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ABSTRACT

Proper ore characterisation is essential for understanding ore deposits and developing efficient mineral pro-
cessing flow sheets. Conventional mineralogical and chemical techniques are usually used to study ores, but they
can be destructive and, in some cases, provide only 2D information. Computed tomography (CT) is an emerging
technology in the raw materials sector enabling the non-destructive 3D analysis of the ore mineralogy and
microstructure. However, single-energy CT (SECT) has some limitations concerning the accurate imaging and
differentiation of polyphase geomaterials comprising a broad range of attenuation properties. By contrast, dual-
energy CT (DECT) uses two different X-ray energies to acquire data, which can be used to distinguish between
materials with similar attenuation properties. This study explored the application of DECT for the analysis of a
polyphase graphitic ore. A sequential fusion approach was utilized to combine data obtained from different X-ray
energy scans at high spatial resolution, and varying weighting factors were applied to determine the optimal
contribution of each energy level and spectrum. Both, SECT and DECT datasets were quantitatively evaluated
based on the contrast-to-noise-ratio (CNR) and Q factor. The findings demonstrate that DECT significantly im-
proves image contrast compared to SECT while further increases image sharpness. As a result, DECT may enable

more accurate segmentation and, therefore, more accurate quantitative 3D analysis of graphite ores.

1. Introduction

An accurate assessment of ore deposits and the development of
efficient extraction of ore minerals rely on a solid understanding of their
mineralogy as well as their physical and chemical properties. To obtain
this information, various analytical methods are employed, such as op-
tical microscopy (OM), scanning electron microscopy equipped with an
energy or wavelength dispersive X-ray analyser (SEM/E-WDX), electron
microprobe analyser (EMPA), secondary ion mass spectrometry (SIMS),
laser ablation inductively coupled plasma mass spectrometry (LA-ICP-
MS), and X-ray diffraction (XRD) [1-4]. In recent decades, computed
tomography (CT) has proven its added value in studying the mineral-
ogical aspects of geological materials, with an increasing number of
studies recognizing its advantages for investigating rocks and ores
[5-13]. Unlike conventional methods, CT offers quantitative and
non-destructive 3D analysis with minimal sample preparation, elimi-
nating the stereological bias [14-16]. This includes the ability to provide
direct and more representative information on the shape, orientation,
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and size of phases without the need for time-consuming sectioning.

The CT principle is based on the X-ray attenuation behaviour of the
phases comprising the sample, which is displayed by the contrast pro-
duced in the resulting greyscale image. The X-ray attenuation varies as a
function of the material density, the average atomic number, and the
thickness of the scanned object, as well as the X-ray energy applied [17,
18]. This difference in X-ray linear attenuation provides a contrast
which can be used for mineral differentiation.

The effective utilization of CT depends on the X-ray beam’s capa-
bility to penetrate the sample, enabling the visualization of internal
geometry [18,19]. However, CT struggles to accentuate or distinguish
between features that exhibit similar densities and effective atomic
numbers. In this regard, ores often comprise complex polyphase geo-
materials with a wide range of X-ray attenuation properties owing to
their constituents’ differences and/or similarities in density, atomic
number, and particle sizes. This can make it challenging to acquire
high-quality CT data of these materials, as it can lead to scanning arti-
facts and mixed attenuation coefficients that result in a partial overlap of

Received 5 September 2023; Received in revised form 28 November 2023; Accepted 4 December 2023

Available online 5 December 2023

2949-673X/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nec-nd/4.0/).


mailto:krebbers@mre.rwth-aachen.de
www.sciencedirect.com/science/journal/2949673X
https://www.journals.elsevier.com/tomography-of-materials-and-structures
https://doi.org/10.1016/j.tmater.2023.100021
https://doi.org/10.1016/j.tmater.2023.100021
https://doi.org/10.1016/j.tmater.2023.100021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tmater.2023.100021&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

L.T. Krebbers et al.

grey values in the reconstructed CT greyscale image stack that hamper
the interpretation and processing of CT data [20-22].

To obtain high-quality CT data, the proper X-ray energy must be
selected, to optimise data quality, which is not always straightforward
[23]. Higher X-ray energy is required to penetrate high-density mate-
rials or thicker sections, but it may cause a loss of contrast and unre-
solvable features. Conversely, using lower X-ray energy to obtain good
quality imaging of light materials may not penetrate denser materials,
resulting in loss of information [22,24]. Thus, the choice of the advan-
tageous beam intensity must be a trade-off between high and
low-absorbing materials within the specimen to be examined.

Current and past research focused on the acquisition of high CT data
primarily through the development of scanning protocols for the optimal
scanning parameters to extract mineralogical and textural information
in ore samples [8,25,26] and the development of an attenuation coef-
ficient data bank in order to predict phase discrimination in ores [27,
28]. Another method that may contribute to the generation of
high-quality CT scans of complex ores is dual-energy computed to-
mography (DECT). DECT has been widely established in medical im-
aging, sorting, and security applications [29-32]. Notably, in the
medical field, DECT has become a routine method for detecting
anatomic structures and conducting contrast-enhanced studies to
improve image quality [33-37]. In the context of analysing geo-
materials, DECT has primarily been used for material decomposition
[38-41]. By utilizing two different X-ray energies, DECT enables the
tracking of attenuation changes according to the X-ray spectra. This
information can be harnessed to identify minerals in the samples and
retrieve their density and effective atomic number (Z.f) information.
However, studies applying DECT to a polyphase ore and quantifying the
improvement in image quality are sparse.

This study aims to investigate the potential of high-resolution DECT
for enhancing image contrast in a heterogeneous polyphase graphitic
ore. The study utilizes a sequential fusion approach to combine data
obtained from different X-ray energy scans at high spatial resolution.
Various X-ray energy spectra are combined with varying weighting
factors to determine the favourable contribution of each energy level
and spectrum, thereby aiming to provide the best possible attenuation of
each phase. The findings of this study provide valuable insights into the
establishment of DECT data and demonstrate the effectiveness of DECT
in improving image quality in the context of complex geomaterials.

