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A B S T R A C T   

Proper ore characterisation is essential for understanding ore deposits and developing efficient mineral pro
cessing flow sheets. Conventional mineralogical and chemical techniques are usually used to study ores, but they 
can be destructive and, in some cases, provide only 2D information. Computed tomography (CT) is an emerging 
technology in the raw materials sector enabling the non-destructive 3D analysis of the ore mineralogy and 
microstructure. However, single-energy CT (SECT) has some limitations concerning the accurate imaging and 
differentiation of polyphase geomaterials comprising a broad range of attenuation properties. By contrast, dual- 
energy CT (DECT) uses two different X-ray energies to acquire data, which can be used to distinguish between 
materials with similar attenuation properties. This study explored the application of DECT for the analysis of a 
polyphase graphitic ore. A sequential fusion approach was utilized to combine data obtained from different X-ray 
energy scans at high spatial resolution, and varying weighting factors were applied to determine the optimal 
contribution of each energy level and spectrum. Both, SECT and DECT datasets were quantitatively evaluated 
based on the contrast-to-noise-ratio (CNR) and Q factor. The findings demonstrate that DECT significantly im
proves image contrast compared to SECT while further increases image sharpness. As a result, DECT may enable 
more accurate segmentation and, therefore, more accurate quantitative 3D analysis of graphite ores.   

1. Introduction 

An accurate assessment of ore deposits and the development of 
efficient extraction of ore minerals rely on a solid understanding of their 
mineralogy as well as their physical and chemical properties. To obtain 
this information, various analytical methods are employed, such as op
tical microscopy (OM), scanning electron microscopy equipped with an 
energy or wavelength dispersive X-ray analyser (SEM/E-WDX), electron 
microprobe analyser (EMPA), secondary ion mass spectrometry (SIMS), 
laser ablation inductively coupled plasma mass spectrometry (LA-ICP- 
MS), and X-ray diffraction (XRD) [1–4]. In recent decades, computed 
tomography (CT) has proven its added value in studying the mineral
ogical aspects of geological materials, with an increasing number of 
studies recognizing its advantages for investigating rocks and ores 
[5–13]. Unlike conventional methods, CT offers quantitative and 
non-destructive 3D analysis with minimal sample preparation, elimi
nating the stereological bias [14–16]. This includes the ability to provide 
direct and more representative information on the shape, orientation, 

and size of phases without the need for time-consuming sectioning. 
The CT principle is based on the X-ray attenuation behaviour of the 

phases comprising the sample, which is displayed by the contrast pro
duced in the resulting greyscale image. The X-ray attenuation varies as a 
function of the material density, the average atomic number, and the 
thickness of the scanned object, as well as the X-ray energy applied [17, 
18]. This difference in X-ray linear attenuation provides a contrast 
which can be used for mineral differentiation. 

The effective utilization of CT depends on the X-ray beam’s capa
bility to penetrate the sample, enabling the visualization of internal 
geometry [18,19]. However, CT struggles to accentuate or distinguish 
between features that exhibit similar densities and effective atomic 
numbers. In this regard, ores often comprise complex polyphase geo
materials with a wide range of X-ray attenuation properties owing to 
their constituents’ differences and/or similarities in density, atomic 
number, and particle sizes. This can make it challenging to acquire 
high-quality CT data of these materials, as it can lead to scanning arti
facts and mixed attenuation coefficients that result in a partial overlap of 
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grey values in the reconstructed CT greyscale image stack that hamper 
the interpretation and processing of CT data [20–22]. 

To obtain high-quality CT data, the proper X-ray energy must be 
selected, to optimise data quality, which is not always straightforward 
[23]. Higher X-ray energy is required to penetrate high-density mate
rials or thicker sections, but it may cause a loss of contrast and unre
solvable features. Conversely, using lower X-ray energy to obtain good 
quality imaging of light materials may not penetrate denser materials, 
resulting in loss of information [22,24]. Thus, the choice of the advan
tageous beam intensity must be a trade-off between high and 
low-absorbing materials within the specimen to be examined. 

Current and past research focused on the acquisition of high CT data 
primarily through the development of scanning protocols for the optimal 
scanning parameters to extract mineralogical and textural information 
in ore samples [8,25,26] and the development of an attenuation coef
ficient data bank in order to predict phase discrimination in ores [27, 
28]. Another method that may contribute to the generation of 
high-quality CT scans of complex ores is dual-energy computed to
mography (DECT). DECT has been widely established in medical im
aging, sorting, and security applications [29–32]. Notably, in the 
medical field, DECT has become a routine method for detecting 
anatomic structures and conducting contrast-enhanced studies to 
improve image quality [33–37]. In the context of analysing geo
materials, DECT has primarily been used for material decomposition 
[38–41]. By utilizing two different X-ray energies, DECT enables the 
tracking of attenuation changes according to the X-ray spectra. This 
information can be harnessed to identify minerals in the samples and 
retrieve their density and effective atomic number (Zeff) information. 
However, studies applying DECT to a polyphase ore and quantifying the 
improvement in image quality are sparse. 

This study aims to investigate the potential of high-resolution DECT 
for enhancing image contrast in a heterogeneous polyphase graphitic 
ore. The study utilizes a sequential fusion approach to combine data 
obtained from different X-ray energy scans at high spatial resolution. 
Various X-ray energy spectra are combined with varying weighting 
factors to determine the favourable contribution of each energy level 
and spectrum, thereby aiming to provide the best possible attenuation of 
each phase. The findings of this study provide valuable insights into the 
establishment of DECT data and demonstrate the effectiveness of DECT 
in improving image quality in the context of complex geomaterials. 

2. Materials and methods 

2.1. Conventional analysis 

A polymineralic flake graphite ore was provided by Westwater Re
sources, Inc. (Centennial, Colorado, USA). The specimen originates from 
the Bama Graphite Mine (Chilton Co., Alabama, USA), and consists of 
variable amounts of graphite as well as gangue phases (i.e., quartz, clay, 
muscovite, hydrated iron(III) oxide-hydroxides (HFO)). Mineralogical- 
petrographic investigations, including XRD, OM and SEM-EDS, were 
carried out prior to the CT measurements. XRD was used to determine 
the bulk mineralogy of the graphite ore sample. These steps are neces
sary to correctly interpret the CT data. For XRD analysis, a 2.5 g sample 
was ground in 100 % ethanol for 5 min using a McCrone micronizing 
mill with synthetic agate pellets. After air-drying, the micronized ali
quots underwent qualitative phase identification using the JADE 
(Rigaku, Tokyo, Japan) and EVA (Bruker, Billerica, MA, USA) software 
packages on a Rigaku Ultima IV powder X-ray diffractometer (Depart
ment of Earth and Atmospheric Sciences, University of Alberta, 
Edmonton, Canada). Mineral phases were identified by referencing the 
ICDD PDF4 + database. For petrographic analysis, a thin section, and a 
cylindrical-shaped polished block (12 mm in diameter, 5 mm in height) 
were prepared by MK Factory (Stahnsdorf, Germany). Both, the thin 
section, and the polished block were examined using a LEICA DM 2700 P 
polarisation microscope (Institute of Mineral Resources Engineering, 

RWTH Aachen University, Germany), and microphotographs were taken 
using a LEICA FLEXCAM C1 camera and the LEICA LAS software. The 
polished block was subject to SEM-EDS analysis to further investigate 
the mineralogy and microstructure of the graphite ore specimen, using a 
FEI 650 F scanning electron microscope equipped with two Bruker 
XFlash 5030 detectors (Institute of Mineralogy and Economic Geology, 
RWTH Aachen University, Germany) at 15 kV and 10 nA. 

