

-1

0

1
x 10

-11

12
 cm   ) 

-2
 n (10

 d
G

/d
n
 (e

/h
 cm

)

Figure 8.6.: (a) Theoretical derivative of the conductance through a nanoconstriction as a function of the

charge carrier density n and the magnetic field B measured in a four-terminal configuration. The width of

the constriction is 250 nm constriction while that of the leads is 1 µm. We include a random edge roughness

on the order of 5 nm in this geometry.

observe more complicated, richer interference patterns which are one step closer to the experiment. We

conclude that bulk and localized edge states are the basic ingredients of the signatures in the experiment.

8.4. Comparison between experiment and theory

Experiment and theory not only agree quantitatively but also share many similar features in differential

conductance on the B–n plane when we compare Fig. 8.7 (b) (experimental result from Fig. 8.1 (a)) with

Fig. 8.7 (a) (Simple ribbon model (I) from Fig. 8.3 (c)) and Fig. 8.7 (c) (Constriction model from Fig. 8.6).

Firstly, the overall structure of the evolution of conductance kinks into Landau levels fits well between

theory and experiment. This pattern of evolution in theoretical ribbon model (I) (with no disorder in Fig. 8.3

(a)) is shown on top of the experimental data (black curves) in Fig. 8.7 (b). There is an excellent agreement

in the position of Landau levels at higher B field between experiment and the theory.

Further, at lower B field, both the number of kinks and their spacings in the charge carrier density range

under consideration agree. In the case of the constriction model (II) in Fig. 8.7 (c) as well, the zero field

quantization steps are found by an independent calculation without disorder in the region of the QPC. This

independent calculation results in a slight uncertainty in the absolute position, but once again, the number,

spacing and the evolution of conductance steps agree with experiment (not shown).

Next, in the low n region around B = 0 T, vertical features (marked by the dashed lines) appear due to

localized states in the close-ups in Fig. 8.7 (d) - (f). These features vary little with B in the ribbon model (I)

while additional oscillations in amplitude emerge for the constriction model (II) and the experiment. For

example, observe the ’D’-like shape in the experiment in Fig. 8.7 (e) which is recognizable as a combination

of a conductance step (● at 4 e2/h) / Bloch state that depends strongly on B (curved dashed line) and

a localized state (straight dashed line) with weak B dependence. Here, the ’D’ is broken into several

90



8.4. COMPARISON BETWEEN EXPERIMENT AND THEORY

−0.4 −0.3 −0.2 −0.1 0
−1.0

−0.5

0.0

0.5

1.0

1.5

B
 (

T
)

(a) Ribbon Theory I (b) Experiment (c) Constriction Theory II

−0.4 −0.3 −0.2 −0.1 0−0.4 −0.3 −0.2 −0.1 0

d
G

/d
n

 (e 2/h
 cm

) 2

 

-1

0

1
x 10

-10

12
 cm   ) 

-2
 n (10

−0.16 −0.12

−0.4

−0.2

0.0

0.2

0.4

(d) Th. I

−0.13 -0.9

(e) Exp.

−0.11 −0.07

(f) Th. II (g) Th. I (h) Exp.

−0.3 −0.26

(i) Th. II

−6

2

4

6

−4

−2

0

d
G

/d
n

 (e 2
/h

 cm
)

2

 

12
 cm   ) 

-2
 n (10

−0.3 −0.26 −0.3 −0.26

12
 cm   ) 

-2
 n (10

12
 cm   ) 

-2
 n (10

12
 cm   ) 

-2
 n (10

12
 cm   ) 

-2
 n (10

12
 cm   ) 

-2
 n (10

12
 cm   ) 

-2
 n (10

12
 cm   ) 

-2
 n (10

Figure 8.7.: Comparison of features in differential conductance between experiment shown in (b) (from

Fig. 8.1 (b)) and theoretical ribbon model (I) shown in (a) (from Fig. 8.3 (c)) and theoretical constriction

theory model (II) shown in (c) (from Fig. 8.6). All these measurements take into account the edge disorder.

However, the black overlay on the experiment in (b) is the evolution of conductance kinks in an ideal ribbon

without any edge roughness based on the ribbon theory (I) in Fig. 8.3 (a). Notice how the evolution of

states from size quantization at B = 0 T to quantum Hall level quantization at higher B matches quite well

between the experiment in (b) and the overlay. The lower panels feature close- ups around the low n and

high n regime in the upper panels. In the low n regime in (d,e,f), straight line features (dashed lines) that

are independent of B dominate the interference patterns in both theory and experiment. While in the high

n regime in (g,h,i), ’V’- shaped patterns emerge. Here, size quantization features evolve rapidly into the

respective Landau levels.
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dots probably due to interferences with other states. Only when all of involved Eigen states are brought

energetically close to each other by the magnetic field, do they form a resonance as discussed in section

8.3.2. We also observe such broken features in the constriction model in Fig. 8.7 (f) that is closer to the

experimental dimensions while these are rather straight lines in the nanoribbon model in Fig. 8.7 (e).

Here, we must note that since the edge disorder determines the finer details of the interference pattern, we

do not expect to see the identical features at the same value of n in both theory and experiment. However,

the type and the quality of features observed matches quite well.

At higher n, ’V’-like shapes dominate the differential conductance as seen in Fig. 8.7 (g) - (i). Densely

spaced quantization steps at B = 0 T evolve into much larger spaced Landau Levels at higher values of

B. For the smaller ribbon model (I) in Fig. 8.7 (g), the high charge carrier density region is dominated

by parabolic features, which also show the evolution from size to Landau quantization. In this case, the

parabolicity is caused by the rescaling procedure we use to match the experiment (see section 8.3.3). On

the other hand, for the constriction model (II) in in Fig. 8.7 (i), quantization steps at zero field become more

closely spaced and rescaling is much weaker. For this model we observe ’V’ -like shapes similar to those

seen in experiment in in Fig. 8.7 (h).

Using the above knowledge on the factors responsible for the observation of different features in differ-

ential conductance, we can now also explain the differences with regard to the conductance kink ◆ at 6 e2/h

between the "major" and "minor" voltage sweep directions shown in Fig. 8.2 (c) and (f). On the left side,

we observe a straight vertical line. This gets converted to a more curved line which is how one expects a

size quantization feature to evolve into a Landau level. This is once again an indicator of the fact that the

system in Fig. 8.2 (c) experiences a stronger contribution of localized states due to the fact that the gates

are swept along a direction perpendicular to the major line.

8.4.1. Conclusion

We have measured the conductance through a graphene nanoconstriction with a back and top gate in the

presence of a perpendicular magnetic field.

In the high field regime, we recover identical Landau level quantization for both "major" and "minor"

directions of gate voltage sweep. However, at low B-field, we see several features that evolve differently

with the magnetic field. Some of these are typical features that arise due to Bloch states and emerge into

the Landau levels. While other features remain nearly unaffected by the magnetic field. These features are

located mostly around the CNP and are a result of localized edge states.

Such results are also reproduced theoretically in both a ribbon and a constriction geometry with very

small edge roughness as compared to the experiment. This shows that even a very small amount of edge

disorder is enough to disrupt the size confinement effects in nanostructures. The behavior of different Eigen

states in the ribbon/constriction is used to explain the different features observed in the magnetic field

dependent conductance measurements. For example, the minor lines are a result of Eigen states dominating

the edges and remain unaffected by the magnetic field.

Thus, using both theoretical and experimental magnetic field measurements, we were able to explain

the features evolving with different slopes in the 2D conductance maps seen in the previous chapter (see

Fig. 7.8). By combining the usage of top gate with external magnetic field, we were able to disentangle the

size quantization features due to extended states in the bulk from the localized states due to edge disorder.
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It is further confirmed by the simulations that it is possible to manipulate the influence of edge disorder on

conductance by changing the direction of gate voltage sweep (see Fig. 8.3 (b) and (c)).
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9. Spin states in gate defined bilayer

graphene quantum point contacts

This chapter has been published in parts in:

Observation of the Spin-Orbit Gap in Bilayer Graphene by One-Dimensional Ballistic Transport

L. Banszerus , B. Frohn, T. Fabian, S. Somanchi, Epping, M. Müeller, D. Neumaier, K. Watanabe, T.

Taniguchi, F. Libisch , B. Beschoten , F. Hassler, and C. Stampfer, Phys. Rev. Lett. 124, 177701, 2020.

Contributions to this chapter:

The fabrication of the sample discussed in the chapter was done by L. Banszerus. The measurements

were performed by L. Banszerus and B. Frohn from RWTH Aachen University. All the data presented here

have been analyzed by S. Somanchi.