2. Materials and methods
2.1. Conventional analysis

A polymineralic flake graphite ore was provided by Westwater Re-
sources, Inc. (Centennial, Colorado, USA). The specimen originates from
the Bama Graphite Mine (Chilton Co., Alabama, USA), and consists of
variable amounts of graphite as well as gangue phases (i.e., quartz, clay,
muscovite, hydrated iron(IIl) oxide-hydroxides (HFO)). Mineralogical-
petrographic investigations, including XRD, OM and SEM-EDS, were
carried out prior to the CT measurements. XRD was used to determine
the bulk mineralogy of the graphite ore sample. These steps are neces-
sary to correctly interpret the CT data. For XRD analysis, a 2.5 g sample
was ground in 100 % ethanol for 5 min using a McCrone micronizing
mill with synthetic agate pellets. After air-drying, the micronized ali-
quots underwent qualitative phase identification using the JADE
(Rigaku, Tokyo, Japan) and EVA (Bruker, Billerica, MA, USA) software
packages on a Rigaku Ultima IV powder X-ray diffractometer (Depart-
ment of Earth and Atmospheric Sciences, University of Alberta,
Edmonton, Canada). Mineral phases were identified by referencing the
ICDD PDF4 + database. For petrographic analysis, a thin section, and a
cylindrical-shaped polished block (12 mm in diameter, 5 mm in height)
were prepared by MK Factory (Stahnsdorf, Germany). Both, the thin
section, and the polished block were examined using a LEICA DM 2700 P
polarisation microscope (Institute of Mineral Resources Engineering,
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RWTH Aachen University, Germany), and microphotographs were taken
using a LEICA FLEXCAM C1 camera and the LEICA LAS software. The
polished block was subject to SEM-EDS analysis to further investigate
the mineralogy and microstructure of the graphite ore specimen, using a
FEI 650 F scanning electron microscope equipped with two Bruker
XFlash 5030 detectors (Institute of Mineralogy and Economic Geology,
RWTH Aachen University, Germany) at 15 kV and 10 nA.

2.2. Computed tomography

A CT-ALPHA micro-CT system (ProCon X-ray GmbH, Sarstedt, Ger-
many) was used, which is equipped with a five-axes-manipulation sys-
tem between an XWT-240-TCHE plus X-ray tube with a maximum
voltage of 240 kV and an XRD 1611 AP3 detector system with 4096 x
4096 pixels (100 mm?) (Institute of Mineral Resources Engineering,
RWTH Aachen University, Germany). The CT investigation was
executed on the cylindrically shaped, polished block mentioned before.
The specimen was placed between the X-ray source and the detector on
the rotating table. The resulting CT measurement is the collection of 2D
sample projections (radiographs), taken as the sample rotates 360°
around the vertical axis between the X-ray tube and the detector. The
detector collects the intensity of transmitted X-ray photons of each
projection and thus provides X-ray attenuation information. Based on
this information, an X-ray attenuation coefficient is calculated for each
pixel of the sample projection. This coefficient is displayed as a distinct
grey-scale value in the projection image [42]. The acquired radiographs
are subsequently processed using a reconstruction algorithm to produce
a 3D volume represented by a cubic matrix of grayscale voxels (3D
pixels).

2.3. Fundamentals of dual-energy computed tomography

Selecting appropriate acquisition parameters (e.g., voltage, current,
integration time) for a polyphase sample like the one used in this study
(i.e., a graphitic ore), comprising both, high and low X-ray attenuating
minerals, is a crucial step that has to ensure that the radiation will also
pass through the thickest and highest absorbing phase of the sample.
Insufficient intensity can compromise the quality of the reconstructed
image, complicating subsequent image processing. In theory, lower
energy will increase the grayscale contrast of the reconstructed volume,
while measuring with higher energy decreases any imaging artifacts but
at the same time may reduce the contrast between low-absorbing phases
with similar densities and different compositions.

The main principle of dual-energy computed tomography (DECT) is
to combine attenuation information from two conventional or single-
energy CT (SECT) scans performed at different X-ray energy levels to
obtain a high-quality, single dataset. SECT scans can be fused before,
after, or simultaneously with CT volume reconstruction. The CT scans
fusion in this work was performed before the reconstruction and is based
on a weighted linear combination of the respective low and high-voltage
SECT projection stacks:

frra=aefyy+((1—a)efy) (€]

where fp, represents the fused projection image obtained through a
weighted linear combination of the respective high-voltage (fgy) and
low-voltage projection (f;y). The weighting factor, a, is chosen from the
range of [0,1].

2.4. Scan protocol and procedures

The cylindrical-shaped polished block was sequentially measured
using five different voltage settings with 60 kV, and 80 kV reflecting the
low voltage range (LV scans) as well as 170 kV, 180 kV and 190 kV
comprising the high voltage range (HV scans). It is worth noting that
maintaining an appropriate distance between the energy of the X-ray
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spectra of the two measurements is essential for obtaining appropriate
DECT data [43]. Since the desired resolution was at the lower
micron-scale, the block was positioned close to the X-ray source
(SOD=24.5 mm). The focal spot size was set to microfocus beam mode
to further increase spatial resolution. The beam current was adjusted
accordingly for each scan to operate with 8 W, and the number of pro-
jections and averaging were kept constant. The exposure time was set to
1.6 s for all LV scans. To avoid saturating the detector, the exposure time
in the HV range had to be adjusted to 0.8 s. The CT set-up parameters are
summarized in Table 1.

A Python script was used to generate the corresponding DECT raw
data. Here, the weighting factors a were set to 0.3, 0.5, and 0.7 (Eq.1). A
weight factor, of 0.3 for example results in 30 % of the high voltage
projection, and 70 % of the low voltage projection image. All raw data
collected were reconstructed using Volume Graphics VGStudio Max
3.5.0 [44]. Subsequently, 18 fused DECT datasets were generated,
comprising six HV x LV combinations combined with three different
weighting factors each.

2.5. Quality factors and statistical analysis

Grey value information for all reconstructed SECT and fused DECT
datasets were obtained by placing regions of interest (ROI) in the
following material areas (MA) (Fig. 1):

- Graphite attached to combined quartz and clay, hereafter referred to
as MA1

- Graphite in the vicinity of a void/crack (air), hereafter referred to as
MA2

- Muscovite associated with HFO, hereafter referred to as MA3

- Muscovite associated with quartz and clay, hereafter referred to as
MA4.

The definition of the MAs was primarily based on the ore mineral-
ogy’s representativeness, target minerals focus, and grayscale intensity
profiles. The material areas encompass five out of the seven identified
phases and structures, with hematite and HFO excluded due to high
mean grey value differences, facilitating straightforward segmentation.
Every dataset contained 80 ROIs (10 ROIs for each phase and structure,
or 20 ROIs per MA, respectively). After each ROI was created on the first
analysed dataset, it was copied to the subsequent datasets to ensure they
were identical in size, shape, and location. This resulted in 1840 ROIs
considering all 23 datasets (five SECT acquisitions and 18 DECT data-
sets). Each individual ROI spanned multiple slices, with the specific
three-dimensional extension determined by the attributes of the
respective phases. Furthermore, care was taken to ensure that, to the
greatest extent possible, each ROI exclusively contained a single
material.