2.2. Computed tomography 

A CT-ALPHA micro-CT system (ProCon X-ray GmbH, Sarstedt, Ger
many) was used, which is equipped with a five-axes-manipulation sys
tem between an XWT-240-TCHE plus X-ray tube with a maximum 
voltage of 240 kV and an XRD 1611 AP3 detector system with 4096 ×
4096 pixels (100 mm2) (Institute of Mineral Resources Engineering, 
RWTH Aachen University, Germany). The CT investigation was 
executed on the cylindrically shaped, polished block mentioned before. 
The specimen was placed between the X-ray source and the detector on 
the rotating table. The resulting CT measurement is the collection of 2D 
sample projections (radiographs), taken as the sample rotates 360◦

around the vertical axis between the X-ray tube and the detector. The 
detector collects the intensity of transmitted X-ray photons of each 
projection and thus provides X-ray attenuation information. Based on 
this information, an X-ray attenuation coefficient is calculated for each 
pixel of the sample projection. This coefficient is displayed as a distinct 
grey-scale value in the projection image [42]. The acquired radiographs 
are subsequently processed using a reconstruction algorithm to produce 
a 3D volume represented by a cubic matrix of grayscale voxels (3D 
pixels). 

2.3. Fundamentals of dual-energy computed tomography 

Selecting appropriate acquisition parameters (e.g., voltage, current, 
integration time) for a polyphase sample like the one used in this study 
(i.e., a graphitic ore), comprising both, high and low X-ray attenuating 
minerals, is a crucial step that has to ensure that the radiation will also 
pass through the thickest and highest absorbing phase of the sample. 
Insufficient intensity can compromise the quality of the reconstructed 
image, complicating subsequent image processing. In theory, lower 
energy will increase the grayscale contrast of the reconstructed volume, 
while measuring with higher energy decreases any imaging artifacts but 
at the same time may reduce the contrast between low-absorbing phases 
with similar densities and different compositions. 

The main principle of dual-energy computed tomography (DECT) is 
to combine attenuation information from two conventional or single- 
energy CT (SECT) scans performed at different X-ray energy levels to 
obtain a high-quality, single dataset. SECT scans can be fused before, 
after, or simultaneously with CT volume reconstruction. The CT scans 
fusion in this work was performed before the reconstruction and is based 
on a weighted linear combination of the respective low and high-voltage 
SECT projection stacks: 

fFI,α = α • fHV +((1 − α) • fLV ) (1)  

where fFI,α represents the fused projection image obtained through a 
weighted linear combination of the respective high-voltage (fHV) and 
low-voltage projection (fLV). The weighting factor, α, is chosen from the 
range of [0,1]. 

2.4. Scan protocol and procedures 

The cylindrical-shaped polished block was sequentially measured 
using five different voltage settings with 60 kV, and 80 kV reflecting the 
low voltage range (LV scans) as well as 170 kV, 180 kV and 190 kV 
comprising the high voltage range (HV scans). It is worth noting that 
maintaining an appropriate distance between the energy of the X-ray 
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spectra of the two measurements is essential for obtaining appropriate 
DECT data [43]. Since the desired resolution was at the lower 
micron-scale, the block was positioned close to the X-ray source 
(SOD=24.5 mm). The focal spot size was set to microfocus beam mode 
to further increase spatial resolution. The beam current was adjusted 
accordingly for each scan to operate with 8 W, and the number of pro
jections and averaging were kept constant. The exposure time was set to 
1.6 s for all LV scans. To avoid saturating the detector, the exposure time 
in the HV range had to be adjusted to 0.8 s. The CT set-up parameters are 
summarized in Table 1. 

A Python script was used to generate the corresponding DECT raw 
data. Here, the weighting factors α were set to 0.3, 0.5, and 0.7 (Eq.1). A 
weight factor, of 0.3 for example results in 30 % of the high voltage 
projection, and 70 % of the low voltage projection image. All raw data 
collected were reconstructed using Volume Graphics VGStudio Max 
3.5.0 [44]. Subsequently, 18 fused DECT datasets were generated, 
comprising six HV x LV combinations combined with three different 
weighting factors each. 

2.5. Quality factors and statistical analysis 

Grey value information for all reconstructed SECT and fused DECT 
datasets were obtained by placing regions of interest (ROI) in the 
following material areas (MA) (Fig. 1):  

- Graphite attached to combined quartz and clay, hereafter referred to 
as MA1  

- Graphite in the vicinity of a void/crack (air), hereafter referred to as 
MA2  

- Muscovite associated with HFO, hereafter referred to as MA3  
- Muscovite associated with quartz and clay, hereafter referred to as 

MA4. 

The definition of the MAs was primarily based on the ore mineral
ogy’s representativeness, target minerals focus, and grayscale intensity 
profiles. The material areas encompass five out of the seven identified 
phases and structures, with hematite and HFO excluded due to high 
mean grey value differences, facilitating straightforward segmentation. 
Every dataset contained 80 ROIs (10 ROIs for each phase and structure, 
or 20 ROIs per MA, respectively). After each ROI was created on the first 
analysed dataset, it was copied to the subsequent datasets to ensure they 
were identical in size, shape, and location. This resulted in 1840 ROIs 
considering all 23 datasets (five SECT acquisitions and 18 DECT data
sets). Each individual ROI spanned multiple slices, with the specific 
three-dimensional extension determined by the attributes of the 
respective phases. Furthermore, care was taken to ensure that, to the 
greatest extent possible, each ROI exclusively contained a single 
material. 

To simplify data extraction, two ROIs were placed adjacent to each 
other in each material area considered. This enabled the direct mea
surement of mean attenuation and standard deviation using the grey 
value analysis tool in VGStudio Max software, saving time, and 

streamlining the analysis process. Consequently, this approach allowed 
the generation of a dense amount of attenuation information. 

