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1  |  INTRODUC TION

The tropical disease malaria is caused by protozoan parasites of the 
genus Plasmodium. The disease is characterized by symptoms like 
high fever, anemia, nausea, and respiratory distress, mainly caused by 
the blood-infecting stages of the parasite. Approximately, 247 million 
infections and 619,000 deaths were claimed by malaria in 2021, with 

two-thirds of the victims being children younger than five years (World 
Health Organization, 2022). The majority of deaths by malaria is due to 
infections with P. falciparum, the causative agent of malaria tropica.

Transmission of malaria is vector-borne with Plasmodium para-
sites being spread from human to human by blood-feeding female 
Anopheline mosquitoes. In the human, the parasites follow an ob-
ligate intracellular lifestyle and reside within a parasitophorous 
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Abstract
Transmission of malaria parasites to the mosquito is mediated by sexual precursor 
cells, the gametocytes. Upon entering the mosquito midgut, the gametocytes egress 
from the enveloping erythrocyte while passing through gametogenesis. Egress fol-
lows an inside-out mode during which the membrane of the parasitophorous vacu-
ole (PV) ruptures prior to the erythrocyte membrane. Membrane rupture requires 
exocytosis of specialized egress vesicles of the parasites; that is, osmiophilic bodies 
(OBs) involved in rupturing the PV membrane, and vesicles that harbor the perforin-
like protein PPLP2 (here termed P-EVs) required for erythrocyte lysis. While some 
OB proteins have been identified, like G377 and MDV1/Peg3, the majority of egress 
vesicle-resident proteins is yet unknown. Here, we used high-resolution imaging and 
BioID methods to study the two egress vesicle types in Plasmodium falciparum ga-
metocytes. We show that OB exocytosis precedes discharge of the P-EVs and that 
exocytosis of the P-EVs, but not of the OBs, is calcium sensitive. Both vesicle types 
exhibit distinct proteomes with the majority of proteins located in the OBs. In addi-
tion to known egress-related proteins, we identified novel components of OBs and P-
EVs, including vesicle-trafficking proteins. Our data provide insight into the immense 
molecular machinery required for the inside-out egress of P. falciparum gametocytes.
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vacuole (PV) for most parts of their lifecycle. While vacuolar com-
partmentalization provides shelter for the parasites to protect 
themselves from the human immune system, the parasites eventu-
ally need to exit the enveloping cell to ensure lifecycle progression 
(reviewed in Flieger et al., 2018).

To exit the host cell, Plasmodium parasites initiate an orches-
trated programme of molecular processes, which eventually result 
in membrane lysis (reviewed in, e.g., Bennink et al., 2016; Bennink 
& Pradel,  2021; Dvorin & Goldberg,  2022; Flieger et al.,  2018; 
Sassmannshausen et al.,  2020; Tan & Blackman,  2021; Wirth & 
Pradel,  2012). Host-cell exit has been particularly studied in the 
parasite blood stages, that is, the merozoites and the gametocytes. 
When egressing from the red blood cell (RBC), the two stages follow 
an inside-out mode, during which the PV membrane (PVM) ruptures 
prior to the RBC membrane (RBCM). In both blood stages, the egress 
cascade begins with the concurrent activation of the plasmodial 
guanylyl cyclase GCα and the cGMP-dependent protein kinase G fol-
lowing the perception of environmental signals. In accord with these 
events, the intracellular calcium levels rise, which among others re-
sults in the activation of various calcium-dependent protein kinases. 
The egress cascade eventually leads to the discharge of specialized 
secretory vesicles important for the rupture of PVM and RBCM.

In P. falciparum merozoites, egress-related vesicles, termed exon-
emes, release their content into the PV lumen to initiate RBC lysis. 
Among others, the exonemes contain the subtilisin-like protease 
SUB1 and the aspartic protease plasmepsin X (PMX). Once activated 
by PMX, SUB1 processes a variety of targets that are present in the 
PV, like the serine-repeat antigen proteins SERA5 and SERA6 as 
well as the merozoite surface protein MSP1, and these proteins are 
later required for destabilizing the RBC cytoskeleton prior to RBCM 
destruction as well as for mediating the invasion of a new RBC by 
the freshly released merozoites (Arastu-Kapur et al., 2008; Collins 
et al., 2017; Mukherjee et al., 2023; Nasamu et al., 2017; Ruecker 
et al., 2012; Silmon de Monerri et al., 2011; Stallmach et al., 2015; 
Tan et al., 2021; Thomas et al., 2018; Yeoh et al., 2007).

Vesicle-mediated exocytosis also plays a crucial role during the 
egress of gametocytes from RBCs. RBC lysis is mandatory for the 
gametocytes to finalize gametogenesis, once they have been acti-
vated in the mosquito midgut by environmental factors. Specialized 
vesicles of gametocytes, the osmiophilic bodies (OBs), cluster un-
derneath the gametocyte plasma membrane (GPM) and discharge 
their content into the PV lumen within a minute following activation 
(Sologub et al., 2011). OBs were first described as electron-dense ves-
icles in electron micrographs of female gametocytes (Sinden, 1982); 
later also male OBs (MOBs) have been reported in P. berghei, which 
exhibit a different protein repertoire and a smaller morphology than 
the female OBs (Olivieri et al., 2015). A variety of proteins have pre-
viously been described that are located in the OBs and released 
into the PV, the first of which was the female-specific G377 (Alano 
et al., 1995; de Koning-Ward et al., 2008; Olivieri et al., 2015; Severini 
et al.,  1999; Suárez-Cortés et al.,  2016). Two other proteins, MDV1 
(male development gene 1; also termed protein of early gametocytes 
3, Peg3) and GEST (gamete egress and sporozoite traversal) have been 

shown to be present in OBs, with MDV1 additionally associating with 
PVM and GPM. Both proteins, MDV1 and GEST, are linked to PVM 
rupture during P. berghei gametogenesis (Furuya et al., 2005; Olivieri 
et al., 2015; Ponzi et al., 2009; Silvestrini et al., 2005; Suárez-Cortés 
et al., 2016; Talman et al., 2011). Moreover, the P. berghei gamete egress 
protein GEP and the putative pantothenate transporter PAT localize to 
OBs and mutants lacking GEP or PAT are unable to egress from the 
RBC (Andreadaki et al., 2020; Kehrer, Singer, et al., 2016). In addition, 
several proteases are present in the OBs, like the subtilisin-like prote-
ase SUB2 and the dipeptidyl aminopeptidase DPAP2 (Suárez-Cortés 
et al., 2016). Further, SUB1 and the aspartyl protease MiGS (microgam-
ete surface protein) have been described as MOB-specific proteases, 
and deficiencies of SUB1 or MiGS result in impaired male gametogene-
sis (Pace et al., 2019; Suárez-Cortés et al., 2016; Tachibana et al., 2018).

Following secretion of the OB content into the PV lumen, the 
PVM ruptures at multiple sites before it breaks down into multi-
layered vesicles (MLV; Sologub et al.,  2011). Subsequently, an-
other vesicle-resident protein is discharged from the activated 
gametocyte, the Plasmodium perforin-like protein PLP2 (PPLP2; 
Deligianni et al.,  2013; Sologub et al.,  2011; Wirth et al.,  2014). 
Once secreted, PPLP2 perforates the RBCM, resulting in mem-
brane destabilization and the release of the RBC cytoplasm, while 
gametocytes deficient of PPLP2 remain trapped in the RBC upon 
activation. A time-span of roughly six minutes was monitored be-
tween exocytosis of the OBs and the PPLP2-positive vesicles, in-
dicating that they are two different types of egress vesicles, which 
act one after the other. Following secretion of PPLP2, it requires 
another four minutes until the RBC lyses and fully formed gam-
etes are released into the midgut lumen (Andreadaki et al., 2018; 
Sologub et al., 2011; Wirth et al., 2014).

The data obtained to date point to at least two types of vesicles 
that are involved in the egress of activated gametocytes from the 
RBC, that is, the OBs and the PPLP2-positive egress vesicles (in the 
following termed P-EVs). We here aimed to study the dynamics of the 
OBs and P-EVs during gametogenesis, to unveil their characteristic 
components and to identify novel secreted mediators of RBC egress.

2  |  RESULTS

2.1  |  OBs and P-EVs differ in their 
subcellular localization as well as time-point and 
calcium-dependency of discharge

To probe into similarities and differences of OBs and P-EVs during 
gametocyte egress, we first used immunohistochemical methods 
to define their subcellular localization and order of discharge. For 
vesicle visualization, the OB proteins G377 and MDV1 and the P-EV-
resident PPLP2 were chosen. All the three proteins display a signal 
peptide; in addition, PPLP2 possesses an MACPF domain essential 
for the pore-forming ability (Figure 1a).

Indirect immunofluorescence assays (IFAs) were employed to 
determine the subcellular localization of G377, MDV1, and PPLP2, 
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using specific antisera from rat, rabbit, and mouse. All of the proteins 
were detected in the cytoplasm of wildtype (WT) NF54 gameto-
cytes, localizing to vesicular structures (Figure  1b; Figure  S1a–c). 
Both MDV1 and G377 were found in vesicles that are particularly 
located at the periphery of the gametocytes; PPLP2 was further 
detected in vesicles rather accumulating in the central parts of the 
cell. In accord with previous reports (Deligianni et al., 2013; Severini 
et al.,  1999; Silvestrini et al.,  2005; Wirth et al.,  2014), G377 and 
MDV1 are specific for gametocytes and expressed during gameto-
cyte maturation, whereas PPLP2 is present in both the asexual and 
sexual blood stages (Figure S1a–c).

Colabeling IFAs confirmed a colocalization of the two OB-resident 
proteins G377 and MDV1, while the PPLP2 signal did neither over-
lap with the one of G377 nor of MDV1 (Figure 1b). No labeling was 
observed when the gametocytes were immunolabeled with serum 
of non-immunized mice, rats, or rabbits (Figure S2a). Colocalization 
of the signals were statistically quantified for each double-labeling 
experiment by calculating the Pearson's correlation coefficient 
(PCC). The signal patterns of G377 and MDV1 exhibited a PCC of 
0.61, while the PCCs of PPLP2 with G377 or MDV1 showed values 
of 0.24 and 0.35 (Figure 1c), indicating that the PPLP2-containing P-
EVs are different from the G377- and MDV1-positive OBs.