To simplify data extraction, two ROIs were placed adjacent to each
other in each material area considered. This enabled the direct mea-
surement of mean attenuation and standard deviation using the grey
value analysis tool in VGStudio Max software, saving time, and

Table 1
Set-up parameters for the acquisition of low-voltage (LV) and high-voltage (HV)
CT-scans.

Energy range LV HV

Voltage [kV] 60 80 170 180 190
Power [W] 8 8

Binning [#x#] 2x2 2x2

Exposure time [s] 1.6 0.8

Number of projections [#] 1600 1600

Resolution [pum x ym x um] 6.8 6.8

Prefilter [-] none Al 0.4

Part orientation [°,°] 0 0

Averaging [#] 14 14
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streamlining the analysis process. Consequently, this approach allowed
the generation of a dense amount of attenuation information.

To quantitatively evaluate and compare the quality of each dataset,
the contrast-to-noise ratio (CNR) was used to measure image quality in
CT data. The CNR quantifies the ability to distinguish features in the
scanned sample [45]. A higher CNR indicates higher grey value contrast
and thus a better phase discrimination. Eq. 2 shows the calculation of the
CNR, which measures the contrast as the difference between the mean
grey values of the material and the background (u,,,andy,) divided by the
background noise (63):

Contrast |, — |

CNR = (2)

Noise o)

Here, graphite and muscovite were the targeted minerals of the four
material areas as listed above, and quartz combined with clay, HFO and
void/air are background materials. However, in some other applica-
tions, both materials in the pair are equally relevant. To avoid the
possible discussion of the background definition, the Q factors [24,46,
471, which describe the materials separation degree, were additionally
analysed:

s =t

Q h \% ”mlz + f’mzz (3)

The results below focus on the CNR-based analysis. However, Q-
factor-based analysis delivers the same trend (see Appendix). In both
cases, the quality factors were calculated for each ROI of each material
area and dataset (local quality factors). The local CNR/Q-factors are the
quality factor values for a single ROI pair in the same material area
(Fig. 1). The mean values and the standard deviations were calculated
based on ten local quality factors of the same material area. The global
CNR/Q-factor was calculated once per material area and parameter
combination, so it has no standard deviation. The global mean and
standard deviation for each constituent in an MA were calculated using
the grey values for each ROL Therefore, the global CNR/Q-factors show
the trends but cannot verify the significance of the absolute differences.
Thus, local CNR/Q-factors, their means and standard deviations were
used to quantify the results. To prove the significance of the differences
in image quality and material attenuation among the various SECT and
DECT measurements, a statistical analysis was performed. The multiple
comparisons t-Test or paired t-tests with unequal variance, also known
as the Fisher LSD test, was employed to compare the quality charac-
teristics between the SECT and DECT datasets with different weighting
factors. The Fisher LSD test starts from the hypothesis that the pair of
given variances is similar and allocates them to two significantly
distinguishable groups, if the probability of their similarity is less than a
significance level. The significance level was set at 5 %. Each parameter
combination was statistically analysed to define the significance of the
mean value differences since calculated standard deviations were
related to the mean values, not the global ones. Based on the test results,
several significance groups were identified, and they are marked
through letters from A to J (Group A reflects the highest CNR and Q
factor values, and Group J (CNR) and Group G (Q factor) reflect the
lowest). Parameter combinations in one significance group have no
significant differences. Each parameter combination has been compared
to all other combinations of the same ROIs pairwise. Therefore, the
parameter combination could belong to more than one group.

3. Results
3.1. Pre CT analysis

The sample comprises a heavily altered graphitic ore with a quartz
dominant matrix together with muscovite, clay, HFO, and hematite
(Fig. 2). Graphite occurs as euhedral to subhedral flakes ranging from
large (up to 1000 pm in length), usually subparallel elongated clusters,
to small, disseminated flakes (100-200 um in length), which are



L.T. Krebbers et al. Tomography of Materials and Structures 4 (2024) 100021

Fig. 1. ROI pairs of the different material areas (MAs) evaluated: a) graphite associated with quartz combined clay (MA1), b) graphite in the vicinity of a void or
crack (MA2), ¢) muscovite associated with HFO (MA3) and d) muscovite associated with quartz combined clay (MA4). An individual ROI consists of multiple slices
and relies on the 3D shape of the respective constituent.

silicate matrix

250 ym 100 ym

Fig. 2. SEM image (A), reflected light microscopy (B), and plane polarized light microscopy microphotograph (C) of different areas of the graphite ore sample. (A)
Disseminated and subparallel orientated graphite flakes embedded in a silicate matrix of muscovite and quartz. HFO are present along cleavage planes of muscovite,
pseudomorph after hematite (subhedral crystals) and occurs along grain boundaries and in veins. (B) Photomicrograph showing two voids and two anhedral hematite
grains. Graphite flakes are present. A network of cracks occurs in the gangue matrix. (C) Brown coloured microcrystalline clay is present throughout the specimen
area. Note the thick vein fill of HFO. Abbreviations:Gr = graphite, Hem = hematite, HFO = hydrated iron(IIl) oxide-hydroxides, Ms = muscovite, Qz = quartz.
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Fig. 3. 2D volume slice of SECT and DECT volumes: 80 kV (A), 190 kV (B), fused dual energy scans with weighting factors of 0.3 (C), 0.5 (D), and 0.7 (E). Numbering
of phases: 1 = Air trapped in voids and cracks, 2 = graphite, 3 = combined quartz and clay, 4 = muscovite, 5 = HFO after muscovite, 6 = HFO vein-fill, and
7 = hematite. The yellow (F) and red (G) boxes, respectively, show a section of a graphite flake (centre of image) and N-S extending cracks and a small hematite
crystal (lower centre). The graphite flake appears sharper, and the cracks are less blurred in the fused DECT scan with a weighting factor 0.5 (G). Note the small flake
in the lower right of the slice, which is barely visible in the SECT volume slices compared to the DECT scan, and the reduced beam hardening introduced by a small
hematite crystal. Window levelling was set to Smart Contrast for each slice to maximize contrast between each phase.
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occasionally bended or broken apart along basal cleavage (Fig. 2A-C).
Some large clusters contain minor intergrowth of HFO. Quartz is present
as primary subhedral (up to 600 pm in length) (Fig. 2A) or small
recrystallized crystals (50 — 250 ym in lengths) showing triple junction
texture (Fig. 2C). Muscovite occurs as euhedral to subhedral crystals
(500 um - 6 mm in length) showing different degrees of alteration with
HFO occasionally occurs along the basal cleavage planes (Fig. 2A). HFO
are also present as veinlet and cracks infills as well as along grain
boundaries (Fig. 2A, and Fig. 2C). Moreover, it may appear pseudo-
morph after muscovite and hematite (Fig. 2A). The ore is interspersed
with cracks and features numerous cavities (Fig. 2B).