To quantitatively evaluate and compare the quality of each dataset, 
the contrast-to-noise ratio (CNR) was used to measure image quality in 
CT data. The CNR quantifies the ability to distinguish features in the 
scanned sample [45]. A higher CNR indicates higher grey value contrast 
and thus a better phase discrimination. Eq. 2 shows the calculation of the 
CNR, which measures the contrast as the difference between the mean 
grey values of the material and the background (μmandμb) divided by the 
background noise (σb): 

CNR =
Contrast

Noise
=

|μm − μb|

σb
(2) 

Here, graphite and muscovite were the targeted minerals of the four 
material areas as listed above, and quartz combined with clay, HFO and 
void/air are background materials. However, in some other applica
tions, both materials in the pair are equally relevant. To avoid the 
possible discussion of the background definition, the Q factors [24,46, 
47], which describe the materials separation degree, were additionally 
analysed: 

Q =
|μm1 − μm2|̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σm1

2 + σm2
2

√ (3) 

The results below focus on the CNR-based analysis. However, Q- 
factor-based analysis delivers the same trend (see Appendix). In both 
cases, the quality factors were calculated for each ROI of each material 
area and dataset (local quality factors). The local CNR/Q-factors are the 
quality factor values for a single ROI pair in the same material area 
(Fig. 1). The mean values and the standard deviations were calculated 
based on ten local quality factors of the same material area. The global 
CNR/Q-factor was calculated once per material area and parameter 
combination, so it has no standard deviation. The global mean and 
standard deviation for each constituent in an MA were calculated using 
the grey values for each ROI. Therefore, the global CNR/Q-factors show 
the trends but cannot verify the significance of the absolute differences. 
Thus, local CNR/Q-factors, their means and standard deviations were 
used to quantify the results. To prove the significance of the differences 
in image quality and material attenuation among the various SECT and 
DECT measurements, a statistical analysis was performed. The multiple 
comparisons t-Test or paired t-tests with unequal variance, also known 
as the Fisher LSD test, was employed to compare the quality charac
teristics between the SECT and DECT datasets with different weighting 
factors. The Fisher LSD test starts from the hypothesis that the pair of 
given variances is similar and allocates them to two significantly 
distinguishable groups, if the probability of their similarity is less than a 
significance level. The significance level was set at 5 %. Each parameter 
combination was statistically analysed to define the significance of the 
mean value differences since calculated standard deviations were 
related to the mean values, not the global ones. Based on the test results, 
several significance groups were identified, and they are marked 
through letters from A to J (Group A reflects the highest CNR and Q 
factor values, and Group J (CNR) and Group G (Q factor) reflect the 
lowest). Parameter combinations in one significance group have no 
significant differences. Each parameter combination has been compared 
to all other combinations of the same ROIs pairwise. Therefore, the 
parameter combination could belong to more than one group. 

3. Results 

3.1. Pre CT analysis 

The sample comprises a heavily altered graphitic ore with a quartz 
dominant matrix together with muscovite, clay, HFO, and hematite 
(Fig. 2). Graphite occurs as euhedral to subhedral flakes ranging from 
large (up to 1000 µm in length), usually subparallel elongated clusters, 
to small, disseminated flakes (100–200 µm in length), which are 

Table 1 
Set-up parameters for the acquisition of low-voltage (LV) and high-voltage (HV) 
CT-scans.  

Energy range LV HV 

Voltage [kV] 60  80  170  180  190 
Power [W] 8 8 
Binning [#x#] 2 × 2 2 × 2 
Exposure time [s] 1.6 0.8 
Number of projections [#] 1600 1600 
Resolution [µm x µm x µm] 6.8 6.8 
Prefilter [-] none Al 0.4 
Part orientation [◦,◦] 0 0 
Averaging [#] 14 14  
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Fig. 1. ROI pairs of the different material areas (MAs) evaluated: a) graphite associated with quartz combined clay (MA1), b) graphite in the vicinity of a void or 
crack (MA2), c) muscovite associated with HFO (MA3) and d) muscovite associated with quartz combined clay (MA4). An individual ROI consists of multiple slices 
and relies on the 3D shape of the respective constituent. 

Fig. 2. SEM image (A), reflected light microscopy (B), and plane polarized light microscopy microphotograph (C) of different areas of the graphite ore sample. (A) 
Disseminated and subparallel orientated graphite flakes embedded in a silicate matrix of muscovite and quartz. HFO are present along cleavage planes of muscovite, 
pseudomorph after hematite (subhedral crystals) and occurs along grain boundaries and in veins. (B) Photomicrograph showing two voids and two anhedral hematite 
grains. Graphite flakes are present. A network of cracks occurs in the gangue matrix. (C) Brown coloured microcrystalline clay is present throughout the specimen 
area. Note the thick vein fill of HFO. Abbreviations:Gr = graphite, Hem = hematite, HFO = hydrated iron(III) oxide-hydroxides, Ms = muscovite, Qz = quartz. 
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Fig. 3. 2D volume slice of SECT and DECT volumes: 80 kV (A), 190 kV (B), fused dual energy scans with weighting factors of 0.3 (C), 0.5 (D), and 0.7 (E). Numbering 
of phases: 1 = Air trapped in voids and cracks, 2 = graphite, 3 = combined quartz and clay, 4 = muscovite, 5 = HFO after muscovite, 6 = HFO vein-fill, and 
7 = hematite. The yellow (F) and red (G) boxes, respectively, show a section of a graphite flake (centre of image) and N-S extending cracks and a small hematite 
crystal (lower centre). The graphite flake appears sharper, and the cracks are less blurred in the fused DECT scan with a weighting factor 0.5 (G). Note the small flake 
in the lower right of the slice, which is barely visible in the SECT volume slices compared to the DECT scan, and the reduced beam hardening introduced by a small 
hematite crystal. Window levelling was set to Smart Contrast for each slice to maximize contrast between each phase. 
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occasionally bended or broken apart along basal cleavage (Fig. 2A–C). 
Some large clusters contain minor intergrowth of HFO. Quartz is present 
as primary subhedral (up to 600 µm in length) (Fig. 2A) or small 
recrystallized crystals (50 – 250 µm in lengths) showing triple junction 
texture (Fig. 2C). Muscovite occurs as euhedral to subhedral crystals 
(500 µm – 6 mm in length) showing different degrees of alteration with 
HFO occasionally occurs along the basal cleavage planes (Fig. 2A). HFO 
are also present as veinlet and cracks infills as well as along grain 
boundaries (Fig. 2A, and Fig. 2C). Moreover, it may appear pseudo
morph after muscovite and hematite (Fig. 2A). The ore is interspersed 
with cracks and features numerous cavities (Fig. 2B). 