9.1. Introduction

In the previous two chapters, we have discussed the confinement of charge carriers in QPCs which have been

fabricated by top-down lithography and reactive ion etching of single layer graphene. Although features

like size quantization depicting the high quality of samples have been well established in such devices,

observation and study of charge and spin states and their excitation has been difficult to achieve due to the

presence of edge disorder. This may be overcome by using bilayer graphene to open a band-gap by using

a perpendicular electric field as mentioned already in chapter 4. In this chapter, we use this property of

bilayer graphene which allows us to confine charge carriers in a narrow channel using a combination of

back gate and split gates. We use additional finger gates and observe the formation of sub-bands in such a

gate defined bilayer graphene QPC. Application of a parallel magnetic field results in spin splitting of these

sub-bands. BLG is also of particular interest due to its weak intrinsic spin-orbit (SO) interaction [234]. SO

interaction also plays an key role in understanding the evolution of the band structure in the presence of an

external electric field. Theoretical studies have shown that BLG has an instrinsic SO coupling of around

24 µeV at K points for the low energy valence and conduction bands which are closest to the Fermi level

[235, 236]. Another study projected the gap induced by SO coupling at the K point to be on the order of

10−3 meV [237]. Kane and Mele first predicted quantum spin Hall effect in graphene due to the spin-orbit

interaction [238]. According to their model, SO interaction in graphene is attributed to two reasons - one

is the intrinsic SO coupling and the second is extrinsic or Rashbha SO coupling. Though the intrinsic SO

coupling is very weak for carbon, typically a few µV or even smaller [239–241], it can be enhanced by

using heavy metal adatoms [242] or with proximity effect by using a suitable insulating substrate such as
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transition metal dichalcogenides [243–245] or hBN [246, 247]. SO coupling is also crucial in spintronics

related experiments such spin life time measurements [248, 249].

Although conventional charge transport in both SLG and BLG is well studied experimentally, spin - orbit

interaction coupled electronic transport has not yet been fully explored. Recently, resonance microwave

measurements have been used to extract a SO gap of around 40 µeV in the case of single layer graphene

[250]. Investigation of such small energy scales becomes feasible only when the energy scales in the system

are comparable. In the current device with a sub-band spacing in the range of 0.3 - 0.6 meV, we observe

the presence of a SO gap at zero magnetic field and spin split sub-band crossings at a higher magnetic field.

The SO gap is manifested as a step at 2 e2/h due to the splitting of the first sub-band at zero magnetic

field and may be interpreted as substrate induced proximity enhancement of the SO coupling of the Kane

- Mele type [238]. This device also allows to explore electron - electron interactions at higher magnetic

field manifesting in the so-called 0.7 analog feature, similar to the 0.7 anomaly which was earlier observed

not only in semiconductor heterostructures such GaAs 2DEGs [251–254] but also in suspended SLG QPCs

[40].

9.2. Measurement configuration

The set-up of the dilution refrigerator used for measuring this device has already been discussed in section

7.2. The measurments were made at a temperature of 30 mK. Similarly, all the details about the fabrication

and geometry of the QPC discussed in this chapter have been described in section 6.2.

The sample consists of a BLG flake encapsulated in hBN placed on top of a graphite flake (thickness ≈
10 nm) resting on a Si++/SiO2 substrate. The graphite flake acts as the back gate (bg) to which a voltage

Vbg is applied. A symmetric DC bias voltage VDC superimposed by an AC voltage VAC = 300 µVpeak-to-peak

across the entire BLG channel together constitute the bias voltage Vb between the source and the drain

contacts (see the schematic of the measurement set-up in Fig. 9.1). Depending upon the resistance of the

channel, a current Isd is measured. Using the voltage across the channel Vsd , the differential conductance

G = dI/dV = Isd/Vsd in a four probe configuration can be measured using standard lock-in techniques. The

two split gates (sg) are 5 µm wide, are short to one another and a split gate voltage Vsg is applied to them.

This results in a perpendicular displacement field such that the region underneath the side gates is depleted

of charge carriers, thereby forming a 250 nm (separation between the two split gates) wide channel between

the source and the drain. However, sg and bg alone are not enough to observe quantized conductance. For

this purpose, three finger gates fg1 - fg3, each 200 nm wide, are designed on top of the sg across the BLG

channel. The distance between two adjacent finger gates is approximately 60 nm.

The voltage applied to each of these finger gates, Vf g1 - Vf g3, while keeping Vbg and Vsg constant (see

section 9.4 for more details), can be used to locally tune the strength of confinement i.e. the Fermi energy

and adjust the number of modes in a particular region of the channel and if necessary even pinch off the

transport underneath a particular gate entirely. Previously, in the same device, it was possible to achieve

different configurations of quantum dots - single, double, triple by varying the voltages applied to the three

finger gates [200]. This shows the importance of the finger gates in the confinement of charge carriers. In

this chapter, we use the side and the finger gates to form a quantum point contact.
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Figure 9.1.: Schematic: Top view of the sample (also see Fig. 5.7) and the measurement set-up

.

9.3. Formation of a 1D channel

In this section, we discuss the formation of a QPC in this device by applying a voltage to the split gates

such that the region underneath the SGs is depleted leading to the formation of a narrow channel or a QPC

between the source and the drain contacts. In Fig. 9.2 (a), a symmetric DC bias of 300 µV is applied

between the source and drain and the two terminal resistance is measured as a function of the side gate

voltage Vsg and the back gate voltage Vbg while all the other finger gates are grounded. The white dashed

line represents the CNP of the each individual conductance trace in back gate voltage G(Vbg) at a fixed

value of Vsg. The slope of this line is the relative lever arm αbg/αsg ≈ 0.8. As explained in section 7.4.2,

one can also calculate the gate lever arms using the thickness of the gate dielectrics i.e. the thickness of the

bottom tbottom and the top hBN ttop of the hBN-graphene-hBN sandwich used for making the device (see

section 6.2). In this case, since the gate dielectric (hBN) is the same for both the back and the split gates,

the relative lever arm may be calculated using the ratio αbg/αsg = ttop/tbottom = 20nm/30nm ≈ 0.7. This
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agrees quite well with the experimental value obtained above.

The application of the voltages Vbg and Vsg together results in an increase of resistance as we go towards

higher gate voltages away from zero along the diagonal dashed white line. The larger the resistance, the

larger the gate induced band gap opened in the bilayer graphene region under the side gates. Any point

along this diagonal line corresponds to a displacement field arising due to voltage applied to both the gates.

The displacement field due to the back (split) gate is given by Dbg(sg) =+(−)εbg(sg)(Vbg(sg)−V 0
bg(sg))/tbg(sg)

where εbg(sg) is the dielectric constant of the back (split) gate oxide which in this case is hBN with a value

of 4. V 0
bg(sg) is the gate voltage which leads to an initial carrier doping. This is the CNP i.e. the point of

intersection of the black dashed lines where V 0
bg = V 0

sg = 0 V . The average of the two D = (Dbg +Dsg)/2

gives the net displacement field that is responsible for opening the band gap. Therefore, in the present

device, there is no net charge carrier doping at zero displacement field.
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Figure 9.2.: (a) Measurement of the two terminal resistance R as a function of Vbg and Vsg at Vb = 300 µV

while all the fingers gates fg1-fg3 are set to ground. Figure adapted from Ref. [200]. (b) Four terminal

conductance G through the device as a function of Vf g2 while the displacement field varies along the direc-

tion of the black arrow in (a). The other two finger gates are set at a constant voltage of -4 V. (c) Schematic

representation of the formation of various sub-bands as indicated by the arrows in (b). The figure shows

the dispersion relation of bilayer graphene. ∆Ei j is the difference in energy between the ith and the jth

sub-bands.

.

9.4. Formation of sub-bands in the QPC: Quantized

conductance

Fig. 9.2 (b) shows the four terminal conductance as a function of the finger gate voltage Vf g2 for different

values of displacement field ranging from 0.28 to 0.18 V/nm i.e. for different combinations of Vsg ( = -1.5

to -1 V) and Vbg (= -1.256 ×Vsg) along the direction of the black arrow in Fig. 9.2 (a). The other two

finger gates are fixed at a constant voltage of -4 V. For calculating the four terminal conductance, a series

resistance of 760 Ω is subtracted from the actual data. This is to account for the resistance of the regions

in the 5 µm long channel which are not directly tuned by the finger gate fg2. Note that the value of this
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resistance also depends on the value of the side gate voltage besides Vf g1 and Vf g3. Therefore, it can vary

slightly by around 100 - 200 Ω for different measurements and is adjusted accordingly.

Clear quantized conductance steps at values of 4, 8, 12, 16 e2/h as expected for ideal bilayer graphene are

observed (see black arrows). This indicates four-fold degeneracy and a transmission of unity through the

QPC. Similar to the results obtained in single layer graphene as discussed in section 7.4.1 and 7.5.1, these

steps in conductance indicate the confinement of charge carriers in the QPC resulting from the formation of

sub-bands in bilayer graphene as shown in the schematic in Fig. 9.2 (c). With a decrease in displacement

field as we move from the left to the right in Fig. 9.2 (b), we observe an increase in the background or

residual conductance. This is a result of the current leaking from the channel to the region underneath the

side gates as the finger gate voltage increases. Nevertheless, the height of the steps still remains nearly the

same at 4 e2/h.

9.5. Spin splitting of sub-bands

Next, we investigate the evolution of the conductance steps at a fixed displacement field as a function of

an external parallel magnetic field B|| as shown in Fig. 9.3 (a). The conductance trace is measured at a

displacement field of 0.26 V/nm (see black dot in Fig. 9.2 (a) where Vbg = 1.76 V, Vsg = -1.397 V) and its

evolution from zero to up to a field of 6 T is shown. At 0 T, once again, we see conductance steps at a height

of 4 e2/h. At higher magnetic fields, intermediate steps at 2, 6, 10, 14...e2/h become visible (see the black

arrows) indicating a spin degeneracy lifting of the sub-bands.