To investigate the time-points of discharge for the two vesicle 
types, WT NF54 gametocytes were activated and samples were 
taken at several time points between 0 and 20 min post-activation. 
Subsequently, the two vesicle types were highlighted by immunola-
beling of either G377 or MDV1 and of PPLP2, using the respective 
antisera. While the signal for the OB-resident G377 disappeared 
within 2 min post-activation, the PPLP2-containing P-EVs could be 
detected for another 10 min, during which the P-EVs relocated from 
the center to the periphery of the gametocytes (Figure 1d). Around 
15 min post-activation, the PPLP2 signal disappeared. Similarly, the 
OB-specific signals for MDV1 relocated to the gametocyte periph-
ery within 2 min post-activation and were later seen associated with 
the plasma membrane of the newly formed gametes (Figure S2b).

In addition, we determined the role of intracellular calcium as a 
potential mediator of vesicle discharge. WT NF54 gametocytes were 
activated in the absence or presence of 25 μM of the selective cal-
cium chelator BAPTA–AM and samples were taken between 0 and 
20 min post-activation. The samples were then subjected to IFA, 
using anti-PPLP2 and anti-G377 antisera to highlight the two vesi-
cle types (Figure S3a). In gametocytes not treated with BAPTA–AM, 
we again observed that the G377 signal of the OBs disappeared 
within less than 5 min post-activation, while the PPLP2 signal in-
dicative of P-EVs relocated to the gametocyte periphery and then 
disappeared between 10 and 20 min post-activation. When the ga-
metocytes were treated with BAPTA–AM prior to activation, the 
PPLP2-positive P-EVs were still detectable at 20 min post-activation, 
indicating that they were unable to discharge, whereas for G377, no 
difference in the labeling pattern compared with the untreated con-
trol was observed. The experiment was repeated using antibodies 
directed against Pfs16 and human spectrin to visualize PVM and 
RBCM, respectively. As observed before, the G377-positive signal 

disappeared independently of BAPTA–AM treatment. Concurrently 
with the disappearance of G377, the Pfs16-positive PVM vanished 
and in some cases minor dots were visible, which most likely rep-
resented MLVs (Figure  S3b). Furthermore, the enveloping RBC 
highlighted by spectrin labeling disappeared and only RBCM rem-
nants were detectable. PPLP2 was still detectable 20 min post-
activation, when the gametocytes were treated with BAPTA–AM, 
but the Pfs16 signal disappeared with the exception of some dots, 
indicating that PVM breakdown into MLVs occurred independent of 
BAPTA–AM treatment. As expected, the spectrin-positive RBCM 
remained intact, when the activated gametocytes were treated with 
BAPTA–AM, due to the impaired discharge of PPLP2 (Figure S3b). 
For quantification, the presence or absence of the PPLP2 and G377 
signals at 20 min post-activation was determined in 50 activated 
rounded gametocytes per experimental setting (Figure  1e). While 
the proportion of G377-positive cells was equally low in the pres-
ence or absence of BAPTA–AM (18% and 21%, respectively), a signif-
icant difference was observed in the proportion of PPLP2-positive 
cells, which varied between 15% in untreated and 54% in BAPTA–
AM-treated gametocytes (Figure 1e).

Our combined data demonstrate that OBs and P-EVs are differ-
ent types of vesicles, which discharge at different time points post-
activation with the exocytosis of the OBs preceding discharge of the 
P-EVs. Further, we showed that exocytosis of the P-EVs, but not of 
the OBs, is sensitive to the calcium chelator BAPTA–AM, indicating 
its dependency on intracellular calcium.

2.2  |  OBs and P-EVs exhibit distinct proteomes 
with multiple constituents

In order to identify constituents of the OBs and P-EVs, transgenic 
parasite lines were generated that express the proteins G377, 
MDV1, or PPLP2 fused to the promiscuous E. coli biotin ligase BirA, 
which allows the identification of proximal proteins by biotinylation 
(BioID; e.g., Roux et al., 2018).

For BioID analyses of putative PPLP2 interactors, a parasite 
line was generated that episomally expresses PPLP2 fused to BirA 
and green fluorescent protein (GFP), using the vector pARL-PPLP2-
pffnpa-GFP-BirA, which expresses the fusion protein under the con-
trol of the pffnpa promoter (Figure S4a; Musabyimana et al., 2022). 
Furthermore, transgenic lines that endogenously express G377 or 
MDV1 fused to the enhanced TurboID version of BirA in addition 
to GFP were generated via homologous recombination using vec-
tors pSLI-G377-TurboID-GFP and pSLI-MDV1-TurboID-GFP, re-
spectively (Figure S4b; Branon et al., 2018). The episomal presence 
of vector pARL-PPLP2-pffnpa-GFP-BirA in the transgenic parasites 
and the successful integration of the vectors pSLI-G377-TurboID-
GFP and pSLI-MDV1-TurboID-GFP into the respective g377 or mdv1 
gene loci was demonstrated by diagnostic PCR (Figure S4c,d).

Western blot analyses of gametocyte lysates prepared from 
the transgenic lines, using mouse anti-GFP antibody, demonstrated 
the expression of the respective fusion proteins (Figure  S5a). The 
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proteins MDV1-TurboID-GFP and G377-TurboID-GFP migrated at 
the expected molecular weights of 91 and 439 kDa, respectively. 
For PPLP2, a band of approximately 120 kDa was detected in ad-
dition to the expected band of 187 kDa, indicating processing of 
the protein. No protein bands were detected in lysates of either 
the asexual blood stages of the transgenic lines nor of WT NF54 
mixed asexual blood stages and gametocytes (Figure S5a). Similarly, 
immunolabeling with anti-GFP antibodies demonstrated the expres-
sion of PPLP2-GFP-BirA, MDV1-TurboID-GFP, and G377-TurboID-
GFP proteins in gametocytes of the respective transgenic lines and 
confirmed the presence of the tagged fusion proteins in vesicular 
structures (Figure 2a). In WT NF54 parasites, no GFP-labeling was 
detected.

Subsequent Western blotting was employed to highlight bioti-
nylated proteins in the transgenic lines. For this, gametocyte cultures 
of each line were treated with 50 μM biotin for 15 min (TurboID) or 
20 h (BioID). Immunoblotting of the respective gametocyte lysates 
using streptavidin conjugated to alkaline phosphatase detected 
multiple protein bands indicative of biotinylated proteins, includ-
ing protein bands of 91, 187, and 439 kDa, likely representing the 
biotinylated fusion proteins MDV1-TurboID-GFP, PPLP2-GFP-BirA, 
and G377-TurboID-GFP, respectively (Figure 2b). In gametocytes of 
the transgenic lines that were not treated with biotin, minor protein 
bands were detected, indicating that endogenous biotin has been 
present in the gametocyte cultures, which triggered the activity of 
the biotin ligase. No biotin-positive protein bands were detected 
in WT NF54 samples (Figure 2b). IFA analyses of biotin-treated ga-
metocytes of the transgenic lines, using fluorophore-conjugated 
streptavidin, confirmed the presence of biotinylated proteins, which 
localized in vesicular structures, while no biotinylated proteins were 
detected in biotin-treated WT NF54 gametocytes (Figure S5b).

BioID analyses were subsequently employed to analyze the pro-
teomes of the OBs and P-EVs of P. falciparum. For this, gametocytes 
of the respective transgenic lines were treated with biotin as de-
scribed above, and equal amounts of gametocytes per sample were 
harvested. Three independent samples were collected from each 
of the three lines (MDV1-TurboID-GFP, G377-TurboID-GFP, and 
PPLP2-GFP-BirA); two additional independent samples from the 

PPLP2-GFP-BirA line were included. Mass spectrometric analysis 
was performed on streptavidin-purified protein samples with three 
technical replicas for each sample. This resulted in the identifica-
tion of 636 (MDV1-TurboID-GFP), 189 (G377-TurboID-GFP), and 
298 (PPLP2-GFP-BirA) significantly enriched proteins, respectively 
(Figure 3a; Table S1). For each transgenic parasite line, the respec-
tive bait protein, that is, G377, MDV1, and PPLP2 was detected 
among these proteins (marked in Table S1). The initial list of signifi-
cantly enriched proteins was subjected to two curation steps. In a 
first step, proteins without a putative signal peptide and/or trans-
membrane domains or with C-terminal ER retention signals were 
excluded, reducing the potential interactors to 169 proteins (MDV1-
TurboID-GFP), 50 proteins (G377-TurboID-GFP), and 64 proteins 
(PPLP2-GFP-BirA) (Figure 3a; Table S2). In a second step, proteins 
with defined known functions not related to OBs or P-EVs (e.g., nuc-
leoporins, chaperons) were removed from the list, eventually result-
ing in the following numbers of putative proteins of egress vesicles 
(gametocyte egress vesicle proteins, GEVPs): 132 proteins (MDV1-
TurboID-GFP), 38 proteins (G377-TurboID-GFP), and 44 proteins 
(PPLP2-GFP-BirA; Figure 3a; Table S2).

Firstly, we determined, how many interactors were shared by the 
three bait proteins. After subtracting out protein multiplications, we 
obtained a total of 143 individual GEVPs. The comparison of GEVPs 
by bait proteins identified 13 proteins as putative interactors of both 
OB proteins, G377 and MDV1. It also revealed 16 proteins as pu-
tative interactors of MDV1 and PPLP2, while only 2 proteins were 
shared between G377 and PPLP2 (Figure 3b; Table S2). Further, 20 
proteins were shared between three bait proteins. This group of pro-
teins included, in addition to the three bait proteins, among others 
five members of the LCCL-domain protein family, as well as P230, 
hence, adhesion proteins known to locate in the PV of gametocytes, 
where they form protein complexes that are linked to the GPM 
(Simon et al., 2009, 2016; reviewed in Kuehn et al., 2010).