3.2. Evaluation of CT image quality 

3.2.1. Qualitative analysis 
The volume slices depicted in Fig. 3 represent SECT scans conducted 

at different energy levels: a LV scan (80 kV), an HV scan (190 kV), and 
their corresponding fused DECT volume slices, generated using varying 
weighting factors of 0.3, 0.5, and 0.7. Seven different grey value in
tensities can be identified in both the SECT volume slices and DECT 
slices. These correspond to (see numbers from 1 to 7 in Fig. 3A):  

1) air in voids and cracks (from dark grey to black),  
2) graphite (dark grey),  
3) combined quartz and clay (grey),  

4) muscovite (from grey to light grey),  
5) HFO after muscovite (light grey),  
6) HFO vein-fill (from light grey to whitish), and  
7) hematite (white). 

The SECT and DECT volume slices exhibit notable differences in 
noise, contrast, and sharpness. The SECT images generally appear 
noisier compared to the DECT images (Fig. 3A–B). Among the DECT 
images, the one with a weighting factor of 0.7 exhibits the highest noise 
level (Fig. 3E). On the other hand, the images with weighting factors of 
0.3 and 0.5 show similar noise, with the latter being slightly less noisy 
(Fig. 3C–D). 

Considering contrast, the SECT volume slice obtained at 190 kV and 
the DECT with a weighting factor of 0.7 show lower contrast than the 
other images. The other volume slices have similar contrast, with the 
data set reconstructed with a weighting factor of 0.3 appearing to have 
less contrast. 

Regarding image sharpness, the SECT images exhibit partial blurring 
and occasionally show double edges (see yellow box in Fig. 3A and 
Fig. 3F). These issues are alleviated in all the DECT images, with the one 
at 0.5 weighting factor appearing the sharpest among them (see red box 
in Fig. 3D and Fig. 3G). 

The histogram in Fig. 4 displays the grey value distribution of the 
80 kV scan (Fig. 4A), the 190 kV scan (Fig. 4B), and the corresponding 
fused DECT data sets with a weighting factor of 0.5 (Fig. 4C). Each peak 

Fig. 4. Histogram of grey value distribution (range from 0 to 12000) of SECT scans – 80 kV (A) and 190 kV (B) – and the corresponding fused 80 kV x 190 kV x 0.5 
dataset (C). A peak in the histogram indicates a phase contained in the scanned object. A) Histogram of the 80 kV scan showing the mean grey values of the phases 
comprising the samples apart from hematite which is out of the histogram range. Note that air refers to the air trapped within voids and cracks. D) Grey value 
distribution of 80 kV, 190 kV, and the 80 kV x 190 kV x 0.5 DECT, note the evolved shoulder indicating graphite in the fused DECT dataset. Abbreviations:Gr 
= graphite, Qtz = quartz, Ms = muscovite, HFO = hydrated iron(III) oxide-hydroxides. 
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in the histogram corresponds to specific phases within the scanned 
sample. The better defined the peaks are, the less overlapping grey 
values exist, indicating a more definite phase assignment. The distinct
ness of the peaks and the degree of overlapping grey values differ 
significantly between the SECT and DECT histograms (Fig. 4D). The grey 
value material areas of materials like cavities and quartz are more 
compressed in the DECT histogram, indicating a more improved image 
contrast and a reduced overlap of grey values. Furthermore, the DECT 
histogram reveals an additional shoulder (Fig. 4C–D) that corresponds to 
graphite which is not visible in the other histograms (Fig. 4A–B). 

3.2.2. Quantitative analysis 
The quantitative analysis is based on the detailed CNR analysis of the 

established ROIs. Four different material areas (MA1, MA2, MA3, and 
MA4) were defined (see Section 2.5), and the analysis was individually 
performed for each material area. The mean CNR values obtained for ten 
ROIs from all SECT and DECT volumes are shown in Table 2 and Table A. 
2 (Appendix). 

The DECT combination 80 kV x 180 kV x 0.5 shows the highest mean 
and global CNR values for the MA2, MA3, and MA4. These combinations 
always belong to group A. In MA1, the combination 80 kV x 190 kV x 0.5 
exhibits the highest global and mean CNR value. In all ROIs, the mean 
CNR values of these two settings are significantly different compared to 
the vast majority of the DECT combinations. The 80 kV x 180 kV x 0.5 is 
in the same significance group (group A) as 80 kV x 190 kV x 0.5 (all 
material areas), 60 kV x 170 kV x 0.7 (MA1, MA2, and MA3), 80 kV x 
190 kV x 0.3 (MA1, MA3, and MA4). The 80 kV x 190 kV x 0.5 is in the 
same significance group (group A) as 80 kV x 180 kV x 0.5 (all material 
areas), 60 kV x 170 kV x 0.7 (all material areas), 80 kV x 190 kV x 0.3 
(MA1, MA3, and MA4). In contrast, the 80 kV x 170 kV DECTs exhibit 
statistically lowest CNR values compared to the other DECT 
combinations. 

The weighting factor 0.5 exhibits, in most cases, the highest absolute 

CNR values and is significantly better for some DECT combinations than 
other weighting factors on the MA1, MA2, and MA4. In contrast, apart 
from the 80 kV x 190 kV DECT combination, factor 0.3 often shows 
significantly lower CNR values. Especially on MA2, datasets calculated 
with the weighting factor 0.3 are significantly worse compared to the 
factors 0.5 and 0.7 of all DECT combinations apart from 80 kV x 170 kV 
(same significance among all weighting factors). In MA3, there is no 
statistical difference compared to the fused datasets of the same com
bination and different weighting factors. 

Regarding the CNR values of the SECT datasets, 80 kV shows the 
highest global and mean CNR values than 60 kV SECT (Table 2). In MA4, 
this difference is statistically significant. Furthermore, the HV datasets 
exhibit the lowest CNR values in MA1 and MA4. In contrast, concerning 
MA2, the CNR calculations of the LV datasets show significantly worse 
values than the HV datasets. Within MA3, no general trend can be 
determined. 

4. Discussion 

DECT has primarily been utilized in geoscientific research for ma
terial decomposition, extracting density, and effective atomic number 
(Zeff) information on the basis of the raw projection data to differentiate 
minerals in rocks and ores [38–41]. However, the quantification of 
improved image quality using DECT has not been elaborately discussed. 
Addressing this research gap, a comprehensive evaluation of image 
quality enhancement using DECT on a polyphase graphite ore was 
conducted by analysing the contrast-to-noise ratio (CNR) and Q factors 
of SECT and fused DECT scans. SECT scans were acquired at different 
tube energies and combined with varying weighting factors, further 
allowing to explore the impact of different proportions of the fused 
energy spectra on image quality. 