9.6. Extraction of sub-band spacing

The appearance of intermediate plateaus is better understood using the the transconductance dG/dVf g2 plot

as a function of the parallel magnetic field and the finger gate voltage as shown in Fig. 9.3 (b). As the

magnetic field increases, each sub-band (indicated by the ■ symbol) splits into two branches- one with a

positive and the other with a negative slope (corresponding to the solid and dashed black lines emerging out

of each ■) indicating the spin-up and spin-down sub-bands respectively.

The evolution of the sub-bands with the magnetic field is elucidated further in the schematic of Fig. 9.3

(c). At B|| = 0 T, the sub-bands are spin and valley degenerate and at a finite magnetic field split into spin-

up and spin-down states. Consider the first and the second sub-band with energies E1 and E2 respectively.

As the magnetic field increases, at a certain point, the spin-up branch of the first sub-band 1↑ crosses the

spin down branch of the second sub-band 2↓. At this point (≈ 3.1 T, see the black dot "•" marked ∆E12

in Fig. 9.3 (b) and (c)), the Zeeman energy of sub-band splitting is equal to the sub-band spacing ∆E12.

Therefore, we can use EZeeman = gµBB|| = ∆E12 at this crossing point to calculate the sub-band spacing

(B|| = 3.1 T and assuming g = 2 for BLG). Similarly, using the other crossing points (∆E23,∆E34 etc.),

the spacing between the next consecutive sub-bands can also be extracted as shown in Table 9.1. Other

higher order crossing points such as the black dots at ∆E13 and ∆E24 are also visible in Fig. 9.3 (b). These

appear as a result of the crossover of the spin-up state of one sub-band n↑ with the spin-down state of the

next consecutive sub-band n+1↓. For example, ∆E13 is the crossing point of the spin-up state of the first

sub-band 1↑ with energy E1 and spin-down state of the third sub-band 3↓ with energy E3 (see Fig. 9.3 (c)).
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Figure 9.3.: (a) Conductance G as a function of Vf g2 measured at • in Fig. 9.2 (a). The parallel magnetic

field B|| is varied from 0 to 6 T. (b) Transconductance dG/dVf g2 as a function of Vf g2 and B||. The black

squares ’■’ denote the sub-bands formed at zero magnetic field (also shown in (c)). As the magnetic

field increases, each sub-band splits into a spin-up and spin-down sub-band (see the solid (spin-up) and

dashed (spin-down) black lines emerging out of each ■). At the crossing points indicated by the black

dots ’•’, Zeeman energy of spin splitting is equal to the sub-band spacing. (c) Schematic representation of

the Zeeman splitting of sub-bands in the presence of a parallel magnetic field. Each sub-band splits into a

spin-up and a spin-down sub-band. At the crossing points, the spin-up (down) of one sub-band crosses with

the spin-down (up) of the next (previous) sub-band.

Once again, we use the values of magnetic field at which these crossing points occur in Fig. 9.3 (b) and

compare them to the expected values in Table 9.2.

The exact method in which the values of the gate voltage and the magnetic field at these crossing points

are extracted is explained in Appendix 9.7.

Note that in Fig. 9.3 (b), there are features such as the vertical black dashed lines which seem to be

independent of magnetic field. For example, observe the spin-down state of the first sub-band. The Fermi

level is pinned at a value of ≈ -10.5 V due to quantum capacitance effects. As we go to higher values of

magnetic field beyond the crossing point at ∆E12, the 2↓ level also appears as a vertical straight line since it

must travel parallel to the 1↓ (also shown in the sub-plot (c)).
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Table 9.1.: Sub-band spacing extracted from the crossing points in Fig. 9.3 (b). Here, the resolution in

the measurement of B|| is 100 mT i.e. the uncertainty in B||, δB|| = 50 mT. Thus, the uncertainty in the

measurement of sub-band spacing δ (∆E) = gµBδB|| = 6 µeV (assuming g = 2 for graphene). Using the

single particle model, the width w of the QPC for a given sub-band spacing ∆Ei j is given by w = A
√

j2−i2
∆Ei j

where the constant A = ℏπ√
2m∗ . The standard deviation of the width of QPC in the last column s = 44 nm.

The average width of the QPC is 369 nm and the standard error s/
√

N = 22 nm where N = 4 is number of

values of the width [255]. Thus, the width of the QPC w = 369 ± 22 nm.

B|| (T) Sub-band spacing ∆E = gµBB|| (meV) Width (w) of the QPC (nm)

from single particle model

3.1 ∆E12 0.359 309

3.7 ∆E23 0.428 365

4.5 ∆E34 0.521 391

5.3 ∆E45 0.614 409

Table 9.2.: Sub-band spacing at the higher order crossing points in Fig. 9.3 (b). As explained in Table

9.1, the uncertainty in the measurement of the sub-band spacing, δ (∆E) = 6 µeV .

B|| (T) Sub-band spacing Extracted from the plot Calculated (meV)

∆E = gµBB|| (meV)

5.7 ∆E13 0.656 ∆E12+∆E23

= 0.787

7.6 ∆E24 0.880 ∆E23+∆E34

= 0.949

Assuming the single particle model with a one dimensional box with a length of confinement w, the

energy of the particle in the nth sub-band is given by En = ℏ2n2π2

2m∗w2 where m∗ = 0.033me is the effective

mass of the electron and n ∈ Z+. Using the values of the sub-band spacing from Table 9.1 in the above

expression, we can calculate the average width of the QPC which is roughly 370 nm. This is on the same

order of the width of 250 nm obtained from the AFM measurements in Fig. 5.7 (b) and (c).

9.7. Identification of peaks

In this section, we explain the procedure used to extract the values of the crossing points in the transcon-

ductance maps shown in Fig. 9.3 (b). These crossing points correspond to the local maxima or peaks in the

transconductance dG/dVbg(Vf g2) at a particular value of the parallel magnetic field B||.

To identify these maxima, we use a 2D peak finder function [256]. This MATLAB code identifies the

peak by using the local maxima (there is also another possibility to use the weighted centroids method as

well). Each peak is considered to be a Gaussian with a certain width (a smooth point spread function).
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Figure 9.4.: (a) - (d) Transconductance map shown in Fig. 9.3 (b) for different values of span i.e. smooth-

ing along the Vf g2 and B|| axes. Span in (a) is 1 along Vf g2 and 1 along B|| axis. Span in (b) is 5 along Vf g2

and 1 along B|| axis. Span in (c) is 10 along Vf g2 and 1 along B|| axis. Span in (d) is 10 along Vf g2 and 5

along B|| axis.Data points indicated by "+" correspond to the derivative maxima identified by the 2D peak

finder function. (e) Same as (b) but with 100 times horizontal amplification of peaks in each trace.
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9.7. IDENTIFICATION OF PEAKS

9.7.1. Smoothing the data

First, we smooth the raw data using a moving average with certain span [223, 257]. The span is an integer

and refers to the number of data points over which the data is smoothed. Naturally, the number of peaks

identified by the 2D peak finder function depends on the how much the raw data is smoothed. Smoothing

the data to a certain extent reduces the influence of stray peaks such as Coulomb oscillations and ensures

that the peak identified by the function is, indeed, the derivative maximum. However, smoothing it way

too much can have the opposite effect, decreasing the relative height of some peaks with respect to the

background, thereby making it difficult to distinguish all the peaks especially if they are quite close to

one another – compare the number of peaks identified by "+" in different sub-plots of Fig. 9.4). Consider

Fig. 9.4 (d) where we smooth the data across 10 points along the gate axis i.e. span = 10 along the Vf g2 axis

and is equal to 5 across the B|| axis. This is the same amount of smoothing used in the Fig. 9.3 (b). The

peak finder function identifies several maxima including the crossing points denoted by "•" symbols. The

values of the magnetic field at these points are then used to calculate the sub-band spacings.

However, since this amount of smoothing is a bit too much for the determining all the derivative maxima

in the entire map, for all the subsequent calculation, we use Fig. 9.4 (b) where the data is smoothed only 5

times along the gate axis and not smoothed at all along the field axis. This seems to work well to identify

even more peaks in the transconductance plot as the function scans the data radially without any hindrance

from unwanted stray peaks such as in Fig. 9.4 (a).

9.7.2. Horizontal amplification of peaks

From Fig. 9.4 (b), although all the crossing points are identified, all the derivative maxima in every single

horizontal line-cut along the gate axis are clearly not identified. In order to achieve this, we employ the

following procedure. First, we modify the raw data by amplifying the value of the derivative for each

trace dG/dVbg(Vf g2) at a particular value of B|| 100 times. The rest of the traces remain constant at the

original intensity. This is to ensure that all the peaks in this trace are much stronger than the peaks in

the neighbouring traces such that the 2D peak finder function locates all of them when scanning the data.

Subsequently, this procedure is repeated for all traces one-by-one such that almost all the peaks (the black

cross symbols) in every single trace are identified as shown in Fig. 9.5 (a).