The 143 putative GEVPs were then grouped by predicted func-
tion (Figure 3c). The majority of GEVPs belonged to the categories 
of protein trafficking, processing and adhesion as well as transmem-
brane transport (~10% in each category). A total of 8% of GEVPs was 
previously assigned to host cell exit, for example, EPF1 (exported 

F I G U R E  1  Colocalization and dynamics of egress vesicles during gametocyte activation. (a) Schematic of the proteins MDV1, G377, 
and PPLP2. SP, signal peptide; MACPF, Membrane Attack Complex/Perforin domain. (b) Vesicular localization of MDV1, G377, and PPLP2 
in gametocytes. WT NF54 gametocytes were immunolabeled with rabbit anti-G377, rat anti-MDV1 and mouse anti-PPLP2 antisera (red 
and green) to investigate co-localization of the respective proteins. Parasite nuclei were highlighted by Hoechst 33342 nuclear stain (blue). 
Bar; 2 μm. DIC, differential interference contrast. Details on the vesicular localization in blood stage parasites are provided in Figure S1a–c. 
Corresponding negative controls are provided in Figure S2a. (c) Quantification of protein colocalization. The PCC was calculated using Fiji 
ImageJ2. Immunolabeling of G377 or MDV1 was defined as region of interest (n = 50). The error bars indicate mean ± SD. (d) Dynamics of 
G377- and PPLP2-positive vesicles during gametocyte activation. WT NF54 gametocytes were collected at 0–20 min post-activation (p.a.) 
and immunolabeled, using rabbit anti-G377 or mouse anti-PPLP2 antisera (green). Gametocytes were counterstained with rabbit or mouse 
anti-P230 antisera (red). Parasite nuclei were highlighted by Hoechst 33342 nuclear stain (blue). Bar; 2 μm. NRBS, neutral rabbit serum; 
NMS, neutral mouse serum. The dynamics of MDV1-positive vesicles are shown in Figure S2b. (e) Calcium-dependency of vesicle discharge 
following gametocyte activation. WT NF54 gametocytes were treated with 25 μM BAPTA–AM prior to activation and immunolabeled with 
as described in (d). Untreated gametocytes served as control. A total of 50 activated (rounded) gametocytes per setting were evaluated 
for the presence of the G377 or PPLP2 signal at 20 min p.a. (n = 3). Corresponding IFA images are provided in Figure S3a. Information on 
membrane rupture during vesicle discharge are found in Figure S3b. The error bars indicate mean ± SD. ***p ≤ 0.001 (One-Way ANOVA with 
Post-Hoc Bonferroni Multiple Comparison test; c, e). Results (b, d) are representative of three independent experiments.
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    |  5SASSMANNSHAUSEN et al.

protein family 1), GEP (gamete egress protein), GEXP02 (gameto-
cyte exported protein 2), PMX (plasmepsin X), SUB2 (subtilisin-like 
protease 2), MiGS (microgamete surface protein), and GEST (gamete 
egress and sporozoite traversal protein; e.g., Andreadaki et al., 2020; 
Grasso et al.,  2022; Kehrer, Frischknecht, et al.,  2016; Mbengue 

et al.,  2013; Nasamu et al.,  2017; Suárez-Cortés et al.,  2016; 
Tachibana et al.,  2018; Talman et al.,  2011). Furthermore, 35% of 
GEVPs are of unknown function. An additional gene ontology (GO) 
term analysis revealed main molecular functions in peptidase ac-
tivities and pyrophosphate hydrolysis as well as transmembrane 

 13652958, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

m
i.15125 by R

w
th A

achen H
ochschulbibliothek, W

iley O
nline L

ibrary on [28/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6  |    SASSMANNSHAUSEN et al.

transport, and cellular localizations in host cellular components and 
vesicles (Figure S6a,b).

A comparative transcriptional analyses of the GEVPs (accord-
ing to table “Transcriptomes of 7 sexual and asexual life stages”; 
López-Barragán et al.,  2011; see PlasmoDB database; Aurrecoechea 
et al., 2009) showed that the majority of the proteins exhibited peak 
expression in stage V gametocytes and in ookinetes or in ring stages and 
trophozoites (Figure 3d), suggesting that they represent two groups of 
proteins, either expressed in the late stages of the sexual phase or during 
intraerythrocytic replication. When the sex specificity of the GEVPs was 
evaluated (according to table “Gametocyte Transcriptomes”; Lasonder 
et al.,  2016; see PlasmoDB database; Aurrecoechea et al.,  2009), 
roughly one-third of proteins are predominantly present in either male 
or female gametocytes, while one third of proteins did not exhibit any 
sex-specific transcript expression (Figure S6c).

The GEVPs were further subjected to STRING-based analyses to 
investigate the protein–protein interaction networks (see string-db.
org; text mining included). Three main clusters were identified 
(Figure  4; Table  S3). The first cluster involved proteins previously 

shown to form multi-adhesion domain protein complexes like the 
LCCL-domain (CCp) proteins, P48/45, and P230, plus the paral-
ogs P47 and P230p (Pradel et al., 2004; Scholz et al., 2008; Simon 
et al.,  2009, 2016; reviewed in Kuehn et al.,  2010; Pradel,  2007). 
Furthermore, the cluster included three members of the PSOP 
(putative secreted ookinete protein) family, PSOP1, PSOP12, and 
PSOP13 (Ecker et al., 2008; Sala et al., 2015; Tachibana et al., 2021) 
and proteins linked to the PVM, that is, Pfs16, Pfg17-744, and 
Pfg14-748 (Bruce et al., 1994; Eksi et al., 2005). In addition, the three 
bait proteins G377, MDV1, and PPLP2, were found in this cluster. 
Noteworthy, the majority of proteins in this cluster were interactors 
of all three bait proteins.

A second cluster comprised proteins linked to vesicle biogene-
sis, particularly transmembrane transporters including the previ-
ously described ABCG2 transporter of female gametocytes (Tran 
et al.,  2014). Further, the vesicle trafficking-related protein clath-
rin (heavy chain) and sortilin were found in this cluster (Figure  4; 
Table S3). Four of the proteins of this cluster belonged to the group 
of PPLP2 interactors.

F I G U R E  2  Verification of the parasite lines to be used in BioID. (a) Localization of the bait proteins in the BioID parasite lines. 
Gametocytes of lines PPLP2-GFP-BirA, G377-TurboID-GFP, and MDV1-TurboID-GFP were immunolabeled with mouse anti-GFP antibody to 
highlight PPLP2, G377 and MDV1, fused to GFP and biotin ligase (green). Gametocytes were counterstained with anti-P230 antisera (red); 
parasite nuclei were highlighted by Hoechst 33342 nuclear stain (blue). WT NF54 gametocytes served as a control. Bar; 5 μm. (b) Protein 
biotinylation in the BioID parasite lines. Gametocytes of lines PPLP2-GFP-BirA, G377-TurboID-GFP and MDV1-TurboID-GFP were treated 
with biotin for 20 h (PPLP2-GFP-BirA) and 15 min (G377-, MDV1-TurboID-GFP). Untreated parasite lines and biotin-treated and untreated 
WT NF54 gametocytes served as controls. Gametocyte lysates were subjected to Western blot analysis and biotinylated proteins were 
detected using streptavidin-conjugated alkaline phosphatase. (+), treated with biotin; (−), untreated. Asterisks (*) highlight the bait proteins. 
Cloning strategy and transfection verification are provided in Figure S4. Further information on verification of the BioID lines is provided in 
Figure S5. Results (a, b) are representative of three independent experiments.
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    |  7SASSMANNSHAUSEN et al.

The third cluster resembled a megacluster that comprised var-
ious proteins particularly linked to RBC invasion and modification. 
Within the megacluster, two subclusters were distinguished, one 
of which included proteins linked to the Maurer's clefts, while the 

other one comprised proteins linked to rhoptries and micronemes. 
Additional proteins were associated with these subclusters, sev-
eral of which are proteases, for example, SUB2, the dipeptidyl 
aminopeptidases DPAP1 and DPAP2, the metalloprotease M16, 
and the plasmepsins PMI, PMIII, and PMX, as well as the cysteine 
protease inhibitor falstatin (e.g., Banerjee et al.,  2002; Boysen & 
Matuschewski, 2013; Child et al., 2013; Collins et al., 2020; Coombs 
et al.,  2001; Klemba et al.,  2004; Pandey et al.,  2006; Tanaka 
et al., 2013; Uzureau et al., 2004). Furthermore, known components 
of the merozoite surface like GAMA, MaTrA, MSP8, or P38 as well as 
various exported proteins like GEXP08, GEXP21, EXP1, and EXP3 
were found within the megacluster (Figure 4, Table S3; Arumugam 
et al., 2011; Black et al., 2005; Fischer et al., 1998; Hinds et al., 2009; 
Mesén-Ramírez et al., 2016, 2019; Ntumngia et al., 2004; Sanders 
et al., 2005; Silvestrini et al., 2010; Simmons et al., 1987; Vincensini 
et al.,  2008). Since the majority of the megacluster proteins were 
previously linked to rings and trophozoites, they may have functions 
in both the asexual and sexual blood stages.

In a next step, we compared our data with results from previous 
proteomics studies, that is, three secretome analyses of activated 
P. berghei and P. falciparum gametocytes (Grasso et al., 2020, 2022; 
Kehrer, Frischknecht, et al., 2016), a BioID-based OB proteome study 
on P. berghei gametocytes using MDV1 as bait (Kehrer, Frischknecht, 
et al., 2016) and a comparative proteome study on G377-deficient 
P. falciparum gametocytes (Suárez-Cortés et al., 2016). A total of 32 
GEVPs that were identified by us were also found in at least one of 
these studies, which include DPAP1, DPAP2, GAMA, GEST, MiGS, 
PMIX, PMX, PTEX150, PSOP1, PSOP12, and SUB2 (Tables  1 and 
S4). In addition, we examined if any of the GEVPs of our study 
are considered as putative SUB2 substrates, referring to a previ-
ous study on SUB2 and its substrates in P. falciparum merozoites 
(Collins et al., 2020). We noted 56 GEVPs that are potential SUB2 
substrates, including GAMA, GEXP02, DPAP1, PMIV, PMX, and 
PTEX150, and the vast majority of these proteins are components of 
the OBs (Tables 1 and S5).