Table 2 
Mean CNR values and results of Fisher LSD test for each material area and parameter combination from 10 ROIs for each phase and structure. Group A is the highest 
(marked dark green), and Group J is the lowest (marked dark orange) CNR group. Members of the same group have no significant differences. The mean CNR values 
which belong only to the best or only to the worst group of the considered material area, are marked in bold. The highest mean CNR value in each material area is 
marked bright green, and the lowest is bright orange. All mean CNR values belonging to the best group are highlighted in green, those belonging to the worst in orange.  

Parameter combination 
Material area

M1: Graphite - Quartz & Clay M2: Graphite - Air M3: Muscovite - HFO M4: Muscovite - Quartz & Clay
mean CNR  t-Test groups mean CNR t-Test groups mean CNR t-Test groups mean CNR t-Test groups

60 kV 4.331 G H 2.863 J 5.012 G 3.800 H I 
80 kV 4.518 F G 3.307 I J 5.726 D E F G 4.681 E F G

170 kV 3.554 I 3.985 H 5.745 D E F G 3.488 I 

180 kV 3.658 H I 4.402 D E F G H 5.417 F G 3.460 I 

190 kV 3.548 I 4.213 F G H 5.578 E F G 3.329 I 

60 kV x 170 kV x 0.3 4.840 C D E F G 4.000 H 6.142 B C D E F 4.555 E F G
60 kV x 170 kV x 0.5 5.329 C D E 4.992 C D 6.812 A B C D 5.788 C D

60 kV x 170 kV x 0.7 6.167 A B 5.697 A B 6.924 A B C 6.334 B C

60 kV x 180 kV x 0.3 5.034 C D E F G 4.029 H 5.996 C D E F G 4.572 E F G
60 kV x 180 kV x 0.5 5.079 C D E F G 4.674 C D E F G 6.287 B C D E F 5.182 D E

60 kV x 180 kV x 0.7 4.610 E F G 4.800 C D E F 6.123 B C D E F 4.360 F G H

60 kV x 190 kV x 0.3 5.304 C D E F 4.103 G H 6.358 B C D E F 4.917 E F
60 kV x 190 kV x 0.5 5.505 B C 5.083 B C 6.973 A B C 4.930 E F

60 kV x 190 kV x 0.7 5.462 B C D 5.027 C D 6.687 A B C D 4.542 E F G

80 kV x 170 kV x 0.3 4.637 E F G 3.779 H I 6.315 B C D E F 4.337 F G H
80 kV x 170 kV x 0.5 4.707 D E F G 4.224 F G H 6.590 A B C D E 4.480 F G

80 kV x 170 kV x 0.7 4.426 G 4.318 E F G H 6.435 B C D E F 4.238 G H

80 kV x 180 kV x 0.3 4.655 E F G 4.124 G H 6.585 A B C D E 4.328 F G H
80 kV x 180 kV x 0.5 6.401 A 6.062 A 7.646 A 7.056 A

80 kV x 180 kV x 0.7 4.734 D E F G 5.006 C D 6.615 A B C D E 4.461 F G H

80 kV x 190 kV x 0.3 6.417 A 4.906 C D E 7.131 A B 6.595 A B
80 kV x 190 kV x 0.5 6.594 A 5.711 A 7.216 A B 6.701 A B

80 kV x 190 kV x 0.7 4.640 E F G 4.873 C D E 6.590 A B C D E 4.275 F G H

The mean CNR values for the SECT data within the ROIs range from 2.863 (MA2) to 5.745 (MA3), and global CNR values – from 2.80 to 5.66 (Table 2). In contrast, 
mean CNR values for the DECT data range from 3.779 (MA2) to 7.646 (MA3), and global CNR values – from 3.73 to 7.44. Notably, in every ROI, most of the CNR values 
of the DECT datasets consistently surpass those of the SECT datasets regardless of the weighting factor. Except for MA3, most CNR values of the fused DECT datasets 
differ significantly from those of the SECT scans. 
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4.1. DECT data acquisition 

The findings revealed that fused DECT datasets have a positive and 
statistically significant effect on image quality in terms of CNR and Q 
factors regardless of the weighting factor applied compared to the SECT 
scans. Two mechanisms account for the improved contrast. 

First, mathematically, the improved CNR and Q factors exhibited by 
DECT compared to SECT is attributed to the determined standard de
viations of the reconstructed DECT data (denominator in both formulas). 
During CT data acquisition, the detector captures the material- 
dependent attenuation of X-ray radiation from the exposed sample, 
converting it into different photon intensity that are then converted into 
CT numbers and stored in the form of projection data. The linear com
bination of SECT datasets in DECT involves mathematically merging the 
pixel values of corresponding projection pictures from each dataset. 
Through fusion, the projection data is averaged based on the weighting 
factor, leading to higher information density. Consequently, outliers 
become less significant, resulting in a lower standard deviation in the 
DECT data. This reduction in standard deviation contributes to the 
enhanced CNR and Q factors observed in DECT compared to SECT. This 
is a purely statistical effect, however, and a similar degree of noise 
reduction might be expected from combining two SECT datasets ac
quired at the same energy. 

Second, the specimens’ materials constituents (e.g., graphite, quartz, 
hematite, HFO, air) exhibit a different attenuation behaviour at different 
X-ray energies. At lower X-ray energies, the photoelectric effect domi
nates, which is more sensitive to the material’s atomic number (Z) 
(proportional to Z4–5) [48,49]. This effect is particularly effective for 
phases with higher Z values. On the other hand, at higher X-ray energies, 
Compton scattering becomes more prevalent, and the attenuation is 
more dependent on the material’s electron density [48]. For 
low-absorbing phases and those comprising similar densities (e.g., 
graphite, quartz), lower X-ray energies are better to avoid underexpo
sure, as the photoelectric effect provides better contrast in these cases. 
Conversely, higher X-ray energies should be applied for high-absorbing 
phases (e.g., hematite, HFO), typically with higher Z values, to ensure 
sufficient penetration of the material and avoid overexposure. With 
DECT, two X-ray spectra are acquired at different energy levels. These 
energy-specific datasets contain complementary information about the 
attenuation characteristics of the scanned materials. Combining these 
datasets through DECT leverages the advantages of both lower and 
higher X-ray energies, resulting in improved contrast and more accurate 
differentiation of materials with a broad range of attenuation behav
iours. The varying contrasts observed in the SECT and DECT datasets 
directly result from the different absorption properties of the minerals 
present in the sample at different X-ray energies. When comparing the 
LV scans and DECT combinations with equal energy fractions (weighting 
factor 0.5), it was generally noted that datasets acquired at 60 kV pro
vide slightly worse CNR values compared to combinations at 80 kV, 
although not always significantly. Considering the target material is 
tungsten, the efficiency of producing characteristic X-rays decreases 
notably at energies below 80 kV. As a result, Bremsstrahlung becomes a 
greater proportion of the X-ray spectrum and the average energy of the 
X-ray beam decreases [50]. This, in turn, results in a higher degree of 
attenuation of lower energy X-rays and introduces noise. These effects 
may be amplified through the polymineralic nature of the sample. An 
exception is the 80 kV x 170 kV DECT combination, whose CNR (and Q 
factor) values belong to the same significance group as the 60 kV SECT 
combinations. However, this combination is the one with the most 
negligible difference in the fused energy spectra. According to [43], an 
appropriate distance between the energy of the X-ray spectra of the two 
measurements is essential for obtaining proper DECT data. The results of 
the CNR (and Q factor) values of the 80 kV x 170 kV, independent from 
the weighting factor and ROI, indicate that this difference was too small, 
thus underlining this finding. 