3.2. Evaluation of CT image quality

3.2.1. Qualitative analysis

The volume slices depicted in Fig. 3 represent SECT scans conducted
at different energy levels: a LV scan (80 kV), an HV scan (190 kV), and
their corresponding fused DECT volume slices, generated using varying
weighting factors of 0.3, 0.5, and 0.7. Seven different grey value in-
tensities can be identified in both the SECT volume slices and DECT
slices. These correspond to (see numbers from 1 to 7 in Fig. 3A):

1) air in voids and cracks (from dark grey to black),

2) graphite (dark grey),
3) combined quartz and clay (grey),

A

-
o
)

Counts

-

o
S
N

1021

Qz combined Clay
HFO after Ms
HFO

Ms

8000
Grey value

-

0 4000 12000

-
o
>

Counts

—0.5

—_

o
s
L

102

1 1 1
0 4000 8000
Grey value

12000

Tomography of Materials and Structures 4 (2024) 100021

4) muscovite (from grey to light grey),

5) HFO after muscovite (light grey),

6) HFO vein-fill (from light grey to whitish), and
7) hematite (white).

The SECT and DECT volume slices exhibit notable differences in
noise, contrast, and sharpness. The SECT images generally appear
noisier compared to the DECT images (Fig. 3A-B). Among the DECT
images, the one with a weighting factor of 0.7 exhibits the highest noise
level (Fig. 3E). On the other hand, the images with weighting factors of
0.3 and 0.5 show similar noise, with the latter being slightly less noisy
(Fig. 3C-D).

Considering contrast, the SECT volume slice obtained at 190 kV and
the DECT with a weighting factor of 0.7 show lower contrast than the
other images. The other volume slices have similar contrast, with the
data set reconstructed with a weighting factor of 0.3 appearing to have
less contrast.

Regarding image sharpness, the SECT images exhibit partial blurring
and occasionally show double edges (see yellow box in Fig. 3A and
Fig. 3F). These issues are alleviated in all the DECT images, with the one
at 0.5 weighting factor appearing the sharpest among them (see red box
in Fig. 3D and Fig. 3G).

The histogram in Fig. 4 displays the grey value distribution of the
80 kV scan (Fig. 4A), the 190 kV scan (Fig. 4B), and the corresponding
fused DECT data sets with a weighting factor of 0.5 (Fig. 4C). Each peak
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Fig. 4. Histogram of grey value distribution (range from 0 to 12000) of SECT scans — 80 kV (A) and 190 kV (B) — and the corresponding fused 80 kV x 190 kV x 0.5
dataset (C). A peak in the histogram indicates a phase contained in the scanned object. A) Histogram of the 80 kV scan showing the mean grey values of the phases
comprising the samples apart from hematite which is out of the histogram range. Note that air refers to the air trapped within voids and cracks. D) Grey value
distribution of 80 kV, 190 kV, and the 80 kV x 190 kV x 0.5 DECT, note the evolved shoulder indicating graphite in the fused DECT dataset. Abbreviations:Gr
= graphite, Qtz = quartz, Ms = muscovite, HFO = hydrated iron(III) oxide-hydroxides.
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Table 2
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Mean CNR values and results of Fisher LSD test for each material area and parameter combination from 10 ROIs for each phase and structure. Group A is the highest
(marked dark green), and Group J is the lowest (marked dark orange) CNR group. Members of the same group have no significant differences. The mean CNR values
which belong only to the best or only to the worst group of the considered material area, are marked in bold. The highest mean CNR value in each material area is
marked bright green, and the lowest is bright orange. All mean CNR values belonging to the best group are highlighted in green, those belonging to the worst in orange.

Material area
Parameter combination M1: Graphite - Quartz & Clay M2: Graphite - Air M3: Muscovite - HFO M4: Muscovite - Quartz & Clay
mean CNR t-Test groups mean CNR t-Test groups mean CNR t-Test groups mean CNR t-Test groups
60 kV 4.331 G H 2.863 5.012 G 3.800 H 1
80kV 4518 F G 3.307 I 5726 Bl E FRG 4.681 E F G
170kV 3.554 1 3.985 H 5.745 DEF G 3.488 1
180 kV 3.658 H | 4.402 DEFGH 5417 F G 3.460 |
190 kV 3.548 1 4213 F GH 5578 E FG 3.329 1
60kV x170kV x 0.3 4.840 CDEFG 4.000 H 6.142 CDEF 4.555 E F G
60KV x 170kV x 0.5 5.329 CDE 4.992 cCD 6.812 cD 5.788 cD
sokvxt7okvxor | 6167 [ se07  [E] 6.924 c 6.334 [Blc
60 kV x 180 kV x 0.3 5.034 CDEFG 4.029 H 5.996 BAD E F|G 4572 E F |G
60KV x 180KV x 0.5 5.079 CDEFG 4.674 CDEFG 6.287 CDEF 5.182 D E
60 kV x 180 kV x 0.7 4610 E F G 4.800 CDEF 6.123 CDEF 4.360 F GH
60KV x 190 kV x 0.3 5.304 CDEF 4.103 G H 6.358 CDEF 4917 ENE
60KV x 190 kV x 0.5 5.505 C 5.083 . (o 6.973 Cc 4.930 ENE
60KV x 190 kV x 0.7 5.462 I cCD 5.027 cCD 6.687 cCD 4.542 E F |G
80kV x170kV x0.3 4.637 E F G 3.779 H I 6.315 CDEF 4.337 F GH
80KV x170kV x 0.5 4.707 D EF G 4.224 F GH 6.590 CDE 4.480 F G
80KV x170kV x0.7 4.426 G 4.318 EF GH 6.435 B D E F 4.238 G H
80kV x 180 kV x0.3 4.655 E F G 4.124 G H 6.585 CDE 4.328 F G H
80KV x 180 kV x 0.5 ca01  [H cos2 [A 7.646 7056 A
80kV x180kV x0.7 4.734 D EFG 5.006 CcCD 6.615 CDE 4.461 F GH
80KV x 190KV x 0.3 6417 I 4906 CDE 7.131 6595 .
80KVX190KVX05 | 6594 st [H 7216 6701
80KV x 190 kV x 0.7 4.640 E F G 4.873 CDE 6.590 CDE 4.275 F GH