The fact that several known proteins where found in both 
the OB and P-EV interactomes suggests that these may have met 
during endomembrane trafficking. Exemplary, we investigated the 
vesicular localization of CCp2, a component of the multi-adhesion 
domain protein complex known to be synthesized continuously and 
present at the GPM (reviewed in Kuehn et al., 2010; Pradel, 2007). 
CCp2 as well as other components of the multi-adhesion domain 
protein complex have been identified as interactors of all three bait 
proteins (see above). IFA analyses confirmed the presence of CCp2 
in vesicles and in association with the GPM as well as the plasma 
membrane of gametes, where it neither co-localizes with G377 nor 
PPLP2 (Figure S7).

In summary, we identified various proteins as potential constitu-
ents of egress vesicles. Among the candidates, previously described 
components of OBs and P-EVs as well as novel proteins were found. 
Novel candidates particularly included peptidases, transmembrane 
transporters, and proteins involved in vesicle trafficking. The vast 
majority of the identified GEVPs could be assigned to the OBs.

F I G U R E  3  In silico analysis of the egress vesicle proteomes. (a) 
Schematic of candidate selection. Putative interactors of MDV1, 
G377, and PPLP2 following BioID of lines MDV1-TurboID-GFP, 
G377-TurboID-GFP and PPLP2-GFP-BirA were subjected to domain 
and functional analysis, resulting in the identification of a total of 
143 individual GEVPs. Signal peptides (SP) were predicted using 
SignalP 4.1 & 5.0, transmembrane domains (TM) were predicted 
using DeepTMHMM, and endoplasmic reticulum (ER) retention 
signals were predicted using DeepLoc 2.0 and compared with a 
bioinformatic analysis of Külzer et al. (2009). Functional prediction 
was performed via PlasmoDB. (b) Venn diagram depicting the 143 
GEVPs grouped by bait protein. The final numbers of interactors 
for each parasite line are depicted in bold, the predicted relative 
sex specificity is indicated (male/female; Lasonder et al., 2016; see 
PlasmoDB database). (c) Pie chart depicting the GEVPs (percentage 
of total numbers) according to predicted molecular function. (d) Pie 
chart depicting the GEVPs (percentage of total numbers) grouped 
by stages of peak expression (López-Barragán et al., 2011; see 
PlasmoDB database). RI, ring stage; TZ, trophozoite; SZ, schizont; 
GC II, gametocyte stage II; GC V, gametocyte stage V; OK, 
ookinete. Detailed information on the interactors before and after 
the application of selection criteria is provided in Tables S1 and 
S2. Further analysis of the GEVPs are provided in Tables S4 and 
S5. The corresponding GO term and sex specificity analyses are 
provided in Figure S6.
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2.3  |  Selected putative constituents localize to 
vesicular structures in gametocytes

Out of the 143 putative constituents of egress vesicles, six proteins 
previously not studied in gametocytes were chosen for further vali-
dation, that is, the Sel1-repeat containing protein (PF3D7_0204100), 
the putative secreted ookinete protein PSOP1 (PF3D7_0721700) 
and an unknown conserved protein, here termed GEVP1 
(PF3D7_0811600), all of which interact with G377 and MDV1, 
the PPLP2-interacting v-SNARE protein Vti1 (PF3D7_1236000) 
of P-EVs, and the GPI-anchored micronemal antigen GAMA 
(PF3D7_0828800) and an unknown conserved protein, here termed 
GEVP2 (PF3D7_1319900), which were identified as interactors of 
G377, MDV1, and PPLP2. Transgenic lines were generated, using 
vector pSLI-HA-glmS (Musabyimana et al.,  2022), which enables 
the expression of the protein of interest fused to a hemagglutinin 
A (HA)-tag, while the respective transcript is merged with the glmS 
ribozyme in the 3′ untranslated region (Figure S8a). Successful vec-
tor integration into the targeted locus was shown by diagnostic PCR 
(Figure S8b).

Western blotting of lysates derived from all of the six HA-tagged 
parasite lines confirmed their expression in the P. falciparum blood 
stages. Five of the HA-tagged proteins were detected in lysates of 
both asexual blood stages and gametocytes, running at the expected 
molecular weights, that is, Sel1 (271 kDa), PSOP1 (53 kDa), GEVP1 
(144 kDa), GAMA (86 kDa), and Vti1 (49 kDa; Figure 5a). GEVP2 was 
restricted to gametocyte lysates and in addition to the expected 
179 kDa protein, a second band running at approximately 120 kDa 
was identified, indicating protein processing. No protein bands 
were detected in lysates of WT parasites, which served as a control 
(Figure 5a).

The subcellular localization of the HA-tagged proteins in ga-
metocytes was investigated by IFAs. All of the proteins showed a 
punctuate localization within the gametocyte cytoplasm, clearly 
defining vesicular structures (Figure  5b). In addition, the localiza-
tion of these vesicles in the context of OBs and P-EVs was investi-
gated by colabeling experiments. IFAs demonstrated colabeling of 
PSOP1 and GEVP1 with G377, indicating their localization in OBs. 
No clear colocalization with G377 or PPLP2, however, was ob-
served for HA-tagged Sel1, GAMA, Vti1, and GEVP2 (Figure S9a). 
Immunolabeling of the respective transgenic gametocytes with sera 
from non-immunized mice, rats, or rabbits did not result in any label-
ing (Figure S9b).

For the HA-tagged PSOP1 and GEVP1, we evaluated the ve-
sicular localization in more detail via super-resolution microscopy. 
Colabeling experiments, using anti-HA antibodies, revealed overlap-
ping signals of both PSOP1 and GEVP1 with G377, while the two 
proteins did not co-label with PPLP2 (Figure  6a). No labeling was 
observed, when gametocytes of the respective PSOP1-HA-glmS 
and GEVP1-HA-glmS lines were immunolabeled with serum of non-
immunized mice, rats, or rabbits (Figure  S10). Colocalization was 
quantified in IFAs and PCC values were evaluated for each double-
labeling experiment. The signal patterns of PSOP1 and GEVP1 over-
lapped with G377 with PCC values of 0.85 and 0.6, respectively, 
pointing to a localization of the two proteins in the OBs. In contrast, 
the signal overlap of the two proteins with PPLP2 resulted in low 
PCC values of 0.44 and 0.27, respectively (Figure 6b).

Eventually, the fate of PSOP1 during gametocyte activation was 
determined. Activated gametocytes between 0 and 20 min were im-
munolabeled with anti-HA antibody to detect PSOP1. The gameto-
cytes were either counterstained by P230 labeling or the OBs were 
highlighted by G377 immunolabeling (Figure 6c; Figure S11a,b). The 

F I G U R E  4  Network analysis of GEVPs. 
The 143 GEVPs were evaluated for 
potential interactions using the STRING 
database. Based on the interaction 
among the query proteins, different 
functional clusters were identified. (a) 
Adhesion protein/LCCL-domain protein 
cluster with 23 proteins; (b) the RBC 
invasion and modification cluster with 
59 proteins, including (b1) the Maurer's 
clefts subcluster and (b2) the rhoptry/
microneme subcluster; (c) the vesicle 
biogenesis cluster of 13 proteins. Detailed 
information on individual proteins 
clustering in each subnetwork is provided 
in Table S3.
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    |  9SASSMANNSHAUSEN et al.

TA B L E  1  Selected GEVPs additionally identified by other GEVP proteomics studies. Combined shared hits from Grasso et al. (2020, 
2022), Kehrer, Frischknecht, et al. (2016), and Suárez-Cortés et al. (2016).

Short name
GeneID P. 
falciparum GeneID P. berghei

Egress 
vesicle

SUB2 
substrate Functional category Loss-of-function phenotype

PSOP12 PF3D7_0513700 PBANKA_1113400 OB No Unknown Unknown

Unknown PF3D7_0721100 PBANKA_0618600 OB Yes Unknown Unknown

PSOP1 PF3D7_0721700 PBANKA_0619200 OB No Unknown Unknown

PMX PF3D7_0808200 PBANKA_1222500 OB Yes Protein processing, host 
cell exit

Impaired RBC egress in 
merozoites (Nasamu 
et al., 2017)

GAMA PF3D7_0828800 PBANKA_0701900 Unclear Yes Protein adhesion, host 
cell invasion

Unknown

Falstatin/
ICP

PF3D7_0911900 PBANKA_0813000 OB Yes Protein processing, host 
cell invasion

Impaired sporozoite gliding 
motility (Boysen & 
Matuschewski, 2013; 
Lehmann et al., 2014)

RhopH2 PF3D7_0929400 PBANKA_0830200 Unclear Yes Host cell invasion Unknown

EXP3 PF3D7_1024800 PBANKA_0509000 Unclear Yes Protein trafficking Unknown

Pf11-1 PF3D7_1038400 PBANKA_0300600 OB No Host cell exit Unknown

DPAP1 PF3D7_1116700 PBANKA_0921300 OB Yes Protein processing Unknown

M16 PF3D7_1121800 PBANKA_0926500 Unclear No Protein processing Unknown

PV1 PF3D7_1129100 PBANKA_0919100 OB Yes Protein trafficking Impaired cytoadherence 
(Batinovic et al., 2017)

SUB2 PF3D7_1136900 PBANKA_0911700 OB Yes Host cell invasion, host 
cell exit

Impaired RBC invasion 
by merozoites (Collins 
et al., 2020)

GEXP12 PF3D7_1148700 PBANKA_1226100 OB Yes Unknown Unknown

MDV1 PF3D7_1216500 PBANKA_1432200 OB Yes Host cell exit Impaired gametocyte 
development and RBC 
egress (Furuya et al., 2005; 
Lal et al., 2009; Olivieri 
et al., 2015)