DECT combinations utilizing higher LV x HV energies consistently 

demonstrate significantly higher CNR (and Q factor) values with a 
weighting factor of 0.5 compared to the other DECT reconstructions. 
This observation is likely influenced by the specific mineralogy and 
microstructure of the sample, which tends to require higher X-ray en
ergy levels from both spectra. This may also explain why the 60 kV x 
170 kV combination, with a weighting factor of 0.7, exhibits signifi
cantly higher CNR values than the same combination of 0.3 and 0.5. 
Otherwise, 21/24 of the fused reconstructed datasets exhibit the highest 
CNR values compared to weighting factors 0.3 and 0.7. 

4.1.1. Grey value distribution in the evaluated material areas 
Notably, all HV SECT settings exhibited statistically higher CNR 

values for MA2 compared to those obtained with the LV spectra. The 
underlying reason for this disparity lies again in the energy-dependent 
components of Compton scattering and photoelectric absorption of X- 
rays. Generally, scans at lower energies tend to provide better contrast 
due to the photoelectric effect, which is highly sensitive to the atomic 
number (Z) and particularly effective for phases with high Z [42,51]. 
However, graphite (Z = 6) and the main gases of air (nitrogen (Z = 7) 
and oxygen (Z = 8)) have very similar Z. On the other hand, there exists 
sufficient difference in their densities (graphite = 2.1 g/cm3, air =
1.2e-3 g/cm3 at 20 ◦C). This density discrepancy becomes the dominant 
factor influencing X-ray attenuation at higher voltages, where the 
Compton effect prevails. As a result, scans with higher voltages 
demonstrate improved contrasts between graphite and air, as the 
Compton effect is more sensitive to the density of a material, compen
sating for the minor atomic number difference between graphite, and 
the major constituents of air. This is also reflected in the fused DECT 
datasets, where the weighting factor of 0.7 provided higher CNR values 
for three of the six combinations. Thus, the results show that the sig
nificant changes in the contrasts of the DECT datasets depend on both 
the combined voltages and the weighting factor. 

A comparable trend is observed regarding the global CNR values of 
the various DECT combinations (Table 2). However, it is noteworthy 
that the CNR values within MA3 do not exhibit as significant differences 
as those observed in other material areas (e.g., MA2, MA1). Statistically, 
this can be attributed to the partly substantial variation in mean atten
uation and standard deviation of the individual regions of interest 
(ROIs) within the HFO. From a mineralogical perspective, this could be 
influenced by varying Fe contents or different stadiums of pseudomor
phism of HFO after muscovite at the locations where the ROIs were 
placed. This interpretation is supported by the varying brightness levels 
observed in the grey-scale images (Fig. 3), which suggest heterogeneity 
in the mineral composition within MA3. These compositional variations 
in the HFO may account for the observed similarity in CNR (and Q 
factor) values across different DECT combinations within this specific 
material area. 

4.2. Limitations and future studies 

The recommendations regarding the energy spectra and the 
weighting factor for the DECT fusion to be applied are based on one 
specific sample. Although the sample was extensively evaluated with 18 
parameter combinations that were based on the establishment of 1840 
grey value analysis, more empirical data on these types of geomaterials 
needs to be collected to further validate the findings. Additionally, like 
SECT, DECT also faces limitations in distinguishing between phases with 
rather similar or identical attenuation properties such as quartz and 
clay. This constraint is inherent to all CT techniques and impacts on 
DECT as well [37]. Also, mineralogical data is necessary prior to any 
DECT analysis so that CT scans can be interpreted correctly [20,22,52]. 
Time is a further limiting factor when it comes to DECT, as it requires 
acquiring two SECT scans to generate the DECT datasets. This process at 
least doubles time and costs compared to obtaining SECT data alone. The 
contrast variations observed in the DECT datasets indicate that the 
combination of different X-ray energies significantly affects the image 
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quality. However, to further evaluate the mechanism contributing to the 
superior image quality, future studies should compare DECT scans with 
SECT scans having double the acquisition time. Regarding the prefer
ential choice of the image quality metrics used, it was observed that 
CNRs are more responsive to noise in the background material. At the 
same time, Q factors are less susceptible to the same noise within a 
material area (Table A.2). This behaviour could be attributed to the 
denominator in the Q factor calculation, which considers the noise of 
both ROIs in the material area. Regardless, as the scope of this study did 
not encompass an in-depth comparison of these metrics, further research 
is needed to validate this observation. Lastly, future studies could 
consider the effect of other scanning parameters (e.g., exposure time and 
current) on the image quality of the fused DECT data. 

The variation in contrast values observed in this study emphasise the 
critical role of selecting the appropriate X-ray energy level to optimise 
image quality and contrast, particularly in the context of heterogeneous 
geomaterials like the ones studied here. One of the central challenges in 
CT scanning, however, is finding the optimal scan settings for a given 
material due to the polychromatic nature of the X-ray beam. A common 
approach is calculating the linear attenuation coefficient for each phase 
in the sample [21,26]. However, a polychromatic X-ray source is used in 
most CT applications, and the linear attenuation coefficient’s energy 
dependency must be considered. Simulation software can be an effective 
tool for determining these optimal settings, especially in cases where the 
material’s composition and internal structure are known in advance (e. 
g., workpieces) [24,53]. However, the situation becomes more complex 
when dealing with geological materials. Buyse et al. successfully 
calculated reconstructed attenuation coefficients to differentiate be
tween minerals in a heterogeneous geological sample for a given CT 
setup using simulation software [52]. The simulations assumed a mon
omineralic sample while considering factors such as sample geometry, 
chemical composition, and size. In practice, the ability to identify the 
appropriate scanning conditions for geological samples through simu
lation remains challenging due to the uncertainty surrounding the 
spatial arrangement and grain size distribution of the phases within the 
sample. Regardless, DECT proves to be significantly superior to SECT in 
terms of achieving high-quality data, making it particularly valuable for 
less experienced operators seeking to enhance image quality and data 
accuracy. 