The mean CNR values for the SECT data within the ROIs range from 2.863 (MA2) to 5.745 (MA3), and global CNR values — from 2.80 to 5.66 (Table 2). In contrast,
mean CNR values for the DECT data range from 3.779 (MA2) to 7.646 (MA3), and global CNR values — from 3.73 to 7.44. Notably, in every ROI, most of the CNR values
of the DECT datasets consistently surpass those of the SECT datasets regardless of the weighting factor. Except for MA3, most CNR values of the fused DECT datasets

differ significantly from those of the SECT scans.

in the histogram corresponds to specific phases within the scanned
sample. The better defined the peaks are, the less overlapping grey
values exist, indicating a more definite phase assignment. The distinct-
ness of the peaks and the degree of overlapping grey values differ
significantly between the SECT and DECT histograms (Fig. 4D). The grey
value material areas of materials like cavities and quartz are more
compressed in the DECT histogram, indicating a more improved image
contrast and a reduced overlap of grey values. Furthermore, the DECT
histogram reveals an additional shoulder (Fig. 4C-D) that corresponds to
graphite which is not visible in the other histograms (Fig. 4A-B).

3.2.2. Quantitative analysis

The quantitative analysis is based on the detailed CNR analysis of the
established ROIs. Four different material areas (MA1, MA2, MA3, and
MA4) were defined (see Section 2.5), and the analysis was individually
performed for each material area. The mean CNR values obtained for ten
ROIs from all SECT and DECT volumes are shown in Table 2 and Table A.
2 (Appendix).

The DECT combination 80 kV x 180 kV x 0.5 shows the highest mean
and global CNR values for the MA2, MA3, and MA4. These combinations
always belong to group A. In MA1, the combination 80 kVx 190 kVx 0.5
exhibits the highest global and mean CNR value. In all ROIs, the mean
CNR values of these two settings are significantly different compared to
the vast majority of the DECT combinations. The 80 kV x 180 kV x 0.5 is
in the same significance group (group A) as 80 kV x 190 kV x 0.5 (all
material areas), 60 kV x 170 kV x 0.7 (MA1, MA2, and MA3), 80 kV x
190 kV x 0.3 (MA1, MA3, and MA4). The 80 kV x 190 kV x 0.5 is in the
same significance group (group A) as 80 kV x 180 kV x 0.5 (all material
areas), 60 kV x 170 kV x 0.7 (all material areas), 80 kV x 190 kV x 0.3
(MA1, MA3, and MA4). In contrast, the 80 kV x 170 kV DECTs exhibit
statistically lowest CNR values compared to the other DECT
combinations.

The weighting factor 0.5 exhibits, in most cases, the highest absolute

CNR values and is significantly better for some DECT combinations than
other weighting factors on the MA1, MA2, and MA4. In contrast, apart
from the 80 kV x 190 kV DECT combination, factor 0.3 often shows
significantly lower CNR values. Especially on MA2, datasets calculated
with the weighting factor 0.3 are significantly worse compared to the
factors 0.5 and 0.7 of all DECT combinations apart from 80 kV x 170 kV
(same significance among all weighting factors). In MA3, there is no
statistical difference compared to the fused datasets of the same com-
bination and different weighting factors.

Regarding the CNR values of the SECT datasets, 80 kV shows the
highest global and mean CNR values than 60 kV SECT (Table 2). In MA4,
this difference is statistically significant. Furthermore, the HV datasets
exhibit the lowest CNR values in MA1 and MA4. In contrast, concerning
MAZ2, the CNR calculations of the LV datasets show significantly worse
values than the HV datasets. Within MA3, no general trend can be
determined.

4. Discussion

DECT has primarily been utilized in geoscientific research for ma-
terial decomposition, extracting density, and effective atomic number
(Zef) information on the basis of the raw projection data to differentiate
minerals in rocks and ores [38-41]. However, the quantification of
improved image quality using DECT has not been elaborately discussed.
Addressing this research gap, a comprehensive evaluation of image
quality enhancement using DECT on a polyphase graphite ore was
conducted by analysing the contrast-to-noise ratio (CNR) and Q factors
of SECT and fused DECT scans. SECT scans were acquired at different
tube energies and combined with varying weighting factors, further
allowing to explore the impact of different proportions of the fused
energy spectra on image quality.
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4.1. DECT data acquisition

The findings revealed that fused DECT datasets have a positive and
statistically significant effect on image quality in terms of CNR and Q
factors regardless of the weighting factor applied compared to the SECT
scans. Two mechanisms account for the improved contrast.

First, mathematically, the improved CNR and Q factors exhibited by
DECT compared to SECT is attributed to the determined standard de-
viations of the reconstructed DECT data (denominator in both formulas).
During CT data acquisition, the detector captures the material-
dependent attenuation of X-ray radiation from the exposed sample,
converting it into different photon intensity that are then converted into
CT numbers and stored in the form of projection data. The linear com-
bination of SECT datasets in DECT involves mathematically merging the
pixel values of corresponding projection pictures from each dataset.
Through fusion, the projection data is averaged based on the weighting
factor, leading to higher information density. Consequently, outliers
become less significant, resulting in a lower standard deviation in the
DECT data. This reduction in standard deviation contributes to the
enhanced CNR and Q factors observed in DECT compared to SECT. This
is a purely statistical effect, however, and a similar degree of noise
reduction might be expected from combining two SECT datasets ac-
quired at the same energy.