PPLP2 PF3D7_1216700 PBANKA_1432400 P-EV No RBC perforation, host 
cell exit

Impaired RBCM perforation 
during gametogenesis 
(Deligianni et al., 2013; Wirth 
et al., 2014)

MiGS PF3D7_1234400 PBANKA_1449000 OB No Protein processing, host 
cell exit

Impaired gametogenesis 
(Tachibana et al., 2018)

DPAP2 PF3D7_1247800 PBANKA_1460700 OB No Protein processing Unknown

G377 PF3D7_1250100 PBANKA_1463000 OB No Host cell exit Impaired OB biogenesis (de 
Koning-Ward et al., 2008; 
Suárez-Cortés et al., 2016)

M1AAP PF3D7_1311800 PBANKA_1410300 P-EV Yes Protein processing Unknown

P47 PF3D7_1346800 PBANKA_1359700 Unclear No Immune evasion, other Impaired macrogamete fertility

PMIV PF3D7_1407800 PBANKA_1034400 Unclear Yes Protein processing Reduced erythrocytic replication 
(Spaccapelo et al., 2010)

PTEX150 PF3D7_1436300 PBANKA_1008500 Unclear Yes Protein trafficking Reduced erythrocytic replication 
and protein export (Elsworth 
et al., 2014)

GEST PF3D7_1449000 PBANKA_1312700 OB No Host cell exit Impaired gametogenesis (Talman 
et al., 2011)

APP PF3D7_1454400 PBANKA_1318100 OB Yes Protein processing Unknown

Note: Details can be found in Tables S3 and S4. For geneIDs, see plasmodb.org. SUB2 substrates are according to Collins et al. (2020). OB, osmiophilic 
body; P-EV, PPLP2-positive egress vesicle; RBC, red blood cell, RBCM, RBC membrane.
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10  |    SASSMANNSHAUSEN et al.

IFAs revealed that both PSOP1 and G377 were discharged simulta-
neously within the first two minutes following activation.

In conclusion, we confirmed the vesicular expression of se-
lected candidates of OBs and P-EVs and in addition demonstrated 
that PSOP1 is a marker of OBs in P. falciparum gametocytes, which 
is released into the PV lumen immediately following gametocyte 
activation.

3  |  DISCUSSION

The exit of activated gametocytes from the RBC is dependent on the 
exocytosis of specialized secretory vesicles following the perception 
of the egress signal. Activation triggers the sequential discharge of 
OBs needed to rupture the PVM as well as of PPLP2-positive P-EVs 
that are important for the perforation of the RBCM. The aim of the 
present study was to characterize the two types of gametocyte-
specific egress vesicles in the human malaria species P. falciparum by 
investigating their modes of action upon gametocyte activation and 
by evaluating their distinct proteomes.

For our analyses, we used marker proteins typical for the two 
types of egress vesicles; on the one hand, PPLP2 was chosen as a 
marker for P-EVs, while on the other hand, two marker proteins, 
that is, G377 and MDV1, served to highlight the OBs. G377 is a 

well-known component of female OBs (Alano et al., 1995; de Koning-
Ward et al., 2008; Olivieri et al., 2015; Severini et al., 1999; Suárez-
Cortés et al., 2016); its function, however, is still not fully known. 
G377-deficient gametocytes have previously been generated by 
two independent approaches, resulting in different transgenic lines 
with different loss-of-function phenotypes. In a first approach, de 
Koning-Ward et al.  (2008) demonstrated impaired egress of the 
G377-deficient gametocytes from RBCs, while the second approach 
by Suárez-Cortés et al. (2014, 2016) described normal RBC egress, 
but reduced transmission of G377-deficient parasites. Both studies 
reported, with reference to exemplary electron micrographs, that 
gametocytes deficient of G377 lack electron-dense OBs and thus 
concluded that G377 must be important for OB biogenesis. None of 
the studies, however, took into consideration that the OBs may still 
be present, but due to the loss of G377 may be less electron-dense 
and therefore not well stainable by osmium; hence, a potential link 
between G377 and OB formation still needs to be proven. In order 
to also cover male OBs, we included MDV1 as a second marker pro-
tein, which has been used for OB-specific BioID–MS analyses before 
(Kehrer, Frischknecht, et al., 2016). Noteworthy, MDV1 is present in 
male and female OBs of P. berghei, but is additionally present in the 
PV (Furuya et al., 2005; Lal et al., 2009; Lanfrancotti et al., 2007; 
Olivieri et al., 2015). In P. berghei, MDV1 has been linked to gameto-
genesis, in particular to PVM rupture, by two independent studies 

F I G U R E  5  Expression and localization of GEVPs in blood stage parasites. Six pSLI-HA-glmS-based parasite lines expressing selected 
GEVPs tagged with HA were generated for expression analysis. (a) Blood stage expression of egress vesicle proteins. Lysates of asexual 
blood stages (ABS) and gametocytes (GC) of the respective lines were immunoblotted with rat anti-HA antibody to detect Sel1 (271 kDa), 
PSOP1 (53 kDa), GEVP1 (144 kDa), GAMA (86 kDa) Vti1 (49 kDa) and GEVP2 (179 kDa). ABS and GC lysates of WT NF54 served as negative 
controls, while immunoblotting with rabbit antibody against the ER protein Pf39 (39 kDa) served as loading control. (b) Vesicular localization 
of the GEVPs in gametocytes. Gametocytes of the pSLI-HA-glmS-based parasite lines were immunolabeled with rat anti-HA antibody (green) 
to detect the respective HA-tagged GEVP. Gametocytes were counterstained with anti-P230 antisera (red); parasite nuclei were highlighted 
by Hoechst 33342 nuclear stain (blue). Bar; 5 μm. Cloning strategy and transfection verification are provided in Figure S8. Details on GEVP 
localization in gametocytes are provided in Figure S9. Results (a, b) are representative of three independent experiments.
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    |  11SASSMANNSHAUSEN et al.

(Lal et al., 2009; Olivieri et al., 2015); in P. falciparum, though, MDV1 
was reported to be important for male gametocyte maturation, 
while a potential function during gametogenesis has not yet been 
investigated (Furuya et al., 2005). By choosing both G377 and MDV1 
for BioID–MS, we were able to cover the range of OB components 
in the best possible way. While the loss-of-phenotype analyses on 
G377 and MDV1 are partially contradictory and hence the exact role 
of the proteins in gametocytes is hitherto unclear, the role of PPLP2 
in RBCM perforation and thus RBC exit has been demonstrated in 
P. falciparum and P. berghei by three independent studies (Deligianni 
et al., 2013; Hentzschel et al., 2020; Wirth et al., 2014).

Firstly, we investigated the egress vesicle dynamics in P. falci-
parum gametocytes and demonstrated that OBs and P-EVs are two 
different types of vesicles with independent modes of exocytosis. 
We described the consecutive exocytosis of the two vesicle types 
following gametocyte activation, with only the latter one being de-
pendent on intracellular calcium. These observations are in accord 
with our previous findings reporting that OBs discharge their con-
tent into the PV prior to PVM breakdown at 1 min post-activation, 
while PPLP2-containing vesicles discharge approximately 6 min later 
to perforate the RBCM and that PPLP2 release, but not OB exocyto-
sis, can be impaired by calcium chelators (Sologub et al., 2011; Wirth 
et al., 2014).

In the following, we performed BioID–MS analyses to investi-
gate putative interactors of G377, MDV1, and PPLP2 and identified 
a total of 143 GEVPs. Among others, we found several previously 
described mediators of egress, which, in addition to the bait pro-
teins, include for example, Pf11-1, GEST, GEP, MiGS, GEXP02, 
SUB2, EPF1, and PMX (Andreadaki et al., 2020; Grasso et al., 2020; 
Kehrer, Frischknecht, et al.,  2016; Mbengue et al.,  2013; Nasamu 
et al., 2017; Olivieri et al., 2015; Pace et al., 2019; Pino et al., 2017; 
Scherf et al., 1992; Suárez-Cortés et al., 2016; Tachibana et al., 2018; 
Talman et al.,  2011; Warncke et al.,  2020; reviewed in Bennink & 
Pradel,  2021; Kuehn & Pradel,  2010; Pradel,  2007). Noteworthy, 

the majority of the identified GEVPs could be assigned to the OBs, 
pointing to a major role of these vesicles in egress from the envel-
oping RBC.

In addition to egress factors, we identified novel GEVPs previ-
ously assigned to other functions and lifecycle stages, for example, 
merozoite proteins like RhopH2, MaTrA, MSP8, and P38, all of which 
are known to be involved in RBC invasion (Black et al., 2005; Cowman 
et al., 2017; Curtidor et al., 2004; Hinds et al., 2009; Molina-Franky 
et al., 2022; Ntumngia et al., 2004; Sanders et al., 2005; Vincensini 
et al.,  2008), or the PSOP members PSOP1, PSOP12, PSOP13, 
PSOP17, and GAMA (the ortholog of P. berghei PSOP9) originally 
described in the ookinete micronemes and assigned to mosquito 
midgut penetration (Ecker et al., 2008; Tachibana et al., 2021). The 
fact that the here identified egressome includes proteins import-
ant for merozoite invasion as well as ookinete proteins assigned to 

F I G U R E  6  Localization and discharge of OB components. (a) 
Localization of PSOP1 and GEVP1 in OBs. Gametocytes of lines 
PSOP1-HA-glmS and GEVP1-HA-glmS were immunolabeled with 
rat anti-HA antibody (green). OBs and P-EVs were highlighted 
using rabbit anti-G377 or mouse anti-PPLP2 antisera (red); parasite 
nuclei were highlighted by Hoechst 33342 nuclear stain (blue). 
Samples were analyzed via Airyscan super-resolution microscopy. 
Bar; 2 μm. DIC, differential interference contrast. Corresponding 
negative controls are provided in Figure S10. (b) Quantification of 
protein colocalization. The PCC was calculated using Fiji ImageJ2. 
Immunolabeling of HA-tagged OB proteins was defined as region 
of interest (n = 50). The error bars indicate mean ± SD. (c) PSOP1 
discharge following gametocyte activation. Gametocytes of line 
PSOP1-HA-glmS were collected at 0–5 min post-activation (p.a.) 
and immunolabeled with rat anti-HA antibody to highlight PSOP1 
(green). Gametocytes were counterstained by rabbit anti-P230 
antisera (red); parasite nuclei were highlighted by Hoechst 33342 
nuclear stain (blue). Bar; 5 μm. DIC, differential interference 
contrast. Further details on PSOP1 discharge are provided in 
Figure S11. Results (a, c) are representative of three independent 
experiments.
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midgut extravasation suggests that these proteins may have multi-
ple functions related to host cell membrane modification in different 
lifecycle stages. Since a considerable proportion of the GEVPs are 
proteins originally assigned to merozoites and since some of them 
have previously been reported to be directly involved in merozoite 
egress, for example, EPF1 and PMX (see above), merozoites and 
gametocytes appear to share a basic repertoire of egress-related 
proteins. Unfortunately, to date no exoneme-specific proteome has 
been identified, hence, comparative analyses between GEVPs and 
exoneme-resident proteins are not yet possible.