4.3. Implications for mineral characterisation 

The accurate extraction of quantitative mineralogical data from ores 
and their constituents, such as volume, shape, grain size, and distribu
tion, relies on the segmentation of CT datasets after volume recon
struction to isolate and classify the phases of interest. CT images are 
commonly segmented based on their grayscale intensities [42]. More 
advanced machine learning segmentation techniques also utilize object 
shape and pixel texture for feature classification [42,54,55]. High 
image-quality CT datasets are essential for precise quantitative analysis, 
particularly for heterogeneous ores with a broad range of X-ray atten
uation among their constituents, which may also exhibit similar gray
scale intensities. To enhance image quality, datasets are often processed 
after reconstruction using various filtering methods. However, filtering 
techniques usually present a trade-off: filters that decrease noise also 
blur the image (e.g. median filter, gaussian filter, and averaging filter), 
while those that increase image sharpness introduce noise into the 
image, leading to a potential data loss [56,57]. In contrast, DECT 
effectively improves the image quality without compromising data 
quality. This advantage makes DECT particularly beneficial for more 
accurate segmentation, resulting in more precise and reliable identifi
cation of mineral phases and features. The enhanced image quality 

achieved for the investigated ore with the DECT-based approach pro
vides a robust foundation for subsequent segmentation processes, ulti
mately enhancing the accuracy and reliability of quantitative 
mineralogical analysis. 

The object studied in this research is a graphite ore. Previous studies 
have demonstrated the added value of CT for characterising graphite 
ores and enhancing resource efficiency [22,58]. Building upon these 
findings, the present study offers additional insights into acquiring 
high-quality data on graphite ores. DECT, capable of addressing varying 
attenuation demands, shows great potential for the characterisation of 
such ores, which typically consist of high-absorbing materials like pyrite 
and hematite, along with air, while graphite exhibits low attenuation. By 
effectively managing these different attenuation properties, DECT en
ables the acquisition of appropriate contrasts for each phase, thereby 
enhancing the analysis of graphite ores and contributing to more accu
rate and detailed assessments of graphite ores. 

5. Conclusion 

This study explored the use of DECT for enhancing grayscale contrast 
of a heterogenous polyphase graphitic ore. A sequential fusion approach 
was applied to combine data obtained from different X-ray energy scans 
at high spatial resolution. Various X-ray energy spectra were combined 
with varying weighting factors to determine the favourable contribution 
of each energy level applied, thereby aiming to provide the best possible 
attenuation of each phase. 

The results reveal that DECT provides complementary information 
on the material’s attenuation characteristics that significantly improves 
the image grayscale contrast between individual phases comprising the 
investigated specimen compared to SECT. Considering the specimen 
investigated, higher energy DECT combinations and the weighting fac
tor of 0.5 tend to provide the best image contrast regarding CNR and Q 
factor. In addition, the fusion method applied also enhances image 
sharpness. 

Given the complex microstructure and mineralogical composition of 
ores and the fact that the results are based on one particular sample, 
more research is needed to validate the findings of this study on a wider 
range of ore samples. Nevertheless, the findings suggest that DECT can 
be a valuable tool for improving 3D characterisation of polyphase 
graphitic ores. The additional grayscale contrast and image sharpness 
provided by DECT may allow for more accurate segmentation and thus 
quantitative mineralogical analysis. This could help to improve the 
understanding of graphite deposits and the development of more effi
cient extraction processes. 
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Table A.1 
Mean Q factor values and results of Fisher LSD test for each material area and parameter combination from 10 ROIs for each phase and structure. Group A is the highest 
(marked dark green), and Group G is the lowest (marked dark orange) Q factor group. Members of the same group have no significant differences. The mean Q factor 
values, which belong only to the best or only to the worst group of the focused material area, are marked in bold. The highest mean Q factor value in each material area 
is marked bright green, and the lowest is bright orange. All mean Q factor value members of the best group drew green, of the worst – orange.  

Parameter combination 
Material area

M1: Graphite - Quartz & Clay M2: Graphite - Air M3: Muscovite - HFO M4: Muscovite - Quartz & Clay 
mean Q  t-Test groups mean Q t-Test groups mean Q t-Test groups mean Q t-Test groups

60 kV 2.990 F G H 1.928 H 3.776 H 2.709 F G
80 kV 3.076 E F G 2.237 H 4.294 E F G H 3.240 D E

170 kV 2.404 I 2.825 E F G 4.294 E F G H 2.450 G
180 kV 2.508 H I 2.951 D E F G 4.068 G H 2.418 G
190 kV 2.359 I 2.924 E F G 4.153 F G H 2.305 G

60 kV x 170 kV x 0.3 3.941 A B C 2.747 F G 4.672 C D E F G 3.227 D E
60 kV x 170 kV x 0.5 3.968 A B C 3.447 B 5.182 A B C D 4.056 C
60 kV x 170 kV x 0.7 4.077 A B 3.915 A 5.263 A B C D 4.351 B C
60 kV x 180 kV x 0.3 3.437 C D E F G 2.717 G 4.547 D E F G 3.251 D E
60 kV x 180 kV x 0.5 3.465 C D E F G 3.079 C D E F 4.786 B C D E F G 3.383 D E
60 kV x 180 kV x 0.7 3.176 D E F G 3.159 B C D E 4.623 C D E F G 3.058 D E F
60 kV x 190 kV x 0.3 3.616 B C D E 2.792 F G 4.896 A B C D E F 3.448 D
60 kV x 190 kV x 0.5 3.649 A B C D 3.377 B C 5.304 A B C D 3.448 D
60 kV x 190 kV x 0.7 3.488 C D E F 3.378 B C 5.147 A B C D 3.134 D E F
80 kV x 170 kV x 0.3 3.078 E F G 2.630 G 4.798 B C D E F G 3.061 D E F
80 kV x 170 kV x 0.5 3.098 D E F G 2.957 D E F G 5.006 A B C D E 3.154 D E F
80 kV x 170 kV x 0.7 2.910 G H I 3.070 C D E F 4.849 B C D E F 2.982 E F
80 kV x 180 kV x 0.3 3.195 D E F G 2.866 E F G 4.925 A B C D E 3.088 D E F
80 kV x 180 kV x 0.5 4.232 A 3.855 A 5.675 A 4.824 A
80 kV x 180 kV x 0.7 3.190 D E F G 3.318 B C 4.930 A B C D E F 3.110 D E F
80 kV x 190 kV x 0.3 4.087 A B 3.308 B C 5.356 A B C 4.526 A B
80 kV x 190 kV x 0.5 3.860 A B C 3.874 A 5.495 A B 4.546 A B
80 kV x 190 kV x 0.7 3.067 E F G  3.294 B C D 4.973 A B C D E 2.950 E F
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Table A. 2 
Global, mean, and standard deviation values of the CNR and Q-factor measurements of each material area.  