9.7.3. Interpolation of peaks

Identification of all the peaks in every single trace is important since the differences between the two succes-

sive peaks in any given trace is a measure of the Zeeman splitting at that particular value of B|| (see Fig. 9.3

(c). Hence, in order to obtain all the peaks, we develop the following procedure. As a example, consider

the spin-up and spin-down states of the first sub-band as shown in Fig. 9.5 (b). As explained earlier, the

difference between two peaks on each of these lines at a particular value of magnetic field (denoted by ’A’)

corresponds to the Zeeman splitting energy of the first sub-band. Now, if the peak finder function has been

unable to identify one or more peaks along the spin down state feature at around -10.5 V, we obtain these

missing peaks by linear interpolation between the peak at the next lower and the peak at the next higher

value of the field (see the green dots). In this way, we locate all the peaks for the feature corresponding to

the 1↓ state. Similar interpolation technique is followed for the 1↑ state as well. Knowing all the peaks, the
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Figure 9.5.: (a) Same transconductance plot as shown in Fig. 9.4 (b) but with 100 times horizontal ampli-

fication of peaks (black cross symbols) for each conductance trace G(Vf g2) at a particular value of B||. (b)
Green dots show linear interpolation between the peaks. (c) All the peaks in the entire plot identified after

the linear interpolation in (b). (d) Schematic representation of the sub-band splitting shown in (c) with the

conductance steps (the numbers) in units of e2/h and the occupancy of each sub-band (see arrows next to the

numbers). (e) Difference in finger gate voltage at a given value of B|| between two relevant sub-bands δVf g

as a function of B|| as indicated in (c). (f) Difference in finger gate voltage at a given value of B|| between

two relevant sub-bands given by A - H as shown in (c) and (e).
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9.7. IDENTIFICATION OF PEAKS

difference in the finger gate voltage between two points on the 1↑ and 1↓ state features at the same partic-

ular value of B|| allows us to calculate the amount of sub-band splitting ’A’. Using the same procedure, we

obtain all the peaks (denoted by black dots) in the entire plot of Fig. 9.5 (c).

The same data is presented in the schematic in Fig. 9.5 (d) highlighting the different plateaus in con-

ductance in units of e2/h (see the numbers) and the associated spin structure (see the arrows next to the

numbers). The difference in finger gate voltage at a given value of B|| between two relevant sub-bands

(see the black arrows next to A - M in Fig. 9.5 (c)) is a measure of the Zeeman splitting and is depicted in

Fig. 9.5 (e) - the distances or the differences in the finger gate voltage δVf g2 as a function of the magnetic

field. For example, A is the difference in Vf g2, δVf g2 between two points on 1↓ and 1↑ states at the same

value of B|| as B|| goes from 0 to 3.1 T (when 1↑ and 2↓ states meet each other) as seen in Fig. 9.5 (f). B is

the difference in Vf g2 between two points on 1↑ and 2↓ states at the same value of B|| as B|| goes from 0 to

3.1 T. C is the difference in Vf g2 between two points on 1↓ and 2↓ states at the same value of B|| as B|| goes

from 3.1 to 8.3 T. D is the difference in Vf g2 between two points on 1↑ and 2↓ states at the same value of

B|| as B|| goes from 3.1 to 5.7 T (when 1↑ and 3↓ states meet each other).

Straight away from Fig. 9.5 (e), one can notice that every branch from A - M falls under one of the three

categories based on their slope (see Table 9.3) - those with a positive slope (spin up) corresponding to g =

2 such as A, E, I, L, D, H and K, those with a negative slope (spin down) with g = -2 such as B, F, J and M

and the ones (spin down) which appear as a straight line due to Fermi level pinning such as C and G.

One can observe other small but interesting differences from this plot. As we move from one sub-band

to the next higher level, the density of states and consequently, the net charge carrier density of graphene

increases. This has a huge influence on the device electrostatics which is clearly visible on the voltage scale

along the x axis. For example, notice how the difference in the slopes of A and B in Table 9.3 is much larger

than the difference between L and M due to Fermi level pinning of the 1↓. Similarly, the slopes of A and

D, E and H and I and K are also quite close to each other suggesting a similar evolution of these branches.

More importantly, we observe several gaps such as ∆ and α in finger gate voltage which are discussed in

the following sections.

Table 9.3.: Slopes of the different branches A - M shown in Fig. 9.5 (e).

Branch slope (T/V) Branch slope (T/V)

A 16.3 H 10.7

B -9.9 I 12.9

C - J -14.37

D 17.63 K 12.8

E 13.8 L 14.74

F -12.72 M -14.2

G -
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9.8. Sub-band spacing as a function of displacement field
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Figure 9.6.: Difference in energy between the first and the n-th sub-band ∆E1,n =∑
n−1
i=1 ∆Ei,i+1 for 2≤ n≤ 5

as a function of the side gate voltage Vsg or the displacement field D. The red dots and the purple traingle

correspond to the values obtained from Table 9.1 and 9.2 respectively. These data are extracted from

Fig. 9.3 (b) while the remaining data points are obtained from the plots shown in Fig. C.1 and C.2 using the

procedure described in section 9.7.

.

The measurements shown in Fig. 9.3 (b) are repeated for several other values of side gate voltage/displacement

fields (see Appendix Fig. C.1 and C.2) and the intersection points are once again used to extract the sub-

band spacings as explained in section 9.6. Fig. 9.6 shows the energy difference between the first and the

n-th sub-band as a function of displacement field. We see that the sub-band energies remain nearly constant

in the range of the displacement field under consideration. This suggests that the width of the QPC remains

unaffected with changes in the displacement field.

9.9. The 0.7 analog structure

In Fig. 9.5 (e), we observe several gaps in δVf g2 such as α and ∆ that have been extracted from the transcon-

ductance plot of Fig. 9.3 (b). The value of ∆ is measured to be around 0.1 V and is visible in the form of a

pronounced step at 2 e2/h as seen in the close-up in Fig. 9.7.

Such features were also observed earlier in GaAs heterostructures [254] where the step at 0.7 × 2e2/h

at 0 T gradually evolves down to 0.5 × 2e2/h with an increase in the parallel magnetic field. This features

was, therefore, called the 0.7 anomaly. However, in our device, we do not observe any step at 0.7 × 4e2/h

but rather, one at 2 × e2/h that is unaffected by magnetic field. This may be explained as a splitting of the
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Figure 9.7.: Close-up of Fig. 9.3 (a) at low B|| highlighting the presence of the step at 2 e2/h at 0 T that

remains constant with magnetic field. (see the black arrow).

first sub-band caused by spin-orbit (SO) coupling of the Kane-Mele type [235, 237, 238, 241, 258] instead

of e− e interaction at low B||. The absence of such an effect could be caused by the efficient screening of

the graphite back gate [259] which is quite close (≈ 30 nm) to the BLG graphene channel. Thus, at low

magnetic field, SO coupling dominates over the e− e interaction.

The splitting of the first sub-band at zero magnetic field is also clearly visible in the transconductance

plots shown in Fig. 9.8 (a) - (d) measured at different values of displacement field D. Measurement of ∆

in several such measurements (see Fig. C.1 and Fig. C.2) gives us a near linear dependence of ∆ on the

displacement field in this particular parameter range under consideration as shown in Fig. 9.9 (a). The

observed dependence may be attributed to the fact that SO coupling in BLG is enhanced by proximity

effects which depends on the overlap between the orbitals of graphene and hBN. Further, since ∆ also

depends on the band structure of BLG near the Fermi energy, an overall dependence on D is expected [246,

260].

Besides ∆, in Fig. 9.5 (d), one can observe another discontinuous shift in voltage ’α’ of around 0.15

V. This occurs at the crossing point of 1↑ and 2↓ levels in Fig. 9.3 (b). Similar behavior was once again

observed by the authors of Ref.[254], where they observed an intermediate kink at around 1.5 × 2e2/h at

magnetic field just before the crossing point which eventually went to a step at a height of 2e2/h. This

discontinuity in the 1↑ was referred to as the 0.7 analog since its origin and the evolution is similar to that of

the 0.7 anomaly at 0 T. This behavior is also observed in the present scenario in Fig. 9.3 (a). Starting from

0 T, as the magnetic field increases, the steps at 4, 8, 12.. e2/h evolve to intermediate steps at 6, 10..e2/h

already at around 2 T. Thereafter,the step at 1.5 × 2e2/h = 6 e2/h transforms gradually into a 1 × 4e2/h as

the magnetic field increases towards 6 T (see the red dashed ellipse) indicating a spontaneous spin splitting.

Similar results as seen in other measurements are shown in Fig. 9.8 (e) - (h). Observe how there is a

clear step at 6e2/h in the blue trace at 2 T which eventually moves towards a lower step at a height of 4e2/h

(see black dashed ellipse) once the levels 1↑ and 2↓ intersect in the corresponding transconductance plots

in Fig. 9.8 (a) - (d).