Second, the specimens’ materials constituents (e.g., graphite, quartz,
hematite, HFO, air) exhibit a different attenuation behaviour at different
X-ray energies. At lower X-ray energies, the photoelectric effect domi-
nates, which is more sensitive to the material’s atomic number (Z)
(proportional to 7*5) [48,49]. This effect is particularly effective for
phases with higher Z values. On the other hand, at higher X-ray energies,
Compton scattering becomes more prevalent, and the attenuation is
more dependent on the material’s electron density [48]. For
low-absorbing phases and those comprising similar densities (e.g.,
graphite, quartz), lower X-ray energies are better to avoid underexpo-
sure, as the photoelectric effect provides better contrast in these cases.
Conversely, higher X-ray energies should be applied for high-absorbing
phases (e.g., hematite, HFO), typically with higher Z values, to ensure
sufficient penetration of the material and avoid overexposure. With
DECT, two X-ray spectra are acquired at different energy levels. These
energy-specific datasets contain complementary information about the
attenuation characteristics of the scanned materials. Combining these
datasets through DECT leverages the advantages of both lower and
higher X-ray energies, resulting in improved contrast and more accurate
differentiation of materials with a broad range of attenuation behav-
iours. The varying contrasts observed in the SECT and DECT datasets
directly result from the different absorption properties of the minerals
present in the sample at different X-ray energies. When comparing the
LV scans and DECT combinations with equal energy fractions (weighting
factor 0.5), it was generally noted that datasets acquired at 60 kV pro-
vide slightly worse CNR values compared to combinations at 80 kV,
although not always significantly. Considering the target material is
tungsten, the efficiency of producing characteristic X-rays decreases
notably at energies below 80 kV. As a result, Bremsstrahlung becomes a
greater proportion of the X-ray spectrum and the average energy of the
X-ray beam decreases [50]. This, in turn, results in a higher degree of
attenuation of lower energy X-rays and introduces noise. These effects
may be amplified through the polymineralic nature of the sample. An
exception is the 80 kV x 170 kV DECT combination, whose CNR (and Q
factor) values belong to the same significance group as the 60 kV SECT
combinations. However, this combination is the one with the most
negligible difference in the fused energy spectra. According to [43], an
appropriate distance between the energy of the X-ray spectra of the two
measurements is essential for obtaining proper DECT data. The results of
the CNR (and Q factor) values of the 80 kV x 170 kV, independent from
the weighting factor and ROI, indicate that this difference was too small,
thus underlining this finding.

DECT combinations utilizing higher LV x HV energies consistently
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demonstrate significantly higher CNR (and Q factor) values with a
weighting factor of 0.5 compared to the other DECT reconstructions.
This observation is likely influenced by the specific mineralogy and
microstructure of the sample, which tends to require higher X-ray en-
ergy levels from both spectra. This may also explain why the 60 kV x
170 kV combination, with a weighting factor of 0.7, exhibits signifi-
cantly higher CNR values than the same combination of 0.3 and 0.5.
Otherwise, 21/24 of the fused reconstructed datasets exhibit the highest
CNR values compared to weighting factors 0.3 and 0.7.

4.1.1. Grey value distribution in the evaluated material areas

Notably, all HV SECT settings exhibited statistically higher CNR
values for MA2 compared to those obtained with the LV spectra. The
underlying reason for this disparity lies again in the energy-dependent
components of Compton scattering and photoelectric absorption of X-
rays. Generally, scans at lower energies tend to provide better contrast
due to the photoelectric effect, which is highly sensitive to the atomic
number (Z) and particularly effective for phases with high Z [42,51].
However, graphite (Z = 6) and the main gases of air (nitrogen (Z = 7)
and oxygen (Z = 8)) have very similar Z. On the other hand, there exists
sufficient difference in their densities (graphite = 2.1 g/cm®, air =
1.2e-3 g/cm® at 20 °C). This density discrepancy becomes the dominant
factor influencing X-ray attenuation at higher voltages, where the
Compton effect prevails. As a result, scans with higher voltages
demonstrate improved contrasts between graphite and air, as the
Compton effect is more sensitive to the density of a material, compen-
sating for the minor atomic number difference between graphite, and
the major constituents of air. This is also reflected in the fused DECT
datasets, where the weighting factor of 0.7 provided higher CNR values
for three of the six combinations. Thus, the results show that the sig-
nificant changes in the contrasts of the DECT datasets depend on both
the combined voltages and the weighting factor.

A comparable trend is observed regarding the global CNR values of
the various DECT combinations (Table 2). However, it is noteworthy
that the CNR values within MA3 do not exhibit as significant differences
as those observed in other material areas (e.g., MA2, MA1). Statistically,
this can be attributed to the partly substantial variation in mean atten-
uation and standard deviation of the individual regions of interest
(ROIs) within the HFO. From a mineralogical perspective, this could be
influenced by varying Fe contents or different stadiums of pseudomor-
phism of HFO after muscovite at the locations where the ROIs were
placed. This interpretation is supported by the varying brightness levels
observed in the grey-scale images (Fig. 3), which suggest heterogeneity
in the mineral composition within MA3. These compositional variations
in the HFO may account for the observed similarity in CNR (and Q
factor) values across different DECT combinations within this specific
material area.

4.2. Limitations and future studies

The recommendations regarding the energy spectra and the
weighting factor for the DECT fusion to be applied are based on one
specific sample. Although the sample was extensively evaluated with 18
parameter combinations that were based on the establishment of 1840
grey value analysis, more empirical data on these types of geomaterials
needs to be collected to further validate the findings. Additionally, like
SECT, DECT also faces limitations in distinguishing between phases with
rather similar or identical attenuation properties such as quartz and
clay. This constraint is inherent to all CT techniques and impacts on
DECT as well [37]. Also, mineralogical data is necessary prior to any
DECT analysis so that CT scans can be interpreted correctly [20,22,52].
Time is a further limiting factor when it comes to DECT, as it requires
acquiring two SECT scans to generate the DECT datasets. This process at
least doubles time and costs compared to obtaining SECT data alone. The
contrast variations observed in the DECT datasets indicate that the
combination of different X-ray energies significantly affects the image
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quality. However, to further evaluate the mechanism contributing to the
superior image quality, future studies should compare DECT scans with
SECT scans having double the acquisition time. Regarding the prefer-
ential choice of the image quality metrics used, it was observed that
CNRs are more responsive to noise in the background material. At the
same time, Q factors are less susceptible to the same noise within a
material area (Table A.2). This behaviour could be attributed to the
denominator in the Q factor calculation, which considers the noise of
both ROIs in the material area. Regardless, as the scope of this study did
not encompass an in-depth comparison of these metrics, further research
is needed to validate this observation. Lastly, future studies could
consider the effect of other scanning parameters (e.g., exposure time and
current) on the image quality of the fused DECT data.

The variation in contrast values observed in this study emphasise the
critical role of selecting the appropriate X-ray energy level to optimise
image quality and contrast, particularly in the context of heterogeneous
geomaterials like the ones studied here. One of the central challenges in
CT scanning, however, is finding the optimal scan settings for a given
material due to the polychromatic nature of the X-ray beam. A common
approach is calculating the linear attenuation coefficient for each phase
in the sample [21,26]. However, a polychromatic X-ray source is used in
most CT applications, and the linear attenuation coefficient’s energy
dependency must be considered. Simulation software can be an effective
tool for determining these optimal settings, especially in cases where the
material’s composition and internal structure are known in advance (e.
g., workpieces) [24,53]. However, the situation becomes more complex
when dealing with geological materials. Buyse et al. successfully
calculated reconstructed attenuation coefficients to differentiate be-
tween minerals in a heterogeneous geological sample for a given CT
setup using simulation software [52]. The simulations assumed a mon-
omineralic sample while considering factors such as sample geometry,
chemical composition, and size. In practice, the ability to identify the
appropriate scanning conditions for geological samples through simu-
lation remains challenging due to the uncertainty surrounding the
spatial arrangement and grain size distribution of the phases within the
sample. Regardless, DECT proves to be significantly superior to SECT in
terms of achieving high-quality data, making it particularly valuable for
less experienced operators seeking to enhance image quality and data
accuracy.