Parameter 
combination 

Material area 

M1: Graphite - Quartz & Clay M2: Graphite - Air M3: Muscovite - HFO M4: Muscovite - Quartz & Clay 

CNR Q-factor CNR Q-factor CNR Q-factor CNR Q-factor 

global mean std global mean std global mean std global mean std global mean std global mean std global mean std global mean std 

60 kV  4.24  4.33  0.53  2.93  2.99  0.31  2.80  2.86  0.52  1.90  1.93  0.28  5.01  5.01  0.96  3.77  3.78  0.76  3.67  3.80  0.45  2.64  2.71  0.29 
80 kV  4.42  4.52  0.55  3.00  3.08  0.39  3.07  3.31  0.38  2.21  2.24  0.23  5.66  5.73  0.91  4.28  4.29  0.67  4.40  4.68  0.89  3.07  3.24  0.58 
170 kV  3.52  3.55  0.41  2.39  2.40  0.25  3.93  3.99  0.57  2.81  2.82  0.28  5.63  5.75  1.21  4.25  4.29  0.85  3.46  3.49  0.26  2.44  2.45  0.14 
180 kV  3.62  3.66  0.32  2.49  2.51  0.17  4.77  4.40  0.48  2.93  2.95  0.28  5.38  5.42  0.94  4.07  4.07  0.68  3.45  3.46  0.20  2.42  2.42  0.17 
190 kV  3.46  3.55  0.54  2.34  2.36  0.23  4.17  4.21  0.41  2.92  2.92  0.23  5.54  5.58  0.89  4.14  4.15  0.66  3.30  3.33  0.25  2.29  2.31  0.17 

60 kV x 170 kV x 0.3  4.81  4.84  0.58  3.35  3.94  1.76  3.88  4.00  0.68  2.70  2.75  0.34  6.08  6.14  1.17  4.66  4.67  0.89  4.42  4.56  0.51  3.15  3.23  0.32 
60 kV x 170 kV x 0.5  5.76  5.33  0.66  3.82  3.97  0.50  4.79  4.99  0.88  3.37  3.45  0.46  6.69  6.81  1.31  5.15  5.18  0.93  5.53  5.79  0.90  3.90  4.06  0.59 
60 kV x 170 kV x 0.7  6.00  6.17  0.83  3.95  4.08  0.66  5.43  5.70  1.19  3.80  3.92  0.63  6.78  6.92  1.30  5.23  5.26  0.88  5.97  6.33  1.18  4.15  4.35  0.73 

60 kV x 180 kV x 0.3  4.93  5.03  0.57  3.38  3.44  0.32  3.90  4.03  0.95  2.67  2.72  0.56  5.91  6.00  1.23  4.52  4.55  0.93  4.46  4.57  0.47  3.19  3.25  0.29 
60 kV x 180 kV x 0.5  5.01  5.08  0.48  3.40  3.47  0.33  4.58  4.67  0.83  3.05  3.08  0.47  6.17  6.29  1.35  4.76  4.79  0.98  5.13  5.18  1.53  3.64  3.38  1.09 
60 kV x 180 kV x 0.7  4.57  4.61  0.37  3.15  3.18  0.25  4.76  4.80  0.60  3.14  3.16  0.37  6.01  6.12  1.29  4.60  4.62  0.89  4.33  4.36  0.39  3.04  3.06  0.26 

60 kV x 190 kV x 0.3  5.22  5.30  0.48  3.56  3.62  0.30  4.03  4.10  0.58  2.77  2.79  0.34  6.31  6.36  1.27  4.88  4.90  0.96  4.83  4.92  0.43  3.40  3.45  0.25 
60 kV x 190 kV x 0.5  5.44  5.51  0.52  3.60  3.65  0.33  5.05  5.08  0.43  3.36  3.38  0.28  6.83  6.97  1.22  5.28  5.30  0.80  4.88  4.93  0.37  3.42  3.45  0.23 
60 kV x 190 kV x 0.7  5.20  5.46  1.36  3.45  3.49  0.34  4.95  5.03  0.55  3.35  3.38  0.25  6.57  6.69  1.39  5.11  5.15  0.93  4.52  4.54  0.23  3.12  3.13  0.19 

80 kV x 170 kV x 0.3  4.59  4.64  0.32  3.01  3.08  0.33  3.73  3.78  0.42  2.62  2.63  0.19  6.19  6.32  1.13  4.76  4.80  0.82  4.24  4.34  0.48  3.00  3.06  0.32 
80 kV x 170 kV x 0.5  4.67  4.71  0.34  3.04  3.10  0.31  4.15  4.22  0.66  2.94  2.96  0.24  6.44  6.59  1.24  4.96  5.01  0.88  4.40  4.48  0.44  3.11  3.15  0.27 
80 kV x 170 kV x 0.7  4.39  4.43  0.38  2.87  2.91  0.27  4.23  4.32  0.69  3.06  3.07  0.27  6.29  6.44  1.27  4.80  4.85  0.87  4.18  4.24  0.35  2.96  2.98  0.20 

80 kV x 180 kV x 0.3  4.59  4.66  0.48  3.11  3.20  0.43  4.09  4.12  0.42  2.84  2.87  0.29  6.37  6.59  1.38  4.88  4.93  0.86  4.26  4.33  0.32  3.05  3.09  0.18 
80 kV x 180 kV x 0.5  6.21  6.40  1.01  4.00  4.23  0.78  5.73  6.06  1.43  3.68  3.86  0.79  7.44  7.65  1.67  5.64  5.68  0.99  6.61  7.06  1.33  4.62  4.82  0.76 
80 kV x 180 kV x 0.7  4.70  4.73  0.31  3.17  3.19  0.24  4.93  5.01  0.58  3.26  3.32  0.40  6.54  6.62  1.28  4.93  4.93  0.85  4.43  4.46  0.26  3.10  3.11  0.20 

80 kV x 190 kV x 0.3  5.95  6.42  2.12  3.84  4.09  1.16  4.79  4.91  0.79  3.24  3.31  0.43  6.89  7.13  1.47  5.32  5.36  0.96  6.07  6.60  1.45  4.23  4.53  0.90 
80 kV x 190 kV x 0.5  6.29  6.59  1.20  4.10  3.86  1.50  5.60  5.71  0.78  3.80  3.87  0.52  6.99  7.22  1.45  5.44  5.50  0.89  6.26  6.70  1.31  4.30  4.55  0.80 
80 kV x 190 kV x 0.7  4.58  4.64  0.56  3.05  3.07  0.22  4.84  4.87  0.40  3.28  3.29  0.15  6.44  6.59  1.20  4.94  4.97  0.77  4.23  4.27  0.28  2.93  2.95  0.17   
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