In the case of the GaAs heterostructre [254], the 0.7 analog, similar to the 0.7 anomaly was understood as

a consequence of strong exchange interactions as theoretical simulations based on simple non-interacting
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Figure 9.8.: (a - d) Transconductance dG/dVf g2 as a function of Vf g2 and B|| for different values of

displacement field D. Plots in (a) - (d) are close-ups of Fig. C.1 (d), (e) and Fig. C.2 (i), (k) respectively. (e
- h) Corresponding conductance traces from B|| = 0 to 5 T. Starting from the left, each trace is shifted by

25 mT with respect to its previous trace for the sake of clarity. The 0.7 anomaly is indicated by the black

dashed ellipse. The step at G ≈ 1.5 × 4e2/h (blue trace) at around B|| = 2 T gradually evolves into 4 e2/h as

the magnetic field increases to 5T.
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Figure 9.9.: (a,b) Voltage gap ∆ and α as a function of D or Vsg. Red dots correspond to values extracted

from Fig. 9.3 (b). The remaining values have been extracted from the plots in Fig. C.1 and Fig. C.2.

electron model did not show any signs of discontinuities in voltage. Once exchange interactions are in-

cluded, voltage gaps at the crossing points where the spin-up bands populate twice become visible [261].

The fact that only spin up states show such gaps is explained as a way of the system to increase parallel

spin ↓ electrons at the level crossings which in turn lowers the total energy of the system. This may be also

understood as the electrons in 2↓ being screened by those in 1↑ [262]. At the crossing point, the energy of

2↓ is higher than the chemical potential and therefore, empty. Hence, any changes in the ideal behavior of

the levels should be coming from the electrons in 1↑.

In our device, at a finite in-plane magnetic field of around 2 - 3 T, the Zeeman effect dominates the SO

coupling making e−e interaction at the 0.7 analog more relevant. Similar to ∆, α shows a linear dependence

on the displacement field D as shown in Fig. 9.9 (b) in the given parameter range.

9.10. Conclusion

In summary, we have been able to successfully demonstrate the formation of sub-bands in split gated bilayer

graphene QPC resting on a graphite back gate. Conductance steps with a height of 4 e2/h at 0 T split into

intermediate kinks with a height of 2 e2/h under the presence of a parallel magnetic field. From the transport

measurements, we identify voltage gaps between 1↑ and 1↓ states at 0 T and also at the crossing point

between 1↑ and 2↓ levels. The gap at 0 T is a measure of the spin orbit coupling in BLG and can be tuned

by the displacement field. Tuning and controlling the SO gap is useful for spintronic applications such as

spin-orbit valves, spin FETs etc [260, 263, 264]. On the other hand, the gap at higher fields is an estimate

of the amount of e− e interaction driven spontaneous spin splitting. At this crossing point, we observe 6

fully spin down polarized states. Such a high degree of polarization makes BLG QPCs good spin polarizers

and detectors in ballistic spin transport devices [265].

109





10. Conclusion and Outlook

The goal of this thesis is to achieve confinement of charge carriers in single and bilayer graphene. In the first

section of this chapter, we summarize the experiments performed and the results obtained in this direction.

In the next section, we provide a short overview of other interesting and relevant experiments on graphene

QPCs and an outlook on some possible future experiments.

10.1. Conclusion

Graphene has drawn a lot of attention from both experimentalists and theoreticians since its exotic material

and electronic properties confer it a huge potential as the choice of material in electronic and spintronic

devices. However, in graphene, unlike traditional semiconducting heterostructures based on GaAs, SiGe

etc., there is no band gap which is inevitable for making electronic devices. In this thesis, we explore two

different approaches of achieving this : the first one is by etching a graphene flake into narrow strips called

constrictions and the other is by using split gates as in the case of it semiconductor counterparts. However,

in order to form nanoconstrictions or quantum points which exhibit size quantization, a prerequisite is

obtaining high quality samples with high mobility and low scattering of charge carriers. Over the course

of time, with the development of new process technology, fabrication of high quality samples was made

possible. In chapter 3, we produce graphene and hBN flakes using the technique of mechanical exfoliation.

hBN-graphene-hBN sandwiches measured in this thesis were fabricated using the van der Waals pick-up

technique developed by Wang et.al. [172]. Using this, it is possible to pick up graphene from the substrate

with a layer of hBN by utilizing the van der Waal adhesive force and laying them down on another layer of

hBN, all this while ensuring that the surface of graphene is not contaminated by any external agents such

as organic solvents. Such samples have shown a significant reduction in the overall doping concentration

and strain fluctuations resulting in microscopically clean sample as seen from the Raman spectroscopy

measurements. Transport measurements on such samples have also yielded a low residual charge carrier

density and high mobility for both single and bilayer graphene.

Indeed, quantum point contacts built from single layer graphene-hBN sandwiches have already shown

ballistic transport at a mobility of 150,000 cm2V−1s−1 at the CNP [42]. These state-of-the-art devices

were fabricated using a combination of high accuracy electron beam lithography and SF6 based etching

techniques which allow a good control over the constriction size and the edge roughness. These devices

showed signatures of ballistic transport and size quantization which testify the high quality of the samples.

However, in spite of this, edge disorder was seen to have played an important role in determining the

conductance of carriers through the channel and even hampering it. For instance, in narrower constrictions

(width ≈ 230 nm), the transmission was limited to only 0.5. This is because the edges are much closer

to the channel and have a larger impact on the conductance. Since rough edges are inevitable in etched

devices, an understanding of how these edge states function, if and how they can be tuned independently

and to what extent still remains an important unanswered question.
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With these insights in mind, using the same van der Waals fabrication technique discussed above, in

chapter 5, we build a new generation of devices with a similar geometry but much larger leads to ensure that

the constriction is indeed ballistic and to remove other interference effects such as Fabry-Peŕot oscillations

which were previously observed in Ref. [42]. Such interference effects occur due to the coherent reflections

of carriers at the finite size leads and therefore, an enlarged size of the lead now ensures that the interference

length scale does not obscure the visibility of conductance kinks anymore. Further, the new design now also

includes a pair of top (split) gates covering the edges of the constriction to be able to tune the Fermi level

at the edges directly and independently from the channel (see Fig. 6.2). In this constriction with a width of

300 nm, a direct manifestation of the localized edge states is visible in the form of a large deviation from

the ideal ballistic transport behaviour around the CNP, similar to Ref. [42]. Moreover, robust conductance

kinks on the order of 2 - 3 e2/h that are independent of the top gate voltage confirm that they are indeed

signatures of size quantization effects occurring in the constriction.

The main result we obtain from this device is the measurement of a non-constant relative gate lever arm

αtg/αbg. Since the back gate lever arm is more or less constant, this means that the coupling of the top gate

αtg to the constriction changes continuously. This is a consequence of the stray field lines of the top gate

such that tuning the top gate influences not only the edges but also the channel. These data are consistent

with previously obtained results on graphene nanoribbons whose edges are subjected to treatment with HF

acid solution [220]. When the edges of the constriction/ribbon are exposed to Fluorine whether it is the

form of HF or SF6 (during etching), it reduces the disorder potential and increases the charge accumulation

near the edges of graphene resulting in a gate tunable gate coupling.

In the other sample discussed in this chapter, we modified the design to now have a single top gate in the

shape of a QPC with a width of 230 nm, covering the entire constriction (and the leads as well) except the

edges as shown in Fig. 6.1. The global top gate should now provide a uniform field throughout the channel.

Only the stray field of the top gate affects the edges while the back gate can be used to tune the entire device.

The idea behind incorporating a single top gate instead of a split gate design like in the previous chapter is

to exclude the possibility of any asymmetric electric field that may modify the conductance through the 380

nm wide QPC.

The charge carrier density in the QPC can now be tuned by using both the gates independently. Mea-

surement of four terminal conductance as a function of the top gate voltages showed quantized conductance

kinks with a step height on the order of 2 - 3 e2/h corresponding to a transmission of 0.7. Bias spectroscopy

was used to extract a sub-band spacing of around 5 - 6 meV.

An important result that forms of the crux of this chapter is observed upon close examination of the

transconductance maps in Fig. 7.8 (a) - (b). Besides a line with a dominant/major slope which gives the

relative lever arm, several other lines with a minor slope are also visible. While the features parallel to the

major line come from the evolution of the conductance kinks, the minor slope features are explained as a

result of the localized states present along between the top gate and the edges and also along the edges of

the QPC. Due to the proximity of the top gate, stray field lines emerging from it tune the edge states but

with much lesser strength as compared to the states present right under the top gate in the channel.

We, then, sweep the gates along two different directions - one along the charge carrier density axis

perpendicular to the major slope and the other parallel to the minor slope with the hope that the latter

suppresses the contribution of edges to the conductance. Right away, we see that the kinks, especially those

away from the CNP, remain undisturbed regardless of the direction of sweep. But, the features closer to

the CNP, where disorder plays an important role, differ based on the direction of sweep (see Fig. 7.9 (b)).
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Similar results are also reproduced in theory using tight binding simulations for a nanoribbon model where

cleaner quantization features are seen when we sweep the gates along the minor slope (see the purple line

in Fig. 7.13 (b) and (c)).

Another knob that can be used to tune the density of states is a magnetic field applied perpendicular to

the QPC. This forces the electrons to move from the size quantization regime to the Landau levels as seen

in Fig. 8.1. Experimentally, we observed that the features at higher magnetic fields remain the same for

both the directions of sweep. However, since the low field region especially close to the CNP is dominated

by edge disorder, the features vary greatly between the two measurements.