4.3. Implications for mineral characterisation

The accurate extraction of quantitative mineralogical data from ores
and their constituents, such as volume, shape, grain size, and distribu-
tion, relies on the segmentation of CT datasets after volume recon-
struction to isolate and classify the phases of interest. CT images are
commonly segmented based on their grayscale intensities [42]. More
advanced machine learning segmentation techniques also utilize object
shape and pixel texture for feature classification [42,54,55]. High
image-quality CT datasets are essential for precise quantitative analysis,
particularly for heterogeneous ores with a broad range of X-ray atten-
uation among their constituents, which may also exhibit similar gray-
scale intensities. To enhance image quality, datasets are often processed
after reconstruction using various filtering methods. However, filtering
techniques usually present a trade-off: filters that decrease noise also
blur the image (e.g. median filter, gaussian filter, and averaging filter),
while those that increase image sharpness introduce noise into the
image, leading to a potential data loss [56,57]. In contrast, DECT
effectively improves the image quality without compromising data
quality. This advantage makes DECT particularly beneficial for more
accurate segmentation, resulting in more precise and reliable identifi-
cation of mineral phases and features. The enhanced image quality
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achieved for the investigated ore with the DECT-based approach pro-
vides a robust foundation for subsequent segmentation processes, ulti-
mately enhancing the accuracy and reliability of quantitative
mineralogical analysis.

The object studied in this research is a graphite ore. Previous studies
have demonstrated the added value of CT for characterising graphite
ores and enhancing resource efficiency [22,58]. Building upon these
findings, the present study offers additional insights into acquiring
high-quality data on graphite ores. DECT, capable of addressing varying
attenuation demands, shows great potential for the characterisation of
such ores, which typically consist of high-absorbing materials like pyrite
and hematite, along with air, while graphite exhibits low attenuation. By
effectively managing these different attenuation properties, DECT en-
ables the acquisition of appropriate contrasts for each phase, thereby
enhancing the analysis of graphite ores and contributing to more accu-
rate and detailed assessments of graphite ores.

5. Conclusion

This study explored the use of DECT for enhancing grayscale contrast
of a heterogenous polyphase graphitic ore. A sequential fusion approach
was applied to combine data obtained from different X-ray energy scans
at high spatial resolution. Various X-ray energy spectra were combined
with varying weighting factors to determine the favourable contribution
of each energy level applied, thereby aiming to provide the best possible
attenuation of each phase.

The results reveal that DECT provides complementary information
on the material’s attenuation characteristics that significantly improves
the image grayscale contrast between individual phases comprising the
investigated specimen compared to SECT. Considering the specimen
investigated, higher energy DECT combinations and the weighting fac-
tor of 0.5 tend to provide the best image contrast regarding CNR and Q
factor. In addition, the fusion method applied also enhances image
sharpness.

Given the complex microstructure and mineralogical composition of
ores and the fact that the results are based on one particular sample,
more research is needed to validate the findings of this study on a wider
range of ore samples. Nevertheless, the findings suggest that DECT can
be a valuable tool for improving 3D characterisation of polyphase
graphitic ores. The additional grayscale contrast and image sharpness
provided by DECT may allow for more accurate segmentation and thus
quantitative mineralogical analysis. This could help to improve the
understanding of graphite deposits and the development of more effi-
cient extraction processes.
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Table A.1

Mean Q factor values and results of Fisher LSD test for each material area and parameter combination from 10 ROIs for each phase and structure. Group A is the highest
(marked dark green), and Group G is the lowest (marked dark orange) Q factor group. Members of the same group have no significant differences. The mean Q factor
values, which belong only to the best or only to the worst group of the focused material area, are marked in bold. The highest mean Q factor value in each material area
is marked bright green, and the lowest is bright orange. All mean Q factor value members of the best group drew green, of the worst — orange.

Material area
Parameter combination M1: Graphite - Quartz & Clay M2: Graphite - Air M3: Muscovite - HFO M4: Muscovite - Quartz & Clay
mean Q t-Test groups mean Q t-Test groups mean Q t-Test groups mean Q t-Test groups
60 kV 2.990 F GH 1.928 H| 3.776 H| 2.709 F G
80 kV 3.076 E F G 2.237 H| 4.294 E F G H| 3.240 D E
170 kV 2.404 2.825 E F G 4.294 E F G H| 2450 G
180 kV 2.508 H 2.951 D EF G 4.068 G H| 2418 G
190 kV 2.359 2.924 E F G 4.153 F G H| 2305 G
60 kV x 170 kV x 0.3 3.941 (o 2.747 F G 4.672 CDETFG 3.227 D E
60 kV x 170 kV x 0.5 3.968 (o] 3.447 5.182 cCD 4.056 Cc
60 kV x 170 kV x 0.7 4.077 3.915 5.263 CD 4.351 . C
60 kV x 180 kV x 0.3 3.437 CDEFG 2717 G 4.547 D EF G 3.251 D E
60 kV x 180 kV x 0.5 3.465 CDETFG 3.079 CDEF 4.786 . CDETFG 3.383 D E
60 kV x 180 kV x 0.7 3.176 D EFG 3.159 . CDE 4.623 CDETFG 3.058 D EF
60 kV x 190 kV x 0.3 3.616 CDE 2.792 F G 4.896 EyD E F 3.448 D
60 kV x 190 kV x 0.5 3.649 ‘ Cp 3.377 Cc 5.304 cCD 3.448 D
60 kV x 190 kV x 0.7 3.488 SJD E F 3.378 Cc 5.147 C D 3.134 D EF
80 kV x 170 kV x 0.3 3.078 E F G 2.630 G 4.798 CDETFG 3.061 D EF
80 kV x 170 kV x 0.5 3.098 Bl E F G 2.957 D EF G 5.006 CDE 3.154 D EF
80 kV x 170 kV x 0.7 2.910 G H . 3.070 CDEF 4.849 CDEF 2.982 E F
80 kV x 180 kV x 0.3 3.195 D EF G 2.866 E F G 4.925 CDE 3.088 D EF
80KV x180kvx05 | 4232 [ 3.855 5.675 4824 N
80 kV x 180 kV x 0.7 3.190 D EFG 3.318 Cc 4.930 CDEF 3.110 D EF
80KV x190kV x0.3 | 4.087 . 3.308 C 5.356 c 4526 .
80 kV x 190 kV x 0.5 3.860 (o] 3.874 5.495 4.546
80 kV x 190 kV x 0.7 3.067 EFG 3.294 cbD 4.973 CDE 2.950 E F
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Table A. 2

Global, mean, and standard deviation values of the CNR and Q-factor measurements of each material area.