We also identified various proteases, for example, SUB2, DPAP1, 
DPAP2, M1AAP, M16, as well as PMI, PMIII, PMX, the majority 
of which were so far linked to hemoglobin processing (reviewed 
in, e.g., Arisue et al.,  2020; Goldberg,  2005; Nasamu et al.,  2020; 
Rosenthal, 2002; Siqueira-Neto et al., 2018; Trenholme et al., 2010). 
Importantly, approximately one third of the identified GEVPs were 
recently shown to be putative SUB2 substrates (Collins et al., 2020). 
SUB2 is a sheddase originally identified in merozoites that is dis-
charged from micronemes to process merozoite surface proteins like 
MSP1 during the invasion of RBCs. Because SUB2 was identified by 
us and others as a putative OB-resident protein and due to the fact 
that a high proportion of the identified GEVPs are known SUB2 sub-
strates, we hypothesize a role of SUB2 in processing select GEVPs 
prior to or after OB exocytosis.

Furthermore, a high number of GEVPs was previously associated 
to the Maurer's clefts, like the gametocyte exported protein family 
members GEXP02, GEXP17, GEXP12, GEXP21, and GEXP22, fur-
ther EPF1, PTP5, ETRAMP10.2, MSRP5, and PV1 as well as various 
PHIST proteins and unnamed exported proteins. These proteins may 
function in remodeling the erythrocyte cytoskeleton as a preceding 
step of RBCM rupture.

The identification of PPLP2-specific interactors proved difficult, 
even after repetition of the BioID analysis using another indepen-
dent duplicate. The majority of PPLP2 interactors can be assigned 
to vesicle biogenesis, particularly transmembrane transporters. To 
be highlighted is the interaction of PPLP2 with the v-SNARE protein 
Vti1, which is one of three identified P. falciparum orthologs of eu-
karyotic Vti1 (Aurrecoechea et al., 2009; Ayong et al., 2007). Indeed, 
in silico and transcript and protein expression analyses confirmed that 
many factors of the vesicle trafficking and fusion machinery, including 
SNAREs and associated proteins, are conserved in P. falciparum and 
expressed in gametocytes (reviewed in Bennink & Pradel, 2021). The 
role of these molecules in the dynamics of egress vesicles, however, is 
yet unknown and needs to be investigated in more detail.

Several of the identified candidates were interactors shared 
by PPLP2 with G377 and/or MDV1. The majority of these proteins 
belong to the LCCL-domain protein-based multi-adhesion domain 
protein complex, including CCp1, CCp2, CCp3, CCp5, and FNPA 
as well as the P48/45 and P230. It has previously been shown that 
the components of this multi-adhesion domain protein complex 
are expressed throughout gametocyte maturation and localize in 
the PV, where the complex is anchored in the GPM via P48/45 
(Pradel et al., 2004; Scholz et al., 2008; Simon et al., 2009, 2016; 

reviewed in Kuehn et al., 2010; Pradel, 2007). IFAs confirmed the 
presence of CCp2 in vesicles and the PV and showed that CCp2 
does neither colabel with G377 nor PPLP2. These results sug-
gest that the components of the multi-adhesion domain protein 
complex have met the biotin ligase-tagged bait proteins during 
endomembrane trafficking. The encounter of secretory proteins 
during endomembrane trafficking would also explain why PPLP2 
was previously identified as an interactor of MDV1 (Kehrer, 
Frischknecht, et al., 2016).

In a last step of our study, we selected six known and yet un-
characterized components of the egress vesicle interactomes, 
including the novel v-SNARE Vti1, and verified their vesicular lo-
calization. In addition, we confirmed an OB-specific localization of 
PSOP1 and GEVP1. The verification of PSOP1 as an OB-resident 
protein strengthens our hypothesis that PSOP proteins have ad-
ditional functions distinct from ookinete biology. In this context, 
a recent study identified naturally acquired antibodies against 
PSOP1 in blood samples of various malaria cohorts, verifying 
the presence of the protein in gametocytes (Muthui et al., 2021). 
Similarly, PSOP12, another egress molecule identified in this 
study that is a member of the 6-cys family, was demonstrated to 
be expressed in gametocytes in addition to ookinetes (Annoura 
et al., 2014; Sala et al., 2015; Wass et al., 2012). The expression of 
such PSOP members from gametocyte maturation until ookinete 
development makes them promising candidates for transmission 
blocking vaccines (Sala et al., 2015).

In conclusion, we here demonstrated the presence of two dif-
ferent types of egress vesicles, the OBs and P-EVs, with important 
functions during RBC exit by activated gametocytes. We further 
verified the existence of various OB components in P. falciparum, 
which were previously identified in P. berghei. In addition, we iden-
tified novel components of the two egress vesicle types, includ-
ing Maurer's cleft-associated proteins, proteases, transmembrane 
transporters, and vesicle trafficking proteins, but also various yet 
unknown proteins. Because the OB proteome contains the vast ma-
jority of the GEVPs, we conclude that these vesicles play a major role 
in RBC egress. The fact that most of the identified GEVPs have or-
thologs in P. berghei further points to a conserved egress mechanism 
in malaria parasites. Follow-up studies will need to verify the role of 
GEVPs in gametogenesis in order to shed more light on the molecu-
lar machinery of the inside-out egress of gametocytes.

4  |  E XPERIMENTAL PROCEDURE

4.1  |  Gene identifiers

Aldolase (PF3D7_1444800), CCp2 (PF3D7_1455800); G377 
(PF3D7_1250100); ​GAMA (PF3D7_0828800) GEVP1 (PF3D7_0811600); 
GEVP2 (PF3D7_1319900); MDV1 (PF3D7_1216500); Pf39 
(PF3D7_1108600); ​Pf92 (PF3D7_1364100); P230 (PF3D7_0209000); 
Pfs16 (PF3D7_0406200); PPLP2 (PF3D7_1216700), PSOP1 
(PF3D7_0721700); ​Sel1 (PF3D7_0204100), ​Vti1 (PF3D7_1236000).
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    |  13SASSMANNSHAUSEN et al.

4.2  |  Bioinformatics

Colocalization of G377, MDV1, and PPLP2 in IFAs was evalu-
ated via Pearson's correlation coefficient (PCC) using Fiji ImageJ2 
(Schindelin et al., 2012). Prediction of the transmembrane domains 
and intra−/extracellular regions of the putative interaction part-
ners was performed using DeepTMHMM (Hallgren et al.,  2022); 
further signal peptide prediction was performed using the SignalP 
versions 4.1 with sensitive D-cutoff and 5.0 (Almagro Armenteros 
et al., 2019; Petersen et al., 2011). Subcellular localization regard-
ing potential ER localization was predicted using DeepLoc 2.0, ER-
retention signals were identified based on a bioinformatic analysis 
of Külzer et al. (2009) and Thumuluri et al. (2022). Predictions of 
gene expression and protein function were made using the data-
base PlasmoDB (http://plasm​oDB.org; Aurrecoechea et al., 2009); 
the peak transcript expression of candidate genes was analyzed 
using table “Transcriptomes of 7 sexual and asexual life stages” 
(López-Barragán et al.,  2011) and sex specificity was predicted 
using table “Gametocyte Transcriptomes” (Lasonder et al., 2016) 
of the PlasmoDB database. A sex specificity was considered, when 
the transcript per million (TPM) ratio was ≥3. Data mining in the 
context of gene disruptibility and possible loss-of-function mu-
tant phenotypes was performed using PhenoPlasm (http://pheno​
plasm.org/; Sanderson & Rayner, 2017), the USF PiggyBac Screen 
(Zhang et al.,  2018), PlasmoGEM (https://plasm​ogem.umu.se/
pbgem/; Schwach et al., 2015), and RMgmDB (https://www.pberg​
hei.eu/index.php; Khan et al., 2013). The GO enrichment analysis 
was performed using the PlasmoDB database with a p-value cut-
off of 0.05. A network analysis was conducted using the STRING 
database (version 11.0) (Szklarczyk et al., 2019), using default set-
tings, including text mining options and a confidence of 0.009.

4.3  |  Antibodies

The following antisera were used: rabbit polyclonal antisera against 
G377 (Severini et al., 1999; kindly provided by Pietro Alano, Istituto 
Superiore di Sanità, Rome, Italy), CCp2 (Roling et al., 2022; Simon 
et al., 2009, 2016), Pf39 (Simon et al., 2009), Pf92 (Musabyimana 
et al.,  2022) P230 (Simon et al.,  2009, 2016), and Pfs16 (kindly 
provided by Kim Williamson, Uniformed Services University of the 
Health Sciences, Bethesda, US); mouse polyclonal antisera against 
Pf92 (Musabyimana et al., 2022); PPLP2 (Wirth et al., 2014), CCp2 
(Pradel et al., 2004), P230 (Williamson et al., 1995), or Pfs16 (kindly 
provided by Kim Williamson, Uniformed Services University of the 
Health Sciences, Bethesda, US; Sologub et al., 2011); rat polyclonal 
antisera against MDV1 (kindly provided by Pietro Alano, Istituto 
Superiore di Sanità, Rome, Italy), monoclonal mouse anti-GFP anti-
body (Roche; Basel, CH). monoclonal rat anti-HA antibody (Roche; 
Basel, CH), monoclonal mouse anti-human spectrin alpha-1 anti-
body 17C7 (Invitrogen Molecular Probes; Eugene, US), and poly-
clonal rabbit anti-spectrin alpha 1 antibody (Invitrogen Molecular 
Probes; Eugene, US).