The features observed in the transmission spectrum are explained using different types of eigen states and

their interference (see Fig. 8.4). For example, the straight line feature close to the CNP that moves almost

independent of the magnetic field is an eigen with a very weak coupling to the leads i.e. a strongly localized

state. Similarly, the extent of localization of each eigen state determines its dominance in the transmission

spectrum - some show up as sharp resonances while others contribute to the background signal. Thus, this

basic nanoribbon model (width ≈ 20 nm), after the necessary rescaling to be comparable to the experimental

data, explains several experimental features particularly, those close to the CNP. Nevertheless, we also use

another accurate constriction model (width ≈ 200 nm) with leads where the dimensions are much closer

to reality as shown in Fig. 8.6. Consequently, we observe a lot more interference features as compared to

the nanoribbon model. Particularly in the high charge carrier density regime, similar to the experiment, we

observe "V" like features due to the rapid evolution of the quantized conductance steps into Landau levels in

Fig. 8.7. Thus, we have been able to successfully tune the edges using the top gate. By sweeping along the

minor slope, we have been able to reduce the influence of edge disorder which is manifested in the form of

cleaner conductance kinks, fewer localized states in the transmission spectrum and relatively well defined

Bloch states that move towards their respective Landau levels as expected.

In the next chapter, we study quantum point contacts that are defined by split gate technology on a hBN

- bilayer graphene - hBN sandwich resting on a layer of graphite. Using the graphite layer as the back gate,

it is possible to achieve stronger confinement of charge carriers as compared to using the traditional Si back

gate [200]. The voltage applied to the split gates along with the back gate is used to create a QPC with a

width of 250 nm. While the finger gates are used to tune the charge carrier density of the channel locally

(see Fig. 9.1). We observe quantized conductance with a step height of 4 e2/h as expected for graphene

with full four fold degeneracy. The spin degeneracy is broken with the application of an external parallel

magnetic field. Spin splitting of sub-bands is visible in the form of intermediate plateaus in conductance

at higher magnetic field values and crossing points in the transconductance map due to the crossover of

different spin-up and spin-down states. From these points, where the Zeeman energy matches the sub-band

spacing, we extract the sub-band spacings. These values seem to be independent of the displacemnt field

implying the width of the QPC remains unchanged. The most important result of this chapter is the presence

of discontinuities in finger gate voltage in the plots of transconductance as a function of finger gate voltage

and the magnetic field as described in section 9.9. These are present both at a magnetic field of 0 T between

the the spin-up and spin-down levels of the first sub-band and at a higher value of more than 3 T at the

crossing point of the spin up level of the first sub-band and the spin-down level of the second sub-band.

The voltage gap at low magnetic field is attributed to SO coupling that is dominating due to a weak Zeeman

effect. On the other hand, at a high magnetic field, e− e interactions dominate the SO coupling as the

Zeeman energy increases. Accordingly, we observe a step at 2 e2/h at 0 T which remains constant with

magnetic field. While at the crossing point, we observe that there is a step at 6 e2/h that gradually evolves
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into 4 e2/h as the magnetic field increases similar to GaAs heterostructures.

Thus, we have realized our goal of charge carrier confinement using high quality hBN encapsulated

graphene based QPCs.

10.2. Current research and outlook

10.2.1. Scanning gate microscopy

Figure 10.1.: SGM images: Conductance G as a function of the charge carrier density for different values

of temperature T . (a) - (c) The tip is at a distance of 120 nm (dtip) from the sample and induces a charge

carrier density ∆n = -0.23 ×1010cm−2. (a) Bulk density n = 0.3 ×1010cm−2 (b) 0.22 ×1010cm−2 (c) 0.15

×1010cm−2 (d) - (f) Here, n = -0.15 ×1010cm−2 and dtip = 120 nm for different values of the tip voltage

Vtip corresponding to ∆nmax = (d) 0.12 ×1010cm−2 (e) 0.25 ×1010cm−2 and (f) 0.37 ×1010cm−2.Figure

reprinted from Ref. [266].
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While the transport measurements described in this thesis use external gates to alter the Fermi energy,

scanning gate microscopy (SGM) uses the voltage applied to the tip of a atomic microscope to change the

local potential of the QPC underneath which produces a change in the conductance [267]. Scanning the tip

across the sample is equivalent to having a movable top gate. This technique has already proved useful in

the study of localized charge states in graphene quantum dots [268] and nanoconstrictions [155, 269, 270].

In the future, device geometry and experiments may also be modified and developed to study the localized

states along the edges. Recently, using the QPC geometry described in chapters 4 and 5 (without the top

gates) in single layer encapsulated graphene, we studied the flow of electrons (besides the local density of

states), through a circular Veselago lens [266]. We observed a high current density or a high transmission

when the tip is placed at the centre of the constriction due to the Klein tunnelling of charge carriers (see the

arrows in Fig. 10.1 (b), (c) and (e), (f)). On the other hand, low intensity conductance spots are observed in

the SGM images when the tip is placed slightly away from the QPC due to reduced transmission suggesting

that the smoothness of the junction plays a crucial role in the electron flow and the corresponding image.

Thus, the high quality of our devices has made it possible to study electron optics behaviour in graphene

QPCs.

10.2.2. Split gate QPCs in single layer graphene

As explained in chapter 3, in case of monolayer graphene, it is difficult to form a QPC by simply using

gates due to the gapless nature of electronic band structure. This is due to the formation of p-n junctions

that are conducive for Klein tunneling, effectively leading to short circuit current through the constriction

[91]. This stands as a hindrance in the way of QPCs which form an important tool in many transport studies

such quantum Hall interferometry where the electron and hole edge channel mixing in the quantum Hall

(QH) regime poses lack of control over QH edge channel transmission. However, it was shown that by

using high mobility, encapsulated graphene fabricated using the van der Waals technique, it is possible to

separate these edge channels [271]. This technique of fine-tuning the transmission of the QPC in the QH

regime can also be exploited in electron optics experiments. Recently, this geometry was used to study the

transition of a QPC from a Fabry- Peŕot interferometer at a ballistic, low magnetic field regime to a QH

regime at high field that is facilitated by snake trajectories [272, 273]. The incorporation of split gates to

control edge trajectories was also useful in the study fractional QHE (FQHE) as well [271, 274, 275]. More

recently, graphite top and back gates were also introduced to explore exotic quasi particles such as anyons

in the FQHE regime [276].

10.2.3. Quantum dots in bilayer graphene

Realizing a quantum qubit using graphene has been the ultimate goal towards which a lot of experimental

research is focused. Recent experiments have the used the combination of bilayer graphene and graphite

back gate device design similar to the one proposed in chapter 6 to fabricate single quantum dots with

clear spin and valley splitting in the presence of a magnetic field [199]. Follow up experiments have been

able to reach up to a triple dot regime in fully gate controlled quantum dots [200] where excited states

were investigated in the single dot regime. While tunneling barriers in such devices are formed using the

ambipolar nature of a graphene p-n junction, they can also be tuned using external gates such that tunnel

coupling varies over even two order of magnitude, in turn making the device vary between the characteristic

Coulomb blockade regime and a Fabry-Perot interferometer [277]. Taking another leap forward, charge
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detection has also been established in such devices where another gate defined quantum dot acts as the

charge detector instead of using a standard nanoribbon [278]. This gave a degree of charge detection far

better than other previous works on graphene quantum dots and even comparable to the quality of other

semiconductor quantum dots such as GaAs or Si. This series of development has provided us with a device

that is now ready for time resolved measurements [23]. Employing a high frequency read out scheme can

then help us to perform spin lifetime measurements in bilayer graphene.
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A. Process parameters

A.1. Cleaning the substrate

The Si++/SiO2 chips have Cr/Au markers that have been deposited by EBL.

1. 5 min. in acetone in an ultrasound bath

2. 5 min. in IPA in an ultrasound bath

3. Blow dry with N2 gas

4. Plasma asher (Power = 300 W, flux = 200 sccm, time = 5 min). The chips can now be used for

exfoliation of graphene or hBN.

A.2. Fabrication of etched single layer graphene QPCs

A.2.1. Preparing hBN-SLG-hBN sandwiches

1. Break a new un-doped Si wafer into the smaller pieces.

2. Pre-bake it for 1 min at 100°C on a hot plate. Let it cool down before applying any resist to prevent

it from forming bubbles.

3. Spin-coat PVA 4% at 3000 rpm for 30 s. (Program no. 3 on the spin coater).

4. Bake the resist for 2 min at 120°C. Let it cool down.

5. Spin-coat PMMA 950K at 3000 rpm for 30 s (Program no. 3).

6. Bake the resist for 6 min at 120°C.

7. Apply PMMA 950 K around the circumference of the ring of the transfer holder using the nozzle of

a thin pipette.

8. Place the holder on a cleanroom wipe on top of the hot plate and bake the resist at 120°C for 10 min.

Allow it to cool down. Use this holder to fish the top hBN from water as explained in section 5.7.

A.2.2. Processing hBN-SLG-hBN sandwiches

• Cleaning the sandwich

1. 15 min in acetone

2. 5 min in IPA
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3. Plasma asher: Power = 300 W, flux = 200 sccm, time = 5 min

• Spin coating

1. Dehydrate the sample at 100°C for 1 min.

2. Spin coat PMMA 50K at 4000 rpm for 30 s with a pre-acceleration of 500 rpm for 5 s (program

no.4).