Material area

M1: Graphite - Quartz & Clay

M2: Graphite - Air

M3: Muscovite - HFO

Parameter M4: Muscovite - Quartz & Clay
combination CNR Q-factor CNR Q-factor CNR Q-factor CNR Q-factor
global mean  std global mean  std global ~mean  std global ~mean  std global  mean  std global ~mean  std global ~mean  std global ~mean  std

60 kv 4.24 4.33 053 293 2.99 0.31  2.80 2.86 0.52  1.90 1.93 0.28  5.01 5.01 096  3.77 3.78 076  3.67 3.80 0.45  2.64 2.71 0.29
80 kv 4.42 4.52 055 3.00 3.08 039 3.07 3.31 0.38 221 2.24 0.23  5.66 5.73 091 4.28 4.29 067 4.40 4.68 089 3.07 3.24 0.58
170 kv 3.52 3.55 0.41 2.39 2.40 0.25 3.93 3.99 0.57 2.81 2.82 0.28 5.63 5.75 1.21 4.25 4.29 0.85 3.46 3.49 0.26 2.44 2.45 0.14
180 kv 3.62 3.66 0.32  2.49 2.51 0.17  4.77 4.40 048 293 295 028 5.38 5.42 0.94  4.07 4.07 0.68  3.45 3.46 0.20 2.42 2.42 0.17
190 kv 3.46 3.55 054  2.34 2.36 023 417 4.21 0.41 292 2.92 0.23 554 5.58 0.89 4.14 4.15 0.66  3.30 3.33 025 229 2.31 0.17
60kVx170kVvx0.3  4.81 4.84 058 3.35 3.94 1.76  3.88 4.00 0.68 270 2.75 0.34  6.08 6.14 117  4.66 4.67 0.89 4.42 4.56 051 3.15 3.23 0.32
60kVx170kVvx0.5 576 5.33 0.66  3.82 3.97 050 479 4.99 0.88 3.37 3.45 0.46  6.69 6.81 1.31 515 5.18 0.93 5.53 5.79 090 3.90 4.06 0.59
60kvx170kvVvx0.7  6.00 6.17 0.83 3.95 4.08 0.66 5.43 5.70 1.19 3.80 392 063 6.78 6.92 1.30 5.23 5.26 0.88 5.97 6.33 1.18 4.15 435 0.73
60kvVx180kvx0.3 493 5.03 0.57 3.38 3.44 0.32  3.90 4.03 0.95 267 2.72 0.56 591 6.00 1.23 452 4.55 093  4.46 4.57 0.47  3.19 3.25 0.29
60 kV x 180 kV x 0.5 5.01 5.08 0.48 3.40 3.47 0.33 4.58 4.67 0.83 3.05 3.08 0.47 6.17 6.29 1.35 4.76 4.79 0.98 5.13 5.18 1.53 3.64 3.38 1.09
60kVx180kvx0.7 457 4.61 0.37 3.5 3.18 0.25 4.76 4.80 060 3.14 3.16 037 6.01 6.12 1.29 4.60 4.62 0.89 4.33 4.36 0.39  3.04 3.06 0.26
60kVx190kvVvx0.3 522 5.30 0.48  3.56 3.62 0.30  4.03 4.10 0.58 277 2.79 0.34 6.31 6.36 1.27 488 4.90 096 4.83 4.92 0.43  3.40 3.45 0.25
60kVx190kvx0.5 5.44 5.51 0.52  3.60 3.65 033 5.05 5.08 043 3.36 3.38 028 6.83 6.97 1.22 5.28 5.30 0.80 4.88 4.93 0.37 3.42 3.45 0.23
60 kV x 190 kV x 0.7 5.20 5.46 1.36 3.45 3.49 0.34 4.95 5.03 0.55 3.35 3.38 0.25 6.57 6.69 1.39 5.11 5.15 0.93 4.52 4.54 0.23 3.12 3.13 0.19
80kVx170kvx0.3  4.59 4.64 0.32 3.01 3.08 0.33 3.73 3.78 0.42  2.62 2.63 0.19 6.19 6.32 1.13 476 4.80 0.82 4.24 4.34 0.48  3.00 3.06 0.32
80kvx170kVvx 0.5 4.67 4.71 0.34 3.04 3.10 031 415 4.22 0.66 294 2.96 0.24 6.44 6.59 1.24 4.9 5.01 0.88  4.40 4.48 0.44 3.11 315 0.27
80kvx170kvx 0.7  4.39 4.43 0.38 287 291 0.27 4.23 432 069 3.06 3.07 027 6.29 6.44 1.27 4.80 4.85 0.87 4.18 4.24 0.35 296 2.98 0.20
80 kv x180kVx0.3 4.59 4.66 0.48 3.11 3.20 0.43 4.09 4.12 0.42 2.84 2.87 0.29 6.37 6.59 1.38 4.88 4.93 0.86 4.26 4.33 0.32 3.05 3.09 0.18
80kVx180kvx0.5 6.21 6.40 1.01  4.00 4.23 078 5.73 6.06 1.43  3.68 3.86 079 7.44 7.65 1.67 5.64 5.68 099 6.61 7.06 1.33  4.62 4.82 076
80kVx180kvx0.7 470 4.73 031 317 3.19 0.24 493 5.01 0.58  3.26 3.32 0.40  6.54 6.62 1.28 493 4.93 0.85 4.43 4.46 0.26  3.10 3.11 0.20
80 kVx190kVx0.3 5.95 6.42 2.12 3.84 4.09 1.16 4.79 4.91 0.79 3.24 3.31 0.43 6.89 7.13 1.47 5.32 5.36 0.96 6.07 6.60 1.45 4.23 4.53 0.90
80kVx190kvx0.5 6.29 6.59 1.20 4.10 3.86 1.50 5.60 5.71 0.78 3.80 3.87 052 6.99 7.22 1.45 5.44 5.50 0.89 6.26 6.70 1.31  4.30 4.55 0.80
80kVx190kvx0.7 458 4.64 056  3.05 3.07 022 4.84 4.87 0.40  3.28 3.29 0.15 6.44 6.59 1.20 494 4.97 0.77  4.23 4.27 0.28 293 2.95 0.17
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