4.4  |  Parasite culture

In this study, P. falciparum strain NF54 (WT NF54) was used. The 
WT NF54 and all generated mutant parasite lines were cultivated 
in vitro in human blood group A+ erythrocytes as previously de-
scribed (Ifediba & Vanderberg, 1981). Asexual blood stages and ga-
metocytes were maintained in RPMI1640/HEPES medium (Gibco; 
Thermo Fisher Scientific; Waltham, US) supplemented with 10% (v/v) 
heat inactivated human A+ serum, 50 μg/mL hypoxanthine (Sigma-
Aldrich; Taufkirchen, DE) and 10 μg/mL gentamicin (Gibco; Thermo 
Fisher Scientific; Waltham, US). For cultivation of the mutant para-
site lines, the selection drug WR99210 (Jacobus Pharmaceutical 
Company; Princeton, US) was added in final concentrations of 
2.5 nM or 4.0 nM. All cultures were kept at 37°C in an atmosphere 
of 5% O2 and 5% CO2 in N2. Gametocytes were enriched via Percoll 
(Cytiva; Washington DC, US) gradient centrifugation as described 
previously (Kariuki et al., 1998). Gametogenesis was induced by add-
ing xanthurenic acid in a final concentration of 100 μM dissolved in 
1% (v/v) 0.5 M NH4OH/ddH2O and incubation for 15 min at room 
temperature (RT). To analyze the role of intracellular calcium dur-
ing exocytosis, the cultures were treated with 25 μM BAPTA–AM 
(Thermo Fisher Scientific; Waltham, US) for 15 min at 37°C prior to 
activation. Erythrocyte concentrate and serum from humans were 
procured from the Department of Transfusion Medicine (RWTH 
University Hospital Aachen, Germany). All work with human blood 
was approved by the RWTH University Hospital Aachen Ethics com-
mission, the donors remained anonymous and serum samples were 
pooled.

4.5  |  Generation of parasite lines to be used 
in BioID

Plasmid pSLI-TurboID-GFP (pSL1423; Addgene #194904) was cre-
ated to serve as a base plasmid for the fusion of TurboID with the 
C-terminus of the respective protein of interest by modifying the 
previously described pSLI–TGD plasmid (Addgene #85791, Birnbaum 
et al., 2017) via inserting a recodonized version of TurboID (“V4”) and 
a portion of GFPmut2 between the existing NotI and HpaI sites. For 
the generation of the MDV1- and G377-TurboID-GFP parasite lines, 
a gene fragment homologous to the 3′-region of the gene was ampli-
fied via PCR using the respective primers (for primer sequences, see 
Table  S6). Ligation of insert and vector backbone was mediated by 
NotI and SpeI restriction sites. A WT NF54 culture with at least 5% 
ring stages was transfected with 100 μg plasmid DNA in transfection 
buffer via electroporation (310 V, 950 μF, 12 ms; Bio-Rad gene-pulser 
Xcell) as described (e.g., Ngwa et al., 2017; Wirth et al., 2014). At 6 h 
post-transfection, WR99210 was added in a final concentration of 
4 nM. A mock control was electroporated using transfection buffer 
without the addition of plasmid DNA and was cultured in medium with 
and without WR99210. After approximately 3–5 weeks, WR-resistant 
parasites appeared in the cultures. To remove WT NF54 parasites 
from the culture, these were treated with 800 μg/mL neomycin (G418 

 13652958, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

m
i.15125 by R

w
th A

achen H
ochschulbibliothek, W

iley O
nline L

ibrary on [28/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://plasmodb.org
http://phenoplasm.org/
http://phenoplasm.org/
https://plasmogem.umu.se/pbgem/
https://plasmogem.umu.se/pbgem/
https://www.pberghei.eu/index.php
https://www.pberghei.eu/index.php


14  |    SASSMANNSHAUSEN et al.

disulfate salt; Sigma-Aldrich; Taufkirchen, DE) daily for a maximum of 
7 days. To verify successful integration into the respective gene locus, 
genomic DNA (gDNA) was isolated from the transgenic parasite lines, 
using the NucleoSpin Blood Kit (Macherey-Nagel; Dueren, DE) follow-
ing the manufacturer's protocol and used as template in diagnostic 
PCR. The following primers were used to confirm vector integration: 
5′Int MDV1/G377-TurboID, 3′Int MDV/G377-TurboID, pARL-HA-glmS 
FP, pGREP RP (for primer sequences, see Table S6). The PPLP2-GFP-
BirA parasite line was generated by using vector pARL-pffnpa-GFP-
BirA (Musabyimana et al., 2022). The full-length gene was amplified via 
PCR using the respective primers (for primer sequences, see Table S6). 
Ligation of insert and vector backbone was mediated by KpnI and 
AvrII restriction sites. Transfection of the construct was carried out as 
described above. Episomal presence of the construct was checked by 
using the following primers: PPLP2-BirA-KpnI-FP and pGREP RP (for 
primer sequences, see Table S6).

4.6  |  Generation of pSLI-HA-glmS parasite lines

The HA-glmS-tagged parasite lines were generated via single-
crossover homologous recombination, using vector pSLI-HA-glmS 
(Musabyimana et al., 2022; kindly provided by Dr. Ron Dzikowski, 
The Hebrew University of Jerusalem, Israel). A gene fragment ho-
mologous to the 3′-region of the gene was amplified via PCR using 
the respective primers (for primer sequences, see Table  S6). The 
ligation of insert and vector backbone was mediated by NotI and 
XmaI restriction sites. The transfection and selection procedures 
were performed as described above, but WR99210 was added in 
a final concentration of 2.5 nM. The following primers were used 
to confirm vector integration: 5′-Integration Construct pSLI-glmS, 
3′-Integration Construct pSLI-glmS, pARL-HA-glmS FP, pSLI-HA-
glmS RP (for primer sequences, see Table S6).

4.7  |  Western blot analysis

Asexual blood stage parasites of WT NF54, lines MDV1- and G377-
TurboID-GFP, line PPLP2-GFP-BirA, and the HA-glmS-tagged para-
site lines were harvested from mixed cultures. For erythrocyte lysis, 
parasites were incubated for 10 min in 0.05% (w/v) saponin/PBS. 
Gametocytes were enriched by Percoll purification as described 
above. Pelleted parasites were resuspended in lysis buffer (150 mM 
NaCl, 0.1% (v/v) Triton X-100, 0.5% (w/v) sodium deoxycholate, 
0.1% (w/v) SDS, 50 mM Tris–HCl, pH 8.0) supplemented with pro-
tease inhibitor cocktail (PIC, Roche; Basel, CH). A 5× SDS loading 
buffer with 25 mM dithiothreitol was added to the lysates, followed 
by heat-denaturation for 10 min at 95°C. Lysates were separated 
via SDS–PAGE and transferred to a nitrocellulose membrane. Non-
specific binding sites were blocked by incubation with 5% (w/v) 
skim milk and 1% (w/v) BSA in Tris-buffered saline (pH 7.5) for 1 h 
at 4°C. For immunodetection, membranes were incubated overnight 
at 4°C with monoclonal mouse anti-GFP antibody (Roche; Basel, 

CH; dilution 1:500) or monoclonal rat anti-HA antibody (Roche; 
Basel, CH; dilution 1:200) and polyclonal rabbit anti-Pf39 antisera 
(dilution 1:10,000) in 3% (w/v) skim milk/TBS. The membranes 
were washed 3x each with 3% (w/v) skim milk/TBS and 3% (w/v) 
skim milk/0.1% (v/v) Tween/TBS and then incubated for 1 h at RT 
with goat anti-mouse, anti-rabbit or anti-rat alkaline phosphatase-
conjugated secondary antibodies (dilution 1:10,000, Sigma-Aldrich; 
Taufkirchen, DE) in 3% (w/v) skim milk/TBS. The membranes were 
developed in a NBT/BCIP solution (nitroblue tetrazolium chloride/5-
bromo-4-chloro-3-indoxyl phosphate; Roche; Basel, CH) for up to 
20 min at RT. For the detection of biotinylated proteins, the block-
ing step was performed overnight at 4°C in 5% (w/v) skim milk/TBS 
and the membrane was washed 5× with 1× TBS before incubation 
with streptavidin-conjugated alkaline phosphatase (dilution 1:1000, 
Sigma-Aldrich; Taufkirchen, DE) in 5% (w/v) BSA/TBS for 1 h at RT.