3. Bake the resist - first at 1000C for 20 s followed by 160°C for 10 min.

4. Allow the chip to cool down for a minute.

5. Spin coat PMMA 950K using program no.4.

6. Once again, bake the resist - first at 100°C for 20 s followed by 160°C for 10 min.

7. Allow the sample to cool down for one minute.

• EBL for hard mask

1. Dose = 200 µC/cm2

2. beam current = 100 pA

3. beam step size = 1 nm

• Development of hard mask

1. 65 s in AR 600-55 developer

2. 30 s in IPA to stop the development

3. Blow with N2 gas.

• Metallization of hard mask

1. Evaporation of 20 nm Al at the rate of 0.2 nm/s.

2. Lift off the metal in acetone for 15 min or until the metal peels away from the surface of the

chip.

3. 5 min in IPA

4. Blow with N2 gas.

• Reactive ion etching

1. Cleaning the chamber

Power = 300 W, Pressure = 1 Pa, Time = 10 min

Gas flow: Ar = 20 sccm, O2 = 20 sccm, SF6 = 20 sccm

Power = 60 W, Pressure = 2.5 Pa, Time = 10 min

Gas flow: Ar = 20 sccm, O2 = 20 sccm

Power = 60 W, Pressure = 2.5 Pa, Time = 10 min

Gas flow: Ar = 5 sccm, SF6 = 20 sccm

2. Etching

Power = 60 W, Pressure = 2.5 Pa, Time = 30 s

Gas flow: Ar - 5 sccm, SF6 - 20 sccm
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A.2. FABRICATION OF ETCHED SINGLE LAYER GRAPHENE QPCS

• Stripping the hard mask

1. 4 min in AZ MIF 319 developer

2. 1 min in first DI water bath

3. 9 min in second DI water bath

4. 5 min in IPA

5. 10 min in acetone

6. 5 min in IPA

7. Blow dry with N2 gas

A.2.3. Fabrication of contacts

• Spin coating the EBL resist

1. Dehydrate the sample at 100°C for 1 min.

2. Spin coat PMMA 50K at 4000 rpm for 30 s with a pre-acceleration of 500 rpm for 5 s (program

no.4).

3. Bake the resist - first at 100°C for 20 s followed by 160°C for 5 min.

4. Allow the chip to cool down for a minute.

5. Spin coat the second layer of PMMA 50K using program no.4.

6. Bake the resist - first at 100°C for 20 s followed by 160°C for 5 min.

7. Allow the chip to cool down for a minute.

8. Spin coat PMMA 950K using program no.4.

9. Once again, bake the resist - first at 100°C for 20 s followed by 160°C for 15 min.

10. Allow the sample to cool down for one minute.

• EBL of contacts in Juelich

1. Small contacts (up to 0.5 µm wide)

Dose = 510 µC/cm2

Beam current = 100 pA

Beam step size = 1 nm

2. Medium contacts (up to 5 µm wide)

Dose = 510 µC/cm2

Beam current = 100 pA

Beam step size = 5 nm

3. Large Contacts (up to 10 µm wide)

Dose = 510 µC/cm2

Beam current = 150 pA

Beam step size = 50 nm
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4. Bond pads

Dose = 400 µC/cm2

Beam current = 150 pA

Beam step size = 50 nm

• Development

1. 60 s in AR 600-55 developer

2. 10 s in 1st IPA bath

3. 20 s in 2nd IPA bath

• Metallization of contacts in Aachen

1. 5 nm Cr at the rate of 0.2 nm/s

2. 90 nm Au at the rate of 0.5 nm/s

3. 30 min in acetone for lifting off the metal

4. 5 min in IPA

5. Blow dry with N2 gas.

A.2.4. Fabrication of top gate(s)

• Cleaning the sample

After transferring a layer of hBN with a thickness of approx. 20 - 30 nm as the gate dielectric (see

section 3.9.3), the sample is cleaned the following way.

1. 10 min in acetone

2. 5 min in IPA

• Spin coating

See the recipe used for fabrication of contacts in section A.2.3

• EBL for top gate in Juelich

See the recipe used for EBL of contacts in section A.2.3

• Development of top gate

See the recipe used for development of contacts in section A.2.3

• Metallization of top gate in Aachen

See the recipe used for metallization of contacts in section A.2.3

A.3. Fabrication of bilayer graphene QPC devices

A.3.1. Preparing hBN-SLG-hBN sandwiches

Same as section A.2.1
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A.3.2. Fabrication of contacts

• Cleaning the sample

1. 5 min in acetone

2. 5 min in IPA

• Spin coating

See section A.2.3.

• EBL of contacts in Aachen

1. Dose = 510 µC/cm2

2. Beam current = 100 pA

3. Beam step size = 1 nm

4. Acceleration voltage = 20 kV

5. Aperture = 7.5 µm

6. Write field = 250 µm

• Development of contacts

See section A.2.3.

• Reactive ion etching

1. Cleaning the chamber

Power = 300 W, Pressure = 1 Pa, Time = 10 min

Gas flow: Ar = 20 sccm, O2 = 20 sccm, SF6 = 20 sccm

Power = 60 W, Pressure = 2.5 Pa, Time = 10 min

Gas flow: Ar = 20 sccm, O2 = 20 sccm

Power = 60 W, Pressure = 2.5 Pa, Time = 10 min

Gas flow: Ar = 5 sccm, SF6 = 20 sccm

2. Etching

Power = 20 W, Pressure = 8 Pa, Time = 2 min

Gas flow: CF4 - 40 sccm, O2 - 8 sccm

• Metallization of contacts

1. 5 nm Cr at 0.2 nm/s

2. 50 nm Au at 0.5 nm/s

3. 30 min in acetone for lifting off the metal

4. 5 min in IPA

5. Blow dry with N2 gas.
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A.3.3. Fabrication of split gates

• Spin coating

See section A.2.3.

• EBL in Aachen

See section A.3.2

• Development

See section A.2.3

• Metallization

See section A.2.3

A.3.4. Fabrication of finger gates

• Atomic layer deposition

25 nm Al2O3

• Spin coating

See section A.2.3

• EBL of contacts in Aachen

1. Dose = 120 µC/cm2

2. Beam current = 13 pA

3. Beam step size = 7 nm

4. Acceleration voltage = 20 kV

5. Aperture = 7.5 µm

6. Write field = 250 µm

• Development

See section A.2.3

• Etching

1. 2 min in 2% TMAH

2. Cleaning in 5 min in DI water

• Metallization

1. 5 nm Cr at 0.2 nm/s

2. 50 nm Au at 0.5 nm/s

3. 30 min in acetone for lifting off the metal

4. 5 min in IPA

5. Blow dry with N2 gas.
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B. Transport through an etched graphene

QPC with a single top gate

B.1. Extraction of gate lever arm from quantum Hall

measurements

In this section, we show some additional quantum Hall measurements for the traces shown in Fig. 7.9 (b)

and Fig. 7.10 (b).

We have already discussed Landau fan measurements and extraction of alpha using trace "1" in section

7.4.2. We now discuss trace "2" from Fig. 7.9 (b).

In this case, as shown in Fig. B.1 (a), the gates are swept according to the equation Vbg = 3.74− 1.4×
(Vtg + 1.32) such that ∆Vbg

∆Vtg
= −1.4. Using this and the fact that αbg/αtg = 1/7 in eq.7.9, we obtain the

relation αeff = 0.8 αtg. Here, we use the value of αtg = 49.03× 1010V−1cm−2 extracted from the Landau

fan measurements on trace "1" in section 7.4.2 to calculate αeff = 39.22× 1010V−1cm−2. This value is

substituted in eq.7.8 to fit Landau levels with the index m = 0 to -4 (see solid black lines) for the present

data. We see that the Landau levels coincide with the minima of the longitudinal conductance. Further, we

see that the same procedure of fitting Landau levels using the same of value of αtg works well for the same

trace "2" measured at a larger range of Vtg and B as shown in Fig. B.1 (b). Using this value of lever arm, we

can now convert the voltage to charge carrier density n in Fig. B.1 (c).

In fig. B.2 (a) and (b), we see the Landau fan measurements where the conductance traces at zero mag-

netic field are indicated by the blue "3" and red "4" traces in Fig. 7.10 (b). As explained in the main text,

trace "3" is obtained by sweeping the gate voltages in a direction perpendicular to the major line similar

to trace "1" in accordance with the equation Vbg = 0.143×Vtg +2.722. While trace "4" is swept along the

direction of trace "2" according to the equation Vbg = 3.2−1.4× (Vtg +1.32). Therefore, we use the values

of αtg, αbg and the ratio ∆Vbg
∆Vtg

from Fig. 7.4 for trace "3" and those obtained above in Fig. B.1 for trace "4"

to calculate αe f f using eq.7.9 and fit the solid black lines corresponding to the Landau levels for m = -1 to

-4. Once again, we see that the Landau levels fit perfectly to the minima of longitudinal conductance.

Overall, we see that this sample is extremely stable and that the value of the lever arm extracted is

consistent across several Landau fan measurements.
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Figure B.1.: (a) Longitudinal differential conductance G as a function of the top gate voltage Vtg and the

perpendicular magnetic field B. The conductance trace at B = 0 T is the red trace "2" shown in Fig. 7.9 (b).

The solid black lines indicate the Landau levels from the index m = 0 to -4. (b) Same as (a) but for a larger

range of Vtg and B. (c) Derivative of differential longitudinal conductance as a function of the charge carrier

density n and the magnetic field B.
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Figure B.2.: Differential longitudinal conductance G as a function of the top gate voltage Vtg and the

perpendicular magnetic field B. The conductance trace at B = 0 T is the blue (red) trace "3" ("4") shown in

Fig. 7.10 (b). The solid black lines indicate the Landau levels from the index m = -1 to -4.
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APPENDIX C. TRANSPORT THROUGH GATE DEFINED BILAYER GRAPHENE QPC

C. Transport through gate defined bilayer

graphene QPC
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Figure C.1.: Transconductance dG/dVf g2 as a function of the side gate voltage Vf g2 and the parallel

magnetic field B|| for different values of the side gate voltage Vsg. The back gate voltage varies according to

Vbg = −1.256×Vsg such that displacement field varies along the black arrow shown in Fig. 9.2 (a). Color

scale is the same for all the panels as shown in (a).
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Figure C.2.: Similar to Fig. C.1 for more values of the side gate voltage Vsg.
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D. List of samples

Device Specifications Measurements

20   m

• hBN encapsulated graphene

nanoconstriction

• 6 Cr/Au side contacts

• 1 Cr/Au global top gate (see

black arrow)

• Observation of quantized con-

ductance kinks due to bulk states

(See section 7.4)

• Effect of top gate on localized

edge states (See section 7.4.3)

• Quantum Hall measurements to

study the evolution of bulk and

localized states (See section 8.2)

10 µm

• hBN encapsulated graphene

nanoconstriction

• 6 Cr/Au side contacts

• 2 Cr/Au top gates (see black ar-

rows)

• Observation of quantized con-

ductance kinks

• Non-linear gate lever arn mea-

surements (see section 7.5.1)

0.5 μm

• hBN encapsulated bilayer

graphene nanoconstriction on a

graphite back gate

• 4 Cr/Au side contacts

• 2 Cr/Au split gates

• 3 Cr/Au finger gates

• Quantized conductance and for-

mation of sub-bands (See section

9.4)

• Spin-splitting of sub-bands (See

section 9.5)

• Observation of 0.7 analog feature

(See section 9.9)
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APPENDIX D. LIST OF SAMPLES

Device Specifications Measurements

5 μm

• hBN encapsulated graphene

nanoconstriction

• 4 Cr/Au side contacts

• Fabry - Pérot interferences in an

n-p-n junction formed using the

tip of a scanning gate microscope

[279].

• Polarized SGM tip is used to cre-

ate a movable and circular Vese-

lago lens in the graphene QPC

[266].

• Detection and manipulation

of whispering gallery modes

through a circular p-n junction

[280].

5 μm

• hBN encapsulated graphene

nanoconstriction

• 4 Cr/Au side contacts

• Detrimental influence of antidots

along the edges of QPC in quan-

tum Hall regime [281].

• Topological breakdown of

graphene quantum Hall edge

channels shows electron-hole

symmtry [282].

• Probing the interference regime

in antidots based graphene nano-

quantum hall interferometer

[283]
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APPENDIX A. DIRECTORY OF FIGURES

A. Directory of figures

Chapter no. Figure no. Location Matlab file

3 3.2 /Directory/Chapter_3/Chap_3_Fig_2.pdf Fig. 3.2 (b) - n vs vtg_diff n0.m

Fig. 3.2 (c)-(e) - n vs vtg_diff nT.m

3.3 /Directory/Chapter_3/Chap_3_Fig_3.pdf Fig. 3.3 (a) - length scales plot_diff mu.m

Fig. 3.3 (a) - length scales plot_diff n0.m

Fig. 3.3 (a) - length scales plot_diff nT.m

6 6.1 /Directory/Chapter_6/Chap_6_Fig_1.pdf

6.2 /Directory/Chapter_6/Chap_6_Fig_2.pdf

7 7.1 /Directory/Chapter_7/Chap_7_Fig_1.pdf

7.2 /Directory/Chapter_7/Chap_7_Fig_2.pdf

7.3 /Directory/Chapter_7/Chap_7_Fig_3.pdf Fig. 7.3 (a) - 035_Lever arm map.m

Fig. 7.3 (b) - 057_G vs Vtg_single trace.m

Fig. 7.3 (d) - 079_Bias_spec.m

7.4 /Directory/Chapter_7/Chap_7_Fig_4.pdf 069_Landau_fan.m

7.5 /Directory/Chapter_7/Chap_7_Fig_5.pdf 057_FFT_single trace.m

7.6 /Directory/Chapter_7/Chap_7_Fig_6.pdf 057_FFT_single trace.m

7.7 /Directory/Chapter_7/Chap_7_Fig_7.pdf 057_FFT_single trace.m

7.8 /Directory/Chapter_7/Chap_7_Fig_8.pdf Fig. 7.8 (a) - 080_lever_arm.m

Fig. 7.8 (b), (c) - 084_Lever arm map.m

7.9 /Directory/Chapter_7/Chap_7_Fig_9.pdf 084_Lever arm map.m

7.10 /Directory/Chapter_7/Chap_7_Fig_10.pdf 084_Lever arm map.m

7.11 /Directory/Chapter_7/Chap_7_Fig_11.pdf

7.12 /Directory/Chapter_7/Chap_7_Fig_12.pdf

7.13 /Directory/Chapter_7/Chap_7_Fig_13.pdf Fig. 7.8 (b) - U_vs_E.m

Fig. 7.8 (c) - U_vs_E_conductance.m

8 8.1 /Directory/Chapter_8/Chap_8_Fig_1.pdf Fig. 8.1 (a) - 069_Landau_fan.m

Fig. 8.1 (b) - 092 and 095_Landau_fan.m

8.2 /Directory/Chapter_8/Chap_8_Fig_2.pdf Fig. 8.2 (a) - 125_Landau_fan.m

Fig. 8.2 (b) - 128_Landau_fan.m

8.3 /Directory/Chapter_8/Chap_8_Fig_3.pdf Fig. 8.3 (a) - perfect.m

Fig. 8.3 (b) - Purple.m

Fig. 8.3 (c) - Green.m

8.4 /Directory/Chapter_8/Chap_8_Fig_4.pdf Fig. 8.4 (a) - Green_EW.m

Fig. 8.4 (a) - Green_EW_lines.m

8.5 /Directory/Chapter_8/Chap_8_Fig_5.pdf Fig. 8.5 (a) - Rescaling_A.m

8.5 Fig. 8.5 (b) - Rescaling_B.m

8.5 Fig. 8.5 (c) - Rescaling_C.m

8.5 Fig. 8.5 (d) - Rescaling_D.m

8.6 /Directory/Chapter_8/Chap_8_Fig_6.pdf Flo_dat.m

8.7 /Directory/Chapter_8/Chap_8_Fig_7.pdf Fig. 8.7 (a) - Green.m

Fig. 8.7 (b) - 069_Landau_fan.m

Fig. 8.7 (b) - Perfect_overlay.m

Fig. 8.7 (c) - Flo_dat.m132



Chapter no. Figure no. Location Matlab file

9 9.1 /Directory/Chapter_9/Chap_9_Fig_1.pdf

9.2 /Directory/Chapter_9/Chap_9_Fig_2.pdf

9.3 /Directory/Chapter_9/Chap_9_Fig_3.pdf

9.4 /Directory/Chapter_9/Chap_9_Fig_4.pdf 120_Luca_draft.m

9.5 /Directory/Chapter_9/Chap_9_Fig_5.pdf 120_Luca_draft.m

9.6 /Directory/Chapter_9/Chap_9_Fig_6.pdf sub_band_spacing.m

9.7 /Directory/Chapter_9/Chap_9_Fig_7.pdf 120_Luca_draft.m

9.8 /Directory/Chapter_9/Chap_9_Fig_8.pdf 158_Luca.m

161_Luca.m

173_Luca.m

9.9 /Directory/Chapter_9/Chap_9_Fig_9.pdf displacement_field.m

Appendix B.1 /Directory/Appendix_B/Fig. B_1.pdf Fig. B.1 (a) - 092 and 095_Landau_fan.m

Fig. B.1 (b), (c) - Full_Landau_fan.m

Fig. B.1 (b), (c) - Full_Landau_fan_part_2.m

B.2 /Directory/Appendix_B/Fig. B_2.pdf 125_Landau_fan.m

128_Landau_fan.m

C.1 /Directory/Appendix_C/Fig. C_1.pdf Fig. C.1 (a) - 160_Luca.m

Fig. C.1 (b), (d), (e) - 173_Luca.m

Fig. C.1 (c) - 157_Luca.m

C.2 /Directory/Appendix_C/Fig. C_2.pdf Fig. C.2 (g), (h) - 173_Luca.m

Fig. C.2 (i) - 157_Luca.m

Fig. C.2 (j) - 161_Luca.m

Fig. C.2 (k) - 158_Luca.m

Fig. C.2 (l) - 159_Luca.m
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