4.8  |  Indirect immunofluorescence assay

Asexual blood stage parasites and gametocytes of WT NF54, lines 
MDV1-TurboID-GFP, G377-TurboID-GFP, and PPLP2-GFP-BirA, 
and the HA-glmS-based parasite lines were coated on diagnostic 
slides (Epredia; Thermo Fisher Scientific; Waltham, US) and air-
dried. Fixation of the cells was performed with 40 μL of 4% (w/v) 
paraformaldehyde (pH 7.2) for 10 min at RT, followed by membrane 
permeabilization with 30 μL of 0.1% (v/v) Triton X-100/125 mM 
glycerol for another 10 min at RT. Non-specific binding sites were 
blocked by incubation with 3% (w/v) BSA/PBS for 30 min. The pri-
mary antibodies were diluted in 3% (w/v) BSA/PBS and were added 
to the slide for 2 h incubation at 37°C. The slides were washed 3× 
with PBS and incubated with the secondary antibody for 1 h at 37°C. 
Following 2× washing with PBS, the incubation with the second pri-
mary antibody and the corresponding visualization with the second 
secondary antibody were carried out as described above. The nu-
clei were stained with Hoechst 33342 staining solution for 2 min 
at RT (1:5000 in 1× PBS). The cells were mounted with anti-fading 
solution (Citifluor Limited; London, UK), covered with a coverslip 
and sealed airtight with nail polish. The parasites were visualized 
by either conventional fluorescence microscopy using a Leica 
DM5500 B (Leica; Wetzlar, DE) or by confocal microscopy using 
Zeiss LSM880 Airyscan super-resolution microscope (Carl Zeiss; 
Jena, DE) fitted with an Airyscan detector and a Plan-Apochromat 
×63 (NA 1.4) M27 oil objective. During confocal microscopy, the im-
ages were acquired sequentially with a pixel resolution of 0.02 μm 
in four channels as follows: channel 1 = 405 nm laser, channel 
2 = 488 nm laser, channel 3 = 561 nm laser, channel 4 = differential 
interference contrast (DIC). Antibodies were diluted as follows: rat 
anti-MDV1 (1:1000), rabbit anti-G377 (1:1000), mouse anti-PPLP2 
(1:50), mouse anti-GFP (1:500), rat anti-HA (1:100), anti-CCp2 
(mouse, 1:50; rabbit, 1:500), mouse and rabbit anti-Pf92 (1:500) 
mouse and rabbit anti-P230 (1:400), mouse and rabbit anti-Pfs16 
(1:200); mouse and rabbit anti-spectrin (1:500), and anti-mouse 
Alexa Fluor 488, anti-rabbit Alexa Fluor 488, anti-rat Alexa Fluor 
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488, anti-mouse Alexa Fluor 594, anti-rabbit Alexa Fluor 594, anti-
mouse Alexa Fluor 555 and anti-rabbit Alexa Fluor 555 (1:1000; 
used for LSM880 microscopy; all fluorophores from Invitrogen 
Molecular Probes; Eugene, US, or Sigma-Aldrich; Taufkirchen, DE); 
further Alexa Fluor 594 streptavidin (1:500; Invitrogen Molecular 
Probes; Eugene, US) was used.

4.9  |  Statistical analysis

Data are expressed as mean ± SD. Statistical differences were deter-
mined using One-Way ANOVA with post-hoc Bonferroni Multiple 
Comparison test. p-values <0.05 were considered statistically sig-
nificant. Significances were calculated using GraphPad Prism 5 and 
are defined as follows: *p < 0.05; **p < 0.01; ***p < 0.001.

4.10  |  Affinity purification of biotinylated proteins

The lines MDV1-TurboID-GFP, G377-TurboID-GFP and PPLP2-GFP-
BirA were used for BioID-MS analysis, following a protocol by Roux 
et al. (2018). WT NF54 cultures were used for control. Biotinylation was 
induced by treatment of the corresponding gametocyte cultures with 
50 μM biotin for 15 min (TurboID) or 20 h (BioID) at 37°C. Gametocytes 
were washed in RPMI incomplete medium, enriched via Percoll gradient 
centrifugation, and resuspended in 100 μL binding buffer (Tris-buffered 
saline containing 1% (v/v) Triton X-100 and protease inhibitor). The 
sample was sonicated on ice (2 × 60 pulses at 30% duty cycle) and an-
other 100 μL of ice-cold binding buffer was added. After a second ses-
sion of sonification, cell debris was pelleted by centrifugation (5 min, 
16,000× g, 4°C). The supernatant was mixed with pre-equilibrated 
Cytiva Streptavidin Mag Sepharose Magnet-Beads (Cytiva; Washington 
DC, US) in a low-binding reaction tube. Incubation was performed with 
slow end-over-end mixing over night at 4°C. The beads were washed 
6× with 500 μL washing buffer (3×: RIPA buffer containing 0.03% (w/v) 
SDS, followed by 3× 25 mM Tris buffer, pH 7.5) and were resuspended in 
100 μL elution buffer (1% (w/v) SDS/5 mM biotin in Tris buffer (pH 7.5)), 
followed by an incubation for 5 min at 95°C. The supernatant was trans-
ferred into a new reaction tube and stored at 4°C. For each culture, 
three independent samples were collected; two additional independent 
samples for line PPLP2-GFP-BirA line were included.

4.11  |  Proteolytic digestion

Samples were processed by single-pot solid-phase-enhanced sam-
ple preparation (SP3) as described before (Hughes et al., 2014; Sielaff 
et al.,  2017). Eluted proteins were reduced and alkylated, using DTT 
and iodoacetamide (IAA), respectively. Afterward, 2 μL of carboxylate-
modified paramagnetic beads (Sera-Mag Speed Beads, GE Healthcare; 
Chicago, US; 0.5 μg solids/μL in water as described by Hughes 
et al., 2014) were added to the samples. After adding acetonitrile to a 
final concentration of 70% (v/v), samples were allowed to settle at RT 

for 20 min. Subsequently, beads were washed twice with 70% (v/v) etha-
nol in water and once with acetonitrile. The beads were resuspended 
in 50 mM NH4HCO3 supplemented with trypsin (Mass Spectrometry 
Grade, Promega; Madison, US) at an enzyme-to-protein ratio of 1:25 
(w/w) and incubated overnight at 37°C. After overnight digestion, ace-
tonitrile was added to the samples to reach a final concentration of 95% 
(v/v) followed by incubation at RT for 20 min. To increase the yield, super-
natants derived from this initial peptide-binding step were additionally 
subjected to the SP3 peptide purification procedure (Sielaff et al., 2017). 
Each sample was washed with acetonitrile. To recover bound peptides, 
paramagnetic beads from the original sample and corresponding super-
natants were pooled in 2% (v/v) dimethyl sulfoxide (DMSO) in water and 
sonicated for 1 min. After 2 min of centrifugation at 14,000× g and 4°C, 
supernatants containing tryptic peptides were transferred into a glass 
vial for MS analysis and acidified with 0.1% (v/v) formic acid.

4.12  |  Liquid chromatography-mass spectrometry 
(LC–MS) analysis

Tryptic peptides were separated using an Ultimate 3000 RSLCnano 
LC system (Thermo Fisher Scientific; Waltham, US) equipped with 
a PEPMAP100 C18 5 μm 0.3 × 5 mm trap (Thermo Fisher Scientific; 
Waltham, US) and an HSS-T3 C18 1.8 μm, 75 μm × 250 mm ana-
lytical reversed-phase column (Waters Corporation; Milford, US). 
Mobile phase A was water containing 0.1% (v/v) formic acid and 3% 
(v/v) DMSO. Peptides were separated by running a gradient of 2%–
35% mobile phase B (0.1% (v/v) formic acid, 3% (v/v) DMSO in ACN) 
over 40 min at a flow rate of 300 nL/min. Total analysis time was 
60 min including wash and column re-equilibration steps. Column 
temperature was set to 55°C. Mass spectrometric analysis of elut-
ing peptides was conducted on an Orbitrap Exploris 480 (Thermo 
Fisher Scientific; Waltham, US) instrument platform. Spray voltage 
was set to 1.8 kV, the funnel RF level to 40, and heated capillary 
temperature was at 275°C. Data were acquired in data-dependent 
acquisition (DDA) mode targeting the 10 most abundant peptides 
for fragmentation (Top10). Full MS resolution was set to 120,000 at 
m/z 200 and full MS automated gain control (AGC) target to 300% 
with a maximum injection time of 50 ms. Mass range was set to m/z 
350–1500. For MS2 scans, the collection of isolated peptide pre-
cursors was limited by an ion target of 1 × 105 (AGC tar-get value of 
100%) and maximum injection times of 25 ms. Fragment ion spec-
tra were acquired at a resolution of 15,000 at m/z 200. Intensity 
threshold was kept at 1E4. Isolation window width of the quadru-
pole was set to 1.6 m/z and normalized collision energy was fixed 
at 30%. All the data were acquired in profile mode using positive 
polarity. Each sample was analyzed in three technical replicates.

4.13  |  Data analysis and label-free quantification

DDA raw data acquired with the Exploris 480 were processed with 
MaxQuant (version 2.0.1; Cox & Mann, 2008; Cox et al., 2014), using 
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the standard settings and label-free quantification (LFQ) enabled for 
each parameter group, that is, control and affinity-purified samples 
(LFQ min ratio count 2, stabilize large LFQ ratios disabled, match-
between-runs). Data were searched against the forward and reverse 
sequences of the P. falciparum proteome (UniProtKB/TrEMBL, 5445 
entries, UP000001450, released April 2020) and a list of common con-
taminants. For peptide identification, trypsin was set as protease al-
lowing two missed cleavages. Carbamidomethylation was set as fixed 
and oxidation of methionine as well as acetylation of protein N-termini 
as variable modifications. Only peptides with a minimum length of 7 
amino acids were considered. Peptide and protein false discovery rates 
(FDRs) were set to 1%. In addition, proteins had to be identified by at 
least two peptides. Statistical analysis of the data was conducted using 
Student's t-test, which was corrected by the Benjamini-Hochberg (BH) 
method for multiple hypothesis testing (FDR of 0.01). In addition, pro-
teins in the affinity-enriched samples had to be identified in all three 
biological replicates and show at least a two-fold enrichment compared 
to the controls. The datasets of protein hits were further edited by veri-
fication of the gene IDs and gene names via the PlasmoDB database 
(www.plasm​odb.org; Aurrecoechea et al., 2009). PlasmoDB gene IDs 
were extracted from the fasta headers provided by mass spectrometry 
and verified manually. Once an initial list of significantly enriched pro-
teins had been established, two curation steps were performed: First, 
proteins without a putative signal peptide and/or transmembrane do-
mains and those with C-terminal ER retention signals were excluded 
(using programmes DeepTMHMM for transmembrane domain pre-
diction, SignalP version 4.1 and 5.0 for signal peptide prediction, and 
DeepLoc 2.0 as well as a bioinformatic analysis of Külzer et al. (2009) 
for ER retention signal prediction as described above). Second, pro-
teins with defined known functions not related to OBs or P-EVs as 
indicated at PlasmoDB were removed. In addition, the significantly 
enriched proteins were compared to those previously identified by us 
as interactors of plasmodial intracellular enzyme SAMS (Musabyimana 
et al., 2022) and no matches were found.
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